CN100406964C - 多视图定向显示器 - Google Patents

多视图定向显示器 Download PDF

Info

Publication number
CN100406964C
CN100406964C CN2004100899184A CN200410089918A CN100406964C CN 100406964 C CN100406964 C CN 100406964C CN 2004100899184 A CN2004100899184 A CN 2004100899184A CN 200410089918 A CN200410089918 A CN 200410089918A CN 100406964 C CN100406964 C CN 100406964C
Authority
CN
China
Prior art keywords
display
substrate
parallax
eyeglass
accompanying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004100899184A
Other languages
English (en)
Other versions
CN1617014A (zh
Inventor
J·马色
D·U·基恩
R·文罗
G·布西尔
中川朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1617014A publication Critical patent/CN1617014A/zh
Application granted granted Critical
Publication of CN100406964C publication Critical patent/CN100406964C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本发明提供一种具有图像显示单元和视差镜片(13)的多视图定向显示器。显示单元(8)包括在其中夹入显示层(8)的基底(6,19),视差镜片(13)安装在图像显示单元之内。

Description

多视图定向显示器
技术领域
本发明涉及一种多视图定向显示器,显示两个或多个图像,以便从不同方向各个图像是可见的。因此,从不同方向观看显示器的两个观看者将看到彼此不同的图像。上述显示器可被用于,比如,自立体显示设备或者双视图显示设备。本发明也涉及一种视差隔板基底,和一种制造多视图定向显示器的方法。
背景技术
传统显示设备已被设计为被多个用户同时观看。显示设备的显示特性使得观看者可以从显示器的不同角度看到同样好的图像质量。在许多用户需要从向显示器得到相同信息时是有效的,比如在机场和火车站出发信息的显示。但是,在许多应用中,希望各个用户可以从同一显示器看到不同的信息。例如,在汽车中驾驶员可能希望看到卫星导航数据,但是乘客可能希望观看电影。这种冲突需要提供两个单独的显示设备来满足,但是这将花费额外的空间并将增加成本。进一步的,如果在上述例子中两个单独的显示器被使用,如果驾驶员移动他或她的头,驾驶员可能观看乘客的显示器,使驾驶员分心。作为一个进一步的例子,计算机游戏中的两个或多个玩家中的每一个可能希望从他或她自己的透视角度观看游戏。当前每个玩家在单独的显示屏观看游戏,以致于每个玩家在各自的显示屏观看他们自己唯一透视图。但是,为每个玩家提供单独的显示屏花费许多空间并且价格昂贵,在便携式游戏中不实用。为了解决上述问题,多视图定向显示器已被开发。多视图定向显示器的一个应用是作为“双视图显示器”,可以同时显示两个或多个不同的图像,每个图像只在特定方向可见,因此观看者从一个方向观看显示设备将看到一个图像,但是观看者从另一个不同的方向观看显示设备将看到一个不同的图像。与使用两个或多个单独的显示器相比,可向两个或者多个用户显示不同图像的显示器提供了一种考虑节省空间和成本的可能。
多视图定向显示设备可能的应用的实施例已在上文中给出,但是还有许多其它的应用。比如,可被用于飞机上,向每个乘客提供单独的飞行娱乐节目。当前向每个乘客提供单独的显示设备,通常在前排座位的背面。使用多视图定向显示器由于它使得一个显示器用于两个或多个乘客并且仍然允许每个乘客选择他们自己的电影选择,可以节省成本,空间和重量。
多视图定向显示器的进一步的优点是排除用户观看他人视图的性能。这在要求安全的应用比如银行或者销售交易中是被期望的,例如使用自动取款机(ATM)和上述计算机游戏的例子。
多视图定向显示器的进一步的应用是产生三维显示。在正常显示中,人的双眼从不同的透视(perspective)感知世界的视图,归功于它们在人头部的不同的位置。这两个透视(perspective)被大脑使用,估计到场景中不同对象的距离。为了建立有效显示三维图像的显示器,必须重建该位置,提供所谓的图像的“立体象对”,也就是对应观看者每只眼睛图像。
三维显示器根据向不同观众的眼睛提供不同视图的方法分成两种类型。立体显示器通常在广阔的观看区域显示立体图像对的两个图像。每个视图被编码,例如通过彩色,偏振状态,或显示时间。用户被要求佩戴分离视图的作为过滤系统的眼镜,使每一只眼睛只看到对应的视图。
自立体显示器在不同方向显示右眼视图和左眼视图,因此每个视图只在各自定义的空间区域可见。在整个显示激活区域中图像可见的空间区域被定义为“观看窗口”。如果观看者的位置使得左眼在立体象对的左眼视图的观看窗口并且右眼在立体象对的左眼视图的观看窗口,正确的视图将被观看者的每一只眼睛看到,三维图像将被感知。自立体显示器要求没有由观看者进行观看帮助。
自立体显示器原理上与双视图显示器相同。但是,在自立体显示器上显示的两个图像是立体图像对的左眼和右眼图像,因此彼此不是无关的。进一步的,两个图像被显示,以便对单个观看者可见,一个图像对于观看者的一只眼睛可见。
对于平面平台自立体显示器,观看窗口的形成通常由自立体显示器的图像显示单元的图像单元(或者“像素”)结构和光学单元的结合,一般叫做视差镜片。视差镜片的一个例子是视差隔板,是具有传送区域的屏幕,通常是狭缝形式,被不透明区域分开。这种屏幕可被设置在具有二维图像单元阵列的空间光调制器的(SLM)前面或者后面,产生自立体显示。
附图1是已知多视图定向设备的平面图,假若这样是自立体显示器。定向显示器1包括组成图像显示设备的空间光调制器的(SLM)4,和视差隔板5。附图1中的SLM是液晶显示器(LCD),包括有源矩阵薄膜晶体管(TFT)基底6,反向基底7,液晶层8位于基底和反向基底之间。SLM具有定义了多个独立寻址图像单元的寻址电极(未示出),也具有用于对准液晶层的对准层(未示出)。观看角度增强薄膜9和线性起偏振器10位于基底6,7的外表面。照明11来自背部光(未示出)。
视差隔板5包括基底12,视差隔板隙缝阵列13形成在它与SLM 4相邻的表面。隙缝阵列包括由不透明部件14分离的垂直扩展(也就是说,扩展到附图1中纸的平面)透明隙缝15。抗反射(AR)涂层16形成在视差隔板基底12(形成在显示器1的输出表面)的反面。
SLM 4的像素以行和列排列,并且列扩展到附图1中纸的平面。在行或者水平方向上像素间距(一个像素中心到相邻像素中心的距离)是p。隙缝阵列13的垂直扩展透射狭缝15的宽度是2w,传送狭缝15的水平间距是b。隔板隙缝阵列13的平面与液晶层8的平面的空间距离是s。
在使用中,显示设备1形成左眼图像和右眼图像,观看者头部位于使他们的左眼和右眼分别与左眼观看窗口2和右眼观看窗口3重合时,将看到三维图像。左眼和右眼观看窗口2,3形成在距离显示器希望观看距离的窗口平面17。窗口平面与隙缝阵列13的平面的距离是ro。窗口2,3在窗口平面邻接,具有相应于人两眼之间平均间隔的间距e。从垂直轴到每个窗口2,3中心与显示法线的半角是α。
视差隔板5的狭缝15的间距选择接近SLM 4的像素间距的整数倍,以便像素列的组与视差隔板的特定狭缝相关。附图1描述的显示设备中,SLM 4的两个像素列与视差隔板的每个透射狭缝15相关。
附图2描述了从SLM 4和视差隔板5产生的光的角区域,其中视差隔板的间距恰好是像素列间距的整数倍。在这种情况下,来自不同位置的角区域通过显示面板表面混和,并且观看图像1或图像2(其中“图像1”“图像2”表示SLM 4显示的两个图像)的纯区域不存在。为了对其寻址,视差隔板的间距最好稍微减少,以便稍微小于像素列间距的整数倍。因此,角区域会聚在显示器前面的一个预定义平面(“窗口平面”)。这种效果在相关的附图3中描述,该附图描述了SLM 4和修改后的视差隔板5’产生的图像区域。当以这种方式产生时,观看区域在平面图中大致是风筝型。
附图4描述了另一个已知多视图定向显示设备1’的平面图。大体上与附图1中的显示设备1对应,除了视差隔板5位于SLM 4后面,因此在背部光和SLM 4之间。这种设备可以具有的优点是视差隔板对观看者更不可见,显示器的像素出现的更接近设备的前面。进一步的,尽管附图1和4描述了由背部光照明的透射显示设备,使用环境光(在明亮环境中)的反射设备已知。在透射设备中,附图4中的后面的视差隔板将不吸收环境光。如果显示器具有使用反射光的2D模式,这是一个优点。
在附图1和4的显示设备中,视差隔板被用作视差镜片。其他类型的视差镜片已知。例如,双凸透镜阵列可被用于不同方向的定向交织图像,以便形成立体图像对或者形成两个或者多个图像,每个在不同方向看到。
图像分割的全息照相方法已知,但是在实际应用中这些方法遇到观看角度的幻视镜区和不容易控制图像问题,。
另一种视差隔板是微起偏振器显示器,使用偏振方向光源和与SLM的像素排成直线的图形化的高精度微起偏振器单元。上述显示器提供了高窗口图像质量,小型设备,在2D显示模式和3D显示模式之间切换的可能性。使用微起偏振器显示器作为视差镜片的主要要求是,当微起偏振器单元与SLM合并时,需要避免视差问题。
当需要彩色显示器时,SLM 4的每个像素通常给出一个与三基色之一相关的滤波器。通过控制三像素组,其中每个像素具有一个不同的彩色滤波器,许多可见彩色可被产生。在自立体显示器中,每个立体图像通道必须包含足够的彩色滤波器,用于平衡彩色输出。许多SLMs具有以垂直列形式排列的彩色滤波器,由于容易制造,因此在给定列的所有像素具有与其相关的相同的彩色滤波器。如果视差镜片放置在这样的具三像素列的SLM上,其中三像素列与视差镜片的每个狭缝或者透镜相关,则每个观看区域将只看到一个彩色的像素。彩色滤波器的布置必须注意避免这种情况。合适的彩色滤波器布置的进一步的细节在EP-A-0752610中给出。
比如附图1和4所示的定向显示设备中视差镜片的作用是限制光透射过SLM 4的像素到某些输出角度。该限制定义了视差镜片的给定像素(比如透射狭缝)后面的每个像素列的观看角度。每个像素的观看角度范围由像素间隔p,像素平面和视差镜片平面之间的间隔s,像素平面和视差镜片平面之间的材料(附图1中显示器的基底7)的折射率n确定。H Yamamoto等在IEEETrans.Electron,卷E83-C,NO.10,第1632页的“Optimum parameters and viewingareas of stereoscopic full-colour LED displays using parallax barrier”中,公开了自立体显示器中图像之间的分离角度依赖于显示器像素和视差隔板之间的距离。
附图1或4中的半角α通过下面的公式给出:
sin α = n sin ( arctan ( p 2 s ) ) - - - ( 1 )
许多已知多视图定向显示器的一个问题是两个图像之间的角度分离太低。原则上,观看窗口之间的角度2α可以通过增加像素间隔p,减少视差镜片和像素之间的间隔s或者通过增加基底的折射率n来增加。
未决的UK专利申请No.0315171.9描述了一种在标准视差隔板中使用的新像素结构,在多视图定向显示器的观看窗口中提供更大的角度分离。但是,希望可以在多视图定向显示器中使用标准像素结构。
未决的UK专利申请No.0306516.6和0315170.1建议通过增加像素的有效间距来增加多视图定向显示器的观看窗口之间的分离角度。
JP-A-728015建议增加像素间距,因此增加了多视图定向显示器的观看窗口之间的角度分离,通过旋转像素配置,以便彩色子像素在水平方向,而不是垂直方向运动。这导致像素宽度三倍增加,因此观看角度大致增加三倍。缺点是视差隔板的间隔必须随着像素间隔增加而增加,增加视差隔板对观看者的可见性。上述非标准面板的制造和操作不能使成本有效率。另外,在一些应用中,增加观看角度需要大于三倍标准配置,并且在这种情况下,简单的旋转像素不是足够的。这通常是在高分辨率面板的情况下。
但是,大体上,像素间隔通常由显示设备要求的分辨率规格定义,因此不能被改变。
改变通常由玻璃制造的基底的折射率不总是实用或者明显花费有效的。
另一些增加多视图定向显示设备的观看窗口之间的角度分离的尝试是减少视差镜片和SLM的像素平面之间的分离。但是这是很困难的,如下文中参考附图5的描述,该附图是附图1中的显示设备1的示意框图,其中显示设备中LCD作为SLM 4。
