CN1115705C - 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法 - Google Patents

阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法 Download PDF

Info

Publication number
CN1115705C
CN1115705C CN97190590A CN97190590A CN1115705C CN 1115705 C CN1115705 C CN 1115705C CN 97190590 A CN97190590 A CN 97190590A CN 97190590 A CN97190590 A CN 97190590A CN 1115705 C CN1115705 C CN 1115705C
Authority
CN
China
Prior art keywords
insulated substrate
cathode
heater
grid
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97190590A
Other languages
English (en)
Other versions
CN1194718A (zh
Inventor
小林一雄
须藤孝
樋口敏春
高桥秀治
木村荣
腰越真平
藤内巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1194718A publication Critical patent/CN1194718A/zh
Application granted granted Critical
Publication of CN1115705C publication Critical patent/CN1115705C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/22Heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/24Insulating layer or body located between heater and emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/485Construction of the gun or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/28Heaters for thermionic cathodes
    • H01J2201/2803Characterised by the shape or size
    • H01J2201/2878Thin film or film-like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/12CRTs having luminescent screens
    • H01J2231/125CRTs having luminescent screens with a plurality of electron guns within the tube envelope
    • H01J2231/1255CRTs having luminescent screens with a plurality of electron guns within the tube envelope two or more neck portions containing one or more guns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

一种阴极组件,配有:带有一对相对的面的、具有热传导性的绝缘基板(21);和装在绝缘基板(21)的一个表面上的阴极基体(24)。在绝缘基板(21)的另一表面上,形成加热阴极基体(24)的发热体(25)。通过介入的导电层(26a)把电极端子(26)固定在发热体(25)的电极上。把第1栅极(30)固定在绝缘基板(21)上,使栅极(30)与阴极基体(24)之间构成预定的间隙。

