CN100477898C - 射流发生装置和电子设备及射流发生方法 - Google Patents

射流发生装置和电子设备及射流发生方法 Download PDF

Info

Publication number
CN100477898C
CN100477898C CNB2004101023295A CN200410102329A CN100477898C CN 100477898 C CN100477898 C CN 100477898C CN B2004101023295 A CNB2004101023295 A CN B2004101023295A CN 200410102329 A CN200410102329 A CN 200410102329A CN 100477898 C CN100477898 C CN 100477898C
Authority
CN
China
Prior art keywords
jet flow
generating apparatus
flow generating
oscillating plate
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004101023295A
Other languages
English (en)
Other versions
CN1671279A (zh
Inventor
武笠智治
堀和仁
石川博一
横沟宽治
中山典一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1671279A publication Critical patent/CN1671279A/zh
Application granted granted Critical
Publication of CN100477898C publication Critical patent/CN100477898C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Reciprocating Pumps (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明提供了一种尽可能抑制噪声并有效散出发热元件所产生热量的射流发生装置,一种装配有该射流发生装置的电子设备,和一种射流发生方法。根据本发明,该射流发生装置包括多个腔室,每个腔室具有开口并装有冷却剂,和用于振动装在多个腔室中各个腔室中的冷却剂使得冷却剂作为脉动流从开口排放出来的振动机构,和用于控制振动机构的振动使得由从多个腔室中排放出来的冷却剂产生的声波相互削弱的控制装置。

