CN100465325C - 双相钢合金 - Google Patents

双相钢合金 Download PDF

Info

Publication number
CN100465325C
CN100465325C CNB028206177A CN02820617A CN100465325C CN 100465325 C CN100465325 C CN 100465325C CN B028206177 A CNB028206177 A CN B028206177A CN 02820617 A CN02820617 A CN 02820617A CN 100465325 C CN100465325 C CN 100465325C
Authority
CN
China
Prior art keywords
alloy
content
value
phase
ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028206177A
Other languages
English (en)
Other versions
CN1571862A (zh
Inventor
安·森德斯特龙
安娜-莱娜·奈斯特龙
帕西·坎加斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Publication of CN1571862A publication Critical patent/CN1571862A/zh
Application granted granted Critical
Publication of CN100465325C publication Critical patent/CN100465325C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Contacts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glass Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种不锈钢合金,特别是一种含铁素体-奥氏体基体且具有良好抗腐蚀性能、结构稳定性和热加工性的双相不锈钢合金,尤其是涉及一种铁素体体积百分比为40-65%而其他成分均衡以使材料具有良好抗腐蚀性的双相不锈钢,所述不锈钢合金与之前尽可能考虑的材料相比特别适合用于含氯化物成分的环境。所有的PRE或PREW值均大于44且奥氏体相和铁素体相的PRE值至少在46-50范围内,其中PRE=%Cr+3.3%Mo+16N,PREW=%Cr+3.3(%Mo+0.5%W)+16N,所述百分比为重量百分比,奥氏体相的PRE(W)值与铁素体相的PRE(W)值的比值介于0.90-1.15之间。本发明所述双相不锈钢合金包含(重量百分比)至多0.03%的C,至多0.5%的Si,24.0-30.0%的Cr,4.9-10.0%的Ni,3.0-5.0%的Mo,0.28-0.5%的N,0-3.0%Mn,0-0.0030%的B,至多0.010%的S,0-0.03%的Al,0-0.010%的Ca,0-3.0%的W,0-2.0%的Cu,0-3.5%的Co,0-0.3%的Ru,平衡的Fe含量以及不可避免的杂质。

