CN101040362A - 等离子体显示面板及其制造方法 - Google Patents

等离子体显示面板及其制造方法 Download PDF

Info

Publication number
CN101040362A
CN101040362A CNA2005800350625A CN200580035062A CN101040362A CN 101040362 A CN101040362 A CN 101040362A CN A2005800350625 A CNA2005800350625 A CN A2005800350625A CN 200580035062 A CN200580035062 A CN 200580035062A CN 101040362 A CN101040362 A CN 101040362A
Authority
CN
China
Prior art keywords
mentioned
electrode
protuberance
base portion
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800350625A
Other languages
English (en)
Other versions
CN101040362B (zh
Inventor
山北裕文
北川雅俊
西谷干彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101040362A publication Critical patent/CN101040362A/zh
Application granted granted Critical
Publication of CN101040362B publication Critical patent/CN101040362B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Abstract

一种PDP(101),其为了降低放电开始电压、维持放电电压以便提高发光效率,至少具有:夹着放电空间相向配置的一对衬底(110、111)、在其中至少一个衬底的至少一部分上具有窄幅的汇流电极(159、169)的多个显示电极对(104)、覆盖着显示电极对(104)形成的电介质层(107)、以及覆盖着电介质层(107)形成的保护膜(108);其中,电介质层(107)采用具有1.0×106V/cm以上1.0×107V/cm以下的绝缘耐压的细密的膜结构。