Description

射流发生装置和电子设备及射流发生方法
技术领域
本发明涉及一种产生射流并利用所产生的射流冷却例如电子零件的发热元件的射流发生装置、一种装配了所述射流发生装置的电子部件和一种射流发生方法。
背景技术
随着PC机(个人计算机)性能的提高,例如IC(集成电路)等发热元件的产热率急剧上升。为了解决这样的问题,已经提出和/或实际上应用多种散热技术。作为其中一种散热方法,将例如铝金属制的散热翅片连接到IC上,由IC产生的热量传递到翅片上从而散热。另外,还有一种方法,其中留在PC壳体中的热空气可以通过一个风扇被强制排出,并且利用该风扇使围绕该PC的冷空气强制引入到发热元件的周围。另外,还有一种方法,同时利用散热翅片和风扇,当配有散热翅片的发热元件与空气的接触面积增加时,该风扇将围绕散热翅片的热空气强制排出。
但是,仍存在一个问题,在由风扇对空气的强制对流下,在散热翅片的下游侧上产生了一个翅片表面的热边界层,在此处很难有效地将热散去。为了解决这个问题,例如,考虑可以提高风扇的气流速率以使得热边界层变薄。但是,存在这样一个问题,通过提高风扇转数来达到提高气流速率的目的,会产生风扇支撑部分的噪声和风扇的风流切割噪声。
作为一种用于破坏热边界层和有效地将散热翅片上的热散发出去的方法,可以采用一种组合射流。在这种方法中,由一个活塞或类似物来推动的空气从形成于一个腔室体一端的孔中喷出。从这个孔中喷出的空气流被称为组合射流。组合射流促进了空气的混合,破坏了热边界层,并比使用传统风扇所产生的强制对流能更加有效地进行散热(例如,参见专利文献1)。
[专利文献1]美国专利US 6,123,145
但是,根据专利文献1中所描述的技术,由于由活塞的往复运动所产生的空气振动是作为声波进行传播的,所以声音听起来像噪声。而且,由于近年来IC的时钟频率已经提高,因此由IC所产生的热量也相应地提高了。因此,为了破坏在散热翅片附近所形成的热边界层,应该使比以前更多的空气排放到IC和散热翅片上。因此,在专利文献1所述和图1A所示的装置使振动膜振动并且喷射气流,为提高空气的射流量,需要提高振动的振幅。因此,如果振动膜的频率处于听觉的频率范围内,那么就需要解决振动膜噪声的问题。
发明内容
由上述观点可知,本发明一方面要提供一种尽可能抑制噪声并能将发热元件产生的热量有效地散出的射流发生装置,一种装配该射流发生装置的电子设备和射流发生方法。
为了实现上述目的,本发明的一方面是一种射流发生装置,其包括多个腔室,每个腔室都具有一个开口并装有冷却剂,一个振动机构,用于振动装在各个腔室中的冷却剂,使得冷却剂像脉动流一样从开口排放,以及一个控制装置,用于控制振动机构的振动,使得由从多个腔室中排放出来的冷却剂所产生的声波互相削弱。
根据本发明,“互相削弱”意味着由多个排放装置产生的声波在声波传播的部分或全部区域中被相互削弱。这个定义将适用于下面的说明。
根据本发明,控制装置被设置成导致在多个腔室中产生的声波互相削弱。这样,即使当随着IC芯片或类似物的时钟频率增加由发热元件产生的发热量增加时,产生的热量也能有效地被散出并且能够避免产生噪声。
由于控制装置被设置成导致腔室中产生的声波相互削弱,因此该控制装置需要控制声波的相位、频率和振幅中的至少一个。
根据本发明的一个方面,当至少一组腔室的相邻开口的距离被表示成d(m)、该腔室内产生的声波的波长被表示成λ(m)时,满足d<λ/2的条件。在这种情况下,假设若干腔室中的每一个内的声波的波长λ基本相等,因为由各个腔室的开口产生的声波的最大振幅不会互相加强,所以能够尽可能的避免产生噪声。
根据本发明,只要满足d<λ/2的条件,每个腔室可具有各种结构。
当有两个腔室时,如果引起振动机构的振动,使得相应腔室内产生的声波的相位相互以360°/2=180°平移,由于腔室内产生的声波的波形相反,所以声波相互削弱了。
当有四个排放装置A、B、C和D时,如果各个腔室内产生的声波的波长和振幅相同,排放装置A和B产生的声波的波形的相位相同,排放装置C和D产生的声波的波形的相位从排放装置A和B产生的相位以180°平移,声波相互削弱。
当腔室的数目为n(其中n=2、3、4、...)且腔室内产生的声波的波长和振幅相同时,控制装置可以控制腔室,使得腔室产生相位差为360°/n的声波。结果,具有n个腔室的整个系统削弱了声波的组合波形。
当腔室的数目为n(n=2、3、4、...)时,腔室内产生的各个声波的波长为λ,声波的振幅基本相同,相邻开口的距离为d(m),同样也能满足d<λ/{2(n-1)}的条件。在这种情况下,相隔最远开口之间的距离被设定为λ/{2(n-1)}。因为波长比这个距离大很多,所以不论排放装置的位置和方向,排放装置产生的声波的组合波形相互削弱。换句话说,因为腔室的开口产生的声波的最大振幅没有加强,所以能够尽可能地避免产生噪声。
当有A、B和C三个腔室时,如果这些腔室内产生的各个声波的波长被表示成λ,腔室A和B内产生的声波的振幅相同,并被表示成“a”。腔室C内产生的声波的振幅为2×a,而且该声波与各个声波(腔室A和B内所产生)的相位相反,能达到与上述结构相同的效果。在这种情况下,因为波形的波峰部分和波谷部分相互削弱了,腔室A、B和C内产生的声波的组合波形变得平坦,。结果能达到消除噪声的效果。
在前面的例子中,当满足d<λ/{6(n-1)}的条件时,与具有一个振动板的振动机构的腔室相比,更能削弱声音。
除了腔室的形状、尺寸等为相同的情况外,仅仅只要满足d和λ的上述条件,腔室的形状和尺寸不受限制。此外,两个腔室的布置也不受限制。因此,当具有发热元件的电子设备装配有根据本发明的射流发生装置时,发热元件和射流发生装置的布置可以适当地改变。因此,可以容易地设计电子设备。
根据本发明的一个方面,控制装置被设置成控制振动机构在从80到150(Hz)的范围内振动。因此,在人类的听觉特性中,噪声水平能降低到1/20或者少于例如1(kHz)水平的声波。结果是发热元件能被冷却而不用拿宁静来交换。
根据本发明的一个方面,射流发生装置进一步包括位于若干腔室的一个腔室处的声音吸收构件或盖件。结果装置的噪声能被进一步降低。
根据本发明的一个方面,振动机构具有一个位于各个腔室内的振动板。根据本发明,当振动板的数目被增加或振动板的振幅被增加时,多个振动板振动的组合射流排放量也可以得到增加。这样,即使当诸如IC芯片的发热元件的时钟频率增加、其产生的发热量增加时,热量也能有效地被散出。另一方面,即使振动板的数目增加或其振幅增加,因为控制装置控制冷却液的振动,使得受多个振动板振动的声波相互削弱。因此,在有效散热的同时,能避免产生装置的噪声。
根据本发明的一个方面,振动机构具有分隔至少一组腔室的振动板。可以依据每个由若干振动板所分隔的腔室的数目来形成开口。可替换的是,振动板的数目可以比被多个振动板分隔的数目大。此外,振动板的数目当然可以是一个或多个。当振动板的数目为一个时,控制装置被设置成控制振动板使得其以正弦振动。这样,控制装置导致从多个开口产生的声波相互削弱。
根据本发明的一个方面,控制装置被设置成将在多个腔室产生的各个声波的相位差控制为360°/n,这里n表示腔室的数目。结果是,除了第n个谐波外其它谐波都相互削弱了。在这种情况下,谐波包括频率成分,该频率成分是除了第n个谐波外的相互削弱的谐波的倍数。在这种情况下,“各自声波的相位差”意味着仅集中于单独声波的基本频率的各自声波的相位差。
根据本发明的一个方面,控制装置被设置成控制在多个腔室内产生的声波的振幅,使得振幅变得基本相同。此外,设定n,使得第n个谐波的组合波的噪声水平低于多个腔室之一中产生的声波的噪声水平。当声波的相位被设定为360°/n时,第pn个谐波(其中p为2或更大的任一整数)同样相互加强。然而,因为比第n个谐波高的谐波的振幅小,所以第pn个谐波的组合波的振幅小于一个腔室内产生的声波的振幅。
根据本发明的一个方面,振动机构具有振动板,其基本对称于垂直于第一方向的平面,该第一方向为振动方向。因为振动机构具有这样一个对称结构,所以声波及其谐波的振幅尽可能变成相同的振幅。这样能进一步改进消音。
根据本发明的一个方面,控制装置被设置成以低于振动机构额定输入量的输入来振动该振动机构。结果是,由于谐波成分被减少,所以装置的噪声被抑制。在这种情况下,所述“输入”意味着,例如,输入功率或电压。
根据本发明的一个方面,振动机构具有与垂直于振动方向的平面不非对称的第一振动板,和与第一振动板有基本相同形状、几乎以与第一振动板的振动方向相同的方向振动并且以第一振动板相对方向设置的第二振动板。在该结构中,尽管振动板是非对称的,当它们被放置在相对方向上时,振动机构作为一个整体的对称性可以得到保障。这样,多个腔室内产生的声波的波形尽可能地变得相同。结果是,装置的静音度能被改善。作为不对称振动板的例子,可以使用各自具有线圈部分和磁体部分的扬声器。
根据本发明的一个方面,控制装置具有第一信号产生装置和第二信号产生装置,该第一信号产生装置产生使振动机构以第一频率振动的驱动信号,该第二信号产生装置产生使振动机构以第一频率而不是以与第一频率不同的第二频率振动的驱动信号。第二频率是作为基本频率的第一频率的谐波成分。这样,当以第一频率的振动相互削弱时,即使使用具有传统失真成分的振动板,装置的噪声也能够有效降低。
根据本发明的一个方面,射流发生装置还包括声波探测装置,用于探测多个腔室内产生的声波。控制装置被设置成依据声波探测信号来控制声波。反馈控制可靠地使射流发生装置消音。此外,即使由于振动机构的老化公差而产生振动特性改变,也可以降低装置的噪声。
根据本发明的一个方面,多个腔室包括各自都由至少两个腔室组成的第一腔室组和第二腔室组。振动机构具有用来振动装在第一腔室组内的冷却剂的第一振动板,和用来振动装在第二腔室组内的冷却剂的第二振动板。控制装置被设置成控制第一和第二振动板的振动,使得产生在第一腔室组内的声波相互削弱,并使产生在第一腔室组内的第一组合声波和产生在第二腔室组内的第二组合声波相互削弱。根据本发明,在第一腔室组内削弱的第一组合声波和在第二腔室组内削弱的第二组合声波被进一步地相互组合和进一步削弱。这样,装置的噪声可以被进一步减小。
根据本发明的一个方面,该射流发生装置还包括声波产生装置,用于产生另一个声波,该声波进一步削弱所述已经被削弱的组合声波。这样,装置的噪声可以被进一步降低。声波产生装置仅需要产生一个声波,其具有与削弱的组合声波相反的相位和相同的振幅。
根据本发明的一个方面,振动机构具有振动板。射流发生装置还包括具有通孔并形成有被振动板分隔的腔室组的壳体。振动机构具有位于壳体外部的致动器,用来驱动振动板,和一个穿过通孔并与致动器的运动保持同步运动的杆。腔室组具有被(n-1)个振动板分隔的n个腔室,其中,n为2或更大的任一整数。例如,致动器由电磁驱动。这个定义适用于下面的说明。当致动器位于壳体内部时,存在致动器的热量保持在腔室中的可能性。当热量保持在壳体中时,散热能力将降低。然而,根据本发明,这种缺点可以得到解决。
根据本发明的一个方面,射流发生装置还包括具有通孔并且形成由振动板分隔的腔室组的壳体。振动机构具有位于壳体外部的致动器,它用于驱动振动板,和一个穿过通孔并与致动器的运动保持同步运动的杆。根据本发明,该致动器位于壳体的外部。这些腔室可以具有使得其容量、形状等尽可能相同的结构。这样,降低噪声的效果可以得到改善。就像上述方面一样,因为致动器并不位于壳体内,所以热量保持在腔室内的问题可以得到解决。
根据本发明的一个方面,射流发生装置还包括位于壳体内的吸收构件,用来吸收杆的振动,所述杆的方向是指与所述第一方向不同的第二方向。吸收构件可以抑制杆的摇动。结果是,吸收构件允许振动板平稳振动。此外,因为吸收构件被布置成将通孔覆盖,所以可以避免在振动板振动时壳体内的冷却剂从通孔中向外泄漏。
根据本发明的一个方面,射流发生装置还包括用于杆的第一轴承,该第一轴承位于通孔内或在其附近。第一轴承不限于为固体物质,可以是流体物质。在本发明的另一方面,除非特别对“固体”或“流体”进行说明,该定义都是适用的。特别地,当使用流体轴承时,壳体的气密性和装置的消音得到改善。作为液体物质的一个例子是对油的使用。
根据本发明的一个方面,所述杆穿过振动板。射流发生装置还包括用于所述杆的第二轴承。这样,第二轴承位于第一轴承的对面。因此,杆可以比上述杆更平稳地移动。此外,因为所述杆从壳体的一端延伸到另一端,因此腔室可以被构造为具有相同的容量、形状等。这样,装置的噪声可以被进一步降低。所述杆可以或不穿过位于第一轴承对面位置处的第一壳体。
根据本发明的一个方面,射流发生装置还包括密封构件,其阻止壳体通过通孔与外部的连通。这样,因为腔室的气密性得到提高,装置可以有效地产生射流。密封构件可以是固体或流体。该定义将适用于下面的说明。
根据本发明的一个方面,射流发生装置还包括密封构件,该密封构件用于密封壳体与形成于所述杆和第一轴承之间的空间的连通。这样,因为腔室的气密性得到提高,装置可以有效地产生射流。密封构件可以位于第二轴承上。
根据本发明的一个方面,射流发生装置还包括形成由振动板的第一振动板分隔的第一腔室组的第一壳体,和形成由振动板的第二振动板分隔的第二腔室组的第二壳体。振动机构具有位于第一壳体和第二壳体之间的致动器,用于驱动第一和第二振动板,和一个杆,其穿过第一和第二通孔,连接第一和第二振动板,并与致动器的运动同步运动。根据本发明,一个致动器可以振动至少两个振动板。这样,在低电功率下冷却剂的排放量能得到增加。结果是,能够提高冷却效果。
根据本发明的一个方面,射流发生装置还包括用于杆的第一轴承,该第一轴承位于第一通孔内或在其附近。这样,杆可以平稳移动。类似的,射流发生装置还包括用于杆的轴承,该轴承位于第二通孔内。
根据本发明的一个方面,杆穿过第一振动板。射流发生装置还包括用于杆的第二轴承,第二轴承位于相对第一壳体的第一轴承的位置处。这样,因为杆可以比上述仅使用第一轴承的杆更平稳地移动,所以振动板能够平稳地振动。类似的,杆穿过第二振动板。射流发生装置进一步包括用于杆的轴承,该轴承位于第一壳体的第一轴承的对面。
根据本发明的一个方面,射流发生装置还包括具有杆所穿过的第三通孔的第三壳体,该第三壳体形成被与穿过第三通孔的杆相连的第三振动板分隔的第三腔室组。根据本发明,壳体的数目依据诸如需更被冷却的发热元件的数目以及发热元件的布置来调整。此外,尽管冷却剂的排放量能够依壳体数目按比例得到增加,但是所述装置只需要一个致动器。这样,射流发生装置的能量消耗、成本和尺寸能够被减小。
根据本发明的一个方面,射流发生装置还包括至少一个密封第一壳体穿过第一通孔与外部的连通的第一密封构件,和用来密封第二壳体穿过第二通孔与外部的连通的第二密封构件。这样,因为腔室的气密性提高了,射流能够有效产生。密封构件可以是固体或流体。
根据本发明的一个方面,致动器被设置成与第一和第二壳体接触,使得致动器将第一和第二通孔覆盖。射流发生装置还包括密封第一壳体和第二壳体穿过位于杆和致动器之间的空间的连通的密封构件。当第一壳体和第二壳体被致动器连接时,本发明特别有效。根据本发明,因为密封构件能够使第一壳体的内部紧靠着第二壳体的内部密封,所以冷却剂能从第一和第二壳体中有效排放出来。
根据本发明的一个方面,致动器被设置成与第一和第二壳体接触,使得致动器覆盖第一和第二通孔。致动器具有用于杆的轴承,和密封第一壳体和第二壳体穿过位于杆和轴承之间的空间的连通的密封构件。因为密封构件能够使第一壳体的内部紧靠着第二壳体的内部密封,所以冷却剂能从第一和第二壳体中有效排放出来。
根据本发明的一个方面,致动器具有用于随流体压力使杆运动的流体压力产生装置。该液压产生装置可以产生水压、液压、气压或类似压力。
根据本发明的一个方面,所述致动器具有转子和用于将转子的转动传递到杆上的连接机构。使用转子的致动器是一个与线性马达相比能降低成本的转动马达。
根据本发明的一个方面,射流发生装置还包括至少一个壳体。该壳体具有侧壁和用于冷却剂的排放喷嘴,该排放喷嘴具有一个从侧壁向壳体的外部和内部分别突出的第一端和第二端,该壳体形成了各个腔室。因为喷嘴的第二端位于腔室内,所以喷嘴可以尽可能地大。这样,产生声音的频率能被减小。根据人类的听觉特性,当声音的频率变得更低时,其音量也变得更低。因此,根据本发明,产生的声音能尽可能地降低。
