CN100367474C - 一种多孔氧化硅膜的制备方法 - Google Patents

一种多孔氧化硅膜的制备方法 Download PDF

Info

Publication number
CN100367474C
CN100367474C CNB031649521A CN03164952A CN100367474C CN 100367474 C CN100367474 C CN 100367474C CN B031649521 A CNB031649521 A CN B031649521A CN 03164952 A CN03164952 A CN 03164952A CN 100367474 C CN100367474 C CN 100367474C
Authority
CN
China
Prior art keywords
silicon oxide
oxide film
porous silicon
surfactant
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB031649521A
Other languages
English (en)
Other versions
CN1495868A (zh
Inventor
山田和弘
藤井宣年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of CN1495868A publication Critical patent/CN1495868A/zh
Application granted granted Critical
Publication of CN100367474C publication Critical patent/CN100367474C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Silicon Compounds (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明的目的是提供具有一定机械强度的多孔氧化硅膜的制备方法。使用表面活性剂,一种或多种具有由Du Nouy法表示的0.1wt%浓度和在25℃下45mN/m或更高的表面张力的非离子表面活性剂作为表面活性剂,通过混合此非离子表面活性剂、可水解的烷氧基硅烷化合物、水和醇而得到一种混合溶液,将该混合溶液涂布于基材上,然后将混合溶液中的表面活性剂分解或烧尽而形成多孔氧化硅膜。在此基础上,该表面活性剂适合于由化学式1表示。可选择地,可使用这样一种溶液,其中将二甲基二烷氧基硅烷化合物进一步加入该混合溶液中。OH(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)xH 化学式1x和y分别表示整数,且1≤x≤185,5≤y≤70。