Description

等离子体显示面板及其制造方法
技术领域
本发明涉及一种等离子体显示面板及其制造方法,并涉及PDP驱动时放电维持电压等的降低以及PDP使用寿命的延长。
背景技术
作为薄型显示设备的一种有等离子体显示面板(以下,称为“PDP”),PDP有直流型(DC型)和交流型(AC型),AC型PDP在大型化方面具有很高的技术潜力,其中特别是表面放电型PDP因其寿命特性而备受关注。
1.PDP的结构
使用图11说明表面放电AC型PDP的结构,即:在表面放电AC型PDP中,前面板702与背面板703夹着放电空间呈对峙的结构。
如图11所示,前面板702在玻璃衬底710的放电空间一侧的主面上,由扫描(scan)电极705和维持(sustain)电极706所构成的显示电极对704、电介质层707、保护膜708依次层叠,扫描电极705和维持电极706夹着50μm~100μm的间隙D相向配置,各个扫描电极705和维持电极706由透明电极755、756和汇流电极709构成。
该透明电极755、756的各个主面上配置了窄幅的、膜厚设定为5~6μm的金属材质的汇流电极709。汇流电极709通过例如印刷涂敷银膏进行层叠、并经过对其进行煅烧的厚膜工艺而设置。
电介质层707是经过厚膜工艺将以铅系玻璃材料为主要成分的低熔点玻璃浆通过印刷法涂敷后进行煅烧而成的,其膜厚设定为约40μm。
电介质层707的材料中所使用的铅系玻璃材料中,例如相对介电常数ε约为13。
保护膜708的膜厚设定为数百nm,以高电绝缘性的MgO为主要成分。
上述一个显示电极对704与构成背面板703的一个数据电极712立体交叉的区域称为放电单元,图11所示的区域相当于放电单元。
在PDP的图像显示中起到直接作用的是显示电极对704,数据电极712是选择作为图像显示单位的放电单元用的电极,对图像显示中的发光并没有直接贡献。
作为图像显示单位的放电单元以多个矩阵状配置,形成PDP。在PDP中配备众所周知的驱动电路或控制电路等,从而构成PDP装置。
2.PDP的驱动方法
通过由以下3个动作期间构成的地址/显示分离驱动方式对上述PDP进行驱动显示,即:(1)将全部显示单元置为初始化状态的初始化期间;(2)为各个放电单元分配地址、选择与输入数据相对应的显示状态输入到各个单元中的数据写入期间;(3)使处于显示状态的放电单元显示发光的维持放电期间。
在上述(3)维持放电期间内,在上述(2)写入期间内相应于输入数据而形成了壁电荷的放电单元中,在扫描电极705和维持电极706上分别施加彼此相位不同的、电极电压脉冲约为200V的矩形波电压。即,通过在上述成对的显示电极之间施加交流电压,在被写入了显示状态的放电单元中,每当有电压极性变化时就产生脉冲放电。
由上述维持放电激发出氙气,从激发氙气发射出紫外光,该紫外光通过荧光体层715变换为可见光,进行图像显示。
但是,在现有的PDP中,如上所述,汇流电极709和电介质层707通过包含煅烧工序的厚膜工艺而形成,该煅烧工序是500~600℃的高温处理,在煅烧完成后的汇流电极709中有时会残留膏中所含的粘合剂煅烧物。
因此,在煅烧电介质层707时,在汇流电极709与电介质层707的接触部分容易产生气泡,在与该气泡产生区域相对应的电介质层707的区域中,其厚度变得比其它电介质层707的区域薄。另外,煅烧物的密度原本就比较低,所以电介质层707的绝缘耐压很小,约为2.5×105V/cm,因此,就会在绝缘耐压较低的电介质层707中产生厚度较薄的区域,PDP中的电介质层707的耐压低。这样一来,在上述PDP动作期间之中的初始化期间内施加高电压等时,电介质层707中就容易产生绝缘破坏。
因此,在现有的PDP中,为了提高电介质层707的耐压,需要将电介质层707的膜厚设定为比较厚的40μm,其结果是,需要设定很高的放电开始电压、放电维持电压,存在难以提高发光效率的问题。
针对这类问题,在例如专利文献1中公开了一种多层膜结构的电介质层,其在通过真空蒸镀双重层叠了Cr、Cu的电极上,由直接覆盖的Al2O3构成的第1层、由含SiO280%的玻璃构成的第2层、以及由Al2O3构成的第3层,利用真空蒸镀法或者溅射法依次层叠而形成。
根据专利文献1所记载的发明,利用真空蒸镀法或者溅射法形成了薄膜的Al2O3膜被用作第1层、第3层,因此不会产生裂纹;另外,由于使用含SiO280%的玻璃作为第2层,能够以较薄的膜厚形成没有裂纹的电介质层。
另外,在例如专利文献2中公开了一种由在电极上通过CVD法、溅射、蒸镀的真空工艺形成的金属氧化物所构成的下层以及在该下层上形成的电介质玻璃所构成的上层所构成的电介质层。
根据专利文献2所记载的发明,在印刷涂敷并加以煅烧而形成的Ag电极上涂覆电介质层时,首先在Ag电极的表面上利用CVD法覆盖由ZnO、ZrO2、MgO、TiO2、SiO2、Al2O3、Cr2O3等“在表面上生成氢氧基的金属氧化物”构成的厚度为0.1~10μm的层,然后在其上涂覆由电介质玻璃构成的电介质层,由此,即使电介质层形成得很薄,在PDP驱动时也不容易产生电介质层的绝缘破坏。
另外,在这种PDP中,为了降低其放电开始电压、维持放电电压从而降低其电力消耗,只要在上述间隙D中配置细微的电极对即可。
例如,在专利文献3中公开了一种技术,在扫描电极与维持电极所包夹的间隙中配置辅助电极(触发电极)对,在各辅助电极的中央部设置翼部,以便使各辅助电极在各放电单元中具有从放电单元端部至中央部的宽广的面积。依照此种方式设置翼部后,放电会首先从各个翼部所包夹的间隙开始,因此,即使维持放电电压、放电开始电压很低也能够可靠地开始维持放电,能够改善维持放电时的放电效率。
另外,在专利文献4中公开了一种技术,其如图8所示,在放电单元800中,在构成主显示电极对802的扫描电极805和维持电极806的相向面上,形成包夹着比由扫描电极805和维持电极806所包夹的间隙G更狭窄的间隙g、面积阻抗比主显示电极对802高的副显示电极对801,并采用发光效率高的短脉冲作为施加电压脉冲,设定施加电压的电压值,使得当构成副显示电极对801的各副显示电极之间没有放电时在扫描电极805和维持电极806之间不放电,当各副显示电极之间正在放电时在扫描电极805和维持电极806之间进行放电。此外,图8是表示PDP的显示电极对的一部分的关键部位平面图,是从图中没有表示出来的背面板一侧观察所得的结果,双点划线所包围的区域相当于放电单元。
通过如上所述构成并设定电压值以图能够控制放电延迟时间,减小放电延迟,即使降低放电开始电压也能够可靠地开始维持放电。
专利文献1:特开昭55-143754号公报
专利文献2:特开2003-7217号公报
专利文献3:特开2001-236895号公报
专利文献4:特开平04-4542号公报
但是,在专利文献1所记载的发明中完全没有表示出该发明对耐压、放电开始电压、发光效率的贡献,另外,因其使用真空蒸镀法或者溅射法将3层互不相同的材料层叠而形成电介质层,所以,在形成各个层时需要不同的靶(target)材料或不同的成膜条件,导致成为复杂的薄膜工艺,难以实现可靠性好并且稳定的制造。进一步,使用含80%的SiO2的玻璃和Al2O3以真空蒸镀法或者溅射法形成的电介质层仍然是低密度、低绝缘耐压,因此,为了提高耐压必须加大电介质层的膜厚,作为放电单元需要高放电开始电压、维持放电电压,其存在的问题是难以提高发光效率。
另外,在专利文献2所记载的发明中,在涂敷煅烧后的Ag电极上以CVD法等形成金属氧化物,其上形成由电介质玻璃构成的电介质层,因此,覆盖膜厚较厚的Ag电极以CVD法形成金属氧化物,进一步由于层叠涂覆电介质层并加以煅烧,因此很难防止气泡等的产生,而且,采用薄膜工艺及印刷工序作为形成电介质层的工序,但这些工序包含暴露到空气中的过程,所以,电介质层会吸附杂质气体,其存在的问题是难以稳定地制造可靠性好的PDP。
另外,在上述专利文献1、2所记载的任意一个发明中,在通过薄膜工艺形成保护膜之后会经过暴露到空气中的过程,因此存在着会吸附空气中的杂质气体的问题。
亦即,构成保护膜的MgO等金属氧化物具有吸附水(H2O)或二氧化碳(CO2)等杂质气体后很容易变质为氢氧化化合物或碳酸化合物的性质,因此,具备以变质为氢氧化化合物或碳酸化合物的MgO为主要成分的保护膜的PDP与原本具备以MgO为主要成分的保护膜的PDP相比,其2次电子释放效率低,因而,存在着放电开始电压升高并且耐溅射特性降低的问题。
另外,在上述专利文献3所记载的发明中,为了可靠地开始维持放电所需的放电开始电压约为180V,仍然很高,对于降低PDP的电力消耗的要求来说是不够的。
另外,如果能够减小放电延迟,即使降低放电开始电压也能够可靠地开始维持放电;但在上述专利文献4所记载的发明中,虽然能够减小放电延迟,但另一个面,需要设定电压值使得副显示电极对801产生放电时主显示电极对802同时也产生放电,因此,其结果是,需要设定较高的用于产生维持放电的电压值,放电开始电压高达约180V,这对于PDP所要求的电力消耗降低要求来说是不够的。
发明内容
本发明鉴于这种问题,其目的在于提供一种能够降低放电开始电压、放电维持电压并提高发光效率的PDP以及能够提高PDP的寿命并以稳定的质量进行制造的PDP的制造方法。
本发明为了解决上述问题,采用了以下手段。
即,在本发明的等离子体显示面板中,包夹着放电空间使一对衬底相向配置,在其中一个衬底中在上述放电空间一侧的主面上延伸配设多个显示电极对,上述显示电极对由第1电极和第2电极构成,上述第1电极和上述第2电极分别由带状的透明电极、设置在上述透明电极的放电空间一侧主面上并且具有比上述透明电极的较短方向宽度更小的宽度的汇流电极构成,在上述一个衬底的上述放电空间一侧主面上以覆盖上述显示电极对的方式层叠电介质层,在上述电介质层的上述放电空间一侧主面上层叠保护膜,其中,上述电介质层上具有1.0×106V/cm以上、1.0×107V/cm以下的绝缘耐压。
本发明的等离子体显示面板制造方法中,对包含在衬底主面上层叠电介质层的步骤、传送或保管层叠了上述电介质层的上述衬底的步骤的等离子体显示面板的制造方法,从电介质层层叠步骤直到电介质层层叠衬底传送、保管步骤都维持减压状态。
另外,本发明的等离子体显示面板制造方法中,对包含在衬底主面上层叠电介质层的步骤、在上述电介质层的主面上层叠保护膜的步骤、传送或保管层叠了上述保护膜的上述衬底的步骤的等离子体显示面板的制造方法,从保护膜层叠步骤直到保护膜层叠衬底传送、保管步骤都维持减压状态。
另外,为达到上述目的,本发明的PDP中,对具备在主面上延伸配设了由第1电极和第2电极构成的显示电极对的衬底、具有沿着显示电极对的延伸方向排列多个放电单元的结构的PDP,该第1电极和第2电极分别是由带状的基部、从该基部针对每个该放电单元向其它基部突出而形成的多个突出部构成。
另外,在本发明的PDP中,面向不同电极的突出部的突出部边采用的是在带状基部的主面的平行面上形成为多角形状或曲线状轮廓的结构。
另外,在本发明的PDP中,在第1电极或第2电极的至少一个中,使在相同电极相邻的突出部,从上述基部突出的长度为相同尺寸并且作为一对,在平行于基部的主面的面上以多角形状或者曲线形状的轮廓形成构成一对突出部的各突出部的顶端部分,然后使上述各个突出部具备以下<1>至<3>的某一个特征。
<1>为了使构成一对突出部的各个突出部的中心线在该突出部顶端的前方相互交叉,使顶端部分相对带状基部的宽度方向倾斜;
<2>使构成一对突出部的各个突出部相互之间的间隙在突出部顶端一侧比上述基部一侧更狭窄;
<3>使构成一对突出部的各个突出部的顶端部分弯曲以使相互靠近。
另外,在本发明的PDP中,该第1电极和第2电极分别由带状的基部、从该基部向其它基部突出而形成的突出部构成,该基部由汇流电极和透明电极构成,该第1电极的突出部和第2电极的突出部形成为其顶端在基部主面的平行面上呈锐角形状或曲线状轮廓,并且从该汇流电极分支,采用与该汇流电极相同种类的材料。
如上所述,本发明的等离子体显示面板中,电介质层具备1.0×106V/cm以上、1.0×107V/cm以下的绝缘耐压,而现有的PDP中的电介质层的绝缘耐压约为2.5×105V/cm,因此,与现有的PDP相比,能够在保持较高的电介质层耐压的同时使其膜厚变薄。
这样一来,本发明的PDP中,与现有的PDP相比,能够使电介质层的厚度变薄,因而能够提高电场强度,即使降低了维持放电电压也很容易产生维持放电。
由此,本发明的等离子体显示面板中能够降低放电开始电压、维持放电电压,提高发光效率。
在本发明的PDP中,如果电介质层是利用化学汽相沉积法(CVD法)形成并含有Si原子和O原子作为主要成分,则与现有的PDP相比,能够很容易地提高其密度,达到既薄又细密的效果,能够很容易地将电介质层的绝缘耐压设定为上述范围,因此是比较理想的。
在本发明的PDP中,如果电介质层是利用感应耦合等离子体化学汽相沉积法(ICP-CVD法)形成,则与现有的PDP相比,能够实现可以高速形成的电介质层,对于提高批量生产能力是比较理想的。
另外,如果电介质层的相对介电常数ε在大于等于2、小于等于5的范围内、而电介质层的膜厚d在1μm以上、10μm以下的范围内形成,则与现有的PDP相比,能够在使电介质层变薄的同时保持耐压,电介质层比现有的PDP薄,因此能够提高透射率,并且能够降低衬底的翘曲,是比较理想的。
另外,如果电介质层的相对介电常数ε与电介质层的膜厚d的比值(ε/d)设定为0.1以上、0.3以下,则能够抑制静电电容的增大,并能够抑制超过发生维持放电所需的足够的放电电流以上而流过多余的放电电流,对于可靠地提高发光效率来说是比较理想的。
当上述第1电极和第2电极分别由带状的基部、从该基部按照每一个上述放电单元向其它基部突出而形成的多个突出部构成的情况下,在向第1电极和第2电极供电时,电位在放电单元内集中到多个突出部,与现有的PDP相比,放电空间内的电场强度提高,上述效果明显。
因此,在这种情况下,能够设置多个容易开始放电的地方,与在放电单元内仅有一对突出部相比,放电空间内的电场强度进一步提高,更容易开始放电,即使降低放电开始电压也能够可靠地开始维持放电,上述效果进一步增大。
特别地,在这种情况下,突出部的配设位置即使偏离了上述基部的延伸方向,由于放电单元内设置了多个突出部,因此与在放电单元内仅有一对突出部相比,维持放电的可靠性更高。
由此,在这种情况下,与现有的PDP以及在放电单元内仅设置一对突出部的PDP相比,能够可靠地开始维持放电的放电开始电压、维持放电电压得以降低,PDP的电力消耗也得以降低,因此是比较理想的。
例如,在各个放电单元内,上述第1电极的突出部和上述第2电极的突出部配置为相向状态,在处于相向状态的2个突出部的突出部之间以及相邻突出部之间,当突出长度被调整为对称情况下,或者处于相向状态的组配设有3组以上,并调整为位于放电单元中央部的组的突出部的突出长度最短、越靠近放电单元两端的组其突出部的突出长度越长,或者反之,调整为位于放电单元中央部的组的突出部的突出长度最长、越靠近放电单元两端的组其突出部的突出长度越短的情况下,突出长度得到有规律地调整,因此上述效果明显。
特别地,在这种情况下,突出长度被调整为在放电单元中央部与其两端不同,则提高了每个放电单元的开口率,本发明PDP的色彩鲜艳度变得更高,因此是比较理想的。
当面向不同电极的突出部的突出部边采用的是在带状基部的主面的平行面上形成为多角形状或曲线状轮廓的情况下,在向上述第1电极和第2电极供电实现维持放电时,电位在集中到上述突出部的同时会进一步集中到上述突出部边,放电空间中的电场强度进一步增强,即使是低电压也能够可靠地开始放电,同时能够可靠地开始放电的地方有多个,因此上述效果明显。
另外,在两个电极的至少一个之中,与相同电极相邻的突出部采用从上述基部突出的长度以相同的尺寸并且成对地的方式形成,在构成一对突出部的各个突出部上将一对突出部的各个顶端部分形成为在基部主面的平行面上的多角形状或曲线状轮廓,在此基础上,具备上述<1>至<3>的某一个特征的情况下,在相同电极相邻的突出部的顶端之间连结等电位线,而该等电位线呈向其它电极一侧突出的状态,放电距离变得更短,因此能够进一步降低放电开始电压,使上述效果明显。
在假定以具备上述<1>至<3>的某一个特征的各顶端为顶点的封闭区域时,只要将该区域配置为正方形,在相同电极相邻的突出部的顶端之间连结等电位线,而该等电位线在向其它电极一侧突出的状态下,能够最容易开始放电,因此上述效果明显。
另外,如果汇流电极是包含铝(Al)和钕(Nd)为主要成分并且在真空中或减压状态下形成,则与现有的PDP相比,能够实现低电阻并使膜厚变薄,与现有的PDP相比,即使以覆盖着汇流电极的方式层叠薄电介质层也能够抑制电介质层中出现厚度差,因此能够使电介质层变薄,并且能够抑制驱动中产生迁移(migration)现象,是比较理想的。