根据本发明的一个方面,射流发生装置还包括冷却剂从至少一个腔室中排放出来所经过的弯头喷嘴。这样,发热元件能依据弯头喷嘴的方向被冷却。可替换的是,从不同腔室中突出的至少一组喷嘴可以沿着与腔室方向不同的方向进行布置,使得距离d得到满足。
根据本发明的一个方面,射流发生装置还包括从至少一个腔室中排放出来的冷却剂所经过的弹性喷嘴。这样,喷嘴方向可以依据发热元件的布置进行改变。
根据本发明的一个方面,射流发生装置还包括从至少一个腔室中排放到第一发热元件中的冷却剂所经过的第一喷嘴,和一个被排放到与第一发热元件不同的第二发热元件中的冷却剂所经过的第二喷嘴。这样,冷却剂可以被排放到位于不同位置上的多个发热元件中。旋转叶轮的传统风扇不能象本发明那样局部冷却物体。第一喷嘴和第二喷嘴可以从相同的腔室中排放冷却剂。可替换的是,第一喷嘴和第二喷嘴可以从不同的腔室中排放冷却剂。
根据本发明的一个方面,第一喷嘴为直形,而第二喷嘴为弯曲的。这样,依据发热元件的布置,所述发热元件能够由弯曲的第二喷嘴所冷却。
根据本发明的一个方面,第一喷嘴具有第一流道。第一流道具有第一长度和垂直于冷却剂流动方向的第一截面。第二喷嘴具有第二流道。第二流道具有大于第一长度的第二长度和大于第一截面的第二截面。这样,可以避免第二流道阻力的增加。结果是,合适数量的冷却剂能够从第二喷嘴中排放出来。
根据本发明的一个方面,射流发生装置还包括位于散热器上的壳体,该散热器具有多个散热翅片,该壳体具有与散热翅片基本垂直的侧表面,该壳体形成多个腔室中的至少一个,及至少一组喷嘴是弯曲的,从壳体的侧表面向散热翅片突出,并且排放冷却液。这样,与在其中设置喷嘴的壳体的侧表面正对于散热片的结构相比,射流发生装置能够容易地靠着散热片放置。此外,根据本发明,散热片和射流发生装置的封闭体积能尽可能地减少。
根据本发明的一个方面,振动机构具有侧壁垂直地沿振动方向放置的振动板,该侧壁具有在振动方向相对的第一端部和第二端部,第一支持构件用于支持第一端部,第二支持构件用于支持第二端部。因为侧壁受沿振动方向布置的第一支持构件和第二支持构件的支撑,所以振动板能够平稳振动,而无横向振动。因为避免了振动板的横向振动,所以如果振动所述振动板的驱动装置受电磁驱动,那么定子和运动构件能够避免产生碰撞。因为它们几乎不碰撞,所以定子和转子部之间的空间能变窄,施加于线圈上的磁场可被加强。结果是,驱动装置能有效地产生驱动力。此外,因为它们几乎不碰撞,较高模态的振动可以被抑制。结果是,装置的噪声能被减少。
根据本发明的一个方面,振动机构具有振动板,该振动板具有沿振动方向放置的侧壁和沿振动方向滑动支撑侧壁的支持构件。这样,因为受轴承构件支撑的侧壁的支持面积能够增加,所以振动板可平稳振动,而无横向振动。
根据本发明的一个方面,振动机构具有插入到侧壁和支持构件之间的润滑剂。这样,所述振动板可以平滑振动。此外,各个腔室的气密性能得到提高。
根据本发明的一个方面,振动机构具有振动板,用于支撑振动板周边的支持构件,用于驱动振动板的驱动装置,和连接在振动板和支持构件之间的导线,该导线用于将控制信号从控制装置电传递到驱动装置。这样,因为导线随着振动板和支持构件作整体移动,所以与悬置的导线相比,可防止该导线能断裂。
根据本发明的一个方面,支持构件具有绕振动板形成的螺纹槽。导线沿着所述槽缠绕。即使导线与振动板和支持构件作整体移动,如果导线几乎从振动板的中心到外部沿支持构件位移量变大的方向上缠绕,由于导线极大地受到应力,所以导线有断裂的可能。然而,根据本发明,这样的问题能够得到解决。根据本发明,所述槽包括类似波纹的形状。
本发明的一个方面是电子设备,其包括发热元件、装有冷却剂的多个腔室、用于振动装在多个腔室中的冷却剂使得冷却剂朝发热元件脉动地排放的振动机构,和用于控制振动机构振动使得从多个腔室中排放出来的冷却剂所产生的声波相互削弱的控制装置。
根据本发明,发热元件例如是电子部件,如IC芯片或电阻器或散热翅片。然而,发热元件并不限于这些,而是产生热的任何一种构件。电子设备例如是计算机、PDA(个人数字助理)、电器或类似物。
本发明一个方面是包括下列步骤的射流发生方法:振动装在多个腔室内的冷却剂,每个腔室具有开口,使得冷却剂经过各个开口脉动排放,并控制冷却剂的振动,使得从多个腔室中排放出来的冷却剂产生的声波相互削弱。
相据本发明,产生在多个腔室内的声波相互削弱。这样,即使当如IC芯片这样的发热元件的时钟频率增加、其热量增加时,热量也能有效被散出。此外,装置的噪声能得到抑制。
本发明的一个方面是射流发生装置,它包括用于脉动地排放介质的多个排放装置,和用于调节声波振幅或相位中至少一个、使得由多个排放装置产生的声波被抵消的波形调节工具。
根据本发明,术语“抵消”意味着由多个排放装置产生的声波在声波传播的部分的或全部的区域内被相互抵消或削弱。该定义将适用于下面的说明。
根据本发明,波形调节工具被设置成抵消由多个排放装置产生的声波。这样,即使当发热元件如IC芯片的时钟频率增加、由此其产生的发热量增加时,热量也能有效地被散出。此外,装置的噪声能得到抑制。
波形调节工具需要调节如声波的相位或振幅,使得由多个排放装置产生的声波得到抵消。
根据本发明的一个方面,所述介质为气体。射流发生装置还包括用来振动所述气体的振动构件。多个排放装置中的每一个都具有开口,受振动构件振动的气体从这些开口中喷射到装置的外部。波形调节工具具有用于控制所述振动构件振动的控制装置。因为控制装置被设置成控制振动构件的振动,所以产生的声波被抵消了,并借此避免产生装置的噪声。
根据本发明,当至少一个排放装置的相邻开口的距离被表示为d(m),且由一个排放装置产生的声波的波长被表示为λ(m)时,条件d<λ/2得到满足。多个排放装置的每一个都可以具有腔室。在这种情况下,当每个腔室的声波的波长λ几乎相同时,因为在每个开口处产生的声波没有以几乎最大的振幅加强,所以装置的噪声能尽可能地被抑制。
如上所述,根据本发明,在噪声得以避免产生的同时,由发热元件产生的热量也能够有效地散开。此外,由于作为失真成分的谐波成分的振动而产生的噪声可以得到抑制。
附图说明
图1是根据本发明一种实施例的射流发生装置的透视图;
图2是图1中所示装置的截面图;
图3是两块振动板的振动的波形图;
图4是表示例如IC芯片的热被散出的实施例的透视图;
图5是人类听觉特征的曲线图(A特征的等音量曲线);
图6是利用声压计测量的一种射流发生装置所产生噪声的测量结果的曲线图;
图7是由两个声源A和B所产生声波的混合声波的示意图;
图8是由两个声源A和B所产生声波的混合声波的示意图;
图9是在有四个腔室的情况下的一种噪声抑制操作的示意图;
图10是在有三个声源并且它们的声波处于不同相位的情况下的波形的示意图;
图11是两个声波的组合波计算结果的曲线图;
图12是根据另一种实施例的射流发生装置的截面图;
图13是根据另一种实施例的射流发生装置的透视图;
图14是在例如应用上述两个腔室并且在这两个腔室中所产生声波的相位位移180度的情况下波形的示意图;
图15是在三个腔室中所产生声波的波形的示意图;
图16是一个表格,示出了在用扬声器的设定功率和40%设定功率来驱动它的时候,谐波与基本波(basic wave)所产生的谐波的比率;
图17是根据另一种实施例的射流发生装置截面图,该截面图是沿图18中所示的B-B线截取的;
图18是沿图17中所示的A-A线截取的截面图;
图19是根据另一种实施例的射流发生装置的示意图;
图20是示出了一个实施例的表格,该实施例处于,振动控制装置的信号从100赫兹的基本频率开始调节,以至作为失真成分的谐波成分减小的情况下;
图21是根据另一种实施例的射流发生装置的示意图;
图22是根据另一种实施例的射流发生装置的截面图;
图23是在以200赫兹的驱动频率下应用图22中所示的射流发生装置时声波的示意图;
图24是图22中所示的射流发生装置所产生的第一组合波形和第二组合波形以及它们的组合波形的示意图;
图25是一种噪声波谱示意图;
图26是根据本发明另一种实施例的射流发生装置的截面图;
图27是根据图26所示实施例的一种改进的射流发生装置的截面图;
图28是根据图26所示实施例的另一种改进的射流发生装置的截面图;
图29是根据图26所示实施例的另一种改进的射流发生装置的截面图;
图30是根据本发明另一种实施例的射流发生装置的截面图;
图31是具有一个扬声器的射流发生装置的截面图;
图32是根据图30所示实施例的一种改进的射流发生装置的示意图;
图33是根据图32所示实施例的一种改进的射流发生装置示意图;
图34是根据一种改进(第一改进)的致动器的放大截面图;
图35是根据另一种改进(第二改进)的致动器的放大截面图;
图36是根据另一种改进(第三改进)的致动器的放大截面图;
图37是根据另一种改进(第四改进)的致动器的放大截面图;
图38是根据图32所示实施例的另一种改进的射流发生装置的示意图;
图39是根据图28所示实施例的另一种改进的射流发生装置的示意图;
图40是根据本发明另一种实施例的射流发生装置的透视图;
图41是图40中所示射流发生装置的实际使用方法的透视图;
图42是根据图40所示实施例的一种改进的射流发生装置的透视图;
图43是根据另一种实施例的射流发生装置的截面图;
图44是根据图40所示实施例的另一种改进的射流发生装置的透视图;
图45是图44中所示喷嘴的截面图;
图46是根据图44和图45中所示实施例的一种改进的射流发生装置喷嘴的截面图;
图47是使用具有弯曲喷嘴的射流发生装置的实施例(第一)的示意图;
图48是使用具有弯曲喷嘴的射流发生装置的实施例(第二)的示意图;
图49是根据另一种实施例的射流发生装置的截面图;
图50是根据图49中所示实施例的一种改进的射流发生装置的截面图;
图51是根据图49中所示实施例的另一种改进的射流发生装置的截面图;
图52是在根据另一种实施例的射流发生装置中所采用的扬声器型振动机构的截面图;
图53是图52中所示的振动板、边缘构件等的平面图;
图54是振动机构的截面图,在这幅图中,图53中所示的两个振动机构对称放置;
具体实施方式
下面,将参照附图描述本发明的一个实施例。
图1是根据本发明一种实施例的射流发生装置的透视图。图2是该射流发生装置的截面图。
一种射流发生装置1具有如两个独立的壳体11和12。壳体11和12分别具有振动机构5和6。振动机构5和6分别具有振动板7和8。振动板7和8由一种软的薄膜材料构成,例如PET(聚对苯二甲酸乙二醇酯)薄膜材料或类似的材料。振动机构5和6都有例如扬声器的结构。振动机构5和6每个都由线圈、磁体等(未示出)构成。相对于振动板7和8的振动方向,它们是非对称的。
壳体11和12分别形成腔室11a和12a。腔室11a和12a都充满着气体。作为气体,例如可以采用空气。在壳体11和12的侧表面分别设置有作为开口的多个喷嘴13和14。每个腔室可以不具有多个喷嘴13(或喷嘴14),而是具有一个喷嘴13(或喷嘴14)。另外,如图1和图2所示,如喷嘴13的这些喷嘴可以不分别从壳体11突出。可替换的是,如喷嘴13的这些喷嘴可以在壳体11等的壁表面形成。
在壳体11和12的上部分别形成有开口部分11b和12b。振动机构5和6被设置成分别覆盖开口部分11b和12b。
振动机构5和6由控制装置10进行控制。控制装置10具有一个电源电路15和一个控制电路16,其中电源电路15向振动机构5和6施加正弦交流电压,控制电路16控制振动机构5和6的振动波形。正如下面将详细描述的那样,控制装置10使用控制电路16来控制振动机构5和6,以使得由振动机构5和6所产生的空气振动可以被抵消或削弱。
壳体11和12用如金属、例如铝这样的高刚性材料制成。壳体11和12被构形成例如长方体形。壳体11和12的形状、材料、开口等都相同。类似地,振动板7和8的形状、材料等也都相同。
下面,将描述如上面所述构造的射流发生装置1的操作。控制装置10驱动振动机构5和6,以使它们按正弦振动。结果,腔室11a和12a的容积增大或减小。由于振动板7和8的容积发生变化,所以腔室11a和12a的内部压力也发生变化。因此,空气流脉动地产生穿过喷嘴13和14。当振动板7在腔室11a的容积增大的方向上发生变形时,腔室11a的内压降低。因此,壳体11外部的空气通过喷嘴13进入腔室中。相反地,当振动板7在腔室11a的容积减小的方向上发生变形时,腔室11a的内部压力升高。因此,腔室11a中的空气通过喷嘴13向壳体11的外部喷射。这些操作也适用于振动机构6、腔室12a等。当喷射的空气被排放到例如高热部分时,该高热部分就会被冷却。
另一方面,振动板7和8的振动作为空气中的声波被传播。换句话说,除了射流要流经喷嘴13和14之外,振动板7和8的振动还会在腔室11a和12a到外侧之间形成空气的稠密部分和稀薄部分。结果,产生如纵波一样的声波。声波变成噪声。尤其是,噪声主要从喷嘴13和14中产生。
为了抑制前述的噪声,如图3所示,利用控制装置10来控制振动板7和8的振动,这样由壳体11和12所产生的空气的振动就互相抵消或削弱。特别地,振动被控制成使振动板7和8的振动的波形变成相同并且它们的相位变成相反。因此,由于波形互相削弱,所以可以削弱装置的噪声。
图4示出了一个实施例的透视图,在该实施例中,例如一块IC芯片的热被射流发生装置1散出。该IC芯片50与散热器(或具有热管功能的热传导构件)相接触放置。将多个散热翅片52安装到散热器51上。射流发生装置1被布置成使喷嘴13和14喷出的空气射流正对散热翅片52。
由IC芯片50所产生的热由散热器51散发出去,并传递给散热翅片。然后,高热空气滞留在散热翅片52附近。结果,形成一个热边界层。为了消除该热边界层,例如振动机构5和6振动,从而就可以向散热翅片52排出由喷嘴13和14产生的射流。射流打破热边界层。结果就能将热有效地散出。
根据本发明的一种实施例,当例如振动机构5等的振动机构的数目增加时,或者例如壳体11等的壳体的数目增加时,或者例如振动机构5等的振动机构的振幅增加时,由于例如振动机构5等的振动机构的振动所造成的混合射流的流量就会增加。因此,即使当IC芯片的时钟频率增加、由此所产生的发热量增加时,它的热也能够被有效地散出。与此相反,即使当例如振动机构5等的振动机构的数目增加或它们的振幅增加时,控制装置10能够控制声波振动的相位,以使得声波彼此互相削弱。换句话说,能够在有效地将热散发出去的同时,可以避免产生噪声。
另外,根据本发明的实施例,由于在Y方向上布置了多个喷嘴13(或14),所以根据Y方向上例如散热翅片52等的散热翅片的长度,发热元件的热量能够被有效地散发出去。
根据本发明的这种实施例,因为至少振动板是按照正弦振动的,并且声波被抵消,所以与使用两个排出空气的风扇来削弱噪声的情况相比,声波能更加有效地被抵消。因为从一个风扇传出的声波通常是嘈杂的,所以用这两个风扇来抑制噪声会很困难。
下面将说明关于利用该射流发生装置1所产生的噪声降低的实验结果。在该实验中,该射流发生装置具有下面的尺寸。
a=100(mm),b=18(mm),c=50(mm),d=20(mm),e=25(mm),f=40(mm),喷嘴13和14的直径φ=3(mm)...条件(1)
另外,振动机构5和6的频率大约为100赫兹,该频率处于人们能听得见的范围。
图5示出人们能听得见的特征曲线。该曲线是由JIS标准中规定的等音量曲线(A特征曲线)。该曲线表明,在20赫兹到20千赫的频率波段范围内,当人暴露于相同声压水平时,他或她是如何听到的。换句话说,该曲线表示,以1千赫兹的声波作为参考,人能在怎样的强度下听到单频率的声音。该曲线表示,在相同的声压水平下,人能听到比1千赫的声音低30dB(分贝)的50赫兹的声音。声压水平Lp(dB)由下式(1)来确定。
Lp=20log(p/p0)...公式(1)
其中,p表示声压(Pa),p0表示基准声压(20μPa)。
图6是利用声压计测量的这种射流发生装置所产生噪声的测量结果的曲线图。该曲线图示出了在20(赫兹)到20(千赫)的频率波段范围内的声波测量结果,这个频率波段范围是人们能够听到的范围。另外,该曲线图示出的是“声压水平”而不是“噪声水平”。因此,该曲线图没有得到前述A特征的补偿(声压水平没有根据人们能听到的特征进行补偿)。所以,图6中所示的曲线图表示,当频率下降时,声压水平变得更高。但是,人们能听到的噪声并不总是变化。该曲线表明,声波在100(赫兹)时能最有效地彼此削弱。
