CN100538879C - 不良芯片的补救率提高了的半导体存储器 - Google Patents

不良芯片的补救率提高了的半导体存储器 Download PDF

Info

Publication number
CN100538879C
CN100538879C CNB031205143A CN03120514A CN100538879C CN 100538879 C CN100538879 C CN 100538879C CN B031205143 A CNB031205143 A CN B031205143A CN 03120514 A CN03120514 A CN 03120514A CN 100538879 C CN100538879 C CN 100538879C
Authority
CN
China
Prior art keywords
mentioned
circuit
address
line
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031205143A
Other languages
English (en)
Other versions
CN1467746A (zh
Inventor
日高秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1467746A publication Critical patent/CN1467746A/zh
Application granted granted Critical
Publication of CN100538879C publication Critical patent/CN100538879C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/808Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout using a flexible replacement scheme
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/84Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability
    • G11C29/846Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability by choosing redundant lines at an output stage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/84Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability
    • G11C29/848Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability by adjacent switching

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

在存储单元阵列14中设置了配置备用存储单元的备用列。存储单元阵列14可在存储单元阵列的右半部分和左半部分中变更根据同一行地址一并地选择的子字线的分配。可通过切断在SD发生电路4中内置的熔断元件来进行该分配的变更。即使是多个不良存储单元集中在同一存储单元行的情况,由于可利用地址分配的变更使与不良存储单元的行地址对应的选择单位中的数目分散,故也可利用备用存储单元来增加能补救的芯片。因而,在不增加备用存储单元的数目的情况下可提高不良芯片的补救率。