当上述基部的至少一个由汇流电极和透明电极构成、使上述突出部从该汇流电极分支并采用与该汇流电极相同种类的材料形成的情况下,在形成汇流电极时也能够同时形成突出部,并且在形成汇流电极时所使用的微细加工工序也可以用于形成突出部,另外,能够降低从汇流电极直到突出部的电阻。
因此,在这种情况下,本发明的PDP变得易于制造,并且既容易缩小放电单元的尺寸,又能够提高PDP的响应性,是比较理想的。
进一步,当上述第1电极和上述第2电极分别由带状的基部、从该基部向其它基部突出而形成的突出部而构成,该基部由汇流电极和透明电极构成,该第1电极的突出部和第2电极的突出部形成为其顶端在基部主面的平行面上呈锐角形状轮廓,并且从该汇流电极分支,采用与该汇流电极相同种类的材料的情况下,电位集中到突出部的同时会进一步集中到其顶端,因此放电空间中的电场强度进一步增强,即使是低电压也能够可靠地开始维持放电,上述效果明显。
在此情况下,在形成汇流电极时能够同时形成突出部,另外,能够降低从汇流电极到突出部顶端的电阻,因而降低了PDP的电力消耗,实现了高精度。
当上述保护膜包含MgO作为主要成分,在真空中或减压状态下层叠在上述电介质层的上述放电空间一侧主面上,并且真空或减压状态一直维持到上述一对衬底粘在一起为止而进行保管的情况下,与现有的PDP相比,保护膜中的杂质受到抑制,所以保护膜的二次电子释放系数及耐溅射性得到提高,能够降低保护膜的放电开始电压,进一步提高耐溅射性,进一步提高发光效率和可靠性,是比较理想的。
当上述衬底的厚度t在0.5mm以上、1.1mm以下的范围内时,与现有的PDP相比,能够实现体积薄重量轻的PDP,当上述衬底使用塑料材料构成时,能够进一步减轻重量,是比较理想的。
另外,在本发明的PDP的制造方法中,从电介质层层叠步骤直到电介质层层叠衬底传送、保管步骤都维持减压状态,或者从保护膜层叠步骤直到保护膜层叠衬底传送、保管步骤都维持减压状态,因此,所形成的电介质层或保护膜不会接触空气,亦即,与现有的PDP制造方法相比,能够抑制杂质气体的吸附。
此外,在本发明的PDP制造方法中,与专利文献1的PDP制造方法相比,其制造工序简单,能够提高PDP的质量和可靠性。
因此,与现有的PDP相比,能够制造出使用寿命更长的PDP,并能够制造出可靠性高、质量稳定的PDP。
上述衬底如果是前面用衬底,则在前面用衬底上所形成的电介质层或保护膜上不会吸附杂质气体,特别是在前面板上影响而缩短PDP使用寿命的因素很多,因此上述效果明显。
如果在上述电介质层层叠步骤之前具备在上述衬底主面上形成显示电极的显示电极形成步骤,在上述显示电极形成步骤中包含形成带状透明电极的子步骤和在上述透明电极的主面上形成带状汇流电极的子步骤,在上述形成汇流电极的子步骤中使用以铝和钕为主要成分的材料利用真空成膜工艺法形成上述汇流电极时,则通过使用以铝和钕为主要成分的材料形成汇流电极,与现有的做法相比,能够形成低电阻的汇流电极,因此能够形成厚度很小的汇流电极,即使以覆盖着汇流电极的方式形成电介质层也能够抑制发生电介质层的厚度分布不均,能够抑制电介质层中的绝缘破坏,因此上述效果明显。
另外,通过使用以铝和钕为主要成分的材料作为汇流电极的材料,能够利用低温工艺形成汇流电极,上述真空成膜工艺为低温工艺,是比较理想的,并且,由于是含铝的材料,在利用干刻蚀法制作汇流电极的图案时可以使用低温工艺,因此是比较理想的。
另外,在这种情况下,通过使用真空成膜法形成,由于该方法是低温工艺,因此能够抑制高温工艺中发生的衬底等的翘曲或破裂,上述效果明显。
在上述保护膜层叠步骤,当使用包含Mg原子和O原子作为主要成分的材料通过真空成膜工艺法层叠上述保护膜的情况下,由于真空成膜工艺方法是低温工艺,在保护膜层叠步骤中,就能够抑制高温工艺中发生的衬底等的翘曲或破裂,上述效果明显。
如果在背面用衬底的上述电介质层层叠步骤之前,具备在上述背面用衬底的主面上形成数据电极的数据电极形成步骤,在上述电介质层层叠衬底传送、保管步骤中的传送之后,包含在上述电介质层的主面上竖立设置间隔壁的步骤和在从上述间隔壁侧面直到上述电介质层主面上形成荧光体层的步骤;在从上述电介质层层叠步骤直到荧光体层形成步骤为止维持减压状态时,在背面用衬底上所形成的电介质层上不会吸附杂质气体,因此上述效果明显。
在上述数据电极形成步骤,当使用含有铝和钕作为主要成分的材料,利用真空成膜工艺法形成上述数据电极的情况下,则通过使用以铝和钕为主要成分的材料形成汇流电极,与现有的做法相比,能够形成低电阻的数据电极,因此能够形成厚度较小的数据电极,即使以覆盖着数据电极的方式形成电介质层也能够抑制电介质层的厚度分布不均,能够抑制电介质层中的绝缘破坏,因此上述效果明显。
另外,通过使用以铝和钕为主要成分的材料作为数据电极的材料,能够利用低温工艺形成数据电极,上述真空成膜工艺为低温工艺,所以是比较理想的,并且,由于是含铝的材料,在利用干刻蚀法制作数据电极的图案时可以使用低温工艺,因此是比较理想的。
另外,在这种情况下,通过使用真空成膜法形成,由于该方法是低温工艺,因此能够抑制高温工艺中发生的衬底等的翘曲或破裂,上述效果明显。
如果在室温以上300℃以下的气体环境中执行上述步骤,就能够可靠地抑制上述面板的翘曲和破裂,是比较理想的;另外,与现有的PDP的制造方法相比,在上述步骤中能够实现加工时间的缩短,并降低加工所需的电力消耗,扩大布线材料的选择范围。
在上述电介质层层叠步骤中,如果使用CVD法层叠上述电介质层,则与现有的PDP制造方法相比,能够层叠高密度的电介质层,能够细密地层叠电介质层,并能够层叠出绝缘耐压高的电介质层,因此,能够很容易地制造出具备具有上述范围内的绝缘耐压的电介质层的PDP。
因此,在这种情况下,与现有的PDP的制造方法相比,能够层叠出薄电介质层,制造出在驱动时放电空间的电场强度比现有的PDP强的PDP,由此,能够制造出可以降低放电维持电压、放电开始电压并且放电效率高的PDP。
在使用ICP-CVD法作为上述CVD法的情况下,能够高速地层叠电介质层,是比较理想的。
在本发明的PDP中,上述第1电极和第2电极分别由带状的基部、从该基部按照每一个上述放电单元向其它基部突出而形成的多个突出部构成,由此,在向第1电极和第2电极供电时,电位在放电单元内集中到多个突出部,与现有的PDP相比,放电空间内的电场强度提高。
因此,在本发明的PDP中,能够设置多个易于开始放电的地方,与在放电单元内只有一对突出部的情形相比,放电空间内的电场强度进一步提高,易于开始放电。
其结果是,在本发明的PDP中,与现有的PDP相比,即使降低放电开始电压也能够可靠地开始维持放电,能够降低放电开始电压、维持放电电压。
特别地,在本发明的PDP中,突出部的配设位置即使偏离了上述基部的延伸方向,由于放电单元内设置了多个突出部,因此与在放电单元内仅有一对突出部的情形相比,维持放电的可靠性更高。
由此,在本发明的PDP中,与现有的PDP以及在放电单元内仅设置一对突出部的PDP相比,能够可靠地开始维持放电的放电开始电压、维持放电电压得以降低,并降低PDP的电力消耗。
例如,在各个放电单元内,上述第1电极的突出部和上述第2电极的突出部配置为相向状态,在处于相向状态的2个突出部的突出部之间以及相邻突出部之间,当突出长度被调整为对称的情况下,或者处于相向状态的组配设有3组以上,并调整为位于放电单元中央部的组的突出部的突出长度最短、越靠近放电单元两端的组其突出部的突出长度越长,或者反之,调整为位于放电单元中央部的组的突出部的突出长度最长、越靠近放电单元两端的组其突出部的突出长度越短的情况下,突出长度得到有规律地调整,因此上述效果明显。
特别地,在这种情况下,突出长度被调整为在放电单元中央部与其两端不同,则提高了每个放电单元的开口率,本发明PDP的色彩鲜艳度变得更高,因此是比较理想的。
当面向不同电极的突出部的突出部边采用的是在带状基部的主面的平行面上形成为多角形状或曲线状轮廓的情况下,在向上述第1电极和第2电极供电来实现维持放电时,电位在集中到上述突出部的同时会进一步集中到上述突出部边,即使是低电压也能够可靠地开始放电,同时能够可靠地开始放电的地方有多个,因此上述效果明显。
另外,在两个电极的至少一个之中,与相同电极相邻的突出部以从上述基部突出的长度为相同的尺寸的方式成为一对,在构成一对的突出部的各个突出部上,将一对突出部的各个顶端部分形成为在基部主面的平行面上的多角形状或曲线状轮廓,在此基础上,具备上述<1>至<3>的某一个特征的情况下,与相同电极相邻的突出部的顶端之间连结等电位线,而该等电位线呈向其它电极一侧突出的状态,不同电极之间的放电距离变得更短,因此能够进一步降低放电开始电压,上述效果明显。
在假定以具备上述<1>至<3>的某一个特征的各顶端为顶点的封闭区域时,只要将该区域配置为正方形,在相同电极相邻的突出部的顶端之间连结等电位线,而该等电位线呈向其它电极一侧突出的状态,则能够最容易开始放电,因此上述效果明显。
当上述基部的至少一个由汇流电极和透明电极构成、使上述突出部从该汇流电极分支并采用与该汇流电极相同种类的材料形成的情况下,在形成汇流电极时也能够同时形成突出部,并且在形成汇流电极时所使用的微细加工工序也可以用于形成突出部,另外,能够降低从汇流电极直到突出部的电阻。
因此,在这种情况下,本发明的PDP变得易于制造,并且既容易缩小放电单元的尺寸,又能够提高PDP的响应性,同时获得上述效果。
进一步,在本发明的PDP中,上述第1电极和第2电极分别由带状的基部、从该基部向其它基部突出而形成的突出部而构成,该基部由汇流电极和透明电极构成,该第1电极的突出部和第2电极的突出部形成为其顶端在基部主面的平行面上呈锐角形状的轮廓,并且从该汇流电极分支,采用与该汇流电极相同种类的材料形成,由此,电位在集中到突出部的同时会进一步集中到其顶端,因此放电空间中的电场强度进一步增强,即使是低电压也能够可靠地开始维持放电,能够与汇流电极同时形成突出部,另外,能够降低从汇流电极直到突出部顶端的电阻。
因此,在本发明的PDP中,PDP的电力消耗降低,实现高精度。
此外,只要不脱离本发明的主旨,以上所述的本发明的各个结构可以相互组合。
附图说明
图1是表示本发明的第1实施方式的PDP1的放电单元的结构的剖面示意图。
图2是表示本发明的第2实施方式的PDP1的制造方法的工序流程示意图。
图3是表示本发明的第2实施方式的PDP1的制造方法中的前面板2的制造工序的剖面示意图。
图4是表示本发明的第2实施方式的PDP1的制造方法中的背面板3的制造工序的剖面示意图。
图5(a)是表示第3实施方式的PDP的结构的主要部分的剖面图,(b)是相当于在图5(a)的Y-Y面截断后的剖面的主要部分剖面图。
图6(a)是表示第3实施方式的变更例1中的PDP的放电单元的一部分的主要部分平面图,(b)是对其一部分进行放大后的主要部分平面图。
图7(a)是表示第3实施方式的变更例2中的PDP的放电单元的一部分的主要部分平面图,(b)是对其一部分进行放大后的主要部分平面图。
图8(a)是表示第3实施方式的变更例3中的PDP的放电单元的一部分的主要部分平面图,(b)是表示变更例3的其它形态的主要部分平面图,(c)是对它们的一部分进行放大后的主要部分平面图。
图9(a)是表示第4实施方式的PDP的放电单元的一部分的主要部分平面图,(b)是对其一部分进行放大后的主要部分平面图。
图10是表示第5实施方式的PDP的放电单元的一部分的主要部分平面图。
图11(a)是将现有的表面放电型PDP沿着显示电极截断后的主要部分剖面图,(b)是将(a)在X-X面截断后的主要部分剖面图。
图12是表示专利文献4中记载的PDP的前面板的一部分的主要部分平面图。
具体实施方式
下面使用附图说明实施本发明的优选方式。
(第1实施方式)
图1(a)是将本发明的第1实施方式中的PDP101的单位放电单元沿着与间隔壁114垂直的面截断后的剖面图。图1(b)是沿着图1(a)中的X-Y所示的面截断后的剖面图。此外,为方便起见,在图1中只表示了PDP的单位放电单元,但在第1实施方式的PDP中,用来发出红、绿、蓝各种颜色光的多个放电单元排列成矩阵形状。
1.PDP101的结构
如图1(a)所示,PDP101由前面板102和背面板103相向配置而成。PDP101的前面板102中,在薄的衬底110的一个主面上形成有显示电极对104,以覆盖着形成有显示电极对104的衬底110主面的方式依次层叠电介质层107和保护膜108。衬底110例如由玻璃材料构成,厚度t1约为1.1mm。
如图1(b)所示,在显示电极对104中,扫描电极105和维持电极106以各自1条构成一对,例如包夹着50~100μm的间隙相向设置,并分别设置为条状。
在各个扫描电极105和维持电极106中,在衬底110的主面上,由ITO(氧化铟-锡)构成的电阻较高的透明电极151、161被设定为例如大约100nm的膜厚,并分别制作出宽幅的带状图案。
透明电极151、161也可以使用SnO2(氧化锡)、ZnO(氧化锌)等作为主要成分。
扫描电极105和维持电极106中,为了降低透明电极151、161的电阻,在透明电极151、161的主面上配置有例如以AI-Nd(铝-钕)为主要成分的汇流电极159、169。
汇流电极159、169设置为比透明电极151、161宽度窄。
汇流电极159、169并不限于此,也可以至少包含Al和稀土类金属为主要成分。
汇流电极159、169的厚度设定为约1μm。
在本实施方式中,利用溅射法将Al系金属合金薄膜成膜、利用干刻蚀法进行构图后层叠汇流电极159、169,因此,能够很容易地将汇流电极159、169的厚度设定为上述数值。
但汇流电极159、169并不限于此,也可以利用真空成膜工艺法成膜层叠,并利用光刻法制作出图案。
上述所谓的真空成膜工艺法指的是在真空状态中形成薄膜的工艺方法,其中包括真空蒸镀法、电子束蒸镀法、等离子束蒸镀法、各种化学汽相沉积法(CVD法)、溅射法等。
各个汇流电极159、169与透明电极151、161同样地大致平行配置。
汇流电极159、169与现有的PDP相比厚度小,但以Al-Nd为主要成分的金属体与包含Ag为主要成分的金属体相比,具有均质且优异的电气特性(低电阻),在汇流电极159、169中,由于其包含Al-Nd为主要成分,因此即使其厚度小,也能够保持与现有的PDP中包含Ag为主要成分的汇流电极相同的性能(例如电阻特性)。
在本实施方式的PDP中,由于汇流电极159、169的厚度比现有的PDP小,当以覆盖着汇流电极159、169的方式层叠电介质层107时,与现有的PDP相比,能够抑制电介质层107中产生厚度差,因此,能够抑制与汇流电极159、169的边缘部分相对应的电介质层107的厚度变得比其它部分的电介质层107的厚度更小。
另外,在包含Al-Nd为主要成分的汇流电极159、169与电介质层107之间不容易产生PDP驱动中金属的电气式移动的所谓的迁移现象,因此,本实施方式的PDP与现有的PDP相比其寿命变长、可靠性提高。
电介质层107具备作为AC型PDP所特有的电流限制功能的存储性,相对介电常数ε大约设定为4,并由包含例如95%的SiO2的材料构成,其膜厚d被设定为约5μm。
但电介质层107的相对介电常数ε并不限于此,只要设定在大于等于2小于等于5的范围内即可。
一般说来,若将以SiO2为主要成分的电介质层107以CVD法进行层叠,则其相对介电常数ε局限于大于等于4、小于等于5的范围内,而如果使用所谓的low-k材料层叠电介质层107,则其相对介电常数ε能够局限于大于等于2、小于等于3的范围内。
另外,这是因为,根据其与电介质层107的厚度d的关系,如果相对介电常数ε小于2,则静电电容变小,不能储存所需的放电电流;反之,如果大于5,则会流过多余的放电电流,发光效率降低。
为了层叠相对介电常数ε被设定为大于等于2、小于等于3范围内的电介质层107,例如使用SiOC或SiOF等作为所谓的low-k材料即可。
但电介质层107中使用的所谓的low-k材料并不限于此,只要相对介电常数能够设定在上述范围内并且是可以使用各种CVD法成膜的材料即可。
电介质层107的厚度d也并不限于此,只要设定在大于等于1μm、小于等于10μm的范围内即可。
这是因为,如果电介质层107的厚度d不足1μm,则绝缘耐压强度不足、成品率下降,另外,如果大于10μm,则无法充分降低放电开始电压、放电维持电压。
电介质层107含有SiO2,与现有的PDP相比,具有较高的绝缘耐压和细密的层结构。