Description

一种多孔氧化硅膜的制备方法
技术领域
本发明涉及一种多孔氧化硅膜的制备方法。多孔氧化硅膜由于其具有优良的低相对介电常数(低-k)而作为半导体绝缘薄膜,或者由于其具有优良的低折射率(低-N)而作为显示器上的低折射率光学薄膜。
背景技术
通过热处理可水解的烷氧基硅烷化合物、水一醇型溶剂和在基片上成孔的材料的混合物的溶液得到多孔氧化硅膜,该薄膜有望用作大规模集成电路等的铜导线夹层绝缘薄膜的半导体材料,或是作为能有效带走放射于透明导电薄膜上的叠层的内部光的显示材料。此外,多孔氧化硅膜可应用于新的用途,例如,防止从太阳能电池外面传入的反射光。
对多孔氧化硅膜的这种关注除了其通过溶胶凝胶法的湿法加工工艺的简单性之外,还由于其低于2.5的低比(specific)介电常数和低折射率性能(例如,参见非专利文献1和2)。
然而,在另一方面,一些关注是由于多孔结构而导致了在机械强度方面的不足。例如,在半导体工艺中,当进行化学机械抛光(CMP)以形成铜的双波纹线路结构时,或当用结合机进行高速引线结合时,多孔膜有时由于结构强度的不足而被破坏。这种强度上的不足和由于吸附了湿气进入微孔而导致绝缘性能的下降的可能性的存在,都是阻止多孔膜被使用的原因。此外,在显示器领域,为了改善多孔膜在强度上的不足,有时将一个用于增强强度的加强层作为中间层而插入叠层结构中。由于上述改进不符合简化多层结构的要求,多孔氧化硅膜在强度上的不足以及为减少层的厚度和表面平整度而进行的改进已成为一个重要的问题。
非专利文献1
H.Hanahata,S.Mat8uno,M.Miyamoto,T.Ioka和T.Tanabe,“Proc.Advanced Metallization Conf.”,2000,第103页
非专利文献2
K.Suzuki,Y.Nakata,I.Sugiura,T.Owada,S.Fukuyama和E.Yano,“Proc.Advanced Metallization Conf.”,2001,第4页。
鉴于前面所述的问题,本发明的一个目的是提供一种多孔氧化硅膜的制备方法,这种多孔氧化硅膜的机械强度能够克服已经指出的在强度方面的不足。在这种情况下要求的强度可认为,例如在半导体领域和显示器领域,与实际水平一致。
发明内容
为了达到上述的目的,本发明提供一种多孔氧化硅膜的制备方法,使用一种可水解的烷氧基硅烷化合物、水、醇和表面活性剂,在此基础上,使用至少一种含有依照Du Nouy法表示的0.1wt%浓度且其表面张力在25℃时为45mN/m或更大的非离子表面活性剂作为表面活性剂,将通过混合此非离子表面活性剂、烷氧基硅烷化合物、水一醇型溶剂得到的混合溶液涂于基材表面,并且把混合溶液中的表面活性剂分解或烧尽。
由于通过煅烧而使上述的表面活性剂分解或烧尽从而形成的多孔氧化硅膜经湿法处理例如溶胶凝胶法后产生很多微孔,其贯穿表面活性剂的液晶模板,有高的表面张力,因此微孔的强度增强了。并且,由于形成了许多微孔,整个薄膜的强度提高了,并且所形成的多孔氧化硅膜有足够的机械强度。前述的DuNouy法在各种表面张力的测量方法中被分类为借助环形法的静态测量方法。
基于此,适用的非离子表面活性剂的例子是聚氧乙烯一聚氧丙烯的缩合物,其由化学式1表示:
OH(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)xH    化学式1
其中x和y分别表示整数,且1≤x≤185,5≤y≤70。
以上化学式1表示的缩合物是一种有长链骨架的直链结构,当其处于高于临界胶束浓度的某一特定浓度时可以形成各种液晶形式。所得到的多孔氧化硅膜的微孔穿过液晶模板而在一个纵向方向特别长的结构中形成。此外,由于微孔之间的氧化硅壁厚度均匀,当施加应力时,可获得高的强度结构而不会出现应力集中。
上述混合溶液的合适例子是,8-50摩尔的水和0.1-0.5摩尔的由上述(化学式1)表示的聚氧乙烯一聚氧丙烯缩合物与1摩尔的烷氧基硅烷化合物混合。
此外,更优选的是,将0.05-0.5摩尔由以下化学式2表示的二甲基二烷投氧基硅烷化合物加入到上述混合溶液中,
Si(CH3)2(OR)2    化学式2
其中取代基R代表甲基或乙基。