Description

阴极组件、电子枪组件、电子管、灯丝、 及阴极组件和电子枪组件的制造方法
本发明涉及在彩色显像管等的电子枪中使用的阴极组件、电子枪组件、用于电子枪的栅极组件,电子管、灯丝及阴极组件的制造方法。
近年来,要求降低在计算机中使用的显示装置的显示点尺寸。特别是随着计算机的个人化,以液晶为中心的平面显示器引人注目。可是,在大型化、高清晰度化和成本方面,几乎还没有开发可与显像管等电子管抗衡的显示装置。因此,正急切要求显像管等电子管整体缩短长度和减轻重量。
此外,即使对以卫星搭载等为目的的行波管也有同样的迫切要求。与此相应,期望作为管子部件的包含阴极组件的电子枪小型化、薄型化、轻量化。
再有,在高输出的行波管中,常常期望快速启动地工作。在一般的管子中,以阴极组件作为电子源,阴极组件的温度上升时间决定着管子达到稳定工作的时间。也就是说,快速启动管子工作就必须对阴极组件进行快速启动加热。
而且,在使用电子管的显示装置中,还进行着对实现薄壁化和轻量化的开发,例如,在特开平7-58970中就披露了一种薄型显示装置,它使用了并联设置的多个电子枪的电子管。
但是,即使对于构成这种显示装置的电子管中的电子枪,从实现显示装置的薄壁化和轻量化、以及从提高显示装置性能的观点来看,也期望能缩短整体长度,降低消耗功率,和快快速启动等。
下面,参照图67说明现有电子管的一例。图67是表示在现有电子管中使用的电子枪组件的阴极组件附近的剖面图。
阴极组件配有由镍铬等合金构成的阴极套筒1,在该阴极套筒1的一端,固定着用添加了少量还原性物质的镍形成的基体金属2。在基体金属2的表面上,涂敷形成由氧化钡(BaO)、氧化锶(SrO)、氧化钙(CaO)等构成的电子发射物3。以该基体金属2和电子发射物3构成阴极基体4。除所述结构外,还可使用在多孔质阴极基体中浸渍氧化钡(BaO)、氧化锶(SrO)、氧化铝(Al2O3)等电子发射物、即所谓的浸渍型阴极基体作为阴极基体4,。
阴极套筒1通过由作为低热膨胀合金的殷钢(Fe-Ni系合金)形成的搭接片5安装在由科瓦铁钴镍合金(Fe-Ni-Co系合金)形成的阴极托架6上。通过介入的由Ni系耐热合金形成、用于反射来自阴极套筒1的热的反射器7,阴极托架6包围阴极套筒1。通过由不锈钢系合金形成的阴极支撑筒8,把阴极托架6安装在由不锈钢系合金形成的阴极支撑片9上。
在阴极套筒1内,设有用于加热阴极的灯丝10。该灯丝10是把Re-W合金线绕制成螺旋状,在表面敷涂作为绝缘物的氧化铝(Al2O3)而制成的,因而沿电子枪的纵向方向较长。灯丝10从另一端插入阴极套筒1的内部,其端部从阴极套筒1突出。通过由不锈钢系合金形成的灯丝接头11,将灯丝10的端部安装在由不锈钢系合金形成的灯丝接头搭接片12上。用这些阴极基体4和各部件构成阴极组件结构。
与阴极基体4相对地设有用于控制电子流、由不锈钢系合金形成的第1栅极13。通过在阴极组件上附加第1栅极13等来构成电子枪组件15。支杆玻璃14包围该电子枪组件,固定着阴极支撑片9、灯丝接头搭接片12和第1栅极13。
再有,代替采用上述氧化物阴极的阴极基体,可使用在基体金属中浸渍电子发射物的浸渍型阴极的阴极基体作为阴极基体。也可在阴极基体的电子发射面上形成铱(Ir)薄膜层等。
下面,说明上述结构的电子枪组件的尺寸关系的一个例子。阴极套筒1的长度为4mm,基体金属2的长度为1.1mm,从电子发射物3的表面至阴极托架6下端的长度为9.0mm,从第1栅极13的上端距电子发射物3的表面之间的距离为0.5mm,从阴极托架6下端至灯丝接头11下端的距离为5mm。这样,此例的现有电子枪组件的总长度为14.5mm。
在一般的阴极组件中,作为灯丝10,使用把高熔点金属线进行绕制,加工成圆筒状或螺旋状等的灯丝。例如,显像管使用的阴极组件的灯丝就采用直径为50μm左右的钨丝,具有为按规格温度加热所应有的100~130mm左右的长度。在变成保证该钨丝绝缘的灯丝形状的情况下,该灯丝的直径为1.0mm,总长为7mm左右。该总长相当于阴极组件总长的90%以上,在阴极的小型化、薄型化中,必需使灯丝小型化、薄型化。可是,在使用现有阴极组件中的灯丝的情况下,这种状态的灯丝处于临界状态。
在上述阴极组件中,阴极基体4是所谓的氧化物阴极,其工作温度为830℃。用于设定该工作温度的灯丝功率为0.35W。此外,在对阴极组件加电后达到图像稳定地工作所需的时间为10秒。
在涉及阴极组件的快速启动即快速加热方面,由灯丝向阴极基体的传热决定。理想的情况是灯丝仅对阴极组件直接传热。
阴极组件中的阴极基体通过两个热传导路径进行加热。一个是利用灯丝的辐射热直接加热阴极的路径。再一个是利用由灯丝辐射热加热的支撑筒在组件内的热扩散来加热阴极基体的路径。获得阴极基体的稳定的高温状态的时间由后者的热传导决定,它是升温速度慢的原因。
但是,在所述结构的阴极组件中,不可能避免地要向套筒传热。因此,作为阴极快速加热的一个方法,是采用低质量的阴极基体和套筒,但是有阴极自身的热变形等问题,因而存在限制。在现行的行波管中灯丝加电后,阴极基体会达到900~1050℃b的亮度温度,需要3分钟以上的时间才能获得管子的稳定工作。
这样的现有电子管用于薄型显示装置时存在下述问题。
也就是说,电子枪组件的总长过长。在薄型显示装置中期望使用的电子管总长应在130mm以内。对于这种期望,现有电子枪组件中从第1栅极至灯丝下端的长度为14.5mm,因而过长了。
在所述薄型显示装置内使用的电子管中,采用多个阴极基体。例如,在40英寸管的情况下,使用24个电子枪组件。由此,在整个电子管中,每一个电子枪组件(阴极组件)的灯丝功率×电子枪组件数就为所需的灯丝功率。因此,必须抑制整个电子管中的总灯丝功率。
可是,不能说在现有电子枪组件中阴极组件所需的灯丝功率已经足够小,如果使用多个现有电子枪组件,那么整个电子管中的总灯丝功率就会变大。例如,在使用现有电子枪组件的情况下,总灯丝功率就为0.35W×24=8.4W,在实现电子管的省电化上存在问题。
此外,在配有多个电子枪组件的电子管中,如果各个电子枪组件的阴极组件中的快速启动性存在偏差,加电后显示装置的整个图像就会产生混乱。因此,为防止这种图像的混乱,就需要提高电子枪组件中的快速启动性。
再有,在现有电子枪组件的情况下,需要10秒钟图像才能达到稳定,因这个时间过长,所以不能说具有良好的快速启动性。
在像这样的现有电子管的阴极组件中,难以缩短长度、省电和快速启动,所以期望开发新结构的阴极组件。在美国专利5015908中披露了解决这种问题的阴极组件的一个例子。
在该美国专利中披露的阴极组件中使用的灯丝组件是在由各向异性热分解硼氮化物(各向异性热分解氮化硼:APBN)构成的基板上,形成的由各向异性热分解石墨(各向异性热分解黑铅:APG)的灯丝图形构成的发热体,其厚度为1mm左右,非常薄。此外,该灯丝组件能够把绝缘基板的里面与阴极基体直接连接。也就是说,可实现小型化、薄型化和通过降低热容量的快速启动。
但是,上述阴极组件适合于速调管和行波管那样的大型电子管,对于显像管那样的小型且小功率、并且大量生产的电子管来说,并未专门考虑。
此外,在现有的阴极组件中,阴极基体与灯丝或与灯丝基板的热膨胀系数的之差较大,连接性十分不好。因此,通过把钨的薄膜层和钨与镍的粉末进行烧结使阴极基体与绝缘基板连接,制造工艺相当复杂。所以,在现有的阴极组件中,存在生产率和生产成本方面的问题。
也就是说,在灯丝组件中,在绝缘基板的最外边涂敷钨,通过在1300℃下对该面与阴极里面和套筒之间的镍和钨的粉末体进行烧结来固定发热体。但是,由这种烧结产生的连接强度非常弱,在阴极工作中可能会剥落。此外,由于阴极组件的工作,进行过烧结的灯丝特性可能性较大地变化。
再有,还存在从灯丝组件中引出电极的课题。灯丝电极利用螺旋夹和压力等机械连接与发热体连接,可能会产生加热时的热膨胀等造成的连接不良。此外,在显像管等中使用的阴极基体的直径为1mm左右的小型阴极基体的情况下,会产生因螺旋夹部分的热容量引起灯丝功率增加等问题。
此外,在彩色显像管的情况下,一个电子枪组件使用三个阴极组件,为使第1栅极与各自的阴极组件之间的间隔一定,一边用空气测微计测定其间隙,一边固定阴极组件。此时,如果有在阴极组件固定位置上的偏差,那么在打开电视机开关(对电子管加电)的情况下,从各个电子枪组件发射出的电子就会产生偏差,不能再现完整的颜色。因此,必须使第1栅极与阴极组件的间隙高精度化。
基于上述情况,本发明的目的在于提供可缩短长度、省电和快速启动的阴极组件,并提供配备它的电子枪组件、用于电子枪的栅极组件和电子管。
再有,本发明的另一目的在于提供可缩短整个长度、省电、快速启动和使第1栅极与阴极组件的间隙高精度化的电子枪组件。
本发明的另一目的在于提供使发热体和电极端子可简单地并能够牢固地连接的灯丝。
本发明的另一目的在于提供能够容易地制造缩短长度、省电和快速启动的阴极组件的制造方法。
为实现上述目的,本发明的阴极组件的特征在于包括:绝缘基板,它有一对相对的面,具有热传导性;阴极基体,它设置在绝缘基板的一个面上;发热体,它设置在所述绝缘基板的另一面上,加热所述阴极基体;和电极端子,它通过导电层与所述发热体连接。
按照本发明的结构,与现有技术比较,可大幅度地缩短用绝缘基板和发热体构成的灯丝长度,此外,可降低灯丝功率,同时还能提高快速启动性,并能牢固地连接电极端子。
此外,按照本发明,利用把与阴极基体相对的栅极连接在设置的绝缘基板上,能够获得缩短了长度、实现了省电和快速启动的电子枪组件。
本发明的电子枪组件带有:热传导性绝缘基板,它有一对相对的面;阴极基体,它设置在绝缘基板的一个面上;发热体,它设置在所述绝缘基板的另一面中,加热所述阴极基体;第1栅极和第2栅极,它们与所述阴极基体相对设置;通过由电气绝缘物构成的衬套,所述第1栅极和第2栅极构成层积的栅极组件。而且,栅极组件的第1栅极固定在所述绝缘基板上。
按照本发明的结构,与现有技术比较,能够获得实现整体长度大幅度地缩短、灯丝功率降低、可快速启动并且第1栅极与阴极组件的间隙高精度化的电子枪组件。
本发明的用于电子枪的栅极组件的特征在于包括:第1栅极;和第2栅极,它插入电气绝缘层中,与所述第1栅极一体地层积。
按照本发明,能够获得实现缩短了电子枪组件的电子枪的栅极组件。
由于本发明的灯丝包括:绝缘基板,它由氮化硼构成;发热体,它设在该绝缘基板中,由黑铅构成;和电极端子,它通过该发热体中的导电层进行连接;所以能够使发热体和电极端子简单并牢固地连接,特别是,能够获得适合阴极组件的灯丝。
还有,按照本发明,通过衬套,使阴极组件与栅极组件相互连接,具有利用该衬套确定阴极组件位置的结构。由此,能够提供薄型化、低功率化、可快速启动和使阴极组件与栅极间的距离高精度化、提高紧固强度的电子枪组件和电子管。
此外,按照本发明,利用把所述结构的阴极组件并联设置,可构成实现具有缩短长度、省电和快速启动的阴极组件的电子枪组件,它适于彩色显像管中的电子管和薄型显示装置中的电子管。
还有,本发明的阴极组件的制造方法的特征在于,在具有热传导性的绝缘基板的一个表面中,形成黑铅层,构图所述黑铅层,形成预定图形的发热体,通过所述绝缘基板另一面上的导电层连接阴极基体,通过所述发热体电极上的导电层,固定电极端子。
此外,本发明的阴极组件的制造方法的特征在于,由氮化硼形成预定厚度的绝缘基板,在所述绝缘基板的一个表面上形成黑铅层,构图所述黑铅层,形成多个预定图形的发热体,通过所述绝缘基板另一面上的导电层连接阴极基体,把设有所述发热体和阴极基体的绝缘基板分为多个,形成多个阴极组件,通过所述各阴极组件的发热体电极上的导电层,固定电极端子。
图面的简单说明
图1是表示本发明第1实施例的电子管的部分剖切的侧面图。
图2是表示在所述电子管中组装的电子枪组件的剖面图。
图3是表示构成所述电子构件一部分的阴极组件的平面图。
图4是表示沿图3的IV-IV线剖切的剖面图。
图5是表示在所述阴极组件中发热体形成部分的平面图。
图6是表示本发明第2实施例的阴极组件中发热体形成部分的平面图。
图7是表示沿图6的VII-VII线剖切的剖面图。
图8是表示使用浸渍型阴极基体的阴极组件中阴极基体形成部分一例的平面图。
图9是表示使用浸渍型阴极基体的阴极组件一例的剖面图。
图10是表示本发明第3实施例的电子管的电子枪组件的剖面图。
图11是表示在相同实施例的电子管中设置的阴极组件中阴极基体形成部分的平面图。
图12是表示沿图11的XII-XII线剖切的剖面图。
图13A至图13E是表示制成第3实施例中阴极组件工艺的各自剖面图。
图14A、14B图7是表示制成第3实施例中阴极组件工艺的各自剖面图。
图15是表示本发明第4实施例的阴极组件的剖面图。
图16是表示本发明第5实施例的阴极组件的剖面图。
图17是表示本发明第6实施例的阴极组件的剖面图。
图18是表示在所述阴极组件中上升特性的曲线图。
图19是表示本发明第7实施例的电子管中电子枪组件的剖面图。
图20是表示本发明第8实施例的阴极组件的剖面图。
图21A是表示本发明第9实施例的阴极组件的剖面图。
图21B是表示本发明第9实施例的阴极组件中灯丝的透视图。
图22是表示本发明第10实施例的阴极组件的剖面图。
图23是表示本发明第11实施例的阴极组件的剖面图。
图24是表示本发明第12实施例的阴极组件的剖面图。
图25是表示本发明第13实施例的阴极组件的剖面图。
图26是表示本发明第14实施例的阴极组件的剖面图。
图27是表示在所述阴极组件的上升特性的曲线图。
图28是表示所述阴极组件的发热体温度稳定性的曲线图。
图29A、29B是表示本发明第15实施例的阴极组件的平面图和剖面图。
图30是表示第15实施例中的阴极组件的制造过程的图。
图31A、31B是表示本发明第16实施例的阴极组件的平面图和剖面图。
图32是表示第16实施例中的阴极组件的制造过程的图。
图33A、33B是表示本发明第17实施例的阴极组件的平面图和剖面图。
图34A至34C是表示本发明第18实施例的阴极组件的平面图和剖面图。
图35A至35C是表示本发明第19实施例的阴极组件的平面图和剖面图。
图36是表示本发明第20实施例的电子枪组件的平面图。
图37是表示第20实施例的电子枪组件剖切一部分的侧面图。
图38A至38C是表示第20实施例的电子枪组件的平面图、剖面图和背面图。
图39是表示第20实施例的阴极组件的电极端子的透视图。
图40是表示所述电极端子的正面图。
图41A至图41E是表示第20实施例的阴极组件制造工艺的各自概略图。
图42是表示本发明第21实施例的电子枪组件的剖面图。
图43A至43D是表示所述电子枪组件的各部分结构的平面图和剖面图。
图44是表示沿图42的XXXXIV-XXXXIV线剖切在电子管中组装所述电子枪组件状态的剖面图。
图45是表示沿图42的XXXXV-XXXXV线剖切在电子管中组装所述电子枪组件状态的剖面图。
图46是表示本发明第22实施例的电子枪组件的剖面图。
图47是表示本发明第23实施例的电子枪组件的剖面图。
图48是表示本发明第24实施例的电子枪组件的剖面图。
图49是表示本发明第25实施例的电子枪组件的剖面图。
图50是表示本发明第26实施例的电子枪组件的剖面图。
图51A至51C是分别表示所述电子枪组件的栅极组件和遮光板的制造方法的图。
图52是表示本发明第27实施例的电子枪组件的剖面图。
图53是表示本发明第28实施例的电子枪组件的剖面图。
图54是表示本发明第29实施例的电子枪组件的剖面图。
图55是表示本发明第30实施例的电子枪组件的剖面图。
图56是表示本发明第31实施例的电子枪组件的剖面图。
图57是表示所述电子枪组件的发热体、衬套、电极端子的连接部分的平面图。
图58的表示所述电子枪组件中制造栅极组件工艺的图。
图59是表示所述电子枪组件的剖面图。
图60是表示本发明第32实施例的电子枪组件的剖面图。
图61是表示本发明第33实施例的电子枪组件的剖面图。
图62是表示本发明第34实施例的电子枪组件的剖面图。
图63是表示本发明第35实施例的电子枪组件的剖面图。
图64是表示本发明第36实施例的电子枪组件的剖面图。
图65是表示把本发明的阴极基体、电子枪组件组装其它电子管的实施例的透视图。
图66是表示剖切所述电子管一部分的透视图。
图67是表示现有技术的电子枪组件的剖面图。
实施发明的最佳实施例
下面,一边参照附图,一边详细说明本发明第1实施例的电子管。
如图1所示,电子管35配有真空玻壳204,它具有由玻璃构成的平面屏盘200和与平面屏盘连接的漏斗状部分202。平面屏盘200有大致矩形状的有效部分203和在有效部分的周边边缘上直立的裙部205。漏斗状部分202在一端部有圆筒状的管颈206,在另一端部有与平面屏盘200的裙部205的外形对应的大致矩形状的大直径锥体部分207。而且,作为整体,漏斗状部分202呈漏斗状地形成,其锥体部分207与平面屏盘连接。
在平面屏盘200的有效部分203的内表面,形成由发射红、绿和蓝光的三色荧光体层构成的荧光屏210。此外,在玻壳204内,配置着与荧光屏210相对的大致矩形状的荫罩210。再有,在漏斗状部分202的管颈206内,配置着电子枪214。
如下所述,电子枪214包括以构件:发射电子束的阴极组件27;和控制、聚集和加速发射的电子束的多个栅极218等。在管颈206的外周,装有聚集电子束的聚集磁铁217。
在漏斗状部分202的管颈206与锥体部分207的交界处附近外侧,装有偏转线圈220。偏转线圈220包括:骨架221,它由合成树脂形成为喇叭状;一对鞍形水平偏转线圈222,它在该骨架221的内面侧上下对称地配置;和环形垂直偏转线圈224,它在骨架的外侧上下对称地配置。
而且,由偏转线圈220产生的磁场在水平和垂直方向上偏转从电子枪214发射的电子束,利用荫罩212选色后,电子束射入荧光屏210,显示出期望的图像。
下面,详细说明发射电子束的电子枪214。如图2至图5所示,构成电子枪214一部分的阴极组件27包括:有相对的一对面的大致长方形的绝缘基板21;在绝缘基板的一个面上设置阴极基体24;和在绝缘基体的另一面上设置发热体25。
由具有热传导性的材料,例如,氮化硼,最好由各向异性热分解硼氮化物(各向异性热分解氮化硼,以下称为APBN)形成绝缘基板21。该绝缘基板21的长度为4mm,宽度为1.2mm,厚度为0.25mm。在绝缘基板21的一个面(图示上面)的中央部分形成圆形的基体金属22,由添加了作为还原性金属的微量镁(Mg)、硅(Si)的镍(Ni)形成该基体金属22。该基体金属22的厚度为0.05mm,直径为0.9mm。基体金属22配有用于对阴极外加电压的成一体地构成的舌片状电极引线22a,该电极端子从基体金属22周边边缘越过绝缘基板21的另一面伸出。此外,电极引线22a与阴极套筒33连接。
基体金属22通过由钛构成的具有导电层功能的金属层22b与绝缘基板21连接。而且,最好形成电极引线22a使其从该金属层22b伸出。
在基体金属22表面上按圆形涂敷形成电子发射物23,它由氧化钡(BaO)、氧化锶(SrO)、或氧化镁(MgO)等形成。涂敷电子发射物23的部分的直径为0.75mm,厚度为0.05mm。由该基体金属22和电子发射物23就构成所谓的氧化物阴极型的阴极基体24。
如图4和图5所示,在绝缘基板21的另一面上形成发热体25。与绝缘基板21一起构成灯丝的发热体25在绝缘基板21的纵向方向上没有锯齿状延伸的图形,最好由黑铅、各向异性热分解石墨(各向异性热分解黑铅,以下称APG)形成。在发热体25纵向方向的两端部的表面上,形成由钛构成的导电层26a。而且,在该导电层26a上,分别连接着一对电极端子26,相对于绝缘基板21垂直地伸出。由镍(Ni)按细长板状形成电极端子26,同时还分别通过由不锈钢形成的灯丝搭接片28安装在支杆玻璃29上。
由绝缘基板21、阴极基体24、发热体25和电极端子26构成阴极组件27。如图所示,该阴极组件27从电子发射物23表面至电极端子26前端的长度为2.0mm,与现有的阴极组件27的长度相比较,长度被大幅度地缩短。
如图2所示,配置与阴极组件27的阴极基体24相对的电子枪的第1栅极30。由不锈钢形成的第1栅极30与绝缘基板21的阴极基体侧表面平行地配置,其两端部分固定在支杆玻璃29上(仅图示出一个)。
在绝缘基板21的阴极基体形成部分的面的两端部与第1栅极30之间,插入由铝形成的衬垫31,按期望值保持第1栅极30与电子发射物23之间的距离。此外,在第1栅极30上固定着用不锈钢形成的帽状反射体32,覆盖阴极组件27。反射体32的周边壁部32a通过在与第1栅极30之间插入的绝缘基板21和衬套31使阴极组件27与第1栅极30连接,同时还把反射体32的底壁32b与绝缘基板21的发热体形成面平行地相对形成一个空间部分。而且,反射体32起到把阴极组件27固定在第1栅极30上的作用和把发热体25中的热反射给阴极组件27的作用。
通过在阴极组件27中附加第1栅极30和反射体32,形成构成电子枪214一部分的电子枪组件34。如果第1栅极30的厚度为0.5mm,那么电子枪组件34的总长就是阴极组件27的长度2.0mm加上第1栅极的厚度0.5mm,变为2.5mm。而且,电子枪组件34与由筒状支杆玻璃29和电子枪214的其它结构部件一起被装入漏斗状部分202的管颈206内部。
下面,说明如上所述结构的电子管的制造方法,特别是说明阴极组件27的制造方法。首先,利用比如化学汽相淀积法(CVD法)制成由APBN构成的厚度为0.25mm的绝缘基板21。
接着,在绝缘基板21的一个表面上形成发热体25。这种情况下,首先,在绝缘基板21的表面上用真空镀敷法镀敷形成铝(Al)层后,在该Al层上涂敷光刻胶。而且,通过曝光光刻胶、显像和腐蚀,形成与发热体25的图形相反的图形。接着,通过腐蚀,除去与发热体图形相当部分的Al层,在除去部分(发热体图形部分)用CVD法形成由APG构成的发热体25。然后,用腐蚀法除去残留的Al层。利用以上工艺,在绝缘基板21的表面上形成具有预定图形的发热体25。
接着,在绝缘基板21的表面内连接基体金属22,和在发热体25内连接电极端子26,也就是说,在发热体25的两端部表面,分别涂敷钛粉末(Ti),然后通过在真空中对绝缘基板21进行高温处理,分别形成钛的金属层26a、22b。接着,用激光焊接法分别在绝缘基板21内的金属层26b上安装固定基体金属22,在导电层26a上安装固定电极端子26。然后,在绝缘基板21上固定的基体金属22的表面上,利用喷涂法等涂敷电子发射物23,形成阴极基体24。由以上结构制成阴极组件27。