在电介质层107的层叠过程中,使用正硅酸乙酯(TEOS:tetra-ethyl-oxysilane)和含有Si原子及O原子的电介质层原料,利用感应耦合等离子CVD法(ICP-CVD法)等各种CVD方法层叠电介质层107,因此,在电介质层107中,与现有的PDP相比,绝缘耐压升高,层结构细密。
电介质层107的绝缘耐压优选是1.0×106V/cm以上、1.0×107V/cm以下。
这是因为玻璃散装材料的绝缘耐压为1.0×107V/cm左右,而不能期望更高的绝缘耐压,另外,如果绝缘耐压不足1.0×106V/cm,则电介质层107的厚度d其上限为10μm,是现有的电介质层的厚度(d=40μm)的1/4,因此,绝缘耐压不到现有的电介质层的绝缘耐压(2.5×105V/cm)的4倍(1.0×106V/cm),可能会产生绝缘破坏。
如果电介质层107中含有80~100%的SiO2,密度就会进一步提高,层结构变得细密,绝缘耐压升高,因此是比较理想的。
由于电介质层107的绝缘耐压高、层结构细密,因此当电介质层107的相对介电常数ε在大于等于2、小于等于5的范围内时,与现有的PDP相比,即使将电介质层107的厚度d在1μm以上、10μm以下的范围内设定得小也能够维持充分的耐压。
在电介质层107中,当相对介电常数ε接近5的情况下可以将厚度d大约设定为10μm,当相对介电常数ε接近3的情况下可以将厚度d大约设定为5μm左右,能够获得实质上的耐压,并且,如果能够使汇流电极159、169的厚度进一步变薄,则可以将厚度d设定得更小,例如大约设定为1μm。
但是,如果电介质层107的厚度d设定得过于小,则静电电容c会变大,因此会流过超过发生维持放电所需的足够的放电电流以上的多余放电电流,反而会降低发光效率。
因此,在本实施方式中,电介质层107的相对介电常数ε与其厚度d之比(ε/d)设定为大于等于0.1、小于等于0.3。
这是因为,如果(ε/d)大于0.3,则由于现有的PDP的(ε/d)大于0.3,就不能期待发光效率的提高;而且,如果使用CVD法成膜,就难以使成膜的厚度d大于20μm,考虑到相对介电常数ε的下限为2,难以使(ε/d)低于0.1。
有一种为了提高发光效率而提高放电气体中的Xe分压的技术,在该技术中所存在的问题是,必须向Xe提供高电能,这就需要提高放电维持电压,必须准备比连接到现有的PDP上的驱动器用IC的耐压更高的驱动器用IC;但在本实施方式中,由于电介质层107的厚度d变得比现有的PDP小,因此在显示电极对104上施加电压时,在放电空间中电场强度增大、电气能量密度增大,因此,既提高了放电气体中的Xe分压,又不会导致放电维持电压的增大,能够使用连接到现有的PDP上的驱动器用IC。
在本实施方式的PDP101中,与现有的PDP相比,电介质层107的层结构细密,并且其厚度d小,因此,与现有的PDP相比,能够提高PDP101的驱动所产生的可见光对前面板102的透射率。
进一步,在本实施方式中,与现有的PDP相比,由于电介质层107的厚度d小,因此在面板组装工序的热工艺中,能够减少玻璃衬底110与其主面上层叠的电介质层107的热膨胀差所导致的衬底翘曲的发生,延长使用寿命,提高质量。
另外,在本实施方式中,与现有的PDP相比,衬底110的厚度t1为更小的约1.1mm,因此能够实现薄型且重量轻的PDP。
另外,在本实施方式中,覆盖着包含汇流电极159、169的显示电极对104以CVD法形成电介质层107,因此在沿着显示电极对104的凹凸形成电介质层107这一点上优于现有的PDP,并且电介质层107的厚度d变得均匀,与现有的具备利用压膜法形成的电介质层的PDP相比,在对应于电极边缘的电介质层107的区域中,能够抑制电介质层107的厚度d变小,因此也提高了电介质层107的耐压。
保护膜108具有例如0.6μm的厚度,并且层叠在电介质层107的放电空间一侧主面上,包含MgO作为主要成分。
MgO(氧化镁)是二次电子释放系数γ较大的材料,同时其耐溅射性也高、是一种光学透明的材料,因此被广泛用作保护膜108的材料。
保护膜108的表面暴露在放电空间中,设想PDP的驱动状态时,通过保护电介质层107免受放电时的离子冲击,同时高效地释放出2次电子,起到了降低放电开始电压的作用。
电介质层107和保护膜108能够防止上述显示电极对104的表面被受到放电所产生的高能量的离子溅射而变差。
保护膜108的厚度并不限于此,只要在0.4μm以上、1.0μm以下即可。
这是因为,如果保护膜108的厚度不足0.4μm,耐溅射性会下降;反之,如果大于1.0μm,则无法高效地释放出二次电子。
与现有的PDP相比,保护膜108的二次电子释放系数高、耐溅射性高。
这是因为,在电介质层107覆盖着显示电极对104形成之后,直到保护膜108的层叠结束为止,保护膜108被保管在维持减压的气体环境中,因此,与现有的PDP相比,在保护膜108的层叠过程中,抑制了杂质气体的吸附。
这里所说的减压状态指的是真空中或真空减压状态或者使用惰性气体置换后的减压状态。
如果利用真空蒸镀法等在后文叙述的真空成膜工艺法在真空中层叠保护膜108,则保护膜108的层结构变得很细密,二次电子释放系数更高,耐溅射性进一步提高,是比较理想的。
如果将前面板102置于维持减压的气体环境中直到前面板102与背面板103的封闭完成,就能够进一步抑制保护膜108吸附杂质气体,与现有的PDP相比,保护膜108的二次电子释放系数及耐溅射性提高,因此是比较理想的;另外,在前面板102的主面上形成的各个构成部分例如间隔壁或荧光体层不会吸附杂质气体,能够进一步抑制电介质层107、保护膜108吸附杂质的可能性,因此是比较理想的。
另一方面,在背面板103中,在由玻璃板构成的衬底111的主面的单位放电单元中,形成与设置在上述前面板102主面上的扫描电极105和维持电极106呈立体交叉状态的数据(地址)电极112。
数据电极112至少包含Al-Nd,与上述前面板102的显示电极对104的形成方式相同,利用真空成膜工艺法形成。
进一步,在形成了数据电极112的衬底111表面上,以覆盖着数据电极112的状态形成膜厚约为2μm的电介质层113。
与上述前面板102的电介质层107同样地,利用CVD法或ICP-CVD法等各种CVD法形成含有80%SiO2的电介质层113。
进一步,虽然在图1(b)中没有表示出来,但在电介质层113的主面上形成配置(竖立设置)有高度大致固定的间隔壁114。
间隔壁114优选是利用含非铅系玻璃材料涂敷煅烧而成,按照预定的图案形成为棱条形状,以便将多个放电单元间隔成条纹状或井字形状(省略图示)。
此外,从电介质层113主面直到间隔壁114的壁面,形成有发出红、绿、蓝光的各种荧光体层115。
荧光体层115中使用了例如(Y、Gd)BO3:Eu、Zn2SiO4:Mn和BaMg2Al14O24:Eu等荧光体。
荧光体层115是按照上述每一种荧光体颜色针对形成有间隔壁114的衬底111印刷涂敷并经过煅烧而成的,其形成在间隔壁114的侧面和电介质层113的主面上。
此外,虽然省略了详细说明,经过上述形成过程而形成的前面板102和经过上述真空工艺而形成的背面板103相向,其边缘部分被密封起来,借助于前面板102、背面板103和未图示的密封材料与外部隔离开的空间被排气成为高真空,并且以约60kPa的压力向该空间中填充封装包含稀有气体氙、氖为主要成分的混合放电气体作为放电气体,形成本实施方式的PDP。
放电气体并不限于此,也可以包含氙、氦作为主要成分。
上述荧光体材料和放电气体的成分及其压力并不限于上述情形,只要是AC型PDP中通常能够使用的材料、条件即可。
配有多个图1所示的单位放电单元的PDP的扫描电极105、维持电极106、数据电极112分别连接驱动电路(驱动器IC等),该驱动电路上连接对其进行控制的控制电路,构成PDP装置。
2.PDP101的驱动方法
在PDP101的驱动中使用由以下3个动作期间(省略图示)构成的地址、显示分离驱动方式:(1)将全部显示单元置为初始化状态的初始化期间;(2)为各个放电单元分配地址、选择与输入数据相对应的显示状态输入到各个单元中的数据写入期间;(3)使处于显示状态的放电单元显示发光的维持放电期间。
通常,在1个场期间内至少被执行一次的上述(1)的初始化期间中,在扫描电极105与数据电极112之间施加400~600V高电压,使全部显示单元的壁电荷量达到初始化状态的水平。
此外,在各子场期间中的上述(2)的数据写入期间内,使用背面板103的数据电极112输入写入数据,在与背面板103相向的前面板102的电介质层107、保护膜108的放电空间一侧主面上形成壁电荷。
在上述(3)的维持放电期间内,以彼此相位不同的方式分别对前面板102的扫描电极105和维持电极106施加电极电压脉冲的矩形波电压。亦即,在上述扫描电极105和维持电极106之间施加交流电压,在写入了显示状态数据的放电单元中,每当电压极性变化时产生脉冲放电。借助于依照这种方式所产生的维持放电,对于显示发光来说,通过放电空间的激发氙气原子放射出147nm的谐振谱线,通过激发氙气分子放射出以173nm为主体的分子线,接着,通过设置在背面板103上的荧光体层115将上述紫外放射变换为可见辐射,由此,实现PDP101的驱动发光显示。
《第1实施方式中的PDP的效果》
在本实施方式中的PDP101中,利用CVD法形成含有SiO2的电介质层107,因此,电介质层107的密度与现有的利用压膜工艺所形成的电介质层相比有所提高,因此,与现有的电介质层相比,电介质层107具备1.0×106V/cm以上的高绝缘耐压。
在本实施方式的PDP101中,由于汇流电极159、169是利用真空成膜工艺形成,因此,与现有的利用包含煅烧工序的厚膜工艺所形成的汇流电极相比,在形成汇流电极159、169之后,汇流电极159、169中不会残留粘合剂煅烧物,因此,与利用CVD法以覆盖汇流电极159、169的方式形成电介质层107的做法相结合,在汇流电极159、169与电介质层107的接触部分不会产生气泡。
此外,在本实施方式的PDP101中,由于汇流电极159、169是利用真空成膜工艺形成的,因此,汇流电极159、169的厚度与现有的相比变薄,因此,在以覆盖汇流电极159、169的方式层叠的电介质层107中,与现有的PDP相比,能够抑制厚度差的产生,其结果是,能够抑制与汇流电极159、169的边缘部分相对应的电介质层107的厚度与其它部分的电介质层107的厚度相比变薄,与现有的PDP相比,能够抑制与汇流电极159、169的边缘部分相对应的电介质层107中产生绝缘破坏。进一步,与现有的PDP相比,由于能够抑制电介质层107中产生厚度差,因此,不再需要为了获得绝缘耐压而预先增加电介质层的厚度,可以使电介质层变薄。
另外,在本实施方式的PDP101中,由于电介质层107是利用CVD法形成的,因此,与现有的PDP相比电介质层107的厚度变得均匀,因此,与现有的PDP相比能够抑制电介质层107的膜厚分布中出现差异,其结果是,能够抑制与汇流电极159、169的边缘部分相对应的电介质层107的厚度与其它部分的电介质层107的厚度相比变薄,与现有的PDP相比,能够抑制与汇流电极159、169的边缘部分相对应的电介质层107中产生绝缘破坏。
这样一来,在本实施方式的PDP101中,即使将电介质层107的膜厚做得比现有的更薄,电介质层107的耐压高、不会产生该气泡,并使电介质层107的厚度分布差异受到抑制,因此,与现有的相比,能够抑制电介质层107中产生绝缘破坏。
在本实施方式的PDP中,与现有的PDP相比,由于电介质层107是利用CVD法形成的,因此,能够容易地将电介质层层叠得细密而薄。
而且,在本实施方式的PDP101中,电介质层107的膜厚与现有的相比变得更薄,因此,在PDP的驱动时,扫描电极105与维持电极106之间的电场强度与现有的PDP相比更强。
由此,在本实施方式的PDP中,能够以低维持放电电压进行驱动,能够降低放电开始电压,从而能够提高发光效率。
另外,在本实施方式的PDP101中,电介质层107、113或保护膜108至少是在真空中或减压状态下形成并得以保管维持,因此,电介质层107、113或保护膜108中不会吸附杂质气体,也不会因杂质气体而产生反应。
因此,在本实施方式的PDP中,与现有的PDP相比,不会导致二次电子释放系数的下降,因此,不会导致放电开始电压、放电维持电压的上升,另外,与现有的PDP相比,不会导致耐溅射性的下降,能够实现使用寿命的延长,并能够提高可靠性。
此外,在上述说明中,保护膜108是由MgO构成的,但使用由例如CaO、BaO、SrO、MgNO、ZnO等其它金属氧化物构成的保护膜也同样可以实施。
另外,在上述说明中,衬底110、111的厚度t1、t2约为1.1mm,但在本实施方式的PDP101中,与现有的PDP的汇流电极或电介质层相比,汇流电极159、169或电介质层107、113的膜厚更薄,因此,即使将衬底110、111的厚度设定为0.5或0.7mm左右时,也能够抑制衬底110、111的翘曲。由此,可以使衬底110、111变得更薄,因此,在本实施方式的PDP101中,能够实现进一步的薄型化、轻量化。
另外,在上述说明中,衬底110、111的厚度t1、t2约为1.1mm,但可以做得更厚,也可以与现有的PDP同样地将厚度设定为约2.8mm。
另外,在上述说明中,采用了玻璃衬底作为衬底110、111,但采用塑料衬底同样也可以实施。耐热性塑料衬底有例如住友电木(Sumitomo Bakelite)公司制造的高耐热性塑料衬底SUMILITE FST(聚醚砜(PES)、住友电木株式会社的注册商标),Tg约为223℃,以该温度作为加热上限,就可以足够用于本发明的低温工艺中。
另外,在上述说明中,背面板103的电介质层113是利用CVD法形成的,但也可以与现有的背面板同样地使用由低熔点玻璃印刷煅烧而成的电介质层。
另外,所说明的数据电极112含有Al-Nd,并在真空中形成;但也可以与现有的背面板同样地使用印刷煅烧而成的以Ag为主要成分的电极或在真空中形成的以Cr-Cu-Cr为主要成分的电极。
另外,在上述说明中,前面板102上至少形成汇流电极159、169、电介质层107和保护膜108,背面板103上至少形成数据电极112和电介质层113;但与反射型PDP那样,即使将这些层或膜进行相反配置也同样可以实施。
<评价试验>
下面根据本实施方式中的PDP101制备出实施例1的PDP、根据现有的PDP制备出比较例1的PDP,尝试对上述效果进行验证。
(实施例1)
实施例1的PDP与上述第1实施方式所示的PDP相同,因此省略其说明。
(实施例2)
在实施例2的PDP中,电介质层107的相对介电常数ε设定为2.3,其厚度d设定为10μm,除此之外与实施例1的PDP相同,因此省略其说明。
(比较例1)
在比较例1的PDP中,与实施例1的PDP相比,其不同点仅在于以下方面:在前面板102中,衬底110的厚度设定为约2.8mm,通过层叠涂敷银膏并进行煅烧的压膜工艺形成膜厚约为5~6μm的窄幅的汇流电极159、169,通过涂敷低熔点玻璃材料并进行煅烧的印刷法,形成相对介电常数ε约为13、膜厚约为40μm、绝缘耐压约为2.5×105V/cm的电介质层107,保护膜108的厚度设定为数百nm;在背面板103中,玻璃衬底111的厚度设定为约2.8mm,通过涂敷低熔点玻璃材料并进行煅烧的印刷法,形成相对介电常数ε约为13、膜厚约为40μm、绝缘耐压约为2.5×105V/cm的电介质层113;除此之外的结构省略说明。
(评价试验的内容和结果)
(试验1)
将比较例1的PDP和实施例1的PDP分别与驱动电路等相连接,通过改变施加在扫描电极105和维持电极106之间的放电维持电压进行验证的结果发现,在比较例1的PDP中,如果放电维持电压为180V以下就无法稳定地进行驱动;而在实施例1的PDP中,即使维持放电电压下降到约140V也能够稳定地进行驱动。
因此,通过本试验可以确认在实施例1的PDP中可以降低放电开始电压。
(试验2)
另外,针对比较例1的PDP和实施例1的PDP分别准备15英寸的测试面板,并分别与驱动电路等相连,在(试验1)中所获得的稳定驱动区域内对其分别进行驱动,利用入江株式会社制造的BM-8型亮度计测量各自PDP的亮度,结果是,在比较例1的PDP中观测到的亮度为800cd/m2,而在实施例1的PDP中观测到的亮度为960cd/m2
因此,可以确认,在实施例1的PDP中,与比较例1的PDP相比亮度提高到约1.2倍,在实施例1的PDP中,与现有的PDP相比通过减小电介质层107的厚度提高了光透射率。
