CN101296857A - 用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置 - Google Patents

用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置 Download PDF

Info

Publication number
CN101296857A
CN101296857A CNA2006800399833A CN200680039983A CN101296857A CN 101296857 A CN101296857 A CN 101296857A CN A2006800399833 A CNA2006800399833 A CN A2006800399833A CN 200680039983 A CN200680039983 A CN 200680039983A CN 101296857 A CN101296857 A CN 101296857A
Authority
CN
China
Prior art keywords
powder
vacuum
nano
alloy
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800399833A
Other languages
English (en)
Inventor
高锡勤
白永焕
赵俊植
周栽镐
韩荣建
李正焕
吕运贞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P&I Corp
Original Assignee
P&I Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by P&I Corp filed Critical P&I Corp
Publication of CN101296857A publication Critical patent/CN101296857A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62842Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及制备粉末的方法和装置,其中,利用真空沉积法,在作为基底的粉末的表面上,真空沉积具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒。特别是,本发明提供制备沉积有尺寸非常均匀的纳米金属、合金和陶瓷颗粒的粉末的方法和装置,其中,通过使用有效的搅拌工具同时进行沉积和搅拌,以克服沉积和搅拌分别进行的传统方法的缺点。本发明还提供用于制备沉积有纳米颗粒的粉末的方法和装置,其中,即使在制备纳米颗粒时延长用于增大该纳米颗粒含量的沉积时间,也可通过防止产生纳米颗粒的聚结现象来保持纳米特性。