上述阴极组件27的制造方法是在每一个阴极基体24上采用一枚绝缘基板21的方法。可是,为实现生产率的提高和低成本,在大张的绝缘基板上形成多组发热体图形和Ti金属层后,也可把该绝缘基板按多个绝缘基板分割成各个部件,即采用所谓的多个获取的方法。
下面,说明电子枪组件34的组装方法。首先,在绝缘基板21的表面上装配衬垫31。接着,在阴极组件27上安装反射体32,把反射体32的侧壁32a的两端部焊接固定在第1栅极30上。然后,在燃烧室中半熔化状态的支杆玻璃29中埋入第1栅极30和灯丝搭接片28后,把各电极端子焊接在灯丝搭接片28上。同样地,在阴极搭接片32上通过焊接连接固定基体金属22的电极引线22a。这样,制成阴极电子枪组件34和电子管35。
若按照以上构成的电子管35,阴极组件27包括:具有热传导性的绝缘基板21,它有一对相对的面;阴极基体24,它设置在该绝缘基板21的一个面上;和加热阴极基体的发热体25,它设置在绝缘基板21的另一面上。因此,与现有技术相比,能够大幅度地缩短用绝缘基板21和发热体25构成的灯丝长度,因而可大幅度地缩短阴极组件27的总长。
下面,还要附加说明一点。首先,通过采用该阴极组件27,电子枪组件34的总长为2.5mm,相当与现有技术阴极电子枪组件总长14.5mm的17%,能够实现小型化、薄壁化。
此外,通过采用上述结构的阴极组件27,能够使阴极组件功率低消耗化。把本实施例的阴极组件27和现有技术的阴极组件分别组装在电子枪中,在阴极温度为830℃下进行所需灯丝功率的比较。结果,在现有技术的阴极组件的情况下,灯丝功率为0.35W,而在本实施例的阴极组件27的情况下,灯丝功率为0.15W。因此,如果采用阴极组件27,在消耗功率上与现有技术的阴极组件相比能够降低约43%。
再有,通过采用上述结构的阴极组件27,能够实现阴极组件的快速启动。把本实施例的阴极组件27和现有技术的阴极组件分别组装在电子枪中,从加电开始后,对在稳定温度(830℃)下达到稳定图像的时间进行比较。其结果,在现有技术的阴极组件的情况下需要10秒,而在本实施例的阴极组件27的情况下稳定时间为2秒。
也就是说,在现有技术的阴极组件的情况下,灯丝产生的热主要以放射形式向阴极套筒和基体金属传送。然后,依据阴极套筒和基体金属热容量的大小升高温度。对此,在本实施例的阴极组件27的情况下,来自发热体25的热以热传导形式传送给由APBN构成的绝缘基板21。由APBN构成的绝缘基板21具有高热传导率,能够高效率地加热阴极基体24,因此可获得2秒的快速启动。
此外,本实施例的阴极组件27能够获得以下的作用效果。也就是说,对于现有技术的阴极组件情况,灯丝电压为6.3V、电流为56mA,对于阴极组件27情况,灯丝电压为3V、电流为5mA。虽然绝对值不同,但两者都是适合电视机灯丝电路的电压、电流。作为电视机灯丝电压的问题是电压在0.5V以下。以这种程度的电压在灯丝电路中使用的电线电阻就不可视为忽略不计,因此使设定适当的灯丝电压变得困难。
作为与阴极组件27类似的组件,可考虑用阴极真空喷镀法涂敷钨薄膜的阴极组件,这种情况下,灯丝电压为0.2V左右,变得非常低而不能实用。采用本实施例的阴极组件27能够实现较高灯丝电压的理由是由于发热体材料为APG,具有保持较高电阻的缘故。
此外,现有技术的阴极组件在电视机中具有数万小时以上的使用寿命。对于本阴极组件27工作中的稳定性来说,把带有阴极组件27的电子枪装入实验管中进行强制寿命实验。灯丝电压为l35%,进行3000小时的寿命实验。作为比较例,也把现有技术的阴极组件和用阴极真空喷镀法涂敷钨薄膜的阴极组件同时进行比较。其测定是使初期设定的灯丝电压一定,跟踪寿命实验中的灯丝电流的变化。3000小时后的变化率是:现有技术的阴极组件为2.%,本阴极组件27为1.8%。钨薄膜阴极真空喷镀阴极在寿命实验500小时时灯丝烧断。由此结果,可以推断本实施例的阴极组件27与现有技术的阴极组件有大致相同的寿命特性。
按照上述第1实施例的电子管25,阴极基体24通过作为具有导电层功能的金属层22b固定在绝缘基板21上,同时电极端子26还通过导电层26a直接固定在发热体25的端部。由此,能够把阴极基体24和电极端子26可靠地固定在绝缘基板21和发热体25上。除使用本实施例采用的Ti作为导电层外,还可从Ni、Mo、W、Nb、Ta或包含这些的合金或化合物中任意选择其中之一作为导电层。
此外,作为阴极基体与绝缘基板的连接层,除Ti以外,也可从Mo、W、Nb、Ta或包含这些的合金或化合物中任意选择其中之一作为连接层,或者,在通过黑铅层作为把阴极基体连接在绝缘基板上的层的情况下,也可从Mo、W、Nb、Ta或包含这些的合金或化合物中任意选择其中之一作为连接层。
再有,也可以用通过加热处理在由APG构成的发热体25上涂敷金属粉末而形成的APG和金属粉末的反应层来构成导电层26a。此外,作为导电层的形成方法,可采用像本实施例那样的涂敷粉末后经高温加热来形成各种厚膜的形成方法,或蒸镀法、溅射法等各种薄膜形成法。
按照上述结构的阴极组件27,由于用氮化硼形成绝缘基板21,用黑铅形成发热体25,所以能够获得具有良好制造性和良好质量的绝缘基板和发热体。
此外,由于阴极组件27中的阴极基体24在绝缘基板21表面上形成基体金属22,在该基体金属22的表面上涂敷电子发射物23作为氧化物阴极,所以能够有效地使用阴极组件27中氧化物阴极的阴极基体24。
按照阴极组件27,作为对从发热体25发出的热进行反射的反射体一例的反射体32,通过空间部分与绝缘基板21相对。由此,缩短由绝缘基板21和发热体25构成的灯丝的长度,同时还能够向绝缘基板21反射由发热体25产生的辐射热,有效地加热阴极基体24。其结果,能够降低灯丝功率。
再有,由于组装上述阴极组件27、和与该阴极组件27的阴极基体24相对设置的栅极30来构成本实施例的电子枪组件34,因而能够获得长度缩短、省电和快速启动的电子枪组件,能够实现电子枪21的小型化、省电和快速启动。同样地,通过构成使用上述电子枪组件34的电子枪214和电子管35,与现有技术相比,可大幅度地缩短漏斗状部分202的管颈206,从而能够获得适合薄型显示装置的电子管。
图6和图7表示本发明第2实施例的电子管的阴极组件27。与第1实施例的阴极组件27相比,该阴极组件27与其相同,只是设有电气绝缘层36和反射层37,对同一部分被附以相同参考符号,并省略其详细说明。
电气绝缘层36是在绝缘基板21的发热体形成面上形成的覆盖发热体25的层,例如用各向异性热分解硼氮化物(各向异性热分解氮化硼,APBN)形成。反射层37是用于反射来自发热体25的热的层,在电气绝缘层36的表面上例如用各向异性热分解石墨(各向异性热分解黑铅,APG)重叠而形成。绝缘层36保护反射层37和对外的发热体25,同时还可实现电气绝缘。
按照上述构成的阴极组件27,由于反射层37以最近的距离来反射来自发热体25的热,通过绝缘基板21对阴极基体24加热,所以比第1实施例的阴极组件27还能降低比如15%的灯丝功率。
再有,形成绝缘层36的材料并不限于APBN,也可以使用电气绝缘并且耐热温度为1100℃以上的材料。此外,由于设置反射层37的目的在于反射热,所以并不限于APG,也可以用金属膜形成。在本实施例中,仅把绝缘层36和反射层37组成一组,但并不受此限制,如果多组重叠形成,还可进一步提高反射效率,进一步获得节省灯丝功率的设计。
在所述第1和第2实施例中,阴极基体是采用在基体金属22上涂敷电子发射物的氧化物阴极。可是,作为阴极基体,也可以使用图8和图9所示的浸渍氧化钡(BaO)、氧化钙(CaO)、氧化铝(Al2O3)等电子发射物的所谓浸渍型阴极的阴极基体24A。这种浸渍型阴极的阴极基体24A连接并装配在基体金属22中,但浸渍型阴极与在图2至图6说明的在基体金属上形成电子发射物的所谓氧化物阴极不同,它把电子发射物浸渍在多孔质阴极基体中。由此,不一定需要像氧化物阴极那样必须在阴极基体中设置基体金属。因此,在采用浸渍型阴极的阴极基体24A的情况下,形成具有导通来自电极引线22a电流作用的导电层来代替基体金属22较好,从工作温度看,可采用例如Ta、Re-Mo合金、Mo、Nb等材料作为该导电层。
下面,参照图10至图14(b),说明本发明第3实施例的电子管的电子枪组件。在第3实施例中,绝缘基板的形状和相对于支杆玻璃29的阴极组件27的装配结构与所述实施例1不同。其它结构实质上与实施例1相同,对于相同部分被附以相同的参考符号,并省略其详细说明。
如图10至图12所示,在由APBN构成的绝缘基板21的一个表面(阴极基体形成面)上,例如在纵向方向的两端部位置,形成相同高度的的凸部21a。各凸部21a具有规定阴极基体24与第1栅极30间的间隔的衬套功能。此外,在绝缘基板21的另一表面(发热体形成表面)的、与各凸部21a相背对的一侧的位置上形成凹部21b。通过由钛构成的金属层22b,阴极基体24位于在绝缘基板21上面中央部分设置的凸部21a之间的位置。绝缘基板21的长度为4mm,宽度为1.2mm,厚度为0.25mm。
再有,可任意地设定凹部21b,在本发明中,不一定必须形成。
另一方面,由不锈钢形成的第1栅极30通过由钛构成的金属层31b固定在绝缘基板21的凸部21a上。为把第1栅极30可靠地固定在凸部21a上而形成的金属层31b是作为金属凸层的一例。
设置用于覆盖阴极组件27的、由不锈钢构成的反射体32,把其侧壁32a的端部固定在第1栅极30上,同时还装在支杆玻璃29上。由此,反射体32在固定支撑阴极组件27和第1栅极30的同时,还起到向绝缘基板21反射来自发热体25的热的作用。
通过在阴极组件27中附加第1栅极30和反射体32,构成电子枪组件34。如果第1栅极30的厚度为0.5mm,那么电子枪组件34的总长度就为阴极组件27的长度2.0mm加上第1栅极30的厚度0.5mm,等于2.5mm。
下面,说明上述结构的电子枪组件34的制造方法。首先,如图13A所示,由化学汽相淀积法(CVD法)制成厚度为0.25mm的由APBN构成的绝缘基板21。在汽相淀积的APBN基板上,一般作用碳。此外,绝缘基板21分别在不平坦的一面上形成凸部21a,在另一面形成凹部21b。
接着,在绝缘基板21的另一面上形成发热体25。首先,在绝缘基板21的面上,用真空镀敷法镀敷铝(Al)。在绝缘基板21上,形成任意设定的凹部21b,但镀敷时该部分也能均匀镀敷,没有问题。接着,在该Al层表面上涂敷光刻胶后,通过曝光光刻胶,显像和腐蚀,形成与发热体图形正好相反的图形。而且,通过腐蚀,除去与发热体图形对应部分的Al,在除去部分(发热体图形部分)用CVD法形成APG层。然后,用腐蚀法除去残留的Al。由此,如图13B所示,在绝缘基板21的另一面形成具有预定图形的发热体25。
接着,如图13C所示,在绝缘基板21的一面和凸部21a中用真空镀敷法形成由钛构成的金属层22b、31b。这种情况下,在绝缘基板21的整个面上涂敷光刻胶,通过对镀敷Ti的地方进行与发热体25的制造样同的曝光、显像和腐蚀处理,露出由APBN构成的绝缘基板21的表面。同时,还除去APBN的凸部21a的光刻胶。通过对此镀敷Ti,除去光刻胶,形成如图13C所示的金属层22b、31b。然后,为使金属层22b、31b与绝缘基板21有良好的粘接性,将其在真空中进行1670℃下的加热处理、金属层的金属喷镀法处理。
接着,如图13D所示,用与上述同样的方法把由镍构成的基体金属22真空镀敷形成在金属层22b上。形成基体金属22后,为保持基体金属22与金属层22b的粘接性,在真空中1300℃下进行镍的扩散处理。此时,通过把图13E所示的作为基体金属22的另一部分的电极引线22a与基体金属22接触配置,形成电极引线22a。这种情况下,最好使电极引线22a前端部弯曲,以便与作为另一部分的基体金属22接触。
接着,在图14A所示的基体金属22的表面上,采用比如喷涂法涂敷电子发射物23,形成阴极基体24。利用上述结构,制造阴极组件27。
上述阴极组件27的制造方法是每一个阴极使用一块绝缘基板的方法。可是,作为实现提高生产率和低成本的方法,也可以采用获得多个绝缘基板,在得到的多个基板上形成发热体图形、形成Ti金属喷镀层、真空镀敷基体金属,然后分割多个基板而得到各个部件的方法。
下面,说明电子枪组件34的组装方法。在如图14B所示的绝缘基板21的凸部21a上的真空镀敷金属层31b上配有预定形状的第1栅极30,通过激光焊接固定金属层31b与第1栅极。此时,由于第1栅极30与电子发射物23之间的距离决定从电子枪设计通过的电子发射,不必说,重要的是必须正确露出各凸出部21a的高度。再有,按真空镀敷法形成了Ti层和Ni层,但作为其它的薄膜形成方法,还有喷镀、离子涂敷等方法,只要这些方法没有问题,也都能够采用。
接着,在阴极组件27中装接反射体32,通过焊接来固定反射体32和第1栅极30。随后,在燃烧室中在半熔化状态的支杆玻璃29内埋入反射体32和灯丝搭接片28。然后,焊接电极端子26和灯丝搭接片28。同样地,利用焊接来固定电极端子22a和阴极搭接片533。这样,制成电子枪组件34和电子管35。
在以上构成的阴极组件27、电子枪组件34、和电子管中,能够获得与上述实施例1同样的作用效果。而且,按照本实施例,利用绝缘基板21的凸部21a一体地形成衬套,能够提高电子枪组件的组装性。
图15表示本发明第4实施例的电子管的阴极组件。按照第4实施例,在所述第3实施例的阴极组件27中,设置电气绝缘层36和反射层37。
电气绝缘层36是在绝缘基板21中的发热体形成面上形成覆盖发热体25的层,例如用APBN形成。反射层37为反射来自发热体25的热的层,例如用APG形成。绝缘层36在保护反射层37和对外的发热体25的同时,还可实现电气绝缘。
再有,形成绝缘层36的材料并不限于APBN,也可以使用电气绝缘并且耐热温度为1100℃以上的材料。此外,由于反射层37的目的在于反射热,所以并不限于APG,也可以用金属膜形成。在本实施例中,仅把绝缘层36和反射层37组成一组,但并不受此限制,如果多组重叠形成,还可进一步提高反射效率,实现进一步节省灯丝功率的设计。
在所述第1至第4实施例中,作为在由APBN构成的绝缘基板21上固定基体金属22的方法,采用使钛等金属层介于中间的方法,但并不限于此方法,还可以单独或复合采用扣眼铆接法、夹子连接(clip)固定法等。此外,对于固定发热体和电极端子的方法,也不仅限于实施例中采用的使金属层介于中间的方法,还可以单独或复合采用扣眼铆接法、夹子连接固定法等。
此外,在第3和第4实施例中,阴极基体采用在基体金属22上涂敷电子发射物的氧化物阴极的例子。可是,作为阴极基体,也可以使用在多孔质钨等的多孔质阴极基体中浸渍氧化钡(BaO)、氧化钙(GaO)、氧化铝(Al2O3)等电子发射物的所谓浸渍型阴极的阴极基体。这种浸渍型阴极的阴极基体连接装配在基体金属中,在浸渍型阴极的情况下,是在基体金属上形成电子发射物,与所谓的氧化物阴极不同,由于把电子发射物浸渍在多孔质阴极基体中,所以不一定需要像氧化物阴极那样在阴极基体中必须设置基体金属。因此,在采用浸渍型阴极的阴极基体的情况下,形成有导通来自电极端子的电流的作用的导电层来代替基体金属较好,从工作温度点看,可采用例如Ta、Re-Mo合金、Mo、Nb等材料作为该导电层。
图16表示本发明第5实施例的电子管的阴极组件。该阴极组件27配有由APBN形成的一对相对的面的绝缘基板21。在绝缘基板21的一个表面上,由APG形成的发热体25形成锯齿图形。在发热体25的两端部,通过钛等导电层26a,连接由钨线等构成的电极端子26。
在绝缘基板21的另一表面上形成阴极基体24。阴极基体24这样形成:在由添加了微量的还原剂镁(Mg)、硅(Si)的镍粉(Ni)所构成的绝缘基板21的一个整个表面上形成基体金属层22,在该基体金属层22上涂敷或浸渍电子发射物23。在本实施例中,通过APG层38,在绝缘基板21表面上形成基体金属层22。这是由于要可靠地进行基体金属层22和绝缘基板21的连接,并期望阴极基体24有均匀的热效果的缘故。
下面,说明上述结构的阴极组件27的制造方法。
首先,在绝缘基板21上分别形成由APG构成的发热体25和APG层38,接着,在形成了APG层的绝缘基板21上用丝网印刷法形成基体金属粉末层。其中,在丝网印刷中,使用250目(mesh)的丝网。再有,丝网·混合物使用把包含还原剂的镍粉和包含粘合剂的溶剂混合为粘度2300泊左右的混合物。可采用旋转涂敷法、喷涂法和压力法形成基体金属粉末层。
接着,在真空或还原气氛中进行1150℃×60分的烧结,同时形成基体金属层22和进行基体金属层22与绝缘基板21的连接。也就是说,在绝缘基板21和发热体中构成灯丝,同时形成基体金属层22和进行基体金属层22与绝缘基板21的连接。然后,利用喷涂法和笔涂法等,把电子发射物66与溶剂的混合物涂敷或浸渍在基体金属层22上,形成基体金属24。
按照上述构成的第5实施例,在基体金属层22和绝缘基板21之间设有APG层38,该APG层38为任意形成的层,但最好直接形成在绝缘基板21之上的基体金属层22上。也就是说,本实施例的阴极组件27,在绝缘基板21(包含任意的APG层)上,并不连接预先制造的基体金属,而是在绝缘基板上直接形成基体金属粉末层,然后利用烧结等形成基体金属层22,同时进行基体金属层与绝缘基板的连接而构成。
根据图17所示的第6实施例,绝缘基板21的一表面上形成发热体25,另一表面上形成,由浸渍了电子发物的多孔质钨或多孔质钼构成的浸渍型阴极基体24。其它结构与图16所示的第5实施例一样,且相同部分标有相同标号。
这样构成的阴极组件27用下述方法制造。首先,在没有形成绝缘基板21的一表面上,用旋涂法形成厚50μm的多孔质阴极基体粉末层。这里,涂层·混合物使用直径3μm的钨颗粒与含有粘合剂的溶剂的混合物。
接着,在真空中或还原气氛中进行1900℃×60分的烧结,形成多孔质阴极基体24,同时进行阴极基体与绝缘基板21的连接。然后,把电子发射物浸渍在多孔质基体金属的空隙部分中,形成阴极基体24。
按照上述构成的第5和第6实施例,通过在形成发热体25的绝缘基板21上直接形成基体金属的基体金属粉末层,并进行烧结,同时形成阴极基体和进行绝缘基板21与阴极基体的连接。由此,能够简化阴极组件的制造工艺,提高阴极组件的生产率和降低成本。此外,由于阴极基体为粉末烧结体,所以能够缓和阴极基体与绝缘基板间的热膨胀差,以足够的连接强度进行两者的连接。而且,能够同时实现阴极组件的小型化、轻量化和快速启动。
表1表示第5和第6实施例的阴极组件与现有技术的一般阴极组件的特性比较。
                                      表1
               尺寸和重量的比较
                    第5实施例        第6实施例       现有技术品
阴极直径               20mm             20mm             20mm
总    长               5mm              5.5mm            30mm
重    量               5g               7g               30g
                        *现有技术的产品为浸渍型阴极
表1表示尺寸和重量的比较。从该表可看出,在尺寸、重量上与现有技术的一般阴极组件相比,可以认定,本实施例的阴极组件能够实现小型化和轻量化。此外,通过同时进行形成阴极基体和连接灯丝,还能够同时实现生产率的提高和成本的降低。
图18的曲线表示第5实施例的阴极组件a和第6实施例的阴极组件的温升特性,以及现有技术的一般阴极组件c的温升特性。再有,在图18中,纵轴表示阴极基体的亮度温度Tk(℃b),横轴表示阴极基体的温升时间Time(min)。从图中可看出,现有技术的阴极组件c温度上升到1000℃b的时间为5分钟左右,而用点划线a表示的第5实施例的阴极组件a的温度上升时间为5秒左右,用虚线b表示的的第6实施例的阴极组件b的温度上升时间为10秒左右。因此,可以认定,第5和第6实施例的阴极组件实现了快速启动。
下面,参照图19说明本发明第7实施例的电子管的电子枪组件。本实施例的电子枪组件34的结构适合于彩色电子管的电子枪组件,配有分别相应于三基色,即红色、绿色和蓝色的三组阴极组件27a至27b。各阴极组件的结构与所述第3实施例的阴极组件大致相同,各相同部分被附以相同的参考符号。
在绝缘基板21的一个表面上沿纵轴方向有间隔地并排形成四个凸部21a,在夹在各凸部21a之间的部分,设有由例如氧化物阴极构成的三个阴极基体24。各阴极基体24中的基体金属22的电极引线22a分别与阴极搭接片23连接。各凸部21a通过金属层31b连接第1栅极30,具有衬套的功能,同时还有阻止相邻阴极基体24的电子发射相互影响的效果。
在绝缘基板21的另一表面上形成公用的发热体25,在发热体的两端部,通过导电层26a,分别连接电极端子26。此外,发热体25和三组阴极组件27a、27b、27c通过公用的反射体32固定。
按照上述结构的实施例,通过组合分别具有与实施例3同样作用效果的三组阴极基体24和栅极30,构成电子枪组件34,能够获得在小型方面的优良性能的电子枪组件和彩色电子管。
下面,参照图20,说明第8实施例的阴极组件。
按照本实施例,阴极组件包括:由APBN构成的绝缘基板101,和在绝缘基板的一表面上用APG形成的发热体102及一对电极102a。在绝缘基板101的面上,形成覆盖发热体102的APBN层103。在APBN层103的表面上,通过APG涂敷层,形成由包含电子发射物和还原剂的镍系粉末构成的浸渍型的阴极基体105。APG涂敷层104覆盖APBN层103的整个表面。此外,在绝缘基板101的另一表面上,至少形成与APBN层103有相同面积的APG涂敷层106。这些APG涂敷层104、106有提高发热体102与APBN层103的连接性,均匀分散发热体102的热,均匀加热阴极基体105整体的匀热效果。
在绝缘基板101的各电极102a上,连接由钨丝(W)构成的电极端子107。电极端子107通过使用钎焊材料的导电层108与电极102a直接连接。
而且,利用绝缘基板101、发热体102、APBN层103、电极端子107,构成阴极组件的灯丝120。灯丝120利用发热体102的通电加热阴极基体105。
下面,说明配有上述灯丝120和阴极基体105的阴极组件的制造方法。