由此得到的混合溶液为8-50摩尔的水、0.1-0.5摩尔的聚氧乙烯-聚氧丙烯缩合物(化学式1)和0.05-0.5摩尔的二甲基二烷氧基硅烷化合物(化学式2)与1摩尔的烷氧基硅烷化合物混合。
虽然使用上述混合溶液形成的多孔氧化硅膜,通过分解或烧尽此混合溶液中的表面活性剂可以形成条虫状微孔结构(这可以由断面透射电子显微镜(TEM)观察到),但此多孔氧化硅膜有相当的强度,其强度不低于具有如六角边形这样的周期性结构的多孔膜的强度。
本发明的多孔氧化硅材料的制备方法,其包括热处理通过酸性水解或碱性水解烷氧基硅烷化合物溶液而得到的溶液(多孔氧化硅材料的前体),蒸发溶剂、水和在此前体溶液中的酸或碱催化剂,然后分解并且除去表面活性剂以获得多孔氧化硅材料。
此外,当在上述热处理之前,通过旋涂或类似方法将多孔氧化硅材料的前体溶液涂布于基材以形成材料时,这种包括涂布的制备方法成为在基材上制备多孔氧化硅膜的步骤的一部分。
作为多孔氧化硅材料的前体,使用硅的烷氧基化物例如四乙氧基硅烷(下文也称做TEOS)。水解的催化剂包括酸性的和碱性的。至于催化剂的例子,在酸性水解情况下可以使用无机酸例如硝酸和盐酸,和有机酸例如甲酸。在碱性水解情况下可以使用氨水或其类似物。
优选使用非离子表面活性剂例如用上述(化学式1)表示的聚氧乙烯-聚氧丙烯缩合物作为表面活性剂。由于该表面活性剂被分解,在所得到的氧化硅材料上产生大量的微孔,倘若如上所述薄膜形成于基材上,则形成此多孔薄膜结构。
并且,通过断面透射电子显微镜已经观察并证实了薄膜结构是由该表面活性剂的分解或烧尽而形成的条虫状微孔结构。尽管如此,已经发现这种薄膜结构的强度不低于具有如六角形这样的周期性结构多孔膜的强度。
作为前体溶液中使用的物质的量,将8-50摩尔的水,0.1-0.5摩尔的聚氧乙烯一聚氧丙烯缩合物加入到1摩尔的烷氧基硅烷化合物中作为前体。更优选的例子是加入0.05-0.5摩尔的二甲基二烷氧基硅烷化合物(由化学式2表示)到上述混合溶液中,即,将8-50摩尔的水,0.1-0.5摩尔的聚氧乙烯-聚氧丙烯缩合物(化学式1)和0.05-0.5的二甲基二烷氧基硅烷化合物(化学式2)与1摩尔的烷氧基硅烷化合物混合。
如上述所述,多孔氧化硅材料的前体溶液通过传统的涂布方法例如,旋涂涂于半导体基材上,然后用众所周知的红外线加热炉进行热处理,将水-醇型溶剂、酸或氨、表面活性剂和其他材料一起蒸发以形成多孔氧化硅膜。因此,在此情况下热处理的条件并不要求特别地限定,只要在该条件下可以使溶剂、酸和氨蒸发从而得到多孔膜即可。
为了得到具有低的相对介电常数的多孔膜,优选,主要是将溶剂在约50℃到350℃的空气中进行处理蒸发,继而在一定温度下(例如250℃到500℃)进行热处理,使表面活性剂和其他的有机材料蒸发一段时间,该时间段使得所产生的多孔膜结构不会被毁坏。
由此得到的多孔氧化硅膜显示具有显著的低相对介电常数和低折射率的特性,具有高强度,并且夹层绝缘膜在半导体工艺和显示器领域中具有足够的实际机械强度。
此外,在本发明中,作为多孔氧化硅材料的前体,优选使用烷氧硅烷化合物例如TEOS。例如,通过使用此化合物,由加入的表面活性剂的类型和数量的配合,可以制备空隙率60或更高的低相对介电常数的夹层绝缘层。当空隙率增长为较高时,例如当空隙率达到80%时,构成绝缘薄膜的材料对物理性能的贡献相对于比介电常数变小,并由于空气的贡献成为主要的,从而可以获得具有很低相对介电常数的夹层绝缘膜。此外,甚至在当用可水解的醇盐代替烷氧基硅烷的化合物时,也能制得使用烷氧基硅烷合物时类似的多孔膜。作为醇盐例如由属于元素周期表第4A族的钛、锆衍生的醇盐可用作Ti(OC3H7)4和Zr(OC4H9)4
附图说明
图1(a)和(b)是由实施例1形成的多孔氧化硅膜的SEM照片;
图2(a)和(b)是由实施例2形成的多孔氧化硅膜的SEM照片;
图3(a)和(b)是由实施例3形成的多孔氧化硅膜的SEM照片;
图4(a)和(b)是由实施例3形成的多孔氧化硅膜的TEM照片。
具体实施方式
以下参考附图对本发明的实施例进行解释。
实施例1
在室温下,于在乙醇中的强酸性环境中,均匀搅拌1摩尔的TEOS,11摩尔的水,和作为非离子表面活性剂的平均分子量为944的由化学式3表示的L31,以制备一种透明的混合溶液。
OH(CH2CH2O)(CH(CH(CH3)CH2O)15(CH2CH2O)H    化学式3