Description

用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置
技术领域
本发明涉及制备粉末的方法和装置,其中,利用真空沉积法在作为基底的粉末的表面上均匀地真空沉积纳米金属、合金和陶瓷颗粒。更具体而言,本发明涉及制备沉积有纳米颗粒的粉末的方法和装置,其中,利用物理和化学真空沉积法,在粉末基底的表面上均匀地形成纳米颗粒。
背景技术
当颗粒变小而具有纳米尺寸(100nm以下)时,纳米颗粒具有与现有的微米单位的颗粒不同的新的机械性质、化学性质、电性质、磁性质和光学性质。这是在表面面积与单位体积的比率增大至极端时显现出来的现象。一个由现有的微米尺寸的颗粒不能获得的新的应用领域通过利用这样的量子尺寸效应正在稳定的发展,其学术及技术方面日益受到关注。
作为用于制备纳米颗粒的常用典型方法,可以举出机械研磨法、流体沉淀法、喷雾法、溶胶-凝胶法和电爆法。不过,传统的纳米颗粒制备方法的缺点在于,这些方法各自需要数个工序或者有限的用于制备纳米颗粒的材料。在利用传统方法制造的纳米颗粒中,易于发生颗粒间的聚结,由此导致尺寸不均。为防止该现象而使用诸如表面活性剂或分散剂等添加剂时,产生的缺点是制得的纳米颗粒含有大量的杂质,从而造成纳米颗粒的纯度劣化。作为制备高纯度纳米颗粒的方法,典型方法是利用干式沉积法在真空中使金属或陶瓷蒸发,然后浓缩并收集冷壁上蒸发的金属或陶瓷。不过,该方法并不适于纳米颗粒的大量生产,而且极难控制纳米颗粒的尺寸和均匀性。
为了克服传统方法的缺点,本申请人提供一种通过利用韩国专利申请第10-2004-0013826中的真空沉积法在作为基底的粉末上沉积纳米颗粒的方法。该方法解决了由于利用真空沉积法在粉末上直接沉积纳米颗粒所导致的纳米颗粒之间发生聚结的缺陷,并具有获得纯度极高的纳米颗粒的优点。而且,通过在功能性粉末上沉积具有不同功能的纳米颗粒可以制备多功能粉末。在由该申请人所提供的传统方法中,分别地逐步进行将金属或陶瓷沉积在静止状态下的粉末基底上的步骤和将沉积有金属或陶瓷的粉末混合的步骤,并重复实施这些步骤多次,由此在该粉末的表面上形成具有理想尺寸的纳米颗粒。不过,该传统方法的不利之处在于纳米颗粒的尺寸不均一,且在整个粉末上不能连续的形成。而且,该传统方法的缺点还在于,分别进行沉积步骤和混合步骤导致制备过程复杂,制备时间延长,难以增大纳米颗粒的含量,不易进行大规模生产。对该传统方法的缺点的详细描述如下。
图1是显示在氧化铝粉末上提供的传统纳米银颗粒的扫描电子显微照片。如图1所示,可以看出形成了2nm以下的较小的纳米银颗粒,此外还形成了20nm以上的纳米银颗粒,从而导致纳米颗粒的尺寸不均一。这源于下述事实:由于沉积纳米颗粒时粉末处于静止状态,因而来自沉积源的颗粒随粉末的形状或位置的不同而具有不同的量,并且当与沉积源接触的时间长于形成理想尺寸的纳米颗粒所需的时间时,纳米颗粒的尺寸随意增大。因此,在静止状态下沉积纳米颗粒所用的时间受限,并且,在沉积后进行混合过程,然后再一次实施在静止状态下的纳米颗粒的沉积过程。因此,在具有较早形成的纳米颗粒的粉末中,当沉积时间延长时,导致颗粒间发生聚结,且纳米颗粒增大至微米尺寸或更大的尺寸并丧失纳米特征。因此,将沉积时间限制到发生聚结之前,由此,在将纳米颗粒的含量增大至应用所需的程度时存在问题。这个原因造成的缺点是,图2的传统搅拌器为平底式而非现有的桶式,并且它在一个平面上搅拌粉末,在这样的传统搅拌器中进行搅拌时,粉末没有被完全遮盖,在搅拌前就已经曝露于沉积区的粉末再次曝露于沉积区。这是难以实现本发明的主要目的的主要原因,即难以在粉末的表面上均匀地生成纳米颗粒的主要原因。
发明内容
[技术问题]
本发明涉及制备粉末的方法和装置,所述粉末上均匀地真空沉积有纳米金属、合金和陶瓷颗粒。该方法和装置基本上避免了由于现有技术的局限和缺点所致的一个或一个以上的问题。
本发明的一个目的是提供这样的方法和装置:为了克服沉积与搅拌分别进行的传统方法的缺点,通过使用有效的搅拌工具同时进行沉积和搅拌,从而制备沉积有尺寸非常均匀的纳米金属、合金和陶瓷颗粒的粉末。
本发明的另一方面是提供用于制备沉积有纳米颗粒的粉末的方法和装置,其中,即使在制备纳米颗粒时延长用于增大该纳米颗粒含量的沉积时间,也能够防止出现纳米颗粒的聚结现象,从而保持了纳米特性。
[技术方案]
为了获得这些和其他优点,根据本发明所具体化和概括描述的目的,本发明提供通过使用真空沉积法将诸如金属、合金和陶瓷等纳米颗粒均匀地沉积在粉末基底的表面上的方法和装置。本发明所制得的沉积有纳米颗粒的粉末不仅具有其自身的功能,而且还具有提供被沉积的纳米颗粒的功能的特点。因此,该粉末可应用于不同工业领域,并且能够比传统粉末产生更大的附加值。
具体而言,本发明涉及一种方法,其中,使用相比于粉末尺寸具有足够深度的桶式搅拌器,在三维空间搅拌粉末,从而使得曝露于沉积区的时间最小化,并使已经形成有纳米颗粒的粉末再次曝露于沉积区之前的时间延长,以使相比于传统搅拌器而言粉末基底的运动最大化,由此抑制早期形成的纳米颗粒与来自沉积源的新颗粒之间的聚结,从而最大限度地形成纳米颗粒。换言之,传统技术所遵循的理念是,通过控制静止状态下的曝露时间来形成纳米颗粒。与此相反,本发明是完全新型的方法,其中纳米颗粒在动态下形成,因此纳米颗粒的尺寸受到搅拌速度的极大影响。而且在传统技术中,暴露于平面的粉末的量受限,因而导致可被一次处理的粉末的量受限。然而,在本发明中,使用具有较大深度的桶式搅拌器同时进行搅拌和沉积,因此甚至可以解决大规模生产问题。
[有利效果]