形成SLM 4的LCD面板由两个玻璃基底制成。基底6承载TFT开关单元,它用于寻址SLM的像素,因此称为“TFT基底”。通常也承载其他层例如校准液晶层8,允许液晶层的电气开关。在另一个层7(相应于附图1中的反向基底)形成彩色滤波器18,与另一个层一起,例如校准液晶层。因此反向基底7通常称为“彩色滤波器基底”或者CF基底。LCD面板通过将彩色滤波器基底与TFT基底相对放置并将液晶层8夹在两个基底之间形成。在先前的定向显示器中,视差镜片已被粘附到整个LCD面板,如附图5所示。LCD像素和视差镜片之间的距离主要由LCD的CF基底厚度确定。减少CF基底厚度将减少LCD像素和视差镜片之间的距离,但是将相应的使得基底不耐用。LC基底厚度的实际最小值大约是0.5mm,但是如果视差镜片粘附到这个厚度的基底,像素与视差镜片分离对许多应用来说仍然太大。
日本专利No.9-50019公开了一种增加多视图定向显示设备的观看窗口之间的角度分离从而减少观看距离的方法。该专利建议减少LC和隔板之间的厚度。这通过以下面的顺序构造立体LCD面板实现:LCD面板,视差隔板,起偏振器。先前的顺序:LCD面板,起偏振器,视差隔板,如附图1所示。这通过起偏振器的厚度减少了视差隔板与像素板之间的分离,但是这只导致了多视图定向显示设备的观看窗口之间的角度分离的有限增加。
GB2278222公开了一种空间光调制器,微棱镜阵列放置在液晶层附近,以便阻止在大角度入射时第二顺序图像的发生。
GB2296099公开了一种空间光调制器,诸如起偏振器和半波片32的单元放置在空间光调制器的两个基底之间。这样做避免使用高各向同性基底,以便更便宜和更轻的塑料基底可被使用。如果起偏振器放置在空间光调制器的外部,空间光调制器的基底必须是高各向同性的,以便阻止基底使得通过基底的光的偏振方向改变。
US-A-5831765公开了一种具有液晶面板和视差隔板的定向显示器。视差隔板没有放置在液晶面板内,视差隔板在液晶面板外部,通过扩散器与液晶层分离,与通过液晶面板的基底一样。
US-A4404471公开了一种使用x-射线的柱镜胶片。水银,石墨或者钨粉,或者其他流动的x-射线吸收材料被引进到x-射线透射材料的凹槽。
发明内容
本发明提供了一种具有图像显示单元和视差镜片的多视图定向显示器,其中图像显示单元包括:第一基底;第二基底;夹入第一基底和第二基底中间的图像显示层;其中视差镜片安装在图像显示单元之内。
视差镜片在图像显示单元之内,使得视差镜片更接近图像显示层,因此减少了等式(1)中的间隔s,增加了显示设备产生的两个观看窗口之间的角度间隔。不必减少图像显示单元的一个基底的厚度,因此图像显示单元的结构强度不受影响。
本发明的显示器打算使用光谱可见区域的光,以致显示在光谱可见区域并且对于观察者可见的图像。
视差镜片可安装在第一基底和第二基底之间。这是一种已知的使视差镜片接近图像显示层的方法。
可选的,视差镜片可安装在第一基底之一或者第二基底之内。这是另一种使得视差镜片更接近图像显示层而不减少图像显示单元的基底厚度的方法。
可选的,视差镜片可安装在第一基底的厚度之内。
视差镜片可以包括多个视差单元,每个视差单元被安装在第一基底主表面的各自的凹槽。
第一基底可以包括基本基底和安装在基本基底上的透光层,视差镜片安装在透光层和基本基底之间。
第一基底包括:基本基底;安装在基本基底主表面的透光层;定义在透光层的多个凹槽,并且视差镜片可以包括多个视差单元,每个视差单元安装在透光层的各自的凹槽。
每个视差单元可以安装在各自的凹槽的底面。
凹槽平行于基底表面的横截面可以随着深度的增加而减少。
每个视差单元可以实质上充满各自的凹槽。
彩色滤波阵列或者变换单元阵列可以安装在第一基底的主表面。
显示器可以进一步包括透光层,上述透光层安装在视差镜片和彩色滤波阵列或者变换单元阵列之间。
显示器可以进一步包括另一个视差镜片,上述另一个视差镜片安装在视差镜片和彩色滤波阵列或者变换单元阵列之间。
彩色滤波阵列或者变换单元阵列可以安装在第一基底的第二主表面。
透光层可以安装在视差镜片和图像显示层之间。
视差镜片和彩色滤波阵列与变换单元阵列之一,可以安装在基本基底的主表面,基本基底被包含在第一或者第二基底内。
视差镜片可以安装在基本基底的第一主表面,彩色滤波阵列或者变换单元阵列安装在视差镜片上。
彩色滤波阵列或者变换单元阵列可以安装在基本基底的第一主表面,视差镜片可以安装在彩色滤波阵列或者变换单元阵列上。
透光层可以安装在视差镜片和彩色滤波阵列或者变换单元阵列之间。
显示器可以进一步包括另一个视差镜片,上述另一个视差镜片安装在视差镜片和彩色滤波阵列或者变换单元阵列之间。
视差镜片可以包含多个视差单元,每个视差单元安装在第一或者第二基底主表面的各自的凹槽。
第二透光层可以安装在基本基底和第一透光层之间的基本基底的主表面;多个凹槽可以定义在第二透光层;视差镜片可以包含多个视差单元,每个视差单元安装在第二透光层(32)的各自的凹槽。
彩色滤波阵列和变换单元阵列之一可以安装在基本基底的第一主表面,视差镜片安装在基本基底的第二主表面内或者第二主表面上,基本基底被包含在第一或者第二基底内。
视差镜片可以包含多个视差单元,每个视差单元安装在基本基底的第二主表面的各自的凹槽中。
每个视差单元可以安装在各自的凹槽的底面。
凹槽平行于基底表面的横截面可以随着深度减少。
每个视差单元可以实质上充满各自的凹槽。
透光层可以是透明树脂层,层压塑料层或者玻璃层。
视差镜片可以是视差隔板或者双凸透镜阵列。
视差镜片可以是禁用的(disableable),并且可以是可寻址的。
本发明的第二方面提供一种包含上文中定义的多视图定向显示设备的双视图显示设备。
本发明的第三方面提供一种包含上文中定义的多视图定向显示设备的自立体显示设备。
本发明的第四方面提供一种视差镜片,包括:透光基底,多个视差单元,每个视差单元安装在基底表面的各自的凹槽。
本发明的视差镜片打算使用光谱可见区域的光。
凹槽平行于基底表面的横截面可以随着深度减少。
每个视差单元可以实质上充满各自的凹槽。
本发明的第五方面提供一种制造显示设备的方法,包括以下步骤:(a)减少图像显示单元的第一基底的厚度,图像显示单元包括第一基底,第二基底,安装在第一基底和第二基底之间的图像显示层;和(b)粘附第三基底到第一基底,视差镜片安装在两个基底之间。
第三基底可以直接粘附到第一基底或者,可选的,一个或者多个其它部件可被插入到第一基底和第三基底之间。
视差镜片可以定义在第三基底的第一主表面上或者第一主表面内,步骤(b)可以包括粘附第三基底的第一主表面到图像显示单元的第一基底。
附图说明
本发明的优选实施例将参考附图中的实施例进行描述,其中:
附图1是已知自立体显示设备的示意平面图;
附图2是已知多视图显示设备提供的观看窗口的示意图;
附图3是另一个已知多视图定向显示设备产生的观看窗口的示意平面图;
附图4是另一个已知自立体显示设备的示意平面图;
附图5是描述已知多视图定向显示设备的原理部分的示意平面图;
附图6(a)和6(b)描述了根据本发明第一实施例的显示器;
附图6(c)和6(d)描述了根据本发明另一实施例的显示器;
附图7(a)和7(b)描述了根据本发明另一实施例的显示器;
附图8(a)和8(b)描述了根据本发明另一实施例的显示器;
附图9(a)和9(b)描述了根据本发明另一实施例的显示器;
附图10(a)和10(b)描述了根据本发明另一实施例的显示器;
附图11(a)和11(b)描述了根据本发明另一实施例的显示器;
附图12(a)和12(b)描述了根据本发明另一实施例的显示器;
附图13(a)和13(b)描述了根据本发明另一实施例的显示器;
附图14(a)和14(b)描述了根据本发明另一实施例的显示器;
附图14(c)和14(d)描述了根据本发明另一实施例的显示器;
附图15(a)和15(b)描述了根据本发明另一实施例的显示器;
附图15(c)和15(d)描述了根据本发明另一实施例的显示器的彩色滤波基底;
附图16(a)和16(b)描述了根据本发明另一实施例的显示器;
附图17(a)和17(b)描述了根据本发明另一实施例的显示器;
附图18(a)和18(b)描述了根据本发明另一实施例的显示器;
附图19(a)和19(b)描述了根据本发明另一实施例的显示器;
附图20(a)和20(b)描述了根据本发明另一实施例的显示器;
附图20(c)和20(d)描述了根据本发明另一实施例的显示器的彩色滤波基底;
附图21(a)和21(b)描述了根据本发明另一实施例的显示器;
附图21(c)和21(d)描述了根据本发明另一实施例的显示器的彩色滤波基底;
附图22描述了根据本发明另一实施例的显示器;
附图23描述了根据本发明另一实施例的显示器;
附图24描述了根据本发明另一实施例的显示器;
附图25描述了根据本发明另一实施例的显示器;
附图26(a)到26(d)描述了一种制造本发明的显示器的方法;
附图27描述了根据本发明另一实施例的显示器;
附图28描述了根据本发明另一实施例的显示器;
附图29描述了根据本发明另一实施例的显示器;
附图30描述了根据本发明另一实施例的显示器;
附图31描述了适于在本发明的显示器中使用的背部光;
附图32描述了适于在本发明的显示器中使用的另一种背部光;
附图33描述了适于在本发明的显示器中使用的另一种背部光;
附图34描述了适于在本发明的显示器中使用的另一种背部光。
所有附图中相同的附图标记表示相同的部件。
具体实施方式
附图6(b)是根据本发明第一实施例的多视图定向显示器的示意平面图。显示设备58包括第一透明基底6和第二透明基底7,图像显示层8安装在第一基底6和第二基底7之间。彩色滤波阵列18提供在第二基底7上,第二基底因此被称为彩色滤波基底。
第一基底6提供有像素电极(未示出),用于在图像显示层8中确定像素阵列,同时提供开关单元(未示出)比如薄膜晶体管(TFTs),用于选择的定址像素电极。基底6将被称为“TFT基底”。
图像显示层8在本实施例中是液晶层8。但是发明不限于此,因此任何透射图像显示层可被使用。而且,显示器以“前隔板模式”使用,也就是视差镜片安装在图像显示层和观看者之间,显示层可以是发射显示层比如等离子体显示器或者有机质发光设备(OLED)层。
显示器58被装配,以致于每个彩色滤波器18实质上与图像显示层8的一个像素相对。其他部件比如对准层可被安装在基底6,7与图像显示层相邻的表面,反向电极或者电极可安装在CF基底7上;这些部件是已知的,不再进一步描述。而且,显示器58可以包括更多的部件比如起偏振器,观看角度增强薄膜,抗反射薄膜等等,安装在图像显示单元的外部;这些部件也是已知的,不再进一步描述。
彩色滤波基底7在附图6(a)中更详细的示出。彩色滤波基底7包括基本基底19,上述基底由透光材料比如玻璃制成。视差隔板隙缝阵列13安装在基本基底19的一个主表面。在附图6(a)的实施例中,视差隔板隙缝阵列13通过在基本基底的表面沉积不透明带14形成,因此定义了不透明带之间的透射狭缝15。
彩色滤波基底进一步包括分隔层20,在本实施例中由透光树脂形成,提供在视差隔板隙缝阵列13上。因此视差隔板隙缝阵列安装在基底7的内部。最后,彩色滤波器18安装在分隔层20的上表面。
在本实施例中,视差隔板隙缝阵列13通过树脂分隔层20的厚度与液晶层8的像素分离。树脂层20可以做得非常薄,使得等式(1)中的间隔s很小,导致观看窗口的大角度间隔。尽管图示的树脂层20是单层,在实践中可以沉积两个或者多个分离树脂层,以便获得希望厚度的分隔层。例如,层20可以具有50微米的厚度,并且可以包括聚乙烯邻苯二甲酸盐(perephthalate)。
附图6(d)是根据本发明另一实施例的显示器21的示意平面图,附图6(c)示出了该显示器的反向基底。将只描述该实施例与先前实施例之间的不同。
在该实施例中,视差隔板隙缝阵列13和彩色滤波器18都安装在彩色滤波基底7’的基本基底19的第一主表面上。彩色滤波基底的分隔层20,同样由树脂形成,安装在视差隔板隙缝阵列13和彩色滤波阵列上。因此,视差隔板隙缝阵列安装在基底7’的厚度范围内。视差隔板隙缝阵列13通过树脂层20的厚度与液晶层8的像素分离,该厚度可以非常小。彩色滤波阵列类似地与液晶层8分离,在所述液晶层处不需要附加的彩色滤波阵列。在相同平面提供视差隔板和彩色滤波器简化了显示器的制造。
附图6(a)到6(d)的树脂层20容易制造成相同厚度。层可以通过例如旋涂或者印刷来沉积。
附图7(b)是根据本发明进一步实施例的显示器22的平面图,附图7(a)示出了显示器22的彩色滤波基底。将只描述该实施例与第一实施例之间的不同。
在附图7(a)和7(b)的实施例中,视差隔板隙缝阵列13沉积在基本基底19的主表面上。彩色滤波基底7进一步包括视差隔板隙缝阵列13上的分隔层20,并且彩色滤波阵列安装在分隔层20上。因此,视差隔板隙缝阵列安装在彩色滤波基底7的厚度之内。在该实施例中,分隔层20是玻璃分隔层,而不是树脂分隔层。玻璃分隔层粘附在视差隔板,可被蚀刻为希望的厚度。
玻璃层20的使用简化了进一步的处理步骤。例如,当透射层是玻璃层时,在透射层20上制造彩色滤波器18与在普通玻璃基底上制造彩色滤波器一样。
附图8(b)是根据本发明另一实施例的显示器23的示意平面图,附图8(a)示出了显示器的CF基底。本实施例的显示器23大体上相应于附图6(b)的显示器,将只描述实施例之间的不同。在显示器23中,视差隔板隙缝阵列与彩色滤波阵列18之间的分隔层20是塑料材料层。塑料材料层通过适当的方法比如层压或者胶粘粘附到视差隔板隙缝阵列13。塑料材料20可以选择的印刷到视差隔板隙缝阵列。
使用层压塑料层作为透射层20,比使用旋涂技术形成树脂光透层更便宜。也比使用树脂更少浪费材料,并且层压处理更快。
附图9(b)是根据本发明另一实施例的多视图定向显示器24的示意平面图,附图9(a)示出了显示器的CF基底25。显示器24也包括TFT基底6,彩色滤波基底25,液晶层或者其他图像显示层8安装在TFT基底6和彩色滤波基底25之间。
附图9(a)示出了显示器的彩色滤波基底25。从图中可知,多个凹槽26形成在基本基底19的第一主表面。基本基底19可用任何适当的透光材料比如玻璃,塑料或者玻璃钢形成。凹槽26可通过任何适当处理比如蚀刻或者切割处理形成。凹槽26最好是延伸基本基底19的整个垂直高度的槽,也就是说,扩展到附图9(a)的纸的平面。凹槽26最好彼此具有大体上相同的深度和宽度。
视差隔板隙缝阵列定义在基本基底19,通过沉积不透明材料到每个凹槽26,以便至少覆盖每个凹槽的底面。因此不透明材料定义了视差隔板隙缝阵列的不透明带14,透光区域在不透明带14之间定义。不透明带14和视差隔板隙缝阵列安装在基底25的厚度之内。
形成视差隔板隙缝阵列的不透明区域的不透明材料可以是任何适合的不透明材料,可用任何适合的方法沉积。例如,不透明树脂可通过旋转处理沉积在凹槽26。
一旦不透明材料已被沉积,凹槽随后充满透光材料,以便平面化基本基底19的表面。例如,透光树脂可通过旋转处理沉积在凹槽26。
一旦基本基底19的表面已经变平,彩色滤波阵列18可被沉积到基本基底19,完成彩色滤波基底25。
在该实施例中,视差隔板隙缝阵列和液晶层之间的间隔近似等于凹槽26的深度d。凹槽的深度d可以很小,例如50微米,以便在观看窗口间获得大的角度间隔。
附图10(b)示出了根据本发明另一实施例的显示器27。显示器27包括TFT基底6,彩色滤波基底25’,液晶层(或者其他图像显示层)8安装在TFT基底6和彩色滤波基底25’之间。该实施例大体上相应于附图9(a)和9(b)的实施例,将只描述两个实施例之间的不同。
附图10(a)是显示器27的彩色滤波基底25’的示意平面图。在该实施例中,彩色滤波器18沉积在基本基底19的第一主表面。凹槽26定义在基本基底19的第二主表面,例如使用蚀刻或者切割技术。随后不透明材料沉积到凹槽,形成视差隔板隙缝阵列的不透明带14。不透明带14和视差隔板隙缝阵列安装在基底25的厚度之内。如果希望的话,凹槽可以随后充满透光材料,以便平面化基本基底19的第二主表面。与先前的实施例一样,任何适当的材料可作为不透明材料沉积,可通过任何适合的技术沉积。在一个优选实施例中,不透明树脂可通过旋转技术沉积在凹槽26。
与附图5中的已知显示器相比,视差隔板和液晶层之间的间隔通过较少凹槽的深度来减少,例如50微米,以便观看窗口之间的角度间隔因而增加。由于基本基底的厚度只在有凹槽的位置减少,因此基本基底的结构强度大于整个基底具有减少的厚度时的结构强度。
附图11(b)是根据本发明另一实施例的多视图定向显示器28的示意平面图。显示器包括TFT基底6,彩色滤波基底29,液晶层8或者其他图像显示层安装在TFT基底6和彩色滤波基底29之间。
彩色滤波基底29如附图11(a)所示。从图中可知,彩色滤波基底29大体上与附图6(a)的彩色滤波基底7相同,除了他提供两个视差隔板13,13’。彩色滤波基底29包括基本基底19,该基底可由任何适合的透光材料比如玻璃制成。第一视差隔板隙缝阵列13安装在基本基底第一表面。视差隔板隙缝阵列可通过下述方式形成,例如在基底上沉积不透明材料条14,形成视差隔板隙缝阵列13的不透明部件14。
第一透光分隔层20随后沉积到基底19的表面,其中视差隔板隙缝阵列形成在基底19。第一分隔层可由例如透光树脂,玻璃或者透明塑料材料形成,与上文中的附图6(a),7(a),8(a)的实施例描述的一样。
第二视差隔板隙缝阵列13’安装在第一分隔层20的上表面。第二视差隔板隙缝阵列也可通过在分隔层20上沉积不透明材料形成,以便形成第二视差隔板隙缝阵列的不透明部件14’。
彩色滤波基底进一步包括第二视差隔板隙缝阵列上的第二分隔层20’。视差隔板隙缝阵列13,13’都安装在基底29的厚度之内。第二分隔层也可以是任何适合的透明材料比如透光树脂,玻璃层,玻璃或者透明塑料材料。
彩色滤波器18沉积在第二分隔层20’的上表面。
两个视差隔板13,13’被排列,以便第二隔板13’的透射区域不直接安装在第一视差隔板13的透射区域的前面。两个视差隔板被排列,以便第二视差隔板13’的透射区域与第一视差隔板13的不透明区域14对齐,因此第二视差隔板13’的不透明区域14’与第一视差隔板13的透射区域对齐。因此,背部光发出的光,在平行于或者接近于显示器的显示面的法线的方向上,被视差隔板13,13’之一阻挡。由于两个视差隔板排列使得第一视差隔板13的透射区域与第二视差隔板13’的透射区域横向偏移,来自第二视差隔板13’的光在关于法线倾斜的第一和第二方向范围传播。
很多背部光沿垂直轴上有最大亮度,这在多视图定向显示器中是不利的,原因在于观看窗口的位置通常与垂直轴有一定角度。在典型的双视图显示器中,两个观看窗口可以在法线的±40度位置。如附图11(b)的显示器一样使用两个视差隔板,可以提供“黑色中心窗口”,也就是说,在显示器的显示面的法线中心的区域,亮度最低。
该实施例不限于在彩色滤波基底提供两个视差隔板。原则上,可在基底19上提供三个或者更多视差隔板隙缝阵列,其中每一对相邻的视差隔板隙缝阵列被各自的分隔层分离。
在附图11(a)的实施例中,两个分隔层20,20’不必由相同材料形成。两个分隔层可由不同材料制成,因此,作为一个例子,第一分隔层20可以是玻璃层,但是第一分隔层20’可以是透光树脂层。
在另一个实施例(未示出)中,彩色滤波基底包括两个视差隔板隙缝阵列,安装在基本基底19的每一面。在该实施例中,第一视差隔板阵列形成在基本基底19的一个主表面,滤波器18提供在第一视差隔板阵列,并且透光分隔层在第一视差隔板隙缝阵列与滤波器18之间,如附图6(a),7(a)或8(a)所示。第二视差隔板隙缝阵列形成在基本基底19的第二主表面,被透光层覆盖,以便两个视差隔板隙缝阵列安装在彩色滤波基底的厚度之内。
附图12(a)和12(b)示出了根据本发明另一实施例。附图12(b)是根据本发明实施例的多视图定向显示器30的示意平面图。显示设备也包括TFT基底6,彩色滤波基底31,液晶层8或者其他图像显示层安装在TFT基底6和彩色滤波基底31之间。
附图12(a)是本发明实施例的彩色滤波基底31的示意平面图。彩色滤波基底31包括基本基底19,该基底可由任何适合的透光材料制成。多个凹槽26定义在基底19的一个表面,通过任何适当的处理比如蚀刻或者开凿。当基底31如正视图所示,凹槽26看起来像从基本基底19的定部到底部的平行带。
如附图12(a)所示,在该实施例中,平行于基底19表面的凹槽的宽度,随着到基底的距离增加逐渐减少。在附图12(a)的实施例中,凹槽26具有三角形横截面,但凹槽不限于这种特定横截面。
视差隔板隙缝阵列13通过在凹槽26沉积不透明(或者反射)材料(或者二者兼备)形成,以便形成视差隔板隙缝阵列的不透明部件14。不透明材料最好充分填充凹槽26,以便平面化基本基底19的上表面。在优选实施例中,不透明材料是不透明树脂,通过旋转处理沉积在凹槽26,但是,原则上任何不透明材料均可被使用。
彩色滤波基底31进一步包括沉积在基本基底19上表面的透光分隔层20。视差隔板隙缝阵列因此安装在基底31的厚度之内。如上所述,透光分隔层20可以是透光树脂层,玻璃层,透光塑料材料层等等。分隔层以任何适当的方式粘附在基底19。
最后,彩色滤波器18沉积在分隔层20的上表面,形成彩色滤波基底31。
在该实施例中,视差隔板具有三维剖面图,由于视差隔板隙缝阵列的不透明单元14延续限定深度到基底,例如50微米。视差隔板与已知视差隔板以相同的方式作用,比如附图6(a)的视差隔板。但是,由于视差隔板的三维结构,以相对基底19平面的法线大角入射到视差隔板的光被阻挡,尽管上述光线可被附图6(a)所示的已知视差隔板透射。这有利于阻止第二窗口。
在附图12(a)的彩色滤波基底中,凹槽的深度可在基底19改变,以便改变视差隔板的不透明部件的深度。这样做意味着阻挡光线的遮光角将通过显示装置改变,上述遮光角相对于基底平面的法线。
附图13(a)示出了本发明的另一个彩色滤波基底31’,附图13(b)示出了在显示器30’中的13(a)的彩色滤波基底。这些实施例大体上分别与附图12(a)和12(b)的实施例相同,下文中将只描述不同。
在附图13(a)的彩色滤波基底31’中,凹槽26不是形成在基本基底19上。相反的,彩色滤波基底包括基本基底19上的透光分隔层32,凹槽26形成在分隔层32。分隔层32可以是任何适当的材料比如透光树脂,玻璃,或者透光塑料材料。凹槽26可用任何适当的方法形成在分隔层32上,比如切割或者蚀刻。
不透明材料沉积在分隔层32的凹槽26中,形成视差隔板隙缝阵列的不透明部件14,如上文的附图12(a)所述。最后,第二分隔层20沉积在第一分隔层32上,彩色滤波器18形成在第二分隔层20的上表面。视差隔板隙缝阵列因此安装在基底31’的厚度之内。
在上面的实施例中,视差镜片由视差隔板隙缝阵列组成。但是,本发明不限于视差镜片的上述特定形式,可以使用其他视差镜片。
附图14(a)和14(b)描述了本发明另一实施例,其中视差镜片由双凸透镜阵列形成。
附图14(b)是根据本发明实施例的多视图定向显示器的示意平面图。显示器33也包括TFT基底6,彩色滤波基底34,液晶层或者其他图像显示层8安装在彩色滤波基底34和TFT基底6之间。
附图14(a)示出了显示设备33的彩色滤波基底34。彩色滤波基底34包括透光基本基底19,该基底的上表面被剖面形成双凸透镜阵列35。基本基底19可以以任何适当的方式形成,比如通过使用适当的模型来模塑透光塑料材料,以在基本基底19的一个表面提供双凸透镜阵列35。作为选择,透镜阵列35可通过压制玻璃基底形成。
彩色滤波基底进一步包括沉积在双凸透镜阵列35上的分隔层20,分隔层是透光的,最好由树脂或者塑料材料形成,以便分隔层的下表面可以跟随双凸透镜阵列35的轮廓。彩色滤波器18沉积在分隔层20的上表面,最好是平坦的。透镜阵列因此安装在基底31的厚度之内。
在该实施例中,视差隔板(双凸透镜阵列35)与液晶层8之间的间隔等于分隔层20的厚度,必须厚到至少能平面化棱镜。分隔层20可以很薄,因此可以获得观看窗口之间的大角度间隔。
附图14(c)和14(d)示出了本发明的另一实施例。附图14(c)示出了本发明的另一个基底34a。基底34a包括第一透光基底19,它有一个表面用于形成第一双凸透镜阵列35。基底34a进一步包括第二透光基底19a,它有一个表面被剖面用于形成第二双凸透镜阵列35a。透光基底35,35a可以以任何方式形成,例如使用上文中参考附图14(a)描述的方法之一。
透光基底安装在表面,并且透镜阵列互相相对形成,如附图14(c)所示。透明分隔层20安装在两个双凸透镜阵列35,35a之间,分隔层20可以是例如透明树脂层或者透明粘性层。两个双凸透镜阵列35,35a邻近对方,组合得到比只具有一个曲面的透镜阵列更大的光焦度,上述透镜阵列比如是附图14(a)的透镜阵列。两个透镜阵列均安装在基底34a的厚度之内。
彩色滤波阵列18安装在基底34a的一个外表面,最好是平坦的。
附图14(d)示出了包括附图14(c)的基底34a,图像显示层8比如液晶层,和第二基底6的显示器33a。
附图15(a)和15(b)示出了本发明的另一实施例。该实施例大体上与附图14(a)和14(b)的实施例相同,将只描述不同。
在附图14(a)和14(b)中,双凸透镜阵列35与基本基底19是一个整体,通过给基本基底19的上表面铣出轮廓获得。在附图15(a)和15(b)的实施例中,双凸透镜阵列35’与基本基底19不是一个整体。但是,基本基底19有一个实质平坦的上表面,双凸透镜阵列35’沉积在基本基底19的上表面。这可以通过任何适当的技术来完成。例如,透光树脂层或者透光塑料材料层可被沉积到基本基底19的上表面,该层可被加工形成双凸透镜阵列35’。
附图15(c)示出了CF基底34″,该基底不同于附图15(a)中的基底34′,双凸透镜阵列34″是“双边的”。换句话说,透镜阵列35′是平凸的,透镜阵列35″是双凸的。尽管由于凹槽必须形成在基底19上,上述排列更难于制造,但是光学性能被改进。例如,使用附图15(c)的基底34″的显示器具有更小的干扰区域和更大的观看者移动自由。
附图15(d)示出了另一个修改的CF基底34′″,与附图15(c)的基底34″的不同之处在于透镜阵列34′″被分开,并且被黑色屏蔽区域35″″分开。实际上,任何使用透镜阵列作为视差隔板的实施例,可以同样具有单个透镜或者被黑色屏蔽区域分开的透镜单元,上述黑色屏蔽区域不能透射可见光。
双凸透镜阵列的光圈数要求很低,使得阵列难于制造。通过减少阵列中每个透镜的直径和保持间距不变(通过用吸收光的材料或者反光的材料或者二者兼备来填充透镜之间的间隙),透镜的光圈数可以增加。上述排列改进例如在提供更小的干扰区域和更大的观看者位置自由方面的性能。
附图16(a)和16(b)示出了本发明的另一实施例。附图16(b)是本发明的多视图定向显示器37的示意平面图,附图16(a)是彩色滤波基底36的示意平面图。该实施例大体上与附图6(a)和6(b)的实施例相同,这里将只描述不同。
在附图16(a)和16(b)的实旋例中,与附图6(a)和6(b)的实施例中的位置相比,视差隔板隙缝阵列13和彩色滤波器18的位置相互交换。也就是说,彩色滤波器18沉积在透光基本基底19的主表面。分隔层20沉积在彩色滤波器18上,视差镜片形成在分隔层20的上表面。在附图16(a)和16(b)示出的实施例中,视差隔板隙缝阵列13形成视差镜片,但是该实施例不限于这种特定的视差镜片。分隔层20可以是透光树脂层,玻璃层,透光塑料材料层等等。
在附图16(a)和16(b)的实施例中,视差隔板阵列13安装在邻近液晶层8。不同观看窗口之间的大角度间隔因此可被获得。
附图17(a)和17(b)描述了根据本发明另一实施例的显示器38。在该实施例中,视差镜片由无功中介基(reactive mesogen)视差隔板组成。该实施例大体上相应于附图6(a)和6(b)的实施例,这里只描述不同。
该实施例中RM视差隔板通过无功中介基(reactive mesogen)材料带40安装在彩色滤波基底39的透光基本基底19的上表面形成。起偏振器41安装在包括RM材料带40的基本基底19的上表面。RM材料带40和起偏振器41形成RM视差隔板42。RM视差隔板的操作在EP A 0829744中详细解释。
彩色滤波基底39进一步包括沉积在RM视差隔板42上表面的分隔层20,因此视差隔板42安装在基底39的厚度之内。彩色滤波器18沉积在分隔层20的上表面。如前面的实施例所述,分隔层20可以是例如透光树脂层,玻璃层,透光塑料层等等。基本基底19可以是玻璃基底,塑料基底,玻璃增强塑料基底等等。
在该实施例的多视图定向显示器38中,视差隔板42和液晶层8之间的间隔近似等于分隔层20的厚度。分隔层可以很薄,以便获得不同观看窗口间的好的角度分隔。
该实施例的另一个优点是,RM视差隔板是有源视差隔板,并且可被变换(使用适当的寻址装置,未示出),使得RM材料带40为透明状态,以便视差隔板不可用或者“断开”。如果视差隔板42禁用,显示设备将作为常规二维或者单一的视图显示设备。因此,该实施例提供在2-D显示模式或者3-D或者多视图显示模式操作的显示器,并且当以3-D或者多视图显示模式操作时可以提供相邻观看窗口间的好的角度分隔。
附图18(b)描述了根据本发明另一实施例的显示器38′,附图18(a)是显示器的彩色滤波基底39′的示意截面图。该实施例的显示器38′基本上相应于附图17(a)和17(b)的实施例,除了分隔层20被省略,彩色滤波器18直接安装在起偏振器42的上表面。附图18(b)的显示器38′的所有其他特征相应于附图17(b)的显示器38的那些特征,因此不再进一步描述。
附图19(a)和19(b)示出了本发明的另一实施例。在该实施例中,多视图定向显示器43的彩色滤波基底44具有有源视差隔板46。附图19(b)是显示设备43的示意平面图,附图19(a)是彩色滤波基底44的示意截面图。
有源视差隔板46通过在基本基底19的表面安装多个材料区域47形成,上述材料的光学特性是可变换的。区域47可以是条的形式,上述条扩展到附图19(a)的纸的平面。有源视差隔板通过将区域47和安装在区域47上的另一个层45组合形成,区域47可以是线性起偏振器或者透明分隔层,这取决于有源条47使用的材料。
在优选实施例中,区域47是液晶材料区域,层45是线性起偏振器。众所周知,液晶材料可被寻址,以致于不管旋转或者不旋转偏振平面,线性偏振光均通过它。优先的,液晶材料区域47可在旋转线性偏振光的偏振平面90°的状态和不旋转线性偏振光的偏振平面的状态之间变换。因而,液晶材料区域47可被寻址,通过区域47的光被线性起偏振器45透射(在区域47定义透射区域的情况下)或者被线性起偏振器45阻挡(在区域47定义不透明区域的情况下)。
显示器43要求由偏振光从彩色滤波基底侧照明,上述偏振光来自发射偏振光的光源或者安装在光源前面的起偏振器。可选的,在另一个起偏振器(未示出)必须安装在彩色滤波基底之外的情况下,可从TFT侧照明。
如果不通过可变换光学性能的光学区域47(也就是通过相邻有源区域之间的缝隙)的光被起偏振器45通过,当通过区域47的光被起偏振器阻挡时,视差隔板被形成;在这种情况下,获得3-D或者多视图显示模式。如果区域47被变换,以致通过区域47的光被起偏振器45透射,则没有隔板存在,并获得2-D或者单视图显示模式。
原则上来说,也可能排列起偏振器45的透射方向和入射光的偏振方向,以致通过液晶材料区域47之间的缝隙的光被起偏振器45阻挡。在这种情况下,当区域47旋转入射光的偏振平面以致入射光可以通过起偏振器45时,视差隔板被形成。但是,当区域47被变换以致通过带47的光被起偏振器45阻挡时,由于所有的光被起偏振器45阻挡,将产生暗的显示。
有源材料区域47不限于液晶材料。任何可被寻址改变光学性能的材料原则上可被使用。例如,聚合-分散液晶材料可用作有源视差隔板材料。众所周知,PDLC由分散在聚合母体的小滴液晶材料组成。液晶滴的折射率可被改变,如果液晶滴的折射率与聚合母体的折射率相同,PDLC将透射光。但是,如果液晶材料被变换,以致它的折射率与聚合母体的折射率不同,通过PDLC的光将被散射。
用于有源视差隔板的另一种适当的材料是二向色宾-主(dichroic guest-host)材料。该实施例允许视差隔板接通或者切断,因此允许选择3-D(或者多视图)或者2-D显示模式。进一步的,可以排列有源视差隔板46,以致透射和不透明区域的结构可被改变。例如,有源视差隔板46可被变换,以致隔板的不透明区域从一个位置移动到另一个位置。这有效地导致隔板通过显示设备的区域被变换,并将改变观看窗口的位置。因此,在该实施例中,有可能通过适当的寻址有源视差隔板46来控制观看窗口的位置。当与跟踪显示器的观看者的观看者跟踪设备结合时,由于观看窗口的位置能根据观看者跟踪设备确定的观察者的位置进行控制,该实施例特别有用。
应该注意,在该实施例中,起偏振器45包含在液晶显示单元之内。因此起偏振器45必须可以经受住制造液晶显示面板时的苛刻的处理条件。已知的在液晶显示器外部使用的起偏振器不能很好的承受处理处理条件,因此不能被使用。可能存在的缺点是,必须使用具有较低对比度的起偏振器,上述对比度低于已知的在液晶显示器外部使用的起偏振器。如果在这种情况下,起偏振器45可被定向,以致它的低对比度影响视差隔板的对比度或者液晶层8的像素的对比度。
当起偏振器45是分隔层时,它可被加工以致它调整液晶材料,例如区域47,使其具有特定对准方向和预倾斜角度。例如,分隔层可被聚酰亚胺层覆盖(未示出),在已知光对准处理中摩擦和/或暴露于紫外光。
在可选实施例中,彩色滤波器可被安装在TFT基底6或者安装在有源视差隔板46和基底19之间。
附图20(b)示出了根据本发明另一实施例的显示器48,附图20(a)示出了显示器的彩色滤波基底49。该实施例大体上相应于附图6(a)和6(b)的实施例,除了在该实施例中,多视图定向显示器48的彩色滤波基底49包括有源视差镜片35”。在该实施例中,有源视差镜片35”是有源双凸透镜阵列。双凸透镜阵列可在实质上没有透镜影响(因此没有视差镜片存在)的模式和有透镜影响(因此视差镜片被形成)的模式之间转换。双凸透镜阵列35”可用适当的寻址装置(未示出)寻址。
例如,双凸透镜阵列的小透镜状层(lenticules)可由液晶材料制成,该液晶材料由安装在小透镜状层(lenticules)反面的电极(未示出)寻址。液晶材料被选择以便对于某些越过透镜阵列的外加电压,它的折射率尽可能接近基本基底19的折射率。当适当的电压被施加到小透镜状层(lenticules)反面的电极之间时,小透镜状层(lenticules)的液晶材料的折射率接近匹配分隔层20的折射率,小透镜状层(lenticules)实质上没有透镜影响。但是,通过改变外加电压,小透镜状层(lenticules)的液晶材料可被改变,以致它的折射率不同于基底19的折射率。小透镜状层(lenticules)因此用作透镜,因而形成视差镜片单元。
有源双凸透镜阵列的小透镜状层(lenticules)50可被排列为分级折射(GRIN),或者可被排列为菲涅耳透镜。
附图20(c)示出了基底49,与附图20(a)示出的基底不同之处在于,玻璃基底19被凹入,以便容纳有源双凸透镜阵列35″。在该排列时,在操作的单视图或者非定向模式中,有源阵列的折射率实质上匹配基底19的折射率。
附图20(d)示出了基底49,其中有源阵列35″的透镜是双凸面的,提供改进的性能,比如更小的交叉区域和观看者更大的移动自由。在这种情况下,在操作的单视图模式中,阵列35″的折射率应该匹配基底19和分隔层20的折射率。
附图21(b)示出了根据本发明另一实施例的显示器48′,附图21(a)示出了显示器48′的彩色滤波基底49′。该实施例大体上与附图20(a)和20(b)的实施例相同,这里将只描述不同。
附图21(b)的多视图定向显示器48′有一个彩色滤波基底49′,该基底包括有源双凸透镜阵列35′。在该实施例中,透镜阵列的变换通过不同方式获得。在该实施例中,小透镜状层(lenticules)50由液晶材料制成。但是,液晶材料的微观结构被固定,在设备的操作中液晶材料不被寻址。
该实施例中透镜阵列的变换通过利用以下事实获得,也就是液晶材料的折射率通常取决于通过它的光的偏振状态。小透镜状层(lenticules)50的液晶材料被选择,以致对于一种偏振状态的光,液晶材料的折射率实质上与分隔层20的折射率相同。因此对于这种偏振状态的光,液晶材料实质上没有透镜影响。但是,对于另一种偏振状态,特别是对于与第一偏振状态正交的偏振状态,液晶材料的折射率将不匹配分隔层20的折射率,以致对于第二种偏振状态的光,液晶材料有透镜影响。
通过改变进入到显示器48的光的偏振状态,液晶小透镜状层(lenticules)50被接通或者切断。这可通过提供偏振开关51实现,该开关可以改变通过偏振开关51被选部件的光的偏振状态,例如通过选择两个正交线性偏振之一。偏振开关51可由例如液晶单元组成,并且跟随起偏振器51′。
附图21(c)描述了另一个基底49′,其中玻璃基底19被凹入以便容纳阵列35″。在这种情况下,阵列35″的材料的一个折射率必须实质上匹配玻璃基底19的折射率,以致提供操作的单视图模式。
附图21(d)描述了彩色滤波基底49′的另一种形式,其中分隔层20和玻璃基底19都被凹入以便容纳双凸面的阵列35″。在这种情况下,阵列35″的材料的一个折射率被要求匹配分隔层20和玻璃基底19的折射率,以便提供操作的非定向或者单视图模式。
附图22是根据本发明另一实施例的多视图定向显示器52的示意截面图。在许多方面与附图6(b)的显示器58相同,除了在彩色滤波基底7的基本基底19的外表面提供多个棱镜53。在附图22中,棱镜53具有三角形横截面。棱镜53结合显示设备内的视差隔板13工作。在使用中,设备被来自TFT基底6后面的光照明,以致彩色滤波基底7的基本基底19形成显示设备的出口面。棱镜结构改变视差隔板感应的左图像和右图像之间的间隔角度。
在附图22的实施例中,棱镜被排列,以致它们减少不同图像的观察窗口之间的间隔角度。
尽管附图22图示的棱镜具有三角形横截面,该实施例不限于具有三角形横截面的棱镜。原则上,任何减少两个观察窗口之间的间隔角度的棱镜结构可被使用。进一步的,具有三角形横截面的棱镜被使用,棱镜不必具有等边三角形横截面。实际上任何对称或者不对称,收敛或者发散单元可被使用,例如匹配显示器的任何应用。
附图22的实施例可被用于自立体显示设备,其中左眼图像和右眼图像的观看窗口之间的角度间隔,要求在显示器的要求的观看距离,左眼和右眼窗口之间的间隔等于人的两眼之间的距离。
附图23示出了根据本发明另一实施例的显示器52’。显示器52’大体上相应于附图22的显示器,除了基本基底19表面的棱镜53打算增加两个观看窗口之间的间隔角度。
附图24描述了根据本发明另一实施例的多视图定向显示器59。该实施例的显示器59大体上相应于附图6(b)的显示设备20,除了它进一步包括可变换装置54,该装置用于改变设备产生的两个观看窗口之间的角度。可变换装置54可在实质上对两个观察窗口之间的角度间隔没有影响的状态和增加或减少两个观察窗口之间的角度间隔的另一个状态之间变换。在该实施例中,可变换装置54包括多个透光棱镜53,上述棱镜安装在彩色滤波基底的基本基底19的外表面。有源层55安装在棱镜53上,以致平面化棱镜。有源层被透明板56包含。棱镜和透明板可由玻璃,透明树脂,透明塑料材料等等形成。有源层55可以包括例如液晶层。液晶层被选择,以致当没有电场被施加到液晶材料时,液晶材料的折射率匹配棱镜53的折射率。在这种状态下,棱镜实质上对设备54产生的两个观察窗口之间的角度间隔没有影响。
可变换装置54进一步包括电极(未示出),允许电场施加到液晶层55。通过对电极施加电压,从而通过液晶层施加电场,可以改变液晶材料的折射率,以致不同于棱镜53的折射率。通过棱镜和液晶层之间的交界面的光因此经历折射。结果,显示设备形成的两个观察窗口之间的角度间隔被棱镜53改变。这允许显示器59在双视图显示模式和自立体显示模式之间变换。
可变换装置54可以允许两个观察窗口之间的角度间隔通过不断改变施加到液晶层的电场被连续控制。这允许两个观察窗口之间的角度间隔被调到适合显示设备54的特定用途。该实施例特别有用,如果关于显示器和观察者之间的纵向间隔的信息是可利用的,例如来自观察者跟踪设备,在自立体显示模式,可变换装置54可以控制左眼和右眼观察窗口之间的角度间隔,以致观察者的横向间隔保持等于人的双眼之间的间隔。
附图25示出了根据本发明另一实施例的多视图定向显示器57。显示器57大体上与附图24的显示器相同,这里将只描述不同。
在附图25的显示器57中,可变换装置54安装在彩色滤波基底7的基底19的外表面,上述可变换装置用于改变包括棱镜53的显示器形成的两个观看窗口之间的角度间隔。液晶层55安装在棱镜53上,但是,与附图24的实施例相比,液晶层的微观结构被固定。用于寻址液晶层55的装置因此不被要求。
液晶层55的折射率依赖于通过液晶层的光的偏振状态。液晶层被选择,以致对于一种偏振状态,它的折射率实质上等于棱镜53的折射率。在这种情况下,通过棱镜53的光实质上不经历折射。
对于另一种偏振状态的光,例如与第一偏振状态正交的偏振状态,液晶层55的折射率不等于棱镜53的折射率。因此,对于第二种偏振状态的光,在棱镜和液晶层55之间的交界面发生折射,导致显示器57形成的两个观察窗口之间的角度间隔的变化。
在该实施例中,折射影响可通过适当选择进入或离开面板的光的偏振状态打开或者切断。这可通过在光源和观察者之间提供偏振开关51和起偏振器51’实现。在附图25中,偏振开关51和起偏振器51’安装在显示设备和观察者之间,但是也可选择的安装在光源和显示设备之间。偏振开关可以是例如液晶单元。
附图24和25的实施例可被棱镜结构影响,该棱镜结构用于增加观看窗口之间的角度间隔,如附图23所示。
附图26(a)到26(d)描述了一种制造本发明的显示器的方法。该方法将已知图像显示设备63作为它的开始点,上述已知图像显示设备具有安装在两个基底60,61之间的图像显示层8(比如液晶层),如附图26(a)所示。图像显示设备63将包括其他部件,比如用于控制图像显示层8的电极和变换单元,并且在彩色图像显示设备的情况下包括彩色滤波器;它们全部已知,为了清楚描述,在附图26(a)-26(d)中省略。
根据该实施例的方法,图像显示设备63的一个基底60的厚度被减少,最佳厚度在50μm到150μm范围内。基底60的厚度可通过任何适当的方法减少,比如机械研磨方法或者化学蚀刻方法。基底60因此变成一个薄透明层60’,如附图26(b)所示。薄透明层60’厚度最好实质上在层60’的区域内均匀。
接着,另一个基底62粘附到薄透明层60’,以致视差镜片13安装在薄透明层60’和另一个基底之间。这通过在另一个基底的表面上或者另一个基底的表面内提供视差镜片,并将另一个基底的表面粘附到薄透明层60’,可以很方便的实现。例如,视差隔板隙缝阵列可被可被印刷在另一个基底的表面上,如附图26(c)所示。可选的,双凸透镜阵列或者RM视差隔板可被定义在另一个基底的表面内/上。另一个基底62可使用适当的透明粘合剂粘附到薄透明层60’。
另一个基底62可被直接粘附到薄透明层60’,如附图26(d)所示。可选的一个或多个部件可被置于另一个基底62和薄透明层60’之间,将在下文中参考附图28进行描述。
合成的显示器在附图26(d)中示出(为了清楚透明粘合剂在附图26(d)省略)。视差隔板只通过薄透明层60’(并且通过透明粘合剂的厚度)从图像显示层8分离,上述薄透明层60’通过减少基底的厚度得到。视差镜片因此接近于图像显示层8,以致获得上文中描述的优点。
在附图26(a)到26(d)的方法中,当基底60的厚度被减少时,基底60并入显示设备63。在减少厚度的过程中和在厚度被减少后,显示设备63的其他单元为基底60提供物理支持。因此有可能减少基底60的厚度到50μm,而没有基底破碎的重大风险。相反,如果分离基底的厚度被减少,很难使厚度小于0.5mm而没有基底破碎的重大风险。
附图26(a)到26(d)的方法可被用于制造例如附图7(b)所示的显示器22。附图26(d)与附图7(b)比较可知,附图26(d)的另一个基底62相应于附图7(b)的基本基底19,附图26(d)的薄透明层60’(通过减少图像显示单元63的基底60的厚度获得)相应于附图7(b)的视差隔板13和彩色滤波基底18之间的玻璃层20。
附图26(a)到26(d)的方法可被用于显示器的制造,在该显示器中视差镜片不是视差隔板隙缝阵列。例如,透镜阵列或者RM视差隔板可被安装在另一个基底62的一个表面,因此允许例如附图15(b)或者附图17(b)所示的显示器的制造。
通过在基底的整个区域提供透明粘合剂层,透镜阵列可被粘附到另一个基底。可选的,通过只在选定位置例如每个透明的周围布置粘合剂,透镜阵列可被粘附到另一个基底。这在透明层和基底之间提供没有粘合剂的空隙,因此消除了聚焦能力的降低,如果透明粘合剂层的折射率接近于透镜阵列的折射率,会发生聚焦能力的降低。粘合剂只设置在被选择位置,原则上可以使用不透明的粘合剂。
附图27是根据本发明另一实施例的显示器64的截面图(从上部)。显示器也包括图像显示单元65,并且有安装在图像显示单元内的视差镜片66。在该实施例中,视差镜片是棱镜阵列66。
棱镜阵列66形成在基本基底19上(可用例如玻璃制造),平面化层67提供在棱镜阵列上。基本基底19,棱镜阵列66和平面化层67形成图像显示单元65的一个基底68。图像显示层8,例如像素液晶层,被安装在基底68和第二基底6之间。图像显示单元的其他部件,例如彩色滤波阵列(在全彩色显示情况下),校准层,变换单元和电极,全部已知,在附图27中省略。
显示器64包括背部光69,用平行光或者部分平行光照明图像显示单元65。来自背部光的光被棱镜阵列的棱镜折射,指向左观看窗口2或者右观看窗口3。如果两个交替图像显示在图像显示层8的像素70上,定向显示被提供。使用棱镜阵列引导光到两个观看窗口,意味着具有相对低平行度的背部光69可被使用,相反的,如果透镜阵列代替棱镜阵列,必须使用具有高平行度的背部光。
用于制造基底68的一种方法是,在基本基底19安装光致抗蚀剂层。光致抗蚀剂的折射率应该尽可能接近基本基底19的折射率,光致抗蚀剂的折射率最好等于或者实质上等于基本基底19的折射率。随后棱镜阵列66使用已知光刻掩蔽,照射和蚀刻步骤,确定在光致抗蚀剂层。
随后平面化层67安装在棱镜阵列66上。平面化层67最好具有平面化基底68所要求的最小厚度。
部件比如对准层,彩色滤波器等等可使用任何适当的技术提供在基底68。基底68随后与第二基底6组装,形成图像显示单元65。
随后平面化层67的折射率必须不同于棱镜阵列66的折射率,以致光在棱镜阵列66和平面化层67的交界面被折射。平面化层的折射率可以大于或者小于棱镜阵列66的折射率,尽管在实践中更容易找到具有比棱镜阵列的折射率小的材料,用于平面化层。(折射方向取决于平面化层的折射率大于还是小于棱镜阵列的折射率)。
本发明的实施例已经在上文中参考特定视差镜片进行了描述。但是,实施例不限于图示的特定类型的视差镜片,可以使用其他类型的视差镜片。
本发明允许安装视差镜片的基底,被用作图像显示单元比如液晶显示单元的基底。这有一个优点,在显示单元的制造中,视差镜片和显示单元像素的对准被完成。与已知外部视差镜片对准全部液晶显示器单元的情况(如附图1所示)相比,允许对准被完成的更精确。进一步的,消除粘贴或者粘附视差镜片到全部图像显示单元的的步骤使得制造过程更快更便宜。
附图28是根据本发明另一实施例的多视图定向显示器76的示意平面截面图。显示器76包括第一透明基底6和第二透明基底71,图像显示层8安装在第一基底6和第二基底71之间。彩色滤波阵列(未示出)安装在第二基底71上,因此第二基底被称为彩色滤波基底。
第一基底6提供像素电极(未示出),用于定义图像显示层8的像素阵列,也提供变换单元(未示出),比如薄膜晶体管(TFTs),用于选择性寻址像素电极。基底6被称为“TFT基底”。在该实施例中,图像显示层8是液晶层8。但是本发明不限于此,任何透射图像显示层可被使用。
显示器76被安装,以致彩色滤波器的每一个实质上相对于图像显示层8的各个像素。其他部件比如对准层可被安装在基底6,71邻近图像显示层的表面,反电极也可被安装在CF基底71;这些部件已知,将不再进一步描述。进一步的,显示器76可以包括其他部件,比如观看角度增强薄膜,抗反射薄膜等等,安装在图像显示单元的外部;这些部件也是已知的,将不再进一步描述。
彩色滤波基底71包括透明波导74,安装在波导74上的线性起偏振器73,安装在线性起偏振器73上的透明层72。波导74不但形成部分彩色滤波基底71,也形成显示器的部分背部光。
在使用中,显示器76的背部光由波导74组成,一个或多个光源75沿着波导的侧面安装。在附图28中只示出一个光源75,安装在波导74的一个侧面74a,但是该发明不限于附图28示出的背部光的特定结构,可以使用多于一个的光源。作为一个例子,显示器可以提供安装在波导74的相对侧面74a,74b的两个光源。光源65最好沿波导的所有的或基本上所有的各个侧面延伸,可以是例如荧光管。
波导74用安装在起偏振器73边缘的粘合剂81粘附到起偏振器73,由于粘合剂81只安装在起偏振器73边缘,在波导74和起偏振器73之间的大部分区域存在空隙82。众所周知,来自光源75的光进入波导74,通过全内反射现象在波导74中收集,也就是,在光导内传播的从波导74的前面或者背面入射的光,在波导/空气交界面经历全内反射,不从波导射出。
可选的,波导74和起偏振器73可用低折射率透明粘合剂粘附,就是说,折射率比波导的折射率低的粘合剂。低折射率粘合剂可被安装在起偏振器73的整个区域,由于粘合剂的折射率和波导的折射率不同,在波导74的前面发生内反射。
根据附图28的实施例,漫射点在波导74的前面74c的选定区域84。如果在波导内传播的光入射到波导的前面74c的区域84,也就是漫射点所在的位置,光不被镜面反射,而是被漫射点散射,如附图28所示。因而,一些光被散射出波导,朝向图像显示层8。
光只在漫射点存在的区域84被散射出波导74,没有光从波导74中没有漫射点的位置射出。波导74因此具有发射光的区域(相应于漫射点存在的区域84)和不发射光的区域。如果漫射点存在的区域84具有扩展到附图28的纸的平面的条状,波导74的一部分区域发射相应大小,形状和位置的光到视差隔板的透射区域,上述视差隔板比如是附图6(a)的视差隔板13,波导74的另一部分区域不发射相应大小,形状和位置的光到视差隔板的不透明区域。因此视差隔板有效地定义在波导74的前面74c,在彩色滤波基底71的厚度之内。
波导74没有漫射点的区域可被吸收材料覆盖,以便确保没有光从这些区域散射。这减少了相应于附图6(a)的视差隔板13的不透明区域的光导区域发射的光的强度。
漫射点可以由漫射结构,衍射结构或者微折射结构组成。他们的精确结构不重要,因为光从提供漫射点的区域84散射,在不提供漫射点的区域不散射。
附图28的显示器76不要求视差隔板隙缝阵列,因此波导74发射的光没有被视差隔板隙缝阵列的不透明区域吸收。对于一个来自光源75的给定输出,附图28的显示器76比具有视差隔板隙缝阵列的显示器,例如附图6(a)的显示器,提供更亮的图像。
起偏振器73作为已知起偏振器,用于图像显示层8。取决于图像显示层的操作模式,第二线性起偏振器(未示出)可被提供在图像显示层的起偏振器73的反面。
显示器76可用与附图26(a)到26(d)所示的方法相同的方法制造。在该方法中,包括前基底6,图像显示层8和后基底的图像显示单元,将被最初制造。后基底随后被减少厚度,形成透明层72。接着,起偏振器73将被粘附到透明层72,波导74将被粘附到起偏振器73。
可选的,彩色滤波基底71可通过粘附起偏振器73到波导74来制造。在例如玻璃透明层72情况下,透明层72随后被粘附到起偏振器73。可选的,透明塑料层或者透明树脂层可被安装在起偏振器73上,形成透明层72。完成的彩色滤波基底71随后与TFT基底装配,形成显示器76。在该方法中,波导74形成彩色滤波基底71的基本基底。
附图29是根据本发明另一实施例的多视图定向显示器76’的示意平面截面图。显示器76’大体上相应于附图28的显示器76,将只描述不同。
在附图29的显示器76’中,起偏振器73放置在接近波导74的后面,例如使用透明粘合剂(未示出)粘附到波导74。波导74,起偏振器73和粘合剂的折射率被选择,以致在波导74内传播的光进入起偏振器73,实质上在波导74和起偏振器73的交界面没有内反射。内反射发生在起偏振器73的后面,如附图29的射线路径所示。
在该实施例中,波导74的前面74c和图像显示层8的距离被起偏振器的厚度减小。在波导的后面内部反射的光被偏振反射,当光被散射出波导时,该偏振被保持。
附图30是根据本发明另一实施例的多视图定向显示器77的示意平面截面图。显示器77包括第一透明基底6和第二透明基底80,图像显示层8安装在第一基底6和第二基底80之间。彩色滤波阵列(未示出)安装在第二基底80上,因此第二基底被称为彩色滤波基底。
第一基底6提供像素电极(未示出),用于定义图像显示层8的像素阵列8P,8S,也提供变换单元(未示出),比如薄膜晶体管(TFTs),用于选择性寻址像素电极。基底6被称为“TFT基底”。在该实施例中,图像显示层8是液晶层8。但是本发明不限于此,任何透射图像显示层可被使用。
显示器77被安装,以致彩色滤波器的每一个实质上相对于图像显示层8的各个像素。其他部件比如校准层可被安装在基底6,80邻近图像显示层的表面,反电极也可被安装在CF基底80;这些部件已知,将不再进一步描述。进一步的,显示器77可以包括其他部件,比如起偏振器,观看角度增强薄膜,抗反射薄膜等等,安装在图像显示单元的外部;这些部件也是已知的,将不再进一步描述。
在该实施例中,显示器包括视差隔板79,该视差隔板具有传送部分79a和不透明部分79b。在该实施例中,视差隔板79的不透明透射部分79a是偏振隙缝,传送一个偏振方向的光,并且基本上阻挡正交偏振方向的光。像素8S,8P发射/传送第一偏振状态或者第二偏振状态的光。在附图30中,两个偏振状态为P-线性偏振状态和S-线性偏振状态。标记为“8S”或者“8P”的像素分别发射/传送S-偏振光或者P-偏振光。视差隔板79的传送部分79a也被标记为“P”或者“S”,表示分别传送P-偏振光或者S-偏振光。
视差隔板79安装在基本基底19上。可以是玻璃层,透明树脂层或者透明塑料层的透射分隔层78,安装在图像显示层8和视差隔板79之间。
视差隔板可由例如图形化的起偏振器形成,上述起偏振器的一部分区域透射P-偏振光但是阻挡S-偏振光,并且另一部分区域透射S-偏振光,但是阻挡P-偏振光。不透明区域79b可通过例如印刷沉积在图形化的起偏振器上。可选的,视差隔板可由均匀的线性起偏振器和图形化的延迟器的组合形成,上述延迟器具有旋转光的偏振平面90°的区域和不旋转光的偏振平面的其他区域;不透明区域79b可通过例如印刷沉积在图形化的起偏振器上。
视差隔板被排列,以致传送特定偏振光的隙缝79a不在发射/传送那种偏振光的像素的前面。因此,传送P-偏振状态的隙缝79a不在发射/传送P-偏振状态的像素8P的前面,视差隔板的传送S-偏振状态的隙缝79a不在发射/传送S-偏振状态的像素8S的前面。结果,被一个像素发射/传送的一个偏振状态的光,只能在第一和第二方向范围内通过视差隔板79,上述第一和第二方向不同并且位于显示器的显示面的法线的相对侧。被例如S像素在平行或者接近法线方向发射的光,入射到只传送P-偏振的隙缝79a,或者视差隔板的不透明部分79b,以此将被阻挡。该实施例的显示器在法线方向或者接近法线方向发射的光的强度,因此很低。从而设备在两个图像的观看窗口之间提供黑色窗口,因此提供在上文中参考附图11(b)描述的优点。
黑色屏蔽(用非透射区域8b表示)提供在相邻像素8S,8P之间。黑色中心窗口的角度范围可通过改变黑色屏蔽:像素比来改变(同时保持像素间距不变)。相邻像素之间的黑色屏蔽的宽度越大,黑色中心窗口的角度范围越大。
黑色中心窗口的角度范围也由视差隔板79的偏振隙缝79a的宽度确定。黑色中心窗口的角度范围可通过改变偏振隙缝的宽度来改变(同时保持隙缝间距不变)。视差隔板的偏振隙缝的宽度越小,黑色中心窗口的角度范围越大。
在上文描述的包含透镜阵列的任何实施例中,透镜阵列可以是GRIN(分级折射率)透镜阵列,如上文参考附图20(b)的实施例的描述。
附图31示出了附图28的显示器76的背部光的修改。附图31的背部光包括第一波导74和一个或者多个第一光源75,上述光源排列在第一波导的侧面。在附图31示出了两个第一光源75,排列在第一波导74的相对侧面74a,74b,但是本发明不限于该特定结构,可以提供只有一个光源或者多于两个光源。光源75最好扩展到第一波导的所有的或基本上所有的各个侧面,可以是例如荧光管。
漫射点在第一波导74的后面74c的选定区域84。漫射点存在的区域84可以是例如带状,并且扩展到附图31的纸的平面。如果在第一波导内传播的光入射到波导的前面74c的提供漫射点的区域84,光不被镜面反射,而是被散射出第一波导,如上文中参考附图28的解释(在附图31观看者假设在页面的顶部,光通常在向上的方向散射出第一波导)。
背部光进一步包括第二波导74’和一个或者多个第二光源75’,上述光源排列在第一波导的侧面。第二波导74’位于并且通常平行于第一波导74;第二波导74’通常相应于第一波导74的大小和形状。在附图31示出了两个第二光源75’,排列在第二波导74’的相对侧面74a’,74b’,但是本发明不限于该特定结构,只有一个光源或者多于两个光源可被使用。光源75’最好扩展到第二波导的所有的或基本上所有的各个侧面,可以是例如荧光管。
漫射点89实质上提供在第二波导74’的全部前面74d’上。因此,当第二光源75’被照明时,光被散射出第二波导的前面74d’的大部分区域之外。
因此附图31的背部光在“图形化模式”和“均匀模式”之间是可变换的。在“图形化模式”,第一光源75被照明,第二光源75’不被照明。光只在第一波导74传播,背部光有发射光的区域(这些区域对应于存在漫射点的区域84)和不发射光的区域(这些区域对应于不存在漫射点的区域)。在“均匀模式”,第二光源75’被照明,光在第二波导中传播。由于漫射点89提供在基本上第二波导74’的整个前面74d’,背部光在它的整个区域以“均匀模式”提供实质上相等的照明。具有附图31的背部光的显示器可通过将背部光从“图形化模式”变换到“均匀模式”,从定向显示模式变换到已知2-D显示模式。
在“均匀模式”,第一光源75可被照明或者不被照明。如果希望的话,第一光源可连续保持打开状态,通过分别变换第二光源75’打开或者闭合,背部光为“均匀模式”或者“图形化模式”。(在均匀模式保持图形化波导被照明,可以导致通过背部光区域的强度的变化,但是这些可能的缺点在一些必须只变换第二光源75’的应用中很重要)。
为了确保内反射发生在第一波导的后面74c,第一波导74和第二波导74’之间的间隔必须具有比第一波导74更小的折射率。通过在第一波导74和第二波导74’之间提供空隙,可以很容易的获得,或者可选的,第一波导74和第二波导74’之间的间隔可被充满具有低折射率的透光材料。
在第一波导74上提供漫射点的区域84的后面可被做成反射的,例如通过涂上金属涂层。如果这样做,任何通过漫射点散射到第二波导74’的光将被反射回观看者。(如果在第一波导74提供漫射点的区域84的后面被做成反射的,由于反射体将阻挡光从第二波导74’向上散射,第一光源和第二光源必须被照明来获得均匀模式)
每个波导可以具有抗反射涂层(未示出)
附图32示出了本发明的另一种背部光。背部光包括波导74和一个或者多个光源75,上述光源排列在波导的侧面。在附图32示出了两个光源75,排列在波导74的相对侧面74a,74b,但是本发明不限于该特定结构,只有一个光源或者多于两个光源可被使用。光源75最好扩展到波导的所有的或基本上所有的各个侧面,可以是例如荧光管。
波导74包括夹入两个透光基底92,93中间的液晶材料层87。液晶材料层是可寻址的,例如通过允许电场施加到液晶层87的电极(未示出)。液晶层的区域87A,87B(在附图32中用虚线表示)可以彼此无关的被寻址,例如通过使用适当的图形化电极,上述电极允许电场施加到液晶层的选定区域。液晶层的区域87A,87B可以是例如带状并且扩展到附图32的纸的平面。
液晶层的区域87A,87B可被变换到散射模式或者清晰的透光模式。如果所有的液晶区域被变换到透光模式,光在波导内传播,具有最小散射——光在上部基底92的上表面92a经历内反射,通过上部基底92和液晶层87进入下部基底93,在下部基底93的下表面93b经历内反射,被反射回上部基底92,等等。很少或者没有光从波导发射。
为了使光从波导发射,一个或者多个液晶区域被变换,形成散射区域,如附图32用85表示。当在第一波导内传播的光入射到散射区域85,光散射出波导,如上文中参考附图28的解释(在附图32观看者假设在页面的顶部,光通常在向上的方向散射出波导74)。
附图32示出了每个交替的液晶区域87A被变换而产生散射区域85的波导。其他液晶区域87B被变换,以致不散射。光只从相应于散射区域85的波导74的前面区域发射,背部光在“图形化模式”操作。
如果所有的液晶区域87A,87B被变换而形成散射区域,液晶层87在它的全部散射光,因此光从波导74的整个区域发射。因此,当所有的液晶区域87A,87B被变换而形成散射区域时,背部光在“均匀模式”操作。因此通过变换液晶区域,背部光可在“图形化模式”和“均匀模式”之间变换。具有附图32的背部光的显示器可通过将背部光从“图形化模式”变换到“均匀模式”,从定向显示模式变换到已知2-D显示模式。
在附图32的背部光的一个实现中,上部基底92的后面92b在整个区域平坦。该实现要求层87包括一种液晶材料,该液晶材料可在透射光而没有有效散射的状态和散射光的状态之间变换,例如,聚合-分散液晶(PDLC)。散射区域85可以通过变换液晶层区域到它的散射模式来获得。
因此,例如液晶层的区域87A被变换到散射模式,产生散射区域85;通过上部基底92进入液晶层的区域87A的光被液晶散射,一些光被向上反射,可以从波导74的前面消失。相反地,液晶层的区域87B被变换到非散射模式,通过上部基底92进入液晶层的区域87B的光只是通过下部基底,没有被液晶散射。当液晶层的区域87B在非散射模式,背部光为“图形化模式”。
为了获得背部光的“均匀模式”,液晶层的所有区域87A,87B被变换到散射模式。波导74的后面在它的整个区域基本上散射。
在该实现中,可以改变散射区域85和非散射区域的大小和位置。例如,可以变换两个相邻液晶区域为散射模式,下一个液晶区域为非散射模式,下两个液晶区域为散射模式,下一个液晶区域为非散射模式,等等,模拟视差隔板具有2∶1的隙缝:隔板比。
可选的,相应于散射区域85的希望位置的上部基底92的后面92b的区域,可被做的粗糙,以致这些区域总是散射光。通过变换液晶区域87B为散射模式或者非散射模式,背部光可在“均匀模式”和“图形化模式”之间变换。
作为另一个选择,上部基底的后面92b可在整个区域光学粗糙。该实施例需要具有可改变的折射率的液晶材料层87。散射区域85通过变换相应的液晶区域87A以致液晶的折射率与波导74的折射率不匹配而获得。在上部基底内传播的光将“看到”上部基底的后面的光学粗糙表面,并被散射。
非散射区域通过变换相应的液晶区域87B以致液晶区域87B的折射率与上部基底92的折射率匹配而获得。在上部基底内传播的光没有“看到”上部基底的后面的光学粗糙表面,通过液晶层,不被散射(随后在下部基底的后面93b内反射)。
如果散射区域的位置被固定,反射体可提供在散射区域85的后面,在附图32中用86示出。通过散射区域85向后面基底93散射的任何光将被反射体反射到观看者。
附图33示出了另一种背部光。背部光包括波导74和一个或者多个光源75,上述光源排列在波导的侧面。在附图33示出了两个光源75,排列在波导74的相对侧面74a,74b,但是本发明不限于该特定结构,只有一个光源或者多于两个光源可被使用。光源75最好扩展到波导的所有的各个侧面,可以是例如荧光管。
漫射点在波导74的后面74c的选定区域84。漫射点存在的区域84可以是例如带状,并且扩展到附图33的纸的平面。如果在第一波导内传播的光入射到波导的前面74c的提供漫射点的区域84,光不被镜面反射,而是被散射出第一波导,如上文中参考附图28的解释(在附图33观看者假设在页面的顶部,光通常在向上的方向散射出第一波导74)。
透镜阵列88安装波导74的前面。透镜阵列指引波导74发射的光主要进入第一方向(或者第一方向范围)90和进入第二方向(或者第二方向范围)91。第一方向(或者第一方向范围)90和第二方向(或者第二方向范围)91最好被包括法线方向的第三方向范围分开。由于光被指引主要进入第一和第二方向(或者第一和第二方向范围)90,91,在第一和第二方向(或者第一和第二方向范围)90,91的光的强度大于在第三方向范围的光的强度。第一方向(或者第一方向范围)90和第二方向(或者第二方向范围)91位于法线方向的相对侧,最好实质上关于法线对称。
附图33的背部光特别适合用于定向显示器。例如,典型的双视图显示器显示两个图像,图像显示在法线方向相对侧的方向。附图33的背部光指引光主要进入两个图像被双视图显示器显示的方向,因此产生明亮图像。相反的,已知背部光在法线方向具有最大强度,当从轴外方向观看时具有较小强度。
4视图照明系统可通过使用2-D显微透镜阵列和2-D漫射点阵列产生。这将提供四个视图,在两个视图上排列两个视图,因此提供视图的水平和垂直分开。
附图34示出了另一种背部光。该背部光与附图33的背部光相同,因为它具有透镜阵列,该透镜阵列用于指引发射光进入两个首选方向(或者方向范围)90,91。附图34的背部光进一步包括第二波导74’和第二光源75’,上述光源排列在第二波导74’的各个侧面。漫射点89在第二波导74’的整个前面。附图34的第二波导74’大体上相应于附图31的第二波导74’。附图34的背部光可在“图形化模式”和“均匀模式”之间变换,以上文中描述的用于附图31的背部光的方式。
附图31到34的背部光可被并入到,例如,附图28的显示器76或者附图29的显示器76’。
在附图31到34的实施例中,漫射点的密度可被调整来改变空间照明均匀性,补偿由于到光源75的距离增加而在波导内传播的光的强度的减少。这可被应用到附图31和34的实施例中的两个波导。
在附图31到34的实施例中,漫射点可被微反射结构比如棱镜,突起(protrusions)等等替换。这可被用于,例如,控制具有漫射点的光导区域的发射方向性。
在上文描述的实施例中,视差镜片已被安装在与彩色滤波器一样的基底。可选的,可以在显示器的TFT基底6上安装视差镜片,并且对于上文描述的视差镜片安装在彩色滤波基底的每一个实施例,有视差镜片安装在TFT基底的相应实施例。在上述修改实施例中,变换单元阵列比如TFTs阵列和视差镜片单元将被安装在TFT基底的基本基底上,可以使分隔层置于视差镜片和薄膜晶体管之间。视差隔板和图像显示层之间的间隔是分隔层的厚度(假设分隔层安装在视差镜片上)。而且,在附图22到25的实施例中,棱镜53可被安装到TFT基底。
此外,在一些液晶板中,彩色滤波器被安装在与薄膜晶体管一样的基底。本发明可被应用于上述设备。例如,透光分隔层(例如树脂,玻璃或者塑料分隔层)可被安装在TFTs(或者其他变换单元)和彩色滤波器上,视差镜片可被安装在分隔层上。
本发明的实施例,除了在附图22-25,28-34示出的实施例,可被用作后隔板设备(如附图4所示)或者用作前隔板设备(如附图1所示)。
当本发明的视差镜片是视差隔板的设备,被用于附图4的后隔板模式,如果视差隔板单元在背部光的侧面是反射的,是最好的。来自入射到隔板的不透明区域的背部光的光将被反射,可从背部光再反射,因此它可以通过视差隔板和显示设备。这将增加显示器的亮度。视差隔板单元远离背部光的表面最好是吸收的,防止干扰。
本发明已经在上文中参考包括液晶层的图像显示单元进行了描述。但是,本发明不限于该特定图像显示单元,任何适当的图像显示单元可被使用。作为一个例子,OLED(有机质发光设备)图像显示单元可被使用。

Claims (45)

1.一种具有图像显示单元和视差镜片(13,13′,35,35′,35″,35″′,42,46,67,79,84)的多视图定向显示器,其中图像显示单元包括:第一基底(7,25,25’,29,31,31′,34,34′,34″,34″′,36,39,39′,44,49,49′,68,71,80);第二基底(6);和夹入第一基底和第二基底中间的图像显示层(8);其中视差镜片安装在图像显示单元之内,并且视差镜片与图像显示层(8)分离。
2.根据权利要求1的显示器,其中视差镜片安装在第一基底和第二基底之间。
3.根据权利要求1的显示器,其中视差镜片(13,13′,35,35′,35″,35″′,42,46,67,79,84)安装在第一基底或者第二基底之内。
4.根据权利要求3的显示器,其中视差镜片安装在第一基底的厚度之内。
5.根据权利要求4的显示器,其中视差镜片包括多个视差单元,每个视差单元被安装在第一基底(25,25′,31)的第一或第二主表面中的各自的凹槽(26)中。
6.根据权利要求4的显示器,其中第一基底包括基本基底(19)和安装在基本基底上的第一透光层(20),其中视差镜片安装在第一透光层(20)和基本基底(19)之间。
7.根据权利要求4的显示器,其中第一基底包括:基本基底(19);安装在基本基底主表面上的第一透光层(20);定义在第一透光层(20)中的多个凹槽(26),其中视差镜片(13)包括多个视差单元,每个视差单元安装在第一透光层(20)中的各自的凹槽(26)中。
8.根据权利要求5的显示器,其中每个视差单元安装在第一基底(25,25′,31)的第一或第二主表面中的各自的凹槽(26)的底面。
9.根据权利要求7的显示器,其中每个视差单元安装在第一透光层(20)中的各自的凹槽(26)的底面。
10.根据权利要求5或7的显示器,其中凹槽(26)平行于基底表面的横截面随着深度的增加而减少。
11.根据权利要求5或7的显示器,其中每个视差单元实质上充满各自的凹槽(26)。
12.根据权利要求5的显示器,其中彩色滤波阵列(18)或者变换单元阵列安装在第一基底的第一或第二主表面上。
13.根据权利要求12的显示器,进一步包括第一透光层(20),所述第一透光层(20)安装在视差镜片和彩色滤波阵列(18)或者变换单元阵列之间。
14.根据权利要求12或13的显示器,进一步包括另一个视差镜片(13′),所述另一个视差镜片(13′)安装在视差镜片(13)和彩色滤波阵列(18)或者变换单元阵列之间。
15.根据权利要求5的显示器,其中彩色滤波阵列(18)或者变换单元阵列安装在与第一基底的第一主表面相对的第一基底的第二主表面上。
16.根据权利要求1的显示器,其中第一透光层(20)安装在视差镜片(13,13′,35,35′,35″,35″′,42,46)和图像显示层(8)之间。
17.根据权利要求16的显示器,其中彩色滤波阵列(18)与变换单元阵列两者之一和视差镜片,安装在基本基底(19)的第一主表面上,基本基底被包含在第一或者第二基底内。
18.根据权利要求17的显示器,其中视差镜片(13,35,35′,35″,35″′,42)安装在基本基底的第一主表面上,彩色滤波阵列(18)或者变换单元阵列安装在视差镜片上。
19.根据权利要求17的显示器,其中彩色滤波阵列(18)或者变换单元阵列安装在基本基底的第一主表面,视差镜片(13)安装在彩色滤波阵列(18)或者变换单元阵列上。
20.根据权利要求18或19的显示器,其中第一透光层(20)安装在视差镜片和彩色滤波阵列(18)或者变换单元阵列之间。
21.根据权利要求18或19的显示器,进一步包括另一个视差镜片(13′),所述另一个视差镜片(13′)安装在视差镜片(13)和彩色滤波阵列(18)或者变换单元阵列之间。
22.根据权利要求17的显示器,其中视差镜片包含多个视差单元,每个视差单元安装在第一或者第二基底的第一主表面的各自的凹槽(26)中。
23.根据权利要求17的显示器,其中:第二透光层(32)安装在基本基底(19)的主表面上,第二透光层(32)位于基本基底(19)和第一透光层(20)之间;多个凹槽(26)定义在第二透光层(32)中;视差镜片包含多个视差单元,每个视差单元安装在第二透光层(32)的各自的凹槽中。
24.根据权利要求16的显示器,其中彩色滤波阵列(18)和变换单元阵列之一安装在基本基底(19)的第一主表面,视差镜片安装在基本基底的第二主表面内或者第二主表面上,基本基底(19)被包含在第一或者第二基底(25′,6)内。
25.根据权利要求24的显示器,其中视差镜片包含多个视差单元,每个视差单元安装在基本基底的第二主表面中的各自的凹槽(26)中。
26.根据权利要求22的显示器,其中每个视差单元安装在基本基底的第一主表面中的各自的凹槽(26)的底面上。
27.根据权利要求23的显示器,其中每个视差单元安装在第二透光层(32)中的各自的凹槽(26)的底面上。
28.根据权利要求25的显示器,其中每个视差单元安装在基本基底的第二主表面中的各自的凹槽(26)的底面上。
29.根据权利要求22,23或25的显示器,其中凹槽(26)平行于基底表面的横截面随着深度增加而减少。
30.根据权利要求29的显示器,其中每个视差单元实质上充满各自的凹槽。
31.根据权利要求6,16至19,22至25中任何一项的显示器,其中第一透光层(20)是透明树脂层。
32.根据权利要求7的显示器,其中:
每个视差单元安装在各自的凹槽(26)的底面,
凹槽(26)平行于基底表面的横截面随着深度的增加而减少,
每个视差单元实质上充满各自的凹槽(26),并且
第一透光层(20)是透明树脂层。
33.根据权利要求13的显示器,进一步包括另一个视差镜片(13′),所述另一个视差镜片(13′)安装在视差镜片(13)和彩色滤波阵列(18)或者变换单元阵列之间,其中第一透光层(20)是透明树脂层。
34.根据权利要求6,16至19,22至25中任何一项的显示器,其中第一透光层(20)是层压塑料层。
35.根据权利要求7的显示器,其中:
每个视差单元安装在各自的凹槽(26)的底面,
凹槽(26)平行于基底表面的横截面随着深度的增加而减少,
每个视差单元实质上充满各自的凹槽(26),并且
第一透光层(20)是层压塑料层。
36.根据权利要求13的显示器,进一步包括另一个视差镜片(13′),所述另一个视差镜片(13′)安装在视差镜片(13)和彩色滤波阵列(18)或者变换单元阵列之间,其中第一透光层(20)是层压塑料层。
37.根据权利要求6,16至19,22至25中任何一项的显示器,其中第一透光层(20)是玻璃层。
38.根据权利要求7的显示器,其中:
每个视差单元安装在各自的凹槽(26)的底面,
凹槽(26)平行于基底表面的横截面随着深度的增加而减少,
每个视差单元实质上充满各自的凹槽(26),并且
第一透光层(20)是玻璃层。
39.根据权利要求13的显示器,进一步包括另一个视差镜片(13′),所述另一个视差镜片(13′)安装在视差镜片(13)和彩色滤波阵列(18)或者变换单元阵列之间,其中第一透光层(20)是玻璃层。
40.根据权利要求1至7,12,13,15至19,22至25中任何一项的显示器,其中视差镜片是视差隔板(13,13′)。
41.根据权利要求1至7,12,13,15至19,22至25中任何一项的显示器,其中视差镜片是双凸透镜阵列(35,35′,35″,35″′)。
42.根据权利要求1至7,12,13,15至19,22至25中任何一项的显示器,其中视差镜片是禁用的。
43.根据权利要求1至7,12,13,15至19,22至25中任何一项的显示器,其中视差镜片是可寻址的。
44.一种双视图显示设备,它包含权利要求1至7,12,13,15至19,22至25中任何一项所定义的多视图定向显示器。
45.一种自立体显示设备,它包含权利要求1至7,12,13,15至19,22至25中任何一项所定义的多视图定向显示器。
CN2004100899184A 2003-08-30 2004-08-30 多视图定向显示器 Expired - Fee Related CN100406964C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0320358.5 2003-08-30
GB0320358A GB2405542A (en) 2003-08-30 2003-08-30 Multiple view directional display having display layer and parallax optic sandwiched between substrates.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN200710127494A Division CN100576018C (zh) 2003-08-30 2004-08-30 多视图定向显示器

Publications (2)

Publication Number Publication Date
CN1617014A CN1617014A (zh) 2005-05-18
CN100406964C true CN100406964C (zh) 2008-07-30

Family

ID=28686634

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2004100899184A Expired - Fee Related CN100406964C (zh) 2003-08-30 2004-08-30 多视图定向显示器
CN200710127494A Expired - Fee Related CN100576018C (zh) 2003-08-30 2004-08-30 多视图定向显示器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200710127494A Expired - Fee Related CN100576018C (zh) 2003-08-30 2004-08-30 多视图定向显示器

Country Status (4)

Country Link
JP (2) JP4471785B2 (zh)
KR (2) KR100679189B1 (zh)
CN (2) CN100406964C (zh)
GB (1) GB2405542A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768424A (zh) * 2012-07-02 2012-11-07 京东方科技集团股份有限公司 双视角显示面板及其制造方法

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU777922B2 (en) * 1999-10-12 2004-11-04 Submedia, Llc Apparatus for displaying multiple series of images to viewers in motion
JP4024769B2 (ja) 2004-03-11 2007-12-19 シャープ株式会社 液晶表示パネルおよび液晶表示装置
ES2284313B1 (es) * 2005-03-31 2008-09-16 Juan Dominguez Montes Dispositivo para acoplar a un reproductor bidimensional ordinario y conseguir una reproduccion estereoscopica.
GB2426351A (en) 2005-05-19 2006-11-22 Sharp Kk A dual view display
CN101199056B (zh) 2005-06-14 2011-04-20 皇家飞利浦电子股份有限公司 多视图显示装置
KR100759393B1 (ko) 2005-06-29 2007-09-19 삼성에스디아이 주식회사 패럴랙스 배리어 및 이를 구비한 입체 영상 표시장치
GB2428344A (en) 2005-07-08 2007-01-24 Sharp Kk Multiple view directional display
GB2428129A (en) * 2005-07-08 2007-01-17 Sharp Kk A multiple-view directional display
WO2007007543A1 (ja) 2005-07-11 2007-01-18 Sharp Kabushiki Kaisha 表示装置
WO2007007552A1 (ja) * 2005-07-11 2007-01-18 Sharp Kabushiki Kaisha 表示装置
WO2007007483A1 (ja) * 2005-07-11 2007-01-18 Sharp Kabushiki Kaisha 表示装置
JPWO2007013249A1 (ja) 2005-07-25 2009-02-05 シャープ株式会社 視差バリア、多重表示装置、及び視差バリアの製造方法
US7813042B2 (en) 2005-09-12 2010-10-12 Sharp Kabushiki Kaisha Multiple-view directional display
US7518664B2 (en) 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
JP4953340B2 (ja) * 2005-10-30 2012-06-13 アルパイン株式会社 複数画面表示用液晶表示装置
GB2431728A (en) 2005-10-31 2007-05-02 Sharp Kk Multi-depth displays
JP4835223B2 (ja) * 2006-03-24 2011-12-14 沖電気工業株式会社 自動取引装置
EP2477409A3 (en) 2006-04-19 2015-01-14 Setred AS Autostereoscopic display apparatus with settable display parameters
KR101243790B1 (ko) 2006-06-26 2013-03-18 엘지디스플레이 주식회사 입체 영상표시장치
KR101279116B1 (ko) * 2006-06-30 2013-06-26 엘지디스플레이 주식회사 듀얼 뷰 디스플레이 장치 및 듀얼 뷰 액정 디스플레이 장치
WO2008029891A1 (fr) * 2006-09-07 2008-03-13 Sharp Kabushiki Kaisha Dispositif d'affichage d'image, dispositif électronique et élément de barrière parallaxe
JP4793191B2 (ja) * 2006-09-13 2011-10-12 エプソンイメージングデバイス株式会社 照明装置、液晶装置及び電子機器
US20100328355A1 (en) * 2006-09-20 2010-12-30 Hiroshi Fukushima Display device
WO2008049906A1 (en) * 2006-10-26 2008-05-02 Seereal Technologies S.A. Compact holographic display device
US8416479B2 (en) * 2006-10-26 2013-04-09 Seereal Technologies S.A. Compact holographic display device
JP4946430B2 (ja) * 2006-12-28 2012-06-06 ソニー株式会社 電気光学装置及び電子機器
KR100841438B1 (ko) * 2006-12-29 2008-06-26 정현인 광속차를 이용한 인쇄용 평면렌즈시트
KR101338618B1 (ko) * 2006-12-29 2013-12-06 엘지디스플레이 주식회사 듀얼뷰 표시장치 및 그 제조방법
KR101282290B1 (ko) * 2006-12-29 2013-07-10 엘지디스플레이 주식회사 3차원 영상표시장치
JP2008216971A (ja) * 2007-02-08 2008-09-18 Seiko Epson Corp 画像表示デバイス
JP2009063956A (ja) * 2007-09-10 2009-03-26 Seiko Epson Corp 電気光学装置及び電子機器
JP2009069458A (ja) * 2007-09-13 2009-04-02 Seiko Epson Corp 電気光学装置及び電子機器
JP2009069567A (ja) * 2007-09-14 2009-04-02 Seiko Epson Corp 電気光学装置及び電子機器
JP5154183B2 (ja) * 2007-09-28 2013-02-27 株式会社ジャパンディスプレイウェスト 電気光学装置及び電子機器
TWI479201B (zh) 2007-10-02 2015-04-01 Koninkl Philips Electronics Nv 自動立體顯示裝置
JP5246739B2 (ja) 2007-10-24 2013-07-24 株式会社ジャパンディスプレイウェスト 電気光学装置の製造方法
DE102008060279B4 (de) 2007-12-05 2023-09-14 Lg Display Co., Ltd. Multiansicht-Anzeigevorrichtung
CN101477265B (zh) * 2008-01-03 2012-02-01 奇美电子股份有限公司 液晶显示装置、多视角液晶显示面板及其制造方法
GB2457691A (en) 2008-02-21 2009-08-26 Sharp Kk Display with regions simultaneously operable in different viewing modes
KR101025441B1 (ko) 2008-03-27 2011-03-28 엡슨 이미징 디바이스 가부시키가이샤 전기 광학 장치 및 전자기기
JP4730410B2 (ja) 2008-03-27 2011-07-20 エプソンイメージングデバイス株式会社 電気光学装置及び電子機器
CN101556412B (zh) * 2008-04-07 2010-12-01 北京京东方光电科技有限公司 双向视角阵列基板、彩膜基板、液晶显示装置及制造方法
CN102067020B (zh) * 2008-06-24 2013-06-19 夏普株式会社 液晶显示面板及液晶显示装置
CN102246528B (zh) * 2008-10-14 2016-01-20 瑞尔D股份有限公司 具有偏置滤色器阵列的透镜式显示系统
HUP0800636A2 (en) 2008-10-27 2010-05-28 Karoly Pados Adapter plate for display device and method for making of stereo visual visualization in determined visual distance
JP5309908B2 (ja) * 2008-11-11 2013-10-09 セイコーエプソン株式会社 電気光学装置、および電子機器
US20100293502A1 (en) * 2009-05-15 2010-11-18 Lg Electronics Inc. Mobile terminal equipped with multi-view display and method of controlling the mobile terminal
CN101655622B (zh) * 2009-06-11 2012-08-29 深圳超多维光电子有限公司 一种双视显示装置及其制造方法
GB2473636A (en) 2009-09-18 2011-03-23 Sharp Kk Multiple view display comprising lenticular lens having regions corresponding to two different centres of curvature
CN102193238B (zh) * 2010-03-02 2015-09-23 群创光电股份有限公司 彩色滤光基板及其制造方法、多视液晶显示装置
JP5045826B2 (ja) * 2010-03-31 2012-10-10 ソニー株式会社 光源デバイスおよび立体表示装置
CN102236201B (zh) * 2010-04-30 2014-06-04 京东方科技集团股份有限公司 双视显示器、双视彩膜结构及其制造方法
US20130113795A1 (en) * 2010-07-26 2013-05-09 City University Of Hong Kong Method for generating multi-view images from a single image
JP5568409B2 (ja) * 2010-08-24 2014-08-06 株式会社日立製作所 立体表示装置
GB2484713A (en) 2010-10-21 2012-04-25 Optovate Ltd Illumination apparatus
JP2012100723A (ja) * 2010-11-08 2012-05-31 Sankyo Co Ltd 情報表示装置
CN102566146B (zh) * 2010-12-23 2015-01-21 京东方科技集团股份有限公司 液晶面板及其制造方法和液晶显示器
GB2488978A (en) 2011-03-07 2012-09-19 Sharp Kk Switching lenses for multi-view displays
JP6147953B2 (ja) * 2011-03-15 2017-06-14 株式会社ジャパンディスプレイ 表示装置
JP5699786B2 (ja) * 2011-04-28 2015-04-15 ソニー株式会社 表示装置および照明装置
WO2012176752A1 (ja) * 2011-06-21 2012-12-27 シャープ株式会社 液晶パネルの製造方法および液晶パネル
JP2013182186A (ja) * 2012-03-02 2013-09-12 Japan Display West Co Ltd 表示装置、電子機器および貼り合わせ構造
JP2012137781A (ja) * 2012-03-29 2012-07-19 Sharp Corp 画像表示装置及び該装置を備えた電子機器
US9678267B2 (en) 2012-05-18 2017-06-13 Reald Spark, Llc Wide angle imaging directional backlights
US9188731B2 (en) 2012-05-18 2015-11-17 Reald Inc. Directional backlight
EP4123348B1 (en) 2012-05-18 2024-04-10 RealD Spark, LLC Controlling light sources of a directional backlight
EP2850488A4 (en) 2012-05-18 2016-03-02 Reald Inc DIRECTIONAL BACK LIGHTING
US9235057B2 (en) 2012-05-18 2016-01-12 Reald Inc. Polarization recovery in a directional display device
JP5933362B2 (ja) * 2012-06-19 2016-06-08 三菱電機株式会社 液晶表示装置およびその製造方法
JP5954097B2 (ja) * 2012-10-11 2016-07-20 ソニー株式会社 表示装置
CN105324605B (zh) 2013-02-22 2020-04-28 瑞尔D斯帕克有限责任公司 定向背光源
EP3011734A4 (en) 2013-06-17 2017-02-22 RealD Inc. Controlling light sources of a directional backlight
TWI484221B (zh) * 2013-06-25 2015-05-11 Au Optronics Corp 可切換式平面/立體(2d/3d)顯示裝置及其製造方法
WO2015000645A1 (en) * 2013-07-02 2015-01-08 Koninklijke Philips N.V. Auto-stereoscopic display device with a striped backlight and two lenticular lens arrays
CN104133311A (zh) * 2013-08-28 2014-11-05 深超光电(深圳)有限公司 触控显示装置
CN103454807B (zh) * 2013-09-02 2016-07-27 京东方科技集团股份有限公司 阵列基板及其制作方法、3d显示装置
KR102168878B1 (ko) * 2013-09-30 2020-10-23 엘지디스플레이 주식회사 양자점 컬러 필터를 이용한 입체 영상 표시 장치 및 그 양자점 컬러 필터의 제조 방법
US9739928B2 (en) 2013-10-14 2017-08-22 Reald Spark, Llc Light input for directional backlight
WO2015057625A1 (en) 2013-10-14 2015-04-23 Reald Inc. Control of directional display
CN103499898B (zh) * 2013-10-21 2016-05-18 京东方科技集团股份有限公司 一种双视场显示面板及显示装置
JP6962521B2 (ja) 2014-06-26 2021-11-05 リアルディー スパーク エルエルシー 指向性プライバシーディスプレイ
CN104238127A (zh) * 2014-09-12 2014-12-24 京东方科技集团股份有限公司 一种裸眼立体显示装置
WO2016057690A1 (en) 2014-10-08 2016-04-14 Reald Inc. Directional backlight
CN104317060B (zh) * 2014-11-11 2016-08-24 京东方科技集团股份有限公司 一种双视场显示面板和双视场显示器
WO2016105541A1 (en) 2014-12-24 2016-06-30 Reald Inc. Adjustment of perceived roundness in stereoscopic image of a head
RU2596062C1 (ru) 2015-03-20 2016-08-27 Автономная Некоммерческая Образовательная Организация Высшего Профессионального Образования "Сколковский Институт Науки И Технологий" Способ коррекции изображения глаз с использованием машинного обучения и способ машинного обучения
US10459152B2 (en) 2015-04-13 2019-10-29 Reald Spark, Llc Wide angle imaging directional backlights
CN104730604A (zh) * 2015-04-21 2015-06-24 合肥京东方光电科技有限公司 光折射结构及制作方法、彩膜基板及制作方法、显示装置
EP3304188B1 (en) 2015-05-27 2020-10-07 RealD Spark, LLC Wide angle imaging directional backlights
KR102353522B1 (ko) 2015-06-26 2022-01-20 엘지디스플레이 주식회사 다중 시각 표시 장치
WO2017074951A1 (en) 2015-10-26 2017-05-04 Reald Inc. Intelligent privacy system, apparatus, and method thereof
US10459321B2 (en) 2015-11-10 2019-10-29 Reald Inc. Distortion matching polarization conversion systems and methods thereof
CN108463667B (zh) 2015-11-13 2020-12-01 瑞尔D斯帕克有限责任公司 广角成像定向背光源
WO2017083583A1 (en) 2015-11-13 2017-05-18 Reald Spark, Llc Surface features for imaging directional backlights
WO2017120247A1 (en) 2016-01-05 2017-07-13 Reald Spark, Llc Gaze correction of multi-view images
CN105654874B (zh) 2016-03-18 2022-01-25 京东方科技集团股份有限公司 双视显示装置及其制造方法
EP3458897A4 (en) 2016-05-19 2019-11-06 RealD Spark, LLC DIRECTIONALLY WIDE IMAGING IMAGING BACKLIGHTS
WO2017205183A1 (en) 2016-05-23 2017-11-30 Reald Spark, Llc Wide angle imaging directional backlights
CN106019611A (zh) * 2016-07-21 2016-10-12 京东方科技集团股份有限公司 光控板、双视显示面板和显示装置
DE102016115270A1 (de) * 2016-08-17 2018-02-22 B. Braun Avitum Ag Medizintechnisches Gerät mit Monitoreinrichtung
WO2018129059A1 (en) 2017-01-04 2018-07-12 Reald Spark, Llc Optical stack for imaging directional backlights
WO2018138932A1 (ja) * 2017-01-27 2018-08-02 株式会社アスカネット 立体像結像装置の製造方法及び立体像結像装置
CN110192132B (zh) 2017-01-30 2021-09-10 镭亚股份有限公司 采用等离子体多束元件的多视图背光照明
JP6793261B2 (ja) 2017-02-28 2020-12-02 レイア、インコーポレイテッドLeia Inc. カラー調整された発光パターンを有するマルチビューバックライト
WO2018187154A1 (en) 2017-04-03 2018-10-11 Reald Spark, Llc Segmented imaging directional backlights
CN111183405A (zh) 2017-08-08 2020-05-19 瑞尔D斯帕克有限责任公司 调整头部区域的数字表示
GB201718307D0 (en) 2017-11-05 2017-12-20 Optovate Ltd Display apparatus
EP3707554B1 (en) 2017-11-06 2023-09-13 RealD Spark, LLC Privacy display apparatus
CN111919162B (zh) 2018-01-25 2024-05-24 瑞尔D斯帕克有限责任公司 用于隐私显示器的触摸屏
JP7495027B2 (ja) 2018-03-22 2024-06-04 リアルディー スパーク エルエルシー 光導波路、バックライト装置およびディスプレイ装置
GB201807747D0 (en) 2018-05-13 2018-06-27 Optovate Ltd Colour micro-LED display apparatus
EP3814680A4 (en) 2018-06-29 2022-05-04 RealD Spark, LLC PRIVACY DISPLAY OPTICAL STACK
US11073735B2 (en) 2018-07-18 2021-07-27 Reald Spark, Llc Optical stack for switchable directional display
CA3016788A1 (en) * 2018-09-07 2020-03-07 Canadian Bank Note Company, Limited Security device for security documents
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
EP4058830A4 (en) 2019-11-13 2024-01-24 RealD Spark, LLC DISPLAY DEVICE WITH EVEN OFF-AXIAL BRIGHTNESS REDUCTION
EP4073560A4 (en) 2019-12-10 2024-02-21 RealD Spark, LLC REFLECTION CONTROL OF A DISPLAY DEVICE
TW202204818A (zh) 2020-07-29 2022-02-01 美商瑞爾D斯帕克有限責任公司 光瞳照明裝置
CN111929958B (zh) * 2020-08-14 2022-03-25 昆山龙腾光电股份有限公司 单双视场可切换的显示面板、控制方法及显示装置
CN116194812A (zh) 2020-09-16 2023-05-30 瑞尔D斯帕克有限责任公司 车辆外部照明装置
US11892717B2 (en) 2021-09-30 2024-02-06 Reald Spark, Llc Marks for privacy display
WO2023154217A1 (en) 2022-02-09 2023-08-17 Reald Spark, Llc Observer-tracked privacy display
US11892718B2 (en) 2022-04-07 2024-02-06 Reald Spark, Llc Directional display apparatus
WO2024030274A1 (en) 2022-08-02 2024-02-08 Reald Spark, Llc Pupil tracking near-eye display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404471A (en) * 1980-01-11 1983-09-13 Winnek Douglas Fredwill Lenticular x-ray film with improved grating mask and intensifying screen
GB2278222A (en) * 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
GB2296099A (en) * 1994-12-16 1996-06-19 Sharp Kk Spatial light modulator
US5831765A (en) * 1995-05-24 1998-11-03 Sanyo Electric Co., Ltd. Two-dimensional/three-dimensional compatible type image display
JPH118864A (ja) * 1997-06-16 1999-01-12 Ricoh Co Ltd 立体画像表示装置
US5969850A (en) * 1996-09-27 1999-10-19 Sharp Kabushiki Kaisha Spatial light modulator, directional display and directional light source

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811611B2 (ja) * 1975-01-20 1983-03-03 シチズン時計株式会社 光電表示セルとその製造方法
JPH03230699A (ja) * 1990-02-05 1991-10-14 Sharp Corp 立体画像カラー液晶表示装置
JPH0850282A (ja) * 1994-05-30 1996-02-20 Sanyo Electric Co Ltd 表示装置の製造方法
JPH0850280A (ja) * 1994-08-08 1996-02-20 Sanyo Electric Co Ltd 表示パネル
JP2983891B2 (ja) * 1995-05-30 1999-11-29 三洋電機株式会社 立体表示装置
JP3434163B2 (ja) * 1997-03-28 2003-08-04 シャープ株式会社 立体画像表示装置
JP3290379B2 (ja) * 1997-06-19 2002-06-10 株式会社東芝 表示装置及びその製造方法
US6055103A (en) * 1997-06-28 2000-04-25 Sharp Kabushiki Kaisha Passive polarisation modulating optical element and method of making such an element
JPH11316368A (ja) * 1998-05-06 1999-11-16 Matsushita Electric Ind Co Ltd 反射型液晶表示装置の製造方法と反射型液晶表示装置
JP3653200B2 (ja) * 1998-10-02 2005-05-25 シャープ株式会社 表示装置の製造方法
JP2000305060A (ja) * 1999-04-23 2000-11-02 Matsushita Electric Ind Co Ltd 液晶表示装置の製造方法
JP2003029205A (ja) * 2001-07-13 2003-01-29 Dainippon Printing Co Ltd カラー立体表示装置
KR20040068680A (ko) * 2003-01-27 2004-08-02 삼성전자주식회사 고압 변압기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404471A (en) * 1980-01-11 1983-09-13 Winnek Douglas Fredwill Lenticular x-ray film with improved grating mask and intensifying screen
GB2278222A (en) * 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
GB2296099A (en) * 1994-12-16 1996-06-19 Sharp Kk Spatial light modulator
US5831765A (en) * 1995-05-24 1998-11-03 Sanyo Electric Co., Ltd. Two-dimensional/three-dimensional compatible type image display
US5969850A (en) * 1996-09-27 1999-10-19 Sharp Kabushiki Kaisha Spatial light modulator, directional display and directional light source
JPH118864A (ja) * 1997-06-16 1999-01-12 Ricoh Co Ltd 立体画像表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768424A (zh) * 2012-07-02 2012-11-07 京东方科技集团股份有限公司 双视角显示面板及其制造方法
US9304352B2 (en) 2012-07-02 2016-04-05 Boe Technology Group Co., Ltd. Two-way viewing angle display panel and method for fabricating the same

Also Published As

Publication number Publication date
JP4471785B2 (ja) 2010-06-02
KR20060134897A (ko) 2006-12-28
CN101105579A (zh) 2008-01-16
CN100576018C (zh) 2009-12-30
KR20050022955A (ko) 2005-03-09
GB0320358D0 (en) 2003-10-01
JP2008020933A (ja) 2008-01-31
JP4999173B2 (ja) 2012-08-15
KR100679189B1 (ko) 2007-02-07
KR100772758B1 (ko) 2007-11-01
JP2005078094A (ja) 2005-03-24
CN1617014A (zh) 2005-05-18
GB2405542A (en) 2005-03-02

Similar Documents

Publication Publication Date Title
CN100406964C (zh) 多视图定向显示器
US7518664B2 (en) Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
US7813042B2 (en) Multiple-view directional display
CN1306316C (zh) 多视图方向性显示器
US8154800B2 (en) Multiple-view directional display
CN105009583B (zh) 透明自动立体显示器
US7671935B2 (en) Display
CN100568052C (zh) 多视图定向显示器
CN1307481C (zh) 光切换设备
US20070008456A1 (en) Illumination system and a display incorporating the same
CN102857775A (zh) 显示装置
CN101242545A (zh) 2d-3d图像切换显示系统
CN102279469A (zh) 视差系统、面板、装置、显示方法及计算机可读介质
GB2415850A (en) Multiple view directional display operable in two orientations.
KR101467192B1 (ko) 영상분리표시장치
CN101738760B (zh) 像素结构、光学元件、液晶显示装置及其制造方法
GB2428129A (en) A multiple-view directional display
CN108469684B (zh) 一种透明显示器及一种显示系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080730

Termination date: 20130830