在进行上述亮度测定的同时使用众所周知的电力计分别测量其电力后代入到众所周知的算式中发现,在比较例1的PDP中发光效率为1.5lm/w,而在实施例1的PDP中则是2.3lm/w,可以确认在实施例1的PDP中与比较例1的PDP相比发光效率提高到约1.5倍。
另外,在对各个PDP在上述稳定驱动区域内进行连续驱动的同时使用上述亮度计测定亮度降至一半的时间,结果发现,在比较例1的PDP中,亮度减半时间约为5000h,而在实施例1的PDP中则约为10000h;可以确认,在实施例1的PDP中使用寿命延长至比较例1的PDP的约2倍,与现有的PDP相比可靠性进一步提高。
进一步,在实施例1的PDP中,在驱动时,当在上述初始化期间施加高电压时不会发生绝缘破坏,由此可知薄膜的电介质层107具备足够的耐压。
在实施例1的PDP中,使用了厚度约为比较例1的PDP的1/3的薄的衬底110,但是,没有发现衬底110的翘曲,因此可以确认在实施例1的PDP中与比较例1的PDP相比可以实现薄型化、轻量化。
(试验3)
进一步,在比较例1和实施例1的各个PDP中,将放电气体的Xe分压设定为100%,实施例1的电介质层的厚度设定为10μm,与(试验1)同样,分别与驱动电路等相连,在改变放电维持电压同时验证是否能够稳定地进行驱动,结果发现,在比较例1的PDP中以340V稳定地驱动,而在实施例1的PDP中,则以220V稳定地驱动。
因此,根据本试验可以确认,在实施例1的PDP中,与现有的PDP相比,即使提高放电气体中的Xe分压也不会导致放电维持电压的上升。
(试验4)
对于(ε/d)被设定为0.32(相对介电常数ε=12、厚度d=38μm)的比较例1的PDP及(ε/d)被设定为0.23(相对介电常数ε=2.3、厚度d=10μm)的实施例2的PDP,与(试验2)同样地连接驱动电路等,在上述稳定驱动区域进行驱动,使用上述亮度计、电力计,代入众所周知的算式后发现,在比较例1的PDP中发光效率为2.3lm/w,而在实施例2的PDP中则为3.0lm/w,所以可以确认在实施例2的PDP中,发光效率相对比较例1的PDP提高了约30%。
(第2实施方式)
在第2实施方式中,参照图2~图4说明上述第1实施方式中的PDP101的制造方法。
图2是表示本发明的第2实施方式中的PDP101的制造工序的流程图。图3是表示PDP101的前面板102的制造工序的概略工序图,另外,图4是表示PDP101的背面板103的制造工序的概略工序图。此外,图3所示的前面板102表示为与图1(b)的前面板102上下颠倒。另外,图3中对于与上述图1相同的部分使用同样的符号,为简化起见作了部分省略。另外,在图3中的装置内衬底的配置有时候上下颠倒。
5.前面板102的制造工序
如图3的S1所示,玻璃衬底110主面上生成膜厚约为100nm的由ITO、SnO2、ZnO等构成的透明电极用膜,利用光刻法制作出夹着放电间隙彼此相向并且平行的宽幅图案,形成成对的透明电极151、161(图2中的S1)。
接着,如图3的S2所示,在透明电极151、161的主面上,使用如Al-Nd(所含Nd的重量比例为2~6%)那样至少包含稀土类金属的Al系金属电极材料,利用真空蒸镀法、电子束蒸镀法、等离子束蒸镀法或溅射法等真空成膜工艺法在衬底温度为室温~300℃、在真空中或溅射气体环境的减压状态下生成Al-Nd合金薄膜。
在上述情况下,Nd含有率优选是2~6%。这是因为,如果不足2%,则无法充分体现添加Nd所得的效果,通过将Nd含有率提高到2%以上,即使衬底温度为300℃也能够抑制小丘(作为电极结构是多余的细微突起)的产生,另外,如果是6%以上,则很难达到膜质均匀,热应力的问题变得更加显著。
接着,利用光刻法、优选是干刻蚀法,通过室温~300℃的低温工艺制作比透明电极151、161宽度更窄的图案,形成由Al-Nd合金薄膜构成的大致平行排列的各个汇流电极159、169(图2中的S2)。
这里,通过使用干刻蚀工艺,能够形成在电极边缘基本上没有凹凸或倾斜的汇流电极159、169。
另外,由Al-Nd等构成的Al系金属在使用干刻蚀法的构图工艺中可以在300℃以下的低温工艺中使用。
这样一来,通过透明电极151与汇流电极159的组合形成扫描电极105,通过透明电极161与汇流电极169的组合形成维持电极106,由扫描电极105和维持电极106成对地构成显示电极对104。
以Al-Nd为主要成分的金属体与以Ag为主要成分的金属体相比,具有均质且优异的电气特性(低电阻),因此,与现有的PDP相比,能够层叠出既能保持优异的电气特性、又能够做到细密而且厚度小的汇流电极159、169。
此外,如图3的S3所示,将在透明电极151、161主面上形成了汇流电极159、169的衬底110插入到可实施CVD法、等离子体CVD法或ICP-CVD法等的CVD装置31中,利用上述任意一种方法在该衬底110上形成至少包含SiO2的细密的电介质层107(图2中的S3)。
所使用的电介质原料和成膜条件因各种CVD法而不同,通过适当选择,可以获得适宜的成膜速度和致密度。
这里,使用含有例如TEOS(正硅酸乙酯)气体的电介质层原料,通过利用ICP-CVD法(感应耦合式等离子CVD法:InductivelyCoupled Plasma CVD)的高速CVD法形成电介质层107。
此外,为了简化而省略了图示,但是在图3所示的CVD装置31中配置了氧气供应环,从气化产生TEOS(正硅酸乙酯)气体的气化装置供应气化气体的供应环设置在衬底附近。
在ICP-CVD法中,利用未图示的涡轮分子泵和旋转泵将CVD装置31内部高速排气成真空之后,向经过真空排气之后的ICP-CVD反应炉31内供给氧气,在预定的压力下向天线提供RF电力时,在ICP-CVD装置31内导入电波,形成感应电场。
被该感应电场加热后的电子与气体分子发生冲撞,产生离子和其它电子。
其结果是,形成了含有大量离子和电子的比较均匀的等离子。在等离子中加热至高温而被激活的氧气通过扩散到达衬底附近。
在这里通过使被激活的氧气和TEOS气化气体产生反应,在衬底110主面上生成含有SiO2为主要成分的膜。
通过适当选择室压和氧气流量、TEOS气化气体供给量条件,能够以约2.5μm/分的高速的成膜速度形成由细密的薄膜状SiO2膜构成的电介质层107。
形成电介质层107时的衬底温度为室温~300℃,能够利用低温工艺形成电介质层107。
如果通过以上的工艺形成电介质层107,与现有的PDP相比,电介质层107的密度得以提高,因此,电介质层107的耐压也有所提高。即,能够利用低温工艺以高速的成膜速度制造出具有稳定质量的薄膜化电介质层107,该薄膜电介质层107有助于提高PDP的发光效率。另外,通过利用低温工艺的电介质层形成工序(S3),能够抑制现有的电介质层的煅烧或高温工艺中产生的面板的翘曲和破裂。
此外,如图3所示,将形成有电介质层107的衬底110通过通道33从CVD装置31移动到后面的真空成膜装置32中。
通道33内预先形成为真空或减压状态,或者是用N2或Ar惰性气体置换后的减压状态。
另外,在某些情况下将衬底110临时保管在减压状态的通道33内。
当在真空或惰性气体环境中的减压状态下通过通道33移动衬底110或者将衬底110保管在通道33内的情况下,通道33气体环境中的杂质气体的分压优选是低于100kPa,进一步,最好是0.13Pa以下。
接着,如图3的S4所示,通过使用电子束蒸镀法或溅射法等低温工艺的真空成膜工艺法,在真空成膜装置32内,在真空或含有Ar等溅射气体的减压状态下,覆盖着所移动的衬底110的电介质层107层叠形成具有预定膜厚的、含有金属氧化物即MgO的保护膜108(图2中的S4)。
这里所谓的真空成膜工艺指的是在真空状态下形成薄膜的工艺,除了电子束蒸镀法、溅射法之外,还包括真空蒸镀法、等离子束蒸镀法、各种CVD法等方法。在真空成膜工艺中,可以利用低温工艺形成保护膜。
由此,继电介质层107的形成之后,利用真空成膜工艺法在减压状态下形成保护膜108,因此,能够稳定地保持并形成高质量的保护膜。另外,通过利用低温工艺的真空成膜工艺法,能够抑制现有的高温工艺中产生的面板的翘曲和破裂。
此外,如图3的S4所示,为了抑制保护膜108上吸附杂质气体(主要是H2O或CO2)并发生反应,对于在真空减压状态下在衬底110主面上至少层叠电介质层107和保护膜108的前面板102,不仅其实质形成工序,而且向后续工序的移动工序、向保管工序或面板密封工序的过渡工序中,也维持该减压状态,将其通过真空减压状态或者用N2或Ar惰性气体置换后的减压状态的通道34进行移动,然后在通道34保管。
当通过真空中或者惰性气体环境的通道34移动前面板102,然后将前面板102保管在通道34中的情况下,将进行移动和保管的通道34的气体环境的杂质气体分压置为低于100kPa,优选是0.13Pa以下。
在上述制造工序中,至少从成膜工序(S1至S4)到面板密封工序(S9)期间,即从图2所示的步骤S1至步骤S9,在衬底110主面上不接触空气地形成电介质层107和保护膜108,并将形成有电介质层107和保护膜108的衬底110保管、维持在减压状态下,由此,杂质气体不会吸附到电介质层107和保护膜108上,在电介质层107和保护膜108上不会因杂质气体而发生氢氧化反应和碳酸化反应,因此,电介质层107和保护膜108能够维持其在真空中形成的性能直至PDP的完成。
因此,在该前面板102的制造工序中,能够稳定地制造出具有保持高二次电子释放效率和低放电开始电压,并提高耐溅射性,可靠性及质量比现有技术得到提高的汇流电极159、169、电介质层107和保护膜108的前面板102。
2.背面板103的制造工序
如图4的S5所示,在玻璃衬底111的主面上,使用至少含有Al-Nd的金属电极材料,利用与上述相同的真空成膜工艺法、干刻蚀法,使用低温工艺生成Al-Nd合金薄膜,利用低温工艺对其进行构图,形成数据电极112(图2中的S5)。
接着,如图4的S6所示,将形成了数据电极112的衬底111插入到可以实施CVD法、等离子CVD法或ICP-CVD法等的CVD装置41中,与上述前面板102的电介质层107的制造工序同样地,通过使用CVD法或ICP-CVD法的低温工艺的各种CVD法在衬底111的主面上以覆盖数据电极112的方式形成至少含有SiO2的、具有预定膜厚的电介质层113(图2中的S6)。
如上所述,电介质层113是利用低温工艺形成的,因此,与现有的通过煅烧(baking)工序形成的做法相比,能够抑制衬底111的翘曲和破裂的发生。
此外,优选是从电介质层113的形成工序直到间隔壁114、荧光体层115的形成工序为止一直维持减压状态。
由此,在电介质层113处于暴露状态的工序中,由于一直维持减压状态,因此能够制造出电介质层113上不会吸附杂质气体等的、质量稳定的背面板103。
此外,如图4的S7所示,在电介质层113的主面上形成并配置了具有大致固定高度的间隔壁114(图2中的S7)。
优选使用非铅系玻璃材料作为间隔壁114的材料,将非铅系玻璃材料涂敷后煅烧,按照预定的图案形成棱条形状的间隔壁114,以便将多个放电单元间隔成多个排列的条纹状或井字形状。
接着,如图4的S 8所示,使用(Y、Gd)BO3:Eu、Zn2SiO4:Mn和BaMg2Al14O24:Eu等荧光体在间隔壁114分割出来的各沟道部分形成荧光体层115(图2中的S8)。
荧光体层115是在上述各沟道部分按每一种颜色印刷涂敷上述荧光体、在该涂敷之后进行煅烧、从间隔壁114的侧面直到电介质层113主面而形成的。
由此,在该背面板103的制造工序中,至少在形成电介质层113的工序(S6)和在向后续工序即间隔壁114形成工序(S7)过渡的工序中间维持减压状态,因此,至少在上述工序中电介质层113不会接触空气,能够将背面板103保持在杂质气体不会吸附到电介质层113上的状态下过渡到间隔壁114的形成工序(S7),因此,能够提高可靠性,稳定地制造出背面板103。
此外,虽然省略了详细说明,但在面板密封工序(图2中的S9)中,使前面板102和背面板103相向,其边缘部分粘在一起密封起来(图2中的S9),其中,在该前面板102上,汇流电极159、169、电介质层107以及保护膜108至少在真空中或减压状态下形成,在该背面板103上,数据电极112、电介质层113至少在真空中或减压状态下形成,并形成有间隔壁114、荧光体层115。
其后,将面板内部排气为高真空之后(图2中的S10),以预定的压力向面板内部封入包含稀有气体氙、氖等的混合气体作为放电气体进行封固(图2中的S11),通过老化工序(图2中的S12)制作出PDP101。
《第2实施方式中的PDP的效果》
在本实施方式的PDP制造方法中,利用真空成膜工艺形成汇流电极159、169,因此,与现有的利用厚膜法形成汇流电极的技术相比,汇流电极中不会残留粘合剂煅烧物,可以防止在以后的电介质层107形成工序中产生气泡,因此,能够形成不容易引起绝缘破坏的电介质层107。因此,与现有的PDP的制造方法相比,能够形成更薄的电介质层107。
另外,在本实施方式的PDP制造方法中,电介质层107是利用ICP-CVD法形成的,因此,与现有的利用压膜法形成电介质层的做法相比,能够形成高密度的电介质层107,因此,能够形成高耐压的电介质层107,其结果是,能够减小所形成的电介质层107的厚度,尤其是通过利用ICP-CVD法形成,与现有的厚膜法以及其它的CVD法相比,能够更高速地形成。
因此,在本实施方式的PDP制造方法中,与现有的PDP的制造方法相比,能够高速地制造出可以降低放电维持电压、放电开始电压并提高发光效率的PDP。
在本实施方式的PDP的制造方法中,电介质层107的层叠工序与专利文献1的PDP的制造方法相比更单纯,因此,能够制造出高质量、高可靠性的PDP。
在本实施方式的PDP的制造方法中,从电介质层107的层叠工序直至层叠有电介质层107的前面板102的移动、保管、向后续工序的过渡工序都维持真空或者减压状态,因此,与专利文献2的PDP的制造方法相比,能够抑制电介质层107与空气接触,能够抑制电介质层吸附杂质气体。
在本实施方式的PDP的制造方法中,从保护膜108的层叠工序直至层叠有保护膜108的前面板102的移动、保管、向后续工序的过渡工序都维持真空或者减压状态,因此,与专利文献1、2的PDP的制造方法相比,能够抑制保护膜108与空气接触,能够抑制保护膜吸附杂质气体。
因此,在本实施方式的PDP制造方法中,与专利文献1、2的PDP的制造方法相比,能够制造出寿命长、可靠性高、质量稳定的PDP。
此外,上述说明中使用TEOS气体作为电介质层原料,但也可以使用其它有机硅烷系材料。
另外,上述说明中保护膜8是使用MgO形成的,但也可以使用BaO、CaO、SrO、MgNO和ZnO等金属氧化物。
另外,在上述说明中,背面板103的电介质层113是利用CVD法形成的,但也可以与现有的背面板同样地通过印刷煅烧低熔点玻璃即电介质层而形成。
另外,所说明的背面板103中的数据电极112是使用含Al-Nd的金属材料在真空中形成的,但是也可以与现有的背面板同样地通过印刷煅烧Ag电极而形成或在真空中形成Cr-Cu-Cr电极。
另外,在上述说明中,前面板102上至少形成汇流电极109、电介质层107和保护膜108,背面板103上至少形成数据电极112和电介质层113;但如反射型PDP那样,即使将这些层或膜进行相反配置也同样可以实施,可以在相向衬底的任意一个上形成这些层或膜。
(第3实施方式)
在本实施方式中表示了在与衬底主面平行的面上在一对显示电极中的显示电极之间的间隙中设置的汇流电极形状的变更例。
图5(a)是相当于沿着显示电极截断后的剖面的主要部分剖面图,图5(b)是相当于在图5(a)的X-Y面截断后的剖面的主要部分剖面图。
在本实施方式中,只有汇流电极的结构与第1实施方式不同,因此对于除汇流电极之外的结构省略其说明。
如图5(b)所示,扫描电极105和维持电极106分别具有由透明电极151、161和汇流电极159、169构成的基部、及突出部118、119;扫描电极105的基部和维持电极106的基部夹着第1间隙相向配置,扫描电极105的突出部118和维持电极106的突出部119夹着比第1间隙狭窄的第2间隙在放电单元内各个基部的相向边上配置多个。
<变更例1>
下面,说明变更例1中的PDP放电单元的显示电极的结构。
图6(a)是从背面板一侧观察PDP的显示电极对的一部分所得的图,双点划线所包围的范围相当于放电单元。图6(b)是对其一部分进行放大后的主要部分平面图。
