CN102290333A - 一种适用于石墨烯基器件的栅氧介质的形成方法 - Google Patents

一种适用于石墨烯基器件的栅氧介质的形成方法 Download PDF

Info

Publication number
CN102290333A
CN102290333A CN2011102197383A CN201110219738A CN102290333A CN 102290333 A CN102290333 A CN 102290333A CN 2011102197383 A CN2011102197383 A CN 2011102197383A CN 201110219738 A CN201110219738 A CN 201110219738A CN 102290333 A CN102290333 A CN 102290333A
Authority
CN
China
Prior art keywords
graphene
based device
grid oxygen
layer deposition
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102197383A
Other languages
English (en)
Inventor
周鹏
孙清清
王鹏飞
吴东平
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2011102197383A priority Critical patent/CN102290333A/zh
Publication of CN102290333A publication Critical patent/CN102290333A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明属于碳基集成电路制造技术领域,具体为一种适用于石墨烯基器件的栅氧介质的形成方法。本发明是在石墨烯基器件中采用原子层淀积方法生长氮化硼(BN),作为高k栅氧介质。生长BN可以突破目前BN靠机械剥离形成、大小难以控制、无法整合到石墨烯基电路集成工艺中的巨大难题,并且通过控制原子层淀积生长参数可以控制BN的结构与缺陷,进而能够提供多种不同石墨烯基器件应用,实现具有较高迁移率的石墨烯基场效应晶体管。

Description

一种适用于石墨烯基器件的栅氧介质的形成方法
技术领域
本发明涉及一种栅氧化层的形成方法,具体涉及一种在石墨烯半导体器件例如场效应管或存储器中生长高k栅氧介质的方法,属于碳基集成电路制造技术领域。
背景技术
根据摩尔定律,芯片的集成度每18个月至2年提高一倍,即加工线宽缩小一半。硅材料的加工极限一般认为是10纳米线宽,硅基集成电路在11纳米后无法突破其物理局限包括电流传输损耗,量子效应,热效应等,因此很难生产出性能稳定、集成度更高的产品。随着半导体技术的不断发展,硅基集成电路器件尺寸距离其物理极限越来越近。
为延长摩尔定律的寿命,国际半导体工业界纷纷提出超越硅技术(Beyond Silicon),其中最有希望的石墨烯应运而生。石墨烯(Graphene)是一种从石墨材料中剥离出的单层碳原子薄膜,是由单层六角元胞碳原子组成的蜂窝状二维晶体,其结构如图1所示。石墨烯具有零禁带特性,即使在室温下载流子在石墨烯中的平均自由程和相干长度也可以达到微米级, 同时,石墨烯还具有远比硅高的载流子迁移率,所以它是一种性能优异的半导体材料。基于其独特的二维结构和物理特性,石墨烯被认为是下一代集成电路中有望延续摩尔定律的重要材料。
作为新型的半导体材料,石墨烯已经被应用于MOS(Metal-Oxide-Semiconductor,金属-氧化物-半导体)场效应晶体管中,其中石墨烯通道场效应晶体管潜力的发现者IBM公司已经于2010年2月在2寸硅片上开发出了频率高达100GHz、栅极长度为240纳米的石墨烯通道场效应晶体管。
目前,石墨烯基半导体器件面临的主要挑战在于栅氧介质的形成工艺。传统的物理气相沉积会破坏石墨烯导致迁移率严重衰退,化学气相沉积以及原子层沉积工艺由于石墨烯材料的自然疏水性,利用水作为前驱体的大部分工艺直接在石墨烯上淀积高k介质层是不容易实现的,因此必须先对石墨烯表面进行处理,例如NO2处理或者生长金属或聚合物缓冲层,这样就增加了高k栅氧介质的淀积困难。
发明内容
本发明的目的在于提出一种适用于石墨烯基器件的栅氧介质的形成方法,以实现具有高迁移率的石墨烯基器件。
本发明提出的适用于石墨烯基器件的栅氧介质的形成方法,是在石墨烯基器件中采用原子层淀积方法生长BN,作为高k栅氧介质,具体步骤包括:
提供一个半导体衬底;
在所述半导体衬底上形成一层石墨烯;
在所述石墨烯层上形成金属接触并定义源、漏电极;
采用原子层淀积方法生长氮化硼(BN),作为栅氧介质;
在所述BN栅氧介质上形成栅电极。
本发明中,所述采用原子层淀积方法生长氮化硼(BN)的过程为:利用三溴化硼(BBr纯度大于99.999%)作为B的前驱体与氨气NH3(杂质低于1ppb)作为N的前驱体,高纯氩气(纯度大于99.995%)作为载气,采用原子层淀积方法在石墨烯层201上生长一层BN。其具体工艺过程为:将原子层淀积反应腔温度加热到400-750度,腔内压力保持在10torr,先以1000sccm流速通入Ar/BBr3 2秒钟,再以300sccm流速通入Ar气3秒钟,再以20sccm流速通入NH3 2秒钟,最后以300sccm流速通入Ar气3秒钟,这样完成一个循环,其生长速率在400度时约为0.3A每循环。
进一步地,所述的源、漏电极由Pt、Al、Ru、TiN或TaN等金属材料制成。所述的栅电极由Pt、Al、Au或Pd等金属材料制成。
BN的结构可以看做是石墨烯结构中的C原子分别由N和B原子占据,如图2所示,因此BN具有和石墨烯相匹配的晶格单元结构,根据此特性,当BN在石墨烯上形成薄膜作为栅氧时,石墨烯中的载流子输运会比其他结构栅氧介质受影响较小;也就改善了石墨烯迁移率降低问题。
BN的禁带宽度为5.97eV,介电常数和SiO2相比拟,约为3-4,由于其平面内键能较强,因此表面惰性并且悬挂键和缺陷很少。采用原子层淀积方法生长BN可以突破目前BN靠机械剥离形成、大小难以控制、无法整合到石墨烯基电路集成工艺中的巨大难题,并且通过控制原子层淀积生长参数可以控制BN的结构与缺陷,进而能够提供多种不同石墨烯基器件应用,可以实现具有较高迁移率的石墨烯基场效应晶体管。
附图说明
图1为石墨烯的原子结构示意图。
图2为BN的原子结构示意图。
图3至图7为本发明所提供的制备以BN为栅氧介质的石墨烯场效应晶体管为实施例的工艺流程图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的说明,在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确的反映出器件的实际尺寸,但是它们还是完整的反映了区域和组成结构之间的相互位置,特别是组成结构之间的上下和相邻关系。
本发明所提出的采用原子层淀积方法生长BN作为栅氧介质的方法可以适用于不同结构的石墨烯器件的制造中,以下所述叙述的是,制备以BN为栅氧介质的石墨烯场效应晶体管结构为实施例的工艺流程。
首先,在清洗过的硅衬底200上利用化学气相沉积(CVD)方法生长石墨烯层201,如图3所示。具体工艺过程为:首先在石英管内通入流速为400sccm的Ar/H2混合气体,压力为8-9torr,并将硅衬底在此稳定环境下加热至950摄氏度。然后停止通入Ar/H2混合气体,在保持石英管内压力为500mTorr的环境下通入甲烷以及氩气等惰性气体(其中甲烷/氩气的气体流量比值范围约是1:2-1:5,甲烷以及氩气的总气体流量大小取决于所需形成的薄膜的尺寸,一般范围约为280-480sccm)。最后将硅衬底在此环境下加热到一定温度,比如1000摄氏度,然后再在Ar/H2混合气体环境下按50摄氏度每分钟的速率降至室温,即可在硅衬底上沉积形成6-10层的石墨烯。
接下来,采用业界所熟知的薄膜淀积工艺以及光刻、刻蚀工艺,在石墨烯层201上形成金属接触,并定义源电极202和漏电极203,如图4所示。
接下来,将硅衬底置于原子层淀积设备中,利用三溴化硼(BBr纯度大于99.999%)作为B的前驱体与氨气NH3(杂质低于1ppb)作为N的前驱体,高纯氩气(纯度大于99.995%)作为载气,采用原子层淀积方法在石墨烯层201上生长一层BN 204,如图5所示。其具体工艺过程为:将原子层淀积反应腔温度加热到400-750度,腔内压力保持在10torr,先以1000sccm流速通入Ar/BBr3 2秒钟,再以300sccm流速通入Ar气3秒钟,再以20sccm流速通入NH3 2秒钟,最后以300sccm流速通入Ar气3秒钟,这样完成一个循环,其生长速率在400度时约为0.3A每循环。 
采用原子层淀积方法生长BN时,借助温度、气流控制,可以在石墨烯表面形成不同结构的BN,例如h-BN及t-BN,其中淀积形成的h-BN经XRD分析后的结果如图6所示。
最后,采用常规的CMOS制造工艺制备器件的栅电极205,如图7所示。
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。

Claims (3)

1.一种适用于石墨烯基器件的栅氧介质的形成方法,其特征在于具体步骤包括:
提供一个半导体衬底;
在所述半导体衬底上形成一层石墨烯;
在所述石墨烯层上形成金属接触并定义源、漏电极;
采用原子层淀积方法生长氮化硼,作为栅氧介质;
在所述栅氧介质上形成栅电极。
2.根据权利要求1所述的适用于石墨烯基器件的栅氧介质的形成方法,其特征在于,所述的源、漏电极由Pt、Al、Ru、TiN或TaN金属材料制成。
3.根据权利要求1所述的适用于石墨烯基器件的栅氧介质的形成方法,其特征在于,所述的栅电极由Pt、Al、Au或Pd金属材料制成。
CN2011102197383A 2011-08-02 2011-08-02 一种适用于石墨烯基器件的栅氧介质的形成方法 Pending CN102290333A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102197383A CN102290333A (zh) 2011-08-02 2011-08-02 一种适用于石墨烯基器件的栅氧介质的形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102197383A CN102290333A (zh) 2011-08-02 2011-08-02 一种适用于石墨烯基器件的栅氧介质的形成方法

Publications (1)

Publication Number Publication Date
CN102290333A true CN102290333A (zh) 2011-12-21

Family

ID=45336636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102197383A Pending CN102290333A (zh) 2011-08-02 2011-08-02 一种适用于石墨烯基器件的栅氧介质的形成方法

Country Status (1)

Country Link
CN (1) CN102290333A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709177A (zh) * 2012-06-14 2012-10-03 复旦大学 利用罗丹明作为缓冲层的石墨烯上生长高k介质的方法
CN103579350A (zh) * 2013-10-23 2014-02-12 清华大学 石墨烯场效应管及其形成方法
CN105874567A (zh) * 2014-07-02 2016-08-17 富士电机株式会社 碳化硅半导体元件的制造方法
CN111785829A (zh) * 2019-04-03 2020-10-16 天津大学 一种多位存储闪存单元

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385126A (zh) * 2006-02-16 2009-03-11 卢森特技术有限公司 包括外延生长在单晶衬底上的石墨烯层的器件
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
CN102263121A (zh) * 2011-07-19 2011-11-30 北京大学 基于石墨烯的霍尔集成电路及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385126A (zh) * 2006-02-16 2009-03-11 卢森特技术有限公司 包括外延生长在单晶衬底上的石墨烯层的器件
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN102184858A (zh) * 2011-04-07 2011-09-14 复旦大学 一种石墨烯场效应晶体管的制备方法
CN102263121A (zh) * 2011-07-19 2011-11-30 北京大学 基于石墨烯的霍尔集成电路及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709177A (zh) * 2012-06-14 2012-10-03 复旦大学 利用罗丹明作为缓冲层的石墨烯上生长高k介质的方法
CN102709177B (zh) * 2012-06-14 2015-03-04 复旦大学 利用罗丹明作为缓冲层的石墨烯上生长高k介质的方法
CN103579350A (zh) * 2013-10-23 2014-02-12 清华大学 石墨烯场效应管及其形成方法
CN103579350B (zh) * 2013-10-23 2016-01-20 清华大学 石墨烯场效应管及其形成方法
CN105874567A (zh) * 2014-07-02 2016-08-17 富士电机株式会社 碳化硅半导体元件的制造方法
US10037886B2 (en) 2014-07-02 2018-07-31 Fuji Electric Co., Ltd. Method of manufacturing silicon carbide semiconductor device using graphene and hexagonal boron nitride
CN105874567B (zh) * 2014-07-02 2018-11-27 富士电机株式会社 碳化硅半导体元件的制造方法
CN111785829A (zh) * 2019-04-03 2020-10-16 天津大学 一种多位存储闪存单元

Similar Documents

Publication Publication Date Title
Ben et al. 2D III‐Nitride Materials: Properties, Growth, and Applications
Jiang et al. Large‐area high quality PtSe2 thin film with versatile polarity
CN102074584B (zh) 一种空气隙石墨烯晶体管及其制备方法
TWI411100B (zh) 用於增進通道載子移動性之具有高應力襯料之基於Si-Ge的半導體裝置
CN102097297B (zh) 一种电场诱导的在石墨烯表面原子层淀积高k栅介质的方法
US8680511B2 (en) Bilayer gate dielectric with low equivalent oxide thickness for graphene devices
US9384991B2 (en) Carbon layer and method of manufacture
TW574762B (en) Method for growing monocrystal GaN on silicon substrate
JP2008508696A5 (zh)
Kukushkin et al. Plasma assisted molecular beam epitaxy of thin GaN films on Si (111) and SiC/Si (111) substrates: Effect of SiC and polarity issues
Hu et al. Substrate dielectric effects on graphene field effect transistors
CN107217242B (zh) 一种电子器件介电衬底的表面修饰方法
US8815664B2 (en) Method for fabricating semiconductor device
Liu et al. Atomic layer deposited 2D MoS 2 atomic crystals: From material to circuit
US20080191218A1 (en) Low-Dielectric Constant Cryptocrystal Layers And Nanostructures
CN102290333A (zh) 一种适用于石墨烯基器件的栅氧介质的形成方法
JP6479198B2 (ja) 単結晶iiia族窒化物層を備える半導体ウェハ
CN101941696B (zh) 一种适用于石墨烯基场效应管制造的纳米光刻方法
Yang et al. Improved performances of CVD‐grown MoS2 based phototransistors enabled by encapsulation
US20120276718A1 (en) Method of fabricating graphene-based field effect transistor
Xue et al. Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition
Xue et al. A study on self-assembled GaN nanobelts by a new method: structure, morphology, composition, and luminescence
CN103915327B (zh) 利用岛状石墨烯片在石墨烯上生长高k介质的方法
Wang et al. Low‐Voltage MgZnO Thin Film Transistors with an Amorphous Al2O3 Gate Insulator Grown by Pulsed Laser Deposition
JP5928864B2 (ja) 多層膜構造体及びその形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111221