CN1324629C - 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法 - Google Patents

冷阴极场发射器件和冷阴极场发射显示器及二者制造方法 Download PDF

Info

Publication number
CN1324629C
CN1324629C CNB031243649A CN03124364A CN1324629C CN 1324629 C CN1324629 C CN 1324629C CN B031243649 A CNB031243649 A CN B031243649A CN 03124364 A CN03124364 A CN 03124364A CN 1324629 C CN1324629 C CN 1324629C
Authority
CN
China
Prior art keywords
strutting piece
exposure light
insulating barrier
hole
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031243649A
Other languages
English (en)
Other versions
CN1447369A (zh
Inventor
丰田基博
斋藤一郎
岛村敏规
室山雅和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1447369A publication Critical patent/CN1447369A/zh
Application granted granted Critical
Publication of CN1324629C publication Critical patent/CN1324629C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

一种用于制造冷阴极场发射器件的方法,包括步骤:形成阴极电极,该阴极电极有在其底部露出支撑件的孔,并由不透射曝光光线的材料构成且沿第一方向延伸;形成由透射曝光光线的感光材料构成的绝缘层;形成由感光材料构成并沿着与第一方向不同的第二方向延伸的栅电极;通过从背表面侧曝光形成开口部并露出阴极电极;形成由感光材料构成的电子发射部形成层,通过曝光和显影在阴极电极上形成电子发射部。