在此基础上,依照Du Nouy法测得的L31的表面张力为46.9mN/m(0.1wt%浓度,25℃)。此时制备四种溶液,其中将L31分别以0.25,0.31,0.45和0.73摩尔的量加入1摩尔TEOS中,然后将它们作为涂布溶液,
在每一种涂布溶液都以2500rpm的速率旋涂于半导体硅基材上后,将此基材首先在130℃于大气压下煅烧1小时,然后在400℃下在空气中用公知的红外线加热炉煅烧1小时。进行这些处理所需要的条件,即温度条件、温升时间和保留时间并没有严格的限制,但在这样的条件范围内所得到的多孔氧化硅膜的质量性能不能下降。此外,最终,含有在N2中的六甲基二硅氮烷(以下也称作HMDS)的混合蒸汽于1kPa下被引入公知的红外加热炉,在400℃下热处理30分钟,制成一种疏水的多孔氧化硅膜。
对于由每种涂布溶液而制得的多孔氧化硅膜,根据水银探针法在1MHz条件下测定相对介电常数,根据纳米印痕(nanoindentation)法测定弹性模量和硬度所得结果示于下表1中。
表1
  L31/TEOS摩尔比   相对介电常数  弹性模量(GPa)  硬度(GPa)
  0.25   2.6  9.2  0.89
  0.31   2.4  6.2  0.64
  0.45   2.2  4.7  0.49
  0.73   2.0  5.7  0.41
如表1所示,可以看出随着L31的量的增加,所形成的多孔氧化硅膜的相对介电常数逐渐降低。另一方面,随着L31的量的增加,由于溶液的表面张力和粘度的增加,它变得很难涂于基材上,特别地,变得很难在基材上均一地涂布并且具有形成大面积,例如8到12英寸的薄片和类似物的多孔氧化硅膜。
此外,在实施例1中所得多孔氧化硅膜的扫描电子显微镜(SEM)照片的例子(L31/TEOS=0.73)示于图1(a)和(b)中。
从图1的照片中可以看出,虽然由测量的相对介电常数假定的多孔氧化硅膜的孔隙率为40%或更高,但从SEM照片中没有观察到孔,只是形成了一些约几纳米的细小孔。
比较例1-3
当将先前的多孔氧化硅膜(LKD5109由JSR公司造,ALCAP-S5100由AsahiKasei公司,造多孔氧化硅由Fujitsu Limited公司造)与实施例1中L31的摩尔比为0.73进行对比时,就得到了如下表2中的结果。使用633nm波长在光谱椭圆对称法中的折射率值,测定实施例1中的折射率,比较例1使用文献中公布的数值,弹性模量和硬度除外(它们是通过测量得到的)。
表2
  多孔膜种类   相对介电常数   折射率   弹性模量(GPa)   硬度(GPa)
 实施例1   (L31/TEOS=0.73)   2.0   1.21   5.7   0.41
 比较例1   LKD5109   2.2   1.25   3.2   0.45
 比较例2   ALCAP5100   2.2   1.27   3.3   -
 比较例3   多孔氧化硅   2.20-2.25   1.275   5.5-6.0   0-0.7
从表2可以看到,虽然本发明所制备的多孔氧化硅膜与现有的材料相比具有较低的相对介电常数和较低的折射率,但本发明的膜同时具有高弹性模量和相当高的硬度。
实施例2
在室温下,于在乙醇中的强酸性环境中,均匀搅拌0.85摩尔TEOS,11摩尔水0.15摩尔二甲基二甲氧基硅烷(下文也简称为DMDMOS)和0.017摩尔作为非离子表面活性剂的平均分子量为4643的由化学式4表示的P103,以制备透明的混合溶液。
OH(CH2CH2O)15(CH(CH3)CH2O)55(CH2CH2O)15H    化学式4
其后,将0.11摩尔由化学式3表示的L31与上述混合溶液混合,制备一种均匀的混合溶液。在此,在Du由Du Nouy法测得的P103的表面张力为34.4mN/m(0.1wt%浓度25℃)。
使用这种混合溶液作为涂布溶液,在与实施例1同样的条件下形成多孔氧化硅膜,分别测量其相对介电常数、弹性模量和硬度,并将所得结果示于下表3中。
比较例5
除了用0.053摩尔的P103(用化学式4表示)代替L31(用化学式3表示)以外,使用与实施例2相同的方法,制备涂布溶液。由此形成多孔氧化硅膜,分别测量其相对介电常数、弹性模量和硬度,所得到的结果示于下表3中。
表3