Description

双相钢合金
技术领域
本发明涉及一种不锈钢合金,更确切地说涉及一种含有铁素体-奥氏体基体以及具有高抗腐蚀性、良好的结构稳定性和热加工性的双相不锈钢,尤其是涉及一种具有体积百分比含量为40-65%的铁素体和用来赋予该材料抗腐蚀性的平衡组分的双相不锈钢,与以往考虑过的可能使用的材料相比,所述成分使该不锈钢更适合在含氯化物成分的环境中使用。
背景技术
近几年来,使用抗腐蚀性金属材料的环境变得更加具有腐蚀性,对材料机械性能和抗腐蚀性能的要求都在提高。已经被确立为对目前所使用钢种的替代物的双相合金钢,例如高合金奥氏体钢、镍基合金钢或其他高合金钢,在今后发展中是不可或缺的。
在含氯化物环境中的已知抗腐蚀性方法是所谓的抗点状腐蚀等价法(简称PRE),定义为:
PRE=%Cr+3.3%Mo+16%N
其中每种元素的百分比指的是重量百分比。
数值越高表示尤其在抗点状腐蚀方面具有更好的抗腐蚀性。根据上面的公式,Cr、Mo、N是影响该特性的基本合金元素。这种钢种的一个示例已经在EP0220141中公开,该文献在本说明书中被引用作为参考。用符号SAF2507(UNS S32750)表示的这个钢种所含的主要合金成分为高含量的Cr,Mo和N。因而针对在氯化物环境中具有良好抗腐蚀性的这一研究正在发展过程中。
最近,已经表明对于进一步优化钢在氯化物环境中的抗腐蚀性能元素Cu和W是有效的合金添加元素。于是已经采用元素W作为一部分Mo的替换物,例如在工业用合金DP3W(UNS S39274)或Zeron100中,这些合金分别包含2.0%和0.7%的W,后者还包含0.7%的Cu以用来提高在酸性环境中合金的抗腐蚀性能。
合金添加元素钨导致了抗腐蚀性方法的进一步发展,并由此使PRE公式演变成PREW公式,这使得Mo和W在合金抗腐蚀性上的影响之间的关系更加清楚:
PREW=%Cr+3.3(%Mo+0.5%W)+16%N
例如在EP0545753中所描述一样。该文献涉及一种其抗腐蚀性能得到大体改善的双相不锈钢。上述钢种具有一个与计算方法无关的大于40的PRE值。
在氯化物环境中具有良好抗腐蚀性能的合金里,还应该提到SAF2906,其组成成分在EP0708845中公开。其特征在于,相对于例如SAF2507而言其Cr和N含量更高的这种合金已经显示出特别适合用在注重抗晶间腐蚀和氨基甲酸铵腐蚀的环境中,但是它在含氯化物的环境中也具有很高的抗腐蚀性。
US-A-4985091披露了一种用于主要出现晶间腐蚀的盐酸和硫磺酸环境的合金。该合金主要打算作为现在使用的奥氏体钢的替代物。
US-A-6048413也披露了一种作为奥氏体钢的替代物的双相不锈钢,它打算用在在含氯化物的环境中。
上述具有较高PRE值的合金缺点在于,在钢中尤其在例如通过在后处理下进行焊接来进行热处理之后会出现坚硬易碎的金属间析出物,例如σ相。该缺点导致产生了加工性更差并因此抗腐蚀性能变差的更硬的材料。
为了进一步改善尤其是双相不锈钢的抗点蚀性,需要提高在铁素体相和奥氏体相的PRE值,而且不会为此损害材料的结构稳定性或可加工性。如果在这两相中成分在有效合金成分方面不均衡,那么一个相就会变得对点蚀和裂隙腐蚀更加敏感。因此,对腐蚀更加敏感的这一相其抗腐蚀性能降低,同时结构稳定性由于最高合金相而降低。
发明概述
因此,本发明的一个目的是提供一种双相不锈钢合金,该合金显示出高抗腐蚀性同时其机械性能也得到改善,并且该合金最适宜用在需要对于一般腐蚀和局部腐蚀具有高抵抗力的环境中,例如含氯化物的环境。
本发明的另一个目的是提供一种双相不锈钢合金,其铁素体体积百分比含量为40-65%且其在奥氏体相和铁素体相中的PRE值至少在46-50间,而且在奥氏体PRE和铁素体PRE之间的最优比例为0.90-1.15,优选为0.9-1.05。
本发明的另一个目的是提供一种双相不锈钢合金,其临界点蚀温度值(以下简称CPT)高于90℃,优选高于95℃,并且在6%FeCl3中的临界裂隙腐蚀温度值(以下简称CCT)最低为50℃,优选在6%FeCl3中至少为60℃
本发明的另一个目的是提供一种在室温下冲击强度至少为100J且在室温下经拉伸试验后的延伸率至少为25%的合金。
由于其高合金含量,根据本发明的材料具有显著良好的可加工性,特别是良好的热加工性能,由此应该非常适用于生产例如棒材、管材例如焊管和无缝管、板材、带材、线材、焊条以及结构零件例如泵、阀门、法兰、联结器一类的。
根据本发明的双相不锈钢合金来实现这些目的,该合金包括(重量百分比)至多0.03%的C,至多0.5%的Si,24.0-30.0%的Cr,4.9-10.0%的Ni,3.0-5.0%的Mo,0.28-0.5%的N,0-3.0%Mn,0-0.0030%的B,至多0.010%的S,0-0.03%的Al,0-0.010%的Ca,0-3.0%的W,0-2.0%的Cu,0-3.5%的Co,0-0.3%的Ru,平衡量的Fe含量以及不可避免的杂质。其中,铁素体相和奥氏体相的PRE值或PREW值均大于45,且合金总的PRE值或PREW值大于46。
附图的简要说明
图1显示出与双相钢SAF2507、SAF2906以及高合金奥氏体钢654SMO相比,在“Green Death”溶液中进行的经过修正的ASTM G48C实验中对测试试样进行试验而获得的CPT值。
图2显示出与双相钢SAF2507以及奥氏体钢654SMO相比,通过在“Green Death”溶液中对测试试样进行经过修正的ASTM G48C实验获得的CPT值。
图3显示出在75℃的环境下在2%HCl中的平均腐蚀量mm/年。
图4显示出对大部分试样进行热延展性试验所得到的结果。
具体实施方式
系统研究工作已经表明:人们可以通过良好平衡的组合元素Cr、Mo、Ni、N、Mn和Co来实现这些元素在奥氏体和铁素体中的最优分配,这就能够实现一种非常耐腐蚀的材料,并且在该材料中只具有其量可以忽略不计的σ相。所述材料也获得了良好的可加工性,这使得能够挤压成形为无缝钢管。该工作还表明,在本发明中为了获得高耐腐蚀性和良好结构稳定性的结合,需要在该材料中对合金元素进行更窄的组合。根据本发明的合金包含有(wt%):
C    至多0.03%
Si     至多0.5%
Mn     0-3.0%
Cr     24.0-30.0%
Ni     4.9-10.0%
Mo     3.0-5.0%
N      0.28-0.5%
B      0-0.0030%
S      至多0.010%
Co     0-3.5%
W      0-3.0%
Cu     0-2.0%
Ru     0-0.3%
Al     0-0.03%
Ca     0-0.010%
平衡量Fe以及正常出现的杂质和添加物,其中铁素体的体积百分含量是40-65%。
碳(C)在铁素体和奥氏体中溶解度有限。有限的溶解度意味着有碳化铬析出的危险,因此碳的含量不能超过0.03wt%,优选不超过0.02wt%。
硅(Si)在钢生产中被用作还原剂,同时它在生产和焊接过程中提高了流动性。但是,Si含量过高会导致不期望有的金属间相析出,因此Si的含量至多0.5wt%,优选不超过0.3wt%。
锰(Mn)加入用来提高材料中N的溶解度,但是,已经证明,Mn在所述类型的合金中对N溶解度的影响有限。相反,发现了对该溶解度的影响更高的其它元素。此外,Mn与高含量的S结合会导致形成硫化锰,这作为点状腐蚀的起始点,因此Mn的含量应该被限制在0-3.0wt%之间,优选为0.5-1.2wt%。
铬(Cr)是一种相当有用的元素,能够改善对大多数腐蚀类型的抵抗力。另外,高含量的铬意味着在材料中可以获得非常好的N溶解度。因此要求使Cr含量保持尽可能高以便改善抗腐蚀性能。抗腐蚀性能良好的铬含量至少应达到24.0wt%,优选为27.0-29.0wt%。但是,高含量的铬会增加金属间析出物的危险,为此必须将铬的含量限制在30wt%以内。
镍(Ni)被用作奥氏体稳定元素,添加适量的镍还可以获得所需含量的铁素体。为了在体积百分比为40-65%的铁素体中获得所要求的奥氏体相和铁素体相之间的比例,需要添加4.9-10.0wt%,优选为4.9-8.0wt%的镍。
钼(Mo)是一种有用元素,它能够改善在氯化物环境以及还原性酸环境中的抗腐蚀性能。太高含量的Mo会与高含量的Cr结合,这意味着产生金属间析出物的危险增加,在本发明中的Mo含量应在3.0-5.0wt%的范围中,优选为3.6-4.7wt%,尤其为4.0-4.3wt%。
氮(N)是非常有用的元素,它能够提高材料的抗腐蚀性、结构稳定性和强度。此外,高含量的N可以改善焊接后奥氏体的回复性,这在焊点内赋予了良好的性能。为了使N的作用更明显,至少应添加0.28%的N。在N含量较高的情况下,尤其是当铬的含量同时也很高时,产生氮化铬析出物的危险增加,此外,由于N在熔炼中过度溶解性,所以高N含量意味着出现多孔性的危险增加。因此,应该将N含量限制为至多0.5wt%,优选添加大于0.35-0.45wt%的N。
硼(B)是加入用来提高材料的热加工性。在B含量太高的情况下,抗腐蚀性和可焊接性会变差,因此,B含量应该限制为0.0030wt%。
硫(S)通过形成可溶解的硫化物对抗腐蚀性产生负面影响,此外,热加工性变差,因此将S含量限制为不超过0.010wt%。
钴(Co)加入用来首先改善抗腐蚀性和结构稳定性。Co是一种奥氏体稳定元素。为了产生有益的效果,Co的含量应该至少为0.5wt%,优选至少为1.5wt%。因为Co是相对昂贵的元素,因此将钴的添加量限制为至多3.5wt%。
能够提高抗点蚀和裂隙腐蚀性能,但是添加过高含量的钨与较高含量的Cr以及Mo结合意味着出现金属间析出物的危险增加。在本发明中的W含量应在0-3.0wt%范围内,优选为0.5-1.8wt%之间。
添加用来改善在酸性环境例如硫酸中的一般抗腐蚀性能。同时Cu会影响结构的稳定性。但是,高含量的Cu意味着将会超过固溶度,因此,Cu含量应该限制为至多2.0wt%,优选为在0.5-1.5wt%。
钌(Ru)加入用来提高抗腐蚀性,由于钌是非常昂贵的元素,因此含量应限制在至多0.3wt%,优选为0-0.1wt%。
铝(Al)和钙(Ca)在钢产品中用作脱氧剂,Al的含量应限制在在至多0.03wt%范围内以限制氮化物的形成。Ca对热延性能够产生有益的效果,但是,Ca的含量应限制为0.010wt%以避免出现不希望有的夹渣。
为了获得良好的机械性能、抗腐蚀性能和良好的可焊接性能,铁素体的含量非常重要。从抗腐蚀性和可焊接性的角度考虑,40-65%的铁素体含量对于获得良好性能而言是理想的。另外,高含量的铁素体意味着在低温下的冲击强度和对由氢引起的脆性的抵抗力恶化,因此,铁素体的体积百分比含量为40-65%,优选为42-60%,尤其为45-55%。
在下面的实施例中,给出了许多测试试样的组分,这些实施例说明了不同合金元素在性能上的作用。试样605182代表一个参考组分,因此不是本发明领域的一部分。不应将剩余的试样认为是对本发明进行限制,也不应仅仅限于这些试样的实施例,这些实施例阐述了根据权利要求所限定的本发明。
尽管没有明确的提及,特定的PRE数或值总被认为是依据PREW公式计算得出的。
实施例1
该实施例的测试试样由以下步骤产生:在实验室中铸造出重量为170kg的钢锭,随后将它热锻成圆钢。将它们热挤压成棒材(扁钢以及圆钢),其中从这些圆钢中选取试验材料。另外,在进行冷轧之前对扁钢进行退火,随后获得其它实验材料。从材料工程角度考虑,所述过程可以被当作更大规模生产的代表,例如通过挤出成形方法生产出不锈钢管,之后进行冷轧。表1显示出第一批实验试样的组分。
表1 实验试样的成分,wt%
 
试样 Mn Cr Ni Mo w Co v La Ti N
605193 1.03 27.90 8.80 4.00 0.01 0.02 0.04 0.01 0.01 0.36
605195 0.97 27.90 9.80 4.00 0.01 0.97 0.55 0.01 0.35 0.48
605197 1.07 28.40 8.00 4.00 1.00 1.01 0.04 0.01 0.01 0.44
605178 0.91 27.94 7.26 4.01 0.99 0.10 0.07 0.01 0.03 0.44
605183 1.02 28.71 6.49 4.03 0.01 0.03 0.54 0.01 0.01 0.28
605184 0.99 28.09 7.83 4.01 0.01 0.03 0.54 0.01 0.01 0.44
605187 2.94 27.74 4.93 3.98 0.01 0.98 0.06 0.01 0.01 0.44
605153 2.78 27.85 6.93 4.03 1.01 0.02 0.06 0.02 0.01 0.34
605182 0.17 23.48 7.88 5.75 0.01 0.05 0.04 0.01 0.10 0.26
为了研究试样的结构稳定性,所述从每一个试样中选取的样品分别在900-1150℃下以50℃为递进进行退火,随后分别在空气或水中淬火。在一个最低温度下形成金属间相。通过在光学显微镜中进行研究来确定金属间相变得可以忽略不计的最低温度。之后在所述温度下对来自相应试样的新样品退火恒温5分钟,之后以140℃/分钟的恒定冷却速度将这些样品冷却至室温,随后在扫描电子显微镜下用反向散射电子形成数字扫描图片来确定在这些材料中σ相的区域部分,结果如表2所示。
Tmaxσ是根据所有特定元素在不同变量中的特征值由Thermo-Calc(TCFE99钢的TC型N热力学数据库)计算得出。Tmaxσ是σ相的溶解温度,高溶解温度表示更低的结构稳定性。
表2
 
试样 热处理 σ含量(Vol%) T<sub>max</sub>σ
605193 1100℃,5分钟 7.5% 1016
605195 1150℃,5分钟 32% 1047
605197 1100℃,5分钟 18% 1061
605178 1100℃,5分钟 14% 1038
605183 1050℃,5分钟 0.4% 997
605184 1100℃,5分钟 0.4% 999
605187 1050℃,5分钟 0.3% 962
605153 1100℃,5分钟 3.5% 1032
605182 1100℃,5分钟 2.0% 1028
这一研究的目的在于能够依照结构稳定性将材料分级,即这不是在例如腐蚀试验之前经过热处理和淬火的试样中的σ相的真实含量。可以看出由Thermo-Calc计算得出的Tmaxσ没有直接与测量得出的σ相量相一致,但是显然具有最低的计算出的Tmaxσ的实验试样包含有在该实验过程中的最低量的σ相。
在所谓的“Green Death”溶液中进行点蚀性能的分级实验,所述溶液包含1%的FeCl3,1%的CuCl2,11%的H2SO4和1.2%的HCl。实验步骤与依照ASTM G48C的点蚀实验相同,但它是在更具腐蚀性的“Green Death”中完成的,此外,一些试样是依照ASTM G48C进行实验(每个试样进行2次实验)。还在含3%NaCl中进行电化学实验(每个试样进行6次实验)。从所有实验中得出的临界点蚀温度(CPT)形式的结果如表3所示,例如对于合金中全部成分以及奥氏体、铁素体的PREW值(Cr+3.3(Mo+0.5W)+16N)。符号α代表铁素体,γ代表奥氏体。
表3
 
试样 PRE<sub>α</sub> PRE<sub>γ</sub> PRE<sub>γ</sub>/PRE<sub>α</sub> PRE CPT℃修正的ASTMG48C Green death CPT℃ASTM G48C6%FeCl<sub>3</sub> CPT℃3%NaCl
605193 51.3 49.0 0.9552 46.9 90/90 64
605195 51.5 48.9 0.9495 48.7 90/90 95
605197 53.3 53.7 1.0075 50.3 90/90 >95 >95
605178 50.7 52.5 1.0355 49.8 75/80 94
905183 48.9 48.9 1.0000 46.5 85/85 90 93
605184 48.9 51.7 1.0573 48.3 80/80 72
605187 48.0 54.4 1.1333 48.0 70/75 77
605182 54.4 46.2 0.8493 46.6 75/70 85 62
654SMO 90/85
SAF2507 70/70
SAF2609 60/50
人们确定在双相不锈钢中奥氏体或铁素体中的最低PRE值与CPT值之间存在线性比例,但是表3中的结果表明PRE值不能单独用来解释CPT值。图1以图表的方式示出了经过修正的ASTM G48C实验所获得的CPT值。包括双相钢SAF2507、SAF2906以及高合金奥氏体钢654SMO作为参考。从这些结果中可以清楚看到,所有实验材料在经过修正的ASTM G48C实验中显示出比SAF2507和SAF2906更好的CPT值。此外,一些实验材料在经过修正的ASTM G48C实验中显示出与654SMO等同或更好的CPT结果。利用钴合金化了的实验试样605183尽管它包含有高含量铬以及钼,但是在受控的冷却速率(-140℃/分钟)下显示出良好的结构稳定性,并且显示出优于SAF2507和SAF2906的结果。研究表明一个较高的PRE值不能用来单独解释CPT值,在没有该关系的情况下,PRE奥氏体/PRE铁素体对于更高合金的双相不锈钢的性能是至关重要的,需要在合金元素间进行严密而精确均衡以便获得最优化比例,所述比例应介于0.9-1.15之间,优选为0.9-1.05,同时还便于获得高于46的PRE值。在表3中给出了针对在经过修正的ASTM G48C实验中的试样的CPT值的关系PRE奥氏体/PRE铁素体
确定出所有试样在室温(RT)、100℃和200℃下的强度以及在室温(RT)下的冲击强度,并且以3次实验的平均值表示。
由φ20mm挤出棒材制造出拉伸实验试样(DR-5C50),在根据表2的温度下对这些试样进行20分钟热处理,随后在空气或水中冷却(试样编号分别为605195,605197,605184)。实验结果如表4和表5所示。这些拉伸实验的结果表明铬、氮和钨对材料的冲击强度影响很大。除605153之外,所有试样都满足了在室温(RT)下在拉伸试验下延伸率为25%的要求。
表4 冲击强度
 
试样 温度 R<sub>p0.2</sub> R<sub>p1.0</sub> R<sub>m</sub> A5 Z
(MPa) (MPa) (MPa) (%) (%)
605193 RT 652 791 916 29.7 38
100℃ 513 646 818 30.4 36
200℃ 511 583 756 29.8 36
605195 RT 671 773 910 38.0 66
100℃ 563 637 825 39.3 68
200℃ 504 563 769 38.1 64
605197 RT 701 799 939 38.4 66
100℃ 564 652 844 40.7 69
200℃ 502 577 802 35.0 65
605178 RT 712 828 925 27.0 37
100℃ 596 677 829 31.9 45
200℃ 535 608 763 27.1 36
605183 RT 677 775 882 32.4 67
100℃ 560 642 788 33.0 59
200℃ 499 578 737 29.9 52
605184 RT 702 793 915 32.5 60
100℃ 569 657 821 34.5 61
200℃ 526 581 774 31.6 56
605187 RT 679 777 893 35.7 61
100℃ 513 628 799 38.9 64
200℃ 505 558 743 35.8 58
605153 RT 715 845 917 20.7 24
100℃ 572 692 817 29.3 27
200℃ 532 611 749 23.7 31
605182 RT 627 754 903 28.4 43
100℃ 493 621 802 31.8 42
表5 冲击强度
 
试样 退火[℃/分钟] 冷却 冲击强度[J] 退火[℃/分钟] 冷却 冲击强度[J]
605193 1100/20 空气 35 1100/20 242
605195 1150/20 223
605197 1100/20 254 1130/20 259
605178 1100/20 空气 62 1100/20 234
905183 1050/20 空气 79 1050/20 244
605184 1100/20 81 1100/20 空气 78
605187 1050/20 空气 51 1100/20 95
605153 1100/20 空气 50 1100/20 246
605182 1100/20 空气 22 1100/20 324
该研究非常清楚地表明水淬对于获得最好的结构并因此获得良好的冲击强度数值是必不可少的。除605184和605187外,所有试样在室温下都通过了必需的100J的强度,当然前者也非常接近所需的值。
图6显示出从钨-惰性气体重熔实验(以下简称TIG)得出的结果,其中试样605193、605183、605184以及605253在受热区(Heat AffectedZone,以下简称HAZ)显示出良好的结构。含Ti的试样在HAZ中显示出具有TiN。过高的铬和氮含量导致Cr2N析出,因为这会使该材料的性能变差,因而应该要避免出现这个情况。
表6
 
试样 析出物保护气Ar(99.99%)
605193 HAZ:良好
605195 HAZ:大量的TiN和σ相
605197 HAZ:δ晶粒中含少量的Cr<sub>2</sub>N,不多
605178 HAZ:δ晶粒中含的Cr<sub>2</sub>N,其他良好
605183 HAZ:良好
605184 HAZ:良好
605187 HAZ:Cr<sub>2</sub>N接近于熔化结合物,没有进一步沉淀产生
605153 HAZ:良好
605182 HAZ:TiN和具有花纹的晶界δ/δ
实施例2
在下述实施例中,给出了为了找到最优组分而生产出的其它测试试样的组分。从实施例1中所示的结果中,从具有良好结构稳定性以及高耐腐蚀性的试样的性能中开始对这些试样进行改变。表7中的所有试样包括了本发明所述的组分,其中编号为1-8号的试样只包括统计测试模式,而编号为e-n号的试样中添加了本发明所述范围内的合金。
所述试样由270kg的钢锭通过铸造、热锻成圆钢获得。将这些圆钢挤出成形为棒材,从而选取测试试样。之后在冷轧成扁钢之前对棒材进行退火,之后选取进一步测试材料。表7显示出这些测试试样的组分。
表7
 
试样 Mn Cr Ni Mo W Co Cu Ru B N
1 605258 1.1 29.0 6.5 4.23 1.5 0.0018 0.46
2 605249 1.0 28.8 7.0 4.23 1.5 0.0026 0.38
3 605259 1.1 29.0 6.8 4.23 0.6 0.0019 0.45
4 605260 1.1 27.5 5.9 4.22 1.5 0.0020 0.44
5 605250 1.1 28.8 7.6 4.24 0.6 0.0019 0.40
6 605251 1.0 28.1 6.5 4.24 1.5 0.0021 0.38
7 605261 1.0 27.8 6.1 4.22 0.6 0.0021 0.43
8 605252 1.1 28.4 6.9 4.23 0.5 0.0018 0.37
e 605254 1.1 26.9 6.5 4.8 1.0 0.0021 0.38
f 605255 1.0 28.6 6.5 4.0 3.0 0.0020 0.31
g 605262 2.7 27.6 6.9 3.9 1.0 1.0 0.0019 0.36
h 605263 1.0 28.7 6.6 4.0 1.0 1.0 0.0020 0.40
i 605253 1.0 28.8 7.0 4.16 1.5 0.0019 0.37
j 605266 1.1 30.0 7.1 4.02 0.0018 0.38
k 605269 1.0 28.5 7.0 3.97 1.0 1.0 0.0020 0.45
l 605268 1.1 28.2 6.6 4.0 1.0 1.0 1.0 0.0021 0.43
m 605270 1.0 28.8 7.0 4.2 1.5 0.1 0.0021 0.41
n 605267 1.1 29.3 6.5 4.23 1.5 0.0019 0.38
表8.Thermo-Calc
 
变量 α公式经验值 α T—C 全部PRE PRE<sub>α</sub> PRE<sub>γ</sub> T<sub>max</sub>σ T<sub>max</sub>Cr<sub>2</sub>N
1 46 50 50.2 47.8 50.5 1006 1123
2 52 50 49.1 48.4 49.8 1019 1084
3 45 50 50.2 47.9 52.6 1007 1097
4 46 50 49.2 46.5 49.8 986 1121
5 47 50 49.1 48.5 49.7 1028 1038
6 52 50 48.1 47.1 49.2 998 1086
7 44 50 49.2 46.6 52.0 985 1081
8 46 50 48.1 47.2 49.1 1008 1044
e 46 53 49.3 48.4 49.5 1010 1099
f 65 52 46.7 47.2 46.1 1008 1090
g 48 51 48.4 48.4 48.3 1039 979
h 50 53 50.0 48.4 51.7 1035 1087
i 52 50 49.1 48.4 49.8 1019 1084
根据表8(TCFE99钢的TC型N热力学数据库)的Thermo-Calc值是基于所有特定元素在不同变量中的特征量。铁素体和奥氏体的PRE值基于它们在1100℃下的均衡组分。Tmaxσ是σ相的溶解温度,高溶解温度意味着更低的结构稳定性。
利用微探针分析对合金元素在铁素体和奥氏体中的分布进行研究,结果如表9所示。
表9
 
试样 晶相 Cr Mn Ni Mo W Co Cu N
605258 铁素体 29.8 1.3 4.8 5.0 1.4 0.11
奥氏体 28.3 1.4 7.3 3.4 1.5 0.60
605249 铁素体 29.8 1.1 5.4 5.1 1.3 0.10
 
奥氏体 27.3 1.2 7.9 3.3 1.6 0.53
605259 铁素体 29.7 1.3 5.3 5.3 0.5 0.10
奥氏体 28.1 1.4 7.8 3.3 0.58 0.59
605260 铁素体 284 1.3 4.4 5.0 1.4 0.08
奥氏体 26.5 1.4 6.3 3.6 1.5 0.54
605250 铁素体 30.1 1.3 5.6 5.1 0.46 0.07
奥氏体 27.3 1.4 8.8 3.4 0.53 0.52
605251 铁素体 29.6 1.2 5.0 5.2 1.3 0.08
奥氏体 26.9 1.3 7.6 3.5 1.5 0.53
605261 铁素体 28.0 1.2 4.5 4.9 0.45 0.07
奥氏体 26.5 1.4 6.9 3.3 0.56 0.56
605252 铁素体 29.6 1.3 5.3 5.2 0.42 0.09
奥氏体 27.1 1.4 8.2 3.3 0.51 0.48
605254 铁素体 28.1 1.3 4.9 5.8 0.89 0.08
奥氏体 26.0 1.4 7.6 3.8 1.0 0.48
605255 铁素体 30.1 1.3 5.0 4.7 2.7 0.08
奥氏体 27.0 1.3 7.7 3.0 3.3 0.45
605262 铁素体 28.8 3.0 5.3 4.8 1.4 0.9 0.08
奥氏体 26.3 3.2 8.1 3.0 0.85 1.1 0.46
605263 铁素体 29.7 1.3 5.1 5.1 1.3 0.91 0.07
奥氏体 27.8 1.4 7.7 3.2 0.79 1.1 0.51
605253 铁素体 30.2 1.3 5.4 5.0 1.3 0.09
奥氏体 27.5 1.4 8.4 3.1 1.5 0.48
605266 铁素体 31.0 1.4 5.7 4.8 0.09
奥氏体 29.0 1.5 8.4 3.1 0.52
605269 铁素体 28.7 1.3 5.2 5.1 1.4 0.9 0.11
奥氏体 26.6 1.4 7.8 3.2 0.87 1.1 0.52
605268 铁素体 29.1 1.3 5.0 4.7 1.3 0.91 0.84 0.12
奥氏体 26.7 1.4 7.5 3.2 0.97 1.0 1.2 0.51
605270 铁素体 30.2 1.2 5.3 5.0 1.3 0.11
奥氏体 27.7 1.3 8.0 3.2 1.4 0.47
605267 铁素体 30.1 1.3 5.1 4.9 1.3 0.08
奥氏体 27.8 1.4 7.6 3.1 1.8 0.46
所有试样的点蚀特性均在“Green Death”溶液(含1%的FeCl3,1%的CuCl2,11%的H2SO4和1.2%的HCl)中测试分级。实验步骤与依照ASTM G48C的点蚀实验相同,但本实验是在比6%FeCl3更具腐蚀性的溶液,即所谓的“Green Death”溶液中进行的。并且在进行露点实验前,在2%HCl中进行一般腐蚀试验(每个试样实验2次)以便进行分级。从表10、图2和图3中可以看到由所有测试得到的结果。所有实验试样在“Green Death”溶液中的表现均优于SAF2507,所有试样的PRE奥氏体/PRE铁素体比例限制在0.9-1.5范围内,优选为0.9-1.05,同时奥氏体和铁素体的PRE值均超过44,大部分试样甚至大大超过44,一些试样甚至达到极限值50。值得注意的是,尽管试样605251中的铬含量较低,但是含有1.5wt%钴的试样605251在“Green Death”溶液中的表现几乎等同于钴含量为0.6wt%的试样605250。尤其令人吃惊和感兴趣的是,由于试样605251的ca.(计算)PRE值高达48,这超过了一些目前商用超级二相合金,同时其Tmaxσ值低于1010℃,这意味着基于例1中表2所列值的基础上具有良好的结构稳定性。
在表10中列出了用微探针测量出的该合金全部成分的平均PREW值(%Cr+3.3%(Mo+0.5%W)+16%N)以及在奥氏体以及在铁素体中基于这些相的组分的PRE值(四舍五入)。在1100℃下进行热处理之后进行水淬处理后测量出铁素体的含量。
表10
 
试样 α-临界点(halt) 全部PREW PRE<sub>α</sub> PRE<sub>γ</sub> PRE<sub>α</sub>/PRE<sub>γ</sub> CPT℃Green death
605258 48.2 50.3 48.1 49.1 1.021
605249 59.8 48.9 48.3 46.6 0.967 75/80
605259 49.2 50.2 48.8 48.4 0.991
605260 53.4 48.5 46.1 47.0 1.019
605250 53.6 49.2 48.1 46.8 0.974 95/80
605251 54.2 48.2 48.1 46.9 0.976 90/80
 
605261 50.8 48.6 45.2 46.3 1.024
605252 56.6 48.2 48.2 45.6 0.946 80/75
605254 53.2 48.8 48.5 46.2 0.953 90/75
605255 57.4 46.9 46.9 44.1 0.940 90/80
605262 57.2 47.9 48.3 45.0 0.931
605263 53.6 49.7 49.8 47.8 0.959
605253 52.6 48.4 48.2 45.4 0.942 85/75
605266 62.6 49.4 48.3 47.6 0.986
605269 52.8 50.5 49.6 46.9 0.945
605268 52.0 49.9 48.7 47.0 0.965
605270 57.0 49.2 48.5 45.7 0.944
605267 59.8 49.3 47.6 45.4 0.953
为了详细研究结构稳定性,在1080℃、1100℃和1150℃下对这些试样进行20分钟退火,然后在水中淬火。通过在光学显微镜中进行研究来确定金属间相变得可以忽略不计的温度。对经过1080℃退火之后进行水淬处理后的试样结构进行比较,表明哪个试样更可能包含不期望有的σ相。在图11中显示出这些结果。对结构进行控制显示出,试样605249、605251、605252、605253、605254、605255、605259、605260、605266与605267没有不期望有的σ相。此外,含钴1.5wt%的试样605249不含σ相,而含钴0.6wt%的试样605250只含很少数量的σ相。这些试样含有约为29.0wt%的高含量铬以及大约为4.25wt%的钼。如果针对σ相含量对试样605249、605250、605251和605252中的组分进行比较的话,非常明显在该情况中结构稳定性方面对于最优材料的组分范围非常窄。它还显示出,试样605268只包含相当于试样605263的σ相,试样605263包含很多σ相。这些试样之间的主要区别在于,试样605268中添加有铜。试样605266和605267尽管含有高含量的铬且后者合金中还含有铜,但是它们都不含σ相,另外,添加有1.0wt%的试样605262和605263显示出具有许多σ相的结构,同时值得注意的是,也含1.0%的钨但是相对于试样605262和605263其氮含量更高的试样605269显示出其σ相含量明显更少。因此,需要在处于这些高合金含量的不同合金元素例如铬和钼之间进行良好调节的平衡,以便获得良好的结构性能。
表11显示出从在经过1080℃退火20分钟之后进行水淬之后的光学观察中获得的结果。σ相量由1-5表示,其中1代表检测中没有发现σ相,而5表示检测中发现高含量的σ相。
表11
 
试样 σ相 Cr Mo W Co Cu N Ru
605249 1 28.8 4.23 1.5 0.38
605250 2 28.8 4.24 0.6 0.40
605251 l 28.1 4.24 1.5 0.38
605252 1 28.4 4.23 0.5 0.37
605253 1 28.8 4.16 1.5 0.37
605254 1 26.9 4.80 1.0 0.38
605255 1 28.6 4.04 3.0 0.31
605258 2 29.0 4.23 1.5 0.46
605259 1 29.0 4.23 0.6 0.45
605260 1 27.5 4.22 1.5 0.44
605261 2 27.8 4.22 0.6 0.43
605262 4 27.6 3.93 1.0 1.0 0.36
605263 5 28.7 3.96 1.0 1.0 0.40
605266 1 30.0 4.02 0.38
605267 1 29.3 4.23 1.5 0.38
605268 2 28.2 3.98 1.0 1.0 1.0 0.43
605269 3 28.5 3.97 1.0 1.0 0.45
605270 3 28.8 4.19 1.5 0.41 0.1
在表12中显示出从对一些试样进行冲击强度测试所得到的结果。这些结果非常高,这表明在经过1100℃退火继而进行水淬后具有良好的结构性能,并且所有测试试样都可以以大余量满足100J的要求。
表12
 
试样 退火[℃/分钟] 淬火 冲击强度[J] 冲击强度[J] 冲击强度[J]
605249 1100/20 >300 >300 >300
605250 1100/20 >300 >300 >300
605251 1100/20 >300 >300 >300
605252 1100/20 >300 >300 >300
605253 1100/20 258 267 257
605254 1100/20 >300 >300 >300
605255 1100/20 >300 >300 >300
图4显示出从对大多数试样进行热延展性实验所得出的结果。良好的可加工性对于能够将材料制成棒材、管材例如焊管和无缝管、板材、带材、线材、焊条以及诸如泵、阀门、法兰、联结器一类的结构零件而言当然是至关重要的。大部分含有大约0.38wt%的氮的试样605249、605250、605251、605252、605255、605266和605267能够在一定程度上改善热延展性数值。
实验结果总结
为了使材料获得良好的抗腐蚀性同时具有良好的结构稳定性、热加工性和可焊接性,该材料应该根据下面所述得到优化:
●铁素体中的PRE值应大于45,优选至少为47。
●奥氏体中的PRE值应大于45,优选至少为47。
●整个合金的PRE值应该优选至少为46。
●PRE奥氏体/PRE铁素体的比值应当介于0.9-1.15之间,优选在0.9-1.05范围内。
●铁素体的体积百分比含量优选在45-55%范围内。
●Tmaxσ不应超过1010℃。
●氮含量应在0.28-0.5wt%范围内,优选在0.35-0.48wt%的范围内,更优选为是0.38-0.40wt%。
●钴含量应在0-3.5wt%范围内,优选为1.0-2.0wt%,更优选为1.3-1.7wt%。
●为了确保氮的高溶解度,即,在氮含量为0.38-0.40wt%的情况下,需要至少添加29wt%的Cr和3.0wt%的Mo,这样元素Cr、Mo和N的总含量满足对所述PRE值的要求。

Claims (20)

1.一种铁素体-奥氏体双相不锈钢合金,其特征在于,它包含下列成分,以重量百分比计:
C                                        至多0.03%
Si                                       至多0.5%
Mn                                       0-3.0%
Cr                                       24.0-30.0%
Ni                                       4.9-10.0%
Mo                                       3.0-5.0%
N                                        0.28-0.5%
B                                        0-0.0030%
S                                        至多0.010%
Co                                       0-3.5%
W                                        0-3.0%
Cu                                       0-2.0%
Ru                                       0-0.3%
Al                                       0-0.03%
Ca                                       0-0.010%
平衡量的Fe以及正常出现的杂质和添加物,其中铁素体的体积百分比含量为40-65%;并且
铁素体相和奥氏体相的PRE值或PREW值均大于45,且合金总的PRE值或PREW值大于46,PRE=%Cr+3.3%Mo+16%N,PREW=%Cr+3.3(%Mo+0.5%W)+16%N。
2.如权利要求1所述的合金,其特征在于锰的含量为0.5-1.2wt%。
3.如权利要求1或2所述的合金,其特征在于,铬的含量为27.0-29.0wt%。
4.如权利要求1或2所述的合金,其特征在于镍的含量为4.9-8.0wt%。
5.如权利要求1或2所述的合金,其特征在于钼的含量为3.6-4.7wt%。
6.如权利要求1或2所述的合金,其特征在于氮的含量为0.35-0.45wt%。
7.如权利要求1或2所述的合金,其特征在于钌的含量为0-0.3wt%。
8.如权利要求7所述的合金,其特征在于钌的含量为0-0.1%。
9.如权利要求1或2所述的合金,其特征在于钴的含量为0.5-3.5wt%。
10.如权利要求9所述的合金,其特征在于钴的含量为1.5-3.5wt%。
11.如权利要求1或2所述的合金,其特征在于铜的含量为0.5-1.5wt%。
12.如权利要求1或2所述的合金,其特征在于铁素体的体积百分比含量为42-60%。
13.如权利要求12所述的合金,其特征在于铁素体的体积百分比含量为45-55%。
14.如权利要求1或2所述的合金,其特征在于铁素体相和奥氏体相的PRE值或PREW值介于47和49之间。
15.如权利要求1或2所述的合金,其特征在于奥氏体相的PRE值与铁素体相的PRE值之间的比值介于0.90-1.15之间,并且奥氏体相的PREW值与铁素体相的PREW值之间的比值介于0.90-1.15之间。
16.如权利要求15所述的合金,其特征在于奥氏体相的PRE值与铁素体相的PRE值之间的比值介于0.9-1.05之间,并且奥氏体相的PREW值与铁素体相的PREW值之间的比值介于0.90-1.05之间。
17.如权利要求1所述的合金,用于含氯化物的环境中。
18.如权利要求17所述的合金,所述合金采用棒材、管材、板材、带材、线材、焊条以及结构零件的产品形式。
19.如权利要求18所述的合金,其特征在于所述棒材为焊管和无缝管。
20.如权利要求18所述的合金,其特征在于,所述结构零件为泵、阀门、法兰或联结器。
CNB028206177A 2001-09-02 2002-09-02 双相钢合金 Expired - Fee Related CN100465325C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0102931A SE524952C2 (sv) 2001-09-02 2001-09-02 Duplex rostfri stållegering
SE01029313 2001-09-02

Publications (2)

Publication Number Publication Date
CN1571862A CN1571862A (zh) 2005-01-26
CN100465325C true CN100465325C (zh) 2009-03-04

Family

ID=20285220

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028206177A Expired - Fee Related CN100465325C (zh) 2001-09-02 2002-09-02 双相钢合金

Country Status (18)

Country Link
US (1) US20030086808A1 (zh)
EP (2) EP1423548B1 (zh)
JP (1) JP4234592B2 (zh)
KR (2) KR20090128568A (zh)
CN (1) CN100465325C (zh)
AT (2) ATE335867T1 (zh)
AU (1) AU2002328002B9 (zh)
BR (1) BR0212270B1 (zh)
CA (1) CA2459253A1 (zh)
DE (2) DE60225951T2 (zh)
DK (2) DK1722002T3 (zh)
ES (2) ES2300088T3 (zh)
MX (1) MXPA04002017A (zh)
NO (1) NO338090B1 (zh)
OA (1) OA12657A (zh)
PL (1) PL199387B1 (zh)
SE (1) SE524952C2 (zh)
WO (1) WO2003020994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511943A (zh) * 2017-12-22 2020-08-07 塞彭公司 双相不锈钢及其用途

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE524951C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Användning av en duplex rostfri stållegering
SE527177C2 (sv) * 2001-09-25 2006-01-17 Sandvik Intellectual Property Användning av ett austenitiskt rostfritt stål
SE527178C2 (sv) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Användning av en duplex rostfri stållegering
SE527175C2 (sv) * 2003-03-02 2006-01-17 Sandvik Intellectual Property Duplex rostfri ställegering och dess användning
SE528782C2 (sv) * 2004-11-04 2007-02-13 Sandvik Intellectual Property Duplext rostfritt stål med hög sträckgräns, artiklar och användning av stålet
SE531305C2 (sv) * 2005-11-16 2009-02-17 Sandvik Intellectual Property Strängar för musikinstrument
SE530711C2 (sv) * 2006-10-30 2008-08-19 Sandvik Intellectual Property Duplex rostfri stållegering samt användning av denna legering
CN101353769B (zh) * 2007-07-26 2011-10-05 傅丰仁 铬23镍6铁素体-奥氏体不锈钢管及其制造工艺
SE531593C2 (sv) * 2007-10-26 2009-06-02 Sandvik Intellectual Property Värmeväxlare för fosforsyramiljö
ES2713899T3 (es) 2007-11-29 2019-05-24 Ati Properties Llc Acero inoxidable austenítico pobre
MX2010005668A (es) 2007-12-20 2010-06-03 Ati Properties Inc Acero inoxidable austenitico delgado resistente a la corrosion.
RU2461641C2 (ru) 2007-12-20 2012-09-20 ЭйТиАй ПРОПЕРТИЗ, ИНК. Аустенитная нержавеющая сталь с низким содержанием никеля и содержащая стабилизирующие элементы
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
CN101215673B (zh) * 2008-01-08 2010-12-01 上海大学 高性能双相不锈钢合金材料及其制备方法
FI121340B (fi) * 2008-12-19 2010-10-15 Outokumpu Oy Dupleksinen ruostumaton teräs
EP2684974B1 (en) 2011-03-10 2017-05-10 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel
US9803267B2 (en) 2011-05-26 2017-10-31 Upl, L.L.C. Austenitic stainless steel
FI125854B (fi) * 2011-11-04 2016-03-15 Outokumpu Oy Dupleksi ruostumaton teräs
JP5403192B1 (ja) * 2012-06-22 2014-01-29 新日鐵住金株式会社 2相ステンレス鋼
DE102013110743B4 (de) * 2013-09-27 2016-02-11 Böhler Edelstahl GmbH & Co. KG Verfahren zur Herstellung eines Duplexstahles
KR20180031009A (ko) * 2015-07-20 2018-03-27 산드빅 인터렉츄얼 프로퍼티 에이비 듀플렉스 스테인레스 강 및 상기 듀플렉스 스테인레스 강의 성형품
CN107937825A (zh) * 2017-11-15 2018-04-20 江阴方圆环锻法兰有限公司 油气用双相钢阀门锻件及其锻造方法
US11098387B2 (en) * 2018-06-15 2021-08-24 Ab Sandvik Materials Technology Duplex stainless steel strip and method for producing thereof
CN111230406A (zh) * 2018-11-28 2020-06-05 无锡市新峰管业有限公司 一种海洋环境下双相不锈钢管及其加工方法
CN112342473A (zh) * 2020-09-17 2021-02-09 江苏华久辐条制造有限公司 一种冷轧带钢表面耐蚀处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220141A2 (en) * 1985-09-05 1987-04-29 Santrade Ltd. High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
EP0534864A1 (en) * 1991-09-30 1993-03-31 Sumitomo Metal Industries, Ltd. Duplex stainless steel having improved corrosion resistance and process for the production thereof
CN1117087A (zh) * 1994-05-21 1996-02-21 朴庸秀 有高耐腐蚀性的双相不锈钢
CN1125965A (zh) * 1993-06-21 1996-07-03 桑德维克公司 铁素体-奥氏体不锈钢
CN1269840A (zh) * 1997-09-05 2000-10-11 桑杜斯克国际公司 具有改良切削性的抗点蚀双相不锈钢合金

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861908A (en) * 1973-08-20 1975-01-21 Crucible Inc Duplex stainless steel
CA1242095A (en) * 1984-02-07 1988-09-20 Akira Yoshitake Ferritic-austenitic duplex stainless steel
JPS60165362A (ja) * 1984-02-07 1985-08-28 Kubota Ltd 高耐食性高耐力二相ステンレス鋼
US4678523A (en) * 1986-07-03 1987-07-07 Cabot Corporation Corrosion- and wear-resistant duplex steel
US4985091A (en) * 1990-01-12 1991-01-15 Carondelet Foundry Company Corrosion resistant duplex alloys
AT397515B (de) * 1990-05-03 1994-04-25 Boehler Edelstahl Hochfeste korrosionsbeständige duplex-legierung
JP2500162B2 (ja) * 1991-11-11 1996-05-29 住友金属工業株式会社 耐食性に優れた高強度二相ステンレス鋼
JP3166798B2 (ja) * 1992-10-06 2001-05-14 住友金属工業株式会社 耐食性、相安定性に優れた二相ステンレス鋼
US5906791A (en) * 1997-07-28 1999-05-25 General Electric Company Steel alloys
AT405297B (de) * 1997-08-13 1999-06-25 Boehler Edelstahl Duplexlegierung für komplex beanspruchte bauteile
SE9704544D0 (sv) * 1997-12-05 1997-12-05 Astra Pharma Prod Novel compounds
SE514044C2 (sv) * 1998-10-23 2000-12-18 Sandvik Ab Stål för havsvattentillämpningar
SE0000678L (sv) * 2000-03-02 2001-04-30 Sandvik Ab Duplext rostfritt stål
SE524951C2 (sv) * 2001-09-02 2004-10-26 Sandvik Ab Användning av en duplex rostfri stållegering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220141A2 (en) * 1985-09-05 1987-04-29 Santrade Ltd. High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
EP0534864A1 (en) * 1991-09-30 1993-03-31 Sumitomo Metal Industries, Ltd. Duplex stainless steel having improved corrosion resistance and process for the production thereof
CN1125965A (zh) * 1993-06-21 1996-07-03 桑德维克公司 铁素体-奥氏体不锈钢
CN1117087A (zh) * 1994-05-21 1996-02-21 朴庸秀 有高耐腐蚀性的双相不锈钢
CN1269840A (zh) * 1997-09-05 2000-10-11 桑杜斯克国际公司 具有改良切削性的抗点蚀双相不锈钢合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511943A (zh) * 2017-12-22 2020-08-07 塞彭公司 双相不锈钢及其用途
CN111511943B (zh) * 2017-12-22 2022-02-01 塞彭公司 双相不锈钢及其用途

Also Published As

Publication number Publication date
DE60225951T2 (de) 2009-04-09
KR100989022B1 (ko) 2010-10-20
WO2003020994A1 (en) 2003-03-13
NO338090B1 (no) 2016-07-25
BR0212270B1 (pt) 2011-05-31
CN1571862A (zh) 2005-01-26
DE60213828D1 (de) 2006-09-21
ES2300088T3 (es) 2008-06-01
BR0212270A (pt) 2004-10-13
DE60213828T2 (de) 2007-03-01
PL199387B1 (pl) 2008-09-30
SE0102931L (sv) 2003-03-03
MXPA04002017A (es) 2004-07-08
SE524952C2 (sv) 2004-10-26
SE0102931D0 (sv) 2001-09-02
CA2459253A1 (en) 2003-03-13
KR20090128568A (ko) 2009-12-15
PL368230A1 (en) 2005-03-21
AU2002328002B2 (en) 2007-07-05
EP1423548B1 (en) 2006-08-09
EP1722002B1 (en) 2008-04-02
ATE335867T1 (de) 2006-09-15
ATE391192T1 (de) 2008-04-15
JP4234592B2 (ja) 2009-03-04
DK1722002T3 (da) 2008-07-28
AU2002328002B9 (en) 2008-03-13
OA12657A (en) 2006-06-19
ES2266557T3 (es) 2007-03-01
JP2005501969A (ja) 2005-01-20
DE60225951D1 (de) 2008-05-15
NO20040900L (no) 2004-04-30
DK1423548T3 (da) 2006-12-04
KR20040029142A (ko) 2004-04-03
EP1423548A1 (en) 2004-06-02
US20030086808A1 (en) 2003-05-08
EP1722002A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
CN100465325C (zh) 双相钢合金
JP6304460B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP4803174B2 (ja) オーステナイト系ステンレス鋼
CN100540713C (zh) 双相钢合金的应用
JP5755153B2 (ja) 高耐食オーステナイト鋼
AU2002328002A1 (en) Duplex steel alloy
KR20090078813A (ko) 듀플렉스 스테인리스 강 합금 및 이 합금의 용도
TW201510241A (zh) 雙相肥粒鐵沃斯田鐵系不銹鋼
JP6225598B2 (ja) オーステナイト系ステンレス鋼溶接材料
JP2014005506A (ja) オーステナイト系ステンレス鋼
JP7560732B2 (ja) オーステナイト系ステンレス鋼材
JP2017202494A (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
JP7277715B2 (ja) オーステナイト系ステンレス鋼及びオーステナイト系ステンレス鋼の製造方法
JP7272438B2 (ja) 鋼材およびその製造方法、ならびにタンク
JP6388967B2 (ja) 二相ステンレス鋼
CN112391576B (zh) 低合金耐热钢及钢管
JP7295418B2 (ja) 溶接材料
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP7462439B2 (ja) オーステナイト系ステンレス鋼およびnの上限値の算出方法
JP2017202492A (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
KR20240034213A (ko) 페라이트계 내열강
JP2023148713A (ja) 厚鋼板及びその製造方法
JPH0696752B2 (ja) 靭性に優れたクロマイジング用低Cr系耐熱鋼
JPH068482B2 (ja) 靭性に優れたクロマイジング用Cr―Mo系耐熱鋼

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SANDVIK INTELLECTUAL PROPERTY

Free format text: FORMER OWNER: SANDVIK AB

Effective date: 20050729

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050729

Address after: Sandviken

Applicant after: Sandvik Intellectual Property

Address before: Sandviken

Applicant before: Sandvik AB

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20051111

Address after: Sandviken

Applicant after: Sandvik Sandvik Intellectual Property Co., Ltd.

Address before: Sandviken

Applicant before: Sandvik Intellectual Property

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20200902