Description

不良芯片的补救率提高了的半导体存储器
技术领域
本发明涉及半导体存储器,更特定地说,涉及包含能进行由备用存储单元导致的置换的存储单元阵列的的半导体存储器。
背景技术
近年来,半导体存储器在高集成化方面正日益取得进展。集成度高的半导体存储器具备备用存储单元,一般来说,即使在制造阶段中在一部分的存储单元中产生了缺陷的情况下,也可将该缺陷产生的不良存储单元置换为备用存储单元进行补救。一般使用通过进行这样的冗余置换来提高成品率的方法。
但是,由于半导体存储器的大规模化的缘故,第一,为了提高成品率,包含成为必要的备用存储单元的元素的数目增大,随之,用来存储应置换备用存储单元的不良存储单元的地址的编程元件的数目也增加了。由于这些要素增加的缘故,发生芯片面积增大的问题。
为了进行置换,必须以非易失性的方式存储不良存储单元的地址。作为其方法,大多使用熔断元件等的编程元件。使用激光束等来切断该熔断元件。为了可靠地进行切断且不损伤周围的元件,对于熔断元件来说必须有某种程度的大小,此外在其周边不存在其它的元件。因而,具备越多的编程元件,芯片面积就越大。
此外,第二,随着编程元件数目的增加,用来补救不良芯片的编程时间也不能忽略,发生了制造成本增大的问题。
发明内容
本发明的目的在于提供提高了起因于不良存储单元的不良芯片的补救率的半导体存储器。
如果归纳本发明,则本发明是一种半导体存储器,具备:第一~第四正规存储单元组、第一、第二预备存储单元、第一选择电路和第二选择电路。
第一~第四正规存储单元组分别包含多个正规存储单元。
第一、第二预备存储单元用来对上述多个正规存储单元中的缺陷存储单元进行置换。
第一选择电路以非易失性的方式保持地址分配信息。第一选择电路响应于作为输入地址所供给的第一地址值,与第一预备存储单元一起选择根据该地址分配信息所决定的第一~第四正规存储单元组中的某2个正规存储单元组。第一选择电路响应于作为输入地址所供给的第二地址值,与第二预备存储单元一起选择根据地址分配信息所决定的第一~第四正规存储单元组中的另外2个正规存储单元组。
第二选择电路以非易失性的方式保持置换信息。第二选择电路根据该置换信息选择第一预备存储单元来代替根据第一地址值所选择的正规存储单元中的第一缺陷存储单元。第二选择电路根据置换信息选择第二预备存储单元来代替根据第二地址值所选择的正规存储单元中的第二缺陷存储单元。
因而,本发明的主要的优点是既可抑制预备存储单元数目的增加,又可提高由预备存储单元得到的不良芯片的补救率。
通过参照附图的后述的本发明的详细的说明,本发明的上述和其它的目的、特征、方面和优点会变得更加明白。
附图说明
图1是示出本发明的实施例1的半导体存储器1的结构的概略框图。
图2是概略地示出存储单元阵列14的结构的电路图。
图3是示出了图1中的SD发生电路4的结构的电路图。
图4是示出了图3中的开关电路92的结构的电路图。
图5是说明虽然以往不能置换但利用本发明成为可置换的不良存储单元的配置用的图。
图6是说明在本发明的实施例1中进行的存储单元的置换用的图。
图7是说明实施例1的变例用的电路图。
图8是示出实施例2的半导体存储器201的结构的框图。
图9是说明图8中的行译码器+列译码器202的结构和存储单元阵列214的结构用的图。
图10是说明不良部位用的逻辑地址图。
图11是说明实施例2中的存储单元的置换用的图。
图12是示出实施例3的半导体存储器301的结构的框图。
图13是示出图12中的2对1译码器309的结构的电路图。
图14是示出图12中的IOS发生电路304的结构的电路图。
图15是说明在存储单元阵列的1个存储单元行中存在多个不良存储单元的情况用的图。
图16是说明行地址的信号位RAx为0时的不良存储单元的置换用的图。
图17是说明行地址的信号位RAx为1时的不良存储单元的置换用的图。
图18是示出实施例4的半导体存储器401的结构的概略框图。
图19是示出图18中的IO选择器410的结构的电路图。
图20是示出实施例5的半导体存储器501的结构的框图。
图21是示出图20中的IO移动电路510的结构的电路图。
图22是说明在实施例5中能进行补救的不良存储单元的发生位置用的图。
图23是示出实施例6的半导体存储器601的结构的框图。
图24是说明地址置换前的不良的位置用的图。
图25是示出了能进行地址分配变更后的错误校正的不良的存在部位用的图。
图26是示出实施例7的半导体存储器701的结构的电路图。
图27是示出了在实施例8的半导体存储器中代替图4中示出的开关电路92而使用的开关电路802的结构的电路图。
图28是说明第二测试模式用的图。
图29是说明组合了图27、图28的变例用的图。
具体实施方式
以下,参照附图详细地说明本发明的实施例。再有,图中同一符号表示同一或相当的部分。
〔实施例1〕
图1是示出本发明的实施例1的半导体存储器1的结构的概略框图。
参照图1,半导体存储器1包含:行译码器2,用来接受行地址信号RA0~RAk以进行存储单元的行的选择;主字驱动器MWD,根据行译码器2的输出来驱动主字线;以及SD发生电路4,接受行地址信号RA0~RAk,输出信号SD10~SD21。
半导体存储器1还包含:地址编程电路6,以非易失性的方式存储与不良存储单元对应的应置换的地址;地址比较器8,比较地址编程电路6的输出与列地址信号CA0~CAn;列译码器10,用来根据地址比较器8的输出决定激活状态,根据列地址信号CA0~CAn进行存储单元的列选择;备用列译码器12,用来根据地址比较器8的输出选择备用存储单元的列;以及存储单元阵列14。
存储单元阵列14根据行译码器2、列译码器10以及备用列译码器12的输出选择行和列,进行与外部的数据的授受。存储单元阵列14包含子字驱动器SWD和读出放大器带SAB,被子字驱动器SWD和读出放大器带SAB分割为被区分为栅格状的多个存储器块。
半导体存储器1利用行译码器2、子字驱动器SWD和SD发生电路4进行存储单元的行的选择作为第一阶段,利用地址编程电路6、地址比较器8、列译码器10和备用列译码器12进行存储单元的列的选择作为第二阶段。在该第二阶段的列选择时,进行备用存储单元对于正规存储单元的置换。
图2是概略地示出存储单元阵列14的结构的电路图。再有,为了说明起见,在图中也示出了行译码器2和主字驱动器MWD。
参照图2,存储单元阵列14包含:子字驱动器带SWD;读出放大器带SAB;以及存储器块BLK11、BLK12、BLK21、BLK22。
子字驱动器带SWD包含:子字驱动器SWD10,根据主字驱动器MWD的输出驱动子字线SWL10;以及子字驱动器SWD11,根据主字驱动器MWD的输出驱动子字线SWL11。子字驱动器SWD10、SWD11是与存储器块BLK11对应地设置的。子字驱动器SWD10、SWD11分别根据信号SD10、信号SD11而被激活。
存储单元阵列14还包含:子字驱动器SWD20,根据主字驱动器MWD的输出驱动子字线SWL20;以及子字驱动器SWD21,根据主字驱动器MWD的输出驱动子字线SWL21。子字驱动器SWD20、SWD21是与存储器块BLK12对应地设置的。子字驱动器SWD20、SWD21分别根据信号SD20、信号SD21而被激活。
这样,将对于主字线MWL来说在每个存储器块中设置多条子字线的结构称为分层字线结构。
一般来说,存储单元MC包含在单元板与存储节点之间连接的电荷蓄积用的电容器MQ和在存储节点与位线之间连接的、其栅连接到子字线上的存取晶体管MT。将子字线连接到并排为多个一行的存取晶体管的栅上。因此,由于用作为通常与栅相同的材料的多晶硅等来形成子字线,故其为电阻高的布线。
如果加长这样的电阻高的子字线,则在激活存储单元的行的整体方面很费时间。分层字线的特征在于:分割子字线、利用电阻低的主字线能高速地进行驱动。
存储单元阵列14还包含:备用存储器块SBLK1,与存储器块BLK12邻接地配置,共有子字线SWL20、SWL21;以及备用存储器块SBLK2,与存储器块BLK22邻接地配置,共有存储器块BLK22和子字线。
在存储器块BLK11、BLK12中分别配置了多个位线对,但作为代表图示了位线BLj1、/BLj1、BLj2、/BLj2。在备用存储器块SBLK1中配置了连接备用存储单元的的位线SBLj、/SBLj。
读出放大器带SAB包含:N沟道MOS晶体管22,根据信号BLI1的激活,连接位线BLj1与位线BL1;以及N沟道MOS晶体管24,连接位线/BLj1与位线/BL1。
读出放大器带SAB还包含:N沟道MOS晶体管26,根据信号BLI2将位线BL1连接到存储器块BLK21的对应的位线上;以及N沟道MOS晶体管28,将位线/BL1连接到存储器块BLK21的对应的位线上。
读出放大器带SAB还包含:读出放大器30,放大位线BL1、/BL1之间产生的电位差;N沟道MOS晶体管32,根据列选择线CSLj1的激活而导通,连接位线BL1与数据线DB2;以及N沟道MOS晶体管34,根据列选择线CSLj1的激活,连接位线/BL1与数据线/DB2。
读出放大器带SAB还包含:N沟道MOS晶体管42,根据信号BLI1的激活,连接位线BLj2与位线BL2;以及N沟道MOS晶体管44,连接位线/BLj1与位线/BL2。
读出放大器带SAB还包含:N沟道MOS晶体管46,根据信号BLI2将位线BL2连接到存储器块BLK22的对应的位线上;以及N沟道MOS晶体管48,将位线/BL2连接到存储器块BLK22的对应的位线上。
读出放大器带SAB还包含:读出放大器50,放大位线BL2、/BL2之间产生的电位差;N沟道MOS晶体管52,根据列选择线CSLj2的激活而导通,连接位线BL2与数据线DB2;以及N沟道MOS晶体管54,根据列选择线CSLj2的激活,连接位线/BL2与数据线/DB1。
读出放大器带SAB还包含:N沟道MOS晶体管62,根据信号BLI1的激活,连接位线SBLj与位线SBL;以及N沟道MOS晶体管64,连接位线/SBLj与位线/SBL。
读出放大器带SAB还包含:N沟道MOS晶体管66,根据信号BLI2将位线SBL连接到存储器块SBLK2的对应的位线上;以及N沟道MOS晶体管68,将位线/SBL连接到存储器块SBLK2的对应的位线上。