如图6(a)所示,从构成显示电极对104的汇流电极159、169中的一个延伸、朝向另一个汇流电极159、169的电极加工部171、172从各个透明电极151、161的相向边突出的结果是,当以透明电极151、161和汇流电极159、169作为基部的情况下,从该基部突出的部分相当于突出部118、119。相向的突出部118、119之间的间隙g比透明电极151、161之间的间隙G更狭窄,并保持固定。例如,如果间隙G为50~100μm,则间隙g优选为1~10μm。由此,能够降低从汇流电极159、169至突出部118、119顶端的电阻,能够在利用形成汇流电极159、169时使用的微细加工工序形成汇流电极159、169的同时形成突出部118、119,而且,能够提高突出部118、119之间的电场强度。
如图6(b)所示,突出部118、119的顶端角度θ1、θ2在10度以上、小于90度的范围内,突出部118、119的顶端边形成为在与扫描电极105的主面平行的面上具有锐角形状的轮廓。θ1、θ2既可以是相同角度,也可以是不同角度。此外,突出部118、119的顶端边的形状并不限于锐角形状,也可以形成曲线状的轮廓。
夹着1~10μm的狭窄间隙g而形成突出部118、119的工序、将突出部118、119的顶端边形成为锐角形状轮廓的工序能够利用与形成薄膜金属电极即汇流电极159、169时所使用的精工艺加工相同的工艺来实现。
此外,在变更例1中,也可以将在不同电极相向的2个和在相同电极相邻的2个共计4个突出部118、119作为一组,将这样的一组突出部118、119配置为其顶端之间形成等间隔并且使连接突出部118、119顶端的假想线呈正方形。
<变更例2>
图7(a)是从背面板一侧观察PDP的显示电极对的一部分所得的图,双点划线所包围的范围相当于放电单元。图7(b)是对其一部分进行放大后的主要部分平面图。
图7与图6的不同点在于:由扫描电极105的多个突出部118与维持电极106的多个突出部119所包夹的间隙,在放电单元内沿着扫描电极105或维持电极106的延伸方向变化;突出部118、119的顶端边的形状在不同电极之间处于相向关系的突出部118、119之间互不相同;因此,对于已经通过图6说明的结构省略说明。
如图7(a)所示,在变更例2中,多个突出部118、119在扫描电极105和维持电极106互相相对配置,从而使由扫描电极105的多个突出部118与维持电极106的多个突出部119所包夹的间隙在放电单元的中心部位具有宽间隙g1,沿着扫描电极105或维持电极106的延伸方向越靠近放电单元的边界部位越狭窄,在放电单元的边界部(间隔壁一侧)变为窄间隙g2。
例如,如果间隙g2在1~5μm的范围内,则间隙g1优选在5~10μm的范围内;但间隙g1、g2的值并不限于上述范围,并且该值的变化方式也可以适当设计成逐渐变化或梯状变化等方式。此外,在放电单元内夹着最窄的间隙构成一对的突出部在放电单元边界部以每一对的方式设置,但并不限于此,也可以以每2对的方式设置。
另外,如图7(b)所示,在本实施方式中,在例如与带状扫描电极105或维持电极106的延伸方向平行的面上,扫描电极105一侧的突出部118顶端边形成为三角形状的轮廓,而维持电极106一侧的突出部119的顶端边则形成为半椭圆形状的轮廓;但并不限于此,只要是从多角形状或曲线状的轮廓选择出的即可。
进一步,相向的突出部118、119之间的间隙在放电单元的中心部成为宽的状态,越靠近放电单元的边界部变得越窄;但反之,如果成对的突出部之间所包夹的间隙的最窄地方在放电单元的中心部至少设置2个,越靠近放电单元的边界部变得越宽,同样也可以获得上述效果。
<变更例3>
图8(a)是表示变更例3中的PDP的放电单元的一部分的主要部分平面图,是从背面板一侧观察PDP的显示电极对的一部分所得的图,双点划线所包围的范围相当于放电单元。
图8(a)与图6(a)、图7(a)不同的点在于,第1电极的突出部与第2电极的突出部互相隔着固定间隙以梳齿状相互插入,因此,对于图6(a)、图7(a)中已经说明的结构则省略其说明。
如图8(a)所示,在变更例3中,扫描电极105一侧的突出部118和维持电极106一侧的突出部119配置为在透明电极151、161之间的相向边上互相隔着固定间隙以梳齿状且相互插入的状态。
如图8(b)所示,在变更例3中,也可以形成为在扫描电极105或维持电极106中的至少一个,使配置为梳齿状的突出部118、119从汇流电极159、169的至少一个开始延伸,并从配置为与其并行的窄幅的电极加工部172突出。图8(b)与图8(a)相同,是从背面板一侧观察PDP的显示电极对的一部分所得的图,双点划线所包围的范围相当于放电单元。
此外,在扫描电极105和维持电极106双方中,呈梳齿状配置的突出部118、119也可以从配置为与汇流电极159、169双方并行的窄幅的电极加工部延伸。
此外,如图8(c)所示,扫描电极105的突出部118的边和维持电极106的突出部119的边之中彼此面对的边上可以配置多个突起部120。图8(c)是将图8(a)、(b)所示的突出部118、119的一部分放大后的主要部分平面图。
《第3实施方式中的PDP的效果》
如上所述,如果在放电单元内扫描电极105和维持电极106的各相向边上设置多个突出部118、119,向扫描电极105和维持电极106供电时,电位集中到多个突出部118、119,突出部118和突出部119之间电场强度增强,在放电单元内存在多个容易开始放电的地方,因此,与放电单元内只有一对突出部的情形相比更容易开始放电。其结果是,即使降低放电开始电压也能够可靠地开始维持放电。另外,在放电单元内只有一对突出部的情况下,当突出部118、119的配设位置随图案的制作精度而在显示电极对104的延伸方向发生偏离时,每一个放电单元的放电延迟时间会出现偏差,而如果在放电单元内设置多个突出部,放电延迟时间就不容易受到图案的制作精度的影响。因此,由于能够减小放电延迟时间的偏差宽度,所以,即使降低放电开始电压也能够可靠地开始维持放电,能够降低PDP的电力消耗。另外,由于能够控制放电延迟时间,所以,能够实现高精细度的PDP。
在变更例1中,通过使处于相向关系的突出部118、119之间的间隙保持固定,并且在相同电极相邻的突出部中使从扫描电极105或维持电极106的各相向边突出的量也相同,由此,如图2(a)所示,在例如全部6个相向地方都可以很容易地开始放电,即使如上所述的突出部118、119的配设位置中发生了偏离,也能够确保有多个容易开始放电的地方。另外,在与带状扫描电极105的主面平行的面上将突出部118、119的顶端边形成锐角形状的轮廓,由此,电位在集中到突出部118、119的同时会进一步集中到突出部118、119的锐角形状顶端,并能够进一步增强成对的突出部118、119之间所包夹的间隙中电场强度,因此能够使放电开始变得更加容易。
在变更例2中,在放电单元两边界部,扫描电极105的突出部118和维持电极106的突出部119所包夹的间隙在放电单元内是最窄的,因此,例如,如图7(a)所示,至少在2个地方很容易开始放电,另外,与变更例1同样地,在与带状的扫描电极105的主面平行的面上,突出部118、119的顶端边形成为锐角形状或曲线状轮廓,因此更容易开始放电。特别地,在变更例2中,与变更例1相比,突出部118、119之间的间隙在放电单元中央部变宽,因此,既提高了开口率,又能够获得上述效果。
在变更例3中,通过将突出部118、119配置为梳齿状相互插入的状态,能够在各突出部119和从不同电极伸出来靠近突出部119的2个突出部118之间设置容易开始放电的地方,因此,与在不同电极之间使突出部相向的情况下的相向地方数量相比,能够增加容易开始放电的地方,增大上述效果。
特别是,如图8(c)所示,在变更例3中,当在相向的突出部118、119双方中各个突出部118、119的相向边上配置了多个突起部120的情况下,电位集中到该突起部120,相向的突起部120之间的电场强度增强,因此上述效果变大。此外,也可以只在相向的突出部118、119之中的某一个配置突起部120。如图8(c)所示,多个突起部120在与带状的扫描电极105的主面平行的面上具有三角形状的轮廓,但并不限于此,也可以具有其它的多角形状或曲线状轮廓。
进一步,在变更例1至3中,突出部118、119是从汇流电极159、169延伸而形成的,即,其材料与汇流电极相同,因此能够与形成汇流电极159、169所使用的微细加工工序同时形成突出部118、119,另外,能够降低从汇流电极159、169到突出部118、119的电阻,因此,使突出部118、119容易制造,并且可以缩小放电单元的尺寸,同时提高响应性。
[评价试验]
根据变更例1和变更例3制造PDP,分别与驱动电路等相连,并改变施加在扫描电极105和维持电极106之间的放电开始电压的同时,验证其能否进行稳定的驱动。其结果是,在任何一种变更例中即使使用约120V这样的比现有的放电开始电压低的电压,也能够稳定地进行驱动。
(第4实施方式)
图9(a)是从背面板一侧观察PDP的显示电极对的一部分所得的图,双点划线所包围的范围相当于放电单元。图9(b)是对其一部分进行放大后的主要部分平面图。
如图9(a)所示,在放电单元中由扫描电极105和维持电极106构成的显示电极对104跨过多个放电单元延伸配设,多个突出部118、119以从构成扫描电极105和维持电极106的透明电极151、161彼此相向的边突出的方式相向配置;相向的多个突出部118、119各自夹着比透明电极151、161所包夹的间隙G更小的间隙g而相向配设。
从汇流电极159、169的一个延伸、并朝向另一个汇流电极159、169的电极加工部171、172从各个透明电极151、161的相向边突出的结果是,当以透明电极151、161和汇流电极159、169作为基部时从该基部突出的部分相当于突出部118、119。此外,电极加工部171、172形成为例如约5μm的宽度。
突出部118、119在各电极中成对,并且其顶端边在与带状的扫描电极105的主面平行的面上具有锐角状的轮廓,成对的各突出部118、119的顶端之间以彼此靠近的方式弯曲形成为爪状。在上述说明中,突出部118、119的顶端边形状具有锐角状轮廓,但并不限于此,只要以多角形状和曲线状轮廓形成即可,另外,电极加工部171、172宽度设定为约5μm,但也可以更粗或更细。
特别地,如图9(b)所示,直接连结相向的一对突出部118、119的各顶端221的假想线构成正方形220,并且各顶端221位于该正方形220的角上。4个顶端221以彼此的间隙g例如约5μm的等间隔相对配置。
《第4实施方式中的PDP的效果》
在本实施方式中,与第1实施方式同样地在放电单元内设置多个突出部118、119,并且将这些突出部的顶端边在与扫描电极105的主面平行的面上形成为锐角状的轮廓,因此,电位集中到突出部118、119的同时进一步集中到突出部的顶端,在放电单元内能够设置多个易于开始放电的地方,与在放电单元内只有一对突出部的情形相比,更容易开始放电。进一步,在本实施方式中,从扫描电极105或维持电极106的相向边突出的量采用相同尺寸,将在相同电极相邻的突出部作为一对,成对的突出部118、119的各顶端之间以彼此靠近的方式弯曲,因此,在给扫描电极105和维持电极106供电时,在引起电位集中的这些顶端之间连结等电位线,并呈现出向其它电极伸展的状态。通过使等电位线向其它电极伸展,在向扫描电极105和维持电极106供电时在不同电极之间的突出部118、119顶端之间,以比第3实施方式的突出部118、119顶端之间的放电间隙狭窄的放电间隙开始放电,因此,即使施加低电压也能够可靠地开始放电,因此,能够减小在多个放电单元中产生的放电延迟时间的偏差宽度。因此,既保持了PDP的画质,又能够降低电力消耗。
特别地,由于将突出部118、119配置为直接连结最靠近的4个突出部118、119的各顶端的假想线成为正方形220,因此在一对突出部118、119之间电场集中进一步增强,上述效果变大。
进一步,突出部118、119是从汇流电极159、169延伸而形成,因此能够与形成汇流电极159、169所使用的微细加工工序同时形成突出部118、119;另外,能够降低从汇流电极159、169到突出部118、119的电阻,因此,使突出部118、119容易制造,并且可以缩小放电单元的尺寸,同时提高响应性。
在本实施方式中,如上所述,突出部118、119是从汇流电极159、169延伸而形成,但也可以从相向的透明电极151、161之间的相向边延伸出来。
另外,在本实施方式中,将突出部118、119配置为直线连结弯曲成爪形的4个突出部118、119的各个顶端的形状为正方形,但除此之外,也可以配置为形成长方形、平行四边形和梯形等其它四角形状。
另外,在上述说明中,成对的突出部118、119的顶端之间以彼此靠近的方式弯曲形成为爪形,但并不限于此,该突出部118、119的顶端形状只要是各突出部118、119相对于其中心线呈非对称的形状并且成对的突出部118、119的顶端之间形成面对面的形状即可。
此外,如图9(a)所示,在本实施方式中,每个放电单元的相同电极中设置了两个一对突出部,但也可以设置一个。当然,每个放电单元的相同电极中也可以设置两个以上的一对突出部。
在本实施方式中,在扫描电极105和维持电极106双方中,突出部118、119成对,但也可以只在任意一个电极中成对。
[评价试验]
根据上述实施方式制造PDP,分别与驱动电路等相连,并改变施加在扫描电极105和维持电极106之间的放电开始电压的同时,验证其能否进行稳定的驱动。其结果是,确认了其即使使用约100V这样的比现有的放电开始电压低的电压,也能够稳定地进行驱动。
(第5实施方式)
图10是表示第5实施方式中的PDP放电单元中的显示电极对的结构的概略平面图,是从PDP的背面板一侧观察所得的图。图10是相当于图6(a)~9(a)的主要部分平面图,双点划线所包围的范围相当于放电单元。
如图10所示,由扫描电极105和维持电极106构成一对的显示电极对104跨过多个放电单元延伸配设,扫描电极105和维持电极106由透明电极151、161和汇流电极159、169构成,顶端边呈锐角形状的突出部118、119以从透明电极151、161彼此相向的边突出的方式相向配置。
从汇流电极159、169中的一个延伸、并朝向另一个汇流电极159、169的电极加工部171、172从各个透明电极151、161的相向边突出的结果是,当以透明电极151、161和汇流电极159、169作为基部时从该基部突出的部分相当于突出部118、119。采用与汇流电极159、169相同的材料形成、处于相向关系的突出部118、119之间的间隙g分别保持比透明电极151、161之间的间隙G狭窄的状态。
例如,如果间隙G为50~100μm,则间隙g优选为5μm,而突出部118、119的顶端边优选为形成顶端角度为5~60度的尖锐的锐角形状。
《第5实施方式中的PDP的效果》
通过采用上述结构,电位不仅集中到突出部118、119,而且通过将突出部118、119的各顶端边形成为在与扫描电极105的主面平行的面上具有尖锐的锐角形状轮廓,使电位进一步集中到尖锐的突出部118、119顶端,在给扫描电极105和维持电极106供电时,即使低电压也能够更可靠地开始放电,并且也能够减小多个放电单元中产生的放电延迟时间的偏差宽度。因此,既保持了PDP的画质,又能够降低电力消耗。
另外,突出部118、119从汇流电极159、169延伸,即采用与汇流电极159、169相同的材料形成,因此,能够与形成汇流电极159、169所使用的微细加工工序同时形成突出部118、119;另外,能够降低从汇流电极159、169到突出部118、119的电阻,由此实现了易于制造的PDP,并且可以缩小放电单元的尺寸从而实现PDP的高精度化,同时提高了响应性。
此外,在上述各实施方式中,相向的突出部的间隙g设定在1~10μm范围内,但并不限于上述范围,考虑到PDP的精度等因素,可以使间隙g大于10μm。
另外,在上述各实施方式中,使用以CVD法或ICP-CVD法形成的、以SiO2为主要成分的细密的薄膜电介质层进行说明;但使用以相对介电常数比SiO2稍高的铅玻璃系材料或非铅玻璃系材料厚厚地涂敷并加以煅烧而形成的电介质层也可以作出同样的实施。
另外,在上述说明中,电介质层的相对介电常数ε在2~5的范围内、其膜厚d在1~10μm的范围内形成,但也可以使相对介电常数在5~15的范围内、膜厚d在10~45μm的范围内形成。
工业上的可适用性
借助于本发明的PDP及其制造方法,能够将降低了放电开始电压、提高了发光效率、可靠性及质量的等离子体显示面板,应用于大型电视机、高清晰电视机或者大型显示装置等影像设备产业、宣传设备产业、工业设备或其它产业领域中,其工业上的可适用性非常广泛。

Claims (44)

1.一种等离子体显示面板,一对衬底夹着放电空间相向配置,上述衬底的上述放电空间一侧主面上延伸出带状的电极,在上述衬底的放电空间一侧主面上以覆盖上述电极的方式层叠电介质层,其中:
上述两个衬底中的至少一个电介质层具备1.0×106V/cm以上、1.0×107V/cm以下的绝缘耐压。
2.如权利要求1所述的等离子体显示面板,其中,上述电介质层含有Si原子和O原子,是利用化学汽相沉积法形成的。
3.如权利要求2所述的等离子体显示面板,其中,上述化学汽相沉积法是感应耦合等离子体化学汽相沉积法。
4.如权利要求1所述的等离子体显示面板,其中,上述电介质层的相对介电常数ε在大于等于2、小于等于5的范围内。
5.如权利要求1所述的等离子体显示面板,其中,上述电介质层的膜厚d在1μm以上、10μm以下的范围内。
6.如权利要求1所述的等离子体显示面板,其中,上述电介质层的相对介电常数ε与上述电介质层的膜厚d的比ε/d大于等于0.1、小于等于0.3。
7.如权利要求1所述的等离子体显示面板,其中,上述一对衬底之中,在一个衬底上使上述电极成对,并沿着上述一对电极的延伸方向排列多个放电单元;
上述一对电极由第1电极和第2电极构成;
在上述一对电极中,第1电极和第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部。
8.如权利要求7所述的等离子体显示面板,其中,在各放电单元内,上述第1电极的突出部与上述第2电极的突出部配置为相向状态;
在处于相向状态的2个突出部之间以及相邻的突出部之间,形成对称的突出长度。
9.如权利要求7所述的等离子体显示面板,其中,在各放电单元内,配置有3组以上的由上述第1电极的突出部和上述第2电极的突出部相向而构成的组;
位于放电单元中央部位的组的突出部的突出长度最短,越靠近放电单元两端附近的组其突出部的突出长度越长。
10.如权利要求7所述的等离子体显示面板,其中,在各放电单元内,配置有3组以上的由上述第1电极的突出部和上述第2电极的突出部相向而构成的组;
位于放电单元中央部位的组的突出部的突出长度最长,越靠近放电单元两端附近的组其突出部的突出长度越短。
11.如权利要求7所述的等离子体显示面板,其中,第1电极的多个突出部与第2电极的多个突出部,在各放电单元内呈现相互隔着固定间隙以梳齿状插入的状态。
12.如权利要求7所述的等离子体显示面板,其中,面向不同电极的突出部的突出部边,在带状基部的主面的平行面上形成为多角形状或曲线状的轮廓。
13.如权利要求1所述的等离子体显示面板,其中,上述一对衬底之中,上述电极在一个衬底上成对,并沿着一对电极的延伸方向排列多个放电单元;
上述一对电极由第1电极和第2电极构成;
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
一对突出部的各顶端部分在与基部的主面平行的面上形成为多角形状或曲线状的轮廓,并且各突出部的中心线相对于带状基部的宽度方向倾斜,以使在突出部顶端的前方相互交叉。
14.如权利要求1所述的等离子体显示面板,其中,上述一对衬底之中,上述电极在一个衬底上成对,并沿着一对电极的延伸方向排列多个放电单元;
上述一对电极由第1电极和第2电极构成;
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
一对突出部的各顶端部分在与基部的主面平行的面上形成为多角形状或曲线状的轮廓;
构成一对突出部的突出部之间的间隙在突出部顶端一侧比上述基部一侧更狭窄。
15.如权利要求1所述的等离子体显示面板,其中,上述一对衬底之中,上述电极在一个衬底上成对,并沿着一对电极的延伸方向排列多个放电单元;
上述一对电极由第1电极和第2电极构成;
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
构成一对突出部的各个突出部的顶端部分在与基部的主面平行的面上形成为多角形状或曲线状的轮廓,并且以彼此靠近的方式弯曲。
16.如权利要求13至15的任意一项所述的等离子体显示面板,其中,分别构成上述第1电极和上述第2电极的各一对突出部顶端配置为,当假定以各顶端为顶点的封闭区域时该区域呈正方形状。
17.如权利要求7所述的等离子体显示面板,其中,上述基部由带状透明电极和配置在上述透明电极的上述放电空间一侧主面上的汇流电极构成;
上述汇流电极包含铝和钕为主要成分,是在真空中或者减压状态下形成的。
18.如权利要求17所述的等离子体显示面板,其中,上述突出部从上述汇流电极分支出来,使用与上述汇流电极相同种类的材料形成。
19.如权利要求1所述的等离子体显示面板,其中,上述一对衬底之中,在一个衬底上上述电极成对,并沿着上述一对电极的延伸方向排列多个放电单元;
上述一对电极由第1电极和第2电极构成;
上述第1电极和上述第2电极分别具有带状的基部和从上述基部向其它基部突出而形成的突出部;
上述基部由汇流电极和透明电极构成,
第1电极的突出部和第2电极的突出部的顶端,在与基部主面平行的面上形成锐角形状的轮廓,并且从上述汇流电极分支出来,使用与上述汇流电极相同种类的材料形成。
20.如权利要求1所述的等离子体显示面板,其中,在上述电介质层的上述放电空间一侧主面上层叠有保护膜,上述保护膜包含MgO为主要成分,在真空中或者减压状态下层叠在上述电介质层的上述放电空间一侧主面上,并且一直被维持并保管在真空或者减压状态下,直到上述一对衬底粘在一起。
21.如权利要求1所述的等离子体显示面板,其中,上述衬底的厚度t在大于等于0.5mm、小于等于1.1mm的范围内。
22.如权利要求1所述的等离子体显示面板,其中,上述衬底由塑料材料构成。
23.一种等离子体显示面板的制造方法,包含:在衬底主面上层叠电介质层的步骤;传送或保管层叠了上述电介质层的上述衬底的步骤;其中,
从电介质层层叠步骤直到电介质层层叠衬底传送、保管步骤,始终维持减压状态。
24.一种等离子体显示面板的制造方法,包含:在衬底主面上层叠电介质层的步骤;在上述电介质层的主面上层叠保护膜的步骤;传送或保管层叠了上述保护膜的上述衬底的步骤;其中,
从保护膜层叠步骤直到保护膜层叠衬底传送、保管步骤,始终维持减压状态。
25.如权利要求23或24所述的等离子体显示面板的制造方法,其中,上述衬底是前面用衬底。
26.如权利要求23或24所述的等离子体显示面板的制造方法,其中,在上述电介质层层叠步骤之前具备在上述衬底的主面上形成显示电极的显示电极形成步骤;
在上述显示电极形成步骤中包含形成带状透明电极的子步骤和在上述透明电极的主面上形成带状汇流电极的子步骤;
上述形成汇流电极的子步骤中,使用以铝和钕作为主要成分的材料,利用真空成膜工艺法形成上述汇流电极。
27.如权利要求24所述的等离子体显示面板的制造方法,其中,在上述保护膜层叠步骤中使用包含Mg原子和O原子作为主要成分的材料,
利用真空成膜工艺法层叠上述保护膜。
28.如权利要求23所述的等离子体显示面板的制造方法,其中,上述衬底是背面用衬底,
在上述电介质层层叠步骤之前具备在上述背面用衬底的主面上形成数据电极的数据电极形成步骤;
在上述电介质层层叠衬底传送、保管步骤中的传送之后,包含在上述电介质层的主面上竖立设置间隔壁的步骤和在从上述间隔壁侧面直到上述电介质层主面上形成荧光体层的步骤;
从上述电介质层层叠步骤直到荧光体层形成步骤,始终维持减压状态。
29.如权利要求28所述的等离子体显示面板的制造方法,其中,在上述数据电极形成步骤中,使用包含铝和钕作为主要成分的材料,
利用真空成膜工艺法形成上述数据电极。
30.如权利要求23或24所述的等离子体显示面板的制造方法,其中,上述步骤是在室温以上、300℃以下的气体环境中进行。
31.如权利要求23所述的等离子体显示面板的制造方法,其中,在上述电介质层层叠步骤中,利用化学汽相沉积法层叠上述电介质层。
32.如权利要求31所述的等离子体显示面板的制造方法,其中,上述化学汽相沉积法是感应耦合等离子体化学汽相沉积法。
33.一种等离子体显示面板,其具有如下结构,具备由第1电极和第2电极构成的显示电极对在其主面上延伸而配设的衬底、并沿着显示电极对的延伸方向排列多个放电单元,其中:
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部。
34.如权利要求33所述的等离子体显示面板,其中,在各放电单元内,上述第1电极的突出部与上述第2电极的突出部配置为相向状态;
在处于相向状态的2个突出部之间以及相邻突出部之间,形成对称的突出长度。
35.如权利要求33所述的等离子体显示面板,其中,在各放电单元内配置3组以上的由上述第1电极的突出部和上述第2电极的突出部相向而构成的组;
位于放电单元中央部位的组的突出部的突出长度最短,越靠近放电单元两端附近的组其突出部的突出长度越长。
36.如权利要求33所述的等离子体显示面板,其中,在各放电单元内配置3组以上的由上述第1电极的突出部和上述第2电极的突出部相向而构成的组;
位于放电单元中央部位的组的突出部的突出长度最长,越靠近放电单元两端附近的组其突出部的突出长度越短。
37.如权利要求33所述的等离子体显示面板,其中,第1电极的多个突出部和第2电极的多个突出部,在各放电单元内呈现相互隔着固定间隙以梳齿状插入的状态。
38.如权利要求33所述的等离子体显示面板,其中,面向不同电极的突出部的突出部边,在与带状基部的主面平行的面上形成多角形状或曲线状的轮廓。
39.一种等离子体显示面板,其具有如下结构,具备由第1电极和第2电极构成的显示电极对在其主面上延伸而配设的衬底、并沿着显示电极对的延伸方向排列多个放电单元,其中:
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
一对突出部的各顶端部分,在与基部的主面平行的面上形成多角形状或曲线状的轮廓,并且各突出部的中心线相对于带状基部的宽度方向倾斜,以使在突出部顶端的前方相互交叉。
40.一种等离子体显示面板,其具有如下结构,具备由第1电极和第2电极构成的显示电极对在其主面上延伸而配设的衬底、并沿着显示电极对的延伸方向排列多个放电单元,其中:
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
一对突出部的各顶端部分,在与基部的主面平行的面上形成多角形状或曲线状的轮廓;
构成一对突出部的突出部之间的间隙在突出部顶端一侧比上述基部一侧更狭窄。
41.一种等离子体显示面板,其具有如下结构,具备由第1电极和第2电极构成的显示电极对在其主面上延伸而配设的衬底、并沿着显示电极对的延伸方向排列多个放电单元,其中:
上述第1电极和上述第2电极分别具有带状的基部和从上述基部按照上述每个放电单元向其它基部突出而形成的多个突出部;
在两个电极的至少一个中,
在相同电极相邻的突出部从上述基部突出的长度采用相同尺寸并且成对;
构成一对突出部的各突出部的顶端部分,在与基部的主面平行的面上形成多角形状或曲线状的轮廓,并且以彼此靠近的方式弯曲。
42.如权利要求39所述的等离子体显示面板,其中,分别构成上述第1电极和上述第2电极的各一对突出部顶端配置为,当假定以各顶端为顶点的封闭区域时该区域呈正方形状。
43.如权利要求33所述的等离子体显示面板,其中,上述第1电极的基部和上述第2电极的基部之中至少一个由汇流电极和透明电极构成,
上述突出部从上述汇流电极分支出来,使用与上述汇流电极相同种类的材料形成。
44.一种等离子体显示面板,其具有如下结构,具备由第1电极和第2电极构成的显示电极对在其主面上延伸而配设的衬底、并沿着显示电极对的延伸方向排列多个放电单元,其中,
上述第1电极和上述第2电极分别具有带状的基部和从上述基部向其它基部突出而形成的突出部;
上述基部由汇流电极和透明电极构成,
第1电极的突出部和第2电极的突出部的顶端在与基部的主面平行的面上形成锐角形状的轮廓,并且从上述汇流电极分支出来,使用与上述汇流电极相同种类的材料形成。
CN2005800350625A 2004-08-17 2005-08-11 等离子体显示面板及其制造方法 Expired - Fee Related CN101040362B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP237716/2004 2004-08-17
JP2004237716 2004-08-17
JP2005095737 2005-03-29
JP095737/2005 2005-03-29
PCT/JP2005/014733 WO2006019031A1 (ja) 2004-08-17 2005-08-11 プラズマディスプレイパネルとその製造方法

Publications (2)

Publication Number Publication Date
CN101040362A true CN101040362A (zh) 2007-09-19
CN101040362B CN101040362B (zh) 2010-04-14

Family

ID=35907419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800350625A Expired - Fee Related CN101040362B (zh) 2004-08-17 2005-08-11 等离子体显示面板及其制造方法

Country Status (5)

Country Link
US (1) US7956540B2 (zh)
JP (1) JP4755100B2 (zh)
KR (1) KR101109794B1 (zh)
CN (1) CN101040362B (zh)
WO (1) WO2006019031A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647673B1 (ko) * 2004-12-30 2006-11-23 삼성에스디아이 주식회사 평판 램프 및 플라즈마 디스플레이 장치
KR100736585B1 (ko) * 2005-05-11 2007-07-09 엘지전자 주식회사 플라즈마 디스플레이 패널
JP5000172B2 (ja) * 2006-03-29 2012-08-15 パナソニック株式会社 ガス放電表示装置
JP4800895B2 (ja) * 2006-10-11 2011-10-26 パナソニック株式会社 プラズマディスプレイパネルとその製造方法
KR20120076388A (ko) * 2010-02-08 2012-07-09 파나소닉 주식회사 플라즈마 디스플레이 패널
US8164261B2 (en) 2010-02-22 2012-04-24 Panasonic Corporation Plasma display panel
FR2961009A1 (fr) * 2010-06-03 2011-12-09 Ion Beam Services Detecteur d'electrons secondaires energetiques
US8547004B2 (en) * 2010-07-27 2013-10-01 The Board Of Trustees Of The University Of Illinois Encapsulated metal microtip microplasma devices, arrays and fabrication methods
JP2012209194A (ja) * 2011-03-30 2012-10-25 Panasonic Corp プラズマディスプレイパネル
BE1019933A3 (nl) * 2012-03-08 2013-02-05 Tait Technologies Bvba Platformsysteem, samenstel van videomodules en werkwijze voor de montage van het platformsysteem.
KR102154313B1 (ko) * 2017-08-24 2020-09-09 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928019B2 (ja) 1979-04-25 1984-07-10 富士通株式会社 ガス放電パネル
JP3123053B2 (ja) * 1990-02-06 2001-01-09 日本電気株式会社 ガス放電表示素子及びその駆動方法
JP2926871B2 (ja) 1990-04-20 1999-07-28 日本電気株式会社 プラズマディスプレイパネル及びその駆動方法
JPH04218238A (ja) * 1990-12-18 1992-08-07 Fujitsu Ltd プラズマディスプレイパネル
JP3233829B2 (ja) 1995-09-13 2001-12-04 新日本製鐵株式会社 スポット溶接部の遅れ破壊特性の優れた高強度pc鋼棒およびその製造方法
JPH09223465A (ja) * 1996-02-19 1997-08-26 Toyo Ink Mfg Co Ltd 放電型ディスプレイ用プラスチック基材
KR19980065367A (ko) 1996-06-02 1998-10-15 오평희 액정표시소자용 백라이트
JP2003007217A (ja) * 1996-11-27 2003-01-10 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル及びプラズマディスプレイパネルの製造方法
JPH10188818A (ja) * 1996-12-27 1998-07-21 Pioneer Electron Corp プラズマディスプレイパネル
EP1310975A3 (en) * 1998-05-12 2003-05-21 Matsushita Electric Industrial Co., Ltd. Manufacturing method of plasma display panel and plasma display panel
JP2000156165A (ja) * 1998-09-07 2000-06-06 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP3481142B2 (ja) * 1998-07-07 2003-12-22 富士通株式会社 ガス放電表示デバイス
JP2000156168A (ja) * 1998-11-20 2000-06-06 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル及びその製造方法
KR100794059B1 (ko) 1999-01-22 2008-01-10 마츠시타 덴끼 산교 가부시키가이샤 가스방전패널
JP2001243883A (ja) * 1999-01-22 2001-09-07 Matsushita Electric Ind Co Ltd ガス放電パネルおよびガス放電デバイスとその製造方法
JP3864204B2 (ja) * 1999-02-19 2006-12-27 株式会社日立プラズマパテントライセンシング プラズマディスプレイパネル
JP3950295B2 (ja) 1999-12-15 2007-07-25 三菱化学株式会社 静電荷像現像用トナー
JP3984794B2 (ja) 2000-02-03 2007-10-03 エルジー エレクトロニクス インコーポレイティド プラズマディスプレーパネル及びその駆動方法
US6610354B2 (en) * 2001-06-18 2003-08-26 Applied Materials, Inc. Plasma display panel with a low k dielectric layer
JP4218238B2 (ja) 2001-11-29 2009-02-04 マックス株式会社 電動ステープラ
JP4251816B2 (ja) * 2002-04-18 2009-04-08 日立プラズマディスプレイ株式会社 プラズマディスプレイパネル
JP2004039601A (ja) 2002-06-28 2004-02-05 Ttt:Kk Ac型pdpの電極構造
JP2004178880A (ja) * 2002-11-26 2004-06-24 Sony Corp プラズマ表示装置
JP2004200057A (ja) * 2002-12-19 2004-07-15 Nippon Hoso Kyokai <Nhk> フラットパネルディスプレイ
US7019460B2 (en) 2004-02-05 2006-03-28 Au Optronics Corporation Plasma display panel and method of driving thereof
KR20070055499A (ko) * 2004-08-17 2007-05-30 마츠시타 덴끼 산교 가부시키가이샤 플라즈마 디스플레이 패널과 그 제조방법
WO2006112419A1 (ja) * 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. プラズマディスプレイパネル
KR20090093057A (ko) * 2008-02-28 2009-09-02 삼성에스디아이 주식회사 플라즈마 디스플레이 패녈

Also Published As

Publication number Publication date
US7956540B2 (en) 2011-06-07
JP4755100B2 (ja) 2011-08-24
US20080315768A1 (en) 2008-12-25
KR101109794B1 (ko) 2012-05-30
CN101040362B (zh) 2010-04-14
KR20070056066A (ko) 2007-05-31
JPWO2006019031A1 (ja) 2008-05-08
WO2006019031A1 (ja) 2006-02-23

Similar Documents

Publication Publication Date Title
CN101040362A (zh) 等离子体显示面板及其制造方法
CN1165942C (zh) 适用于显示器的等离子显示板及其制造方法
CN1230857C (zh) 等离子体显示面板及其制造方法
CN1218357C (zh) 等离子体显示板
CN1263067C (zh) 气体放电面板
CN1306547C (zh) 等离子显示板
CN1129946C (zh) 荧光体材料及等离子体显示器
CN1265417C (zh) 等离子体显示面板和等离子体显示装置
CN1259447C (zh) 透明导电性薄膜及其制造方法和制造用烧结体靶及透明导电性基体材料或有机电发光元件
CN1296957C (zh) 具有优异的发光特性的等离子体显示板以及制造这种等离子体显示板的方法和设备
CN1115705C (zh) 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法
CN1260579A (zh) 平板型等离子体放电显示装置和驱动方法
CN1476039A (zh) 交流电驱动型等离子体显示装置及其生产方法
CN1319868A (zh) 消耗功率抑制效果良好的面放电型显示器件
CN1114224C (zh) 电子束装置、图象形成装置及电子束装置的制造方法
CN101080804A (zh) 用于具有外置电极的发光器件的玻璃
CN1462464A (zh) 平面型显示装置的平整处理方法及平面型显示装置用基板的平整处理方法
CN1161815C (zh) 气体放电板及包括该气体放电板的显示装置
CN1541399A (zh) 等离子体显示面板、等离子体显示装置及等离子体显示面板的制造方法
CN1967772A (zh) 有外部电极的放电灯及制造方法、背光单元和显示装置
CN1276457C (zh) 制造高性能气体放电面板的密封方法和设备
CN1841623A (zh) 电极端子部分连接结构和具有该结构的等离子体显示面板
CN1135593C (zh) 显示装置
CN1875665A (zh) 发光元件
CN1818995A (zh) 等离子显示设备,等离子显示面板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100414

Termination date: 20130811