Description

冷阴极场发射器件和冷阴极场发射显示器及二者制造方法
技术领域
本发明涉及冷阴极场发射器件及其制造方法,以及冷阴极场发射显示器及其制造方法。
背景技术
在用于电视接收机和信息终端的显示器领域中,为满足减少尺寸、降低重量、更大屏幕尺寸、更高清晰度的要求,人们正在研究用平型(平板型)显示器代替常规的主流阴极射线管(CRT)。这种平板型显示器包括液晶显示器(LCD)、电致发光显示器(ELD)、等离子体显示器(PDP)和冷阴极场发射显示器(FED)。当然,液晶显示器广泛用作信息终端的显示器。但当试着将它应用于固定电视接收机中时,仍存在着需要解决的问题以获得更高的亮度和更大屏幕尺寸。相反,冷阴极场发射显示器采用冷阴极场发射器件(以下有时称作“场发射器件”),该器件能够在不依赖热激励的条件下根据量子隧道效应将电子从固体发射到真空中。鉴于冷阴极场发射显示器的高亮度和低能量消耗,因此备受瞩目。
图32和33示出了具有场发射器件的冷阴极场发射显示器(以下有时称作“显示器”)的一个例子。图32是常规显示器的示意性局部端视图,图33是阴极板CP和阳极板AP的示意性局部分解透视图。
图32中示出的各场发射器件是所谓的Spindt型场发射器件,这种场发射器件具有锥形电子发射部。上述场发射器件包括:在支撑件110上形成的阴极电极111;在支撑件110和阴极电极111上形成的绝缘层112;在绝缘层112上形成的栅电极113;穿过栅电极113和绝缘层112形成的开口部114(第一开口部114A穿过栅电极113形成,第二开口部114B穿过绝缘层112形成);以及在位于第二开口部114B底部中的阴极电极111上形成的锥形电子发射部115A。一般来说,阴极电极111和栅电极113分别以条状形式形成,并且这些电极分别处于一定方向使其投影以直角彼此交叉,多个场发射器件通常形成在这些电极的投影交叠的区域中。这样的区域对应于占用一个象素的区域,称作“交叠区”或“电子发射区”。此外,这种电子发射区设置在阴极板CP的有效场(作为实际显示部分的场)中,这样,它们以二维矩阵的形式设置。阳极板AP包括衬底30、在衬底30上形成并具有预定图形的荧光层31(31R,31B,31G),在其上形成的阳极电极33。一个象素由一组场发射器件和荧光层31构成,这些场发射器件形成在阴极板侧上的阴极电极111和栅电极113的交叠区域中,荧光层31形成在阳极板侧并朝着该组场发射器件。在有效场中,例如,以几十万至几百万的数量级设置这些象素。在从这些荧光层31之间露出的衬底30上形成黑体(black matrix)32。
设置阳极板AP和阴极板CP以使电子发射区和荧光层31彼此相对,并通过框架34使它们的周边部分彼此连接,由此制成显示器。围绕有效场并具有选择象素用的外围电路的无效场(在所示例中阴极板CP的无效场)设置有抽真空用通孔36,在抽真空之后密封的端管37连接到通孔36。也就是说,由阳极板AP、阴极板CP和框架34围绕的空间是抽过真空的,构成真空空间。
从阴极电极控制电路40把相对负的电压施加于阴极电极111,从栅电极控制电路41把相对正的电压施加于栅电极113,从阳极电极控制电路42把高于施加于栅电极113的电压的正电压施加于阳极电极33。当使上述显示器进行显示时,例如,扫描信号从阴极电极控制电路40输入到阴极电极111,视频信号从栅电极控制电路41输入到栅电极113。由施加于阴极电极111和栅电极113的电压产生的电场使得电子发射部115A根据量子隧道效应发射电子,电子被吸引到阳极电极33、与荧光层31碰撞。结果,荧光层受激发光,可以得到所需要的图像。也就是说,从原则上讲,根据施加于栅电极113的电压和通过阴极电极111施加于电子发射部115A的电压,控制了显示器的工作。
下面参考图34A和34B以及图35A和35B描述用于制造Spindt型场发射器件的方法,这些图是构成阴极板的支撑件110等的示意性局部端视图。
基本上来说,上述Spindt型场发射器件可以由以下方法得到:通过金属材料的垂直汽相淀积的方式形成各电子发射部115A。也就是说,淀积颗粒垂直地进入到贯穿栅电极113形成的第一开口部114A。但是,由于在第一开口部114A的开口边缘附近形成的悬垂淀积(overhanging deposit)的遮蔽作用,使得达到第二开口部114B底部的淀积颗粒的数量逐渐减少,以自对准方式形成了呈锥形淀积的电子发射部115A。解释制造Spindt型场发射器件的方法,相对于预先在栅电极113和绝缘层112上形成剥离层116的方法,以便容易地除去不需要的悬垂淀积。图34A和34B以及图35A和35B示出了一个电子发射部。
[步骤10]
首先,通过等离子CVD方法,将例如由多晶硅制成的、用于阴极电极的导电材料层形成在例如由玻璃衬底制成的支撑件110上,然后,通过光刻技术和干法刻蚀技术对阴极电极导电材料层进行构图,从而形成条形阴极电极111。接着,通过CVD法在整个表面上形成由SiO2制成的绝缘层112。
[步骤20]
然后,通过溅射法在绝缘层112上形成用于栅电极的导电材料层(例如,TiN层),接着,通过光刻技术和干法刻蚀技术对栅电极导电材料层进行构图,从而形成条形栅电极113。条形阴极电极111在附图的纸表面上向左、右延伸,而条形栅电极113垂直于附图的纸表面延伸。
[步骤30]
然后,再形成抗蚀层,通过刻蚀贯穿栅电极113形成第一开口部114A,接着,通过刻蚀贯穿绝缘层112形成第二开口部114B。在第二开口部114B的底部露出阴极电极111,接着,除去抗蚀层。根据上述方式,可以获得图34A所示的结构。
[步骤40]
然后,在翻转支撑件110的同时,在绝缘层112和栅电极113上倾斜地淀积镍(Ni),从而形成剥离层116(参见图34B)。在此情况下,把淀积颗粒相对于支撑件110法线的倾角设定的足够大(例如,65度至85度的倾角),从而在几乎没有在第二开口部114B的底部上淀积镍的条件下在栅电极113和绝缘层112上形成剥离层116。剥离层116以类似屋檐的形式从第一开口部114A的开口边缘延伸,由于此剥离层116,基本上减小了第一开口部114A的直径。
[步骤50]
然后,导电材料例如钼(Mo)垂直(3至10度的倾角)淀积在整个表面上。在此情况下,如图35A中所示,随着在剥离层116上的具有悬挂形式的导电材料层117的生长,减小了第一开口部114A的实际直径,这样,用于在第二开口部114B的底部上形成淀积的淀积颗粒逐步地受限于经过第一开口部114A中心的淀积颗粒。结果,在第二开口部114B的底部上形成了锥形淀积,锥形淀积构成电子发射部115A。
[步骤60]
然后,通过移除方法从栅电极113和绝缘层112的表面除去剥离层116,从而选择地除去了在栅电极113和绝缘层112之上的导电材料层117。以此方式,可以获得具有多个Spindt型场发射器件的阴极板CP。
为了在上述显示器中以低驱动电压获得大量的发射电子的电流,锐利地削去电子发射部的顶端部分是有效的。由此可见,可以说上述Spindt-型场发射器件的电子发射部115A具有优异的性能。上述用于制造Spindt型场发射器件的方法是优异的方法,它能够以自对准的方式在开口部114A和114B中形成作为电子发射部115A的锥形淀积。但是,该方法需要高超的工艺技术以形成这种锥形电子发射部115A,随着显示器尺寸的增加以及有效场面积的增加,很难在有效场的整个区域中均匀地形成有时为几千万个的这种电子发射部115A。此外,采用许多用于生产半导体器件的设备,当显示器尺寸增大时,需要增加用于生产半导体器件的设备尺寸,这就增加了显示器的生产成本。
因此有人建议采用所谓的平板型场发射器件,该器件不采用任何锥形电子发射部,而是采用在开口部底部露出的平板电子发射部。在平板型场发射器件中,在设置在开口部底部中的阴极电极上形成各电子发射部,该电子发射部由和构成阴极电极的材料相比具有更低功函数的材料构成,这样,即使它具有平板形式,电子发射部也可以实现发射电子的更大电流。近几年,作为上述材料,已经提出了包括碳纳米管的各种碳材料。
在上述平板型场发射器件的制造过程中,例如,在获得图34A所示的结构之后,在包括开口部114内部的整个表面上形成含有碳纳米管的负型感光膏层118(参见图36A)。然后,对感光膏层118进行曝光(参见图36B),接着进行显影,除去不需要区域中的感光膏层118。然后,焙烧留下的感光膏层118,由此可获得电子发射部115(参见图36C)。参考标记119表示用于曝光的掩模。
当对感光膏层118进行曝光时,按照事先提供的参考标志(未示出)定位曝光用掩模119,以避免在曝光用掩模119和开口部114之间的位置偏移。
但是,例如,由于支撑件110的受热历程或者由于受到在支撑件110上形成的各层(阴极电极111、绝缘层112、栅电极113等)的压力等原因,会引起支撑件110变形。结果,当对感光膏层118进行曝光时,在曝光用掩模119和开口部114之间会频繁发生位置偏移。当发生上述现象时,从贯穿栅电极113形成的第一开口部114A的开口边缘到位于在第二开口部114B的底部的电子发射部115的距离发生变化,结果,在这种电子发射部115中发射电子的数量发生变化,从而导致了显示不均匀性的发生。在最坏的情况下,感光膏层118保留在开口部114的侧壁上,在栅电极113和阴极电极111之间形成短路。
发明内容
因此,本发明的目的是提供一种用于制造冷阴极场发射器件的方法,该方法可以相对于开口部以自对准的方式在贯穿栅电极和绝缘层形成的开口部的底部中形成电子发射部;一种制造应用上述方法的冷阴极场发射显示器的方法;以及通过上述方法得到的冷阴极场发射器件和冷阴极场发射显示器。
根据用于实现上述目的本发明的第一-A方案的制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在整个表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部比所述孔具有更大的直径,
(E)至少在开口部的内部形成由感光材料构成的电子发射部形成层,以及
(F)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的电子发射部形成层暴露于曝光光线中,对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
为了实现上述目的,由本发明提供的制造冷阴极场发射显示器的方法包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并将衬底和支撑件的周边部分接合起来。
根据本发明的第一-A方案、用于制造冷阴极场发射显示器的方法包括:以根据本发明的上述第一-A方案制造冷阴极场发射器件的方法的步骤(A)至(F)为基础,制造冷阴极场发射器件。
在以下的描述中,有时会如下那样简写这些步骤。
“在透射曝光光线的支撑件前表面(第一表面)上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸”的步骤有时会简写为“形成阴极电极”的步骤。
“在整个表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成”的步骤有时会简写为“形成由透射曝光光线的感光材料构成的绝缘层”的步骤。
“在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸”的步骤有时会简写为“形成由感光材料构成的栅电极”的步骤。
“利用曝光光线、从支撑件的背表面侧(第二表面)、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部比所述孔具有更大的直径”的步骤有时会简写为“通过从背表面侧曝光形成开口部并露出阴极电极”的步骤。
“至少在开口部的内部形成由感光材料构成的电子发射部形成层”  的步骤有时会简写为“形成由感光材料构成的电子发射部形成层”的步骤。
“利用曝光光线、从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的电子发射部形成层暴露于曝光光线中,对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部”的步骤有时会简写为“通过曝光和显影在阴极电极上形成电子发射部”的步骤。
在根据本发明的第一-A方案制造冷阴极场发射器件或冷阴极场发射显示器的方法中,在将在下面描述的根据第一-B方案至第一-D方案的任一方案制造冷阴极场发射器件或冷阴极场发射显示器的方法中,以及在将在下面描述的根据第三-A方案至第三-D方案的任一方案制造冷阴极场发射器件或冷阴极场发射显示器的方法中,通过对支撑件的背表面(第二表面)进行曝光的背表面曝光方法,贯穿栅电极和绝缘层形成开口部。
在根据将在下面描述的第二-A方案、第二-B方案、第四-A方案或第四-B方案制造冷阴极场发射器件或冷阴极场发射显示器的方法中,通过对支撑件的前表面(第一表面)进行曝光的前表面曝光方法,贯穿栅电极和绝缘层形成开口部。
根据第三-A方案至第三-D方案、第四-A方案和第四-B方案中的任一方案制造冷阴极场发射器件或冷阴极场发射显示器的方法与根据第一-A方案至第一-D方案、第二-A方案和第二-B方案的任一方案制造冷阴极场发射器件或冷阴极场发射显示器的方法的区别在于,形成可透光层,并且电子发射部形成在可透光层上。
为了实现上述目的,根据本发明第一-B方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”,
(B)“形成由透射曝光光线的感光材料构成的绝缘层”;
(C)“形成由感光材料构成的栅电极”;
(D)“通过从背表面侧曝光形成开口部并露出阴极电极”;
(E)至少在开口部的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层;
(F)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层;
(G)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上的部分中的刻蚀掩模层暴露于曝光光线中,对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层;
(H)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
根据本发明的第一-B方案制造冷阴极场发射显示器的方法包括以根据本发明的第一-B方案制造冷阴极场发射器件的方法的步骤(A)至(H)为基础制造冷阴极场发射器件。
“至少在开口部的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层”的步骤有时简写为“形成由非感光材料构成的电子发射部形成层”的步骤。
此外,“在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层”的步骤有时简写为“形成刻蚀掩模层”的步骤。
此外,“利用曝光光线、从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上的部分中的刻蚀掩模层暴露于曝光光线中,并对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层”的步骤有时简写为“对刻蚀掩模层进行曝光和显影”的步骤。
“利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部”的步骤有时简写为“以刻蚀为基础在阴极电极上形成电子发射部”的步骤。
为了实现上述目的,根据本发明第一-C方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)在整个表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成;
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸;
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层;
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线,然后对刻蚀掩模层进行显影,从而在孔上的部分中贯穿刻蚀掩模层形成掩模层开口;
(F)利用刻蚀掩模层对在掩模层开口以下的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,从而在孔的上面贯穿绝缘层和栅电极形成开口部,在开口部的底部露出部分阴极电极,所述开口部具有比所述孔更大的直径;
(G)“形成由感光材料构成的电子发射部形成层”;
(H)“通过曝光和显影在阴极电极上形成电子发射部”。
一种根据本发明的第一-C方案制造冷阴极场发射显示器的方法,包括以根据本发明的第一-C方案制造冷阴极场发射器件的方法的步骤(A)至(H)为基础,制造冷阴极场发射器件。
“在整个表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成”的步骤有时简写为“形成由透射曝光光线的非感光材料构成的绝缘层”的步骤。
“在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸”的步骤有时简写为“形成由非感光材料构成的栅电极”的步骤。
此外,“在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层”的步骤有时简写为“在栅电极和绝缘层上形成刻蚀掩模层”的步骤。
此外,“利用曝光光线、从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线,然后对刻蚀掩模层进行显影,从而在孔上的部分中贯穿刻蚀掩模层形成掩模层开口”的步骤简写为“贯穿刻蚀掩模层形成掩模层开口”的步骤。
为了实现上述目的,根据本发明第一-D方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成由透射曝光光线的非感光材料构成的绝缘层”;
(C)“形成由非感光材料构成的栅电极”;
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层;
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线,然后对第一刻蚀掩模层进行显影,从而在孔上的部分中贯穿第一刻蚀掩模层形成掩模层开口;
(F)利用第一刻蚀掩模层对在掩模层开口以下的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,从而在孔的上面贯穿绝缘层和栅电极形成开口部,在开口部的底部露出部分阴极电极,所述开口部具有比所述孔更大的直径;
(G)“形成由非感光材料构成的电子发射部形成层”;
(H)在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层;
(I)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将第二刻蚀掩模层暴露于曝光光线,然后对第二刻蚀掩模层进行显影,从而留下在位于开口部底部中的电子发射部形成层上面的第二刻蚀掩模层;以及
(J)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
一种根据本发明的第一-D方案制造冷阴极场发射显示器的方法,包括以根据本发明的第一-D方案制造冷阴极场发射器件的方法的步骤(A)至(J)为基础,制造冷阴极场发射器件。
“在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层”的步骤有时简写为“在栅电极和绝缘层上形成第一刻蚀掩模层”的步骤。