读出放大器带SAB还包含:读出放大器70,放大位线SBL、/SBL之间产生的电位差;N沟道MOS晶体管76,根据列选择线SCSL2的激活而导通,连接位线SBL与数据线DB1;N沟道MOS晶体管78,根据列选择线SCSL2的激活,连接位线/SBL与数据线/DB1;N沟道MOS晶体管72,根据列选择线SCSL1的激活而导通,连接位线SBL与数据线DB2;以及N沟道MOS晶体管74,根据列选择线SCSL1的激活,连接位线/SBL与数据线/DB2。
图3是示出了图1中的SD发生电路4的结构的电路图。
参照图3,SD发生电路4包含:开关电路92,选择行地址信号RA0和作为其倒相信号的信号/RA0的某一方;AND电路94,接受开关电路92的输出和块选择信号BLK1,输出信号SD10;以及AND电路98,接受开关电路96的输出和块选择信号BLK1,输出信号SD11。
SD发生电路4还包含:开关电路100;AND电路102,接受开关电路100的输出和块选择信号BLK1,输出信号SD20;开关电路104;AND电路106,接受开关电路104的输出和块选择信号BLK1,输出信号SD21。
再有,块选择信号BLK1是激活在图1中示出的存储单元阵列14中被读出放大器带SAB区分的分割单位的信号。对行地址信号进行译码,从行译码器2供给该块选择信号BLK1。虽然未图示,但是SD发生电路4包含与由读出放大器带SAB导致的分割单位的数目同样的电路。而且,对SD发生电路4输入了对应的块选择信号。
SD发生电路4可转换在行地址信号的地址位RA0=1的情况下进行一并地选择图2的子字线SWL10、SWL20的第一工作和一并地选择图2的子字线SWL11、SWL20的第二工作的某一工作。利用各开关电路92、96、100、104中包含的熔断元件,可对进行某一工作进行编程。
再者,通过变更各开关电路92、96、100、104中包含的熔断元件的编程内容,在行地址信号的地址位RA0=0的情况下,也可变更为进行上述第一、第二工作的某一工作。利用各开关电路92、96、100、104中包含的熔断元件的编程内容的变更,可变更表示以怎样的方式对存储单元分配被输入的行地址的地址分配信息。
而且,在图2的主字线MWL的激活时,子字驱动器SWD10、SWD11、SWD20、SWD21根据SD发生电路4输出的信号SD10、SD11、SD20、SD21,有选择地进行子字线的驱动。
图4是示出了图3中的开关电路92的结构的电路图。
参照图4,开关电路92包含:熔断元件112,连接在电源节点与节点N1之间;电阻114,连接在节点N1与接地节点之间;倒相器116,其输入端连接到节点N1上;N沟道MOS晶体管118,连接在输入节点IN1与输出节点OUT之间,其栅连接到节点N1上;以及N沟道MOS晶体管120,连接在输入节点IN2与输出节点OUT之间,其栅上接受倒相器116的输出。
再有,由于图3的开关电路96、100、104具有与开关电路92同样的结构,故不重复进行说明。
其次,说明实施例1的半导体存储器的工作。
图5是说明虽然以往不能置换但利用本发明却可置换的不良存储单元的配置用的图。
参照图5,对于通常的存储器区域设置了配置备用存储单元的备用列S-COL。在此,该图示出了存储单元阵列的逻辑地址空间。
在此,考虑在由行地址ROW-i指定的区域上在列地址COLa、COLb的2个部位上存在不良存储单元的情况。此时,假定在由行地址ROW-j指定的区域上不存在不良存储单元。而且,假定在备用列S-COL上只配置了1个备用存储单元。
以往,如图5中所示,在1个存储单元行中存在2个不良存储单元的情况下,不能进行由置换得到的补救。利用存储单元行的激活一并地选择由行地址ROW-i指定的区域。这是因为,在该每1个选择单位中只分配了1个备用存储单元。
图6是说明在本发明的实施例1中进行的存储单元的置换用的图。
参照图6,如果在存储单元阵列的右半部分和左半部分中对于由行地址ROW-i同时选择的存储单元的配置进行分配的变更,则也可补救图5中示出的不良。即,通过变更图3中示出的SD发生电路的开关电路92、96、100、104的设定,可变更地址的分配。
具体地说,在通常的情况下,与某个行地址ROW-i对应,一并地激活存储器区域ROW-i(L)、ROW-i(R)和备用存储单元SMCi。此外,对于另外的行地址ROW-j,一并地激活存储器区域ROW-j(L)、ROW-j(R)和备用存储单元SMCj。
与此不同,在存储单元阵列的同一行的右半部分和左半部分中各存在1个合计2个不良存储单元的情况下,通过地址的分配,可补救这样的不良。
具体地说,变更图1的SD发生电路的内部设定,以便对于某个行地址ROW-i一并地激活存储器区域ROW-i(L)、ROW-j(R)和备用存储单元SMCj。而且,在图1的地址编程电路6中设定置换地址,以便将存储器区域ROW-i(L)的列地址COLa中存在的不良存储单元置换为备用存储单元SMCj即可。
此外,变更图1的SD发生电路的内部设定,以便对于另外的行地址ROW-j一并地激活存储器区域ROW-j(L)、ROW-i(R)和备用存储单元SMCi。这时,在图1的地址编程电路6中设定置换地址,以便将存储器区域ROW-i(R)的列地址COLb中存在的不良存储单元置换为备用存储单元SMCi即可。
而且,可通过变更图3中示出的SD发生电路的开关电路92、96、100、104的设定来实现这样的地址的置换。例如,通过将开关电路100设定并变更为输出行地址信号/RA0、将开关电路104设定并变更为输出行地址信号RA0,可实现置换。
如以上已说明的那样,在实施例1中示出的半导体存储器中,可变更对于多个正规存储单元的从外部输入的地址的分配。其后,通过将不良存储单元置换为备用存储单元,可补救以往不良存储单元的存在位置集中于特定部分而不能补救的芯片。由此,与以往相比,可谋求成品率的提高。
〔实施例1的变例〕
图7是说明实施例1的变例用的电路图。
参照图7,在实施例1的变例中,使用开关电路92A来代替图4中示出的开关电路92。开关电路92A的结构是从图4中示出的开关电路92去掉熔断元件112和电阻114的结构。而且,从地址转换控制电路122对开关电路92A的节点N1供给控制信号。
地址转换控制电路122包含:地址编程电路126,对行地址ROW-i、ROW-j进行编程;以及地址比较器124,比较地址编程电路126的输出与行地址信号RA0~RAk。
行地址ROW-i是存在图6中的多个不良、与按原样不能置换的行对应的地址。行地址ROW-j是与进行与该行右半部分的调换的行对应的地址。
地址比较器124只在由地址编程电路126进行了编程的地址与从外部输入的行地址信号一致的情况下进行地址置换。
再有,在打算对与行地址ROW-i对应的区域的右半部分进行地址置换的情况下,可调换的区域大多被限定。在这样的情况下,在地址编程电路中没有必要对行地址ROW-j进行编程。具体地说,例如忽略行地址ROW-i的最低位的1位并使地址比较器124检测有无置换即可。
〔实施例2〕
实施例1涉及在存储单元阵列中设置了备用列的情况下进一步提高不良补救率的发明。实施例2中,在存储单元阵列中设置了备用I/O的情况下可提高不良补救率。
图8是示出实施例2的半导体存储器201的结构的框图。
参照图8,半导体存储器201包含:地址编程电路206,存储进行由备用存储单元导致的置换的不良存储单元的地址;地址比较器208,将从外部输入的行地址信号RA和列地址信号CA与地址编程电路206的输出进行比较;SD发生电路204,从行地址信号RA、列地址信号CA发生信号SD10~SD21;以及行译码器+列译码器202,接受行地址信号RA和列地址信号CA并对其进行译码。
由于SD发生电路204具有与图3中已说明的SD发生电路4同样的结构,故不重复进行说明。
半导体存储器201还包含:主字驱动器MWD,根据行译码器+列译码器202的输出来驱动主字线;以及存储单元阵列214,根据信号SD10~SD21和行译码器+列译码器202的输出进行选择工作。
存储单元阵列214包含多个读出放大器带SAB和子字驱动器带SWD,由读出放大器带SAB和子字驱动器带SWD分割为多个存储器块。
半导体存储器201还包含:局部IO线LIO、/LIO,用来与存储单元阵列214中包含的正规存储单元组进行数据授受;以及备用局部IO线SLIO、/SLIO,用来与存储单元阵列214中包含的备用存储单元进行数据授受。
半导体存储器201还包含IO置换电路210,该电路在局部IO线LIO、/LIO和备用局部IO线SLIO、/SLIO与外部端子之间进行数据授受。
IO置换电路210包含:读放大器212,检测局部IO线LIO、/LIO的电位差,输出给IO线IO-1~IO-n,放大备用局部IO线SLIO、/SLIO的电位差;以及开关SW1~SWn,根据地址比较器208的输出,将IO线IO-1~IO-n中的某一条与备用IO线SIO置换。
半导体存储器201利用行译码器+列译码器202、子字驱动器SWD和SD发生电路204进行存储单元的行和列的选择作为第一阶段。此外,半导体存储器201利用地址编程电路206、地址比较器208和IO置换电路210进行IO线的选择作为第二阶段。在该第二阶段的IO线的选择时,进行备用存储单元对于正规存储单元的置换。
图9是说明图8中的行译码器+列译码器202的结构和存储单元阵列214的结构用的图。
参照图9,在行译码器+列译码器202中包含在每个读出放大器带中设置的列译码器202.2和在每个被读出放大器带区分的区域中设置的行译码器202.1。
存储单元阵列214在图2中已说明的存储单元阵列14的结构中在读出放大器带SAB中设置了列选择线CSL1~CSL4来代替数据线DB1、/DB1、DB2、/DB2。关于列选择线CSL1~CSL4,利用在每个读出放大器带SAB中设置的列译码器202.2来进行选择。
此外,在图2中,与位线平行地设置了列选择线,但在存储单元阵列214中,与位线平行地设置了局部IO线LIOj1、/LIOj1、LIOj2、/LIOj2,与备用位线SBLj、/SBLj平行地设置了备用局部IO线SLIO1、/SLIO1。
此外,与这些差异对应地在读出放大器带SAB中设置N沟道MOS晶体管232、234、252、254、272、274来代替N沟道MOS晶体管32、34、52、24、76、78、72、74。