首先,说明向灯丝120安装电极端子的方法。在APG发热体102的电极102a上配置构成电极端子107的钨丝,在其连接部分涂敷包含粘接剂的金属粉末的溶剂。接着,在氢气气氛中或真空中进行炉内钎焊。
在钎焊中,作为导电层108的钎焊材料和钎焊条件研讨如下。对于APG,钎焊材料具有良好的涂敷性,使用熔点为1400℃以上的镍(Ni)、钛(Ti)、钼(Mo)、钨(W)、铌(Nb)、钽(Ta)和一般在电子管中使用的钌/钼(Ru/Mo)、钌/钼/镍(Ru/Mo/Ni)8种材料。
由实验确认,APG是在一个大气压的氢气气氛中经1600℃以上的热处理,通过与氢反应而汽化。因此,在处理温度1600℃以上的情况下,用真空进行处理。也就是说,在本次研讨中,仅把镍的钎焊材料放在氢气中处理,而对于其它钎焊材料则在真空下处理。表2表示其结果。
                                  表2
            APG电极与金属引线的金属粉末材料的钎焊结果
    钎焊材料                处理气氛                 结果
      Ni                     氢气中     1475℃        ○
      Ti                     真空中     1670℃        ○
      Mo                     真空中     2000℃        △烧结状态
      W                      真空中     2000℃        △烧结状态
      Nb                     真空中     2000℃        △烧结状态
      Ta                     真空中     2000℃        △烧结状态
      Ru/Mo                  真空中     2050℃        ×
      Ru/Mo/Ni               真空中     1700℃        ×
按照表2,可确认Ni、Ti为良好的钎焊材料。此外,虽连接了Mo、W、Nb、Ta,但由于是高熔点金属,所以限于用烧结连接。Ru/Mo/Ni钎焊材料虽熔化,但不进行连接。从该结果看出,作为炉内使用的钎焊材料,可判断出Ni、Ti是最合适的。在实施例中,以Ni作为钎焊材料,在氢气气氛中进行1475℃的钎焊。
下面,说明在灯丝120上形成阴极基体105的方法。制备把包含电子发射物和还原剂的镍粉末用有机溶剂混合的材料。接着,在灯丝120的APBN层103的表面,通过APG涂敷层104用丝网印刷涂敷厚度为1mm的所述材料。这种情况的涂敷方法也可使用旋转涂敷法、喷涂法等。然后,进行电子发射物的热分解工艺,利用加热扩散把含有还原剂的镍粉末粘接在APG涂敷层104上,制成阴极基体105。
按照上述结构的实施例,由于阴极组件的灯丝120包括:由氮化硼构成的绝缘基板101;设置在该绝缘基板中由黑铅构成的发热体102;和通过该发热体102钎焊连接的电极端子107,所以能够简单并牢固地连接发热体102和电极端子107,能够获得特别适合阴极组件的灯丝。
此外,由于通过与绝缘基板101重叠,连接固定阴极基体105,所以不需要阴极基体105中的支撑筒,使结构简单。
下面,参照图21A、21B,说明本发明第9实施例的阴极组件。
在本实施例中,采用由浸渍电子发射物的多孔质钨构成的浸渍型阴极基体105,该阴极基体105使用为钎焊材料的导电层108,固定在APBN层103中。此外,在绝缘基板101的相对边缘部分,形成一对切口101a,在该切口101a内,分别形成发热体102的电极102a。而且,在各切口101a中,把电极端子107与电极102a嵌接,通过钎焊连接固定。
按照上述构成的阴极组件的灯丝120,能够把电极端子107固定在绝缘基板101的切口101a位置上,同时还使电极端子107与电极102a的连接面积变大,使两者的连接强度增大。
下面,说明具有灯丝120和阴极基体105的上述阴极组件的制造方法。
电极端子107与电极102a的连接与第8实施例的情况相同,在本实施例中,使用Ti钎焊材料作为导电层108。首先,在APBN层103上钎焊基体金属为多孔质钨的阴极基体105。在这种情况下的作为钎焊材料的金属或钎焊条件研讨如下。对于氮化硼,钎焊材料具有良好的浸润性,使用熔点为1400℃以上的Ni、Ti、Mo、W、Nb、Ta和一般在电子管中使用的Ru/Mo、Ru/Mo/Ni8种材料。如前所述,由于APG在氢气气氛中不稳定,所以在1600℃以上的情况下在真空中进行处理。也就是说,在本次研讨中,仅把镍的钎焊放在氢气中处理,而对于其它钎焊则在真空下处理。表3表示其结果。
                               表3
    钎焊材料         处理气氛                     结果
    Ni               氢气中     1475℃            ×
    Ti               真空中     1670℃            ○
    Mo               真空中     2000℃            △烧结状态
    W           真空中        2000℃               △烧结状态
    Nb          真空中        2000℃               △烧结状态
    Ta          真空中        2000℃               △烧结状态
    Ru/Mo       真空中        2050℃               ×
    Ru/Mo/Ni    真空中        1700℃               ×
从表3可知,通过使用Ti钎焊材料可得到良好的钎焊。此外,虽连接了Mo、W、Nb、Ta,但由于是高熔点金属,所以限于用烧结连接。Ru/Mo/Ni和Ni虽熔化,但不进行连接。因此,作为钎焊材料,可判断出Ti是最合适的。
最后,在作为基体金属的多孔质钨中浸渍电子发射物,制成阴极基体105。
下面,参照图22说明第10实施例。
除发热体电极和电极端子的连接部分外,本实施例的结构与第9实施例的结构相同,与图21A相同的部分被附以相同参考符号,并省略其详细说明。也就是说,按照本实施例,发热体102的电极102a通过另一面进入并形成在绝缘基板101的侧面,电极端子107通过钎焊与电极102a连接固定。阴极基体105为浸渍型。
下面,说明上述结构的灯丝120和阴极基体105的制造方法。
首先,在与阴极基体105连接的APBN层103和与电极端子107连接的电极102a上,利用溶射法形成钎焊材料膜。此外,作为其它形成方法,也可采用离子镀敷、喷镀、真空镀敷等。接着,以该膜作为钎焊材料,钎焊阴极基体105的基体金属和电极端子107。经研讨,钎焊材料和气氛与前述实施例的情况相同,能够把溶射后的溶射膜用作钎焊材料的仅有钛。其中,表4表示溶射法中的成膜结果。
                                   表4
                   向APG/APBN的金属溶射实验结果
        溶射金属          APG            APBN
        Ni             ○             ×
        Ti             ○             ○
        Mo             ○             ○
        W              ×                            ×        →用喷镀成膜
        Nb             ○             ○
        Ta             ○             ○
按照表4,Ti、Mo、Nb和Ta为APBN层,即使在APG电极的情况下也是良好的。
最后,在阴极基体105的基体金属中浸渍电子发射物,按需要,在阴极基体105的表面形成铱涂敷层,制成阴极基体105。
按照图23所示的第12实施例,浸渍型阴极基体105通过APG涂敷层104与APBN层103连接。此外,由于把发热体102的电极102a与电极端子107连接固定,把阴极基体105与APBN层103连接固定,所以可采用钎焊材料109进行TIG(钨极惰性气体保护焊)焊接。其它结构与第11实施例相同。
在上述结构的阴极组件制造方法中,在连接发热体102的电极102a和电极端子107的情况下,在电极102a和电极端子107的周边配置钎焊材料109,利用TIG焊接,熔化钎焊材料的导电层109,连接电极102a和部件107。导电层109用表2中研讨的Ni、Ti、W、Mo、Nb、Ta较好,这里使用Ta。
接着,通过在APBN层103中的APG涂敷层104,配置浸渍型阴极基体105的基体金属的多孔质钨,在其周边配置作为钎焊材料的导电层109。然后,用TIG焊接法熔化该导电层109,连接基体金属和发热体表面的APBN层。导电层用表3中研讨的Ti、Mo、W、Nb、Ta较好,这里使用Ta。最后,在基体金属中浸渍电子发射物,制成阴极基体105。
再有,在上述第8至第11实施例的结构中,配有APG涂敷层104、106、APBN层103和阴极基体105,但可相应于灯丝的用途任意设定这些结构,灯丝的结构并不限于此。
图24所示的第12实施例中的阴极组件,按照图20所示的阴极组件,用除钎焊以外的方法连接发热体102的电极102a和电极端子107,与图20相同的部分被附以相同的符号。作为钎焊以外的连接方法,可列举出TIG焊接、激光焊接、电子束焊接等。
按照本实施例,通过配置由APBN构成的绝缘基板101、在该绝缘基板101上设置的由APG构成的发热体102、在该发热体102上用钎焊以外的方法连接电极端子107,所以可简单并牢固地连接发热体102和电极端子107,能够获得特别适合阴极组件的灯丝120。此外,由于连接固定在绝缘基板101上重叠的阴极基体105,所以不需要阴极基体105上的支撑筒,使结构变得简单。
再有,在第12实施例中,可根据用途任意地设定APG涂敷层104、106、APBN层和阴极基体105,也可根据需要省略。
由于图25所示的第13实施例是基于图22所示的阴极组件,所以与图22相同的部分被附以相同的符号。在本实施例中,在发热体102的电极102a上形成金属层110,采用作为钎焊材料的导电层108钎焊在该金属层110上的电极端子107。此外,在灯丝120的APBN层103上形成金属层110,使用导电层108钎焊浸渍型阴极基体105。
在制造本实施例的阴极组件的情况下,首先,在发热体102的电极102a和灯丝120的APBN层103上分别用溶射法形成金属层110。也可以用离子镀敷、喷镀、真空镀敷等方法形成金属层110。金属层110是在APBN和APG上粘接金属,其熔点最好在1650℃以上。特别是,在溶射法中,已经确认用表4所示的Ti、Mo、Nb、Ta可形成良好的金属层。
其中,用溶射法形成钨金属层较困难,可用喷镀法形成。在本实施例中,使用Nb。
接着,使用一般的钎焊材料、比如Ru/Mo对金属层110、电极端子107和浸渍型阴极基体105的基体金属进行钎焊。然后,在基体金属上浸渍电子发射物,若有必要,在表面覆盖Ir,制成浸渍型阴极基体105。
按照上述构成的本实施例,可简单并牢固地连接发热体102和电极端子107,能够获得特别适合阴极组件的灯丝120。此外,由于连接固定在绝缘基板101上重叠的阴极基体105,所以不需要阴极基体105上的支撑筒,使结构变得简单。
由于图26所示的第14实施例是基于图25所示的阴极组件,所以与图25相同的部分被附以相同的符号。按照本实施例,利用钎焊以外的方法把电极端子107与电极102a上的导电层110连接。此外,在灯丝120的APBN层103上通过APG涂敷层104连接固定浸渍型阴极基体105。
在制造上述结构的阴极组件的情况下,首先,在发热体102的电极102a上用溶射法形成导电层110。该导电层110是在APBN或APG上粘接的金属,其熔点最好在1650℃以上。接着,通过导电层110在电极102a上用钎焊以外的方法连接电极端子107。作为钎焊以外的方法,可列举出TIG焊接、激光焊接、电子束焊接等。然后,在基体金属上浸渍电子发射物,若有必要,在表面覆盖Ir,制成浸渍型阴极基体105。
按照本实施例,在发热体102的电极上形成的导电层110上,利用钎焊以外的方法连接电极端子107,能够简单并牢固地连接发热体102和电极端子107,获得特别适合阴极组件的灯丝。此外,由于连接固定在绝缘基板101上重叠的阴极基体105,所以不需要阴极基体105上的支撑筒,使结构变得简单。
下面,表示了第8和第9实施例的阴极组件与现有技术的一般阴极组件的特性、例如尺寸和重量的比较结果。
                               表5
                         尺寸和重量的比较
                第9实施例      第10实施例        现有技术品
阴极直径          20mm          20mm               20mm
总    长          5mm           7mm                30mm
重    量          5g            20g                30g
按照表5,本发明的实施例的阴极组件在尺寸、重量上与现有技术的一般阴极组件相比,能够可靠地实现小型化和轻量化。
此外,图27表示本发明实施例的阴极组件和现有技术的阴极组件的温升特性。在图27中,纵轴表示阴极基体的亮度温度Tk(℃b),横轴表示阴极基体的温升时间Time(min)。此外,图中一点的点划线a表示第8实施例的阴极组件的特性,虚线b表示第9实施例的阴极组件的特性,实线c表示现有技术的阴极组件的特性。
对于现有技术的阴极组件达到1000℃的时间为5分钟左右,第8实施例的阴极组件达到1000℃的时间为5秒左右,第9实施例的阴极组件达到1000℃的时间为10秒左右,所以能够可靠地实现快速启动。
图28表示本发明实施例的阴极组件与现有技术的阴极组件的发热体温度稳定性进行比较的曲线图。图中,纵轴表示从工作开始的灯丝电流的变化率△If(%),横轴表示实验时间Time(Hr)。发热体温度是在1200℃时测量灯丝电流的变化。图28中,两点的点划线a表示第8实施例的阴极组件的特性,虚线b表示第9实施例的阴极组件的特性,实线c表示现有技术的阴极组件的特性。从图中可看出,本发明实施例的阴极组件的高温稳定性与现有技术的一般灯丝的高温稳定性相同。
下面,参照图29A、29B说明本发明第15实施例的电子管的阴极组件。本实施例的阴极组件27构成为适合彩色电子管电子枪的阴极组件,配有与三基色、即红色、绿色和蓝色对应的三组阴极组件。阴极组件27的基本结构与前述第1实施例的阴极组件大致相同的同一部分被附以相同的参考符号,并省略其详细说明。
阴极组件27包括用APBN形成的绝缘基板21,和在绝缘基板的一个表面上形成的APG构成的发热体25。绝缘基板21具有以细长扁平的矩形形状形成一对相对的平坦表面21c、21d,其尺寸比如为长14mm、宽1mm、厚0.3mm。发热体25在绝缘基板21的一表面(图示下面)21c上形成,在绝缘基板21的纵轴方向的整个长度上形成所谓锯齿状的图形。发热体25的图形尺寸例如按线宽0.15mm、厚度0.02mm设定。
在发热体25的纵轴方向的两端部上,通过例如由钨构成的导电层26a,分别连接电极端子26。各电极端子26由导电性金属比如铜形成。
而且,利用这些绝缘基板21、发热体25和电极端子26构成阴极组件27的灯丝。
在绝缘基板21的另一表面(图示上面)21d上,在绝缘基板的纵轴方向上以等间隔、例如2mm的间隔并排形成三个阴极基体24。各阴极基体24有把镍粉末和电子发射物经过压制成粉按颗粒状形成的基体22,该基体22的尺寸例如按直径0.6mm、厚度0.5mm设定。在基体22的表面,用喷涂法等涂敷氧化钡(BaO)、氧化锶(SrO)、氧化钙(GaO)等电子发射物23。
通过在绝缘基板21的表面21d之上形成的APG层35上的导电层22b,连接固定各阴极基体24。导电层22b为钎焊材料与APG层35的反应层。也就是说,在绝缘基板21的纵轴方向上有间隔地形成APG层35,用钎焊法连接各个阴极基体24。再有,从阴极基体24的基体22上伸出用于外加电压的电极引线22a。
在绝缘基板21上,其纵轴方向上的两端部作为连接电极端子26的连接部分B,此外,夹在这些连接部分B之间的区域作为三个阴极基体34并排连接的连接部C。
而且,在绝缘基板21上,在一个电极端子26的连接部B与阴极基体34的连接部C之间,以及在另一电极端子26的连接部B与阴极基体34的连接部C之间,形成各自的切口39。这些切口39是从绝缘基板21的阴极基体24形成的表面21d向其它表面21c切开的切口。也就是说,各切口39在与成带状地形成的绝缘基板21的纵轴方向垂直的方向上延伸,在绝缘基板的两侧缘上切口。各切口27的尺寸例如为宽0.5mm、深1mm。
在绝缘基板21的截面积内,形成切口39的部分的截面积与其它部分的截面积相比减少了25%。
按以下方法制造上述结构的阴极组件27。首先,如图30所示,预备可并排形成多个绝缘基板21的大尺寸的APBN构成的板材。也就是说,用CVD法形成例如长15cm、宽16cm、厚0.3mm的APBN板材21A。在该APBN板材21A的两面,与各绝缘基板21对应的部分用CVD法分别形成0.2mm的APG层,制成基片。
然后,经光刻胶涂敷、曝光、显像的构图后,用RIE法(反应性离子腐蚀)等腐蚀APG层,并排形成保持任意图形的多个发热体25。此外,在板材21A的另一面,同样腐蚀与各绝缘基板21的对应部分,形成预定图形的三个APG层35。
在这样得到的用作绝缘性基板的板材21A上,形成贯通各绝缘基板21的切口39。在本实施例中,利用与前述同样的RIE法等的腐蚀,从绝缘基板的阴极基体连接面侧形成切口39,但也可以用机械加工形成切口。
接着,在基片状态中,在板材21A中的各绝缘基板21的APG层35上粘接阴极基体24。其直径为0.8mm,厚度为0.1mm。通过使用镍钎焊材料用激光钎焊进行粘接。使用钎焊材料的理由是APG与镍等金属不能进行直接焊接的缘故。
然后,利用丝网印刷等把镍膏料涂敷在预定位置,用干燥机使包含在膏料内部的有机溶剂挥发。接着,在氢气气氛中加热至1320℃,形成APG与镍的反应层即导电层22b。之后,在导电层22b上经激光焊接连接阴极基体24。然后,在阴极基体形成面上进行抛光处理,整平各阴极基体24。而且,利用切割加工把绝缘基板的板材21A切割分离为各个绝缘基板21,形成阴极组件27。
按上述构成的阴极组件27与第1实施例相同,经组合电子枪的栅极、衬套、反射体等构成电子枪组件,装入电子管的管颈中。该电子枪组件中,对发热体25通电而发热,通过绝缘基板21加热阴极基体24。由此,阴极基体24发射出电子束,该电子束由电子枪的栅极进行控制、聚集和加速。
通过在绝缘基板21的一表面上设置发热体25构成灯丝,在绝缘基板的另一表面上设置阴极基体24而构成如上所述的阴极组件27,与前述的各实施例相同,像以上那样构成的阴极组件27能够缩短总长、省电和快速启动。例如,使用上述阴极组件27构成的电子枪组件的总长为1.56mm,与现有技术相比,总长可缩短到约10%。
此外,按照阴极组件27,在绝缘基板21的各连接部B与连接部C之间形成切口39,按比连接部B和连接部B的各个截面积小的面积设定夹在连接部B与连接部C之间部分的截面积。由此,能够降低绝缘基板21的整体热容量。再有,考虑到绝缘基板21的整体壁厚,并不期望降低绝缘基板的机械强度。
而且,由于利用绝缘基板21的切口39形成灯丝屏障,所以可抑制来自发热体25的热散布到电极端子26的连接部B中,能够集中来自阴极基体24的连接部C上的发热体的热。也就是说,能够限制热量向不必要的连接部B分散,使热量仅向作为必要的连接部C的集中。由此,能够降低发热体25的热在绝缘基板21中的传导损失,大幅度地降低阴极组件的消耗功率。
例如,把该阴极组件装配在电子枪中,使阴极温度达到830℃,与现有技术的灯丝功率进行比较。其结果,现有技术阴极组件的灯丝功率为2.1W,而本实施例的灯丝功率比它小1.3W。此外,相应于现有技术阴极组件的灯丝功率为1.05W(6.3V/170mA),则在本实施例中阴极组件的灯丝功率为0.32W(4.5V/70mA),即为现有技术产品的约30%,使低功率化成为可能。
而且,按照上述结构的阴极组件27,发热体25的热通过APBN构成的绝缘基板21的传导直接加热阴极基体24。因此,与现有技术比较,能够大幅度缩短从灯丝加电开始时至电子管图像达到稳定时的温度的时间(快速启动)。也就是说,通过绝缘基板21的良好传导,发热体25的热能够迅速加热阴极基体24。
按照图31A、31B所示的第16实施例的阴极组件,在绝缘基板21的侧缘形成切口39。也就是说,在绝缘基板21的一个连接部B和连接部C之间的区域中,在绝缘基板21左右两侧缘部分别形成一对切口39。此外,在绝缘基板21的另一连接部B和连接部C之间的区域中,在绝缘基板21左右两侧缘部分别形成一对切口39。各切口39贯通绝缘基板21的两表面21c、21d,以断面为半圆形形成。也就是说,其轴向方向沿绝缘基板21的厚度方向(层积方向)形成切口39。
在本实施例中,其它结构与第15实施例相同的同一部分被附以相同的参考符号,并省略其详细说明。
在制造上述结构的阴极组件27的情况下,如图32所示,预备能够并排形成多个绝缘基板21的大尺寸材料的APBN板材21A,在该板材两面各绝缘基板区域以预定形状形成各个APG层。接着,在板材21A中各绝缘基板21区域的界限线上,分别形成直径为0.5mm的圆形通孔39A,同时形成相邻绝缘基板21的切口39。以下的工艺与实施例15相同,利用切割加工,从板材21A切割出各绝缘基板21。由此,能够得到在左右两侧缘部有半圆形切口39的阴极组件27。
再有,通孔是用RIE等腐蚀法形成的,还可利用其它机械加工方法形成通孔。