本发明提供了通过使用真空沉积法在粉末型基底的表面上制备具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒的装置和技术。本发明的优点在于通过使用真空沉积法获得高纯度,并且没有观察到由于在粉末基底上进行纳米沉积而导致的纳米颗粒之间常见的聚结现象,由此使纳米效应最大化。可以采用各种真空沉积法,诸如金属、合金和陶瓷等大部分材料可形成为所述纳米颗粒。由于不存在化学处理因而制造过程可以高度简化。通过调节可单独控制的工艺变量,如溅射功率、真空度和搅拌速度,可以制备具有优异再现性的产物。除了现有的粉末基底的功能之外,还增添了纳米颗粒的功能,因此能够制备多功能粉末。可以预期这将适用于下列不同领域:能量转换领域、燃料电池和用于氮化合物分解目的的催化剂领域,以及需要抗菌和消毒的日常用品、废水处理和光学催化剂领域。
附图说明
图1是描述根据传统技术形成于氧化铝粉末上的纳米银颗粒的SEM照片;
图2是描述传统工艺的粉末搅拌装置和纳米颗粒制备装置的概念视图;
图3是描述本发明的纳米颗粒沉积用制备装置的示意图;
图4是描述本发明的搅拌单元的示意性透视图;
图5是描述根据本发明的示例性实施方式沉积于氧化铝粉末上的纳米银颗粒的SEM照片;
图6是描述根据本发明的示例性实施方式沉积在氧化铝粉末上的纳米银颗粒的化学状态的XPS分析结果图;
图7A是描述沉积前的氧化铝粉末的表面的SEM照片,图7B是描述利用本发明示例性实施方式最大化的沉积量和沉积时间所观察的氧化铝粉末的表面的SEM照片;
图8A是描述未沉积纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图,图8B是描述本发明的示例性实施方式的沉积有纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图;
图9是描述XPS测定结果的曲线,根据本发明的示例性实施方式,通过测定沉积在氧化铝粉末上的纳米银颗粒的银含量与沉积时间的关系而获得该曲线;
图10A~10E是一些实际照片,它们分别描述延长图9所示的同一沉积时间时的沉积有纳米银颗粒的氧化铝粉末;
图11A是描述未添加纳米银颗粒的肥皂样品的抗菌测试结果的照片,图11B是描述本发明的另一示例性实施方式的肥皂样品的抗菌测试结果的照片,图11B的肥皂样品中混合有沉积有纳米银颗粒的糖;和
图12A~12F分别是描述形成有纳米颗粒的糖、盐、活性炭、Al2O3、砂和PE(聚乙烯)碎屑的粉末样品的实际照片。
具体实施方式
以下将参考附图对本发明的优选实施方式进行详细说明。
图3是描述根据本发明的用于沉积纳米颗粒的装置的示意图,而图4是描述根据本发明的搅拌单元的示意性透视图。本发明的制备装置利用真空沉积法在作为基底的粉末的表面上沉积诸如金属、合金和陶瓷等纳米颗粒,所述装置包括:用于形成并保持真空的真空室1;与该真空室1的一个外侧连接的高真空泵2和低真空泵3;包括用于盛装粉末的桶4和用于搅拌粉末的叶轮6的搅拌单元;用于真空沉积诸如金属、合金和陶瓷等材料的沉积单元8;用于对粉末进行预处理的加热单元9;用于从粉末中除去水分的冷阱10;和用于防止粉末在搅拌时扩散至搅拌单元外部的护罩7。
桶4由诸如不锈钢等材料形成,该材料具有优异的耐磨损性和耐腐蚀性,且对人体无害。冷却剂循环通道5安装在桶4的外侧。该冷却剂循环通道5供应冷却剂并抵消由沉积单元所产生的热量,由此最大限度地防止耐热性较弱的粉末受热而损坏。
如图4所示,叶轮6在其圆周表面优选包括多个翼片6a,从而使得粉末能够在桶4的内部均匀混合。叶轮6按一个方向旋转,并由耐磨损性、耐腐蚀性和耐热性优异且对人体无害的材料构成。其中,通常可以使用不锈钢材料。根据粉末的种类可选择不同形状的叶轮6。对叶轮6进行成形加工,以使粉末能够最大程度地均匀混合。
沉积单元8可以使用现有的已知真空沉积法,如物理气相沉积法(PVD)或化学气相沉积法(CVD),其中采用使用DC/RF/MF等电源的磁控溅射器、使用离子枪的离子束溅射器和使用电阻加热或电子束的热蒸发器。其中,DC/RF/MF磁控溅射器最容易使用。真空室1可以选择不同的材料,以使其较少的向外排气并耐受较高的压力。真空室1通常可以使用不锈钢材料。
在本发明中,真空泵包括低真空泵3和高真空泵2。根据所要求的工作真空度,该真空泵仅仅使用低真空泵3,或组合使用低真空泵3与高真空泵2。低真空泵3可以采用活塞泵、旋转式泵、加压泵和干式泵。高真空泵可以采用油扩散泵、涡轮泵和低温泵。桶或真空沉积单元的个数可以依据生产量的不同而不同。为了快速工作,低真空泵3或高真空泵2可以多个一起使用,由此使个数最优化。
图5是描述根据本发明的示例性实施方式沉积于氧化铝粉末上的纳米银颗粒的扫描电子显微镜(SEM)照片。可以看出,与图1相比,纳米颗粒的尺寸均一,在5nm至10nm之间。该纳米颗粒的均一性得到改善是因为它们在桶内得到连续有效的搅拌,由此使得粉末表面的曝露时间恒定,因而均匀地控制银原子的沉积个数。在表面上形成具有预定尺寸的临界核的沉积颗粒以稳态提供。利用曝露时间可以控制成簇的沉积原子的个数,因此可以控制形成的纳米颗粒的尺寸。
图6是描述利用本发明的装置沉积在氧化铝粉末上的纳米银颗粒的化学状态的X射线光电子能谱(XPS)分析结果图。XPS分析基于银的3d峰进行,比较并分析沉积于玻璃基底上的银膜的化学状态以供对照。随着银沉积时间由150分钟增至990分钟,搅拌氧化铝粉末以制得纳米银颗粒,该纳米银颗粒的XPS Ag 3d峰的位置即使在沉积时间延长时也保持不变,并且与沉积在玻璃上的银膜的峰的位置不同。与此相反,峰的强度和面积逐渐增大。这表示银的沉积量增大。沉积时间延长时,峰的强度和面积增大而峰的位置不变。这表示尽管沉积时间延长,但沉积于氧化铝粉末上的纳米银颗粒的尺寸并未增大,且小纳米颗粒型的纳米银颗粒的数目增大。因此,这表明即使总的来说沉积时间延长,但搅拌粉末时沉积的纳米银颗粒仍然保持极小的纳米颗粒型而非膜型。这是因为,有效地搅拌粉末可以缩短静止状态的粉末与沉积源的接触时间,且粉末的连续运动导致形成新的纳米颗粒而不是使纳米颗粒长大。