N沟道MOS晶体管232连接在位线BL1与局部IO线LIOj1之间,其栅上连接列选择线CSL1。N沟道MOS晶体管234连接在位线/BL1与局部IO线/LIOj1之间,其栅上连接列选择线CSL1。
N沟道MOS晶体管252连接在位线BL2与局部IO线LIOj2之间,其栅上连接列选择线CSL1。N沟道MOS晶体管254连接在位线/BL2与局部IO线/LIOj2之间,其栅上连接列选择线CSL1。
N沟道MOS晶体管272连接在位线SBL与局部IO线SLIO1之间,其栅上连接列选择线CSL1。N沟道MOS晶体管274连接在位线/SBL与局部IO线/SLIO1之间,其栅上连接列选择线CSL1。
再有,由于存储单元阵列214的其它的部分的结构与图2中示出的存储单元阵列14相同,故不重复进行说明。
其次,说明在实施例2中与以往相比提高了补救率的情况。
图10是说明不良部位用的逻辑地址图。
参照图10,在与行地址ROW-i对应的行的2个部位上存在不良存储单元。第一个部位是IO线IO-a上,第二个部位是IO线IO-b上。在这样的情况下,在现有的IO置换结构中,在只有1条备用IO线SIO的情况下,不能进行由IO置换得到的不良芯片的补救。
但是,在实施例2中,如图9中所示,用不同的子字线驱动存储单元阵列的右半部分和左半部分,利用图8的SD发生电路204可变更一并驱动该子字线的单位。再有,关于SD发生电路204的结构,具有与图3、图4中已说明的SD发生电路4同样的结构,不重复进行说明。
图11是说明实施例2中的存储单元的置换用的图。
参照图11,如果在存储单元阵列的右半部分和左半部分中对于由行地址ROW-i同时选择的存储单元的配置进行分配的变更,则也可补救图10中示出的不良。即,通过变更图3中示出的SD发生电路的开关电路92、96、100、104的设定,可变更地址的分配。
具体地说,在通常的情况下,与某个行地址ROW-i对应,一并地激活存储器区域ROW-i(L)、ROW-i(R)和备用存储单元SMCi。此外,对于另外的行地址ROW-j,一并地激活存储器区域ROW-j(L)、ROW-j(R)和备用存储单元SMCj。
与此不同,在存储单元阵列的同一行的右半部分和左半部分中各存在1个合计2个不良存储单元的情况下,通过变更地址的分配,可补救这样的不良。
具体地说,变更图8的SD发生电路204的内部设定,以便对于某个行地址ROW-i一并地激活存储器区域ROW-i(L)、ROW-j(R)和备用存储单元SMCj。而且,在图8的地址编程电路206中设定置换地址,以便将与存储器区域ROW-i(L)的IO线IOa相当的位置上存在的不良存储单元置换为备用存储单元SMCj即可。
此外,变更图8的SD发生电路204的内部设定,以便对于另外的行地址ROW-j一并地激活存储器区域ROW-j(L)、ROW-i(R)和备用存储单元SMCi。这时,在图8的地址编程电路206中设定置换地址,以便将与存储器区域ROW-i(R)中的IO线IOb相当的位置上存在的不良存储单元置换为备用存储单元SMCi即可。
而且,可通过变更图3中示出的SD发生电路中的开关电路92、96、100、104的设定来实现这样的地址的置换。例如,通过将开关电路100设定并变更为输出行地址信号/RA0、将开关电路104设定并变更为输出行地址信号RA0,可实现置换。
如以上已说明的那样,在实施例2中,也能补救以往不能进行由置换得到的补救的在1个存储单元行的多个部位上存在不良存储单元的不良芯片。
即,通过变更正规存储单元的地址分配,通过变更在正规存储单元上发生的不良存储单元的激活单位以使不良分散,可进行由备用存储单元导致的置换。由此,可使成品率提高。
〔实施例3〕
在实施例3中,与实施例2同样,涉及置换备用IO线的结构,但说明了从存储单元阵列到数据输入输出端子的路径的电路结构不同的情况。
图12是示出实施例3的半导体存储器301的结构的框图。
参照图12,半导体存储器301包含:地址编程电路306,存储进行由备用存储单元导致的置换的不良存储单元的地址;地址比较器308,将从外部输入的行地址信号RA和列地址信号CA与地址编程电路306的输出进行比较;IOS发生电路304,接受地址比较器308的输出,发生信号IOS1~IOS4;以及行译码器+列译码器302,接受行地址信号RA和列地址信号CA并对其进行译码。
半导体存储器301还包含:主字驱动器MWD,根据行译码器+列译码器302的输出来驱动主字线;以及存储单元阵列314,根据行译码器+列译码器302的输出进行选择工作。
存储单元阵列314包含多个读出放大器带SAB和子字驱动器带SWD,由读出放大器带SAB和子字驱动器带SWD分割为多个存储器块。
半导体存储器301还包含:2对1译码器,从由存储单元阵列输出数据的局部IO线LIO、/LIO和备用局部IO线SLIO、/SLIO中选择一半,与数据线IDQ1~IDQn和IDQs连接;以及数据线置换电路310,选择数据线IDQs来代替数据线IDQ1~IDQn中的某一条连接到端子上。
数据线置换电路310包含将数据线IDQ1~IDQn置换为备用数据线IDQs用的开关SW1~SWn。
关于存储单元阵列314和行译码器+列译码器302的结构,由于与图9中已说明的存储单元阵列214和行译码器+列译码器202相同,故不重复进行说明。
半导体存储器301利用行译码器+列译码器302、子字驱动器SWD、IOS发生电路304和2对1译码器309进行存储单元的行、列和局部IO线的选择作为第一阶段。此外,半导体存储器301利用地址编程电路306、地址比较器308和数据线置换电路310进行数据线的选择作为第二阶段。在该第二阶段的数据线的选择时,进行备用存储单元对于正规存储单元的置换。
图13是示出图12中的2对1译码器309的结构的电路图。
参照图13,2对1译码器309包含:读放大器331,放大存储单元阵列314与对数据进行授受的局部IO线LIO1、/LIO1之间产生的电位差,输出给IO线IO-1;读放大器332,放大局部IO线LIO2、/LIO2之间产生的电位差,输出给IO线IO-2;读放大器333,放大局部IO线LIO3、/LIO3之间产生的电位差,输出给IO线IO-3;以及读放大器334,放大局部IO线LIO4、/LIO4之间产生的电位差,输出给IO线IO-4。
2对1译码器309还包含:读放大器335,放大局部IO线LIO2n-1、/LIO2n-1之间产生的电位差,输出给IO线IO-(2n-1);读放大器336,放大局部IO线LIO2n、/LIO2n之间产生的电位差,输出给IO线IO-2n;读放大器337,放大备用局部IO线SLIO1、/SLIO1之间产生的电位差,输出给IO线SIO1;以及读放大器338,放大备用局部IO线SLIO2、/SLIO2之间产生的电位差,输出给IO线SIO2。
2对1译码器309还包含分别接受信号IOS1、IOS2、IOS3、IOS4的缓冲电路320、322、340、342。
2对1译码器309还包含:N沟道MOS晶体管324,连接在IO线IO-1与数据线IDQ1之间,在其栅上接受缓冲电路320的输出;N沟道MOS晶体管326,连接在IO线IO-2与数据线IDQ1之间,在其栅上接受缓冲电路322的输出;N沟道MOS晶体管328,连接在IO线IO-3与数据线IDQ2之间,在其栅上接受缓冲电路320的输出;以及N沟道MOS晶体管330,连接在IO线IO-4与数据线IDQ2之间,在其栅上接受缓冲电路322的输出。
2对1译码器309还包含:N沟道MOS晶体管344,连接在IO线IO-(2n-1)与数据线IDQn之间,在其栅上接受缓冲电路340的输出;N沟道MOS晶体管346,连接在IO线IO-2n与数据线IDQn之间,在其栅上接受缓冲电路342的输出;N沟道MOS晶体管348,连接在备用IO线SIO1与数据线IDQs之间,在其栅上接受缓冲电路340的输出;以及N沟道MOS晶体管350,连接在备用IO线SIO2与数据线IDQs之间,在其栅上接受缓冲电路342的输出。
图14是示出图12中的IOS发生电路304的结构的电路图。
参照图14,IOS发生电路304包含:开关电路352,选择行地址信号RAx和作为其倒相信号的信号/RAx的某一方;AND电路354,接受开关电路352的输出和块选择信号BLK1,输出信号IOS1;以及AND电路358,接受开关电路356的输出和块选择信号BLK1,输出信号IOS2。
IOS发生电路304还包含:开关电路360;AND电路362,接受开关电路360的输出和块选择信号BLK1,输出信号IOS3;开关电路364;AND电路366,接受开关电路364的输出和块选择信号BLK1,输出信号IOS4。
再有,块选择信号BLK1是激活在图12中示出的存储单元阵列314中被读出放大器带SAB区分的分割单位的信号。对行地址信号进行译码,从行译码器+列译码器302供给该块选择信号BLK1。虽然未图示,但是IOS发生电路304包含与由读出放大器带SAB导致的分割单位的数目同样的电路。而且,对IOS发生电路304输入了对应的块选择信号。
此外,由于开关电路352、356、360、364的结构与在图4中已说明的开关电路92的结构相同,故不重复进行说明。再有,如在图7中已说明的那样,也可使用与开关电路92A同样的结构,只在输入了对应的地址的情况下进行地址置换。
IOS发生电路304进行以下的第一、第二工作的某一工作。
在第一工作中,IOS发生电路304与某个输入地址位RAx相对应,一并地选择图13的IO线IO-1、IO-3、IO线IO-(2n-1)和备用IO线SIO1,并且在使输入地址位RAx倒相的情况下,一并地选择图13的IO线IO-2、IO-4、IO线IO-2n和备用IO线SIO2。
在第二工作中,IOS发生电路304与某个输入地址位RAx相对应,一并地选择图13的IO线IO-1、IO-3、IO线IO-2n和备用IO线SIO2,并且在使输入地址位RAx倒相的情况下,一并地选择图13的IO线IO-2、IO-4、IO线IO-(2n-1)和备用IO线SIO1。
根据在开关电路352、356、360、364中包含的熔断元件的设定来决定进行第一、第二工作的某一工作。
图13的2对1译码器309根据IOS发生电路304输出的信号IOS1~IOS4进行数据线的选择工作。