当喷嘴13和14之间的距离(开口之间的距离)如图1中所示用d表示,并且声波的波长用λ(m)表示时,
d<λ/2       ...公式(2)
当满足公式(2)时,可以得到下面的效果。换句话说,由例如喷嘴13等的喷嘴所产生的声波不会以几乎最大振幅来彼此加强,因而几乎可以防止产生噪声。下面,将说明为什么会得到前述的效果。
如图7所示,腔室11a的开口13和腔室12a的开口14之间的距离用d表示。AP的距离用h表示。BP的距离用i表示。如果|h-i|比由腔室11a和12a的声源A和B所产生的声波波长的1/2小,并且这两个声波的相位相反,那么这两个声波彼此削弱。三角定义表明,|h-i|的最大极限是d,即|h-i|<d。因此d必须小于二分之一波长,即d<λ/2。当以这种方式来定义距离d时,这两个声源不会以几乎最大振幅彼此加强。
这种现象还可以通过图8中所示的这两个声源A和B所产生的声波的波阵面来理解。在该图中,粗线表示声源A的波阵面,而细线表示声源B的波阵面。另外,波阵面的实线表示波峰,而波阵面的虚线表示波谷。声源A和B之间的距离d<λ/2并且它们的相位相反。因此,这两个声波在多个C点处以最大振幅而彼此削弱。结果,不存在以最大振幅使它们得到加强的位置。
根据本发明的这种实施例,只要满足上述公式(2),腔室等的形状不受约束。
例如,当腔室的数目是2时,如果腔室中产生的声波相位位移360度/2=180度,并且使振动板7和8振动,那么波形就会反向。结果声波彼此削弱。
另外,如图9所示,当采用四个腔室A、B、C和D时,如果在腔室A、B、C和D中所产生的声波波长和振幅相等,腔室A和B中所产生的声波波形相位相同,腔室C和D中所产生的声波波形相位相同,并且腔室A和B中所产生的声波波形相位与腔室C和D中的声波波形相位都相差180度,那么这些声波彼此削弱。
当腔室的数目是n(其中n=2,3,4,...)并且这些腔室中所产生声波的波长和振幅几乎相等时,控制装置10会使得这些腔室中所产生声波的波形具有360°/n的相位差。因此,包括n个腔室的整个系统声波的组合波会彼此削弱。实际上,图10示出了在例如n=3的情况下声波的相位差。三个波形X、Y和Z的相位差需要彼此平移120°。结果,组合波由实线W表示。因此,这些声波彼此削弱。
当腔室的数目是n(其中n=2,3,4,...)时,在这些腔室中所产生的每个声波的波长是λ,它们的振幅几乎相等,相邻腔室的相邻开口之间的距离是d(m)时,可以满足下面的公式。
d<λ/{2(n-1)}...公式(3)
在这种情况下,相隔最远的开口之间的距离是λ/{2(n-1)}。由于波长比该距离大得多,所以这些腔室中所产生声波的组合波形会彼此削弱,而不受它们的位置和方向的影响。也就是说,由腔室的这些开口所产生的声波的最大振幅不会加强,所以几乎可以防止这些装置产生噪声。
当采用三个腔室A、B和C时,它们可以产生在腔室内所产生的每个声波的波长为λ的声波,在腔室A和B中所产生的声波波形具有振幅a和相同的相位,在腔室C中所产生声波的振幅是2×a,并且腔室C中所产生声波的相位以180°平移(从腔室A和B中所产生的每个声波的相位)。这种情况下,在腔室A、B和C中所产生的声波波形的波峰和波谷彼此削弱。结果,该组合波形变得平坦。因此,可以获得抑制噪声的效果。
图11是在前述实验中采用射流发生装置所产生的具有在λ/180到λ/2的范围内的距离d的参数的两个声波的组合波计算结果曲线图。在该曲线图中,可以认为,纵轴上的振幅表示每个参数值的一个相对值。在这种情况下,除了上述实验条件(1)之外,还要加上下面这个条件。
声波速度=345(m/s),频率f=100(Hz)...条件(2)
在这种情况下,由于λ=v/f,所以λ=3.45(m)。这两个声源的振幅都是1。
该曲线图表明,当d=λ/6时,振幅变为1(最大)。也就是说,当满足下面的公式时,振幅最大。
d<λ/6      ...公式(4)
很明显,这两个腔室的声音比利用一个振动板的一个腔室的声音要弱。当应用三个声源时,必须满足2d<λ/6的条件。也就是说,当振动板的数目是n(其中n=2,3,4,...)时,如果满足下面的条件
d<λ/{6(n-1)}...公式(5)
那么合成的声音比具有一个振动板的一个腔室的声音要弱。
如上所述,当满足条件(2)时,由于λ=3.45(m),所以必须满足公式(2)所规定的d<λ/2=1.725(m)的条件或者满足公式(4)所规定的d<λ/6=0.575(m)的条件。在该实验中所采用的该射流发生装置1中,由于d=0.025(m),所以公式(2)和(4)都充分得到满足。
当两个腔室的形状、尺寸等相同时,如果d只满足上述公式(2)或公式(4),那么腔室的形状和尺寸不受限制。另外,两个腔室的布置、开口和喷嘴的形状也都不受限制。因此,当该射流发生装置1安装到具有内部发热元件的电子设备中时,发热元件和射流发生装置1的位置关系可以根据需要进行变化。所以,可以容易地设计电子设备。
图12是根据本发明另一种实施例的射流发生装置截面图。根据这种实施例该射流发生装置由附图标记21表示。该射流发生装置21由壳体22包围起来。壳体22中的空间被分隔为两个腔室22a和22b。腔室22a和22b的形状、容积等都几乎相同。腔室22a和22b组成由一个腔室组。在分隔开的腔室22a和22b中分别形成有开口22c和22d。开口22c(或22d)可以是一个或多个开口。开口22c和22d的形状、尺寸等几乎相同。射流发生装置21的壳体22、振动板27等的材料等可以与图1中所示的射流发生装置的那些材料相同。与前述的实施例相同,例如可以采用扬声器作为振动机构25。另外,控制振动机构25的控制装置20包括电源电路等,它提供一个正弦的交流电压。
下面,将说明具有前述结构的射流发生装置21的操作。控制装置20驱动振动机构25从而正弦地振动振动板27。结果,腔室22a和22b中的内部压力交替上升和下降。因此,空气流穿过开口22c和22d。空气流交替地从壳体22的内部流向外部和从其外部流向内部。由于空气被排向壳体22的外部,该空气可以排向例如高热部件以使其冷却。
另一方面,除了射流从开口22c和22d排出之外,振动板27的振动作为空气中的声波一样穿过开口22c和22d进行传播。由开口22c和22d产生的声波是从相同振动板的前表面和后表面产生。由于腔室22a和22b的形状等与开口22c和22d相同,所以声波的波形相同而它们的相位相反。因此,由于穿过开口22c和22d所产生的声波互相抵消,所以抑制了该装置的噪声。
尤其是,当开口22c和22d之间的距离满足上述公式(2)和(3)时,就可以降低该装置的噪声。
作为如图12中所示的实施例的改进,当射流发生装置21具有例如三个或更多的振动机构时,如果调整振动板的振幅和相位,那么声波就可以彼此削弱。
图13是根据本发明另一种实施例的射流发生装置透视图。根据这种实施例的射流发生装置由附图标记41表示。该射流发生装置41具有多个喷嘴43和44,它们在两个壳体11和12上面以间距d交替地布置。尤其是,在该实施例中,这多个喷嘴43和44按一维排列。在这种结构中,可以获得和前述实施例的射流发生装置相同的效果。也就是说,当仅仅距离d满足上述公式(2)和(3)时,可以在避免产生噪声的同时,有效地完成散热操作。
本发明不限于上述实施例。作为替代,本发明可适于这些实施例的各种改进。
例如,如壳体11等的壳体可以具有一个吸声元件和一个盖件。例如可以将玻璃棉作为吸声元件来使用。因此可以进一步降低该装置的噪声。
在前面的描述中,腔室的形状和材料、开口的形状、振动板的形状、振动板和驱动装置的形状、材料等都相同。但是,只要由这些腔室的开口所产生的声波波形相同并且它们的相位相反,那么腔室和振动板的形状等可以互不相同。
根据前述实施例,作为控制波形以使得多个声波彼此抵消或削弱的装置,腔室中形成的相邻开口之间的距离和振动机构的振动都被调整。但是,本发明并不限于这个实施例。可替换地,波形可以根据腔室的形状、材料和结构以及开口的形状等进行调节。另外,还可以控制声波的相位。而且,可以控制声波的振幅和频率,从而使多个声波彼此削弱。
在前面的描述中,没有提及每个腔室中所形成的开口的数目。作为替代,可以形成许多个开口。
根据前述的实施例,扬声器被示范性的作为振动机构。除了扬声器,例如还可以采用压电器件作为振动机构。另外,根据前述实施例的射流发生装置并不总是需要振动机构。相反的,可以通过如罗茨泵(Roots pump)的转子的转动来产生射流。
图14是在两个腔室中产生声波并且它们的相位位移为180°的波形曲线图。如图中所示,由于作为基本频率成分的波形31和32相差180°,所以它们彼此削弱。但是,由于波形31和32的谐波波形33和34具有相同的相位,所以它们彼此加强。具有比第二谐波成分高任意整数倍的谐波成分,即第四谐波,第六谐波等的振动彼此加强。因此升高了该装置的噪声。
另外,如图15所示,即使采用例如三个腔室所产生的声波彼此相差120°,虽然第一基本波45,46和47以及第二谐波35,36和37的振动彼此抵消,但是第三谐波38,39和40的振动彼此加强。也就是说,当腔室的数目为n时,虽然除了第n个谐波外,具有频率成分的振动被抵消,但是第n个谐波的振动彼此加强。因此,组合多个腔室的波形从而降低基本波的组合波形以及所有谐波的组合波形是不可能的。
一般来说,当谐波的级次变大时,它们的振幅变小。因此,根据该实施例,优选利用三个或多个腔室来控制波形。第三谐波的振幅足够小。实际上,这个参数可以作如下考虑。
当一个腔室(声源)的第一、第二和第三谐波的噪声水平分别为20,18和15(dBA)时,即n=1时,该腔室的噪声水平大约为22.9(dBA)。在这种情况下,当目标噪声水平是20(dBA)时,就不能满足这个目标。如上所述,(dBA)表示已经完成补偿A的噪声水平。这种定义适用于下面的说明。
当n=2时,第一谐波和第三谐波互相抵消。但是,第二谐波彼此加强。噪声水平变成21(dBA),它比第二谐波的18(dBA)高两倍。因此该噪声水平不能满足上述目标。
因此,根据本发明的这种实施例,使用n=3的条件。尽管第三谐波彼此加强,但是第一谐波和第二谐波的声波都被抵消。噪声水平变成19.8(dBA),它比15(dBA)高三倍。这个噪声水平满足了上述目标。换句话说,当采用三个腔室时,在三个腔室中所产生声波的相位彼此相差120°。结果,可以将噪声水平降的比目标值还低。
在该实施例中,尽管噪声水平的目标值是20(dBA),但是也可以将前述噪声水平22.9(dBA)设计成目标值,这个噪声水平是在一个腔室中所产生声波的噪声水平。
作为用于防止声波不包含谐波的另一种方法,该扬声器(振动机构)可以由一个驱动能量来驱动,该驱动能量比它的设定功率小得多。一般来说,当用一个接近的设定功率的驱动源来驱动扬声器时,包含在所产生声波中的谐波的比率升高。图16是一个表格,示出了在用扬声器的设定功率的(0.5W)和40%(0.2W)设定功率来驱动它的时候,谐波的振幅与基本波的振幅的比值。这个表格示出了当用设定功率的40%(0.2W)来驱动扬声器时,谐波成分发生下降。
根据这种实施例,可以获得声波的抵消效果来抵制失真成分,所以该实施例可应用于发生失真的振动机构。这样,由于它的规格不受限制,因此可以使用便宜的振动机构。另外,依赖于所应用振动机构的失真比率,可以使用于降低噪声的腔室的数目最小。因此,可以降低该装置的能源消耗和使用空间。
图17和图18示出了根据本发明另一种实施例的射流发生装置截面图。图18是沿着图17的A-A线截取的截面图。图17是沿着图18的B-B线截取的截面图。根据该实施例的射流发生装置用附图标记61表示。射流发生装置61由具有腔室62a和62b的壳体68包围起来。腔室62a和62b由壳体68和位于其中的壁69组成。在腔室62a和62b中,分别设置了振动机构65a和65b。振动机构65a和65b都和例如图2中所示的振动机构5等的振动机构相同。壳体68具有喷嘴63a和63b,它们分别穿过腔室62a和62b的内部。空气分别通过喷嘴63a和63b从腔室62a和62b排放出去。振动机构65a和65b设置成它们分别封闭在壁69中形成的开口66a和66b。振动机构65b振动腔室62a中的空气。结果,空气从喷嘴63a中排出。振动机构65a振动腔室62b中的空气。结果,空气通过喷嘴63b排出。振动机构65a和65b连接到控制装置(未示出)上,该控制装置与图2中所示的控制装置10相同。控制装置控制振动机构65a和65b,以使得振动机构65a和65b的振动相位相反,并且它们振动的振幅相同。
振动机构65a和65b设置成它们的振动方向R相同,并且它们的位向相反。因此,即使振动机构65a和65b是象扬声器一样为成非对称的振动机构或振动板,但是它们保证总体上的对称。因此,振动机构65a和65b允许由喷嘴63a和63b所产生声波的波形变得尽可能相同。结果可以提高该装置的无噪声性。
当运行图12中所示的射流发生装置21时,因为作为失真成分的谐波相位偏离,所以可能会使腔室22a和22b中所发生的声波抵消效果变坏。
但是,当振动机构(未示出)相对于垂直于振动方向R的平面对称时,即使采用一个振动机构,也可以降低噪声。在这种情况下,优选在振动板的前侧上形成的一个腔室的材料、尺寸、形状、容积和它的开口部分(喷嘴)的尺寸或形状与在其后侧上形成的其它腔室的相同。因此,在这些腔室中产生的声波是相反的。实际上,作为相对于垂直于振动方向R的一个平面对称布置的振动机构,可以采用这种结构,即在该结构中,分别在一个合适的平面构件的第一平面(例如前表面)和它的第二平面(例如后表面)上设置第一线圈和第二线圈,其中第二平面与第一平面几乎平行。例如可以使用平面线圈作为第一线圈和第二线圈。可以使用一种软的树脂或橡胶构件作为平面构件。另外,在上面分别设置了第一线圈和第二线圈的第一平面和第二平面上,分别设置第一磁体和第二磁体。当驱动电压施加到线圈上时,振动构件可以振动。振动构件可以设置在例如图12中所示的腔室的中心。另外,第一磁体和第二磁体可以设置在壳体22的槽部和顶部。可替换的是,平面线圈可以设置在平面构件的第一平面和第二平面其中之一上。
图19示出了根据本发明另一种实施例的射流发生装置示意图。在图19中,与图1和图2中所示出的那些相似的构件、功能等只作简要说明或省略对它们的描述。
根据这种实施例的射流发生装置用附图标记71表示。射流发生装置具有振动控制装置70。振动控制装置70调节振动机构5。振动控制装置70具有驱动信号源72、73和74,这些信号源向振动机构5输出具有不同频率的驱动信号。射流发生装置还具有振动控制装置75。振动控制装置75控制振动机构6。振动控制装置75具有驱动信号源76、77和78,它们向振动机构6输出具有不同频率的驱动信号。驱动信号源72和76产生具有相同基本频率的信号。
驱动信号源73和74产生驱动信号以使得振动机构5的谐波成分不会振动。驱动信号使得例如振动机构5等的振动机构产生谐波,这些谐波的相位相反、振幅和频率相同。同样地,驱动信号源77和78产生驱动信号,使得振动机构6的谐波成分不会振动。
在该结构中,因为控制了例如由驱动信号源72和76所产生的信号的相位差和振幅(这样,例如这些信号具有相同振幅和180°的相位差),所以基本频率的振动彼此削弱。例如驱动信号源73和77的驱动信号源产生驱动信号,以使得振动机构5和6不会振动出谐波成分。换句话说,基本频率成分的声波彼此削弱。另外,由于没有产生谐波成分,所以可以降低该装置的噪声。
另外,可以将如图19中所示的结构和图12中所示的结构进行组合。换句话说,具有一个振动板、两个腔室和连接到如图19所示的一个振动板上的振动控制装置70的射流发生装置允许基本频率成分的声波彼此削弱并防止产生谐波成分。因此,可以降低该装置的噪声。
图20示出了一个实施例,其中在基本频率为100赫兹的情况下,调节振动控制装置70的信号,以减少作为谐波成分的失真成分。在该实施例中,200赫兹和300赫兹的信号和100赫兹的基本频率叠加在一起。因此,第二谐波(200赫兹)和第三谐波(300赫兹)被削弱。