此外,“利用曝光光线、从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线,然后对第一刻蚀掩模层进行显影,从而在孔上的部分中贯穿第一刻蚀掩模层形成掩模层开口”的步骤有时简写为“贯穿第一刻蚀掩模层形成掩模层开口”的步骤。
此外,“在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层”的步骤有时简写为“形成第二刻蚀掩模层”的步骤。
此外,“利用曝光光线、从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将第二刻蚀掩模层暴露于曝光光线,然后对第二刻蚀掩模层进行显影,从而留下在位于开口部底部中的电子发射部形成层上面的第二刻蚀掩模层”有时简写为“对第二刻蚀掩模层进行曝光和显影”的步骤。
为了实现上述目的,根据本发明第二-A方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“在整个表面上形成由感光材料构成的绝缘层”;
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸;
(D)利用曝光光线、从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部露出部分阴极电极,所述开口部具有比所述孔更大的直径;
(E)“形成由感光材料构成的电子发射部形成层”;以及
(F)“通过曝光和显影在阴极电极上形成电子发射部”。
一种根据本发明的第二-A方案制造冷阴极场发射显示器的方法,包括以根据本发明的第二-A方案制造冷阴极场发射器件的方法的步骤(A)至(F)为基础,制造冷阴极场发射器件。
“在整个表面上形成由感光材料构成的绝缘层”的步骤有时简写为“形成由感光材料构成的绝缘层”的步骤。
“在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸”的步骤有时简写为“形成由透射曝光光线的感光材料构成的栅电极”的步骤。
此外,“利用曝光光线、从支撑件的前表面(第一表面)侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部露出部分阴极电极,所述开口部具有比所述孔更大的直径”有时简写为“通过从前表面侧的曝光形成开口部”的步骤。
为了实现上述目的,根据本发明第二-B方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成由感光材料构成的绝缘层”;
(C)“形成由透射曝光光线的感光材料构成的栅电极;
(D)“通过从前表面侧的曝光形成开口部”;
(E)“形成由非感光材料构成的电子发射部形成层”;
(F)“形成刻蚀掩模层”;
(G)“对刻蚀掩模层进行曝光和显影”;以及
(H)“以刻蚀为基础在阴极电极上形成电子发射部”。
一种根据本发明的第二-B方案制造冷阴极场发射显示器的方法,包括以根据本发明的第二-B方案制造冷阴极场发射器件的方法的步骤(A)至(H)为基础,制造冷阴极场发射器件。
为了实现上述目的,根据本发明第三-A方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层;
(C)“形成由透射曝光光线的感光材料构成的绝缘层”;
(D)“形成由感光材料构成的栅电极”;
(E)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将绝缘层和栅电极暴露于曝光光线,然后对绝缘层和栅电极进行显影,以除去在孔上的部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部中露出可透光层;
(F)“形成由感光材料构成的电子发射部形成层”;以及
(G)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将电子发射部形成层暴露于曝光光线,然后对电子发射部形成层进行显影,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
一种根据本发明的第三-A方案制造冷阴极场发射显示器的方法,包括以根据本发明的第三-A方案制造冷阴极场发射器件的方法的步骤(A)至(G)为基础,制造冷阴极场发射器件。
“至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层”的步骤有时简写为“形成可透光层”的步骤。
“从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将绝缘层和栅电极暴露于曝光光线,然后对绝缘层和栅电极进行显影,以除去在孔上的部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部中露出可透光层”的步骤有时简写为“通过从背表面侧曝光形成开口部,露出可透光层”的步骤。
此外,“从支撑件的背表面(第二表面)侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将电子发射部形成层暴露于曝光光线,然后对电子发射部形成层进行显影,从而在可透光层上形成由电子发射部形成层构成的电子发射部”的步骤有时简写为“通过曝光和显影在可透光层上形成电子发射部”的步骤。
为了实现上述目的,根据本发明第三-B方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成可透光层”;
(C)“形成由透射曝光光线的感光材料构成的绝缘层”;
(D)“形成由感光材料构成的栅电极”;
(E)“通过从背表面侧曝光形成开口部,露出可透光层”;
(F)“形成由非感光材料构成的电子发射部形成层”;
(G)“形成刻蚀掩模层”;
(H)“对刻蚀掩模层进行曝光和显影”;以及
(I)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
一种根据本发明的第三-B方案制造冷阴极场发射显示器的方法,包括以根据本发明的第三-B方案制造冷阴极场发射器件的方法的步骤(A)至(I)为基础,制造冷阴极场发射器件。
“利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部”的步骤有时简写为“以刻蚀为基础在可透光层上形成电子发射部”的步骤。
为了实现上述目的,根据本发明第三-C方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成可透光层”;
(C)“形成由透射曝光光线的非感光材料构成的绝缘层”;
(D)“形成由非感光材料构成的栅电极”;
(E)“在栅电极和绝缘层上形成刻蚀掩模层”;
(F)“贯穿刻蚀掩模层形成掩模层开口”;
(G)“利用刻蚀掩模层对在掩模层开口以下的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部中露出可透光层;
(H)“形成由感光材料构成的电子发射部形成层”;以及
(I)“通过曝光和显影在可透光层上形成电子发射部”。
一种根据本发明的第三-C方案制造冷阴极场发射显示器的方法,包括以根据本发明的第三-C方案制造冷阴极场发射器件的方法的步骤(A)至(I)为基础,制造冷阴极场发射器件。
为了实现上述目的,根据本发明第三-D方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成可透光层”;
(C)“形成由透射曝光光线的非感光材料构成的绝缘层”;
(D)“形成由非感光材料构成的栅电极”;
(E)“在栅电极和绝缘层上形成第一刻蚀掩模层”;
(F)“贯穿第一刻蚀掩模层形成掩模层开口”;
(G)利用第一刻蚀掩模层对在掩模层开口以下的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部中露出可透光层;
(H)“形成由非感光材料构成的电子发射部形成层”;
(I)“形成第二刻蚀掩模层”;
(J)“对第二刻蚀掩模层进行曝光和显影”;以及
(K)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
一种根据本发明的第三-D方案制造冷阴极场发射显示器的方法,包括以根据本发明的第三-D方案制造冷阴极场发射器件的方法的步骤(A)至(K)为基础,制造冷阴极场发射器件。
为了实现上述目的,根据本发明第四-A方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成可透光层”;
(C)“形成由感光材料构成的绝缘层”;
(D)“形成由透射曝光光线的感光材料构成的栅电极”;
(E)从支撑件的前表面侧、利用曝光光线照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部底部中露出可透光层;
(F)“形成由感光材料构成的电子发射部形成层”;以及
(G)“通过曝光和显影在可透光层上形成电子发射部”。
一种根据本发明的第四-A方案制造冷阴极场发射显示器的方法,包括以根据本发明的第四-A方案制造冷阴极场发射器件的方法的步骤(A)至(G)为基础,制造冷阴极场发射器件。
“从支撑件的前表面(第一表面)侧、利用曝光光线照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部底部中露出可透光层”的步骤有时简写为“在开口部的底部中露出光可透光层”的步骤。
为了实现上述目的,根据本发明第四-B方案制造冷阴极场发射器件的方法,包括步骤:
(A)“形成阴极电极”;
(B)“形成可透光层”;
(C)“形成由感光材料构成的绝缘层”;
(D)“形成由透射曝光光线的感光材料构成的栅电极”;
(E)“在开口部的底部中露出可透光层”;
(F)“形成由非感光材料构成的电子发射部形成层”;
(G)“形成刻蚀掩模层”;
(H)“对刻蚀掩模层进行曝光和显影”;
(I)“以刻蚀为基础在可透光层上形成电子发射部”。
一种根据本发明的第四-B方案制造冷阴极场发射显示器的方法,包括以根据本发明的第四-B方案制造冷阴极场发射器件的方法的步骤(A)至(I)为基础,制造冷阴极场发射器件。
根据用于实现上述目的的本发明第一方案的冷阴极场发射器件包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,以及
在阴极电极位于开口部底部的部分上以及孔的内部,形成电子发射部。
根据用于实现上述目的的本发明第二方案的冷阴极场发射器件,包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,
至少在孔内部形成可透光层,以及
在位于开口部底部中的可透光层上形成电子发射部。
根据用于实现上述目的的本发明第一方案的冷阴极场发射显示器包括:具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,设置衬底和支撑件,使得荧光层和冷阴极场发射器件彼此面对,并在它们的周边部分彼此接合起来,
该冷阴极场发射器件包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,以及
在阴极电极位于开口部底部的部分上以及孔的内部,形成电子发射部。
根据用于实现上述目的的本发明第二方案的冷阴极场发射显示器包括:具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,设置衬底和支撑件,使得荧光层和冷阴极场发射器件彼此面对,并在它们的周边部分彼此接合起来,
该冷阴极场发射器件包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,
至少在孔内部形成可透光层,以及
在位于开口部底部中的可透光层上形成电子发射部。
在根据本发明的第一A方案到第一D方案、第二A方案、第二B方案、第三A方案到第三D方案、第四A方案和第四B方案的制造冷阴极场发射器件的方法或制造冷阴极场发射显示器的方法中,或在根据本发明的第一或第二方案(下面有时将这些方案总称为“本发明”)的冷阴极场发射器件或冷阴极场发射显示器中,支撑件优选选自玻璃衬底、具有形成在其表面上的绝缘膜的玻璃衬底、石英衬底、具有形成在其表面上的绝缘膜的石英衬底或具有形成在其表面上的绝缘膜的半导体衬底。鉴于降低制造成本,优选采用玻璃衬底或具有形成在其表面上的绝缘膜的玻璃衬底。玻璃衬底包括高畸变点玻璃、钠玻璃(Na2O·CaO·SiO2)、硼硅酸盐玻璃(Na2O·B2O3·SiO2)、镁橄榄石(2MgO·SiO2)和铅玻璃(Na2O·PbO·SiO2)。构成阳极板的衬底可具有与上述支撑件相同的结构。
在本发明中用于曝光光线的光源优选是紫外线源,并且其具体例子包括低压汞灯、高压汞灯、超高汞灯、卤素灯、ArF准分子激光器和KrF准分子激光器。
构成阴极电极的材料包括:各种导电膏,如银膏和铜膏;金属,如钨(W)、铌(Nb)、钽(Ta)、钛(Ta)、钼(Mo)、铬(Cr)、铝(Al)、铜(Cu)、金(Au)、银(Ag)、镍(Ni)、铁(Fe)、和锆(Zr);以及含有这些金属元素的合金或化合物(例如,氮化物,如TiN,和硅化物,如WSi2、MoSi2、TiSi2、TaSi2)。
构成栅电极的感光材料包括银膏、镍膏和金膏。此外,透射曝光光线并用于构成栅电极的非感光材料包括ITO、氧化锡、氧化锌和氧化钛。透射曝光光线并用于构成栅电极的感光材料包括银膏、镍膏和金膏。银膏、镍膏和金膏在曝光阶段(即焙烧之前)透射曝光光线。
阴极电极和栅电极优选是条形的。从简化冷阴极场发射显示器的结构的角度考虑,优选地,在第一方向延伸的条形阴极电极的投影图像和在第二方向延伸的栅电极的投影图像互相成直角相交。
形成阴极电极或栅电极的方法包括,例如,汽相淀积法如电子束淀积法或灯丝淀积法、溅射法、CVD法或离子镀覆法与刻蚀法的组合;丝网印刷法;镀覆法;和移去(lift-off)法。从降低制造成本方面考虑,最优选的是采用丝网印刷法。当采用丝网印刷法或镀覆法时,可直接形成具有例如条形的阴极电极或栅电极。
构成可透光层的导电材料包括:例如,氧化铟锡(ITO)和氧化锡(SnO2)。导电材料优选具有1×10-2Ω或更低的电阻值。用于构成可透光层的电阻材料包括例如非晶硅、碳化硅(SiC)、SiCN、SiN、氧化钌(RuO2)、氧化钽和氮化钽。该电阻材料具有约1×105Ω到1×107Ω、优选几MΩ的电阻值。形成可透光层的方法可选自溅射法、CVD法或丝网印刷法。从降低制造成本方面考虑,优选采用丝网印刷法。当至少在孔内部形成可透光层时,可透光层可从孔延伸到孔附近的阴极电极上表面,可形成在整个阴极电极上,或可形成到达阴极电极上表面之外的支撑件的前表面上,只要相邻阴极电极不短路即可。在可透光层的某种结构中,可透光层和阴极电极在开口部的底部露出。当难以实现构成可透光层的导电材料的低电阻时,可形成与可透光层一侧接触的由如银膏等材料构成的总线线路(总线电极)。
由透射曝光光线的感光材料构成的绝缘层可由所谓的正型树脂(具有通过用曝光光线照射而分解的特性以便可溶解在显影液中并在显影期间可除去的树脂)和具有作为绝缘层的功能的材料构成。由感光材料构成的绝缘层可由所谓的正型树脂和具有作为绝缘层功能的材料构成,或者可以由所谓的负型树脂(具有通过用曝光光线照射而聚合或交联的特性以便在显影液中不可溶解或少量溶解和在显影之后保留的树脂)和具有作为绝缘层功能的材料构成。由透射曝光光线的非感光材料构成的绝缘层可由透射曝光光线并具有作为绝缘层功能的材料构成。具有作为绝缘层功能的材料包括含SiO2的材料、玻璃膏、聚酰亚胺树脂、SiN、SiON、CF4、SiOFx。形成绝缘层的方法可选自公知方法,如CVD法、涂敷法、溅射法和丝网印刷法。从降低成本角度考虑,优选采用丝网印刷法。
电子发射部形成层被形成以使其从阴极电极上表面向孔延伸,或被形成在可透光层上之后,作为电子发射部,在有些情况下要求焙烧或固化构成电子发射部形成层的某些材料。在这种情况下,用于焙烧或固化的温度的上限可设置在不热损伤冷阴极场发射器件或构成冷阴极板的元件的温度。
由感光材料构成的电子发射部形成层可由所谓负型树脂(具有通过用曝光光线照射而聚合或交联的特性以便在显影液中不可溶解或少量溶解和在显影之后保留的树脂)和具有电子发射功能的材料形成。由透射曝光光线的非感光材料构成的电子发射部形成层可由无机或有机粘合剂(例如无机粘合剂,如银膏或水玻璃,或有机粘合剂,如环氧树脂或丙烯酸树脂)和具有电子发射功能的材料形成。或者,电子发射部形成层还可由金属化合物溶液或其中分散具有电子发射功能的材料的分散体形成。在后种情况下,焙烧金属化合物,由此具有电子发射功能的材料固定到阴极电极表面或可透光层表面上,可透光层表面具有含有来自金属化合物的金属原子的基体。该基体优选由具有导电性的金属氧化物构成,更具体地说,其优选由氧化锡、氧化铟、氧化铟锡、氧化锌、氧化锑或氧化锑锡构成。焙烧金属化合物之后,可获得具有电子发射功能的部分材料埋入基体中的状态,或者具有电子发射功能的整个材料埋入基体中的状态。该基体优选具有从1×10-9Ω·m到5×10-6Ω·m的体积电阻率。
用于构成金属化合物溶液(分散体)的金属化合物包括例如金属有机化合物、有机酸金属化合物或金属盐(如氯化物、硝酸盐或醋酸盐)。例如,通过在酸(如盐酸、硝酸或硫酸)中溶解有机锡化合物、有机铟化合物、有机锌化合物或有机锑化合物,并用有机溶剂(如甲苯、乙酸丁酯或异丙醇)稀释得到的溶液,由此制备有机酸金属化合物溶液。例如,通过在有机溶剂(如甲苯、乙酸丁酯或异丙醇)中溶解有机锡化合物、有机铟化合物、有机锌化合物或有机锑化合物,由此制备金属有机化合物溶液。上述溶液优选具有如下成分:在每100重量份溶液中含有0.001-20重量份的具有电子发生功能的材料和0.1-10重量份的金属化合物。该溶液可含有分散剂和表面活性剂。在某些情况下,可用水作为溶剂替换上述有机溶剂。
用其中含有具有电子发射功能材料的金属化合物溶液形成电子发射部形成层的方法包括例如喷射法、旋涂法、浸渍法、模具(die)涂敷法和丝网印刷法。在这些方法当中,考虑到施加的容易程度,优选喷射法。
用于焙烧金属化合物的温度可设置在例如金属盐被氧化以形成具有导电性的金属氧化物的温度或者金属有机化合物或有机酸金属化合物分解以形成含有源自金属有机化合物或有机酸金属化合物的金属原子的基体(例如具有导电性的金属氧化物)的温度。例如,上述温度优选设置在300℃或更高。
具有电子发射功能的材料包括碳纳米管结构。作为碳纳米管结构,具体而言,采用碳纳米管和/或碳纳米纤维。更具体地说,电子发射部可由碳纳米管构成,可由碳纳米纤维构成,或可由碳纳米管和碳纳米纤维的混合物构成。宏观上看,碳纳米管或碳纳米纤维可具有粉末或薄膜形式。可利用公知PVD法如电弧放电法和激光烧蚀(laser abrasion)法,或各种CVD法如等离子体CVD法、激光CVD法、热CVD法、气相合成法和气相生长法的任何一种方法制造或形成由碳纳米管和/或碳纳米纤维构成的碳纳米管结构。
或者,具有电子发射功能的材料优选选自具有比用于构成阴极电极的材料小的功函数φ的材料。这种材料根据用于构成阴极电极的材料的功函数、栅电极和阴极电极之间的电压差以及要发射的电子的所需电流密度确定。具体而言,具有电子发射功能的上述材料的功函数φ为3eV或更低,优选为2eV或更低。上述材料包括例如碳(φ<1eV)、铯(φ=2.14eV)、LaB6(φ=2.66-2.76eV)、BaO(φ=1.6-2.7eV)、SrO(φ=1.25-1.6eV)、Y2O3(φ=2.0eV)、CaO(φ=1.6-1.86eV)、BaS(φ=2.05eV)、TiN(φ=2.92eV)和ZrN(φ=2.92eV)。具有电子发射功能的材料不是必须要求具有导电性。