按照图33A、33B所示的第17实施例,在绝缘基板21中,增加前述第15实施例的切口39,在阴极基体24之间也形成与切口39同样的切口40。按照这种结构,在原来不需加热的绝缘基板21中的阴极基体24之间的区域,利用切口40形成灯丝屏障,在面对原来必须加热的各阴极基体24的区域能够集中发热体25的热。
因此,按照本实施例,能够降低绝缘基板21中的热传导损失,进一步高效率地加热阴极基体24,降低发热体的消耗功率。
再有,在上述第15至第17实施例中,切口的形成位置在连接部B和连接部C的区域,但并不限于绝缘基板的阴极基体形成面,只要在发热体形成面或在这两者的面上形成都可以。
图34A至34C表示本发明第18实施例的阴极组件。在有像上述那样由APBN构成的绝缘基板、和用APG构成的发热体的灯丝的阴极组件中,使绝缘基板具有用CVD法制成的层积结构,同时绝缘基板和发热体还利用锚定(anchor)效果粘接。由此,就可能降低该灯丝对于机械应力的比较强度。
因此,本实施例的特征在于,通过机械地夹入了从阴极基体延伸的电极端子或发热体的电极端子的绝缘基板和发热体,能够提高阴极组件的机械强度。
也就是说,如图34A和34B所示,本实施例的阴极组件27配有用APBN形成的细长矩形状的绝缘基板21,和在绝缘基板的一个表面的纵轴方向的整个长度上形成的由APG构成的发热体25,由这些绝缘基板和发热体构成灯丝。灯丝的尺寸为厚度0.32mm、长度14mm、宽度1mm。
在绝缘基板21的另一表面,在绝缘基板的纵向方向上以预定的间隔、例如4.92mm的间隔并排形成三个阴极基体24。各阴极基体24用基体金属22和电子发射物层23构成。按直径0.6mm、厚度0.3mm形成电子发射物层23。此外,在绝缘基板21的表面上的、设置阴极基体24的部分,形成由钛构成的金属层22b,在该金属层22b上用激光焊接各阴极组件24。
各阴极基体24的基体金属22配有一体形成的具有电极端子功能的电极引线22a。电极引线22a从形成为带状的阴极基体24向绝缘基板21的两侧边缘侧延伸。例如按厚0.03mm、宽0.3mm、长0.8mm形成电极引线22a。
而且,电极引线22a从绝缘基板21的阴极基体形成面侧沿绝缘基板的两侧缘弯曲,再有,在绝缘基板发热体形成面侧转入延伸。通过由钛构成的导电层40,电极引线22a的两延伸出的端部连接在绝缘基板21的发热体形成面上。因此,利用电极引线22a从两表面侧以夹持的状态保持绝缘基板21和金属层22b。再有,在电极引线22a上,连接其它电极引线42。此外,电极引线22a和阴极基体24最好分别相互连接各自形成的单独部件。
如图34A和34C所示,在发热体25的纵轴方向上的两端部上,分别形成由钛构成的导电层40,同时还在绝缘基板21的纵轴方向的两端部、阴极基体形成面侧形成由钛构成的金属层22b。而且,在发热体25的两端,通过导电层40分别焊接固定电极端子26。
在本实施例中,各电极端子26是组合形成的两个带状端子26c、26d。带状端子26c位于与金属层22b焊接固定的绝缘基板21的阴极基体形成面侧位置,同时还沿绝缘基板两侧缘弯曲延伸至绝缘基板的另一面侧。带状端子26d焊接固定在导电层40和带状端子26c上,同时还向下突出预定长度。
由此,发热体25的纵轴方向上的两端部和绝缘基板21的纵轴方向上的两端部通过各个电极端子26保持成从两侧被夹持的状态。
按以下方法制造上述结构的阴极组件27。首先,用CVD法制成APBN和APG的2层重叠层。接着,按RIE法在绝缘基板上形成发热体,通过对其切割加工,构成灯丝。形成导电层的地方是形成阴极基体和电极端子的地方,用丝网印刷法形成。丝网印刷导电层后,在真空气氛中进行绝缘基板的热处理,其后,进行整形。该实施例中,制成50×50mm的绝缘基板,得到约150个灯丝。
接着,在金属层上,装配阴极基体和电极引线,沿灯丝形状弯曲电极引线,夹持灯丝。其后,在电极引线位置,激光焊接阴极基体和金属层。
随后,在灯丝的纵轴方向上的两端部,分别利用激光焊接固定电极端子,用电极端子夹持灯丝两端部。最后,在基体金属22的表面涂敷电子发射物层23,完成阴极组件。
按照上述构成的阴极组件27,与前述各个实施例相同,能够缩短总长、实现省电和快速启动。此外,由于通过阴极基体的电极端子和电极端子夹入构成发热体,所以能够防止电极基体、绝缘基板、发热体、电极端子间的隔离,能够大幅度地提高阴极组件的机械强度。
图35A至35C表示第19实施例的阴极组件。该阴极组件27在上述第18实施例的阴极组件27上,还在金属层22b、导电层40和绝缘基板21间额外构成APG层44。
也就是说,在绝缘基板21内的、固定三个阴极基体24的部分和连接电极端子26的部分,形成APG层44,在各个对应的APG层44上形成金属层22b和导电层40。使用镍金属层作为金属层。
此外,按照本实施例,按宽于绝缘基板21的其它部分的宽度W2形成绝缘基板21的APG层44的形成部分宽度W1,并没有凸形状。其它结构与第18实施例相同的同一部分被附以相同的参考符号。
在上述那样构成的第19实施例中,也能够获得与上述第18实施例同样的作用效果。而且按照本实施例,由于绝缘基板21内,三个阴极基体24的固定部分和电极端子26的连接部分为凸状,其它部分较细形成,所以能够降低灯丝整体的热容量,进一步实现省电和快速启动。
下面的表6表示上述阴极组件的连接强度的测定结果。强度测定是进行拉伸实验,以拉断负荷重量作为强度。未用电极端子夹入灯丝的结构的阴极组件的破坏强度作为基准1,从表6可看出,无论第18实施例还是第19实施例,可确定拉伸强度提高了五倍以上。
                     表6
             接合强度实验结果
破坏强度比
基  体金  属 实施例18     5
实施例19     5
灯丝电极引    线 实施例18     8
实施例19     8
图36至图38表示装有本发明第20实施例的阴极组件的电子枪组件。通过与前述实施例进行比较,本实施例在电极端子、发热体的结构、和支撑阴极组件的支架上存在不同点。
如果详细地说明,那么如图36和37所示,电子枪组件34包括设有三个阴极基体24的阴极组件27,和支撑该阴极基体的支架50。
首先,详细说明阴极组件27。如图37A至图38C所示,阴极组件27包括用APBN形成的细长矩形状的绝缘基板21,和在绝缘基板的一个表面上在其纵轴方向的整个长度上形成的由APG构成的发热体25,由这些绝缘基板和发热体构成灯丝。利用CVD法,形成宽1mm、长14mm、厚0.3mm的绝缘基板21。
发热体25是在绝缘基板21的一个表面上用CVD法形成的厚为0.02mm的APG层,用与前述各个实施例相同的方法通过构图形成APG层。发热体25有:利用通电分别发热的第1至第3高温加热部分25a、25b、25c;在这些加热部分之间形成的一对低温加热部分50;和在绝缘基板21的纵轴方向上的两端部分别设置的一对电极51。
第1至第3高温加热部分25a、25b、25c分别设置在与三个阴极基体24相对的位置,同时有锯齿状图形,线宽0.12mm,折返部分间的间隙按0.1mm形成。绝缘基板21内,由于不必加热设有阴极基体24之外部分的地方,所以一对低温加热部分50和一对电极51按与绝缘基板21大致相等的线宽的宽度形成,抑制通电时的发热。因此,利用第1至第3高温加热部分25a、25b、25c,能够高效率加热阴极基体24。
此外,在彩色电子管的情况下,为使从三个阴极基体24中发射的电子束均匀,有必要用同一工作温度加热这些阴极基体。在上述结构的发热体25的情况下,容易避开来自绝缘基板21纵轴方向上的两端部的热。因此,在绝缘基板21的纵轴方向两端部侧设置的第1和第3高温加热部分25a、25c比位于中央位置的第2高温加热部分25b发热量要多,所以按长于第2高温加热部分来形成它们。
另一方面,在绝缘基板21的其它表面内、设有三个阴极基体24的部分,以预定间隙分别形成厚0.02mm的APG层54。同样地,在绝缘基板21的纵轴方向的士两端部,以预定间隙分别形成厚0.02mm的APG层55。
在三个APG层5 4上,设有各自的阴极基体24,在绝缘基板21的纵轴方向上配置有预定间隔,例如4.92mm的间隔。在由镍构成的基体金属22与金属层的上面涂敷电子发射物层23构成各阴极基体24。在以直径0.8mm、厚0.1mm形成基体金属22,同时还一体地配置沿绝缘基板21的纵轴方向伸出的厚度为0.05mm的凸缘22f。再有,作为阴极基体24,最好使用在多孔质基体金属中浸渍电子发射物的浸渍型的阴极基体。
通过导电层56,在APG层54上连接各阴极基体24。也就是说,在APG层54内的、阴极基体24的连接部分上,预先涂敷并干燥厚为0.02mm左右的镍膏后,通过在氢气气氛中进行1320℃的加热处理,形成由APG、Ni反应层构成的导电层56。而且,在导电层56上利用激光焊接把基体金属22的凸缘22f连接在APG层54上。
再有,在各APG层54上,连接用于对阴极基体24施加电压的电极引线22a,并从绝缘基板21的侧缘突出。最好把各电极引线22a连接在基体金属22的凸缘22f上。再有,利用与上述方法同样的方法,在APG层55表面和发热体25的电极51表面,形成APG、Ni反应层构成的导电层58。
如图36和图37所示,在绝缘基板21的两端部分分别设置的电极51上,分别固定着电极端子26。如图39和图40所示,各电极端子26利用相互连接一体地形成分别大致成U字形弯曲的第1和第2端子板60a、60b。第1端子板60a带有可插入矩形状凹部61的绝缘基板21的端部,同时第2端子板60b在朝向另一电极端子相互展宽的方向上带有一个伸出杆62。
期望第1和第2端子板60a、60b的热容量小、加工性好、并且机械强度高。为此,期望用以镍作为主要成分的合金的不锈钢、科瓦铁钴镍合金(KOV)、耐蚀高镍合金等形成各端子板,在本实施例中,其由厚0.05mm的KOV形成。
这样的电极端子用以下工艺固定在绝缘基板21上。首先,在第1端子板60a的凹部61插入绝缘基板21的端部,在绝缘基板的阴极基体连接面侧形成的导电层58上激光焊接第1端子板的中央部分。接着,在发热体25的电极51之上形成的导电层58上,由激光焊接连接第2端子板60b的中央部分。然后,利用激光焊接互相连接第1端子板60a和第2端子板60b,用这些端子板从外侧夹住绝缘基板21的端部。利用以上工艺,完成电极端子26的安装。
这样构成的阴极组件27通过各电极端子26的杆62装在支架50上。也就是说,如图36和图37所示,支架50包括:厚度为2.5mm的陶瓷构成的大致矩形状的基板63;在用KOV形成的基板外周面上固定的支撑框64;和在各自基板上从固定基板的两面突出的多个支撑销65。
用KOV形成支撑框64和各支撑销65,同时还按0.5mm的直径形成各支撑销。而且,对于基板63,分别利用熔化玻璃以绝缘状态连接支撑框64和各支撑销65。此外,在基板63中,贯通形成比如一对排气孔66,设置这些排气孔66是为了在电子管的排气中高效率地排出从阴极基体24的电子发射物中放出的分解气体。
而且,通过把各电极端子26的一对杆62与对应的一对支撑销65焊接,同时还把各阴极基体24的电极引线22a与对应的支撑销65焊接,阴极组件27装在支架50上。而且,由绝缘基板21和发热体25构成的灯丝,相对于支架50的基板63平行地按相对的预定间隔设置。支架50支撑阴极组件27,同时还利用陶瓷基板63向阴极组件侧反射由灯丝产生的热,具有提高热效率的功能。
这样构成的电子枪组件,从阴极基体24的表面至基板63表面的尺寸为1.5mm,整体高度为6.5mm。
下面,详细说明像以上那样构成的电子枪组件中阴极组件的制造方法。再有,其中还说明配有浸渍型的阴极基体、使用作为导电层的APG层与钨的反应层的阴极组件的制造方法。此外,在本制造方法中,像制造半导体晶片的情况一样,说明同时制成多个阴极组件的方法。
首先,如图41A所示,用热减压CVD法制成厚度0.3mm的APBN基板。特别是,在减压气氛中使氯化硼与氨反映,在加热到温度约2000℃的石墨基板上,汽相生长APBN。接着,在按上述得到的APBN基板的两表面上汽相生长厚度0.02mm的APG层。特别是,在减压气氛中分解炭化氢,在加热至温度约2000℃的APBN基板上汽相生长PG。
接着,如图41B所示,利用曝光、显像、腐蚀另一面的APG层,形成预定图形的发热体。特别是,在按预定图形曝光、显像覆盖APG层的光刻胶膜后,使用氟化碳系气体,用反应性离子腐蚀法(RIE法)得到期望的图形。然后,除去残留的光刻胶膜而制成发热体。
随后,如图41C所示,利用丝网印刷法、旋转涂敷法、喷涂法等在另一APG层上涂敷把平均粒径3μm的W粉末与有机系粘接剂混合的膏。而且,在真空中用1700~1800℃加热涂敷的W粉末,得到空隙率约20%的烧结体层。烧结体层的厚度为21mm。
在像上述那样形成的多孔质W层上形成光刻胶层后,通过对按图38所示的阴极基体的图形曝光、显像、腐蚀,形成期望的阴极基体图形。接着,通过除去残留的光刻胶,形成像图41D所示的阴极基体。
接着,在掩模了阴极基体以外的部分后,用喷镀法在各阴极表面涂敷分散了有机溶剂的电子发射物。然后,在真空中按1650℃加热基板整体,把在各阴极基体上涂敷的电子发射物熔化、浸渍在阴极基体的空隙部分,得到浸渍型阴极基体。
接着,对各浸渍型阴极的表面进行抛光加工,使各浸渍型阴极基体的高度达到±1μm。其后,在各阴极基体的表面用喷镀法覆盖厚1500埃的Ir。也可以使用Os(锇)、Os-Ru、Sc2O3或Sc2O3-W作为覆盖物。
接着,如图41E所示,在用切割法把上述制造的基板分割成各个阴极组件后,通过装配电极端子完成阴极组件。
按照以上构成的第20实施例的阴极组件和电子枪组件,能够获得以下的作用效果。
首先,按照本实施例,与前述各个实施例一样,能够缩短总长、实现省电和快速启动。例如,在使用本实施例电子枪组件构成电子枪的情况下,能够从现有技术的总长14.5mm缩短到7mm,实现50%的降低。此外,例如,使阴极组件达到1000℃所必需的灯丝功率,对于现有技术来说为2.1W,而在本实施例中为1.7W,使消耗功率减小了20%。再有,对灯丝加电后达到稳定温度(1000℃)的时间进行比较,现有技术品需要10秒,而本实施例的阴极组件可用6秒达到稳定。
在现有技术结构的阴极组件的情况下,灯丝电压为6.3V、电流为333mA,而本实施例的阴极组件的情况下,为6.3V、270mA,所以两者均适合电视机的灯丝电路。
对于三个阴极组件来说,第1栅极与阴极基体的间隔应没有离散,以使特性保持一致。按照本实施例,由于通过把三个阴极基体抛光处理使高度一致,所以能够提高精度,得到均匀的特性。
此外,把本实施例的电子枪组件组装在电子管中,进行灯丝电压为135%、3000小时的寿命实验。作为比较例,对现有技术的阴极和喷镀钨薄膜的阴极同时进行实验。其测定是使在初期设定的灯丝电压一定,跟踪寿命实验中的灯丝电流变化。
经过3000小时后的变化率是:现有技术阴极为2.0%,本实施例为1.99%,对于钨薄膜喷镀阴极,在寿命实验500小时时发生灯丝断。按照上述结果可看出,本实施例的阴极组件与现有技术的阴极有大致相同的寿命特性。
此外,按照本实施例,由于与半导体芯片的制作一样,在基板上制成多个阴极组件,然后进行分割,所以能够同时制造大量的阴极组件,实现生产率的提高。
而且,按照本实施例,在绝缘基板上形成的发热体有与阴极基体相对的高温加热部分和位于高温加热部分之间的低温加热部分,宽幅地形成低温加热部分,以抑制发热。此外,对三个发热部分,使容易散发热的两侧高温加热部分形成得具有比中央的高温加热部分的发热量多。因此,能够提高三个阴极基体的效率,并且均匀地加热。
下面,说明为保持阴极基体与第1栅极的间隔,成一体地构成阴极组件和栅极的各种实施例。
如图42至图43D所示,本发明的第21实施例的电子枪组件34包括阴极组件27,和在该阴极组件上固定的栅极组件66。
阴极组件27配有由APBN构成的绝缘基板21,按长8mm、宽1.5mm、厚0.7mm的矩形状形成该绝缘基板。再有,在绝缘基板21的一个表面上,沿其纵轴方向配置的预定间隔形成三个凹部64a。各凹部64a与绝缘基板21的纵轴方向垂直延伸。
在绝缘基板21的各凹部64a内设有阴极基体24。由镍粉末和电子发射物形成为直径0.6mm、厚度0.5mm的压块作为该阴极基体24。阴极基体24的制造方法是,以例如70∶30的组合比混合镍粉末和电子发射物,充分搅拌后,以10吨/平方厘米的压力加压,形成压块。此时,如果同时混合约2%的石蜡,就可较好地保持加压后的阴极基体24的形状。该阴极基体就是所谓的模压阴极。
而且,在各凹部64a的底面上,通过APG层65、由镍构成的金属层22b连接各阴极基体24。按直径0.9mm、厚度0.005mm形成金属层22b。在凹部64a的底面上连接的状态下,阴极基体24的上面位于与绝缘基板21表面相同的面内。此外,在各阴极基体24中连接电极引线22a。
在绝缘基板21的另一面上,通过构图APG层,设置形成的发热体25。发热体25具有:通过通电分别加热的第1至第3高温加热部分25a、25b、25c;在这些高温加热部分之间形成的一对低温加热部分50;和在绝缘基板21的纵轴方向上的两端部分别设置的一对电极51。
把第1至第3高温加热部分25a、25b、25c分别设置在与三个阴极基体24相对的位置,同时还有锯齿状的图形,线宽为0.15mm、折返部分的间隙按0.1mm形成。绝缘基板21内,由于阴极基体24的部分以外的地方是不必加热的,所以一对低温加热部分50和一对电极51按大致与绝缘基板21相等的线宽的宽度形成,以抑制通电时的发热。
在发热体25的各电极51中,通过钛等金属层26b连接电极端子26。
另一方面,在阴极组件27中装配的电子枪的栅极组件66是经过一体地层积构成第1栅极67、第2栅极68、和作为夹在其间隙中的电绝缘层的衬套69。分别由APG板状地形成第1和第2栅极67、68,由APBN形成衬套69。衬套69的厚度例如为0.1mm,由此使第1栅极67和第2栅极66之间电绝缘。
而且,在第1栅极67处于绝缘基板21上面的状态下,把栅极组件66连接在阴极组件27中。第1栅极67内,以比其它部分厚地突出形成与绝缘基板21连接的连接部分67a。为确保阴极组件27与栅极组件66的距离高精度地达到设计尺寸,各连接部分67a还有作为衬套的功能,作为衬套的突出高度是0.1mm。此外,在栅极组件66内,与三个阴极基体24的相对部分中,分别形成用于通过从阴极基体24发射的电子束的通孔70。
而且,通过金属层71在绝基板21表面上连接第1栅极67的连接部分67a,将上述结构的栅极组件66固定在阴极组件27上。
下面,说明上述构成的电子枪组件34的制造方法。首先,在制造阴极组件27的情况下,与前述各个实施例相同,在形成由APBN构成的绝缘基板后,形成一个表面深度为0.5mm±1μm的均匀且高精度的凹部。接着,在绝缘基板的另一表面形成APG层,构图该层来形成发热体。
然后,在绝缘基板的各凹部的底面,按顺序形成APG层和镍层,并且,在氢气气氛或真空中加热到1300℃左右,在APG层上形成镍的金属层。接着,在金属层上,利用激光焊接固定阴极基体24。
再有,作为该金属层,可从Ni、Ti、Mo、W、Nb、Ta或包含这些金属的合金中任意选择一种使用。此外,作为金属层的形成方法,可采用涂敷粉末后经高温加热形成各种厚膜的形成法、真空镀敷、喷涂环法等各种薄膜形成法。
同样地,把阴极基体24固定在绝缘基板21上后,进行抛光,以使阴极基体24的上面与绝缘基板的表面处于同一面上。此时,在例如直径20cm左右的椭圆基板上固定多个阴极基体24后,同时进行抛光处理,就能够同时制成尺寸均匀的多个阴极组件,适合大量生产。此外,能够实现第1栅极与阴极基体间隔的高精度化。
下面,说明栅极组件66的制造方法。与前述绝缘基板21的情况一样,形成作为衬套69的预定厚度的APBN基板,然后,在APBN的各面用CVD法形成由APG构成的第1栅极67和第2栅极68。接着,为在第1栅极67的表面上形成凸状的连接部分67a,在第1栅极表面形成与连接部分67a的图形相反的图形后,进行RIE,使与第1栅极的阴极基体相对的区域较薄。然后,利用任意方法除去保护膜。按同样的方法,形成第1和第2栅极、以及衬套中的通孔70。此时,在第1栅极孔和第2栅极孔的直径及形状不同的情况下,通过分别进行腐蚀,能够形成不同形状的通孔。再有,还可以由机械加工形成通孔70。
利用以上工艺,制成一体化的栅极组件66,它包括第1栅极67、第2栅极68、和在其之间位置层积配置的由电绝缘物构成的衬套69。以上的制造方法可较好地制成一个栅极组件,此外,使用例如直径20cm左右的APBN基板,还可同时制成多个栅极组件,然后采用较好的分割方法。这种情况下,能够同时大量地制造具有高精度尺寸的栅极组件66。
接着,通过金属层71,把上述制成的阴极组件27和栅极组件66相互连接。也就是说,使作为钎焊材料的金属层夹在中间,互相确定阴极组件27和栅极组件66的位置,通过加热处理进行钎焊。由此,得到电子枪组件。
如图44、45所示,以上构成的电子枪组件34使用支撑框、反射体等装入电子管的管颈内。也就是说,按大致矩形框形状形成带有平行相对的一对侧壁72a的支撑框72,在各侧壁上设有突出的固定销73。而且,把这些固定销73埋入支杆玻璃29中,在支杆玻璃29中固定该支撑框72。此外,各侧壁72a的上端部分构成向内侧弯曲的凸缘72b。
而且,把电子枪组件34安装在支撑框72的两侧壁72a之间,同时还使栅极组件66的衬套69的上面侧缘部分与凸缘72b的内面接触。此外,在两侧壁72a的下端部分固定板状的反射体75。除阴极组件27的电极端子26和电极引线22a外,该反射体75与绝缘基板21的发热体形成面相对。通过由APBN构成的绝缘层74,反射体75接触在发热体25上,把电子枪组件34压装保持在侧壁72a的凸缘72b中。反射体75保持电子枪组件34,同时还起到反射来自发热体热的作用。此外,在发热体25形成后,利用CVD法等在绝缘基板21上还可形成绝缘层74。再有,不通过绝缘层74,也可以通过预定间隔把反射体75与电子枪组件34相对。
此外,通过由不锈钢构成的灯丝搭接片28,阴极组件27的一对电极端子26固定在支杆玻璃29中。从阴极组件27的各阴极基体24中导出的电极引线22a与阴极搭接片33连接。
再有,在把阴极组件34装入电子管的情况下,把电子枪组件插入在支撑框72内后,把反射体75装在支撑框上,用电阻焊接法等焊接该反射体和支撑框。而且,在燃烧室中在半熔化状态的支杆玻璃29中埋入固定固定销73和灯丝搭接片28。