图21是根据本发明另一种实施例的射流发生装置示意图。根据该实施例的射流发生装置由附图标记81表示。射流发生装置81具有腔室11a和12a,在所述腔室11a和12a中分别设置有麦克风82和83,其用以检测由振动机构5和6产生的声波的状态(振幅、相位等)。检测出的状态作为信号反馈给振动控制装置80。振动控制装置80控制振动机构5和6的振动,以使其产生的声波彼此削弱。
根据该实施例,即使由于振动机构5或6的老化公差振动特征发生变化,该装置的噪声也能得到减弱。由于麦克风82和83分别设置在腔室11a和12a内,因此麦克风82和83能在其它腔室的声波不发生干涉的情况下分别检测到两个腔室的声波。因此,振动机构5和6的振动能得以精确地控制。
根据前述实施例的射流发生装置1、21、41、61、71和81用于向一个发热元件喷射空气并冷却该构件,然而本发明并不局限于此。例如,射流发生装置1、21、41、61、71和81可用作给燃料电池(fuel cell)供应燃料的装置。事实上,在这种情况下,设置一个燃料电池的氧气(空气)吸入口,使氧气吸入口对着如前所述的射流发生装置中腔室的喷嘴(开口部分)。在这种结构中,从射流发生装置中排放出的空气作为含氧燃料从吸入口中吸入。因此,在整个装置的结构构造为比用轴流风扇提供燃料的装置更薄的同时,其与轴流风扇所取得的发电效率相同。
图22是根据本发明另一种实施例的射流发生装置截面图。
根据该实施例的射流发生装置由附图标记91表示。该射流发生装置91具有两个图12中所示的射流发生装置。这两个射流发生装置分别由附图标记121和221表示。射流发生装置121和221基本上相同。控制部分120和220控制振动板127和227,以使它们的振动几乎具有相同的振幅、相同的频率和相反的相位。换句话说,当振动机构125的振动板127向使腔室122b的内部压力增加的方向(图中所示的向下方向)振动时,振动机构225的振动板227向使腔室222b的内部压力减小的方向(图中所示的向上方向)振动。而且,在振动板127向使腔室122a的内部压力增加的方向(图中所示的向上方向)振动的同时,振动机构225的振动板227就向使腔室222a的内部压力减小的方向(图中所示的向下方向)振动。
例如振动机构125等的扬声器型振动机构相对于振动板127的振动方向成非对称布置。而且,音圈部和轭部(yoke portion)相对于振动方向也是不对称的。由振动板127的振动而引起腔室122b的压力差要大于腔室122a的压力差。由开口122c、122d、222c和222d产生的声压的波形分别由附图标记83a、83b、93a和93b表示。这些声波的振幅具有以下关系,即波形83b大于波形83a,且波形93b大于93a。当波形83a和83b组合在一起时,就形成了组合波形84(第一组合波形)。同样,当波形93a和93b组合在一起时,就形成了组合波形94(第二组合波形)。由于控制装置120和220控制在相反相位上进行振动,因此第一组合波形84和第二组合波形94就被彼此削弱。最后,就形成了平波形90。
在腔室122a和122b中削弱的第一组合波形84和在腔室222a和222b中削弱的第二组合波形94再次组合在一起并得以削弱。因此,所述装置的噪声能得到进一步的降低。
图23和24示出了该实施例的实验结果。图23示出了只采用射流发生装置91的射流发生装置121且驱动频率为200赫兹的这种情况下的波形。换句话说,图23示出了第一组合波形。如图23中清楚地看出,由于振动机构125是不对称的,因此声波不是平的。
图24示出了射流发生装置121合221所产生的第一组合波形84、第二组合波形94和最终的组合波形90。这些信号的驱动频率是200赫兹,相差是170°。如图24所示,所述组合波形彼此削弱。最终组合波形的声压约是每个组合波形的1/2。在图23和24中,由于考虑的是射流发生装置121和222所产生的声压的水平和相对相位,因此本发明并不局限于图23和24中所示曲线的单位和标度值。
图25示出了实验的噪声波谱。如图中所示,可以清楚地看出200赫兹的频率处和600赫兹的频率处的噪声削弱了约20分贝。
根据该实施例,当相隔最远的两个开口之间的距离满足前述公式(2)或公式(4)时,就不会有第一组合波形和第二组合波形彼此加强的部分。换句话说,腔室122a的开口122c和腔室222b的开口222d之间的距离必须满足前述公式(2)或公式(4)。
虽然射流发生装置121的结构和射流发生装置221的结构相同,但是它们的结构也可以不同。当两者的结构不同时,需要控制相位、振幅等以使最终组合波形得以减弱。
根据该实施例的射流发生装置91具有两个壳体(121和221)。或者,射流发生装置91可以有三个或更多的壳体。
前面的描述并没有提到例如腔室122a等腔室中形成的开口数量。但是,可以形成多个开口。
在前面的描述中,相位差是170°。但是,本发明并不局限于该值。相位差可以是这样一个值,即通过该值可以使噪声水平的组合波形减小。例如当声波的相位差不是170°时,可以控制其驱动频率来减小噪声。
除射流发生装置121和221之外,还可设置另一种声波发生装置,例如扬声器(未示出)。当声波发生装置的声压和相位被调节时,噪声水平就能得以减小。例如,当由扬声器装置产生与图24中所示的最终组合波形的相位反向的声波时,组合声波的噪声水平就能得到进一步的减小。
在前面的描述中,振动板例如振动板127等是用正弦波驱动的。或者,振动板例如振动板127等也可以由信号来驱动,由该信号使例如振动板127的振动板等产生的声波不包含谐波成分。在这种情况下,由于射流发生装置121和122所产生的声波中没有谐波成分,噪声削弱效果因此可以得到进一步的提高。这意味着图25中所示的400赫兹处噪声的峰值会消失。
图26是根据本发明另一种实施例的射流发生装置截面图。根据该实施例的射流发生装置由附图标记101表示。射流发生装置101具有一个壳体172。壳体172具有被振动板145分隔开的腔室172a和172b。使振动板145发生振动的致动器178设置在壳体172的外面。致动器178的杆185连接在振动板145上。致动器178使振动板145产生运动。杆185穿过在壳体172上形成的通孔172e。致动器178具有磁轭(yoke)182、磁铁183、线圈184等。控制装置170向线圈输送一个交流电压。结果,线圈促使杆185沿图中所示的上下方向移动。因此,振动板145发生振动。当振动板145振动时,喷嘴173和174交替产生射流。而且,喷嘴173和174产生具有相反相位的声波。该声波彼此削弱。
根据该实施例,由于致动器178设置在壳体172的外面,所以腔室172a和172b的体积可以是差不多相等。如果致动器178是设置在壳体172的里面,致动器178的热量将留在腔室172a或172b中。如果振动板145是在这种状态下振动,那么将会产生热空气流。结果,散热性能将会变差。但是,根据本实施例,就可以解决这种弊端。
图27是示出根据图26所示实施例的一种改进的射流发生装置的截面图。在图27至图29中,与图26中相同的构件、功能等将只作简要描述,或者省略其描述。
根据该改进的射流发生装置由附图标记111表示。射流发生装置111具有一吸收杆185横向振动的吸收构件192。吸收构件192由例如波纹管的管构件形成。或者,吸收构件192可以由柔性树脂或橡胶构成。吸收构件192可以抑制杆175抵制着振动板145的振动而产生的横向振动。结果振动板145可稳定地进行振动。如果杆185横向振动,线圈184将和磁轭182等接触。结果,将会产生一摩擦声。相反,根据该改进方式,就不会产生这种摩擦声。如果发生了横向振动,就会产生另一种与基本振动波不同的另一种模式的振动。结果,就会产生谐波。如上所述,由于谐波必须被抑制,因此防止杆175发生横向振动是有意义的。
此外,根据这种实施例,吸收构件192密封住了在壳体172中形成的通孔172e,进而保持了壳体172的密封。因此,当振动板145振动时,吸收构件192就能防止空气通过通孔172e从外壳172泄漏。换句话说,吸收构件192还起密封构件的作用。因此,冷却剂能有效地从腔室172a和172b中排出。
代替固体密封构件192,还可以设置密封通孔172e的粘性流体密封构件。
图28是示出根据图26所示实施例的另一种改进的射流发生装置的截面图。根据该实施例的射流发生装置由附图标记121表示。射流发生装置121具有一个壳体172,在壳体172上安装有用于杆108的轴承105a和105b。轴承,例如轴承105a等,是由线性滚珠轴承、液压轴承或类似物构成。杆185穿过振动板145。此外,杆185穿过一个在腔室172b侧形成的与通孔172e相对的通孔172f。轴承105a和105b分别设置在通孔172e和172f附近。同时使用轴承105a和105b的结构与只用轴承105a的结构相比能更好地抑制杆185的横向振动。结果,杆185能稳定地运动。因此,振动板145能有效地振动。此外,由于杆185从壳体172的一侧延伸到另一侧,因而腔室172a和172b的体积、形状等可以相同。因此,该装置的噪声能进一步地减小。
当轴承105a和105b是固体轴承时,固体轴承105a中可以填充液体。在这种情况下,壳体172可以气密地封住所述杆185和轴承105a或105b之间的间隙。
图29是示出根据图26所示实施例的另一种改进的射流发生装置的截面图。根据该实施例的射流发生装置由附图标记131表示。射流发生装置131具有腔室172a和172b。在172a和172b中,安装有用于杆185的轴承106a和106b。与图28所示的射流发生装置121不同,射流发生装置131在壳体底部不具有通孔172f。射流发生装置131可以具有和射流发生装置121相同的操作和效果。
在图26和图27至29中,在壳体172的例如通孔172e等的通孔中设置有一密封构件,杆185穿过该通孔。因此,由于壳体的内部气密性加强,因此冷却剂能得以有效地排放。
图30是示出根据本发明另一种实施例的射流发生装置的截面图。根据该实施例的射流发生装置由附图标记201表示。射流发生装置201具有一个上部壳体202A和一个下部壳体202B。上部壳体202A构成了腔室204a和204b的轮廓。下部壳体202B构成了腔室206a和206b的轮廓。壳体202A和202B几乎具有相同的形状、尺寸等。喷嘴207A、208A、207B和208B在壳体202A和202B上从腔室204a、204b、206a和206b中突出。扬声器型振动发生装置205A和205B分别设置在上部壳体202A和下部壳体202B上。致动器203设置在上部壳体202A和下部壳体202B之间,该致动器为驱动振动发生装置205A和205B的驱动装置。该致动器203由磁体203a、磁轭203b、线圈203c等组成。控制装置210电连接到线圈203c上,该装置控制振动发生装置205A和205B的振动。
振动发生装置205A具有框架213A和通过一个边缘构件215A安装在该框架上的振动板211A。框架213A安装在上部外壳202A的下部处形成的通孔202Aa中。空气孔部213Aa在框架213A中形成。边缘构件215A具有柔韧性或弹性。边缘构件215A由例如树脂或橡胶等制成。分隔件212A设置在上部外壳202A上。分隔件212A形成了腔室204a和204b。在分隔件212A的中部形成有一孔212Aa。振动发生装置205A的框架213A通过振动吸收构件214A安装在分隔件212A上,使得框架213A覆盖住所述孔212Aa。
下振动发生装置205B和上振动发生装置205A具有几乎相同的结构。不同之处在于线圈203c是安装在振动板211B上。和振动发生装置205A一样,振动发生装置205B设置在分隔件212B的孔212Ba上,使得振动发生装置205B覆盖住所述孔212Ba。
杆209穿过磁轭203b的通孔203ba。而且,杆209穿过通孔202Aa和202Ba。杆209连接在振动板211A和211B上。这种结构使得两个振动板211A和211B一起振动。
上部壳体202A形成为使得腔室204a的体积和腔室204b的体积几乎相等。事实上,上部壳体202A是这样形成的,即根据振动发生装置205A的体积使下腔室204b比上腔室204a的高度高。下部壳体202B和上部壳体202A具有相同的结构。
接下来,将描述具有前述结构的射流发生装置201的操作。当控制装置210将交流电压施加给线圈203c时,杆209就沿图中所示的上下方向运动。结果,振动板211A和211B就在上下方向上振动。当振动板211A和211B在图中所示的上下方向上振动时,腔室204a和206b的内部压力就会增加。结果,空气就从喷嘴207A和208B中排出。由于喷嘴207A和208A产生的声波(尤其是基本频率的声波)的相位是反向的,所以这两种声波会彼此削弱。同样,由于喷嘴207B和208A产生的声波(尤其是基本频率的声波)的相位是反向的,所以这两种声波会彼此削弱。
根据这种实施例,能减小所述装置的噪声。而且,由于设置了一个致动器203和四个腔室,因此空气的排放量可以用一个小的电力来加以提高,也能提高冷却效率。
此外,根据本实施例,由于设置有两个边缘构件215A和215B,所以振动板211A和211B、杆209等的横向振动会减弱。图30示出了一种使用传统扬声器235的射流发生装置。扬声器235具有框架213、振动板211、边缘构件215和阻尼装置(damper)236。边缘构件215和阻尼装置236设置在框架213和振动板211之间。相反的是,该射流发生装置201不需要阻尼装置236。虽然阻尼装置236有利于防止喷射装置发生横向振动,但由于其变成抵制振动板振动的阻力,所以这会消耗掉额外的功率。因此,当不需要阻尼装置236时,振动板例如振动板211A等就能以低功耗进行振动。当提供与采用阻尼装置236的情况相同的功率时,由于振动板的振幅可以增加,所以冷却的效率能得到提高。
将2瓦的功率提供给图31中所示的扬声器235和图30中所示的振动发生装置例如振动发生装置205A等,并测量它们的位移。在扬声器235和振动发生装置中,所用的是同样的磁体和具有与磁体同样尺寸的磁轭。振动板211A的尺寸与振动板211B的尺寸相同。每个振动板211A和211B的直径和重量分别约为70毫米和300克。在这种情况下,图31所示的振动板211的振幅是132毫米(振动量是1.32×2=2.64毫米)。另一方面,在图31中所示的结构中,振动板211A的振幅是2.26毫米,这是图31中所示结构用同样的功率下的两倍。而且,由于图30所示的结构具有两个振动板,所以效率也加倍。
此外,根据该实施例,由于射流发生装置201仅具有一致动器203,所以该装置能小型化。
图32示出了根据图30所示实施例(射流发生装置201)的一种改进的射流发生装置。根据该实施例的射流发生装置由附图标记231表示。在图32至图38中,与图30中相同的构件、功能等将只作简要描述,或者省略其描述。
平振动板221A通过边缘构件215A安装在射流发生装置231的上部壳体232A上。同样,平振动板221B通过边缘构件215B安装在下部壳体232B上。线圈203c安装在安装构件226上。该安装构件226和杆229相连接。杆229通过通孔231Aa和232Ba连接在振动板221A和221B上。因此,当致动器被驱动时,杆229被运动。结果,振动板221A和221B就会一体振动。因此,由于射流发生装置231的对称性比图30中所示的射流发生装置201的对称性得到了更大的改进,所以该装置的噪声能得到进一步减小。
图33示出了根据图32所示改进(射流发生装置201)的另一种改进的射流发生装置。根据这种改进方式的射流发生装置由附图标记241表示。该射流发生装置241具有四个壳体。杆229穿过通孔232Aa和232Ba连接到振动板221A和221B上。而且,杆239穿过振动板221A和221B。杆239穿过通孔232Ab、232Bb、232Ca和232Da连接到振动板221C和221D上。因此,由于四块振动板221A、221B、221C和221D一起一体振动,所以冷却剂的排放量能进一步提高。此外,还取决于要冷却的发热元件和它们的布置,壳体数量还可以调整。而且,尽管冷却剂的排放量可以按壳体的数量成比例地增加,但只需要一个致动器203。而且,由于致动器203设置在壳体232A、232B、232C和232D的中央,也就是在上部壳体232A和232B之间,该装置的对称性没有变坏。
在图32所示的射流发生装置231中,杆229可以穿过振动板221A和221B。而且,如图28或29所示,穿过振动板221A和221B的杆的轴承可以设置在上部壳体232A上部和下部壳体232B的下部。这种结构适用于图33所示的射流发生装置241。
图34至图37是根据一种改进的射流发生装置201、231和241的致动器203的放大截面图。
如图34所示,杆209的轴承240设置在磁轭203b的通孔203ba中。如图中所示,轴承240,例如,是一个球轴承。轴承240可防止杆209发生横向振动。轴承可以是流体轴承而不是前面所述的固体轴承。当采用流体轴承时,装置的噪声能得到进一步减小。在此情况下,流体优选为液体。该流体更优选为磁性流体。或者,轴承240中还可容纳粘性液体。轴承240使下部壳体232B的内侧与上部壳体232A的内侧相互密封。结果,冷却剂能从上部壳体232A和232B中有效地排出。
在图35中,密封构件242A设置在上部壳体232A和杆209之间,而另一密封构件242B设置在下部壳体232B和杆209之间。密封构件242A和242B由诸如橡胶、树脂等构成。密封构件242A和242B使下部壳体232B的内侧与上部壳体232A的内侧相互密封。结果,冷却剂能从壳体232A和232B中有效地排出。除了固体密封构件242A和242B以外,通孔203ba等还可用液态密封构件来填充。
图36示出了图34中所示结构和图35中所示结构的组合结构。图36中所示的结构能防止杆209发生横向振动。而且,图36中所示的结构使下部壳体232B的内侧与上部壳体232A的内侧相互密封。
图37示出了这样一种结构,其中轴承243A和243B分别安装在上部壳体232A和下部壳体232B的通孔232Aa和232Ba中。轴承243A和243B是固体轴承或流体轴承。在这种结构中,杆209能稳定地运动。
图38示出了根据图32所示实施例(射流发生装置231)的另一种改进的射流发生装置。根据该实施例的射流发生装置由附图标记251表示。射流发生装置251采用了一驱动装置,在该驱动装置中致动器255用流体压力来驱动活塞255a。所述流体从供给源252通过一流体管道254和由例如电磁阀或类似物的选择阀选择的管道256和257中的一个供给所述致动器255。活塞255a固定在杆206上。这种结构也可使振动板221A和221B振动。所述流体可以是固体或气体中的任何一种。
图39示出了根据图28所示实施例(射流发生装置121)的另一种改进的射流发生装置。根据该实施例的射流发生装置由附图标记261表示。射流发生装置261具有致动器265。致动器265采用传统的旋转马达。该旋转马达的旋转运动通过一连接机构266转换为杆185的线性运动。这种结构也可使振动板145振动。
图40是根据本发明另一种实施例的射流发生装置透视图。
根据该实施例的射流发生装置由附图标记301表示。射流发生装置301具有壳体302。壳体302构成了腔室302a和302b的轮廓。壳体302具有一个如前所述的振动板。该振动板将壳体302分隔为腔室并形成了腔室302a和302b。壳体302具有短喷嘴303a和长喷嘴303b。长喷嘴303b由诸如金属、树脂等制成。长喷嘴303b是弯曲的。例如,可在每个腔室302a和302b上设置六个短喷嘴303a和一个长喷嘴303b。
设置在上下腔室302a和302b上的短喷嘴303a具有相同的长度。同样,设置在上下腔室302a和302b上的长喷嘴303b具有相同的长度。这是因为由设置在上腔室302a上的上部喷嘴产生的声波的相位与由设置在下腔室302b上的下部喷嘴产生的声波的相位是反向的,因而使得两种声波可彼此削弱。
图41是图40中所示射流发生装置301的实际用法的透视图。如图所示,电路板246具有一中央处理器248。散热器247连接在中央处理器248上。散热器247发散中央处理器248的热量。在电路板246上中央处理器248的附近,例如,安装有多个集成电路芯片249。例如,将两个射流发生装置301叠加在一起。射流发生装置301布置为使从短喷嘴303a中喷出的冷却剂能排放到散热器247的散热翅片247a上,使从长喷嘴303b中喷出的冷却剂喷射到集成电路芯片249上。由于射流发生装置301是按如前所述的方式布置的,所以它们能直接冷却集成电路芯片249。
因此,根据该实施例,即使在任何位置上设置有各种发热元件,也能用长喷嘴303b来对其冷却,其中所述喷嘴是根据发热元件的结构而弯曲的。当采用传统的旋转叶片的风扇时,发热元件不能向该实施例这样从局部上得到冷却。
射流发生装置301并不局限于上述实施例。换句话说,长喷嘴303b的数量和短喷嘴303a的数量并不局限于前述实施例所给出的那些。而且,长喷嘴可以由柔性材料制成。在此情况下,长喷嘴303b可由橡胶、柔性树脂、波纹管等制成。因此,喷嘴的方向可根据不同发热元件的结构来改变。
图42示出了根据图40所示实施例(射流发生装置301)的一种改进的射流发生装置。在图42至图46中,与图40中相同的构件、功能等将只作简要描述,或者省略其描述。
根据该实施例的射流发生装置由附图标记311表示。在图42所示的射流发生装置311中,长喷嘴304b比前述的长喷嘴303b粗。换句话说,垂直于冷却剂流动方向的流路横截面比各个长喷嘴303b的横截面都大。喷嘴305设置在各个长喷嘴304b的排放口侧。喷嘴305可以省略掉。
由于长喷嘴304b的流路长于各个短喷嘴304a的流路,所以由两者长度的不同而引起的前者的阻力要大于后者的阻力。但是,当流路的横截面增加时,就可以防止各长喷嘴304b流路的阻力增加。因此冷却剂就能以合适的流量和流速从长喷嘴304b中喷出。
图43示出了根据另一种实施例的射流发生装置。根据该实施例的射流发生装置由附图标记321表示。射流发生装置321的喷嘴304从壳体302的侧壁302c上向内突出。每个喷嘴304的厚度和长度、每个腔室例如腔室302a等的体积、致动器(未示出)的性能和振动板306的振幅、频率等都是从喷嘴304喷出的冷却剂的流速的参数。当冷却剂在一希望的频率下以想要的流速喷出时,会受到各个喷嘴304长度的影响。因此,每个喷嘴都可调节到预定的长度。但是,由于射流发生装置321的布局的限制以及散热器(未示出)位置的限制,所以每个喷嘴的长度不能自由调节。在这种情况下,当喷嘴304部分地突出到腔室302a和302b内时,喷嘴304的长度能调节到想要的值。
此外,根据该实施例,喷嘴304的长度能尽可能地增加。结果,所产生声波的频率会减小。根据人类的听觉,当所述频率减小时,声音听起来就更弱。因此,根据该实施例,所产生的声音能得到尽可能的减小。
图44示出了根据图40所示实施例(射流发生装置301)的另一种改进的射流发生装置。根据该实施例的射流发生装置由附图标记331表示。该射流发生装置331的所有喷嘴307a和307b都是弯曲的,因而冷却剂能排放到位于射流发生装置331下部的散热器247的散热翅片247a上。图45是从散热片247a的分布方向截取的截面图,也就是说,喷嘴307a和307b是沿附图的垂直方向切断的。从上腔室302a突出的喷嘴307a的头部比抵靠于散热翅片247a位置处的喷嘴307b头部设置在更低的位置。
虽然按如图41所示的方式所述射流发生装置和散热器被简单地布置,但它们的安装面积变大了。相反,根据本实施例,安装面积可以尽可能地减小。当需要防止散热器247的热量从散热器247传递给射流发生装置331时,可在散热器247和射流发生装置331之间放置一绝热件或类似物。
图46示出了根据图44和图45中所示实施例(射流发生装置331)的另一种改进的射流发生装置。根据该实施例的射流发生装置由附图标记341表示。在该射流发生装置341中,喷嘴308a和308b是成锯齿形分布的。换句话说,喷嘴308a和308b是交替安装在腔室302a和302b上的(沿附图的垂直方向)。因此,由于每个喷嘴308a的长度都和每个喷嘴308b的长度相等,因此这种结构有利于噪声抑制效果的提高。
图47和48示出了使用具有前述弯曲喷嘴的射流发生装置用法的实施例。如图47和48所示,例如,散热片247可以设置在计算机的壳体270的外面。射流发生装置351设置在壳体270内,使得喷嘴309向散热片247突出。
通常,排放到散热片的冷却剂应该是在低温状态。通常,壳体270的外部温度是最低的。由于壳体270的内部构件所产生的热量,因而使得壳体270的内部温度会高于壳体270的外部温度。因此,将散热片和射流发生装置都设置在壳体270内部是不利的。事实上,要冷却一个设置在台式计算机或类似物内的中央处理器,就应将空气喷向中央处理器。因此,具有高效率的散热装置是所希望的。虽然优选为将散热片和射流发生装置设置在壳体的外面,但是如果由于有限的空间或想要的设计而引起对美观包装的需要,则可以考虑图47和48所示的结构。
在图48所示的结构中,由于冷却剂是从喷嘴309向下喷出,因此可以防止其它的物质,例如灰尘进入喷嘴309。考虑到这一点,可将喷嘴309的冷却剂喷射方向设置为横向的。
图49是根据另一种实施例的射流发生装置截面图。根据该实施例的射流发生装置由附图标记361表示。该射流发生装置361具有壳体362。振动板365设置在该壳体362内。振动板365具有一圆筒形侧壁365a。振动板365的侧壁365a沿振动板365的振动方向R设置。设置在侧壁365a上的上边缘部件和下边缘部件分别由边缘构件364a和364b支撑。边缘构件364a和364b安装在壳体362上。作为支撑构件的边缘构件,例如边缘构件364a等,具有可弯曲性或弹性。该边缘构件由例如波纹形树脂或橡胶制成。侧壁365a可以连续地或间断地沿周向形成。壳体362、振动板365和边缘构件364a组成了腔室362a。壳体362、振动板365和边缘构件364b组成了腔室362a。腔室362a和362b构造为使腔室362a的体积几乎和腔室362b的体积相等。腔室362a具有多个以点划圆表示的开口363a。同样,腔室362b具有多个开口363b。开口363a和363b可以形成为前述多种实施例中所述的喷嘴形状。
致动器370设置在腔室362a内。致动器370振动所述振动板365。致动器370由磁轭376、磁铁372、板373、线圈378、可移动构件374等组成。板373具有磁轭(yoke)的作用。线圈378缠绕在可移动构件374上。振动板373固定在可移动构件374上。控制装置310电连接到线圈308上。控制装置310产生致动器370的驱动信号。在可移动构件374的侧面上形成有空气孔374a。
在射流发生装置361中,由于侧壁365a由沿振动方向R设置的边缘构件364a和364b支撑着,所以振动板365能稳定地进行振动,而无横向振动。由于振动板365抑制住了横向振动,因而阻止了磁体372、板373等与可移动构件374的碰撞。因此,可以缩小所述板373等与可移动构件374之间的空间。结果,施加到线圈378上的磁场能得到加强。因此,驱动装置能有效地获得驱动力。而且,由于防止了致动器370的构件彼此碰撞,所以可以抑制住更高模态的振动。结果,也减小了所述装置的噪声。
当侧壁365a在振动方向R上的长度变长时,边缘构件364a和边缘构件364b之间的间距就会变大,振动板365也会更稳定地进行振动。但是,当壳体362的尺寸不变时,如果边缘构件364a和边缘构件364b之间的间距极大地增大,那么腔室362a和362b的体积就会减小。因此,边缘构件364a和边缘构件364b之间的间距需要适当地加以调整。
图50是根据图49中所示实施例(射流发生装置361)的一种改进的射流发生装置截面图。在图50至图52中,与图49中相同的构件、功能等将只作简要描述,或者省略其描述。
根据该实施例的射流发生装置由附图标记371表示。图50中所示的射流发生装置371具有一振动板375,其横截面大致为H形。该射流发生装置也具有腔室362a和362b。在腔室362a和362b中,设置有致动器370a和370b。致动器370a和370b与图49中所示的致动器类似。腔室362a的体积和腔室362b的体积相等。因此,该结构有利于噪声的减少。
图51是根据图49中所示实施例(射流发生装置361)的另一种改进的射流发生装置截面图。根据该实施例的射流发生装置由附图标记381表示。射流发生装置381具有壳体382。振动机构388设置在该壳体382上。振动发生装置388具有框架386、致动器370a和370b和振动板385。致动器370a和370b由框架386支撑。框架386可滑动地支撑着振动板385的侧壁385a。振动板385由致动器370a和370b振动。振动板385的侧壁385a可沿振动板385的振动方向在框架386上滑动。换句话说,根据该实施例的振动机构388具有以活塞形状形成的振动板385和作为缸体的框架386。振动机构388的框架386的外周安装在分隔件379上。结果,形成了腔室382a和382b。框架386上形成有空气孔386a和386b。
在根据该实施例的射流发生装置381中,由于振动板385的侧壁385a的支撑面积(接触面积)能得以增加,所以振动板385能稳定振动,而无横向振动。
根据该实施例,可以在框架386和侧壁385a之间设置轴承(未示出)。或者,可以在它们之间使用润滑剂。可以使用矿物油型或合成物型或类似物的润滑剂。或者,还可使用钼类固体润滑剂。当使用液体型润滑剂时,能有效提高振动板385前部和后部之间的气密性。当使用磁性流体或类似物的润滑剂时,能很容易地保持住该流体。
图52是在根据本发明另一种实施例的在前述射流发生装置中所应用的扬声器型振动机构截面图。根据该实施例的振动机构由附图标记280表示。该振动机构具有一致动器370。该致动器370由磁轭376、磁体372、板373、线圈378、可移动构件374等组成。板373具有磁轭的作用。线圈378缠绕在可移动构件374上。振动板285安装在可移动构件374上。该致动器370的结构与图49等图中所示的致动器的结构相同。致动器370的磁轭370安装在具有空气孔286a的框架286上。振动板285也通过边缘构件287安装在框架286的开口边缘部分上。
图53是示出了图52中所示的振动板285、边缘构件287等的平面图。如图所示,导线284沿着在边缘构件287上形成的螺旋槽287a上布线,控制信号通过该导线从控制装置(未示出)传给线圈378。导线284连接在固定在框架286上的接线板288上。由附图标记287b表示的部分是边缘构件287的脊线。由于导线284沿着螺旋槽287a而布线,所以施加给导线的应力会减小。结果,能防止导线的断裂。
在传统的扬声器中,这种导线(参考为金属丝线)从电磁铁线圈中悬置并直接连接在接线板上。换句话说,由于振动板是可移动的,且接线板是固定的,因此金属线的一端是可移动的,而另一端是固定的。由于金属丝线会在振动板的几十赫兹至几百赫兹的频率的振动下反复地拉紧,因此扬声器的耐用性取决于金属线的使用寿命。
尤其,当根据每一种前述实施例的射流发生装置小型化时,由于振动板的面积会成比例地减小,所以振动板的振幅则应该增加,以增加冷却剂的排放量。在此情况下,由于金属丝线变短了,而振动板的振幅变大了,所以施加到金属丝线上的拉力会变大。换句话说,装置的耐用性会受到损坏。事实上,当导线289以图53中的虚线缠绕时(当导线289从振动板285的中心沿其外周边布线时),施加给导线284的拉力就很大。因此,如图53所示,当金属线284螺旋形地缠绕在边缘构件287上时,就能有效地防止金属线284断裂。
图54是将两个图53中所示的振动机构280对称布置在其中的振动机构截面图。图54中所示的振动机构由附图标记290表示。在振动机构290中,导线284缠绕在边缘构件287的前后面上形成的螺旋槽中。利用边缘构件287的波纹形状,导线284能螺旋缠绕在边缘构件287的前后面上。
具有前述结构的振动机构290设置在图51所示的壳体382中,来代替振动机构388。结果,就构成了一射流发生装置。
前述金属线可埋置在边缘构件287中。或者,只要金属线的形状能保持较长的时间,就可将其以螺旋形线圈的方式悬置起来,而不必固定在边缘构件287等上。在该情况下,就不需要边缘构件的螺旋槽了。结果,施加到导线上的拉力会减小。

Claims (47)

1.一种射流发生装置,包括:
多个腔室,每个都具有开口并装有冷却剂;
振动机构,用于振动装在每一个所述多个腔室中的冷却剂,使得冷却剂作为脉动流从开口排放;和
控制装置,用于控制振动机构的振动,使得由从多个腔室中排放出来的冷却剂所产生的声波相互削弱。
2.如权利要求1所述的射流发生装置,其中
当至少一组腔室的相邻开口的距离被表示为d,且腔室内产生的声波的波长被表示为λ时,满足d<λ/2的条件。
3.如权利要求1所述的射流发生装置,其中
当至少一组腔室的相邻开口的距离被表示为d,且腔室内产生的声波的波长被表示为λ时,满足d<λ/6的条件。
4.如权利要求1所述的射流发生装置,其中
所述控制装置被设置成将振动机构的振动控制在从80到150Hz的范围内。
5.如权利要求1所述的射流发生装置,还包括
布置在多个腔室其中一个中的声音吸收构件或盖件。
6.如权利要求1所述的射流发生装置,其中
所述振动机构具有布置在多个腔室每一个中的振动板。
7.如权利要求1所述的射流发生装置,其中
所述振动机构具有分隔至少一组腔室的振动板。
8.如权利要求1所述的射流发生装置,其中
所述控制装置被设置成将产生在多个腔室内的各个声波的相位差控制为360°/n,这里n表示腔室的数目。
9.如权利要求8所述的射流发生装置,其中
所述控制装置被设置成控制多个腔室内产生的声波的振幅,使得所述振幅变得基本相同。
10.如权利要求1所述的射流发生装置,其中
所述振动机构具有振动板,该振动板在一个垂直于第一方向的平面上大致对称,所述第一方向为振动方向。
11.如权利要求1所述的射流发生装置,其中
所述控制装置被设置成以低于振动机构的设定功率的低功率来振动该振动机构。
12.如权利要求1所述的射流发生装置,其中
所述振动机构具有在垂直于振动方向的平面上成非对称的第一振动板,和与第一振动板形状基本相同、几乎在与第一振动板的振动方向相同的方向上振动、且位于第一振动板相对方向上的第二振动板。
13.如权利要求1所述的射流发生装置,其中
所述控制装置具有第一信号产生装置和第二信号产生装置,该第一信号产生装置产生使振动机构以第一频率振动的驱动信号,该第二信号产生装置产生使振动机构以第一频率而不是以与第一频率不同的第二频率振动的驱动信号。
14.如权利要求1所述的射流发生装置,还包括
用于探测产生在多个腔室内声波的声波探测装置。
15.如权利要求1所述的射流发生装置,其中,
所述多个腔室包括第一腔室组和第二腔室组,所述每个腔室组至少由两个腔室组成;
所述振动机构包括用来振动装在第一腔室组内的冷却剂的第一振动板,和用来振动第二腔室组内的冷却剂的第二振动板;和
所述控制装置被设置成控制第一和第二振动板的振动,使得产生在第一腔室组内的声波相互削弱,并使产生在第一腔室组内的第一组合声波和产生在第二腔室组内的第二组合声波相互削弱。
16.如权利要求15所述的射流发生装置,还包括
用于产生另一声波的声波发生装置,该声波进一步削弱所述被削弱的组合声波。
17.如权利要求1所述的射流发生装置,还包括
具有通孔的壳体,所述壳体用于形成由振动板分隔的腔室组,其中;
所述振动机构具有振动板;
致动器位于壳体的外部,用于驱动振动板;和
穿过通孔并与致动器的运动同步运动的杆。
18.如权利要求10所述的射流发生装置,还包括
具有通孔用于形成被振动板分隔的腔室组的壳体。
19.如权利要求17所述的射流发生装置,还包括
位于壳体内的吸收构件,用来吸收杆的振动,所述杆的振动方向是指不同于振动板的振动方向的第二方向。
20.如权利要求18所述的射流发生装置,还包括
用于杆的第一轴承,该第一轴承位于通孔内或在其附近。
21.如权利要求20所述的射流发生装置,还包括
用于杆的第二轴承,该第二轴承位于与第一轴承相对的位置处,其中
所述杆穿过该振动板。
22.如权利要求18所述的射流发生装置,还包括
密封构件,其阻止壳体穿过通孔与外部的连通。
23.如权利要求20所述的射流发生装置,还包括
用于密封所述壳体与形成于所述杆和第一轴承之间所形成的空间连通的密封构件。
24.如权利要求1所述的射流发生装置,其中
所述振动机构包括第一和第二振动板;和
所述射流发生装置还包括:
形成由振动板的第一振动板分隔的第一腔室组的第一壳体,和形成由振动板的第二振动板分隔的第二腔室组的第二壳体;和
所述振动机构还包括位于第一壳体和第二壳体之间的致动器,该致动器用于驱动所述第一和第二振动板,及一个杆,其穿过第一和第二通孔,连接第一和第二振动板,并与致动器的运动同步移动。
25.如权利要求10所述的射流发生装置,还包括
形成由振动板的第一振动板分隔的第一腔室组的第一壳体,和
形成由振动板的第二振动板分隔的第二腔室组的第二壳体,其中
所述振动机构具有位于第一壳体和第二壳体之间的致动器,用于驱动第一和第二振动板;和
一个杆,其穿过第一和第二通孔,连接第一和第二振动板,并与致动器的运动同步移动。
26.如权利要求25所述的射流发生装置,还包括
用于杆的第一轴承,该第一轴承位于第一通孔内或在其附近。
27.如权利要求26所述的射流发生装置,进一步包括
用于杆的第二轴承,该第二轴承位于第一壳体的第一轴承的相对位置处,其中
所述杆穿过第一振动板。
28.如权利要求27所述的射流发生装置,还包括
具有所述杆穿过的第三通孔的第三壳体,其中
所述第三壳体形成一个由相连所述穿过第三通孔的杆的第三振动板所分隔的第三腔室组。
29.如权利要求25所述的射流发生装置,还包括
至少一个用于密封第一壳体通过第一通孔与外部连通的第一密封构件,和用于密封第二壳体通过第二通孔与外部连通的第二密封构件。
30.如权利要求26所述的射流发生装置,还包括
密封第一壳体通过穿过位于所述杆和致动器之间的空间与第二壳体连通的密封构件,其中
所述致动器被设置成与第一和第二壳体接触,使得致动器覆盖第一和第二通孔。
31.如权利要求25所述的射流发生装置,其中
所述致动器被设置成与第一和第二壳体接触,使得致动器覆盖第一和第二通孔;和
所述致动器包括用于所述杆的轴承,和密封第一壳体通过位于所述杆和轴承之间的空间与第二壳体连通的密封构件。
32.如权利要求17所述的射流发生装置,其中
所述致动器具有用于以流体压力使杆产生运动的流体压力产生装置。
33.如权利要求17所述的射流发生装置,其中
所述致动器具有转子和用于将转子的转动传递到杆上的连接构件。
34.如权利要求1所述的射流发生装置,还包括
具有侧壁的壳体,和用于冷却剂的排放喷嘴,该排放喷嘴包括具有从侧壁向壳体的外部和内部突出的第一端和第二端的排放喷嘴,其中
壳体形成了各个腔室。
35.如权利要求1所述的射流发生装置,还包括
弯头喷嘴,通过该弯头喷嘴,该冷却剂从至少一个腔室中排放出来。
36.如权利要求1所述的射流发生装置,还包括
柔性喷嘴,通过该柔性喷嘴,该冷却剂从至少一个腔室中排放出来。
37.如权利要求1所述的射流发生装置,还包括
冷却剂从至少一个腔室中排放到第一发热元件中所经过的第一喷嘴;和
冷却剂被排放到与第一发热元件不同的第二发热元件中所经过的第二喷嘴。
38.如权利要求37所述的射流发生装置,其中
所述第一喷嘴为直形,而所述第二喷嘴为弯曲形。
39.如权利要求38所述的射流发生装置,其中
所述第一喷嘴具有第一流道,该第一流道具有第一长度和垂直于冷却剂流动方向的第一截面;和
所述第二喷嘴具有第二流道,该第二流道具有大于第一长度的第二长度和大于第一截面的第二截面。
40.如权利要求1所述的射流发生装置,还包括
位于具有多个散热翅片的散热器上的壳体,其具有与散热翅片基本垂直的侧表面,该壳体形成多个腔室中的至少一个;和
至少一组弯曲的喷嘴,该喷嘴从壳体的侧表面向散热翅片突出,并排放冷却液。
41.如权利要求1所述的射流发生装置,其中
所述振动机构包括:
侧壁垂直地沿振动方向放置的振动板,该侧壁具有在振动方向上相反的第一端部和第二端部;
第一支持构件,其用于支持第一端部;
第二支持构件,其用于支持第二端部。
42.如权利要求1所述的射流发生装置,其中
所述振动机构包括:
具有沿振动方向放置的侧壁的振动板;和
位于振动方向上的可滑动地支撑侧壁的支持构件。
43.如权利要求42所述的射流发生装置,其中
所述振动机构具有插入到侧壁和支持构件之间的润滑剂。
44.如权利要求1所述的射流发生装置,其中
所述振动机构包括:
振动板;
用于支撑振动板周边的支持构件;
用于驱动振动板的驱动装置;和
连接在振动板和支持构件之间的导线,该导线用于将控制信号从控制装置电传递到驱动装置。
45.如权利要求44所述的射流发生装置,其中
所述支持构件具有绕所述振动板螺旋形成的槽;并且所述导线沿着所述槽缠绕。
46.一种电子设备,包括:
发热元件;
装有冷却剂的多个腔室;
用于振动装在多个腔室中的冷却剂使得冷却剂朝发热元件脉动排放的振动机构;和
用于控制振动机构振动使得从多个腔室中排放出来的冷却剂所产生的声波相互削弱的控制装置。
47.一种射流发生方法,包括以下步骤:
振动装在多个腔室内的冷却剂,每个腔室具有开口,使得冷却剂经过各个开口脉动地排放;以及
控制冷却剂的振动,使得从多个腔室中排放出来的冷却剂产生的声波相互削弱。
CNB2004101023295A 2003-11-04 2004-11-04 射流发生装置和电子设备及射流发生方法 Expired - Fee Related CN100477898C (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2003374922 2003-11-04
JP374922/2003 2003-11-04
JP374922/03 2003-11-04
JP2004035815 2004-02-12
JP035815/04 2004-02-12
JP035815/2004 2004-02-12
JP232581/2004 2004-08-09
JP232581/04 2004-08-09
JP2004232581A JP4677744B2 (ja) 2003-11-04 2004-08-09 噴流発生装置、電子機器及び噴流発生方法