或者,具有电子发射功能的材料可按照要求选自具有比构成阴极电极的导电材料更大的二次电子增益的材料。即,按照要求,上述材料可选自:金属,如银(Ag)、铝(Al)、金(Au)、钴(Co)、铜(Cu)、钼(Mo)、铌(Nb)、镍(Ni)、铂(Pt)、钽(Ta)、钨(W)和锆(Zr);半导体,如硅(Si)和锗(Ge);无机简单物质,如碳和金刚石;和化合物,如氧化铝(Al2O3)、氧化钡(BaO)、氧化铍(BeO)、氧化钙(CaO)、氧化镁(MgO)、氧化锡(SnO2)、氟化钡(BaF2)和氟化钙(CaF2)。具有电子发射功能的上述材料不是必须要求具有导电性。
用于刻蚀掩模层、第一刻蚀掩模层和第二刻蚀掩模层的抗蚀剂材料可选自公知抗蚀剂材料。当通过背表面曝光法对刻蚀掩模层、第一刻蚀掩模层或第二刻蚀掩模层进行曝光时,采用的抗蚀剂材料选自正型抗蚀剂材料(通过用曝光光线照射而分解,从而可溶解于显影液中并在显影期间可除去的抗蚀剂材料)。当通过前表面曝光法进行曝光时,采用的抗蚀剂材料选自正型抗蚀剂材料或负型抗蚀剂材料(通过用曝光光线照射而聚合或交联,以便在显影液中不可溶或少量溶解并在显影之后保留的抗蚀剂材料)。
在“形成由感光材料构成的电子发射部形成层”的步骤中,至少在开口部内部形成由感光材料构成的电子发射部形成层就足够了,并且电子发射部形成层可形成在开口部内部、栅电极上和绝缘层上。在“形成由非感光材料构成的电子发射部形成层”的步骤中,至少在开口部内部形成由非感光材料构成的电子发射部形成层就足够了,并且电子发射部形成层可形成在整个表面上(即开口部内部、栅电极上和绝缘层上)。上述电子发射部形成层例如可通过丝网印刷法或旋涂法形成。或者,电子发射部形成层可形成在开口部内部和栅电极上,可形成在栅电极和阴极电极重叠的区域中,或可形成在阴极电极上方的栅电极和绝缘层的部分中。上述电子发射部形成层例如可通过丝网印刷法形成。
在“通过从背表面侧曝光形成开口部并露出阴极电极”的步骤中,当用曝光光线从支撑件的背表面(第二表面)侧穿过作为曝光掩模的所述孔照射支撑件时,优选曝光光线屏蔽件(掩模)设置在支撑件的背表面(第二表面)侧上,以使绝缘层和栅电极在不应该用曝光光线照射的部分不被暴露于曝光光线。
在“通过从背表面侧曝光形成开口部并露出阴极电极”的步骤中,利用绝缘层和栅电极过量暴露于曝光光线的方法(即过曝光方法)和/或绝缘层和栅电极过量显影的方法(即过显影方法),可穿过孔上部的绝缘层和栅电极形成直径比孔大的开口部。
在根据本发明第一C方案的用于制造冷阴极场发射器件的方法或用于制造冷阴极场发射显示器的方法中,进行步骤(F),其中利用刻蚀掩模层刻蚀了掩模层开口下面的栅电极和绝缘层,以便贯穿孔上面的绝缘层和栅电极形成直径比孔大的开口部。上述开口部可以通过绝缘层和栅电极的过刻蚀形成。在根据本发明第一D方案的用于制造冷阴极场发射器件的方法或用于制造冷阴极场发射显示器的方法中,进行步骤(F),其中利用第一刻蚀掩模层刻蚀了掩模层开口下面的栅电极和绝缘层,以便贯穿孔上面的绝缘层和栅电极形成直径比孔大的开口部。上述开口部可以通过绝缘层和栅电极的过刻蚀形成。
在“通过从前表面侧曝光形成开口部“的步骤中,直径比孔大的开口部可通过穿过适当的曝光光线屏蔽件(掩模)将刻蚀掩模层暴露于曝光光线而形成。
在“通过从背表面侧曝光形成开口部并露出可透光层”的步骤中,优选,穿过孔上面的绝缘层和栅电极形成直径比孔大的开口部。为此,可采用绝缘层和栅电极过量暴露于曝光光线的方法(即过曝光方法)和/或绝缘层和栅电极过量显影的方法(即过显影方法)。
在根据本发明第三C方案的用于制造冷阴极场发射器件的方法或用于制造冷阴极场发射显示器的方法中,进行步骤(G),其中利用刻蚀掩模层刻蚀掩模层开口下面的栅电极和绝缘层,以便形成开口部。在这种情况下,优选,开口部的直径比孔大,并且这个开口部可通过绝缘层和栅电极的过刻蚀形成。在根据本发明第三D方案的用于制造冷阴极场发射器件的方法或用于制造冷阴极场发射显示器的方法中,进行步骤(G),其中利用第一刻蚀掩模刻蚀掩模层开口下面的绝缘层和栅电极,以便形成开口部。在这种情况下,优选,开口部的直径比孔大,并且这个开口部可通过绝缘层和栅电极的过刻蚀形成。
在“在开口部底部露出可透光层”的步骤中,优选形成直径比孔大的开口部。为此,可采用绝缘层和栅电极过量暴露于曝光光线的方法(即过曝光方法)和/或绝缘层和栅电极过量显影的方法(即过显影方法)。
在形成电子发射部之后,从进一步提高电子发射部的电子发射效率角度考虑,优选进行电子发射部表面的一种活化处理(清洗)。上述处理包括在如氢气、氨气、氦气、氩气、氖气、甲烷气体、乙烯气体、乙炔气体或氮气等气体的气氛中的等离子体处理。
孔或开口部的平面形状(通过以平行于支撑件表面的假想平面切割孔或开口部得到的形状)可以是任何形状,如圆形、椭圆形、矩形、多边形、圆角矩形、圆角多边形等。
用于构成阳极电极的材料可按照要求根据冷阴极场发射显示器的构成而选择。即,当冷阴极场发射显示器是透射型时(阳极板对应显示表面),并且当阳极电极和荧光层按此顺序叠置在衬底上(构成阳极板)时,不仅衬底而且阳极电极都要求是透明的,并采用透明导电材料如ITO(氧化铟锡)等。当冷阴极场发射显示器是反射型(阴极板对应显示表面)时,或者即使是透射型但当荧光层和阳极电极按此顺序叠置在衬底上时,通常可采用ITO,也可采用铝(Al)或铬(Cr)。当采用铝(Al)或铬(Cr)构成阳极电极时,阳极电极特别地具有从3×10-8m(30nm)到1.5×10-7m(150nm)、优选从5×10-8(50nm)到1×10-7m(100nm)的厚度。该阳极电极可通过汽相淀积法或溅射法形成。
阳极板优选进一步设有多个间壁,用于防止由从荧光层反冲并进入另一荧光层的电子或从一个荧光层发射并进入另一荧光层的二次电子引起的所谓光学串扰(颜色混合)的产生,或用于防止从一个荧光层反冲的电子或从一个荧光层发射的二次电子越过间壁运动并进入其它荧光层以与该荧光层碰撞。
间壁的平面形状包括点阵(格栅)形状,其中间壁围绕对应一个像素并具有例如近似矩形(点状)平面形状的每个荧光层;以及带状或条状,其中间壁沿着具有近似矩形或条形形状的荧光层的相对两侧延伸。当坚壁具有点阵形状时,间壁可具有其中它们连续或断续地围绕每个荧光层的区域的形状。当间壁具有带形或条形时,间壁可具有其中它们连续或断续延伸的形状。在形成间壁之后,可以抛光它们以整平其上表面。
从改进显示图像的对比度角度考虑,优选采用如下结构:在一个荧光层和另一荧光层之间以及间壁和衬底之间形成用于吸收来自荧光层的光的黑体。黑体的材料优选选自能吸收来自荧光层的至少99%的光线的材料。上述材料包括碳、金属薄膜(例如铬、镍、铝、钼和这些金属的合金)、金属氧化物(如氧化铬)、金属氮化物(如氮化铬)、耐热有机树脂、玻璃膏、和含有黑色颜料或由银等构成的导电颗粒的玻璃膏。具体而言,上述材料可选自,例如感光聚酰亚胺树脂、氧化铬或氧化铬/铬叠置膜。在氧化铬/铬叠置膜中,铬膜与衬底接触。
当阴极板和阳极板在它们的周边部分互相接合时,用粘接剂接合它们,或者组合使用由绝缘刚性材料如玻璃或陶瓷构成的框架与粘接剂。与只使用粘接剂的情况相比,当框架与粘接剂组合使用时,可通过按要求选择框架高度来增加阴极板和阳极板之间的面对距离。作为用于构成粘接剂的材料,一般采用熔块玻璃,也可使用熔点为120-400℃的所谓低熔点金属材料。上述低熔点金属材料包括In(铟:熔点为157℃);铟-金低熔点合金;含锡(Sn)的高温焊料,如Sn80Ag20(熔点为220-370℃)和Sn95Cu5(熔点为227-370℃);含铅(Pb)的高温焊料,如Pb97.5Ag2.5(熔点304℃)、Pb94.5Ag5.5(熔点304-365℃)和Pb97.5Ag1.5Sn1.0(熔点309℃);含锌(Zn)高温焊料,如Zn95Al5(熔点380℃);含锡-铅标准焊料,如Sn5Pb95(熔点300-314℃)和Sn2Pb98(熔点316-322℃);和钎焊材料,如Au88Ga12(熔点381℃)。上述所有材料的下标都是以原子%表示的。
当接合衬底、支撑件和框架时,可同时接合这三个部件。或者,可在第一阶段将衬底和支撑件中的一个接合到框架,并在第二阶段将衬底和支撑件的另一个接合到框架。当同时接合上述三个部件时,或者在上述第二阶段进行接合时,在高真空气氛中,由衬底、支撑件和框架包围的空间在接合同时变为真空。或者,在接合三个部件之后,由衬底、支撑件和框架包围的空间可以被抽真空以产生真空。当接合之后进行抽真空时,接合的气氛可具有大气压或减小的压力。构成该气氛的气体可以是大气或者可以是含有氮气的惰性气体或属于周期表的0族的气体(例如氩气)。
在接合之后进行抽真空时,可通过预先连接到衬底和/或支撑件的片状管(chip tube)进行抽真空。片状管通常由玻璃管形成,并利用熔块玻璃或上述低熔点金属材料将其粘接到形成在衬底和/或支撑件的无效场(即除了用做显示部分的有效场以外的区域)中的通孔的周边。当空间达到预定真空度时,通过热熔接密封片状管。当一旦整个冷阴极场发射显示器被加热之后并在密封之前温度下降时,适当地,使残余气体释放到该空间中,并且可通过抽真空将残余气体从该空间除去。
在本发明的制造方法中,电子发射部可通过背表面曝光法形成,以便在贯穿栅电极和绝缘层形成的开口部的底部以相对于开口部的自对准方式形成电子发射部。在根据本发明的第一A-第一D方案和第三A-第三D方案的任一方案的用于制造冷阴极场发射器件或冷阴极场发射显示器的方法中,开口部可通过背表面曝光法形成,以便以相对于孔的自对准方式穿过栅电极和绝缘层形成开口部。
附图说明
图1是具有例1中的冷阴极场发射器件的冷阴极场发射显示器的示意部分端视图。
图2A-2C是支撑件等的示意部分剖视图,用于解释制造例1中的冷阴极场发射器件的方法。
图3A和3B是接在图2C之后的支撑件等的示意部分剖视图,用于解释制造例1中的冷阴极场发射器件的方法。
图4A和4B是接在图3B之后的支撑件等的示意部分剖视图,用于解释制造例1中的冷阴极场发射器件的方法。
图5A和5B是支撑件等的示意部分端视图,用于解释制造例2中的冷阴极场发射器件的方法。
图6A和6B是接在图5B之后的支撑件等的示意部分端视图,用于解释制造例2中的冷阴极场发射器件的方法。
图7是接在图6B之后的支撑件等的示意部分端视图,用于解释制造例2中的冷阴极场发射器件的方法。
图8A和8B是支撑件等的示意部分端视图,用于解释制造例3中的冷阴极场发射器件的方法。
图9A和9B是接在图8B之后的支撑件等的示意部分端视图,用于解释制造例3中的冷阴极场发射器件的方法。
图10A和10B是支撑件等的示意部分端视图,用于解释制造例4中的冷阴极场发射器件的方法。
图11A和11B是接在图10B之后的支撑件等的示意部分端视图,用于解释制造例4中的冷阴极场发射器件的方法。
图12A和12B是接在图11B之后的支撑件等的示意部分端视图,用于解释制造例4中的冷阴极场发射器件的方法。
图13A和13B是接在图12B之后的支撑件等的示意部分端视图,用于解释制造例4中的冷阴极场发射器件的方法。
图14是接在图13B之后的支撑件等的示意部分端视图,用于解释制造例4中的冷阴极场发射器件的方法。
图15A和15B是支撑件等的示意部分端视图,用于解释制造例5中的冷阴极场发射器件的方法。
图16是接在图15B之后的支撑件等的示意部分端视图,用于解释制造例5中的冷阴极场发射器件的方法。
图17A-17C是支撑件等的示意部分剖视图,用于解释制造例7中的冷阴极场发射器件的方法。
图18A和18B是接在图17C之后的支撑件等的示意部分端视图,用于解释制造例7中的冷阴极场发射器件的方法。
图19A和19B是接在图18B之后的支撑件等的示意部分端视图,用于解释制造例7中的冷阴极场发射器件的方法。
图20A和20B是支撑件等的示意部分端视图,用于解释制造例8中的冷阴极场发射器件的方法。
图21A和21B是接在图20B之后的支撑件等的示意部分端视图,用于解释制造例8中的冷阴极场发射器件的方法。
图22是接在图21B之后的支撑件等的示意部分端视图,用于解释制造例8中的冷阴极场发射器件的方法。
图23A和23B是支撑件等的示意部分端视图,用于解释制造例9中的冷阴极场发射器件的方法。
图24A和24B是接在图23B之后的支撑件等的示意部分端视图,用于解释制造例9中的冷阴极场发射器件的方法。
图25A和25B是支撑件等的示意部分端视图,用于解释制造例10中的冷阴极场发射器件的方法。
图26A和26B是接在图25B之后的支撑件等的示意部分端视图,用于解释制造例10中的冷阴极场发射器件的方法。
图27A和27B是接在图26B之后的支撑件等的示意部分端视图,用于解释制造例10中的冷阴极场发射器件的方法。
图28A和28B是接在图27B之后的支撑件等的示意部分端视图,用于解释制造例10中的冷阴极场发射器件的方法。
图29是接在图28B之后的支撑件等的示意部分端视图,用于解释制造例10中的冷阴极场发射器件的方法。
图30A和30B是支撑件等的示意部分端视图,用于解释制造例11中的冷阴极场发射器件的方法。
图31是接在图30B之后的支撑件等的示意部分端视图,用于解释制造例11中的冷阴极场发射器件的方法。
图32是具有Spindt-型冷阴极场发射器件的常规冷阴极场发射显示器的示意部分端视图。
图33是冷阴极场发射显示器的阴极板和阳极板的示意部分放大透视图。
图34A和34B是支撑件等的示意部分端视图,用于解释制造Spindt-型冷阴极场发射器件的方法。
图35A和35B是接在图34B之后的支撑件等的示意部分端视图,用于解释Spindt-型冷阴极场发射器件。
图36A-36C是支撑件等的示意部分端视图,用于解释平板型冷阴极场发射器件。
具体实施方式
下面参照附图举例说明本发明。
例1
例1涉及根据本发明第一方案的冷阴极场发射器件(下面简称为“场发射器件”)、根据本发明第一A方案的制造场发射器件的方法、根据本发明第一方案的冷阴极场发射显示器(下面简称为“显示器”)、以及根据本发明第一A方案的制造显示器的方法。
图1表示例1中的显示器的示意部分端视图,图4B表示例1中的场发射器件的示意部分端视图。阴极板AP和阳极板AP的示意部分放大透视图与图33中所示的基本上相同。
例1的场发射器件包括:
(a)在支撑件10上形成并沿第一方向延伸的条形阴极电极11,
(b)在支撑件10和阴极电极11上形成的绝缘层12,
(c)在绝缘层12上形成并沿着不同于第一方向的第二方向延伸的条形栅电极13,
(d)贯穿栅电极13和绝缘层12形成的开口部14(贯穿栅电极13形成第一开口部14A,贯穿绝缘层12形成第二开口部14B),以及
(e)电子发射部15,
其中从在开口部14的底部露出的电子发射部15发射电子。
在阴极电极11位于开口部14的底部的部分中设置达到支撑件10的孔11A。在阴极电极11位于开口部14的底部的部分上以及孔11A的内部形成电子发射部15。条形的阴极电极11的投影图像和条形的栅电极13的投影图像互相垂直相交。
例1的显示器包括阴极板CP和阳极板AP并具有多个像素。在阴极板CP中,分别具有上述场发射器件的大量电子发射区在有效场中以两维矩阵形式设置。阳极板AP包括衬底30、形成在衬底30上并具有预定图形的荧光层31(发红光荧光层31R、发绿光荧光层31G和发蓝光荧光层31B)、以及例如由铝薄膜构成以便具有覆盖有效场的整个表面的片形的阳极电极33。黑体32形成在衬底30上并在一个荧光层31和另一荧光层31之间。黑体32可以省略。当进行单色显示时,不是必须形成预定图形的荧光层31。此外,由透明导电膜如ITO膜制成的阳极电极可形成在衬底和荧光层31之间。或者,阳极板AP可包括由形成在衬底上的透明导电膜制成的阳极电极33、形成在阳极电极33上的荧光层31和黑体32、以及由形成在荧光层31和黑体32上的铝制成并电连接到阳极电极33的光反射导电膜。
该显示器具有如下结构:其中设置具有阳极电极33和荧光层31(31R、31G和31B)的衬底30以及具有场发射器件的支撑件10,使荧光层31与场发射器件互相面对,衬底30和支撑件10在它们的周边部分接合在一起。具体而言,阴极板CP和阳极板AP通过框架34在它们的周边部分互相接合。此外,在阴极板CP的无效场中设置用于抽真空的通孔36,在抽真空之后密封的片状管37连接到通孔36。框架34由陶瓷或玻璃制成并且其高度例如为1.0mm。在某些情况下可以单独采用粘接层代替框架34。
一个像素由阴极电极11、形成在其上的电子发射部15、和设置在阳极板AP的有效场上以便面对场发射器件的荧光层31构成。在有效场中,这种像素按照几十万到几百万数量级排列。
从阴极电极控制电路40向阴极电极11施加相对负电压,从栅电极控制电路41向栅电极13施加相对正电压,并从阳极电极控制电路42向阳极电极33施加比施加给栅电极13的电压高的正电压。例如,当上述显示器用于显示图像时,扫描信号从阴极电极控制电路40输入到阴极电极11,视频信号从栅电极控制电路41输入到栅电极13。或者,可以采用以下结构:其中从阴极电极控制电路40向阴极电极11输入视频信号,并从栅电极控制电路41向栅电极13输入扫描信号。由于在向阴极电极11和栅电极13施加电压时产生的电场,在量子隧道效应基础上从电子发射部15发射电子并被吸引到阳极电极33,以便与荧光层31碰撞。结果是,荧光层31被激发发光,并且可以获得预定图像。
下面参照图2A-2C、图3A和3B、以及图4A和4B说明制造例1中的场发射器件和显示器的方法。为简化附图,用于解释制造场发射器件和显示器的方法的附图示出了阴极电极11和栅电极13的叠加区域中的一个电子发射部或其单独元件。
[步骤-100]
首先,在透射曝光光线的支撑件10的前表面(第一表面)上形成阴极电极11。阴极电极11具有在其底部露出支撑件10的孔11A,由不透射曝光光线的材料构成,并在第一方向(垂直于附图的纸面)延伸。即,进行“形成阴极电极”的步骤。具体而言,利用丝网印刷法在支撑件10的前表面(第一表面)上印刷感光银膏,其中支撑件10由透射曝光光线(用于曝光的紫外线)的衬底构成,如白玻璃片(由SCHOTT供给的B-270)、蓝玻璃片(钠钙玻璃)、或无碱玻璃(由Nippon Denki Glass K.K.供给的OA2)。然后,通过光掩模将感光银膏暴露于曝光光线,接着显影和焙烧。通过这种方式,可获得具有在其底部露出支撑件10的孔11A并具有条形的阴极电极11(见图2A)。
[步骤-110]
然后,在整个表面上形成由透射曝光光线的感光材料构成的绝缘层12。即,进行“形成由透射曝光光线的感光材料构成的绝缘层”的步骤。具体而言,例如,利用丝网印刷法在整个表面上(具体而言,在阴极电极11和支撑件10上以及孔11A内部)印刷正型感光玻璃膏,随后烘干。
[步骤-120]
随后,在绝缘层12上形成由感光材料构成并在不同于第一方向的第二方向(图的纸面上的向左和向右方向)延伸的栅电极13(见图2B)。即,进行“形成由感光材料构成的栅电极”的步骤。具体而言,例如,利用丝网印刷法在绝缘层12上印刷正型感光银膏,然后烘干,由此可得到条形栅电极13。
[步骤-130]
之后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体而言,为紫外线)照射支撑件10,以便在孔11A上面的部分中露出绝缘层12和栅电极13(图2C)。随后,显影绝缘层12和栅电极13,并在孔11A上面的部分中除去绝缘层12和栅电极13,由此穿过孔11A上面的绝缘层12和栅电极13形成直径比孔11A大的开口部14,并且在开口部14的底部露出部分阴极电极11(见图3A)。即,进行“通过从背表面侧曝光形成开口部和露出阴极电极”的步骤。然后,焙烧构成绝缘层12和栅电极13的材料。开口部14以相对于孔11A的自对准方式形成。
当在[步骤-130]中通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使绝缘层12和栅电极13的不将暴露于曝光光线的部分不被暴露于曝光光线。
此外,在[步骤-130]中为穿过孔11A上面的绝缘层12和栅电极13形成直径比孔11A大的开口部14A,可采用使绝缘层12和栅电极13过量暴露于曝光光线的方法(即过曝光法)和/或使绝缘层12和栅电极13过量显影的方法(即过显影法)。
[步骤-140]