再有,在上述说明中,通过金属层钎焊固定构成电子枪组件34的阴极组件27和栅极组件66,但在把电子枪组件装入电子管时,通过在支撑框72的凸缘72b与反射体75之间夹住电子枪组件,也可以不用钎焊,使阴极组件27与栅极组件66机械地贴靠。
按照上述构成的本实施例的电子枪组件,与前述各个实施例一样,能够缩短阴极组件和电子枪组件的长度,同时还可实现省电和快速启动。
此外,按照本实施例,通过配置由APG构成的第1和第2栅极、在其间隙中构成由APBN构成的电绝缘物衬套成一体化地层积,并且由薄膜形成技术形成,所以与现有技术的电子枪的栅极不同,不必制成各个部件,能够获得维持高尺寸精度、在质量管理上高水平的电子枪组件。
此外,第1栅极和三个阴极基体的间隔是使不产生电子枪组件的离散,获得稳定特性的重要因素。在本实施例中,把三个阴极基体与绝缘基板共同抛光,使高度一致,同时由于还具有起到使与阴极基体的距离相对设计尺寸高精度保持一致作用的衬套,所以能够高精度的管理,获得特性一致的电子枪组件。
而且,与半导体芯片的制造一样,由于把阴极组件和栅极组件分别在同一基板上同时多个地制造,然后经分割进行制造,所以能够同时大量制造同一精度的阴极组件和栅极组件,使生产率提高。
图46表示本发明第22实施例的电子枪组件。该电子枪组件使用上述第21实施例中作为阴极基体的浸渍型阴极,同时还在绝缘基板21上面形成APG层76,通过由作为钎焊材料的钼镍(Mo-Ni)构成的金属层71,连接栅极组件66和阴极组件27。
这种情况下,作为阴极基体24,由于使用浸渍型阴极,所以在把栅极组件66向阴极组件27紧密接触时,能够高温加热,使高温钎焊材料的使用成为可能。
在制造上述电子枪组件的情况下,在绝缘基板的表面和各凹部的底面中的第1层,用CVD法形成APG层65、76,此时,在绝缘基板表面上形成较厚的APG层。为良好地进行阴极基体与APG层的连接,在各凹部内,形成作为第2层的Ti或钼镍(Mo-Ni)构成的金属层22b。而且,在氢气气氛或真空中加热到比如1600℃和1450℃左右。
接着,通过在APG层65和金属层22b上利用激光焊接把阴极基体24固定在绝缘基板21上。随后,抛光绝缘基板21表面上形成的APG层76和阴极基体24的上面,使其处于同一面上。
再有,在APG层76上涂敷Mo-Ni构成的钎焊材料,把栅极组件66和绝缘基板21配置在预定位置,通过在氢气气氛或真空中加热到1450℃,进行钎焊,获得电子枪组件。
其它结构的制造方法与第21实施例相同的同一部分被附以相同的参考符号,并省略其详细说明。
按照图47所示的第23实施例,在绝缘基板21的表面上去形成APG层76,通过该单层的APG层,使栅极组件66固定在阴极组件27上。
此外,按照图48所示的第24实施例,不通过APG层而直接通过Ti构成的金属层22b,在绝缘基板21的凹部64a上连接、固定各阴极基体24。
这种情况下,为不通过APG层而仅用金属层22b固定,可从Ti、Mo、W、Nb、Ta或包含这些金属的合金中任意选择一种用作为金属层,。而且,由于能够只在金属层22b使阴极基体24与绝缘基板21连接,所以能够实现制造工艺的简易化。
再有,按照图49所示的第25实施例,仅用第1栅极67和衬套69构成栅极组件66。这种情况下,由于第1栅极67用APG形成,在其APG单层体中就不能确保强度,所以把APBN那样的电绝缘物构成的衬套69作为基板使用。按照需要,可省略衬套69。按照这样的结构,能够任意地选择配置阴极基体、和第1栅极以外的栅极。
再有,在第23至第25实施例中,其结构和制造方法与第21实施例相同的同一部分被附以相同的符号,并省略其详细说明。
图50至51C表示本发明第26实施例的电子枪组件。本实施例的以下结构与前述第21实施例不同。按照本实施例,平坦地形成阴极组件中绝缘基板的阴极基体连接面,同时还通过衬套把栅极组件连接在阴极组件上,再有,在多个阴极基体间的位置设有遮蔽板。其它结构中与第21实施例相同的同一部分被附以相同的符号,并省略其详细说明。
也就是说,如图50所示,阴极组件27的绝缘基板21配有相对的按大致矩形形状形成的一对平坦表面,其尺寸例如为长8mm、宽1.5mm、厚0.3mm。而且,在绝缘基板21的一个表面上以预定间隔并排配置三个阴极基体24。把镍粉末和电子发射物经过压制成块形成各阴极基体24,其直径为0.6mm、厚度为0.5mm、并设有2mm的间隔。此外,各阴极基体24通过金属层22b固定在绝缘基板21上。
另一方面,通过衬套77,栅极组件66与绝缘基板21连接,并与三个阴极基体24按预定间隔相对。衬套77沿第1栅极67下面周边边缘部分构成框状,由电绝缘材料例如APBN形成。而且,通过衬套44,第1栅极67的下周边边缘部分和绝缘基板21的上周边边缘部分互相连接。这种状态中,阴极基体24的上面与第1栅极67之间保持比如0.1mm的间隔。由此,一体地固定阴极组件27和栅极组件。
此外,在两个邻接的阴极基体24之间分别设有遮蔽板78。这些遮蔽板78按阻止绝缘基板21的热直接传向第1栅极的状态配置,在电子枪组件24的工作中阻止从阴极基体24中蒸发的蒸发物向周边飞散,和在绝缘基板21的表面上附着堆积。
也就是说,各遮蔽板78由电绝缘物、例如APBN以平板状形成。而且,遮蔽板78固定在第1栅极67上,从第1栅极向绝缘基板21大致垂直地延伸,同时其伸出端在绝缘基板21中按预定间隙相对。
由此,遮蔽板78与衬套77一起大体包围了各阴极基体24,阻止在电子枪组件工作中从阴极基体24蒸发的蒸发物向周边飞散。因此,遮蔽板78能够防止从阴极基体24蒸发的蒸发物向周边的绝缘基板21表面上附着堆积,其结果,能够防止从各阴极基体24发射的电子相互泄漏,改变各阴极基体24的电子发射量,此外能够防止出现使各阴极基体24独立工作变得困难的情况。
在有上述结构的电子枪组件24内,用与前述第21实施例相同的制造方法制造阴极组件27。此外,如图51A所示,栅极组件66是用与前述第21实施例相同的制造方法层积形成第1栅极、衬套、第2栅极。而且,如图51B和51C所示,在第1栅极78的表面上仅对不形成遮蔽板78的部分掩模,从APBN层积0.5mm的高度后,通过除去掩模层形成遮蔽板78。然后,进行分割,分割成多个栅极组件。
接着,确定图50所示的阴极组件27与栅极组件66的相对位置,通过夹住由APBN构成的衬套77留存预定间隙进行连接,制成电子枪组件34。
按照以上那样构成的本实施例的电子枪组件,与前述第21实施例一样,能够缩短阴极组件和电子枪组件的长度,同时还能够实现省电和快速启动。
此外,按照本实施例,由于通过阴极组件27中的衬套77成一体地固定栅极组件66,所以能够高精度地设定阴极组件27与栅极组件66的第1栅极67的距离。在本电子枪组件34中,用与发热体25相同的材料APG形成第1和第2栅极67、68,用与绝缘基板21相同的材料APBN形成各衬套69、77。由此,因热膨胀引起的绝缘基板21和第1栅极67之间的距离变化较小,使高精度的组装成为可能。电子枪组件中的阴极基体和栅极组件可用CVD法晶片状的制作,生产率高。
再有,按照本电子枪组件34,在绝缘基板21与第1栅极67之间通过设置在邻接阴极基体24间的遮蔽板78,阻止从阴极基体24蒸发的蒸发物向周边飞散。由此,防止从阴极基体24蒸发的蒸发物向阴极基体周边飞散,在绝缘基板21的表面上堆积,所以能够防止各阴极基体的电子发射量的变动,或者防止所谓的使各阴极基体独立工作变得困难的不良现象出现。
例如,把本电子枪组件装入电子管,进行3000小时的寿命实验,然后分解研究电子枪组件,从绝缘基板21上未附着来自阴极基体24的蒸发物,就能明白未产生泄漏电流。此外,寿命实验中,已确认电子管中未发生交调失真,工作稳定。
而且,由于各遮蔽板78有不与连接到第1栅极67的绝缘基板21接触的高度,所以在能够避免使绝缘基板21的热容量增大,同时通过遮蔽板还能够阻止绝缘基板21的热向第1栅极67直接传送。由此,能够较少地损失发热体25为加热阴极基体24而发出的热,能够高效率加热阴极基体24。再有,由于把遮蔽板78设置在绝缘基板21中,所以绝缘基板21的形状简单,能够容易地连接阴极基体33。
如图52所示的第27实施例,也可以把各遮蔽板78预先单独地制成部件,使用钎焊材料80,通过钎焊固定在第1栅极67上。可使用例如镍作为钎焊材料80。按照该结构,能够把遮蔽板78可靠地固定在第1栅极67上。
此外,按照图53所示的第28实施例,在栅极组件66中形成的各通孔70具有:形成为阶梯形的通孔,从第1栅极67至衬套69的中间部分延伸的第1部分70a;和从衬套69的中间部分至第2栅极68延伸的第2部分70b。而且,第2部分70b的直径大于第1部分70a的直径。
使用这种阶梯形通孔70的情况下,在电子枪组件34的工作中,即使来自阴极基体24的蒸发物侵入通孔70在其内面附着堆积的情况下,也能够防止第1和第2栅极67、68间的电流漏泄。也就是说,使通孔70的第2部分70b的直径大于第1部分70a的直径,能够抑制在通孔70的第2部分70b内面附着堆积来自阴极基体24的蒸发物。这是因为来自阴极基体24的蒸发物通过第1部分70a时其大部分附着在第1部分的内面,其后侵入第2部分70b,在其内面上的附着量大幅度地减少的缘故。由此,能够防止因蒸发物附着引起的第1和第2栅极67、68间的电流漏泄。
按照图54所示的第29实施例,把各遮蔽板78与衬套69一体地形成。也就是说,在由APBN构成的衬套69,与邻接阴极基体24的相对部分,一体地形成向绝缘基板21延伸的遮蔽板78。而且,把第1栅极67连接形成在衬套69的表面和各遮蔽板78的表面。此外,各遮蔽板78突出高度地形成,以不使在其表面形成的第1栅极67与绝缘基板21的表面接触。
这种情况下,遮蔽板78用CVD法在衬套69中一体地形成,在衬套69和遮蔽板78的表面用CVD法形成第1栅极67。再有,在形成第1栅极67后形成通孔70。此外,作为阴极基体24,使用氧化物阴极。
按照这样构成的第29实施例,能够获得使遮蔽板78与栅极组件66的固定强度变大的电子枪组件。
此外,按照图55所示的第30实施例,遮蔽板78固定在绝缘基板21的表面上,位于邻接阴极基体24间的位置。各遮蔽板78向第1栅极67垂直延伸,同时其前端形成不与第1栅极67接触的高度。
这些遮蔽板78的作用是阻止阴极基体24的蒸发物向周边飞散。此外,各遮蔽板78使绝缘基板21的热不直接传给第1栅极67,能够有效地利用发热体25的热对阴极基体24加热。
再有,在图52至图55所示的第27至第30实施例中,其结构和制造方法与前述第26实施例相同的同一部分被附以相同的参考符号。此外,第27至第30实施例的构成也与前述第26实施例相同,也能够实现电子枪的薄型化、低功率化、快速启动化、和在阴极组件27与第1栅极67间的距离高精度化。
下面,参照图56至图59,说明本发明第31实施例的电子枪组件。与前述第26实施例比较,本实施例的不同点在于未设遮蔽板,以及固定阴极基体和栅极组件的衬套结构不同。与第26实施例相同的部分被附以同样的参考符号。
如图56所示,按照本实施例,阴极组件27的绝缘基板21配有一对相对的平坦表面,按大体矩形形状形成,其尺寸例如为长8mm、宽1.5mm、厚0.3mm。而且,三个阴极基体24在绝缘基板21的一个表面上以预定的间隙并排配置。通过把镍粉末和电子发射物压制成块,形成各阴极基体24,并通过金属层22b固定在绝缘基板21上。此外,在绝缘基板21的另一表面上,形成APG构成的发热体25。
另一方面,通过衬套77,使栅极组件66与绝缘基板21连接,使与三个阴极基体24按预定间隙相对。衬套77沿第1栅极67下面周边边缘部分构成框状,由电绝缘材料、例如APBN形成。而且,第1栅极67的下面周边边缘部分和绝缘基板21的上面周边边缘部分通过衬套77互相连接。这种情况下,阴极基体24的上面与第1栅极67间保持比如0.1mm的间隔。由此,一体地固定阴极组件27和栅极组件。
如图56和图57所示,在本实施例中,衬套77具有:位于绝缘基板21与第1栅极67之间规定其间隙的衬套部分77a;相对绝缘基板21的表面垂直延伸,规定绝缘基板表面方向位置的固定位置确定部分77b,以L字形的断面形状形成。也就是说,衬套77的衬套部分77a有与绝缘基板21的上面周边边缘部分接触的第1固定面82a,与第1栅极67接触的第2固定面82b,这些第1、第2固定面相互并行形成。此外,固定位置确定部分77b在对于第1固定面82a垂直延伸,同时还有与绝缘基板21的侧缘接触的位置确定面82c,在与第1固定面82a平行延伸,同时还有与发热体25的电极25b一面形成的第3固定面82d。
而且,利用与绝缘基板21的侧缘接触,衬套77的位置确定面82c起决定衬套77与绝缘基板21组合时的位置作用。也就是说,在组合固定阴极框体27和栅极组件66上,位置确定面82c有规定相互位置关系的作用。此外,衬套77的第3固定面82d与发热体25的电极25b一起,通过导电层26a固定在电极端子26上。作为导电层26a,例如可使用有钎焊材料功能的钛。由此,固定阴极组件27的绝缘基板21和衬套77。再有,除Ti外,导电层26a可从Ni、Mo、W、Nb、Ta或包含这些金属的合金中任意选择一种使用。
下面,说明制造本实施例的电子枪组件34的方法。用与前述实施例同样的方法分别制造阴极组件27。此外,如图58所示,把栅极组件66形成交替层积的四层,即用CVD法形成与衬套77、69分别对应的APBN层84、86;与第1、第2栅极67、68分别对应的APG层85、87。APBN层84的厚度为1mm,APG层85的厚度为0.1mm,APBN层86的厚度为0.32mm,APG层87的厚度为0.4mm。该层积层的面积可选取面积较大能并排多个栅极组件的材料,例如直径为20cm的材料。
接着,用图59所示的RIE法等在APBN层84、86和APG层85、87上形成通孔70。再有,由RIE法在APBN层84上形成阶梯(衬套部分77a和固定位置确定部分77b)。最后,通过分割,分割出多个栅极组件66。
接着,使一体地装配上述衬套77的栅极组件66与阴极组件27相对,把衬套77的第1固定面82a和位置确定面82c与绝缘基板21的上面和侧缘紧密接触。由此,高精度地设定阴极组件27与栅极组件66的距离,同时,使阴极组件27对于栅极组件66处于正确的预定位置。然后,在发热体25的电极25b表面和衬套77的第3固定面82d,通过钎焊材料用激光钎焊固定电极端子26。可使用钛、铌、钼、钨等作为钎焊材料,能够良好地固定。
按照上述构成的本实施例的电子枪组件,与前述第21实施例一样,能够缩短阴极组件和电子枪组件长度,同时还能够实现省电和快速启动。此外,按照本实施例,由于在阴极组件27上通过衬套77一体地固定着栅极组件66,能够使阴极组件27与栅极组件的第1栅极67的距离以0.5%以下的误差高精度地设定。
此外,使灯丝电压为135%进行强制寿命实验的结果是在3000小时后的灯丝电流变化率,现有技术的电子枪组件和本实施例的电子枪组件均在2%左右。它表明阴极组件与栅极组件以足够的强度固定着。而且,由于在绝缘基板21的侧缘配有构成接触的位置确定面82c,所以即使在栅极组件66上大致沿绝缘基板21的表面方向作用的情况下,衬套77能够可靠地维持阴极组件27与栅极组件66的固定状态。
特别是,由APBN构成的衬套77和由APG构成的发热体25具有与金属粘着性差,热膨胀系数较小,结晶方向的物理特性有较大不同等特性。由此,在仅用钎焊固定衬套77和发热体25的情况下,沿绝缘基板27的表面方向对外力的固定强度较小,在受到外力时,阴极组件27与栅极组件66就可能产生错位。按照本实施例,就不会发生这样的问题,能够使阴极组件27与栅极组件66牢固地固定。
再有,本电子枪组件34中,由于用与发热体25相同的材料APG形成第1、第2栅极67、68,用与绝缘基板21相同的材料APBN形成各衬套69、77,所以因热膨胀产生的栅极间距离的变化很小,可以高精度的组装。
图60表示本发明第32实施例的电子枪组件。在本实施例中,与第31实施例相同的部分被附以相同的符号。按照本实施例,在另一地方形成栅极组件66中设置的衬套77的衬套部分77a和固定位置确定部分77b。
也就是说,在衬套77中,有由APBN构成的衬套部分77a和固定位置确定部分77b。衬套部分77a板状地形成,配置在绝缘基板21的表面和第1栅极67之间,与两者接触,保持两者间的间隙。把衬套部分77a配置在邻接阴极基体24之间。
固定位置确定部分77b在第1栅极67的周边边缘部分构成固定的框形,在绝缘基板21的侧缘有接触的位置确定面,围住绝缘基板的周围。此外,固定位置确定部分77b的前端部分有与发热体25的电极25c一面的第3固定面82d,通过金属层26钎焊在灯丝电极26上。
图61表示本发明第33实施例的电子枪组件。在本实施例中,与第31实施例相同的部分被附以相同的符号。按照本实施例,用APBN以断面L字状形成衬套77,其第3固定面82d与绝缘基板21下面同一平面地形成,同时在该第3固定面82d,还设有形成与发热体25的电极25b相同面的由APG构成的固定层85。而且,衬套77的衬套部分77a固定在第1栅极67中,固定层85与发热体25的电极25b同时使用镍钎焊材料构成的导电层26a,钎焊在电极端子26上。再有,除APG外,也可以用钛、钼、钨、钽、或铌形成固定层85。
图62表示本发明第34实施例的电子枪组件。在本实施例中,与第31实施例相同的部分被附以相同的符号。按照本实施例,衬套77省略了固定位置确定部分,而仅形成衬套部分77a。而且,衬套部分77a钎焊固定在绝缘基板21的上面。
图63表示本发明第35实施例的电子枪组件。在本实施例中,与第31实施例相同的部分被附以相同的符号。按照本实施例,构成的栅极组件66,未设置两组栅极,而仅设置第1栅极67。
与前述第31实施例的结构一样,这些第32至第35实施例也能够实现电子枪组件34的薄型化、低功率化、快速启动化、和阴极组件27与第1栅极67间的距离高精度化,而且,还能够提高电子枪组件中阴极组件27与第1栅极67的固定强度。
图64表示本发明第36实施例的电子枪组件。在本实施例中,与第31实施例相同的部分被附以相同的符号。按照本实施例,在由APBN构成的绝缘基板21的周边边缘部分与绝缘基板一体地形成衬套77。也就是说,衬套77一体地配有:从衬套部分向上方直立的框状衬套部分77a;和从衬套部分向上方突出的包围栅极组件66外周的固定位置确定部分77b。衬套部分77a有与绝缘基板21的上面平行、在第1栅极67的下面固定的第2固定面82b。此外,固定位置确定部分77b有与第2固定面82b垂直延伸的位置确定面82c,该位置确定面82c用钎焊固定在栅极组件66的周边侧面(第1栅极67的周边侧面、栅极间衬套69的周边侧面、和第2栅极68的周边侧面)。钎焊中,可使用例如钛钎焊,此外,可使用铌、钽、钼、钨等。
在本实施例中,与前述第31实施例一样,也能够实现电子枪组件的薄型化、、低功率化、快速启动化、和阴极组件27与第1栅极67间的距离高精度化,而且,还能够提高电子枪组件中阴极组件27与第1栅极67的固定强度。
再有,本发明不限于前述实施例,能够进行各种变形。例如,在前述实施例中,说明了装有单一电子枪的电子管,但本发明也适合用于图65和图66所示的装有多个电子枪的电子管。也就是说,图65和图66所示的电子管配有:在内面形成荧光屏97的平坦的前面板91;与前面板91相对的平坦的背板92;和连接前面板91和背板92的周边边缘部分的框状侧壁93。在前面板91的内侧,设有与荧光屏相对的荫罩94。此外,在背板92上,纵横地并排装配多个漏斗状部分95,在各漏斗状部分95的管颈内装配带有阴极组件27和电子枪组件34的电子枪96。
而且,利用从多个电子枪96中发射的电子束,把荧光屏分为多个区域扫描,连接各区域中扫描的图像显示一个大的图像。
在这样构成的电子管中,通过缩短各电子枪组件34的长度、实现省电和快速启动,就能够缩短电子枪的整体长度、实现省电和快速启动。能够获得适合薄型显示装置的电子管。
此外,本发明的阴极组件、电子枪组件、电子枪的栅极、电子管的灯丝并不限于以上说明的实施例结构和其使用的材料,可采用适合的各种形态和材料,对于期望特性、用途,可有各种变更。
如上所述,本发明的阴极组件配有:热传导性的绝缘基板,它有一对相对的面;阴极基体,它设在该绝缘基板的一个面上;和发热体,它加热设在所述绝缘基板另一面的所述阴极基体;通过导电层,连接发热体的电极端子,与现有技术相比,能够大幅度地缩短用绝缘基板和发热体构成的灯丝长度,此外,可降低灯丝功率,同时还能够提高快速启动性。同时,能够使电极端子与发热体牢固地连接。
再有,按照本发明,在上述结构的阴极组件中,由于设有与阴极基体相对的栅极,所以能够获得缩短长度、实现省电和快速启动的电子枪组件。
再有,按照本发明电子枪的栅极组件,能够缩短电子枪组件的长度。
按照本发明的灯丝,由于配有由氮化硼构成的绝缘基板,在该绝缘基板中设置的由黑铅构成的发热体,和通过该发热体中的导电层连接的电极端子,所以能够简单并牢固地连接发热体和电极端子,特别是,能够获得适合阴极组件的灯丝。
再有,按照本发明的电子枪组件,在阴极组件的绝缘基板上通过一体地连接带有第1栅极的栅极组件,与现有技术相比,能够获得大幅度地缩短总长、降低灯丝功率、实现快速启动以及使第1栅极与阴极组件之间的间隙高精度化的电子枪组件。
此外,按照本发明,利用在与阴极组件邻接的阴极基体间设置遮蔽板,阻止从阴极基体中蒸发的蒸发物向周边飞散,能够防止电子的相互漏泄使各阴极基体的电子发射量变动,以及防止出现各阴极基体独立工作发生困难的情况。
再有,按照本发明,通过衬套使阴极组件与栅极组件相互连接,利用由该衬套进行阴极组件的位置确定的结构,能够提供薄型化、低功率化、快速启动化、阴极组件与栅极组件间的距离高精度化、和能够使固定强度提高的电子枪组件和电子管。
此外,按照本发明,利用并列设置前述结构的阴极组件,构成具有实现缩短化、省电化和快速启动化的阴极组件的电子枪组件,能够得到适合彩色显像管的电子管和适合薄型显示装置的电子管。
按照本发明,提供了能够大量生产阴极组件的阴极组件的制造方法,包括:用氮化硼形成预定厚度的绝缘基板;在所述绝缘基板的一个表面,形成黑铅层;构图所述黑铅层,形成多个预定图形的发热体;通过在所述绝缘基板的另一面的导电层,连接多个阴极基体;把设有所述发热体和阴极基体的绝缘基板分割为多个,形成多个阴极组件;通过在所述各阴极组件的发热体的电极中的导电层,固定电极端子。