纳米颗粒的尺寸与从沉积源蒸发的纳米颗粒的量密切相关。沉积时间延长时,可以调节纳米颗粒的尺寸和量。图7A是描述沉积前的氧化铝粉末的表面的SEM照片,图7B是描述利用本发明示例性实施方式最大化的沉积量和沉积时间所观察的氧化铝粉末的表面的SEM照片。如根据本发明的示例性实施方式的图7B所示,观察到纳米银颗粒的尺寸生长,且其尺寸为约10~20nm。在图5和6中观察到,当沉积时间在预定时间范围内时,有可能生长尺寸为约10nm以下的纳米颗粒。当沉积量和沉积时间最大化时,也有可能增大该纳米颗粒的尺寸,并生长尺寸为约200nm的纳米颗粒。不过,可以看出,即使该纳米颗粒的尺寸变大,整个粒径的分布仍然非常稳定。
图8A是描述未沉积纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图,图8B是描述本发明的示例性实施方式的沉积有纳米颗粒的氧化铝粉末的表面的化学组成分析结果的照片和图。在图8A中可以看出,在没有沉积纳米颗粒的氧化铝粉末部分未观察到银(Ag)。相反,在图8B中可以看出,在纳米颗粒部分观察到银,而且氧化铝粉末表面上的颗粒是利用真空沉积形成的纳米银颗粒。
图9是描述XPS测定结果的曲线,根据本发明的示例性实施方式,通过测定沉积在氧化铝粉末上的纳米银颗粒的银含量与沉积时间的关系而获得该曲线。可以看出,沉积在氧化铝粉末上的银的含量随沉积时间而逐渐地单调增加。这表明可以简单地改变沉积时间,从而能够容易地控制纳米颗粒的理想含量。
图10A~10E是一些实际照片,它们分别描述延长图9所示的同一沉积时间时的沉积有纳米银颗粒的氧化铝粉末。如这些图所示,纳米银颗粒的含量增大时,氧化铝粉末的颜色逐渐变深。这是随着含量增大导致纳米银颗粒的尺寸变大而产生的结果。尽管沉积时间长,但沉积有纳米银颗粒的氧化铝粉末略带黄色。这是具有200nm以下的小尺寸的纳米Ag颗粒的典型颜色。颜色的变化也与图5的SEM结果严格一致。
如上所述,本发明提供利用真空沉积法在粉末基底上制备具有优异的尺寸均匀性的纳米金属、合金和陶瓷颗粒的方法,并确定了根据本发明制得的纳米颗粒的特点。
实施例
下面将对本发明的实施例进行详细描述。不过,下列的实施方式仅是示例性的,而非意在限制本发明的范围。
[实施例1]:纳米银沉积于盐和糖上
将大约25kg干盐或干糖装入图3的桶4中,并将银靶放置在DC磁控溅射器上。在将粉末放入真空室1中后,使用真空泵形成真空状态。根据工作条件,真空度仅由低真空泵3提供或者由低真空泵3结合高真空泵2提供。初始真空度保持在约10-1torr~10-6torr(托)。溅射用气采用氩(Ar)气。氩气的注入量可随工作条件改变。一般说来,进行注气以保持真空度为约10-1torr~10-4torr。在抽至所需的真空度并注入溅射用气之后,实施银靶溅射,同时旋转桶4内部的叶轮6。叶轮6的转速是可控的,溅射速度可根据输入功率控制,并通常在1W/cm2~200W/cm2的范围内及该范围外。相对于盐的银含量可根据例如溅射功率、溅射时间和真空度等工作条件而变,并通常可以控制在10ppm~10000ppm的范围内。纳米银颗粒的尺寸也可以根据由桶4的叶轮6的速度所决定的盐和糖的混合程度以及工作条件进行控制。这样的产品可以与需要抗菌消毒的日常用品如牙膏、肥皂和清洁剂混合使用,或者也可以单独使用。
表1显示了通过与沉积有纳米银颗粒的糖混合而制得的肥皂样品的抗菌测试结果。如表1所示,可以看出,在未添加纳米银颗粒的样品(空白)中,培养24小时后,细菌的个数增多,超过了细菌的初始个数。与此相反,可以看出,在添加有纳米银颗粒的样品中,培养24小时后,观察到细菌减少了99.9%以上,通过加入纳米银颗粒细菌被全部杀灭。图11A~11B显示了表1的肥皂样品的抗菌测试结果。如前所述,可以看出,在含有纳米银颗粒的肥皂样品中的细菌的个数快速减少。由此可见,根据本发明制备的纳米银颗粒具有足够的抗菌性能。
表1.抗菌测试结果
  空白   样品
  初始个数(细菌个数/ml)   1.4×104   1.4×104
  24小时后(细菌个数/ml)   2.1×104   <10
  细菌减少的百分比(%)   -   99.9
注:
1.测试条件:于37℃±1℃的温度摇动培养测试用细菌液体24小时,然后测定细菌的个数(摇动的次数:120次/分钟)
2.公知的细菌:金黄色葡萄球菌(Staphylococcus aureus)ATCC 6538
3.使用1.0g样品进行测试。
[实施例2]:纳米银沉积于活性炭上
将大约20kg活性炭装入真空室内部的桶中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在活性炭上。如果材料难以获得所需的真空度,如活性炭等多孔材料,在抽真空时,利用设置在桶上部的加热器加热,则它易于在略微更快的时间内进行抽真空。活性炭的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。该产物可用于净水器用抗菌消毒过滤器。
[实施例3]:纳米银沉积于砂上
将大约20kg砂装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在砂上。在许多情况中,砂通常含有大量水分。因此,在将砂装入真空室1内部的桶4中之前,通过干燥处理从砂中除去水分是有利的。干燥处理后仍残留的水分利用安装在桶4上部的加热器和真空室1内部的冷阱10除去。冷阱10利用致冷剂截留真空室1内部的水分,因此可略微更快地抽真空。砂的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。该产物可用于类似养鸡场或畜舍等需要抗菌消毒功能的场所,也可应用于高尔夫球场。
[实施例4]:纳米银沉积于二氧化钛(TiO2)、氧化铝(Al2O3)上
将大约20kg诸如二氧化钛或氧化铝等陶瓷粉末装入真空室1内部的桶中,使用与实施例1相同的装置和工作条件使银纳米颗粒沉积在陶瓷粉末上。理想的是,使用尺寸为约100nm~5mm的即使在真空中也不会变化的TiO2和Al2O3粉末。陶瓷粉末的银含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。该产物适用于水处理、抗菌和消毒领域。
[实施例5]:纳米银颗粒沉积于二氧化硅(SiO2)上
将大约20kg的二氧化硅粉末装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积金属纳米颗粒。理想的是,使用尺寸如实施例4中的在真空中不会变化的SiO2粉末。该尺寸在约100nm~5mm的范围内或之外。可用的金属是能够用作氮化物的催化剂的一类金属,如钒(V)、锰(Mn)、镍(Ni)和钨(W)。二氧化硅粉末的金属含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。该产物可用作用于分解氮化物如一氧化氮(NO)的催化剂。
[实施例6]:纳米金属和陶瓷颗粒沉积于氧化锆(ZrO2)和氧化铁(Fe2O3)上
将大约20kg氧化锆或氧化铁粉末装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积纳米金属或陶瓷颗粒。沉积靶是金(Au)、铂(Pt)、钌(Ru)、锡(Sn)、钯(Pd)、镉(Cd)、MgO、CaO、Sm2O3和La2O3。该粉末的纳米颗粒含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。该产物适于用作能量转换领域和燃料电池的催化剂,以诱导石油与液化气之间的反应。
[实施例7]:纳米金属颗粒沉积于聚合物碎屑上
将大约20kg碎屑型PE、PP(聚丙烯)、PET(聚对苯二甲酸乙二酯)和PS(聚苯乙烯)装入真空室1内部的桶4中,使用与实施例1相同的装置和工作条件沉积纳米金属颗粒。沉积靶是银(Ag)、金(Au)和铝(Al)。该粉末的纳米颗粒含量可通过改变工作条件(如溅射功率、溅射时间、叶轮转速和真空度等)进行调节,该含量可被控制在10ppm~10000ppm的范围内。通常,聚合物材料的表面能较低,从而与金属的粘合强度较弱。鉴于此,在纳米颗粒沉积之前,可以对聚合物材料进行表面处理以活化其表面。表面处理方法可以采用目前公知的离子束辅助反应、直流/交流等离子体或电子束反应法。对沉积有纳米颗粒的这种碎屑进行成型加工可得到各种产品。该产物适用于需要抗菌消毒的塑料家具、包装容器或装饰材料。
图12A~12F显示了描述不同粉末样品的实际照片,所述粉末样品由具有纳米颗粒的糖、盐、活性炭、Al2O3、砂和PE碎屑形成,这些粉末样品分别记述在各个实施例中。
如上所述,本发明涉及形成有纳米单位尺寸的纳米金属、合金和陶瓷颗粒的粉末的制备方法,且本发明是利用纳米效应提供各种工业适用性的技术。形成有纳米颗粒的粉末基底可以直接使用。特别是,当可溶性粉末如氯化钠(NaCl)、氢氧化钾(KOH)、聚乙烯醇、糖、阿斯巴甜、糖精和甜菊糖等用作基底时,已形成的纳米颗粒与粉末基底可使用适宜的溶剂分离。由此可获得并应用纯的纳米金属、合金或陶瓷颗粒。不过,根据需要,可以使用适宜的分散剂,以防止纳米颗粒在溶液中聚结。
溶解可溶性粉末所需的溶剂采用所有的极性溶剂和非极性溶剂,极性溶剂有蒸馏水、甲醇、乙醇、异丙醇、丙酮等,非极性溶剂有己烷、苯等。可以根据可溶性粉末的种类选择并使用适宜的溶剂。
作为上述的由可溶性粉末获得纳米颗粒的方法,可以有下述方法:使用公知的滤纸或过滤装置过滤分散在溶液中的纳米颗粒的方法;和尽可能稀释粉末(相当于溶液中的溶质)的浓度,然后干燥被稀释溶液的方法。
根据本发明,依据应用领域的特征和用途进行变形、混合、稀释和浓缩处理,形成有纳米颗粒的粉末和从该粉末上分离的纳米颗粒作为完整产品可应用于各种领域。
工业实用性
本发明提供通过使用真空沉积法在粉末型基底的表面上制备具有优异的尺寸均一性的纳米金属、合金和陶瓷颗粒的装置和技术。本发明的优点在于,通过使用真空沉积法获得高纯度,并且没有观察到由于在砂上进行纳米沉积而导致的纳米颗粒之间常见的聚结现象,由此使纳米效应最大化。可以采用各种真空沉积法,诸如金属、合金和陶瓷等大部分材料可形成为所述纳米颗粒。由于无需化学处理,因而制造过程可以高度简化。通过调节可单独控制的工艺变量,如溅射功率、真空度和搅拌速度,可以制备具有优异再现性的产物。除了现有的粉末基底的功能之外,还增添了纳米颗粒的功能,因此能够制备多功能粉末。可以预期这将适用于下列不同领域:能量转换领域、燃料电池和用于氮化合物分解目的的催化剂领域,以及需要抗菌和消毒的日常用品、废水处理和光学催化剂领域。
尽管此处参考本发明的优选实施方式对本发明进行了描述和说明,但对于本领域熟练有经验的技术人员来说显而易见的是,在不脱离本发明的精神和范围的前提下,可以对所述实施方式进行各种修正和变化。因此,本发明旨在涵盖落入所附权利要求及其等同权利要求的范围的本发明的各种修正和变化。

Claims (17)

1.一种用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法,所述方法包括:
同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上。
2.如权利要求1所述的方法,其中,所述所述纳米金属、合金和陶瓷颗粒的所述真空沉积步骤通过物理真空沉积法或化学真空沉积法实施。
3.如权利要求1所述的方法,其中,所述粉末是平均粒径为100nm~5mm的无机材料或有机材料,所述粉末在真空中不蒸发。
4.如权利要求1所述的方法,其中,所述粉末搅拌步骤利用具有预定深度的桶式搅拌单元在三维空间搅拌所述粉末,从而,即使沉积有所述纳米颗粒的所述粉末再次曝露于沉积区,到达所述粉末上的沉积颗粒仍为独立的纳米颗粒,而不会与已有的簇聚结。
5.如权利要求1所述的方法,所述方法还包括在真空沉积所述纳米颗粒的步骤和搅拌所述粉末的步骤之前干燥所述粉末的步骤。
6.如权利要求1所述的方法,所述方法还包括在真空沉积所述纳米颗粒的步骤和搅拌所述粉末的步骤之前活化所述粉末的表面的步骤。
7.如权利要求6所述的方法,其中,所述粉末表面的活化步骤通过离子束辅助反应法和直流/交流等离子体或电子束反应法实施。
8.一种装置,所述装置利用真空沉积法在作为基底的粉末的表面上沉积纳米金属、合金和陶瓷颗粒,并制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末,所述装置包括:
用于形成并保持真空的真空室(1);
与所述真空室的一个外侧连接的高真空泵(2)和低真空泵(3);
包括用于盛装所述粉末的桶(4)和用于搅拌所述粉末的叶轮(6)的搅拌单元;
用于真空沉积金属、合金和陶瓷材料的沉积单元(8);
用于对所述粉末进行预处理的加热单元(9);
用于从所述粉末中除去水分的冷阱(10);和
用于防止所述粉末在搅拌时扩散至所述搅拌单元外部的护罩(7)。
9.如权利要求8所述的装置,其中,在所述桶(4)的外侧设置冷却剂循环通道(5),该冷却剂循环通道用于供应冷却剂并抵消由所述沉积单元(8)所产生的热量。
10.如权利要求8所述的装置,其中,所述桶(4)、所述叶轮(6)和所述真空室(1)均由不锈钢材料形成。
11.如权利要求8所述的装置,其中,所述叶轮(6)在其圆周表面具有多个翼片(6a)并按预定方向旋转,从而使得所述粉末能够在所述桶(4)的内部均匀混合。
12.如权利要求8所述的装置,其中,所述高真空泵(2)采用油扩散泵、涡轮泵和低温泵中的任一种。
13.如权利要求8所述的装置,其中,所述低真空泵(3)采用活塞泵、旋转式泵、加压泵和干式泵中的任一种。
14.一种用于制备包含纳米金属、合金和陶瓷颗粒的溶液的方法,所述方法包括:
同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的可溶性粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上;以及
将所述可溶性粉末溶解在溶剂中。
15.一种用于制备纳米金属、合金和陶瓷颗粒的方法,所述方法包括:
同时进行真空沉积步骤和粉末搅拌步骤达预定的时间,在所述真空沉积步骤中,在作为基底的可溶性粉末的表面上真空沉积所述纳米金属、合金和陶瓷颗粒,在所述粉末搅拌步骤中,搅拌沉积有所述纳米金属、合金和陶瓷颗粒的所述粉末,以使基于纳米单位具有均匀的平均粒径的所述纳米金属、合金和陶瓷颗粒沉积在所述粉末的表面上;以及
将所述可溶性粉末溶解在溶剂中,并从溶液中分离出不溶解的纳米颗粒。
16.如权利要求15所述的方法,其中,通过过滤从所述溶液中分离所述纳米颗粒。
17.如权利要求15所述的方法,其中,稀释并干燥所述溶液,并且从所述溶液中分离所述纳米颗粒。
CNA2006800399833A 2005-10-26 2006-10-16 用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置 Pending CN101296857A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2005-0101112 2005-10-26
KR1020050101112A KR20070044879A (ko) 2005-10-26 2005-10-26 금속, 합금 및 세라믹 나노 입자가 균일하게 진공 증착된파우더의 형성 방법 및 그 제조 장치