  表面活性剂种类   相对介电常数 弹性模量(GPa) 硬度(GPa
 实施例2   P103+L31   1.85 4.2  0.35
 比较例5   仅为P103   1.83 1.5  0.16
从表3可以看出,加入L31形成的多孔氧化硅膜比仅P103形成的膜的机械强度增加了2倍,同时二者显示出相等的介电常数。
此外,由实施例2得到的多孔氧化硅膜的扫描电子显微镜(SEM)照片示于图2(a)和(b)中。
从图2的照片可以看出,由实施例2得到的多孔氧化硅膜的光滑度优于实施例1,此外,也可以看出,在实施例1中看不到孔,只是形成一些约几个纳米的细小孔。
实施例3
在室温下,于在乙醇中的强酸性环境中,均匀搅拌0.85摩尔的TEOS,11摩尔的水0.15摩尔的二甲基二乙氧基硅烷(以下也简称为DMDEOS)和0.12摩尔作为非离子表面活性剂的平均分子量为2300的以化学式5表示的P45,以制备透明混合溶液。
OH(CH2CH2O)13(CH(CH3)CH2O)20(CH2CH2O)13H  化学式5
在此基础上,依照Du Nouy法测得的P45的表面张力为46.3mN/m(0.1wt%浓度25℃)。
在该混合溶液作为涂布溶液以1200rpm的速率旋涂于半导体硅基材上后,将此基材使用公知的红外线加热炉在空气中于400℃下煅烧1小时。升温到400℃的时间为15分钟。对于这些处理必要的条件,即升温时间和保留时间没有特别的限定,但在这样的条件范围内所得到的多孔氧化硅膜的薄膜性能不能下降。此外,最终,包含在N2中的HMDS的混合蒸汽于1kPa的压力下被引入公知的红外加热炉,然后在400℃下热处理1小时以得到疏水的多孔氧化硅膜。
至于得到的多孔氧化硅膜,在与实施例1表2中相同的条件下分别测量其相对介电常数、折射率、弹性模量和硬度,并且将所得结果示于下表4中。
此外,发现,当不将DMDEOS加入到前述的涂布溶液中时,所得多孔氧化硅膜的孔结构是二维的密排六方结构(六角形序列),并且相对介电常数升高。
比较例6-8
先前的多孔氧化硅膜的性质已经列于表下4中(LKD5109 JSR公司制备,ALCAP-S5100Asahi Kasei公司制备,多孔氧化硅由Fujitxu Limited公司制备)。比较例6中除了弹性模量和硬度是通过测量得到,其它数据来源于公开的文献。
表4
  多孔膜种类   相对介电常数   折射率   弹性模量(GPa)   硬度(GPa)
 实施例3   (P45/TEOS=0.12)   2.2   1.218   5.0   0.50
 比较例6   LKD5109   2.2   1.250   3.2   0.45
 比较例7   ALCAP5100   2.2   1.270   3.3   -
 比较例8   多孔氧化硅   2.20-2.25   1.275   5.5-6.0   0-0.7
从表4可以看出,虽然本发明制备的多孔氧化硅膜与现有技术相比显示出相同的相对介电常数,但本发明的膜具有低折射率、高弹性模量和高硬度。
此外,由实施例3得到的多孔氧化硅膜的表面和横截面的扫描电子显微镜(SEM)照片示于图3(a)和(b)。
由图3的照片可以看出,由实施例3制得的多孔氧化硅膜与实施例1和2的一样,观察不到孔,并且形成的约几个纳米的细小孔用SEM无法探查到。
由实施例3得到的多孔氧化硅膜,其表面和横截面的透射电子显微镜(TEM)照片示于图4(a)和(b)。在此,通过染色法填充RuO4到观测样品膜的孔中,微孔显示成黑点。
从图4的照片可以看出,由实施例3所得到的多孔氧化硅膜具有孔结构,其中孔径2到4nm的微孔均匀分散,同时以条虫状孔方式连接。
从上面的解释可以看出,根据本发明,通过加入表面张力相对大的非离子表面活性剂,可形成机械强度极佳的多孔氧化硅膜。此外,由湿法和热处理形成薄膜的方法是简单的。
此外,通过除了上述表面活性剂以外还加入二甲基二烷氧基硅烷化合物,这使所得到的多孔氧化硅膜具有条虫状微孔结构,但是其强度并不低于具有如六角形结构的周期性结构的那些。
并且,由于所形成的多孔氧化硅膜保留有低相对介电常数和低折射率并具有极佳的机械强度,因此该多孔氧化硅膜具有实际需要的性能,例如在半导体领域作为夹层绝缘膜(具有低相对介电常数)和在显示器领域作为低折射率膜。

Claims (6)

1.一种用可水解烷氧基硅烷化合物、水、醇和表面活性剂制备多孔氧化硅膜的方法,该形成多孔氧化硅膜的方法包括使用一种或多种具有依照Du Nouy法表示的0.1wt%浓度且其表面张力在25℃下为45mN/m或更大的非离子表面活性剂作为表面活性剂,将通过混合该非离子表面活性剂、烷氧基硅烷化合物、水和醇所得的混合溶液涂布于基材上,然后分解或烧尽混合溶液中的表面活性剂;
其中向混合溶液中再加入0.05到0.5摩尔的由化学式2表示的二甲基二烷氧基硅烷化合物,
Si(CH3)2(OR)2    化学式2
其中取代基R代表甲基或乙基。
2.根据权利要求1所述的多孔氧化硅膜的制备方法,其中非离子表面活性剂包括由化学式1表示的聚氧乙烯-聚氧丙烯缩合物,
OH(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)xH    化学式1
其中x和y分别表示整数,且1≤x≤185,5≤y≤70。
3.根据权利要求2所述的多孔氧化硅膜的制备方法,其中混合溶液中相对于1摩尔烷氧基硅烷化合物的混合比是水为8到50摩尔,由化学式1表示的聚氧乙烯-聚氧丙烯缩合物为0.1到0.5摩尔。
4.根据权利要求1至3中任何一项所述的多孔氧化硅膜的制备方法,其中通过混合阳离子或其它非离子表面活性剂至所述非离子表面活性剂中而得到的混合表面活性剂被用作表面活性剂。
5.根据权利要求求1至3中任何一项所述的多孔氧化硅膜的制备方法,其中在由表面活性剂分解或烧尽而形成的氧化硅膜中的条虫状微孔结构可通过断面透射电子显微镜观察到。
6.根据权利要求4所述的多孔氧化硅膜的制备方法,其中在由表面活性剂分解或烧尽而形成的氧化硅膜中的条虫状微孔结构可通过断面透射电子显微镜观察到。
CNB031649521A 2002-08-27 2003-08-27 一种多孔氧化硅膜的制备方法 Expired - Lifetime CN100367474C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP247190/2002 2002-08-27
JP2002247190 2002-08-27
JP032189/2003 2003-02-10
JP2003032189A JP4284083B2 (ja) 2002-08-27 2003-02-10 多孔質シリカ膜の形成方法