Claims (51)

1.一种阴极组件,其特征在于,包括:
具有热传导性的绝缘基板,它配有一对相对的面;
阴极基体,设置在所述绝缘基板的一个表面上;
发热体,设在所述绝缘基板另一表面上加热所述阴极基体;和
电极端子,通过在所述发热体上形成的导电层与所述发热体连接。
2.如权利要求1所述的阴极组件,其特征在于,用氮化硼形成所述绝缘基板,对在绝缘基板的另一面上形成的黑铅层构图形成所述发热体。
3.如权利要求1或2所述的阴极组件,其特征在于,可用从镍、钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择的任一种构成的金属层来形成所述导电层。
4.如权利要求2所述的阴极组件,其特征在于,在形成所述发热体的所述黑铅层上,用对涂敷的金属粉末加热处理形成的所述黑铅层与金属粉末的反应层构成所述导电层。
5.如权利要求1所述的阴极组件,其特征在于,通过由钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择的任一种构成的层,把所述阴极基体与所述绝缘基板连接。
6.如权利要求1所述的阴极组件,其特征在于,通过由钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择的任一种构成的层和黑铅层,把所述阴极基体与所述绝缘基板连接。
7.如权利要求1所述的阴极组件,其特征在于,所述阴极基体与所述绝缘基板直接连接。
8.如权利要求1所述的阴极组件,其特征在于,从镍、钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择其中一种构成的层或黑铅层的至少一部分,把所述阴极基体与所述阴极基体的电极引线连接。
9.如权利要求1所述的阴极组件,其特征在于,包括:电绝缘层,它在所述绝缘基板的另一面的所述发热体上重叠形成;和反射层,它形成在所述电绝缘层上将从所述发热体中发出的热向所述绝缘基板侧反射。
10.如权利要求1所述的阴极组件,其特征在于,包括反射体,通过在所述绝缘基板的另一面上的空间部分,把从相对的所述发热体中发出的热向所述绝缘基板侧反射。
11.如权利要求1所述的阴极组件,其特征在于,所述绝缘基板具有:第1连接部分,连接所述电极端子;和第2连接部分,连接所述阴极基体;夹在所述第1和第2连接部分之间的部分的断面面积形成得小于所述第1和第2连接部分的各个断面面积。
12.如权利要求11所述的阴极组件,其特征在于,所述绝缘基板在所述第1连接部分和第2连接部分之间形成的所述绝缘基板的一个表面上配有切开的切口。
13.如权利要求11或12所述的阴极组件,其特征在于,在所述绝缘基板上设有多个所述阴极基体,所述绝缘基板在邻接的阴极基体之间配有切口。
14.如权利要求1所述的阴极组件,其特征在于还包括,与所述阴极基体连通的带状电极引线,所述电极引线从外侧夹持所述绝缘基板和发热体,以弯曲的状态固定在绝缘基板上。
15.如权利要求1或14所述的阴极组件,其特征在于,与所述发热体连接的电极端子,从外侧夹持所述绝缘基板和发热体,以弯曲的状态固定在绝缘基板上。
16.如权利要求14所述的阴极组件,其特征在于,通过由镍、钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择的任一种构成的层,把所述阴极基体与所述绝缘基板连接,所述电极引线与所述层一体地形成。
17.如权利要求14所述的阴极组件,其特征在于,连接所述绝缘基板的所述阴极基体的连接部分、和连接所述电极端子的连接部分向绝缘基板的宽度方向突出地形成,并且其宽度形成得宽于其它部分的宽度。
18.如权利要求5或6所述的阴极组件,其特征在于,所述阴极基体配有与由镍、钛、钼、钨、铌、钽、或包含这些的其中之一的合金或化合物中选择的任一种构成的层连接,同时还带有凸缘的基体金属。
19.如权利要求1所述的阴极组件,其特征在于,在所述绝缘基板上以预定间隔设置的多个所述阴极基体的所述发热体具有:高温加热部分,它分别与所述阴极基体相对;和低温加热部分,它设置在邻接的加热部分之间;所述高温加热部分以比所述低温加热部分细的线宽形成。
20.一种电子枪组件,其特征在于,包括:
阴极组件,配有:具有热传导性的、配有一对相对的面的绝缘基板;阴极基体,它设置在所述绝缘基板的一个表面上;发热体,它设在所述绝缘基板另一表面上加热所述阴极基体;和电极端子,它通过所述发热体上形成的导电层与所述发热体连接;和
相对的栅极,它与所述阴极基体以预定间隙相对。
21.一种电子枪组件,其特征在于,包括:
阴极组件,它包括配有一对相对的面,具有热传导性的绝缘基板;阴极基体,它设置在所述绝缘基板的一个表面上;发热体,它设在所述绝缘基板另一表面上加热所述阴极基体;和电极端子,它通过所述发热体上形成的导电层与所述发热体连接;
支撑所述阴极组件的支架,它配有:基板,与从绝缘体形成的所述发热体以预定的间隔相对;从所述基板突出的多个支撑销;
所述阴极组件的电极端子从所述绝缘基板延伸,同时还配有固定在所述支架的支撑销中的杆。
22.一种电子枪组件,其特征在于,包括:
阴极组件,它包括:配有一对相对的面、具有热传导性的绝缘基板;阴极基体,设置在所述绝缘基板的一个表面上;发热体,设在所述绝缘基板另一表面上,加热所述阴极基体;电极端子,通过在所述发热体上形成的导电层与所述发热体连接;和
栅极组件,具有与所述阴极基体以预定间隙相对的栅极。
23.如权利要求22所述的电子枪组件,其特征在于,所述栅极固定在所述阴极组件的绝缘基板上。
24.如权利要求23所述的电子枪组件,其特征在于,所述栅极中配有:第1栅极,固定在所述绝缘基板上;和第2栅极,间接地夹在电绝缘层中,与第1栅极一体地层积。
25.如权利要求23所述的电子枪组件,其特征在于,所述第1和第2栅极由黑铅形成,所述绝缘层由氮化硼形成。
26.如权利要求23或25所述的电子枪组件,其特征在于,在所述绝缘基板与所述第1栅极之间,配置保持所述第1栅极和所述阴极基体间隙的衬套。
27.如权利要求26所述的电子枪组件,其特征在于,由第1栅极的所述绝缘基板侧表面上设置的凸部构成所述衬套。
28.如权利要求26所述的电子枪组件,其特征在于,所述绝缘基板有在一表面中形成的凹部,把所述阴极基体配置在所述凹部,同时所述第1栅极通过所述衬套固定在所述绝缘基板的一个面上。
29.如权利要求23所述的电子枪组件,其特征在于,包括:衬套,它连接所述绝缘基板和所述栅极的周边边缘部分;和遮蔽板,它夹在所述绝缘基板和所述栅极的空间中,使所述绝缘基板的热不处于对所述栅极直接传送的状态,阻止所述阴极基体的蒸发物向所述阴极基体的周边飞散。
30.如权利要求29所述的电子枪组件,其特征在于,所述遮蔽板从所述栅极向所述绝缘基板延伸,同时以一定的间隙与所述绝缘基板相对。
31.如权利要求30所述的电子枪组件,其特征在于,所述遮蔽板从所述绝缘基板向所述栅极延伸,同时以一定的间隙与所述栅极相对。
32.如权利要求29所述的电子枪组件,其特征在于,所述遮蔽板与所述栅极连接。
33.如权利要求29所述的电子枪组件,其特征在于,所述栅极有与所述遮蔽板一体形成的电绝缘物,所述栅极重叠形成在所述电绝缘物上。
34.如权利要求24所述的电子枪组件,其特征在于,所述栅极配有:贯通所述第1栅极、绝缘层和第2栅极延伸,同时还与所述阴极基体相对的通孔;所述通孔包括第1部分,从所述第1栅极延伸至所述绝缘层;和第2部分,从所述绝缘层延伸至第2栅极;以大于第1部分的直径形成所述第2部分。
35.如权利要求23所述的电子枪组件,其特征在于,包括衬套,它固定在所述栅极上由电绝缘物构成,所述衬套有与所述绝缘基板的所述阴极基体连接面接触的固定面的衬套部分,和固定位置确定部分,相对于所述固定面垂直地延伸,有与所述绝缘基板的侧缘接触的位置确定面。
36.如权利要求35所述的电子枪组件,其特征在于,所述固定位置确定部分有固定在所述绝缘基板的所述发热体形成面上的固定面。
37.如权利要求35所述的电子枪组件,其特征在于,由氮化硼形成所述衬套。
38.如权利要求35所述的电子枪组件,其特征在于,所述栅极和所述衬套由钎焊、激光焊接和Tig焊接的其中一种或它们的组合进行固定。
39.如权利要求23所述的电子枪组件,其特征在于包括:衬套,它固定在所述绝缘基板的周边边缘部分,由电绝缘物构成,所述衬套配备有与所述栅极接触的固定面的衬套部分;和固定位置确定部分,相对于所述固定面垂直地延伸,有与所述绝缘基板的侧缘接触的位置确定面。
40.如权利要求39所述的电子枪组件,其特征在于,所述衬套的固定位置确定部分固定在所述栅极中与所述绝缘基板背对的面上。
41.如权利要求23所述的电子枪组件,其特征在于,所述绝缘基板具有与所述栅极的侧面接触、对所述绝缘基板进行位置确定的位置确定面。
42.如权利要求39所述的电子枪组件,其特征在于,与由氮化硼构成的所述绝缘基板一体地形成所述衬套。
43.一种电子管,其特征在于,包括:
真空外壳,它有前面板;
在所述前面板的内面形成的荧光层;
电子枪组件,向所述荧光体层发射电子束,具有:热传导性的绝缘基板,它配有一对相对的面;阴极基体,它设置在所述绝缘基板的一个面上;发热体,它在所述绝缘基板的另一面上设置,加热所述阴极基体;电极端子,它通过在所述发热体上形成的导电层与所述发热体连接;和栅极,它与所述阴极基体以预定的间隙相对;和
荫罩,它在所述真空外壳内,配置在所述荧光体层与所述电子枪组件之间。
44.一种电子管,其特征在于,包括:
外壳,它有前面板和与所述前面板相对的背板;
荧光屏,它形成在所述前面板的内面;
多个电子枪组件,它们设置在所述背板上,由电子束在分为的多个区域内扫描所述荧光屏;
各电子枪组件包括:绝缘基板,它配有一对相对的面,具有热传导性;阴极基体,它设置在所述绝缘基板的一个表面上;发热体,它在所述绝缘基板的另一表面上设置,加热所述阴极基体;电极端子,它通过在所述发热体上形成的导电层与所述发热体连接;栅极,它与所述阴极基体以预定的间隙相对。
45.一种灯丝,其特征在于,包括:
绝缘基板,它由氮化硼构成;
发热体,它由在所述绝缘基板的表面上形成的黑铅构成;和
电极端子,它通过所述发热体上的导电层进行连接。
46.如权利要求45所述的灯丝,其特征在于,可从由镍、钛、钼、钨、铌、钽、或包含这些的其中之一的合金中选择其中一种作为导电层。
47.一种阴极组件的制造方法,该阴极组件用作电子管的阴极组件,其特征在于,包括:
在具有热传导性的绝缘基板的一个表面上,形成黑铅层;
构图所述黑铅层,形成预定图形的发热体;
通过在所述绝缘基板的另一面上的导电层连接阴极基体;
通过所述发热体的电极上的导电层固定电极端子。
48.一种阴极组件的制造方法,该阴极组件用作电子管的阴极组件,其特征在于,包括:
形成由氮化硼构成的预定厚度的绝缘基板;
在所述绝缘基板的一个表面上,形成黑铅层;
构图所述黑铅层,形成多个预定图形的发热体;
通过在所述绝缘基板的另一面上的导电层连接多个阴极基体;
把设置有所述发热体和阴极基体的绝缘基板分割为多个,形成多个阴极组件;
通过所述各阴极组件发热体的电极上的导电层固定电极端子。
49.一种阴极组件的制造方法,该阴极组件用作电子管的阴极组件,其特征在于,包括:
在具有热传导性的绝缘基板的两面形成黑铅层;
构图在所述绝缘基板的一个面上形成的黑铅层,形成预定图形的发热体;
将电极端子通过导电层固定在发热体的电极上;
在所述绝缘基板的另一面形成的黑铅层上的预定位置涂敷金属粉末;
加热、烧结所述涂敷的金属粉末,形成多孔质金属层;
构图所述多孔质金属层,形成预定图形的阴极基体金属;
在所述阴极基体金属中浸渍电子发射物,形成阴极基体。
50.一种电子枪组件的制造方法,其特征在于,包括:
在具有热传导性的绝缘基板的一个面上形成发热体的步骤;
将电极端子通过导电层固定在发热体的电极上的步骤;
在所述绝缘基板的另一面上形成阴极基体的步骤;
在电绝缘物质的表面上形成栅极的步骤;
在所述栅极的表面,使所述绝缘基板的热不处于向所述栅极直接传送的状态,设置阻止所述阴极基体的蒸发物向所述阴极基体的周边飞散的遮蔽板的步骤;和
用衬套连接所述热传导性绝缘基板与所述栅极的步骤。
51.一种电子枪组件的制造方法,其特征在于,包括:
在具有热传导性的绝缘基板的一个面上形成发热体的步骤;
将电极端子通过导电层固定在发热体的电极上的步骤;
在所述绝缘基板的另一面上形成阴极基体的步骤;
层积栅极和带有衬套部分及固定部分的衬套的步骤;
将所述固定衬套的衬套部分安装在所述绝缘基板的另一面上,使所述固定部分从所述衬套部分向外,并固定在所述绝缘基板上的步骤。
CN97190590A 1996-05-21 1997-05-21 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法 Expired - Fee Related CN1115705C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP125900/1996 1996-05-21
JP12590096 1996-05-21
JP125900/96 1996-05-21
JP148776/96 1996-06-11
JP14877696 1996-06-11
JP148776/1996 1996-06-11