然后,至少在开口部内部形成由感光材料构成的电子发射部形成层(见图3B)。即,进行“形成由感光材料构成的电子发射部形成层”的步骤。具体而言,例如,利用丝网印刷法在包括开口部14内部的整个表面上印刷含有碳纳米管的负型感光导电膏,由此可形成由感光材料构成的电子发射部形成层20。碳纳米管可通过电弧放电法形成,并且其平均直径为30nm,平均长度为1μm。下面说明的碳纳米管与这些碳纳米管相同。
[步骤-150]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体而言为紫外线)照射支撑件10,以使电子发射部形成层20在孔11A上面的部分暴露于曝光光线(见图4A)。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使电子发射部形成层20的不将暴露于曝光光线的部分不被暴露于曝光光线。之后,显影电子发射部形成层20,并在孔11A上面的部分中留下电子发射部形成层20,由比在阴极电极11上形成由电子发射部形成层20构成的电子发射部15,并且其延伸到孔11A的内部(见图4B)。即,进行“通过曝光和显影在阴极电极上形成电子发射部”的步骤。之后,焙烧构成电子发射部形成层20的材料。以相对于孔11A的自对准方式形成电子发射部15。即,电子发射部15可通过背表面曝光法得到,并且可相对于开口部14以自对准方式在贯穿栅电极13和绝缘层12形成的开口部14的底部形成电子发射部15。
[步骤-160]
然后,组装该显示器。具体而言,设置阳极板AP和阴极板CP,使荧光层31和场发射器件互相面对,并且通过框架34将阳极板AP和阴极板CP(更具体地说,是衬底30和支撑件10)在它们的周边部分互相接合起来。在接合时,将熔块玻璃施加于框架34和阳极板AP的接合部分以及框架34和阴极板CP的接合部分,阳极板AP、阴极板CP和框架34被粘接在一起,并通过预煅烧或烧结烘干熔块玻璃,随后在约450℃下进行主要煅烧或烧结10-30分钟。然后,通过通孔36和片状管37对由阳极板AP、阴极板CP、框架34和熔块玻璃包围的空间抽真空,并当该空间具有约10-4Pa的压力时,通过热熔合密封片状管。通过这种方式,可以对由阳极板AP、阴极板CP和框架34包围的空间抽真空。之后,进行与必需的外部电路的布线,以便完成显示器。
在场发射器件的制造步骤中,某些或所有的碳纳米管的表面状态改变(例如,氧原子、氧分子等被吸附到该表面上),并且在某些情况下这种碳纳米管对于场发射是非活性的。在这些情况下,优选地,在[步骤-150]之后在氢气气氛中对电子发射部15进行等离子体处理,由此激活电子发射部15,并且可进一步提高电子发射部的电子发射效率。表1表示等离子体处理的条件。等离子体处理还可以用于下面要说明的各种例子。
表1
  采用的气体  H2=100sccm
  电源功率  1000W
  施加于支撑件的电压  50V
  反应压力  0.1Pa
  支撑件温度  300℃
例2
例2涉及根据本发明第一B方案的用于制造场发射器件的方法和根据本发明第一B方案的制造显示器的方法,还涉及根据本发明第一方案的场发射器件和显示器。例2中的场发射器件和显示器的构造和结构以及后面要说明的例3-6中的这种构造和结构都与例1基本相同,因此不再详细说明。
下面将参照图5A和5B、图6A和6B以及图7介绍用于制造例2中的场发射器件和显示器的方法。
[步骤-200]
首先,利用与例1中的[步骤-100]-[步骤-130]相同的方式,进行“形成阴极电极”的步骤、“形成由透射曝光光线的感光材料构成的绝缘层”的步骤、“形成由感光材料构成的栅电极”的步骤和“通过从背表面侧曝光形成开口部并露出阴极电极”的步骤。
[步骤-210]
然后,至少在开口部14的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层20A(见图5A)。即,进行“形成由非感光材料构成的电子发射部形成层”的步骤。具体而言,通过丝网印刷法将例如具有碳纳米管的无机粘合剂如银膏或水玻璃或者有机粘合剂如环氧树脂或丙烯酸树脂的混合物印刷到包括开口部14内部的整个表面上,并烘干印刷的混合物,由此可形成由透射曝光光线的非感光材料构成的电子发射部形成层20A。
[步骤-220]
之后,在整个表面上形成由负型抗蚀剂材料构成的刻蚀掩模层21(见图5B)。即,进行“形成刻蚀掩模层”的步骤。
[步骤-230]
通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,从而使刻蚀掩模层21在孔11A上面的部分中暴露于曝光光线(见图6A),然后显影刻蚀掩模层21,由此在位于开口部14的底部中的电子发射部形成层20A上留下刻蚀掩模层21(见图6B)。即,进行“曝光和显影刻蚀掩模层”的步骤。当通过作为曝光掩模的孔11A从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使刻蚀掩模层21在不将暴露于曝光光线的部分中不被暴露于曝光光线。
[步骤-240]
利用刻蚀掩模层21刻蚀电子发射部形成层20A,然后除去刻蚀掩模层21,以便在阴极电极11上和孔11A内部形成由电子发射部形成层20A构成的电子发射部15(见图7)。即,进行“在刻蚀基础上在阴极电极上形成电子发射部”的步骤。然后,焙烧构成电子发射部形成层20A的材料。电子发射部15是相对于孔11A以自对准方式形成的。即,电子发射部15可通过背表面曝光法获得,并且电子发射部15可用相对于开口部14的自对准方式形成在贯穿栅电极13和绝缘层12形成的开口部14的底部中。
[步骤-250]
然后,利用与例1中的[步骤-160]相同的方式装配显示器。
电子发射部形成层20A还可由碳纳米管的金属化合物溶液(分散体)形成。即,在[步骤-210]中,例如利用喷射法将由有机酸金属化合物和分散在其中的碳纳米管结构构成的金属化合物溶液(分散体)涂敷于整个表面上。具体而言,采用在下面表2中所示的金属化合物溶液(分散体)。在该金属化合物溶液中,有机锡化合物和有机铟化合物溶解在酸(如盐酸、硝酸或硫酸)中。在上述涂敷期间,优选,预先将支撑件加热到70-150℃。用于涂敷的气氛是空气气氛。涂敷之后,将支撑件加热5-30分钟,以便完全蒸发醋酸丁酯。在涂敷期间加热支撑件,以便在碳纳米管在接近于阴极电极表面所处的水平方向进行自校平之前开始干燥涂敷液。结果是,在碳纳米管不处于水平的状态下将碳纳米管设置在阴极电极表面上。即,碳纳米管可在碳纳米管的顶端面对阳极电极的状态下取向,换言之,在碳纳米管靠近支撑件的法线的方向取向。可预先制备具有表2所示成分的金属化合物溶液(分散体),或者可预先制备没有碳纳米管的金属化合物溶液,并在即将涂敷之前即刻将其与碳纳米管混合。为了提高碳纳米管的可分散性,在制备时可超声波处理金属化合物溶液。
表2
  有机锡化合物和有机铟化合物   0.1-10重量份
  分散剂(十二烷基硫酸钠)   0.1-5重量份
  碳纳米管   0.1-20重量份
  醋酸丁酯   余额
作为有机酸金属化合物溶液,在酸中的有机锡化合物的溶液提供作为基体的氧化锡,在酸中的有机铟化合物的溶液提供作为基体的氧化铟,在酸中的有机锌化合物的溶液提供作为基体的氧化锌,在酸中的有机锑化合物的溶液提供作为基体的氧化锑,和在酸中的有机锑化合物和有机锡化合物的溶液提供作为基体的氧化锑-锡。作为金属有机化合物溶液,有机锡化合物提供作为基体的氧化锡,有机铟化合物提供作为基体的氧化铟,有机锌化合物提供作为基体的氧化锌,有机锑化合物提供作为基体的氧化锑,和有机锑化合物和有机锡化合物提供作为基体的氧化锑-锡。或者,可采用金属氯化物(例如氯化锡和氯化铟)的溶液。
在[步骤-240]中获得电子发射部15之后,焙烧由有机酸金属化合物获得的金属化合物,由此可得到电子发射部15,其中碳纳米管固定在阴极电极11和具有基体(具体而言是金属氧化物,更具体地说是ITO)的支撑件10的表面上,所述基体含有从有机酸金属化合物获得的金属原子(具体而言是In和Sn)。焙烧可以在空气气氛中在350℃和20分钟的条件下进行。如此获得的基体具有约为5×10-7Ω·m的体积电阻率。当有机酸金属化合物用做起始材料时,可在低至350℃的焙烧温度下获得由ITO构成的基体。有机酸金属化合物溶液可用有机金属化合物溶液代替。当采用金属氯化物(例如氯化锡和氯化铟)的溶液时,获得由ITO构成的基体,同时氯化锡和氯化铟被氧化。
进行[步骤-240]之后,希望,用具有10-60℃的温度的盐酸腐蚀基体1-30分钟,由此除去电子发射部形成层20A的不需要的部分。此外,当碳纳米管仍然保留在所需要区域以外的区域上时,希望,在下列表3中所示的条件下通过氧等离子体刻蚀处理刻蚀碳纳米管。偏置功率可以是0W,即直流,同时也可以按希望那样施加偏置功率。此外,例如可将支撑件加热到约80℃。
表3
    装置     RIE装置
    要引入的气体     含有氧的气体
    等离子体激励功率     500W
    偏置功率     0-150W
    处理时间周期     至少10秒
或者,可在表4中所示的条件下通过湿法刻蚀处理刻蚀碳纳米管。
表4
  采用的溶液   KMnO4
  温度   20-120℃
  处理时间周期   10秒-20分钟
例3
例3涉及根据本发明第一C方案的用于制造场发射器件的方法和根据本发明第一C方案的制造显示器的方法。此外,还涉及根据本发明第一方案的场发射器件和显示器。
下面将参照图8A和8B以及图9A和9B介绍例3中的用于制造场发射器件和显示器的方法。
[步骤-300]
首先,用与例1[步骤-100]中相同的方式进行“形成阴极电极”的步骤。
[步骤-310]
然后,在整个表面上形成由透射曝光光线的非感光材料构成的绝缘层12A。即,进行“由透射曝光光线的非感光材料构成的绝缘层”的步骤。绝缘层12A可由例如含SiO2的材料形成,并且例如可用丝网印刷法形成。
[步骤-320]
在绝缘层12A上形成由透射曝光光线的非感光材料构成并沿着不同于第一方向的第二方向延伸的栅电极13A。即,进行“形成由非感光材料构成的栅电极”的步骤。具体而言,例如,利用溅射法在整个表面上形成由ITO构成的导电层,然后构图,由此可得到条形的栅电极13A。
[步骤-330]
然后,在栅电极13A和绝缘层12A上形成由正型抗蚀剂材料构成的刻蚀掩模层21A(见图8A)。即,进行“在栅电极和绝缘层上形成刻蚀掩模层”的步骤。
[步骤-340]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10,使刻蚀掩模层21A暴露于曝光光线(见图8B)。然后,显影刻蚀掩模层21A,以便在孔11A上面的部分中贯穿刻蚀掩模层21A形成掩模层开口22A(见图9A)。即,进行“贯穿刻蚀掩模层形成掩模层开口”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以便刻蚀掩模层21A在不将暴露于曝光光线的部分中不被暴露于曝光光线。
[步骤-350]
然后,利用刻蚀掩模层21A刻蚀掩模层开口22A下面的栅电极13A和绝缘层12A,并除去刻蚀掩模层21A,由此穿过孔11A上面的绝缘层12A和栅电极13A形成直径比孔11A大的开口部14,并且在开口部14的底部露出部分阴极电极11(见图9B)。上述开口部14可通过绝缘层12A和栅电极13A的过刻蚀形成。
[步骤-360]
然后,进行例1的[步骤-140](“形成由感光材料构成的电子发射部形成层”的步骤)和例1的[步骤-150](“通过曝光和显影在阴极电极上形成电子发射部”的步骤)。
[步骤-370]
之后,用与例1中的[步骤-160]相同的方式组装显示器。
例4
例4涉及根据本发明第一D方案的用于制造场发射器件的方法和根据本发明第一D方案的制造显示器的方法,并且还涉及根据本发明第一方案的场发射器件和显示器。
下面将参照图10A和10B、图11A和11B、图12A和12B、图13A和13B以及图14介绍例4中的用于制造场发射器件和显示器的方法。
[步骤-400]
首先,进行例1的[步骤-100](“形成阴极电极”的步骤)、例3的[步骤-310](“形成由透射曝光光线的非感光材料构成的绝缘层”的步骤)、和例3的[步骤-320](“形成由非感光材料构成的栅电极”的步骤)。
[步骤-410]
然后在栅电极13A和绝缘层12A上形成由正型抗蚀剂材料构成的第一刻蚀掩模层23A(见图10A)。即,进行“在栅电极和绝缘层上形成第一刻蚀掩模层”的步骤。
[步骤-420]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,使第一刻蚀掩模层23A暴露于曝光光线(见图10B)。然后,显影第一刻蚀掩模层23A,以便在孔11A上面的部分中贯穿第一刻蚀掩模层23A形成掩模层开口24A。即,进行“贯穿第一刻蚀掩模层形成掩模层开口”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以便第一刻蚀掩模层23A在不将暴露于曝光光线的部分中不被暴露于曝光光线。
[步骤-430]
然后,利用第一刻蚀掩模层23A刻蚀掩模层开口24A下面的栅电极13A和绝缘层12A,并除去第一刻蚀掩模层23A,由此穿过孔11A上面的绝缘层12A和栅电极13A形成直径比孔11A大的的开口部14,并且在开口部14的底部露出部分阴极电极11(见图11B)。上述开口部14可通过绝缘层12A和栅电极13A的过刻蚀形成。
[步骤-440]
然后,用与例2中的[步骤-210]相同的方式或其变型形式进行“形成由非感光材料构成的电子发射部形成层”的步骤(见图12A)。
[步骤-450]
然后,在整个表面上形成由负型抗蚀剂材料构成的第二刻蚀掩模层23B(见图12B)。即,进行“形成第二刻蚀掩模层”的步骤。
[步骤-460]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,使孔11A上面的第二刻蚀掩模层23B暴露于曝光光线(见图13A)。然后,显影第二刻蚀掩模层23B,由此在位于开口部14底部中的电子发射部形成层20A上留下第二刻蚀掩模层23B(见图13B)。即,进行“曝光和显影第二刻蚀掩模层”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以便第二刻蚀掩模层23B在不将暴露于曝光光线的部分中不被暴露于曝光光线。
[步骤-470]
然后,用与例2中的[步骤-240]相同的方式或其变型形式,利用第二刻蚀掩模层23B刻蚀电子发射部形成层20A。然后,除去第二刻蚀掩模层23B,并在阴极电极11上和孔11A内部形成由电子发射部形成层20A构成的电子发射部15(见图14)。
[步骤-480]
然后,用与例1的[步骤-160]相同的方式组装显示器。
例5
例5涉及根据本发明第二A方案的用于制造场发射器件的方法和根据本发明第二A方案的制造显示器的方法,并且还涉及根据本发明第一方案的场发射器件和显示器。
下面将参照图15A和15B以及图16介绍例5中的用于制造场发射器件和显示器的方法。
[步骤-500]
首先,用与例1中的[步骤-100]相同的方式进行“形成阴极电极”的步骤。阴极电极11在第一方向(垂直于附图的纸面)延伸。
[步骤-510]
然后,在整个表面上形成由感光材料构成的绝缘层12B。即,进行“形成由感光材料构成的绝缘层”的步骤。具体而言,例如,利用丝网印刷法在整个表面上(具体地说,在包括孔11A内部的阴极电极11和支撑件10的表面上)印刷负型感光玻璃膏,然后烘干。
[步骤-520]
之后,在绝缘层12B上形成由透射曝光光线的感光材料构成并在不同于第一方向的第二方向延伸的栅电极13B(见图15A)。即,进行“形成由透射曝光光线的感光材料构成的栅电极”的步骤。具体而言,例如,利用丝网印刷法在绝缘层12B上印刷负型感光银膏,然后烘干,由此可得到条形的栅电极13B。在曝光阶段银膏透射曝光光线。条形的栅电极13B在不同于第一方向的第二方向(在附图的纸面上的向右和向左方向)延伸。
[步骤-530]
然后,从支撑件10的前表面(第一表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,使栅电极13B和绝缘层12B通过掩模19A暴露于曝光光线(见图15B)。然后,显影栅电极13B和绝缘层12B,由此穿过孔11A上面的栅电极13B和绝缘层12B形成直径比孔11A大的开口部14,并且在开口部14的底部露出部分阴极电极11(见图16)。即,进行“通过从前表面一侧曝光形成开口部”的步骤。
[步骤-540]
然后,进行例1的[步骤-140](“形成由感光材料构成的电子发射部形成层”的步骤)和例1的[步骤-150](“通过曝光和显影在阴极电极上形成电子发射部”的步骤)。
[步骤-550]
然后,用与例1的[步骤-160]相同的方式组装显示器。
用于构成绝缘层和栅电极的材料可选自正型材料。在这种情况下,在[步骤-530]中,绝缘层和栅电极中要被暴露于曝光光线的部分是要形成开口部的部分。
例6
例6涉及根据本发明第二B方案的用于制造场发射器件的方法和根据本发明第二B方案的制造显示器的方法,并且还涉及根据本发明第一方案的场发射器件和显示器。
下面将参照图15A和15B、图16、图5A和5B、图6A和6B以及图7介绍例6中的用于制造场发射器件和显示器的方法。
[步骤-600]
首先,用与例1中的[步骤-100]相同的方式进行“形成阴极电极”的步骤。
[步骤-610]
用与例5的[步骤-510]、[步骤-520]和[步骤-530]相同的方式,进行“形成由感光材料构成的绝缘层”的步骤、“形成由透射曝光光线的感光材料构成的栅电极”的步骤、以及“通过从前表面一侧曝光形成开口部”的步骤(见图15A和15B以及图16。
[步骤-620]
然后,用与例2中的[步骤-210]相同的方式或其变型形式进行“形成由非感光材料构成的电子发射部形成层”的步骤(见图5A)。此外,用与例2的[步骤-220]相同的方式进行“形成刻蚀掩模层”的步骤(见图5B)。
[步骤-630]
然后,用与例2的[步骤-230]相同的方式进行“曝光和显影刻蚀掩模层”的步骤(见图6A和6B)。然后,用与例2的[步骤-240]相同的方式或其变型形式进行“在刻蚀基础上在阴极电极上形成电子发射部”的步骤(见图7)。
[步骤-640]
然后,用与例1的[步骤-160]相同的方式组装显示器。
例7
例7涉及根据本发明第二方案的场发射器件、根据本发明第三A方案的制造场发射器件的方法、根据本发明第二方案的显示器、以及根据本发明第三A方案的制造显示器的方法。
在例7或下面要介绍的例8-12中,至少在孔的内部形成有导电材料或电阻材料构成的可透光层25,并且电子发射部15形成在可透光层25上。在上述方面例7或例8-12不同于例1或例2-6,并且在任何其它方面与例1或例2-6相同。
例7的显示器具有与图1中所示的例1的显示器相同的示意部分端视图,但除了在阴极电极11上形成可透光层之外,因此下面省略了它的详细说明。此外,例7采用与例1中的阳极板结构相同的阳极板AP,因此省略了其详细说明。此外,阴极板CP和阳极板AP的示意部分放大透视图与图33所示的基本相同。
例7的场发射器件包括:
(a)在支撑件10上形成并沿第一方向延伸的阴极电极11,
(b)在支撑件10和阴极电极11上形成的绝缘层12,
(c)在绝缘层12上形成并沿着不同于第一方向的第二方向延伸的栅电极13,(d)贯穿栅电极13和绝缘层12形成的开口部14(贯穿栅电极13形成第一开口部14A,贯穿绝缘层12形成第二开口部14B),以及
(e)电子发射部15,
其中从在开口部14的底部中露出的电子发射部15发射电子.
并且,穿过阴极电极11位于开口部14底部的部分形成达到支撑件10的孔11A。至少在孔11A的内部形成可透光层25,并且在位于开口部14底部的可透光层25上形成电子发射部15。条形的阴极电极的投影图像和条形的栅电极13的投影图像互相垂直相交。
下面参照图17A-17C、图18A和18B以及图19A和19B介绍例7的场发射器件和显示器的制造方法。
[步骤-700]
首先,用与例1的[步骤-100]相同的方式在透射曝光光线的支撑件10的前表面(第一表面)上形成阴极电极11。阴极电极11具有在其底部露出支撑件10的孔11A,由不透射曝光光线的材料构成,并沿着第一方向(垂直于附图的纸面)延伸。即,进行“形成阴极电极”的步骤。然后,至少在孔11A的内部形成由透射曝光光线的导电材料或电阻材料构成的可透光层(见图17A)。即,进行“形成可透光层”的步骤。具体而言,例如,通过CVD法在整个表面上形成由非晶硅(电阻材料)构成的可透光层25,并通过光刻和刻蚀技术对其构图,由此在阴极电极11的整个表面上形成可透光层25。或者,通过溅射法在整个表面上形成由ITO(导电材料)构成的可透光层25,并通过光刻和刻蚀技术对其构图,由此在阴极电极11的整个表面上形成可透光层25。
[步骤-710]
然后,用与例1的[步骤-110]相同的方式在整个表面上形成由透射曝光光线的感光材料构成的绝缘层12。即,进行“形成由透射曝光光线的感光材料构成的绝缘层”的步骤。
[步骤-720]
然后,用与例1的[步骤-120]相同的方式在绝缘层12上形成由感光材料构成并沿不同于第一方向的第二方向(在附图的纸面上的向左和向右方向)延伸的栅电极13(见图17B)。即,进行“形成由感光材料构成的栅电极”的步骤。
[步骤-730]
通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,露出孔11A上面部分中的绝缘层12和栅电极13(见图17C)。然后,显影绝缘层12和栅电极13,并除去孔11A上面的部分中的绝缘层12和栅电极13,由此穿过孔11A上面的绝缘层12和栅电极13形成开口部14,并在开口部14的底部露出可透光层25(见图18A)。即,进行“通过从背表面一侧曝光形成开口部并露出可透光层”的步骤。然后,焙烧构成绝缘层12和栅电极13的材料。用相对于孔11A的自对准方式形成开口部14。
当在[步骤-730]中,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使绝缘层12和栅电极13在不将暴露于曝光光线的部分中不被暴露于曝光光线。
此外,希望在[步骤-730]中穿过孔11A上面的绝缘层12和栅电极13形成直径比孔11A大的开口部14。为此,可采用其中绝缘层12和栅电极13过量暴露于曝光光线的方法(即过曝光法)和/或其中绝缘层12和栅电极13过量显影的方法(即过显影法)。
[步骤-740]
然后,用与例1的[步骤-140]相同的方式,至少在开口部14的内部形成由感光材料构成的电子发射部形成层20(见图18B)。即,进行“形成由感光材料构成的电子发射部形成层”的步骤。
[步骤-750]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,使电子发射部形成层20在孔11A上面的部分暴露于曝光光线(见图19A)。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使电子发射部形成层20在不将暴露于曝光光线的部分中不被暴露于曝光光线。然后,显影电子发射部形成层20,在孔11A上面的部分中留下电子发射部形成层20,并在可透光层25上形成由电子发射部形成层20构成的电子发射部15(见图19B)。即,进行“通过曝光和显影在可透光层上形成电子发射部”的步骤。然后,焙烧构成电子发射部形成层20的材料。用相对于孔11A的自对准方式形成电子发射部15。即,电子发射部15可通过背表面曝光法形成,并且电子发射部15可形成在相对于开口部14穿过栅电极13和绝缘层12形成的开口部14的底部中。
[步骤-760]
之后,用与例1的[步骤-160]相同的方式组装显示器。
例8
例8涉及根据本发明第三B方案的用于制造场发射器件的方法和根据本发明第三B方案的用于制造显示器的方法,并且还涉及根据本发明第二方案的场发射器件和显示器。例8中的场发射器件和显示器的这种构成和结构以及后面要说明的例9-12中的场发射器件和显示器的这种构成和结构基本上与例7中的场发射器件和显示器相同,因此下面不再详细说明。
下面参照图20A和20B、图21A和21B以及图22详细说明例8中的场发射器件和显示器的制造方法。
[步骤-800]
首先,用与例7的[步骤-700]-[步骤-730]相同的方式,进行“形成阴极电极”的步骤、“形成可透光层”的步骤、“形成由透射曝光光线的感光材料构成的绝缘层”的步骤、“形成由感光材料构成的栅电极”的步骤以及“通过从背表面一侧曝光形成开口部并露出可透光层”的步骤。
[步骤-810]
然后,至少在开口部14的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层20A(见图20A)。即,进行“形成由非感光材料构成的电子发射部形成层”的步骤。具体而言,可进行与例2的[步骤-210]相同的步骤或其变型形式的步骤。
[步骤-820]
然后,在整个表面上形成由负型抗蚀剂材料构成的刻蚀掩模层21(见图20B)。即,进行“形成刻蚀掩模层”的步骤。
[步骤-830]
用与例2的[步骤-230]相同的方式,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体地说为紫外线)照射支撑件10,使刻蚀掩模层21在孔11A上面的部分暴露于曝光光线(见图21A)。然后,显影刻蚀掩模层21,由此在位于开口部14的底部中的电子发射部形成层20A上留下刻蚀掩模层21(见图21B)。即,进行“曝光和显影刻蚀掩模层”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使刻蚀掩模层21在不将暴露于曝光光线的部分不被暴露于曝光光线。
[步骤-840]
然后,用与例2的[步骤-240]相同的方式或利用[步骤-240]的改型形式,利用刻蚀掩模层21刻蚀电子发射部形成层20A。然后,去掉刻蚀掩模层21,并在可透光层25上形成由电子发射部形成层20A构成的电子发射部15(见图22)。即,进行“在刻蚀基础上在可透光层上形成电子发射部”的步骤。电子发射部15是以相对于孔11A的自对准方式形成的。即,电子发射部15可通过背表面曝光法形成,并且可用相对于开口部14的自对准方式在穿过栅电极13和绝缘层12形成的开口部14的底部形成电子发射部15。
[步骤-850]
然后,用与例1的[步骤-160]相同的方式组装显示器。
例9
例9涉及根据本发明第三C方案的用于制造场发射器件的方法和根据本发明第三C方案的用于制造显示器的方法,并且还涉及根据本发明第二方案的场发射器件和显示器。
下面参照图23A和23B以及图24A和24B详细说明例9中的场发射器件和显示器的制造方法。
[步骤-900]
用与例7的[步骤-700]相同的方式,进行“形成阴极电极”的步骤和“形成可透光层”的步骤。
[步骤-910]
然后,用与例3的[步骤-310]相同的方式,在整个表面上形成由透射曝光光线的非感光材料构成的绝缘层12A。即,进行“形成由透射曝光光线的非感光材料构成的绝缘层”的步骤。
[步骤-920]
然后,用与例3的[步骤-320]相同的方式,在绝缘层12A上形成由透射曝光光线的非感光材料构成并沿着不同于第一方向的第二方向延伸的栅电极13A。即,进行“形成由非感光材料构成的栅电极”的步骤。
[步骤-930]
之后,用与例3的[步骤-330]相同的方式,在栅电极13A和绝缘层12A上形成由正型抗蚀剂材料构成的刻蚀掩模层21A(见图23A)。即,进行“在栅电极和绝缘层上形成刻蚀掩模层”的步骤。
[步骤-940]
随后,用与例3的[步骤-340]相同的方式,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10,使刻蚀掩模层21A暴露于曝光光线(见图23B)。然后,显影刻蚀掩模层21A,由此在孔11A上面的部分中穿过刻蚀掩模层21A形成掩模层开口22A(见图24A)。即,进行“穿过刻蚀掩模层形成掩模层开口”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使刻蚀掩模层21A的不将暴露于曝光光线的部分不被暴露于曝光光线。
[步骤-950]
之后,用与例3的[步骤-350]相同的方式,利用刻蚀掩模层21A刻蚀掩模层开口22A下面的栅电极13A和绝缘层12A。然后,除去刻蚀掩模层21A,由此穿过孔11A上面的绝缘层12A和栅电极13A形成开口部14,并且在开口部14的底部露出可透光层25(见图24A)。优选,开口部14具有比孔11A大的直径,并且这个开口部14可通过绝缘层12A和栅电极13A的过刻蚀形成。
[步骤-960]
然后,进行例7的[步骤-740](“形成由感光材料构成的电子发射部”的步骤)和例7的[步骤-750](“通过曝光和显影在可透光层上形成电子发射部形成层”的步骤)。
[步骤-970]然后,用与例1的[步骤-160]相同的方式组装显示器。
例10
例10涉及根据本发明第三D方案的用于制造场发射器件的方法和根据本发明第三D方案的用于制造显示器的方法,并且还涉及根据本发明第二方案的场发射器件和显示器。
下面参照图25A和25B、图26A和26B、图27A和27B、图28A和28B以及图29详细说明例10中的场发射器件和显示器的制造方法。
首先,进行例7的[步骤-700](“形成阴极电极”的步骤和“形成可透光层”的步骤)、例3的[步骤-310](“形成由透射曝光光线的非感光材料构成的绝缘层”的步骤)和例3的[步骤-320](“形成由非感光材料构成的栅电极”的步骤)。
[步骤-1010]
然后,在栅电极13A和绝缘层12A上形成由正型抗蚀剂材料构成的第一刻蚀掩模层23A(见图25A)。即,进行“在栅电极和绝缘层上形成第一刻蚀掩模层”的步骤。
[步骤-1020]
然后,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体而言为紫外线)照射支撑件10,使第一刻蚀掩模层23A暴露于曝光光线(见图25B)。然后,显影第一刻蚀掩模层23A,由此在孔11A上面的部分中穿过第一刻蚀掩模层23A形成掩模层开口24A。即,进行“穿过第一刻蚀掩模层形成掩模层开口”的步骤。当通过孔11A作曝光掩模,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使第一刻蚀掩模层23A的不将暴露于曝光光线的部分不被暴露于曝光光线。
[步骤-1030]
然后,利用第一刻蚀掩模层23A刻蚀在掩模层开口24A下面的栅电极13A和绝缘层12A,然后除去第一刻蚀掩模层23A,由此穿过孔11A上面的绝缘层12A和栅电极13A形成开口部14,并且在开口部14的底部露出部分可透光层25(见图26B)。优选,开口部14具有比孔11A大的直径,并且可通过绝缘层12A和栅电极13A的过刻蚀形成这个开口部14。
[步骤-1040]
然后,用与例2的[步骤-210]相同的方式或其改型进行“形成由非感光材料构成的电子发射部形成层”的步骤(见图27A)。
[步骤-1050]
之后,在整个表面上形成由负型抗蚀剂材料构成的第二刻蚀掩模层23B(见图27B)。即,进行“形成第二刻蚀掩模层”的步骤。
[步骤-1060]
并且,通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线(具体而言为紫外线)照射支撑件10,使第二刻蚀掩模层23B在孔11A上面的部分暴露于曝光光线(见图28A)。然后,显影第二刻蚀掩模层23B,由此在位于开口部14底部的电子发射部形成层20A上留下第二刻蚀掩模层23B(见图28B)。即,进行“曝光和显影第二刻蚀掩模层”的步骤。当通过作为曝光掩模的孔11A,从支撑件10的背表面(第二表面)一侧用曝光光线照射支撑件10时,优选在支撑件10的背表面(第二表面)一侧上设置曝光光线屏蔽件(掩模19),以使第二刻蚀掩模层23B的不将暴露于曝光光线的部分不被暴露于曝光光线。
[步骤-1070]
然后,用与例2的[步骤-240]或其改型相同的方式,利用第二刻蚀掩模层23B刻蚀电子发射部形成层20A,然后除去第二刻蚀掩模层23B,以便在可透光层25上形成由电子发射部形成层20A构成的电子发射部15(见图29)。
[步骤-1080]
然后,用与例1的[步骤-160]相同的方式组装显示器。
例11
例11涉及根据本发明第四A方案的用于制造场发射器件的方法和根据本发明第四A方案的用于制造显示器的方法,并且还涉及根据本发明第二方案的场发射器件和显示器。
下面参照图30A和30B以及图31详细说明例11中的场发射器件和显示器的制造方法。
[步骤-1100]
首先,用与例7的[步骤-700]相同的方式,进行“形成阴极电极”的步骤和“形成可透光层”的步骤。阴极电极11沿着第一方向(垂直于附图的纸面)延伸。
[步骤-1110]
然后,用与例5的[步骤-510]相同的方式,在整个表面上形成由感光材料构成的绝缘层12B。即,进行“形成由感光材料构成的绝缘层”的步骤。
[步骤-1120]
然后,用与例5的[步骤-520]相同的方式,在绝缘层12B3上形成由透射曝光光线的感光材料构成并沿着不同于第一方向的第二方向(在附图的纸面上的向左和向右方向)延伸的栅电极13B(见图30A)。即,进行“由透射曝光光线的感光材料构成的栅电极”的步骤。
[步骤-1130]
然后,从支撑件10的前表面(第一表面)一侧穿过具有比支撑件10的前表面(第一表面)一侧上的孔11A更大尺寸的曝光光线屏蔽件(掩模19)来用曝光光线(具体而言为紫外线)照射支撑件10,使栅电极13B和绝缘层12B暴露于曝光光线(见图30B)。然后,显影栅电极13B和绝缘层12B3,由此穿过孔11A上面的栅电极13B和绝缘层12B3形成开口部14,并在开口部14的底部露出可透光层25(见图31)。即,进行“在开口部底部露出可透光层”的步骤。
[步骤-1140]
然后,进行例7的[步骤-740](“形成由感光材料构成的电子发射部形成层”的步骤)和例7的[步骤-750](“通过曝光和显影在可透光层上形成电子发射部”的步骤)。
[步骤-1150]
之后,用与例1的[步骤-160]相同的方式组装显示器。
用于构成绝缘层和栅电极的材料可选自正型材料。在这种情况下,在[步骤-1130]中,绝缘层和栅电极中要暴露于曝光光线的部分是要形成开口部的部分。
例12
例12涉及根据本发明第四B方案的用于制造场发射器件的方法和根据本发明第四B方案的用于制造显示器的方法,并且还涉及根据本发明第二方案的场发射器件和显示器。
下面再参照图30A和30B、图31、图20A和20B、图21A和21B以及图22详细说明例12中的场发射器件和显示器的制造方法。
[步骤-1200]
首先,用与例7的[步骤-700]相同的方式进行“形成阴极电极”的步骤和“形成可透光层”的步骤。
[步骤-1210]
然后,用与例11的[步骤-1110]、[步骤-1120]和[步骤-1130]相同的方式,进行“形成由感光材料构成的绝缘层”的步骤、“形成由透射曝光光线的感光材料构成的栅电极”的步骤以及“在开口部底部露出可透光层”的步骤(见图30A和30B和图31)。
[步骤-1220]
然后,用与例2的[步骤-210]或其改型相同的方式进行“形成由非感光材料构成的电子发射部形成层”的步骤(见图20A)。此外,用与例2的[步骤-220]相同的方式进行“形成刻蚀掩模层”的步骤(见图20B)。
[步骤-1230]
并且,用与例2的[步骤-230]相同的方式进行“曝光和显影刻蚀掩模层”的步骤(见图21A和21B)。然后,用与例2的[步骤-240]或其改型相同的方式进行“在刻蚀基础上在阴极电极上形成电子发射部”的步骤(见图22)。
[步骤-1240]
之后,用与例1的[步骤-160]相同的方式组装显示器。
前面以举例形式介绍了本发明,但本发明不限于此。为了说明的目的,提供了在例子中所述的阳极板、阴极板、显示器和场发射器件的构成和结构,并且可以按要求修改或变换。为了说明的目的给出了用于阳极板、阴极板、显示器和场发射器件的制造方法、各种条件以及材料,但也可以按要求进行修改或变换。此外,为了说明的目的,给出了用于制造阳极板和阴极板的不同材料,并且可以按要求修改或变换。所有的显示器都是作为全色显示器介绍的,但是它们也可以被构成为黑白显示器。
显示器可设有聚焦电极。聚焦电极指的是用于将从开口部发射的电子的路径向阳极电极聚焦的电极,以便可提高亮度和可以防止相邻像素之间的光学串扰。该聚焦电极对所谓高压型冷阴极场发射显示器特别有效,在这种高压型冷阴极场发射显示器中阳极电极和阴极电极之间的电压差在几千伏的数量级上,阳极电极和阴极电极之间的距离相对较大。从聚焦电极控制电路向聚焦电极施加相对负电压。对于每个冷阴极场发射器件不是必须要求形成聚焦电极,但是在冷阴极场发射器件的预定设置方向延伸的聚焦电极可对多个这种冷阴极场发射器件起到公共聚焦效应。
上述聚焦电极例如可通过如下步骤形成:在由42%Ni-Fe合金构成的约几十μm厚的金属片的每个表面上形成由SiO2构成的绝缘膜,并通过冲孔或刻蚀在对应像素的区域中穿过金属片形成开口部。叠置阴极板、金属片和阳极板,在板的周边部分中设置框架,通过热处理将形成在金属片一个表面上的绝缘膜和绝缘层12互相接合在一起,通过热处理将形成在金属片的另一个表面上的绝缘膜和阳极板互相接合,以便集成这些部件,并对如此组装的单元抽真空和密封,由此可完成显示器。
栅电极可具有其中一个片形式的导电材料(具有开口部)覆盖有效场的结构。在这种情况下,向栅电极施加正电压。并且,例如由TFT构成的开关元件设置在构成每个像素的阴极电极和阴极电极控制电路之间,并且通过开关元件的操作来控制施加于构成每个像素的阴极电极的电压状态,由此可控制像素的光发射状态。
或者,阴极电极可具有其中一个片形式的导电材料覆盖有效场的结构。在这种情况下向阴极电极施加电压。并且,例如由TFT构成的开关元件设置在构成每个像素的栅电极和栅电极控制电路之间,并且通过开关元件的操作来控制施加于构成每个像素的栅电极的电压状态,由此可控制像素的光发射状态。
阳极电极可以是具有其中一个片形式的导电材料覆盖有效场的结构的阳极电极,或可以具有其中分别对应一个或多个像素的或分别对应一个或多个电子发射部的阳极电极单元聚集在一起的结构。当阳极电极具有前种结构时,这种阳极电极可连接到阳极电极控制电路,当阳极电极具有后种结构时,例如,每个阳极电极单元可连接到阳极电极控制电路。
在根据本发明第一A方案至第一D方案、本发明第二A方案和第二B方案、本发明的第三A方案到第三D方案、以及本发明第四A方案和第四B方案的制造场发射器件或显示器的方法中,在形成电子发射部形成层和电子发射部的步骤中,可代替电子发射部形成层和电子发射部,形成选择生长区形成层和选择生长区。在这种情况下,最后形成选择生长区之后,可利用CVD法在选择生长区上形成由碳纳米管或碳纳米纤维构成的电子发射部。选择生长区可通过CVD法由具有用于形成电子发射部的一种催化功能的材料形成。
根据本发明,通过背表面曝光法形成电子发射部,因此可利用相对于穿过栅电极和绝缘层形成的开口部的自对准方式在开口部底部形成电子发射部。在根据本发明的第一A方案到第一D方案以及本发明的第三A方案到第三D方案的任何一个的用于制造冷阴极场发射器件或冷阴极场发射显示器的方法中,通过背表面曝光法形成开口部,可利用相对于孔的自对准方式穿过栅电极和绝缘层形成开口部。
因此,可以防止在曝光中由支撑件相对于曝光掩模的位置偏移引起的显示非均匀性的发生,这种偏移是由支撑件的变形或收缩/伸长引起的。
此外,本发明采用用孔作曝光掩模的背表面曝光法,因此可减少光掩模的数量并且还可减少在曝光中调节位置的步骤的数量或省略这些步骤。因此,可降低制造成本,并且可提供便宜的冷阴极场发射显示器。此外,可通过高度精确地构图减小电子发射部和栅电极之间的距离,由此可降低用于发射电子的电压。因此可制造低功耗和便宜的冷阴极场发射显示器。此外,由于主要采用丝网印刷法,因此不再需要频繁使用用于半导体器件的昂贵的制造装置,因而可最终降低冷阴极场发射显示器的制造成本。

Claims (28)

1.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而使在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部的内部形成由感光材料构成的电子发射部形成层,以及
(F)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的电子发射部形成层暴露于曝光光线中,对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
2.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部的内部形成由感光材料构成的电子发射部形成层,以及
(F)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面的电子发射部形成层暴露于曝光光线中,对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
3.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(F)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(G)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面部分中的刻蚀掩模层暴露于曝光光线中,对刻蚀掩模层进行显影以留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,
(H)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔的内部形成由电子发射部形成层构成的电子发射部。
4.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上面的部分中的绝缘层和栅电极暴露于曝光光线中,对绝缘层和栅电极进行显影以除去在孔上面的部分中的绝缘层和栅电极,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部的内部形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(F)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(G)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将在孔上面部分中的刻蚀掩模层暴露于曝光光线中,对刻蚀掩模层进行显影以留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,
(H)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔的内部形成由电子发射部形成层构成的电子发射部。
5.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层,
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以在孔上的部分中贯穿刻蚀掩模层形成掩模层开口,
(F)利用刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(G)至少在开口部内部形成由感光材料构成的电子发射部形成层,以及
(H)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将孔上的电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
6.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层,
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以在孔上的部分中贯穿刻蚀掩模层形成掩模层开口,
(F)利用刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(G)至少在开口部内部形成由感光材料构成的电子发射部形成层,以及
(H)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而将孔上的电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影以在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
7.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层,
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线中,然后对第一刻蚀掩模层进行显影以在孔上的部分中贯穿第一刻蚀掩模层形成掩模层开口,
(F)利用第一刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(G)至少在开口部内部形成由透射曝光光线的非感光材料构成的电子发射部形成层;
(H)在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层;
(I)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将第二刻蚀掩模层暴露于曝光光线中,然后对第二刻蚀掩模层进行显影,由此留下位于开口部底部中的电子发射部形成层上的第二刻蚀掩模层,以及
(J)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
8.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层,
(E)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线中,然后对第一刻蚀掩模层进行显影以在孔上的部分中贯穿第一刻蚀掩模层形成掩模层开口,
(F)利用第一刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,由此在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(G)至少在开口部内部形成由透射曝光光线的非感光材料构成的电子发射部形成层;
(H)在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层;
(I)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上的部分中将第二刻蚀掩模层暴露于曝光光线中,然后对第二刻蚀掩模层进行显影,由此留下位于开口部底部中的电子发射部形成层上的第二刻蚀掩模层,以及
(J)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
9.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件、从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线中,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部内部形成由感光材料构成的电子发射部形成层,以及
(F)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上的电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
10.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件、从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线中,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部内部形成由感光材料构成的电子发射部形成层,以及
(F)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上的电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影,从而在阴极电极上和孔内部形成由电子发射部形成层构成的电子发射部。
11.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件、从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线中,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部内部形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(F)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(G)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上的部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(H)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔的内部形成由电子发射部形成层构成的电子发射部。
12.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(C)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(D)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件、从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线中,然后对栅电极和绝缘层进行显影,从而在孔上贯穿栅电极和绝缘层形成开口部,在开口部的底部中露出部分阴极电极,所述开口部具有比所述孔更大的直径,
(E)至少在开口部内部形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(F)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(G)利用曝光光线、从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上的部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(H)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在阴极电极上和孔的内部形成由电子发射部形成层构成的电子发射部。
13.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将绝缘层和栅电极暴露于曝光光线中,然后对绝缘层和栅电极进行显影以除去在孔上部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部形成由感光材料构成的电子发射部形成层,
(G)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影以在可透光层上形成由电子发射部形成层构成的电子发射部。
14.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将绝缘层和栅电极暴露于曝光光线中,然后对绝缘层和栅电极进行显影以除去在孔上部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部形成由感光材料构成的电子发射部形成层,
(G)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影以在可透光层上形成由电子发射部形成层构成的电子发射部。
15.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将绝缘层和栅电极暴露于曝光光线中,然后,对绝缘层和栅电极进行显影以除去在孔上部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(G)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(H)从支撑件的背表面侧、通过作为曝光用掩模的所述孔用曝光光线照射支撑件,从而将在孔上部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以留下在位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(I)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
16.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将绝缘层和栅电极暴露于曝光光线中,然后,对绝缘层和栅电极进行显影以除去在孔上部分中的绝缘层和栅电极,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(G)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(H)从支撑件的背表面侧、通过作为曝光用掩模的所述孔用曝光光线照射支撑件,从而将在孔上部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以留下在位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(I)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
17.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层,
(F)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以在孔上的部分中形成贯穿刻蚀掩模层的掩模层开口,
(G)利用刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部露出可透光层,
(H)至少在开口部内部,形成由感光材料构成的电子发射部形成层,
(I)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影从而在可透光层上形成由电子发射部形成层构成的电子发射部。
18.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)在栅电极和绝缘层上形成由抗蚀剂材料构成的刻蚀掩模层,
(F)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影以在孔上的部分中形成贯穿刻蚀掩模层的掩模层开口,
(G)利用刻蚀掩模层对在掩模层开口下面的栅电极和绝缘层进行刻蚀,然后除去刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部露出可透光层,
(H)至少在开口部内部,形成由感光材料构成的电子发射部形成层,
(I)从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影从而在可透光层上形成由电子发射部形成层构成的电子发射部。
19.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层,
(F)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线中,然后对第一刻蚀掩模层进行显影以在孔上的部分中形成贯穿第一刻蚀掩模层的掩模层开口,
(G)利用第一刻蚀掩模层对在掩模层开口下面部分中的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部露出可透光层,
(H)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(I)在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层,
(J)用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将第二刻蚀掩模层暴露于曝光光线中,然后对第二刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的第二刻蚀掩模层,
(K)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
20.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成绝缘层,所述绝缘层由透射曝光光线的非感光材料构成;
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的非感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)在栅电极和绝缘层上形成由抗蚀剂材料构成的第一刻蚀掩模层,
(F)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将第一刻蚀掩模层暴露于曝光光线中,然后对第一刻蚀掩模层进行显影以在孔上的部分中形成贯穿第一刻蚀掩模层的掩模层开口,
(G)利用第一刻蚀掩模层对在掩模层开口下面部分中的栅电极和绝缘层进行刻蚀,然后除去第一刻蚀掩模层,从而在孔上贯穿绝缘层和栅电极形成开口部,在开口部底部露出可透光层,
(H)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(I)在整个表面上形成由抗蚀剂材料构成的第二刻蚀掩模层,
(J)用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述孔照射支撑件,从而在孔上部分中将第二刻蚀掩模层暴露于曝光光线中,然后对第二刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的第二刻蚀掩模层,以及
(K)利用第二刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去第二刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
21.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而贯穿孔上的栅电极和绝缘层形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由感光材料构成的电子发射部形成层,以及
(G)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
22.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而贯穿孔上的栅电极和绝缘层形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由感光材料构成的电子发射部形成层,以及
(G)从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而在孔上部分中将电子发射部形成层暴露于曝光光线中,然后对电子发射部形成层进行显影,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
23.一种用于制造冷阴极场发射器件的方法,包括步骤:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而贯穿孔上的栅电极和绝缘层形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(G)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(H)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(I)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
24.一种用于制造冷阴极场发射显示器的方法,包括:设置具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,使得荧光层和冷阴极场发射器件彼此相对,并在衬底和支撑件的周边部分将它们接合起来,
其中,冷阴极场发射器件由下述步骤形成:
(A)在透射曝光光线的支撑件的前表面上形成阴极电极,所述阴极电极有孔,在此孔的底部露出支撑件,所述阴极电极由不透射曝光光线的材料构成并沿第一方向延伸,
(B)至少在孔的内部,形成由透射曝光光线的导电材料或电阻材料构成的可透光层,
(C)在具有阴极电极的支撑件的整个前表面上形成由感光材料构成的绝缘层,
(D)在绝缘层上形成栅电极,所述栅电极由透射曝光光线的感光材料构成并沿着与第一方向不同的第二方向延伸,
(E)提供曝光光线屏蔽件,并利用曝光光线穿过所述曝光光线屏蔽件从支撑件的前表面侧照射支撑件,从而将栅电极和绝缘层暴露于曝光光线,然后对栅电极和绝缘层进行显影,从而贯穿孔上的栅电极和绝缘层形成开口部,在开口部的底部中露出可透光层,
(F)至少在开口部内部,形成由透射曝光光线的非感光材料构成的电子发射部形成层,
(G)在整个表面上形成由抗蚀剂材料构成的刻蚀掩模层,
(H)利用曝光光线从支撑件的背表面侧、通过作为曝光用掩模的所述阴极电极的所述孔照射支撑件,从而将在孔上部分中的刻蚀掩模层暴露于曝光光线中,然后对刻蚀掩模层进行显影,从而留下位于开口部底部中的电子发射部形成层上的刻蚀掩模层,以及
(I)利用刻蚀掩模层对电子发射部形成层进行刻蚀,然后除去刻蚀掩模层,从而在可透光层上形成由电子发射部形成层构成的电子发射部。
25.一种冷阴极场发射器件,包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,以及
在阴极电极位于开口部底部的部分上以及孔的内部,形成电子发射部。
26.一种冷阴极场发射器件,包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,
至少在孔内部形成可透光层,以及
在位于开口部底部中的可透光层上形成电子发射部。
27.一种冷阴极场发射显示器,包括:具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,设置衬底和支撑件,使得荧光层和冷阴极场发射器件彼此相对并在它们的周边部分彼此接合起来,
冷阴极场发射器件包括;
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,以及
在阴极电极位于开口部底部的部分上以及孔的内部,形成电子发射部。
28.一种冷阴极场发射显示器,包括:具有阳极电极和荧光层的衬底以及具有冷阴极场发射器件的支撑件,设置衬底和支撑件,使得荧光层和冷阴极场发射器件彼此相对并在它们的周边部分彼此接合起来,
冷阴极场发射器件包括:
(a)在支撑件上形成并沿第一方向延伸的阴极电极,
(b)在支撑件和阴极电极上形成的绝缘层,
(c)在绝缘层上形成并沿着不同于第一方向的第二方向延伸的栅电极,
(d)贯穿栅电极和绝缘层形成的开口部,以及
(e)电子发射部,
其中从在开口部底部中露出的电子发射部发射电子,
其中在阴极电极位于开口部底部的部分中设置达到支撑件的孔,
至少在孔内部形成可透光层,以及
在位于开口部底部中的可透光层上形成电子发射部。
CNB031243649A 2002-03-27 2003-03-26 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法 Expired - Fee Related CN1324629C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP88857/2002 2002-03-27
JP88857/02 2002-03-27
JP2002088857A JP3636154B2 (ja) 2002-03-27 2002-03-27 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法

Publications (2)

Publication Number Publication Date
CN1447369A CN1447369A (zh) 2003-10-08
CN1324629C true CN1324629C (zh) 2007-07-04

Family

ID=28449475

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031243649A Expired - Fee Related CN1324629C (zh) 2002-03-27 2003-03-26 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法

Country Status (4)

Country Link
US (5) US6900066B2 (zh)
JP (1) JP3636154B2 (zh)
KR (1) KR20030078024A (zh)
CN (1) CN1324629C (zh)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195938B2 (en) * 2001-10-19 2007-03-27 Nano-Proprietary, Inc. Activation effect on carbon nanotubes
US8062697B2 (en) * 2001-10-19 2011-11-22 Applied Nanotech Holdings, Inc. Ink jet application for carbon nanotubes
JP3636154B2 (ja) * 2002-03-27 2005-04-06 ソニー株式会社 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法
JP4110912B2 (ja) * 2002-05-24 2008-07-02 ソニー株式会社 冷陰極電界電子放出表示装置
JP4366920B2 (ja) * 2002-11-07 2009-11-18 ソニー株式会社 平面型表示装置及びその製造方法
KR100918044B1 (ko) * 2003-05-06 2009-09-22 삼성에스디아이 주식회사 전계 방출 표시장치
US20070187710A1 (en) * 2003-09-08 2007-08-16 Schefenacker Vision Systmes Usa Inc. Led light source
KR20050051817A (ko) * 2003-11-28 2005-06-02 삼성에스디아이 주식회사 전계 방출 표시장치와 이의 제조 방법
KR20050096534A (ko) * 2004-03-31 2005-10-06 삼성에스디아이 주식회사 전자 방출 표시 장치의 캐소드 기판 및 그 제조 방법
KR20050115057A (ko) * 2004-06-03 2005-12-07 삼성에스디아이 주식회사 전계 방출 소자용 장수명 이미터 및 그 제조 방법
KR20060009681A (ko) * 2004-07-26 2006-02-01 삼성에스디아이 주식회사 탄소나노튜브 에미터를 구비하는 전계 방출 디스플레이 및그 제조 방법
KR20070003467A (ko) * 2005-07-02 2007-01-05 삼성전자주식회사 면광원장치와 이를 포함하는 액정표시장치
KR100700527B1 (ko) * 2005-09-08 2007-03-28 엘지전자 주식회사 탄소 나노튜브 전계방출소자 및 그 제조 방법
US20070120462A1 (en) * 2005-09-30 2007-05-31 Kim Il-Hwan Electron emission device, method of manufacturing the electron emission device, and electron emission display having the electron emission device
KR100700528B1 (ko) * 2005-10-06 2007-03-28 엘지전자 주식회사 자외선 차폐층을 구비한 전계방출소자
US7413924B2 (en) * 2005-10-31 2008-08-19 Motorola, Inc. Plasma etch process for defining catalyst pads on nanoemissive displays
KR20070047521A (ko) * 2005-11-02 2007-05-07 삼성에스디아이 주식회사 전계방출형 백라이트 유닛 및 구동방법
KR100784997B1 (ko) * 2006-01-14 2007-12-12 삼성에스디아이 주식회사 전자 방출 소자의 제조방법, 이에 의하여 제조된 전자 방출소자, 이를 적용한 백라이트 장치 및 전자 방출디스플레이 장치
US20070187246A1 (en) * 2006-02-16 2007-08-16 Teco Electric & Machinery Co., Ltd. Method of manufacturing carbon nanotube electron field emitters by dot-matrix sequential electrophoretic deposition
US20070187245A1 (en) * 2006-02-16 2007-08-16 Teco Electric & Machinery Co., Ltd. Method for fabricating nanotube electron emission source by scanning-matrix type electrophoresis deposition
US20070215473A1 (en) * 2006-03-17 2007-09-20 Teco Electric & Machinery Co., Ltd. Method for sequentially electrophoresis depositing carbon nanotube of field emission display
WO2008002320A1 (en) * 2006-06-28 2008-01-03 Thomson Licensing Liquid crystal display having a field emission backlight
US20080007491A1 (en) * 2006-07-05 2008-01-10 Kuei Wen Cheng Mirror having a field emission information display
CN101165937A (zh) * 2006-10-18 2008-04-23 清华大学 有机复合物p-n结及其制备方法以及应用该p-n结的有机复合物二极管
KR100837407B1 (ko) 2006-11-15 2008-06-12 삼성전자주식회사 전계방출소자의 제조방법
KR20080045016A (ko) * 2006-11-17 2008-05-22 삼성에스디아이 주식회사 전자 방출 디바이스, 전자 방출 디바이스의 제조 방법, 및전자 방출 디바이스를 구비한 발광 장치
EP2102701A1 (en) * 2006-12-18 2009-09-23 Thomson Licensing Display device having field emission unit with black matrix
CN101563645B (zh) * 2006-12-18 2013-04-24 汤姆森特许公司 用于场发射装置背光单元的屏幕结构
TW200828400A (en) * 2006-12-29 2008-07-01 Tatung Co Ltd Method for the manufacture of field emission display
KR20090005826A (ko) * 2007-07-10 2009-01-14 삼성에스디아이 주식회사 전자 방출 디바이스
JP5373289B2 (ja) * 2008-01-10 2013-12-18 ソニー株式会社 平面型表示装置の処理方法
JP2009302003A (ja) * 2008-06-17 2009-12-24 Canon Inc 電子放出素子及び画像表示装置
KR100943971B1 (ko) * 2008-06-30 2010-02-26 한국과학기술원 탄소 미세 구조물을 갖는 전계방출 어레이 및 그 제조방법
CN102124536A (zh) * 2008-08-22 2011-07-13 E.I.内穆尔杜邦公司 制造场发射装置中的空气焙烧阴极组合件的方法
KR101088106B1 (ko) * 2008-12-02 2011-11-30 한국전자통신연구원 전계 방출 장치
JP2010225297A (ja) * 2009-03-19 2010-10-07 Futaba Corp 冷陰極電子源の製造方法及び冷陰極電子源。
CN104064436A (zh) * 2013-03-22 2014-09-24 海洋王照明科技股份有限公司 一种场发射平面光源及其制备方法
CN104064433A (zh) * 2013-03-22 2014-09-24 海洋王照明科技股份有限公司 一种场发射平面光源及其制备方法
US9190237B1 (en) * 2014-04-24 2015-11-17 Nxp B.V. Electrode coating for electron emission devices within cavities
KR102158776B1 (ko) * 2017-01-03 2020-09-23 한국전자통신연구원 전자 방출원 및 이를 이용한 엑스선 발생 장치
US10580612B2 (en) 2017-01-03 2020-03-03 Electronics And Telecommunications Research Institute Electron emission source and X-ray generator using the same
CN106980850B (zh) * 2017-06-02 2020-03-06 京东方科技集团股份有限公司 一种纹路检测装置及其纹路检测方法
US10509169B2 (en) * 2017-10-30 2019-12-17 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method of the same
CN109449075B (zh) * 2018-10-12 2021-09-17 人民百业科技有限公司 一种液晶显示装置的背光源模组
CN109188770B (zh) * 2018-10-12 2021-07-23 江西省弘叶光电科技有限公司 一种背光源模块及其液晶显示器
CN109192147B (zh) * 2018-10-12 2021-03-19 盐城华旭光电技术有限公司 一种带有柔性线路板的显示器及其图像矫正方法
CN109671600B (zh) * 2019-01-31 2023-10-20 南京工程学院 一种波长可调的AlGaAs光电阴极
US11327228B2 (en) * 2020-07-09 2022-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Photonic device and fabrication method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246851A (ja) * 1990-02-23 1991-11-05 Matsushita Electric Ind Co Ltd 電子放出素子
US5374868A (en) * 1992-09-11 1994-12-20 Micron Display Technology, Inc. Method for formation of a trench accessible cold-cathode field emission device
JPH07320636A (ja) * 1994-05-25 1995-12-08 Toppan Printing Co Ltd 電子放出素子の製造方法
JPH07320629A (ja) * 1994-05-25 1995-12-08 Toppan Printing Co Ltd 電子放出素子及びその製造方法
CN1174629A (zh) * 1995-02-15 1998-02-25 莱特拉伯公司 场发射阴极及其生成方法
JP2000215792A (ja) * 1999-01-20 2000-08-04 Sony Corp 平面型表示装置の製造方法
JP2000285796A (ja) * 1999-01-25 2000-10-13 Sony Corp 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297587B1 (en) * 1998-07-23 2001-10-02 Sony Corporation Color cathode field emission device, cold cathode field emission display, and process for the production thereof
JP2000100315A (ja) * 1998-07-23 2000-04-07 Sony Corp 冷陰極電界電子放出素子及び冷陰極電界電子放出表示装置
US6465941B1 (en) * 1998-12-07 2002-10-15 Sony Corporation Cold cathode field emission device and display
US6771236B1 (en) * 1999-03-05 2004-08-03 Sony Corporation Display panel and display device to which the display panel is applied
JP4670137B2 (ja) * 2000-03-10 2011-04-13 ソニー株式会社 平面型表示装置
JP3636154B2 (ja) * 2002-03-27 2005-04-06 ソニー株式会社 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246851A (ja) * 1990-02-23 1991-11-05 Matsushita Electric Ind Co Ltd 電子放出素子
US5374868A (en) * 1992-09-11 1994-12-20 Micron Display Technology, Inc. Method for formation of a trench accessible cold-cathode field emission device
JPH07320636A (ja) * 1994-05-25 1995-12-08 Toppan Printing Co Ltd 電子放出素子の製造方法
JPH07320629A (ja) * 1994-05-25 1995-12-08 Toppan Printing Co Ltd 電子放出素子及びその製造方法
CN1174629A (zh) * 1995-02-15 1998-02-25 莱特拉伯公司 场发射阴极及其生成方法
JP2000215792A (ja) * 1999-01-20 2000-08-04 Sony Corp 平面型表示装置の製造方法
JP2000285796A (ja) * 1999-01-25 2000-10-13 Sony Corp 冷陰極電界電子放出素子及びその製造方法、並びに、冷陰極電界電子放出表示装置

Also Published As

Publication number Publication date
US7169628B2 (en) 2007-01-30
CN1447369A (zh) 2003-10-08
US7166482B2 (en) 2007-01-23
US20050168133A1 (en) 2005-08-04
US7118927B2 (en) 2006-10-10
US20050170738A1 (en) 2005-08-04
KR20030078024A (ko) 2003-10-04
US20050176335A1 (en) 2005-08-11
JP2003288836A (ja) 2003-10-10
US20030190772A1 (en) 2003-10-09
US20050227570A1 (en) 2005-10-13
JP3636154B2 (ja) 2005-04-06
US6900066B2 (en) 2005-05-31
US7195943B2 (en) 2007-03-27

Similar Documents

Publication Publication Date Title
CN1324629C (zh) 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法
CN1348197A (zh) 电子发射器件、冷阴极场致发射器件和显示器及其制造法
CN1170458C (zh) 有源驱动型有机el显示装置及其制造方法
CN1279576C (zh) 半导体设备及其制造方法
CN1115705C (zh) 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法
CN1309407A (zh) 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1086053C (zh) 电子源和图像形成装置
CN1263067C (zh) 气体放电面板
CN1313623A (zh) 平面型显示器
CN1263153C (zh) 半导体器件及其制作方法
CN1072388C (zh) 制造电子源的方法
CN1606791A (zh) 电子发射体、冷阴极场电子发射元件和冷阴极场电子发射显示装置的制造方法
CN1146943C (zh) 隔板和图象形成装置及其制造方法
CN1287404C (zh) 电子发射器件和利用它的电子源、图象显示装置、荧光灯及其制造方法
CN1127750C (zh) 减少电荷的薄膜,图象形成装置及其制造方法
CN1913076A (zh) 电子发射器件、使用它的电子源和显示设备及其制造方法
CN1897090A (zh) 半导体器件及其驱动方法
CN1533579A (zh) 电子发射体及其制造方法、冷阴极场致电子发射部件及其制造方法和冷阴极场致电子发射显示装置及其制造方法
CN101069222A (zh) 显示装置
CN1114224C (zh) 电子束装置、图象形成装置及电子束装置的制造方法
CN1574155A (zh) 具有偶极子层的电子发射器件、电子源和图像显示器
CN1298196A (zh) 消气部件、平板式显示器及其制造方法
CN1462464A (zh) 平面型显示装置的平整处理方法及平面型显示装置用基板的平整处理方法
CN1776919A (zh) 有机电致发光装置
CN1664980A (zh) 显示板和显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070704

Termination date: 20100326