图15是说明在存储单元阵列的1个存储单元行中存在多个不良存储单元的情况用的图。
在图15中,示出了在与行地址ROW-i对应的存储单元行上的2个部位上存在不良存储单元的情况。利用图13中已说明的2对1译码器309将第偶数条IO线和第奇数条IO线的某一条与数据线连接,对外部读出数据。在这样的结构的情况下,在不良存储单元存在的IO线IO-a和IO线IO-b都是偶数或奇数的情况下,即使对应的备用IO线是SIO1、SIO2这2条,在以往也不能进行补救。
但是,如在图13中已说明的那样,如果将2对1译码器309构成为在存储器阵列的右半部分和左半部分能分开地进行选择的转换,则能进行这样的不良芯片的补救。在进行补救时,对于存储器阵列的右半部分来说,如通常那样进行不良存储单元与备用存储单元的置换。另一方面,对于存储器阵列的左半部分来说,通过转换图14中示出的开关电路352、356的连接,可进行备用置换。
图16是说明行地址的信号位RAx为0时的不良存储单元的置换用的图。
参照图16,说明IO线IO-a、IO-b都是第偶数条的IO线的情况。对于包含IO线IO-a的阵列的左半部分来说,在行地址的信号位RAx为0时,将开关设定为选择第奇数条的IO线。
另一方面,对于包含IO线IO-b和备用IO线的阵列的右半部分来说,在行地址的信号位RAx为0时,将开关设定为选择第偶数条的IO线。通过这样做,不会同时进行2个不良存储单元的指定。
因而,在地址位RAx为0时,可置换并使用备用存储单元SMCR来代替IO线IO-b上的不良存储单元。
图17是说明行地址的信号位RAx为1时的不良存储单元的置换用的图。
参照图17,在行地址的信号位RAx为1时,将开关选择为在阵列的左半部分选择第偶数条的IO线。另一方面,对于阵列的右半部分来说,在行地址的信号位RAx为1时,将开关设定为选择第奇数条的IO线。通过这样来设定,可将IO线IO-a上的不良存储单元置换为备用存储单元SMCL来使用。
通过进行如在图16、图17中已说明的那样的置换,可使以往不能补救的不良芯片成为合格芯片。因而,即使在实施例3的半导体存储器中,与以往相比也能预期成品率的提高。
〔实施例4〕
在实施例1~实施例3中,说明了通过变更存储单元阵列的右半部分和左半部分的地址分配提高了由备用存储单元得到的补救率的情况。
但是,不限于分割1个存储单元阵列的情况,也有与1个行地址的输入相对应一并地激活处于分离的位置上的存储单元的情况。本发明也可应用于这样的情况。
图18是示出实施例4的半导体存储器401的结构的概略框图。
参照图18,半导体存储器401包含:多个存储体BANK#1~BANK#u;地址调换电路404,进行行地址信号RA、列地址信号CA的地址的与各存储体的对应关系的调换;地址编程电路406,存储不良存储单元的地址;以及IO选择器410,根据从比较被输入的行地址信号RA、列地址信号CA与地址编程电路406的输出而输出控制信号SELA的地址比较器408和地址调换电路404输出的控制信号SELB和从地址比较器408输出的控制信号SELA选择存储体BANK#1~BANK#u的输出,输出给数据端子。
存储体BANK#1包含:行译码器+列译码器402#1,接受利用地址调换电路404进行了地址调换处理后的行地址和列地址;主字驱动器MWD#1;存储单元阵列414#1;以及2对1译码器409#1,进行存储单元阵列414#1与数据线IDQ1#1~IDQn#1和IDQs之间的数据授受。
存储体BANK#2包含:行译码器+列译码器402#2,接受利用地址调换电路404进行了地址调换处理后的行地址和列地址;主字驱动器MWD#2;存储单元阵列414#2;以及2对1译码器409#2,进行存储单元阵列414#2与数据线IDQ1#2~IDQn#2之间的数据授受。
存储体BANK#u包含:行译码器+列译码器402#u,接受利用地址调换电路404进行了地址调换处理后的行地址和列地址;主字驱动器MWD#u;存储单元阵列414#u;以及2对1译码器409#u,进行存储单元阵列414#u与数据线IDQ1#u~IDQn#u之间的数据授受。
在此,如在图9中已说明的那样,在存储体BANK#1中设置了备用IO线和备用存储单元。另一方面,在存储体BANK#2~BANK#u中没有设置备用存储单元。在这样的情况下,半导体存储器401在存储体BANK#2~BANK#u的某一个中存在不良存储单元的情况下,可使用在存储体BANK#1中包含的备用存储单元进行置换。
图19是示出图18中的IO选择器410的结构的电路图。
参照图19,IO选择器410包含:IO置换电路412;2nDQ选择电路414;以及并串变换电路416。
IO置换电路412包含多个开关418。在不良地址与输入地址一致的情况下,根据从地址比较器408输出的信号SELA进行存储单元的置换。开关418根据信号SELA,置换备用数据线IDQS与其它的数据线IDQ1#1~IDQn#1、数据线IDQ1#2~IDQn#2、...、数据线IDQ1#u~IDQn#u的某一条。
2nDQ选择电路414根据从地址调换电路404输出的控制信号SELB,选择作为IO置换电路412的输出的u×n位的数据线中的2×n位输出。
并串变换电路416对2×n位的数据进行并/串变换,成为n位后,输出信号DQ1~DQn。
在图19中,说明了利用1个地址同时选择多个存储体中的2个存储体、进行2位预取后以来自存储体的读出频率的2倍的频率输出数据的情况。
在这样的情况下,利用图18的地址调换电路404变更地址的分配,以便与包含备用存储单元的存储体同时激活包含不良存储单元的存储体。可使用与图3或图14中示出的结构同样的结构来实现地址调换电路404。
再有,不限于同时激活2个存储体的情况,即使在同时激活更多的存储体的情况下,利用地址调换,也能同样提高由备用存储单元得到的补救率。
如以上已说明的那样,在实施例4中,通过变更正规存储单元的地址的分配,可提高由备用存储单元得到的置换补救率,提高成品率。
〔实施例5〕
图20是示出实施例5的半导体存储器501的结构的框图。
参照图20,半导体存储器501包含:地址编程电路506,存储进行由备用存储单元导致的置换的不良存储单元的地址;地址比较器508,将从外部输入的行地址信号RA和列地址信号CA与地址编程电路506的输出进行比较;IOS发生电路504,接受地址比较器508的输出,发生信号IOS1~IOS4;以及行译码器+列译码器502,接受行地址信号RA和列地址信号CA并对其进行译码。
半导体存储器501还包含:主字驱动器MWD,根据行译码器+列译码器502的输出来驱动主字线;以及存储单元阵列514,根据行译码器+列译码器502的输出进行选择工作。
存储单元阵列514包含多个读出放大器带SAB和子字驱动器带SWD,由读出放大器带SAB和子字驱动器带SWD分割为多个存储器块。
半导体存储器501还包含从由存储单元阵列输出数据的局部IO线LIO、/LIO和备用局部IO线SLIO、/SLIO中选择一半、与数据线IDQ1~IDQn和IDQs连接的2对1译码器509。
关于存储单元阵列514和行译码器+列译码器502的结构,由于与图9中已说明的存储单元阵列214和行译码器+列译码器202的结构相同,故不重复进行说明。由于IOS发生电路504的结构与图14中已说明的IOS发生电路304的结构相同,故不重复进行说明。此外,由于2对1译码器509也具有与图13中已说明的2对1译码器309同样的结构,故不重复进行说明。
半导体存储器501还包含根据地址比较器508的输出移动数据线IDQ1~IDQn和备用数据线IDQS与端子的连接的IO移动电路510。
IO移动电路510在地址比较器508的输出显现出已被编程的不良存储单元的地址与输入地址一致的情况下,使用备用数据线IDQS。
图21是示出图20中的IO移动电路510的结构的电路图。
参照图21,IO移动电路510包含分别与数据信号DQ1~DQn对应地设置的开关电路510.1~510.n。根据地址比较器508的输出进行开关电路510.1~510.n的连接转换。
开关电路510.1连接数据线IDQ1、IDQ2的某一方与输出数据信号DQ1的端子。开关电路510.1在「没有移动」的情况下,连接数据线IDQ1与输出数据信号DQ1的端子,在「有移动」的情况下,连接数据线IDQ2与输出数据信号DQ1的端子。
同样,其它的开关电路在「没有移动」的情况下,连接对应的编号的数据线与对应的编号的端子,在「有移动」的情况下,连接比对应的编号大1的编号的数据线与对应的编号的端子。但是,开关电路510.n在有移动的情况下,将备用数据线IDQs与输出数据信号DQn的端子连接。
在此,说明在数据线IDQ5中产生了缺陷的情况。在这样的情况下,将输出数据信号DQ1~DQ4的端子和对应的开关电路510.1~510.4定为「没有移动」的状态,对于与数据信号DQ5~DQn对应的开关电路510.5~510.n来说,定为「有移动」的状态。于是,也可不将数据线IDQ5连接到任一个端子上而不使用数据线IDQ5。
由这样的移动方式进行的置换的优点是可进行高速存取。即,如果经过图8的IO置换电路210那样的复杂的备用IO线的置换电路,则在与分离的IO线置换时,从备用IO线读出数据的路径变长。此外,附加在备用IO线上的寄生电容比其它的IO线上的寄生电容大。由移动方式进行的置换可克服这些弱点,减少了因置换引起的数据存取的延迟。
图22是说明在实施例5中能进行补救的不良存储单元的发生位置用的图。
参照图22,说明在由行地址ROW-i指定的同一存储单元行中存在2个不良存储单元的情况。在该不良存储单元存在的IO线IO-a和IO-b都是第偶数条或第奇数条IO线的情况下,以往不能进行不良补救。
但是,通过利用图20的IOS发生电路504来变更与2对1译码器509所选择的IO线的地址的对应关系,可进行与图16、图17中已说明的情况同样的置换。
因而,在实施例5中,通过变更正规存储单元的地址的分配,也能提高使用了备用存储单元的不良补救率,也能谋求成品率的提高。
〔实施例6〕
在实施例6中,对于正规的存储单元相互的地址置换和由备用存储单元产生的不良存储单元的置换的组合来说,进一步将错误校正处理也组合进来了。
例如,对于具有芯片上的错误校正功能的半导体存储器来说,已在特开昭63-302497号公报和与其对应的美国专利4918692号公报中公开了。在具有芯片上的错误校正功能的半导体存储器中,对于存储单元阵列一并地输入输出数据组和冗余位。对于该数据组和冗余位组中发生的1位或多位的错误数据可自动地进行补救。该错误数据可起因于存储单元的不良,也可起因于由α线引起的软错误。
具有这样的芯片上的错误校正功能的半导体存储器,由于必须多余地设置冗余位部分的存储单元,故在一并存储的数据的位数少的情况下,是不太经济的。
但是,在如近年来的系统LSI那样内置DRAM的情况下,使内部数据总线宽度定为128位以上的情况也较多。这样,在一并存储的数据的位数多的情况下,减少了冗余位对于信息位的比率。因而,可较合适地使用具有这样的芯片上的错误校正功能的半导体存储器。
图23是示出实施例6的半导体存储器601的结构的框图。
参照图23,半导体存储器601包含:地址编程电路606,存储进行由备用存储单元导致的置换的不良存储单元的地址;地址比较器608,将从外部输入的行地址信号RA和列地址信号CA与地址编程电路606的输出进行比较;IOS发生电路604,接受地址比较器608的输出,发生信号IOS1~IOS4;以及行译码器+列译码器602,接受行地址信号RA和列地址信号CA并对其进行译码。
半导体存储器601还包含:主字驱动器MWD,根据行译码器+列译码器602的输出来驱动主字线;以及存储单元阵列614,根据行译码器+列译码器602的输出进行选择工作。
存储单元阵列614包含多个读出放大器带SAB和子字驱动器带SWD,由读出放大器带SAB和子字驱动器带SWD分割为多个存储器块。
半导体存储器601还包含:2对1译码器609,从由存储单元阵列输出数据的局部IO线LIO、/LIO和备用局部IO线SLIO、/SLIO中选择一半、连接数据线IDQ1~IDQn与IDQs;以及数据线置换电路610。
数据线置换电路610包含将数据线PDQ1~PDQn+m的某一个置换为备用数据线IDQs的多个开关。
数据线置换电路610在地址比较器608的输出显现出正被编程的不良存储单元的地址与输入地址一致的情况下,使用备用数据线IDQs。
关于存储单元阵列614和行译码器+列译码器602的结构,由于与图9中已说明的存储单元阵列214和行译码器+列译码器202的结构相同,故不重复进行说明。此外,由于2对1译码器609也具有与图13中已说明的2对1译码器309同样的结构,故不重复进行说明。
半导体存储器601还包含ECC电路612。ECC电路612在从数据线置换电路610输出了数据组IDQ1~IDQn和冗余位组CDQ1~CDQm的情况下,据此进行错误校正,输出数据信号DQ1~DQn。另一方面,在从外部供给了数据信号DQ1~DQn的情况下,生成数据组IDQ1~IDQn和冗余位组CDQ1~CDQm,为了写入到存储单元阵列614中而输出。数据组IDQ1~IDQn和冗余位组CDQ1~CDQm的合计位数是错误校正用的单位位数。
图24是说明地址置换前的不良的位置用的图。
参照图24,在由地址AD1选择的地址图中,在数据位IDQ3和IDQ7上存在不良。在这样的情况下,在图23的ECC电路612只能进行1位的错误校正的情况下,不能进行不良芯片的补救。此外,如果是ECC电路612能进行2位的错误校正的情况,则可利用错误校正功能使不良芯片成为合格品,但在例如产生了由α线引起的软错误的情况下,不能预期利用ECC电路612进行错误校正。
在这样的情况下,如果能这样来进行分散,使得在由1个地址选择的部分中不存在多个不良,则在进行了不良芯片的补救的基础上,可利用ECC电路612对软错误进行错误校正。
图25是示出了能进行地址分配变更后的错误校正的不良的存在部位用的图。
参照图25,用图23的IOS发生电路604进行将地址AD1的数据位IDQ1~IDQ6与地址AD2的数据位IDQ1~IDQ6进行调换那样的地址分配。通过这样做,如果是ECC电路612能进行1位的错误校正的情况,则能补救不良芯片。此外,如果是ECC电路612能进行2位的错误校正的情况,则可对1位为止的软错误进行错误校正。再者,在不良多时,预先进行地址编程电路606的编程,以便置换存储单元阵列中的备用存储单元即可。
如上所述,可使以往不能补救的不良芯片成为合格芯片。此外,也可减少不良地址的编程中所需要的时间。因而,在实施例6的半导体存储器中,与以往相比,也可预期成品率的提高,同时也可预期因地址编程中所需要的时间缩短导致的制造成本的下降。
〔实施例7〕
图26是示出实施例7的半导体存储器701的结构的电路图。
参照图26,半导体存储器701包含:地址编程电路706,存储进行由备用存储单元导致的置换的不良存储单元的地址;地址比较器708,将从外部输入的行地址信号RA和列地址信号CA与地址编程电路706的输出进行比较;IOS发生电路704,接受地址比较器708的输出,发生信号IOS1~IOS4;以及行译码器+列译码器702,接受行地址信号RA和列地址信号CA并对其进行译码。
半导体存储器701还包含:主字驱动器MWD,根据行译码器+列译码器702的输出来驱动主字线;以及存储单元阵列714,根据行译码器+列译码器702的输出进行选择工作。
存储单元阵列714包含多个读出放大器带SAB和子字驱动器带SWD,由读出放大器带SAB和子字驱动器带SWD分割为多个存储器块。
半导体存储器701还包含从由存储单元阵列输出数据的局部IO线LIO、/LIO和备用局部IO线SLIO、/SLIO中选择一半、连接数据线IDQ1~IDQn与IDQs的2对1译码器709。
关于存储单元阵列714和行译码器+列译码器702的结构,由于与图9中已说明的存储单元阵列214和行译码器+列译码器202的结构相同,故不重复进行说明。由于IOS发生电路704的结构与图14中已说明的IOS发生电路304的结构相同,故不重复进行说明。此外,由于2对1译码器709也具有与图13中已说明的2对1译码器309同样的结构,故不重复进行说明。
半导体存储器701还包含根据地址比较器708的输出移动数据线IDQ1~IDQn和备用数据线IDQs与端子的连接的IO移动电路710。
IO移动电路710在地址比较器708的输出显现出正被编程的不良存储单元的地址与输入地址一致的情况下,使用备用数据线IDQS。
半导体存储器701还包含ECC电路712。ECC电路712在从IO移动电路710输出了数据组IDQ1~IDQn和冗余位组CDQ1~CDQm的情况下,据此进行错误校正,输出数据信号DQ1~DQn。另一方面,在从外部供给了数据信号DQ1~DQn的情况下,生成数据组IDQ1~IDQn和冗余位组CDQ1~CDQm,为了写入到存储单元阵列714中而输出。
如图26中所示,通过将IO移动电路710和ECC电路712组合起来,与实施例6的情况相比,可进一步谋求存取速度的改善。
〔实施例8〕
在实施例1~实施例7中,根据存储单元阵列中的不良存储单元的存在状况,变更从外部供给的地址与内部的存储单元阵列的物理的位置的关系。在以这种方式进行地址变更的情况下,存在如果在测试时没有掌握地址与存储单元的对应关系则不能进行正确的测试的问题。实施例8的发明就是为了解决这样的问题的发明。
图27是示出了在实施例8的半导体存储器中代替图4中示出的开关电路92而使用的开关电路802的结构的电路图。
参照图27,开关电路802包含:熔断元件812,连接在电源节点与节点N1之间;电阻814,连接在节点N1与接地节点之间;倒相器816,其输入端连接到节点N1上;N沟道MOS晶体管818,连接在输入节点IN1与输出节点OUT之间,其栅连接到节点N1上;以及N沟道MOS晶体管820,连接在输入节点IN2与输出节点OUT之间,其栅上接受倒相器816的输出。
开关电路802还包含连接在电源节点与节点N1之间、在栅上接受测试信号/TEST1的P沟道MOS晶体管822。
其次,说明开关电路802的工作。
在通常时,通过切断熔断元件812进行正规存储单元相互的地址置换。此时,将测试信号/TEST1设定为高电平,如果熔断元件812被切断,则将节点N1设定为低电平,进行地址的置换。
另一方面,在测试模式时,将测试信号/TEST1设定为低电平,P沟道MOS晶体管822导通,即使在熔断元件812被切断的情况下,节点N1也被设定为默认状态的高电平。
如以上已说明的那样,通过设置开关电路802,由于即使在进行了地址置换后也能在测试模式中返回到初始的默认状态,故在测试时可进行正确的测试,在进行不良芯片的分析的情况下也可指定不良存储单元的准确的位置。
图28是说明第二测试模式用的图。
参照图28,为了将图4中已说明的开关电路92的节点N1的电位输出给外部,设置三态倒相器832和端子842。三态倒相器832包含在电源节点与接地节点之间串联地连接的P沟道MOS晶体管834、836和N沟道MOS晶体管838、840。
P沟道MOS晶体管834在栅上接受测试信号/TEST2。P沟道MOS晶体管836、N沟道MOS晶体管838的栅都连接到节点N1上。N沟道MOS晶体管840在栅上接受测试信号TEST2。P沟道MOS晶体管836的漏连接到端子842上。
如果在测试模式中将测试信号TEST2设定为高电平、将测试信号/TEST2设定为低电平,则节点N1的电位的倒相信号从端子842作为信号EXOUT被输出。通过观察信号EXOUT,可观察在开关电路92中是否设定了地址置换。由此,可在之后在外部掌握地址编程状态。
图29是说明组合了图27、图28的变例用的图。
参照图29,示出了组合了在测试模式中可将设定返回到默认状态的开关电路802和在测试模式中能将开关电路802的选择信息输出给外部的三态倒相器832的状态。如果这样做,则在将测试信号/TEST1设定为低电平的第一测试模式中,可将地址编程部分返回到初始状态,而且,在第二测试模式中,可从外部端子842监视开关电路802的选择状态。
通过设置以上那样的测试模式,可从外部使进行了正规存储单元相互的地址置换的编程状态返回到原来的状态。或者,可从外部监视地址置换的设定状态。因而,可进行将外部输入地址与内部存储单元阵列的物理位置对应起来的测试。
以上,参照附图详细地说明了本发明,但这些说明始终是例示性的,而不是在任何意义上来限定本发明,本发明的要旨和范围只由后附的权利要求书来限定,包含与权利要求的范围均等的意义和范围内的全部的变更。

Claims (10)

1.一种半导体存储器,其特征在于,具备:
第一~第四正规存储单元组,各自包含多个正规存储单元;
第一、第二预备存储单元,用来对上述多个正规存储单元中的缺陷存储单元进行置换;
第一选择电路,以非易失性的方式保持地址分配信息,响应于作为输入地址而供给的第一地址值,与上述第一预备存储单元一起选择根据上述地址分配信息而决定的上述第一~第四正规存储单元组中的某2个正规存储单元组,响应于作为上述输入地址而供给的第二地址值,与上述第二预备存储单元一起选择根据上述地址分配信息而决定的上述第一~第四正规存储单元组中的另外2个正规存储单元组;以及
第二选择电路,以非易失性的方式保持置换信息,根据上述置换信息选择上述第一预备存储单元来代替根据上述第一地址值选择的正规存储单元中的第一缺陷存储单元,根据上述置换信息选择上述第二预备存储单元来代替根据上述第二地址值选择的正规存储单元中的第二缺陷存储单元。
2.如权利要求1中所述的半导体存储器,其特征在于:
上述输入地址是从外部供给的行地址,
上述第二选择电路比较上述置换信息与从外部供给的列地址来进行选择工作。
3.如权利要求2中所述的半导体存储器,其特征在于:
还具备:
主字线;
第一子字线,连接到上述第一正规存储单元组上,根据上述主字线的激活而被激活;
第二子字线,连接到上述第二正规存储单元组和上述第一预备存储单元上,根据上述主字线的激活而被激活;
第三子字线,连接到上述第三正规存储单元组上,根据上述主字线的激活而被激活;以及
第四子字线,连接到上述第四正规存储单元组和上述第二预备存储单元上,根据上述主字线的激活而被激活,
上述第一选择电路包含:
转换设定部,以非易失性的方式存储进行根据上述第一地址值一并地选择上述第一、第二子字线的第一工作和根据上述第一地址值一并地选择上述第一、第四子字线的第二工作的某一工作的设定;以及
驱动部,在上述主字线的激活时根据上述转换设定部的输出有选择地进行上述第一~第四子字线的驱动。
4.如权利要求1中所述的半导体存储器,其特征在于:
还具备:
第一~第四正规数据线组,用来对于上述第一~第四正规存储单元组分别进行数据授受;以及
第一、第二预备数据线,用来对于上述第一、第二预备存储单元分别进行数据授受,
上述第一选择电路根据上述地址分配信息进行根据上述第一地址值一并地选择上述第一、第三正规数据线组和上述第一预备数据线的第一工作和根据上述第一地址值一并地选择上述第二、第三正规数据线组和上述第一预备数据线的第二工作的某一方,
上述第二选择电路比较上述置换信息与上述输入地址,选择上述第一预备数据线来代替由上述第一选择电路一并地选择的多条正规数据线的某一条。
5.如权利要求4中所述的半导体存储器,其特征在于:
上述第一选择电路包含:
转换设定部,以非易失性的方式存储进行根据上述第一地址值一并地选择上述第一、第三正规数据线组而且根据上述第二地址值一并地选择上述第二、第四正规数据线组的第一工作和根据上述第一地址值一并地选择上述第二、第三正规数据线组而且根据上述第二地址值一并地选择上述第一、第四正规数据线组的第二工作的某一工作的设定;以及
数据线选择部,根据上述转换设定部的输出,选择上述第一、第二正规数据线组中的某一方,选择上述第三、第四正规数据线组中的某一方,选择上述第一、第二预备数据线的某一方。
6.如权利要求4中所述的半导体存储器,其特征在于:
还具备分别与由上述第一选择电路一并地选择的多条正规数据线对应地设置的多条外部数据线,
上述第二选择电路包含:
地址编程电路,以非易失性的方式存储上述置换信息;
地址比较器,比较上述输入地址与上述地址编程电路的输出;以及
数据线置换电路,将由上述第一选择电路选择的预备数据线连接到对应的外部数据线上来代替由上述第一选择电路一并地选择的多条正规数据线中的由上述地址比较器的输出指定的某一条。
7.如权利要求4中所述的半导体存储器,其特征在于:
还具备分别与由上述第一选择电路一并地选择的多条正规数据线对应地设置的多条外部数据线,
上述第二选择电路包含:
地址编程电路,以非易失性的方式存储上述置换信息;
地址比较器,比较上述输入地址与上述地址编程电路的输出;以及
数据线移动电路,使由上述第一选择电路一并地选择的多条正规数据线和预备数据线与上述外部数据线的连接发生移动,以便从由上述第一选择电路一并地选择的多条正规数据线中将由上述地址比较器的输出指定的正规数据线除外。
8.如权利要求1中所述的半导体存储器,其特征在于:
还具备错误校正电路,该电路接受从外部供给的输入数据,发生错误校正用的单位数据,对于根据上述输入地址一并地选择的上述第一~第四正规存储单元组和上述第一、第二预备存储单元中的一部分输出上述单位数据,接受从上述一部分读出的上述单位数据并进行错误校正,将已被校正的数据输出给外部。
9.如权利要求1中所述的半导体存储器,其特征在于:
上述半导体存储器具有通常模式和测试模式作为工作模式,
上述第一选择电路包含存储部,该存储部以非易失性的方式存储上述地址分配信息,在上述通常模式中输出上述已被存储的上述地址分配信息,在上述测试模式中输出在存储上述地址分配信息之前的初始信息。
10.如权利要求1中所述的半导体存储器,其特征在于:
上述半导体存储器具有通常模式和测试模式作为工作模式,
还具备在上述测试模式中从上述第一选择电路接受上述地址分配信息并输出给外部的输出电路。
CNB031205143A 2002-07-03 2003-03-13 不良芯片的补救率提高了的半导体存储器 Expired - Fee Related CN100538879C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP194597/2002 2002-07-03
JP2002194597A JP4111762B2 (ja) 2002-07-03 2002-07-03 半導体記憶装置
JP194597/02 2002-07-03

Publications (2)

Publication Number Publication Date
CN1467746A CN1467746A (zh) 2004-01-14
CN100538879C true CN100538879C (zh) 2009-09-09

Family

ID=29997015

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031205143A Expired - Fee Related CN100538879C (zh) 2002-07-03 2003-03-13 不良芯片的补救率提高了的半导体存储器

Country Status (3)

Country Link
US (1) US6813199B2 (zh)
JP (1) JP4111762B2 (zh)
CN (1) CN100538879C (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463198B1 (ko) * 2002-02-05 2004-12-23 삼성전자주식회사 데이터 라인 리던던시 스킴을 구비한 반도체 메모리 장치
US7505321B2 (en) 2002-12-31 2009-03-17 Sandisk 3D Llc Programmable memory array structure incorporating series-connected transistor strings and methods for fabrication and operation of same
US7233024B2 (en) 2003-03-31 2007-06-19 Sandisk 3D Llc Three-dimensional memory device incorporating segmented bit line memory array
CN1823392A (zh) 2003-07-15 2006-08-23 尔必达存储器株式会社 半导体存储器件
US7221588B2 (en) 2003-12-05 2007-05-22 Sandisk 3D Llc Memory array incorporating memory cells arranged in NAND strings
CN100593215C (zh) * 2004-02-20 2010-03-03 斯班逊有限公司 半导体存储装置及该半导体存储装置的控制方法
US7142471B2 (en) * 2005-03-31 2006-11-28 Sandisk 3D Llc Method and apparatus for incorporating block redundancy in a memory array
JP2007257791A (ja) * 2006-03-24 2007-10-04 Fujitsu Ltd 半導体記憶装置
US7548459B2 (en) * 2006-08-29 2009-06-16 Micron Technology, Inc. Method, apparatus, and system providing adjustable memory page configuration
JP2008108297A (ja) * 2006-10-23 2008-05-08 Toshiba Corp 不揮発性半導体記憶装置
EP2095234B1 (en) * 2006-11-21 2014-04-09 Freescale Semiconductor, Inc. Memory system with ecc-unit and further processing arrangement
KR100850283B1 (ko) * 2007-01-25 2008-08-04 삼성전자주식회사 3차원 적층구조를 가지는 저항성 반도체 메모리 장치 및그의 워드라인 디코딩 방법
JP4820795B2 (ja) * 2007-10-04 2011-11-24 パナソニック株式会社 半導体記憶装置
JP5451971B2 (ja) * 2007-11-09 2014-03-26 スパンション エルエルシー 半導体装置及びその制御方法
CN107408408B (zh) * 2015-03-10 2021-03-05 美光科技公司 用于移位决定的装置及方法
KR102435181B1 (ko) 2015-11-16 2022-08-23 삼성전자주식회사 반도체 메모리 장치, 이를 포함하는 메모리 시스템 및 메모리 시스템의 동작 방법
US10725933B2 (en) * 2016-12-30 2020-07-28 Intel Corporation Method and apparatus for redirecting memory access commands sent to unusable memory partitions
KR20210050213A (ko) 2019-10-28 2021-05-07 삼성전자주식회사 리페어 단위를 가변하는 메모리 장치 및 그것의 리페어 방법
US11797371B2 (en) 2020-08-18 2023-10-24 Changxin Memory Technologies, Inc. Method and device for determining fail bit repair scheme
US11791010B2 (en) 2020-08-18 2023-10-17 Changxin Memory Technologies, Inc. Method and device for fail bit repairing
EP3985675B1 (en) 2020-08-18 2024-01-31 Changxin Memory Technologies, Inc. Method and device for repairing fail bits
US11887685B2 (en) 2020-08-18 2024-01-30 Changxin Memory Technologies, Inc. Fail Bit repair method and device
US11984179B2 (en) 2021-03-26 2024-05-14 Changxin Memory Technologies, Inc. Redundant circuit assigning method and device, and medium
US11791012B2 (en) 2021-03-31 2023-10-17 Changxin Memory Technologies, Inc. Standby circuit dispatch method, apparatus, device and medium
CN112908402B (zh) * 2021-03-31 2022-05-10 长鑫存储技术有限公司 备用电路分派方法、装置、设备及介质
US11881278B2 (en) 2021-03-31 2024-01-23 Changxin Memory Technologies, Inc. Redundant circuit assigning method and device, apparatus and medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071640B2 (ja) * 1987-06-03 1995-01-11 三菱電機株式会社 半導体記憶装置の欠陥救済装置
JP2882369B2 (ja) * 1996-06-27 1999-04-12 日本電気株式会社 半導体記憶装置
JP3206541B2 (ja) * 1998-03-04 2001-09-10 日本電気株式会社 半導体記憶装置
JP3749789B2 (ja) * 1998-06-08 2006-03-01 株式会社東芝 半導体記憶装置
JP2001052495A (ja) * 1999-06-03 2001-02-23 Toshiba Corp 半導体メモリ
JP4001263B2 (ja) 2000-05-26 2007-10-31 株式会社ルネサステクノロジ 半導体装置
JP3821637B2 (ja) * 2000-08-24 2006-09-13 株式会社東芝 半導体集積回路装置
TW546664B (en) * 2001-01-17 2003-08-11 Toshiba Corp Semiconductor storage device formed to optimize test technique and redundancy technology
US6594177B2 (en) * 2001-08-02 2003-07-15 Stmicroelectronics, Inc. Redundancy circuit and method for replacing defective memory cells in a flash memory device

Also Published As

Publication number Publication date
US20040004866A1 (en) 2004-01-08
CN1467746A (zh) 2004-01-14
JP2004039098A (ja) 2004-02-05
JP4111762B2 (ja) 2008-07-02
US6813199B2 (en) 2004-11-02

Similar Documents

Publication Publication Date Title
CN100538879C (zh) 不良芯片的补救率提高了的半导体存储器
CN100559501C (zh) 具有有效和可靠的冗余处理的半导体存储器件
US5134584A (en) Reconfigurable memory
US5313425A (en) Semiconductor memory device having an improved error correction capability
US6918072B2 (en) Circuit and method for time-efficient memory repair
KR100867562B1 (ko) 메모리 장치 내의 멀티플렉스된 중복 구조를 위한 회로 및 방법
US7613056B2 (en) Semiconductor memory device
US7286399B2 (en) Dedicated redundancy circuits for different operations in a flash memory device
EP0579366A2 (en) Redundancy circuits for semiconductor memory devices
JPS59135700A (ja) 半導体記憶装置
KR100252053B1 (ko) 칼럼 방향의 데이터 입출력선을 가지는 반도체메모리장치와불량셀 구제회로 및 방법
GB2251101A (en) Redundant means and method for a semiconductor memory device
JP3361018B2 (ja) 半導体記憶装置
US6868021B2 (en) Rapidly testable semiconductor memory device
JPH09147595A (ja) 半導体記憶装置
US7177209B2 (en) Semiconductor memory device and method of driving the same
US7038956B2 (en) Apparatus and method for reading out defect information items from an integrated chip
JPH1166879A (ja) 半導体記憶装置
JP3507674B2 (ja) 半導体記憶装置
US6754865B2 (en) Integrated circuit
JP2002100199A (ja) 半導体記憶装置およびそのリダンダンシ回路置換方法
JP3512957B2 (ja) 半導体記憶装置
US20040153899A1 (en) Memory device with data line steering and bitline redundancy
JP2587973B2 (ja) 冗長構成半導体メモリ
JP3732740B2 (ja) 冗長部付きの集積メモリ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20140313