Publications (1)

Publication Number Publication Date
CN101296857A true CN101296857A (zh) 2008-10-29

Family

ID=37967953

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800399833A Pending CN101296857A (zh) 2005-10-26 2006-10-16 用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置

Country Status (6)

Country Link
US (1) US20080254219A1 (zh)
EP (1) EP1940735A4 (zh)
JP (1) JP2009511754A (zh)
KR (1) KR20070044879A (zh)
CN (1) CN101296857A (zh)
WO (1) WO2007049873A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097824A1 (zh) * 2010-02-12 2011-08-18 大连科林爱纳米科技有限公司 X射线或者ct造影剂用金纳米粒子的制造方法
CN108193182A (zh) * 2018-02-26 2018-06-22 苏州求是真空电子有限公司 一种三维溅射镀膜装置
CN115568283A (zh) * 2021-05-03 2023-01-03 株式会社乔奈斯 一种金纳米颗粒的制造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
US8017168B2 (en) 2006-11-02 2011-09-13 The Coca-Cola Company High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith
JP4999167B2 (ja) * 2007-06-15 2012-08-15 株式会社アルバック 同軸型真空アーク蒸着源を用いるナノ粒子の担持方法
JP4987634B2 (ja) * 2007-08-31 2012-07-25 株式会社東芝 微粒子担持方法及び担持装置
JP4987633B2 (ja) * 2007-08-31 2012-07-25 株式会社東芝 微粒子担持方法及び微粒子担持装置
CN102186571A (zh) * 2008-10-14 2011-09-14 大连科林爱纳米科技有限公司 纳米粉末制造装置、制造方法以及利用纳米粉末制备涂层的方法及涂层
CN102272037A (zh) * 2008-10-23 2011-12-07 大连科林爱纳米科技有限公司 催化剂用纳米粒子制造装置、制造方法、纳米催化剂产品及其生产方法
KR101118614B1 (ko) * 2009-11-20 2012-02-27 한국생산기술연구원 나노 입자를 이용한 이종 소재간 복합체 제조방법 및 이를 이용하여 제조되는 이종 소재간 복합체
KR20120123940A (ko) * 2011-05-02 2012-11-12 고석근 담체를 이용한 나노 파우더 제조 방법
KR101484572B1 (ko) * 2011-05-02 2015-01-20 고석근 담체에 부착된 나노 입자 제조 장치
KR101312701B1 (ko) * 2011-05-23 2013-10-01 국립대학법인 울산과학기술대학교 산학협력단 갈륨 나노 유체의 제조 방법, 이에 따라 제조된 갈륨 나노 유체, 그리고 갈륨 나노 유체를 포함하는 고속로의 냉각재
WO2013041305A1 (de) * 2011-09-22 2013-03-28 Peak-Werkstoff Gmbh Verfahren zur herstellung von bauteilen aus mmc's (metallmatrix-verbundwerkstoffen) mit overspraypulver
KR101452262B1 (ko) * 2012-07-05 2014-10-21 (주)씨엔원 파우더 코팅 장치 및 코팅 방법
KR101757570B1 (ko) 2013-03-13 2017-07-12 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 비정질 반도체 양자점의 금속 유도 나노결정화
KR101699274B1 (ko) * 2014-01-06 2017-01-24 주식회사 화진 담체를 이용한 나노 파우더 제조 방법
JP5661965B1 (ja) * 2014-06-17 2015-01-28 株式会社ジーエル・マテリアルズホールディングス 有機系太陽電池用材料及びそれを用いた有機系太陽電池、並びに、その材料の製造方法
JP5753304B1 (ja) * 2014-08-29 2015-07-22 株式会社ジーエル・マテリアルズホールディングス セラミックスナノ粒子が担持されたアルミニウム又はアルミニウム合金粉体及びそれを用いたセラミックス−アルミニウム系複合材料、並びに、その粉体の製造方法
JP5728119B1 (ja) * 2014-09-30 2015-06-03 株式会社ジーエル・マテリアルズホールディングス 異種ナノ粒子の同時製造方法
JP6656823B2 (ja) * 2015-06-11 2020-03-04 株式会社ジェネライツ 電解水の製造原料、それを用いた電解液、及び、その電解液から製造される電解水、並びに、その電解液及び電解水の製造方法
EP3318351B1 (de) * 2016-11-02 2020-12-30 Linde GmbH Verfahren zur generativen fertigung eines 3-dimensionalen bauteils
WO2018105098A1 (ja) * 2016-12-09 2018-06-14 株式会社ジェネライツ 電解水の製造原料及びそれを用いた電解液、並びに、その製造原料、その電解液、及び、その電解水の製造方法
JP6945105B2 (ja) * 2017-02-21 2021-10-06 株式会社ジーエルライフ 抗菌性合成樹脂ペレットの製造方法
JP2018134589A (ja) * 2017-02-21 2018-08-30 株式会社ジーエル・マテリアルズホールディングス 電解水の製造原料及びそれを用いた電解液、並びに、その製造原料、その電解液、及び、その電解水の製造方法
KR102199328B1 (ko) * 2017-06-05 2021-01-06 한국생산기술연구원 분말코팅장치
KR101872305B1 (ko) * 2018-01-18 2018-06-28 주식회사 테토스 금속볼 제조 장치 및 그 제조 방법
WO2019151818A1 (ko) * 2018-02-02 2019-08-08 고석근 유동성 기판을 이용한 나노 입자 제조 방법 및 이를 위한 장치
KR102053643B1 (ko) * 2019-01-30 2019-12-09 주식회사 금빛 금속 나노입자가 포함된 항균 초흡수성 고분자 흡수재
TWI732532B (zh) 2019-04-24 2021-07-01 美商應用材料股份有限公司 用於在具有旋轉槳的固定的腔室中塗覆顆粒的反應器
TWI844842B (zh) 2019-04-24 2024-06-11 美商應用材料股份有限公司 具有旋轉葉片與氣體注入之用於在固定腔室中塗覆粒子的反應器
CN110734127B (zh) * 2019-11-06 2022-01-28 合肥学院 一种碳复合纳米零价金属多孔功能材料、其制备方法及应用
CN110734129B (zh) * 2019-11-06 2022-01-28 合肥学院 一种基于陨石制备的纳米零价金属多孔功能材料、其制备方法及应用
CN110734128B (zh) * 2019-11-06 2022-01-28 合肥学院 一种基于陨石制备的纳米零价金属轻质多孔球形功能材料、其制备方法及应用
KR102157222B1 (ko) 2020-04-21 2020-09-17 박정덕 식품에 미네랄 성분을 보충하는 방법, 장치 및 식품
KR102465798B1 (ko) * 2020-11-26 2022-11-14 한국생산기술연구원 진동/회전 볼 밀링 장치로 제조된 다성분계 합금분말의 aip 코팅타겟 제조방법
KR20220076820A (ko) * 2020-12-01 2022-06-08 (주) 엔피피플러스 물리적 증착 방법을 이용한 금속 미네랄 함유 복합 비료 또는 영양제 제조
KR20230031619A (ko) * 2021-08-27 2023-03-07 (주)아이작리서치 분말용 스퍼터 장치
KR102347234B1 (ko) 2021-09-30 2022-01-04 주식회사 에이유랩스 나노입자 제조용 진공 교반기
CN115287601B (zh) * 2022-08-05 2023-09-22 温州鑫淼电镀有限公司 一种塑胶制品的真空镀膜工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909744B2 (ja) * 1988-06-09 1999-06-23 日新製鋼株式会社 微粉末を被覆する方法と装置
JP3051554B2 (ja) * 1992-03-25 2000-06-12 日新製鋼株式会社 粉末コーティング装置
DE19602525A1 (de) * 1996-01-25 1997-08-07 Starck H C Gmbh Co Kg Sphärische Keramikformkörper, Verfahren zu ihrer Herstellung sowie deren Verwendung
US6355146B1 (en) * 1996-04-03 2002-03-12 The Regents Of The University Of California Sputtering process and apparatus for coating powders
JPH11229115A (ja) * 1998-02-09 1999-08-24 Nisshin Steel Co Ltd 表面が微粉末で覆われた粉末を作製する方法
AU6472798A (en) * 1998-03-19 1999-10-11 University Of Florida Process for depositing atomic to nanometer particle coatings on host particles
FR2779962B1 (fr) * 1998-06-17 2002-12-06 Karim Ioualalen Composition cosmetique ou dermopharmaceutique sous forme de perles et procedes pour la preparation
JP4013352B2 (ja) * 1998-09-24 2007-11-28 松下電工株式会社 樹脂基材表面への金属膜形成方法
JP2001207261A (ja) * 2000-01-25 2001-07-31 Matsushita Electric Works Ltd 蒸着コーティング装置用バレル
US6827557B2 (en) * 2001-01-05 2004-12-07 Humanelecs Co., Ltd. Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
JP2003156597A (ja) * 2001-07-30 2003-05-30 Fuji Photo Film Co Ltd 放射線像変換パネルの製造方法
JP3620842B2 (ja) * 2002-12-25 2005-02-16 孝之 阿部 多角バレルスパッタ装置、多角バレルスパッタ方法及びそれにより形成された被覆微粒子、被覆微粒子の製造方法
JP2005044677A (ja) * 2003-07-23 2005-02-17 Nisshin Steel Co Ltd 微細粒径の導電性粒子
JP2005264297A (ja) * 2004-03-22 2005-09-29 Takayuki Abe 微粒子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011097824A1 (zh) * 2010-02-12 2011-08-18 大连科林爱纳米科技有限公司 X射线或者ct造影剂用金纳米粒子的制造方法
CN108193182A (zh) * 2018-02-26 2018-06-22 苏州求是真空电子有限公司 一种三维溅射镀膜装置
CN115568283A (zh) * 2021-05-03 2023-01-03 株式会社乔奈斯 一种金纳米颗粒的制造方法

Also Published As

Publication number Publication date
WO2007049873A1 (en) 2007-05-03
EP1940735A1 (en) 2008-07-09
EP1940735A4 (en) 2010-05-26
KR20070044879A (ko) 2007-05-02
JP2009511754A (ja) 2009-03-19
US20080254219A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
CN101296857A (zh) 用于制备均匀地真空沉积有纳米金属、合金和陶瓷颗粒的粉末的方法和装置
Jeronsia et al. In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast cancer Michigan Cancer Foundation-7 cells
CN108411267A (zh) 一种制备自由态多面体纳米Ag颗粒的方法
Al-Mamoori et al. Structural characteristics, synthesis of novel TiO2/VO (II) composites thin films decorated with chlorophyllvia solvothermal-laser dual technique
Khadher et al. Metal oxide thin films: a mini review
KR101699274B1 (ko) 담체를 이용한 나노 파우더 제조 방법
CN106554016B (zh) 一种机械剥离制备硅烯薄膜的方法及硅烯薄膜的应用
Abbas et al. Hydrophobic effect evolution dependent manipulation of ZnO nanostructures morphology
CN102560400A (zh) 一种通过共生长对硅基薄膜进行掺杂的方法
Motakef-Kazemi et al. Laser ablation produced graphene/MOF-5 nanocomposite: Antibacterial properties
KR20130129345A (ko) 담체에 부착된 나노 입자 제조 장치
Nagendra et al. Study of structural features and antibacterial property of ZnO/CuO nanocomposites derived from solution combustion synthesis
Choi et al. Investigations on the ZnO-and Cr-doped ZnO powders
Teodorescu et al. Influence of the substrate temperature on BCN films deposited by sequential pulsed laser deposition
Pelleg Basic concepts for producing nanomaterials
Cui et al. Preparation and characterization of scandia-doped tungsten powders prepared by a spray-drying method
KR101703124B1 (ko) Zn-Al 층상이중수산화물 나노시트의 제조방법
Gupta et al. Synthesis of Nanomaterials via Physical, Chemical, and Biological Routes
Kumar et al. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation
WO2012150804A2 (ko) 담체를 이용한 나노 파우더 제조 방법
CN113699594B (zh) 一种雪花状的二硫化钨二维晶体材料、sers传感器及其制备方法和应用
CN115726041A (zh) 一种超薄二维过渡金属氮化物单晶结构及其制备方法与应用
CN113600827B (zh) 一种Au/Ga2O3/AuGa2多相复合材料及其制备方法与应用
KR101484572B1 (ko) 담체에 부착된 나노 입자 제조 장치
CN106086798B (zh) 混合材料薄膜及其制备方法、用途、使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20081029

C20 Patent right or utility model deemed to be abandoned or is abandoned