Publications (2)

Publication Number Publication Date
CN1194718A CN1194718A (zh) 1998-09-30
CN1115705C true CN1115705C (zh) 2003-07-23

Family

ID=26462203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97190590A Expired - Fee Related CN1115705C (zh) 1996-05-21 1997-05-21 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法

Country Status (6)

Country Link
US (1) US6130502A (zh)
EP (1) EP0844639A1 (zh)
KR (1) KR100281722B1 (zh)
CN (1) CN1115705C (zh)
TW (1) TW357380B (zh)
WO (1) WO1997044803A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329290A (ja) * 1998-05-13 1999-11-30 Toshiba Corp 陰極線管用電子銃およびその組立方法
US6448569B1 (en) * 1999-06-22 2002-09-10 Agere Systems Guardian Corporation Bonded article having improved crystalline structure and work function uniformity and method for making the same
US6376813B1 (en) * 2000-07-25 2002-04-23 Acer Display Technology, Inc. Plasma display panel with a heating means for temperature balance and the method of the same
US6847001B2 (en) * 2002-08-22 2005-01-25 Delphi Technologies, Inc. Method for metallurgically joining a tube to a member
JP2004221010A (ja) * 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd 陰極構体、電子銃、および陰極線管
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
GB0309383D0 (en) * 2003-04-25 2003-06-04 Cxr Ltd X-ray tube electron sources
US8094784B2 (en) 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US20040222193A1 (en) * 2003-05-06 2004-11-11 Venkatasubramanian Ananthanarayanan Method for resistance welding/brazing a tube to a member
US7253372B2 (en) * 2004-07-07 2007-08-07 Delphi Technologies, Inc. Method for welding heat exchanger tube to tubesheet
US7476824B2 (en) * 2004-07-07 2009-01-13 Delphi Technologies, Inc. Welding apparatus for resistance welding heat exchanger tube to tubesheet
US20060016788A1 (en) * 2004-07-23 2006-01-26 Suhre Ryan J Method for welding employing current
JP4954465B2 (ja) * 2004-11-30 2012-06-13 株式会社Sen イオンビーム/荷電粒子ビーム照射装置
US7545089B1 (en) * 2005-03-21 2009-06-09 Calabazas Creek Research, Inc. Sintered wire cathode
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
TWI338967B (en) * 2006-01-17 2011-03-11 Casio Computer Co Ltd Reactor device
GB0816823D0 (en) 2008-09-13 2008-10-22 Cxr Ltd X-ray tubes
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
US8330345B2 (en) * 2009-08-31 2012-12-11 L-3 Communications Corporation Active electronically steered cathode emission
CN101877931B (zh) * 2009-11-12 2012-07-18 江苏达胜加速器制造有限公司 一种无感灯丝的制备方法
US8681829B2 (en) 2011-08-29 2014-03-25 Intellectual Light, Inc. Compression mount for semiconductor devices, and method
CN103617940A (zh) * 2013-11-13 2014-03-05 中国航天科技集团公司第六研究院第十一研究所 一种电子束源的设计方法
CN104008939B (zh) * 2014-06-19 2016-05-11 苏州普京真空技术有限公司 一种耐用电子枪灯丝
CN105044196A (zh) * 2015-08-13 2015-11-11 南京三乐电子信息产业集团有限公司 行波管阴极蒸发速率的检测装置及阴极蒸发速率的测量方法
CN112103154B (zh) * 2020-09-22 2023-11-14 成都创元电子有限公司 一种间热式六硼化镧阴极

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1564841A1 (de) * 1966-05-20 1970-05-27 Telefunken Patent Indirekt geheizte Kathode
US3432714A (en) * 1967-01-24 1969-03-11 Us Army Fast warmup cathode
JPS4825645U (zh) * 1971-07-29 1973-03-27
JPS4825645A (zh) * 1971-08-07 1973-04-03
JPS5057165A (zh) * 1973-09-17 1975-05-19
JPS5159265A (ja) * 1974-11-20 1976-05-24 Sony Corp Inkyokusenkankasoodono seizohoho
JPS5712534Y2 (zh) * 1975-08-25 1982-03-12
JPS5366362A (en) * 1976-11-26 1978-06-13 Sony Corp Plane laminated cathode
JPS5741938Y2 (zh) * 1977-04-25 1982-09-14
US4151440A (en) * 1978-04-17 1979-04-24 Gte Sylvania Incorporated Cathode heater assembly for electron discharge device
JPS5712534A (en) * 1980-06-27 1982-01-22 Hitachi Ltd Semiconductor device
JPS5741938A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Vulcanizing mold for rubber
JPS58144746A (ja) * 1982-02-23 1983-08-29 Sekisui Chem Co Ltd 血清と血餅との分離方法
JPS58144746U (ja) * 1982-03-25 1983-09-29 ソニー株式会社 陰極線管の電子銃
NL8300191A (nl) * 1983-01-19 1984-08-16 Philips Nv Elektrische ontladingsbuis.
JPS617696A (ja) * 1984-06-21 1986-01-14 日立化成工業株式会社 多層印刷配線板
FR2634054B1 (fr) * 1988-07-05 1996-02-09 Thomson Csf Cathode pour emission d'electrons et tube electronique comprenant une telle cathode
US5015908A (en) * 1989-01-23 1991-05-14 Varian Associates, Inc. Fast warm-up cathode for high power vacuum tubes
US5118983A (en) * 1989-03-24 1992-06-02 Mitsubishi Denki Kabushiki Kaisha Thermionic electron source
EP0408342B1 (en) * 1989-07-12 1995-09-27 Mitsubishi Denki Kabushiki Kaisha Thin high temperature heater and method for manufacturing the same
JPH0364823A (ja) * 1989-08-02 1991-03-20 Mitsubishi Electric Corp 陰極構体
JPH03201346A (ja) * 1989-12-26 1991-09-03 Mitsubishi Electric Corp 積層状陰極装置
FR2664427A1 (fr) * 1990-07-03 1992-01-10 Thomson Tubes Electroniques Cathode a chauffage indirect a filament integre pour tube a faisceau lineaire.
NL9100327A (nl) * 1991-02-25 1992-09-16 Philips Nv Kathode.
JPH04359829A (ja) * 1991-06-07 1992-12-14 New Japan Radio Co Ltd 電子管用陰極およびそのヒータ
US5444327A (en) * 1993-06-30 1995-08-22 Varian Associates, Inc. Anisotropic pyrolytic graphite heater
JPH0758970A (ja) * 1993-08-13 1995-03-03 Toshiba Corp カラー受像管装置

Also Published As

Publication number Publication date
EP0844639A1 (en) 1998-05-27
KR19990035818A (ko) 1999-05-25
WO1997044803A1 (en) 1997-11-27
KR100281722B1 (ko) 2001-03-02
US6130502A (en) 2000-10-10
EP0844639A4 (zh) 1998-06-10
CN1194718A (zh) 1998-09-30
TW357380B (en) 1999-05-01

Similar Documents

Publication Publication Date Title
CN1115705C (zh) 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法
CN1324629C (zh) 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法
CN1263067C (zh) 气体放电面板
CN1127750C (zh) 减少电荷的薄膜,图象形成装置及其制造方法
CN1146943C (zh) 隔板和图象形成装置及其制造方法
CN1201364C (zh) 一种电子源的制造方法
CN1348197A (zh) 电子发射器件、冷阴极场致发射器件和显示器及其制造法
CN1170458C (zh) 有源驱动型有机el显示装置及其制造方法
CN1052337C (zh) 电子发射器件的制作方法以及电子源和图象形成设备
CN1309407A (zh) 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1913076A (zh) 电子发射器件、使用它的电子源和显示设备及其制造方法
CN1099125C (zh) 浸渍型阴极组件及所用的阴极基体、采用这种组件的电子枪组件和电子管
CN1114224C (zh) 电子束装置、图象形成装置及电子束装置的制造方法
CN1728320A (zh) 电子释放元件的制造方法、信息显示重放装置
CN1249765C (zh) 电子发射器件、电子源和成象装置的制造方法以及制造电子源的装置
CN1147900C (zh) 电子发射器件和电子源及图像形成装置的制造方法
CN1462464A (zh) 平面型显示装置的平整处理方法及平面型显示装置用基板的平整处理方法
CN1279575C (zh) 气体放电管的间接加热式电极、气体放电管及其照明器件
CN1298196A (zh) 消气部件、平板式显示器及其制造方法
CN1254839C (zh) 电场放射型电子源
CN1192688C (zh) 高压放电灯点灯装置和照明装置
CN1241293A (zh) 气体放电板及气体发光器件
CN1541399A (zh) 等离子体显示面板、等离子体显示装置及等离子体显示面板的制造方法
CN1967772A (zh) 有外部电极的放电灯及制造方法、背光单元和显示装置
CN1825521A (zh) 电场放射型电子源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee