CN100371058C - 制造复合微孔膜的方法 - Google Patents

制造复合微孔膜的方法 Download PDF

Info

Publication number
CN100371058C
CN100371058C CNB2005100544730A CN200510054473A CN100371058C CN 100371058 C CN100371058 C CN 100371058C CN B2005100544730 A CNB2005100544730 A CN B2005100544730A CN 200510054473 A CN200510054473 A CN 200510054473A CN 100371058 C CN100371058 C CN 100371058C
Authority
CN
China
Prior art keywords
coating
polymer composition
precursor
scope
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100544730A
Other languages
English (en)
Other versions
CN1680008A (zh
Inventor
K·V·尼古因
D·K·西蒙斯
K·D·钱伯斯
J·C·蒙塔格尼诺
R·小福特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIKAD CO
Celgard LLC
Original Assignee
SIKAD CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIKAD CO filed Critical SIKAD CO
Publication of CN1680008A publication Critical patent/CN1680008A/zh
Application granted granted Critical
Publication of CN100371058C publication Critical patent/CN100371058C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • B29C55/026Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets of preformed plates or sheets coated with a solution, a dispersion or a melt of thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

一种制造复合微孔膜的方法包括下列步骤:用聚合物组合物涂敷无孔前体膜,然后拉伸经涂敷的无孔前体,拉伸步骤包括在第一温度和第一拉伸速率下进行第一次拉伸和在第二温度和第二拉伸速率下进行第二拉伸。第一次拉伸速率与第二次拉伸速率是不相同的。

Description

制造复合微孔膜的方法
技术领域
本发明公开了一种制造复合微孔膜的方法。
背景技术
微孔膜是众所周知的。例如,可参见R.Kesting的SyntheticPolymeric Membranes,2nd Edition,John Wiley & Sons,New York,NY(1985)。微孔膜有许多用途,包括例如在分离、过滤、扩散操作以及用作阻挡层方面的用途。这些广泛用途已在卫生设施、电化学装置、化学加工装置、药物制造装置、水纯化等中付诸实施。微孔膜的功能常常是具体用途与膜的结构(例如强度、孔径、孔隙度、孔弯曲度以及膜厚度)、膜的组成或化学性质的综合函数。膜的这些和其它变量往往必须适应具体用途的要求。
这种膜的功能选取可能会成为膜工程师们的一个难题。例如,最适用于特定用途的功能聚合物不可能成形为微孔膜或者即使可制成微孔膜也会在结构上存在缺陷。正在尝试将功能聚合物与另一种能较好地成形为微孔膜的聚合物相共混来形成微孔膜的方法。虽然这一方法在一定情况下是可行,但不总是可行的。还尝试了将功能聚合物涂敷在微孔膜上或层合在微孔膜上的方法。然而,这种方法常会导致微孔膜中的孔被功能聚合物堵死或被填满的结果。因此,还没有找到令人满意的解决方法。
美国专利公开2003/0104273公开了一种制备复合微孔膜的方法。该方法包括用可胶凝聚合物[0071段]涂敷于[0075段]无孔前体[0069段]上,然后对该涂布的前体进行拉伸形成微孔[0075段]。拉伸操作步骤包括在低温拉伸后再经高温拉伸的两步操作[0093-0095,0123-0124和0144段]。
然而,还需要提供一种更好的制造复合微孔膜的方法。
发明内容
制造复合微孔膜的方法包括下列步骤:用聚合物组合物涂敷无孔前体膜,然后对已涂的无孔前体进行拉伸。拉伸包括在第一温度和第一拉伸速率下实施第一次拉伸以及在第二温度和第二拉伸速率下实施第二次拉伸。第一拉伸速率与第二拉伸速率是不同的。
具体实施方式
复合微孔膜是一种拥有至少一种其至少一个表面上施加有微孔涂层的微孔基材的微孔膜。可在基材的一个表面或两个表面上施加有涂层。也可在基材的一个表面或两个表面上施加有多层涂层,一个面上的涂层可不同于另一面上的涂层。如下所述,也可在两基材之间施加有涂层(或多层涂层)。虽然本文讨论平片状膜,但该膜也可以是中空纤维膜。
基材必须是能通过CELGARD方法而制成微孔状结构的。CELGARD方法(也称作“挤出、退火、拉伸”或“干拉伸”方法)包括挤出半结晶聚合物,然后对该挤出的前体进行简单拉伸以形成多孔性(不使用溶剂或发生相转变),参见Kesting,Synthetic Polymeric Membranes,2nd,Edition,John Wiley & SonS,New York,NY(1985)。优选的半结晶聚合物是聚烯烃。最优选的是高密度聚乙烯(HDPE)和聚丙烯(PP)。HDPE的密度范围为0.94-0.97,优选为0.941-0.965。HDPE的分子量至多达500000,优选的范围为200000-500000。吹塑薄膜级的HDPE是优选的。优选的PP是薄膜级均聚物。
涂层不必是能通过CELGARD方法而形成微孔的。涂层可以是任何能为复合膜提供所需功能的聚合物、共聚物或共混物(这些聚合物组成将在下文详细说明)。本文所用术语“涂敷”包括将聚合物组合物沉积在基材上的几种可能的方法。其中一种方法(涂敷方法)是将含聚合物的溶液或聚合物熔体涂敷在基材上(例如浸涂、辊涂、舐涂、印涂、刷涂等),然后除去溶剂或使聚合物固结以使聚合物粘着在基材上。在另一方法(层合方法)中,先在基材上形成聚合物组合物的不连续膜,然后使该膜粘着在基材上。在另一方法(流延法)中,将聚合物组合物(或溶液或熔体)流延在基材上,然后使流延层粘着在基材上。再一个方法(共挤塑法)是使聚合物组合物与基材共挤塑,从而形成多层膜。上述各种方法对于将聚合物组合物涂敷到基材上来说都是等同可行的,选择哪种方法随聚合物组合物与基材的亲和力,聚合物组合物的成膜性和固结的聚合物组合物形成微孔的能力而定。上文所用术语“粘着”包括使用粘合剂或不使用粘合剂的情况。根据聚合物组合物,有可能需要使用助剂(例如用于改善聚合物组合物表面张力的助剂)或粘合剂以使聚合物易于粘着在基材上。
在上述各种方法中,可以溶液形态的聚合物组合物施加到基材上。这种溶液可以是简单溶液(例如溶剂加聚合物组合物或悬浮液或乳状液)或比较复杂的溶液如那些用于TIPS(热转换相分离)方法中或溶剂提取方法中的那些溶液。在那些采用较复杂的溶液的方法中,溶液将包含聚合物组合物、可提取组分(在某一温度下与聚合物组合物不互溶,而在另一温度下是可互溶的)以及溶剂(既能与聚合物组合物互溶又能与可提取组分互溶,并易于(与从聚合物组合物可提取组分相比较)从聚合物组合物与可提取组分的混合物(溶液)中除去)。除去溶剂后,通常采用浸提或其它提取技术除去可提取组分,从而在基材上形成微孔或部分微孔涂层。可提取组分可在拉伸前或拉伸后除去(下面讨论)。
聚合物组合物包括(但不受此限制)低密度聚乙烯(LDPE)、低分子量聚乙烯(LMWPE)、线形低密度聚乙烯(LLDPE)、氯化的聚乙烯和聚丙烯、氟聚合物(如聚偏氟乙烯(PVDF)和聚氟乙烯(PVF))、聚酰胺(PA,如尼龙)、聚酯(如PET、PBT、PEN)、聚酰亚胺、乙烯乙烯醇共聚物(EVOH)、乙烯酯酸乙烯酯共聚物(EVA)、聚醋酸乙烯酯、聚缩醛(PVAC)、乙烯甲基丙烯酸酯共聚物(EMA)、聚酮、纤维素衍生物、聚苯硫醚(PPS)、聚苯基砜(PPSU)、聚芳基醚砜(PES)、聚合的丙烯酸酯和甲基丙烯酸酯(DMA、PMMA)、有机硅、聚硅氧烷、聚氯乙烯(PVC)、聚吡咯、聚苯胺、聚氨基甲酸酯(PU)以及它们的共聚物和混合物。
就操作来说,基材是通过熔融和挤塑基材聚合物而成形(技术上已知称为CELGARD法)。由于引出速度远大于挤出速度,因此聚合物结晶以微原纤的形态沿纵向排列。可以认为,这些微原纤对垂直于纵向的折叠链横列层状微晶的形成起成核作用。这些横列层通过在温度刚好低于聚合物熔融温度(Tm)下退火而固结。这种经退火的基材也称为无孔膜前体。
然后将聚合物组合物施加在该前体上。如果采用涂敷法,则需制备聚合物溶液或聚合物熔体。可采用任何方便的方法如浸涂、喷涂、辊涂、印涂、刷涂将聚合物溶液或聚合物熔体涂敷在前体上。此后,除去溶剂(干燥)或使涂层固结,于是聚合物就粘着在前体上。如果采用层合法,则要制备聚合物膜。可采用任何方便的方法如压光(采用或不采用加热和/或加压)将膜施加在基材上,于是形成涂敷的前体。如果采用流延法,形成前体,并进行卷绕。此后,将溶液状或熔融状的聚合物组合物流延在退卷的前体上。如果采用共挤塑方法,使前体与聚合物组合物一起通过共挤塑模头挤出而形成多层无孔膜。一般来说,优选的是将聚合物组合物均匀地(即均匀的重量和/或厚度)涂敷在前体的表面上。根据需要,可将另一种无孔前体叠合在聚合物组合物上,从而形成夹心结构,即前体-聚合物组合物-前体结构。当然还可有其它变体。
然后使经涂敷的前体经受拉伸。拉伸是一种多步加工方法,最常用的是两步拉伸法。两步拉伸法包括低温拉伸和随后进行的高温拉伸。在每一拉伸步骤中,有三个主要变量:温度、拉伸速率和拉伸比。每一变量在两个拉伸步骤中是各不相同的。在本文中所采用的拉伸是单轴拉伸。
在低温拉伸步骤中,低温是指0-60℃,优选20-45℃。拉伸比是指2-100%,优选5-60%。拉伸速率是指100-2000%/分钟,优选200-1200%/分钟。
在高温拉伸步骤中,高温是指70-220℃,优选80-150℃。拉伸比是指50-400%,优选100-220%,拉伸速率是指10-200%/分钟,优选20-120%/分钟。
拉伸后,基材会被微孔化,涂层也可被微孔化。涂层的微孔性是随着基材上孔隙的形成而形成的。然而,如果涂层没有微孔或孔隙不足,则可通过随后的处理使涂层获得或改善孔隙度。优选的后续处理是提取步骤,在该步骤中,涂层中的惰性可提取组分是要被除去的。在此情况下,惰性可提取组分是在涂敷前混入聚合物溶液、熔体中或聚合物膜中的。在聚合物涂层中的惰性可提取组分必须保留至拉伸之后。拉伸后,除去可提取成分。
实施例
参照下面非限制性实施例对本发明作进一步的说明。
在下面实施例中,无孔前体是厚度为0.4密耳(10微米)的、熔体指数(ASTM D1238)为0.38克/10分钟、密度(ASTM D792)为0.961克/立方厚米)的吹塑级高密度聚乙烯(HDPE)和熔体指数(ASTMD1238@230℃/2160G)为1.5克/10分钟、密度(ASTM D1505)为0.905克/立方厘米的均聚物薄膜级聚丙烯(PP)。经挤塑的HDPE前体于进一步加工前在120℃退火10分钟。经挤塑的PP前体于进一步加工前在125℃退火10分钟。
对于实施例1-7和10-21中的所有经涂敷的试样来说,将聚合物组合物溶解在适当溶剂中,并将前体浸入该聚合物组合物溶液中30-60秒,然后在50℃的热风炉中干燥30分钟。对于实施例1-7和10-14来说,溶剂是甲苯,溶液是在80-90℃温度下制备的。对于实施例15-18来说,溶剂是丙酮,溶液是在40℃温度下制备的。对于实施例19-21来说,溶剂是2-丙醇,溶液是在室温下制备的。
对于实施例8-9中的所有层合试样来说,将聚合物组合物成形为薄膜,并使薄膜经加热粘合在前体膜上。LLDPE(线形低密度聚乙烯)通过热致相分离(TIPS)技术成形为薄膜。然后,将LLDPE薄膜在100℃下粘合在前体上。
然后,经涂敷的前体以两步拉伸方法拉伸成为复合微孔膜。该经涂敷的PE前体的拉伸条件如下:第一拉伸温度为室温,第一拉伸比为60%,第一拉伸速率为600%/分钟;随后的第二拉伸温度为100℃,第二拉伸比为100%,第二拉伸速率为100%/分钟。经涂敷的PP前体的拉伸条件如下:第一拉伸温度为室温,第一拉伸比为35%,第一拉伸速率为350%/分钟;随后的第二拉伸温度为120℃,第二拉伸比为105%,第二拉伸速率为105%/分钟。
在那些需要进行提取的实施例中,实施例1-4和13-14中的可提取材料(DBP-邻苯二甲酸二丁酯)是用甲醇在40℃下提取15分钟除去的,并在50℃的热风炉中干燥30分钟。
在下面表1中列出了试验结果。膜厚度是包括两面涂层的复合微孔膜的总厚度(在10磅/平方英寸下,10个示值的平均值),Gurley是按ASTM D726(B)测定的:采用Gurley透气度测定仪(4120型),在压力为12.2英寸水柱下,测定10立方厘米空气通过一平方英寸复合微孔膜产品所需的时间(秒)。百分比是聚合物在溶液中的重量百分比。
表1
  #   前体   聚合物材料   可提取组分   膜厚度   GURLEY
  (mil)   (sec)
  1   PE   4%LD102   8%DBP   1.04   25
  2   PE   8%LD102   8%DBP   2.0   20-30
  3   PE   8%LD102   16%DBP   2.1   10.0-15.0
  4   PE   8%PEWAX 1000   8%DBP   0.41   37
  5   PE   6%LDPE 102   无   1.50   220-430
  6   PE   8%PEWAX 1000+1%VISTALON 878   无   1.32   60
  7   PE   6%PEWAX 1000+2%X-1147   无   0.66   54
  8   PE   LLDPE(在PE中层合)   无   1.96   46.3
  9   PP   LLDPE(在PP中层合)   无   2.09   43.1
  10   PE   4%PEWAX1000+2%MAPEG 400DS   0.64   24
  11   PE   4%PEWAX1000+2%MAPEG 400DS   0.59   30
  12   PP   4%PEWAX1000+2%MAPEG 400DS   0.67   37
  13   PP   4%PP(氯化)   4%DBP   0.40   52
  14   PE   4%PP(氯化)   4%DBP   0.37   28
  15   PP   4%PVDF KYNAR 2800   无   0.76   14
  16   PP   6%PVDF KYNAR 2800   无   0.87   17
  17   PP   2%PVF   无   0.51   15
  18   PE   2%PVF   无   0.54   11
  19   PE   2.5%ETHOXTLATE X-1134   无   0.30   127
  20   PE   1.25%ETHOXYLATE X-1134   无   0.35   17
  21   PE   1.25%ETHOXYLATE X-1134   无   0.38   20
在不背离本发明的精神和基本特征的前提下,本发明可包括其它形态,因此,本发明范围应是由所附权利要求书所规定而不是上述说明书所指的。

Claims (9)

1.一种制造复合微孔膜的方法,该方法包括下列步骤:
用聚合物组合物涂敷无孔前体膜;和
拉伸经涂敷的无孔前体,该拉伸步骤还包括在范围为0-60℃的第一温度及范围为2-100%的第一拉伸比和200-1200%/分钟的第一拉伸速率下进行的第一次拉伸及在范围为70-220℃的第二温度及范围为50-400%的第二拉伸比和20-120%/分钟的第二拉伸速率下进行的第二次拉伸。
2.权利要求1的方法还包括从经拉伸的已涂敷前体中随后提取部分聚合物组合物的步骤。
3.权利要求1的方法,其中涂敷方法选自涂敷、层合、流延或共挤塑。
4.权利要求1的方法,其中聚合物组合物选自低密度聚乙烯、低分子量聚乙烯、线形低密度聚乙烯、氯化聚乙烯、氯化聚丙烯、含氟聚合物、聚酰胺、聚酯、聚酰亚胺、乙烯乙烯醇共聚物、乙烯醋酸乙烯酯共聚物、聚醋酸乙烯酯、聚缩醛、乙烯甲基丙烯酸酯共聚物、聚酮、纤维素衍生物、聚苯硫醚、聚(苯基砜)、聚芳基醚砜、聚合的丙烯酸酯、聚合的甲基丙烯酸酯、有机硅、聚硅氧烷、聚氯乙烯、聚吡咯、聚苯胺、聚氨基甲酸酯以及它们的共聚物中任一种或其混合物。
5.权利要求1的方法,其中第一温度范围为20-45℃。
6.权利要求1的方法,其中第一拉伸比范围为5-60%。
7.权利要求1的方法,其中第二温度范围为80-150℃。
8.权利要求1的方法,其中第二拉伸比范围为100-220%。
9.权利要求1的方法,其中在拉伸前将第二无孔前体施加于所述聚合物组合物上。
CNB2005100544730A 2004-03-09 2005-03-08 制造复合微孔膜的方法 Expired - Fee Related CN100371058C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/796,473 2004-03-09
US10/796,473 US20050202163A1 (en) 2004-03-09 2004-03-09 Method of making a composite microporous membrane

Publications (2)

Publication Number Publication Date
CN1680008A CN1680008A (zh) 2005-10-12
CN100371058C true CN100371058C (zh) 2008-02-27

Family

ID=34827613

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100544730A Expired - Fee Related CN100371058C (zh) 2004-03-09 2005-03-08 制造复合微孔膜的方法

Country Status (8)

Country Link
US (1) US20050202163A1 (zh)
EP (1) EP1574249A3 (zh)
JP (1) JP4262689B2 (zh)
KR (1) KR100649816B1 (zh)
CN (1) CN100371058C (zh)
CA (1) CA2496079A1 (zh)
SG (1) SG114789A1 (zh)
TW (1) TWI252808B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170153A1 (en) * 2004-02-02 2005-08-04 Celgard Inc. Printable thin microporous membrane
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
CN102131566B (zh) 2008-06-30 2013-09-18 3M创新有限公司 形成非对称膜的方法
JP2011526830A (ja) 2008-06-30 2011-10-20 スリーエム イノベイティブ プロパティズ カンパニー 再湿潤可能な非対称な膜の形成方法
US9393529B2 (en) 2008-06-30 2016-07-19 3M Innovative Properties Company Method of forming a hydrophilic membrane
US20100255376A1 (en) * 2009-03-19 2010-10-07 Carbon Micro Battery Corporation Gas phase deposition of battery separators
CN101704308B (zh) * 2009-10-30 2013-04-24 沧州明珠塑料股份有限公司 聚烯烃三层复合微孔膜的制备方法
CN101695869B (zh) * 2009-10-30 2012-05-30 沧州明珠塑料股份有限公司 聚烯烃微孔膜制备方法
WO2012073093A1 (en) * 2010-11-30 2012-06-07 Zhik Pty Ltd Manufacture of garment materials
US8911540B2 (en) 2012-05-01 2014-12-16 Case Western Reserve University Gas separation membrane
CN106233501B (zh) * 2014-03-19 2021-01-22 赛尔格有限责任公司 带压纹的微孔膜电池隔板材料及其制造与使用方法
CN104399375B (zh) * 2014-10-11 2016-07-06 广东工业大学 一种高密度聚乙烯/纤维素复合微孔膜的制备方法
US20220340700A1 (en) * 2019-07-02 2022-10-27 Asahi Kasei Kabushiki Kaisha Microwell film for bioassay, photosensitive resin composition for formation of the microwell film for bioassay, and method of manufacturing the microwell film for bioassay
CN111389244B (zh) * 2020-03-10 2022-10-11 武汉纺织大学 高剥离强度纳米纤维复合膜及其制备方法
KR102543297B1 (ko) * 2021-05-27 2023-06-14 (주)나라켐 셀룰로오스와 폴리케톤이 포함된 수지 복합체 및 그것을 제조하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741829A (en) * 1985-06-27 1988-05-03 Mitsubishi Rayon Co., Ltd. Composite hollow fibers and method of making same
EP0498414A2 (en) * 1991-02-08 1992-08-12 Mitsubishi Rayon Co., Ltd. Porous hollow fiber membrane of polypropylene and production thereof
JP2000198866A (ja) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd 通流体性微多孔フイルム及びその製造方法
CN1457517A (zh) * 2001-03-05 2003-11-19 Lg化学株式会社 采用多组分复合膜的电化学电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620956A (en) * 1985-07-19 1986-11-04 Celanese Corporation Process for preparing microporous polyethylene film by uniaxial cold and hot stretching
JPH0712410B2 (ja) * 1985-08-23 1995-02-15 大日本インキ化学工業株式会社 気体分離膜の製造方法
US5227101A (en) * 1988-03-31 1993-07-13 The Dow Chemical Company Process of making microporous membranes from poly(etheretherketone)-type polymers and low melting point crystallizable polymers
US4865930A (en) * 1988-10-27 1989-09-12 Hughes Aircraft Company Method for forming a gas-permeable and ion-permeable membrane
JP3525390B2 (ja) * 1995-03-03 2004-05-10 旭化成ケミカルズ株式会社 ポリエチレン微多孔膜および製造方法
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
JPH10204197A (ja) * 1997-01-21 1998-08-04 Nitto Denko Corp 多孔質膜およびそれを用いた電池用セパレータ並びにその製造方法
WO1999021914A1 (fr) * 1997-10-23 1999-05-06 Tonen Sekiyukagaku Kk Procede de preparation d'un film polyolefinique microporeux hautement permeable
KR100409017B1 (ko) * 2000-06-23 2003-12-06 주식회사 엘지화학 다성분계 복합 분리막 및 그의 제조방법
CN1258234C (zh) * 2000-08-12 2006-05-31 Lg化学株式会社 多组分复合膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741829A (en) * 1985-06-27 1988-05-03 Mitsubishi Rayon Co., Ltd. Composite hollow fibers and method of making same
EP0498414A2 (en) * 1991-02-08 1992-08-12 Mitsubishi Rayon Co., Ltd. Porous hollow fiber membrane of polypropylene and production thereof
JP2000198866A (ja) * 1999-01-06 2000-07-18 Asahi Chem Ind Co Ltd 通流体性微多孔フイルム及びその製造方法
CN1457517A (zh) * 2001-03-05 2003-11-19 Lg化学株式会社 采用多组分复合膜的电化学电池

Also Published As

Publication number Publication date
JP2005254814A (ja) 2005-09-22
KR100649816B1 (ko) 2006-11-27
US20050202163A1 (en) 2005-09-15
EP1574249A3 (en) 2006-07-05
CN1680008A (zh) 2005-10-12
CA2496079A1 (en) 2005-09-09
TWI252808B (en) 2006-04-11
KR20060043450A (ko) 2006-05-15
JP4262689B2 (ja) 2009-05-13
SG114789A1 (en) 2005-09-28
EP1574249A2 (en) 2005-09-14
TW200531835A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
CN100371058C (zh) 制造复合微孔膜的方法
KR101151189B1 (ko) 기체 분리막
TWI406891B (zh) 聚烯烴多層微多孔膜之製法
US11420416B2 (en) Biaxially oriented microporous membrane
JP3347854B2 (ja) ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP5026981B2 (ja) ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP4755339B2 (ja) 耐破壊性ポリオレフィン膜
JP4902537B2 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
TWI355962B (zh)
CN107362693A (zh) 双轴取向的多孔膜、复合材料以及制造和使用方法
US20180272290A1 (en) Asymmetric membranes and related methods
KR102157492B1 (ko) 적층 폴리올레핀 미세 다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
US20140094076A1 (en) Microporous Materials With Fibrillar Mesh Structure and Methods of Making and Using the Same
KR20110096077A (ko) 에틸렌-클로로트라이플루오로에틸렌 공중합체로부터의 미세다공성 재료 및 그의 제조 방법
TWI730999B (zh) 積層聚烯烴微多孔膜、電池用隔膜及其製造方法以及積層聚烯烴微多孔膜捲繞體之製造方法
JP6651997B2 (ja) 積層多孔フィルム及びその製造方法
JP2018143993A (ja) 積層不織布及びベントフィルター
US20230294387A1 (en) Improved multilayer porous membranes and methods of making the same
JPH01297435A (ja) 複合多孔質フイルムの製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080227