Publications (2)

Publication Number Publication Date
CN1671279A CN1671279A (zh) 2005-09-21
CN100477898C true CN100477898C (zh) 2009-04-08

Family

ID=34437604

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101023295A Expired - Fee Related CN100477898C (zh) 2003-11-04 2004-11-04 射流发生装置和电子设备及射流发生方法

Country Status (6)

Country Link
US (1) US8033324B2 (zh)
EP (1) EP1529963B1 (zh)
JP (1) JP4677744B2 (zh)
KR (1) KR101120465B1 (zh)
CN (1) CN100477898C (zh)
TW (1) TWI250840B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU221240U1 (ru) * 2023-04-05 2023-10-26 Общество с ограниченной ответственностью "ВОКСТЭК" Пульсатор мембранный пневматический

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298746B2 (ja) * 2003-02-20 2009-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロ・ジェットを備える冷却アセンブリ
JP4572548B2 (ja) * 2004-03-18 2010-11-04 ソニー株式会社 気体噴出装置
US20060196638A1 (en) * 2004-07-07 2006-09-07 Georgia Tech Research Corporation System and method for thermal management using distributed synthetic jet actuators
JP5088526B2 (ja) * 2005-04-18 2012-12-05 ソニー株式会社 噴流発生装置及び電子機器
JP2006310586A (ja) 2005-04-28 2006-11-09 Sony Corp 気流発生装置及び電子機器
US20070023169A1 (en) * 2005-07-29 2007-02-01 Innovative Fluidics, Inc. Synthetic jet ejector for augmentation of pumped liquid loop cooling and enhancement of pool and flow boiling
US8069910B2 (en) * 2005-10-12 2011-12-06 Nuventix, Inc. Acoustic resonator for synthetic jet generation for thermal management
CN101297121B (zh) * 2005-10-28 2011-02-02 三洋电机株式会社 流体输送装置、利用其的燃料电池及电子设备
US7607470B2 (en) * 2005-11-14 2009-10-27 Nuventix, Inc. Synthetic jet heat pipe thermal management system
JP4867324B2 (ja) * 2005-12-12 2012-02-01 ソニー株式会社 放熱装置及び電子機器
JP4844236B2 (ja) * 2005-12-20 2011-12-28 ソニー株式会社 ノズル、噴流発生装置、冷却装置及び電子機器
JP5003018B2 (ja) * 2006-03-01 2012-08-15 ソニー株式会社 噴流発生装置
JP5133970B2 (ja) * 2006-03-21 2013-01-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 冷却装置、及びこのような冷却装置を有する電子装置
US7787248B2 (en) * 2006-06-26 2010-08-31 International Business Machines Corporation Multi-fluid cooling system, cooled electronics module, and methods of fabrication thereof
US7841385B2 (en) * 2006-06-26 2010-11-30 International Business Machines Corporation Dual-chamber fluid pump for a multi-fluid electronics cooling system and method
JP2008008230A (ja) * 2006-06-30 2008-01-17 Sony Corp 噴流発生装置、ノズル体及び電子機器
EP2082137A1 (en) * 2006-11-03 2009-07-29 Koninklijke Philips Electronics N.V. Active control of an acoustic cooling system
CN101542724A (zh) * 2006-11-30 2009-09-23 皇家飞利浦电子股份有限公司 脉动冷却系统
US20080137289A1 (en) * 2006-12-08 2008-06-12 General Electric Company Thermal management system for embedded environment and method for making same
JP5320298B2 (ja) * 2006-12-15 2013-10-23 コーニンクレッカ フィリップス エヌ ヴェ 周波数制御を有する脈動流体冷却
JP2008280917A (ja) 2007-05-10 2008-11-20 Alps Electric Co Ltd 圧電式気体噴射装置
CN101680623B (zh) * 2007-06-14 2014-09-24 皇家飞利浦电子股份有限公司 具有脉动流体冷却的光照装置
WO2009006318A1 (en) 2007-06-29 2009-01-08 Artificial Muscle, Inc. Electroactive polymer transducers for sensory feedback applications
US20090084866A1 (en) * 2007-10-01 2009-04-02 Nuventix Inc. Vibration balanced synthetic jet ejector
JP5643651B2 (ja) * 2007-12-07 2014-12-17 コーニンクレッカ フィリップス エヌ ヴェ 低ノイズ冷却装置
EP2101351B1 (de) 2008-03-13 2016-08-17 Siemens Aktiengesellschaft Kühlvorrichtung zur Kühlung eines Bauteils
US7990705B2 (en) * 2008-05-09 2011-08-02 General Electric Company Systems and methods for synthetic jet enhanced natural cooling
KR20110069055A (ko) * 2008-09-12 2011-06-22 코닌클리케 필립스 일렉트로닉스 엔.브이. 갭형 공간 및 이에 결합된 인조 제트 발생기를 구비한 디바이스
US20110240260A1 (en) * 2008-10-17 2011-10-06 Koninklijke Philips Electronics N.V. Cooling arrangement
US8453715B2 (en) * 2008-10-30 2013-06-04 General Electric Company Synthetic jet embedded heat sink
US8496049B2 (en) * 2009-04-09 2013-07-30 General Electric Company Heat sinks with distributed and integrated jet cooling
US10274263B2 (en) * 2009-04-09 2019-04-30 General Electric Company Method and apparatus for improved cooling of a heat sink using a synthetic jet
US9615482B2 (en) 2009-12-11 2017-04-04 General Electric Company Shaped heat sinks to optimize flow
US8584735B2 (en) * 2009-07-28 2013-11-19 Aerojet Rocketdyne Of De, Inc. Cooling device and method with synthetic jet actuator
US8490419B2 (en) * 2009-08-20 2013-07-23 United States Thermoelectric Consortium Interlocked jets cooling method and apparatus
US8776871B2 (en) 2009-11-19 2014-07-15 General Electric Company Chassis with distributed jet cooling
JP5868015B2 (ja) * 2010-04-14 2016-02-24 ゼネラル・エレクトリック・カンパニイ 分散型ジェット冷却を備えたシャーシ
GB201101870D0 (en) 2011-02-03 2011-03-23 The Technology Partnership Plc Pump
KR20140008416A (ko) 2011-03-01 2014-01-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 변형가능한 중합체 장치 및 필름을 제조하기 위한 자동화 제조 방법
US20120285667A1 (en) * 2011-05-13 2012-11-15 Lighting Science Group Corporation Sound baffling cooling system for led thermal management and associated methods
WO2013021547A1 (ja) * 2011-08-05 2013-02-14 パナソニック株式会社 燃料電池システム
US20130243030A1 (en) * 2012-03-16 2013-09-19 Nuventix, Inc. Augmentation of Fans With Synthetic Jet Ejectors
TW201339808A (zh) * 2012-03-16 2013-10-01 Inventec Corp 電子裝置
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
EP2849949A4 (en) 2012-05-15 2017-07-26 Eyenovia, Inc. Ejector devices, methods, drivers, and circuits therefor
KR20150031285A (ko) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 연신 공정을 위한 연신 프레임
US20140002991A1 (en) * 2012-06-29 2014-01-02 General Electric Company Thermal management in optical and electronic devices
US8976525B2 (en) * 2012-07-31 2015-03-10 General Electric Company Systems and methods for dissipating heat in an enclosure
US9215520B2 (en) * 2012-08-15 2015-12-15 General Electric Company Multi-function synthetic jet and method of manufacturing same
WO2014066576A1 (en) 2012-10-24 2014-05-01 Bayer Intellectual Property Gmbh Polymer diode
EP2971794A2 (en) * 2013-03-15 2016-01-20 Covestro Deutschland AG Electroactive polymer actuated air flow thermal management module
US20140376185A1 (en) * 2013-06-19 2014-12-25 Fairchild Korea Semiconductor Ltd. Cooling device
US20150041104A1 (en) * 2013-08-09 2015-02-12 Ge Aviation Systems, Llc Systems and methods for robust and modular synthetic jet cooling
US9027702B2 (en) * 2013-10-16 2015-05-12 The Boeing Company Synthetic jet muffler
US9951767B2 (en) 2014-05-22 2018-04-24 General Electric Company Vibrational fluid mover active controller
US10085363B2 (en) * 2014-05-22 2018-09-25 General Electric Company Integrated compact impingement on extended heat surface
KR101651018B1 (ko) * 2014-12-08 2016-08-24 엘지전자 주식회사 전자기 구동 기체 분출 장치
WO2017099677A1 (en) * 2015-12-09 2017-06-15 Ozyegin Universitesi Heat sink cooling with preferred synthetic jet cooling devices
CN105491854B (zh) * 2015-12-29 2018-02-06 东南大学 一种多方向出口射流散热器
WO2017189474A1 (en) 2016-04-25 2017-11-02 Rensselaer Polytechnic Institute Methods and apparatus for controlling flow fields
CN107148193B (zh) * 2016-09-29 2019-07-09 宁波三星医疗电气股份有限公司 一种充电桩及充电桩散热控制方法
CN107559270B (zh) * 2017-09-08 2023-11-14 浙江大学 合成射流平板湍流减阻装置
TWI650284B (zh) * 2017-09-30 2019-02-11 Microjet Technology Co., Ltd 流體裝置之控制方法
DE102018100279B3 (de) 2018-01-08 2019-04-18 Beuth Hochschule Für Technik Berlin Lüftervorrichtung zum Wärmeabtransport von einem Gegenstand und Gegenstand
KR102595131B1 (ko) * 2018-11-07 2023-10-30 삼성전자주식회사 전자 장치 및 그 제어 방법
US10827273B2 (en) 2018-11-27 2020-11-03 Apple Inc. Dual loudspeaker enabled cooling
CN110162157A (zh) * 2019-03-29 2019-08-23 联想(北京)有限公司 散热系统
US11898545B2 (en) * 2019-06-21 2024-02-13 Brane Audio, LLC Venturi pump systems and methods to use same
CN113597192B (zh) * 2020-04-30 2024-02-02 维沃移动通信有限公司 一种电子设备
CN115023097B (zh) * 2021-09-30 2023-04-07 荣耀终端有限公司 射流发生装置及方法、散热器以及电子设备
CN117222209B (zh) * 2023-11-09 2024-02-20 东莞市富其扬电子科技有限公司 一种液冷散热器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029743A (en) * 1960-04-14 1962-04-17 Curtiss Wright Corp Ceramic diaphragm pump
GB1583758A (en) * 1976-10-01 1981-02-04 Nat Res Dev Attenuation of sound waves in ducts
JPS5514920A (en) * 1978-07-17 1980-02-01 Aisin Seiki Co Ltd Diaprhagm type air pump unit
JPS55101800A (en) * 1979-01-25 1980-08-04 Pioneer Electronic Corp Air pump
JPS58140491A (ja) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd 流れ発生装置
JPS6085043A (ja) * 1983-10-18 1985-05-14 Bridgestone Corp 自動車等のエンジン騒音制御装置
US4648807A (en) * 1985-05-14 1987-03-10 The Garrett Corporation Compact piezoelectric fluidic air supply pump
US4665549A (en) * 1985-12-18 1987-05-12 Nelson Industries Inc. Hybrid active silencer
JPS62159799A (ja) * 1986-01-08 1987-07-15 Matsushita Electric Ind Co Ltd 流体駆動装置
JPS62159798A (ja) * 1986-01-08 1987-07-15 Matsushita Electric Ind Co Ltd 流体駆動装置
US4923031A (en) * 1986-02-26 1990-05-08 Electro-Voice, Incorporated High output loudspeaker system
IT1211848B (it) * 1987-10-12 1989-11-03 Roma A Dispositivo silenziatore per scarichi di motori e simili,ad interferenza acustica
US5077601A (en) * 1988-09-09 1991-12-31 Hitachi, Ltd. Cooling system for cooling an electronic device and heat radiation fin for use in the cooling system
JPH02213200A (ja) * 1989-02-14 1990-08-24 Victor Co Of Japan Ltd 熱交換器
DE3917116A1 (de) 1989-05-26 1990-11-29 Hartung Kuhn & Co Maschf Fuellwagen fuer eine koksofenbatterie
JPH03116961A (ja) 1989-09-29 1991-05-17 Victor Co Of Japan Ltd 放熱装置
JPH0635515Y2 (ja) * 1990-06-26 1994-09-14 呉羽化学工業株式会社 電気部品の冷却装置
US5270484A (en) * 1990-09-14 1993-12-14 Canon Kabushiki Kaisha Powder conveying device
JPH05173988A (ja) 1991-12-26 1993-07-13 Toshiba Corp 分散処理方式および該分散処理に適用されるトランザクション処理方式
US5692054A (en) * 1992-10-08 1997-11-25 Noise Cancellation Technologies, Inc. Multiple source self noise cancellation
JPH06309262A (ja) 1993-04-26 1994-11-04 Mitsubishi Electric Corp 分散サービス制御システム
DE59510549D1 (de) * 1995-03-14 2003-03-13 Sulzer Markets & Technology Ag Verfahren zum aktiven Dämpfen globaler Strömungsoszillationen in abgelösten instabilen Strömungen und Vorrichtung zur Anwendung des Verfahrens
JP2703515B2 (ja) * 1995-03-30 1998-01-26 世晃産業株式会社 電磁振動型のダイヤフラム式エアポンプの消音タンク
JP3437882B2 (ja) * 1995-05-19 2003-08-18 富士通株式会社 能動騒音制御システムを備えた電子機器
US5758823A (en) * 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US6123145A (en) * 1995-06-12 2000-09-26 Georgia Tech Research Corporation Synthetic jet actuators for cooling heated bodies and environments
JP4306097B2 (ja) * 2000-06-27 2009-07-29 ミツミ電機株式会社 小型ポンプ
JP2002070728A (ja) * 2000-09-04 2002-03-08 Calsonic Kansei Corp 斜板式圧縮機の脈動低減構造
US6519151B2 (en) * 2001-06-27 2003-02-11 International Business Machines Corporation Conic-sectioned plate and jet nozzle assembly for use in cooling an electronic module, and methods of fabrication thereof
AT412416B (de) * 2001-10-23 2005-02-25 Zackl Wilhelm Ventillose pumpe
US6588497B1 (en) * 2002-04-19 2003-07-08 Georgia Tech Research Corporation System and method for thermal management by synthetic jet ejector channel cooling techniques
US6937472B2 (en) * 2003-05-09 2005-08-30 Intel Corporation Apparatus for cooling heat generating components within a computer system enclosure
GB2419644B (en) 2003-07-07 2008-04-09 Georgia Tech Res Inst System and method for thermal management using distributed synthetic jet actuators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU221240U1 (ru) * 2023-04-05 2023-10-26 Общество с ограниченной ответственностью "ВОКСТЭК" Пульсатор мембранный пневматический

Also Published As

Publication number Publication date
KR101120465B1 (ko) 2012-02-29
US20050121171A1 (en) 2005-06-09
KR20050043676A (ko) 2005-05-11
TWI250840B (en) 2006-03-01
JP2005256834A (ja) 2005-09-22
JP4677744B2 (ja) 2011-04-27
EP1529963B1 (en) 2013-04-03
CN1671279A (zh) 2005-09-21
US8033324B2 (en) 2011-10-11
TW200531618A (en) 2005-09-16
EP1529963A1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
CN100477898C (zh) 射流发生装置和电子设备及射流发生方法
CN1906416B (zh) 气体喷射器、电子设备和气体喷射方法
KR101295488B1 (ko) 분류 발생 장치 및 전자 기기
JP6555845B2 (ja) 多機能シンセティックジェットおよび同製作の方法
US8308078B2 (en) Method and apparatus for reducing acoustic noise in a synthetic jet
JP5088526B2 (ja) 噴流発生装置及び電子機器
US8752775B2 (en) Method and apparatus for reducing acoustic noise in a synthetic jet
JP5360229B2 (ja) 圧電マイクロブロア
JP2010101325A (ja) 分配された合成ジェットアクチュエータを使用する熱管理のためのシステムおよび方法
JP2011027079A (ja) マイクロブロア
US20140226282A1 (en) Heat dissipating apparatus and electronic device
JP2007162525A (ja) 噴流発生装置、放熱装置及び電子機器
TW201447113A (zh) 低共振合成噴流結構
JP4910464B2 (ja) 噴流発生装置及び電子機器
JP2006055741A (ja) 噴流発生装置及び電子機器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090408

Termination date: 20151104

EXPY Termination of patent right or utility model