Publications (2)

Publication Number Publication Date
CN1495868A CN1495868A (zh) 2004-05-12
CN100367474C true CN100367474C (zh) 2008-02-06

Family

ID=31996097

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031649521A Expired - Lifetime CN100367474C (zh) 2002-08-27 2003-08-27 一种多孔氧化硅膜的制备方法

Country Status (5)

Country Link
US (1) US6946161B2 (zh)
JP (1) JP4284083B2 (zh)
KR (1) KR100890539B1 (zh)
CN (1) CN100367474C (zh)
TW (1) TWI284140B (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292190A (ja) * 2003-03-25 2004-10-21 Univ Shinshu 二酸化ケイ素薄膜とその製造法
JP4724384B2 (ja) * 2004-06-08 2011-07-13 キヤノン株式会社 電気泳動表示素子及び電気泳動表示素子の駆動方法
CN1596035B (zh) * 2004-06-24 2010-05-12 同济大学 一种硅微型驻极体声传感器储电膜的化学表面修正方法
JP2006036598A (ja) * 2004-07-28 2006-02-09 Ube Nitto Kasei Co Ltd 多孔質シリカ系薄膜の製造方法、多孔質シリカ系薄膜及び構造物
US20080316404A1 (en) * 2004-12-25 2008-12-25 Matsushita Electric Works, Ltd. Liquid Crystal Display Unit
TWI389844B (zh) * 2005-02-15 2013-03-21 Ulvac Inc Modified porous silicon dioxide film, a modified porous silicon dioxide film obtained by the manufacturing method, and a semiconductor device formed by modifying the porous silicon dioxide film
JP4894153B2 (ja) * 2005-03-23 2012-03-14 株式会社アルバック 多孔質膜の前駆体組成物及びその調製方法、多孔質膜及びその作製方法、並びに半導体装置
JP5002135B2 (ja) * 2005-06-16 2012-08-15 株式会社アルバック 超低屈折率膜の作製方法
US20070074757A1 (en) * 2005-10-04 2007-04-05 Gurdian Industries Corp Method of making solar cell/module with porous silica antireflective coating
US8153282B2 (en) * 2005-11-22 2012-04-10 Guardian Industries Corp. Solar cell with antireflective coating with graded layer including mixture of titanium oxide and silicon oxide
US20070113881A1 (en) * 2005-11-22 2007-05-24 Guardian Industries Corp. Method of making solar cell with antireflective coating using combustion chemical vapor deposition (CCVD) and corresponding product
JP5030478B2 (ja) * 2006-06-02 2012-09-19 株式会社アルバック 多孔質膜の前駆体組成物及びその調製方法、多孔質膜及びその作製方法、並びに半導体装置
US20080072956A1 (en) * 2006-09-07 2008-03-27 Guardian Industries Corp. Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
US7821637B1 (en) 2007-02-22 2010-10-26 J.A. Woollam Co., Inc. System for controlling intensity of a beam of electromagnetic radiation and method for investigating materials with low specular reflectance and/or are depolarizing
US7767253B2 (en) 2007-03-09 2010-08-03 Guardian Industries Corp. Method of making a photovoltaic device with antireflective coating
EP2130797B1 (en) * 2007-03-13 2017-01-11 Mitsubishi Chemical Corporation Silica porous body, laminate and composition for optical use, and method for producing silica porous body
US8237047B2 (en) * 2007-05-01 2012-08-07 Guardian Industries Corp. Method of making a photovoltaic device or front substrate for use in same with scratch-resistant coating and resulting product
US20080295884A1 (en) * 2007-05-29 2008-12-04 Sharma Pramod K Method of making a photovoltaic device or front substrate with barrier layer for use in same and resulting product
US8445774B2 (en) * 2007-07-26 2013-05-21 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US8450594B2 (en) * 2007-07-26 2013-05-28 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product and photovoltaic device comprising same
US20090075092A1 (en) * 2007-09-18 2009-03-19 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US20090101209A1 (en) * 2007-10-19 2009-04-23 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US8319095B2 (en) * 2007-11-27 2012-11-27 Guardian Industries Corp. Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US8114472B2 (en) * 2008-01-08 2012-02-14 Guardian Industries Corp. Method of making a temperable antiglare coating, and resulting products containing the same
US20090181256A1 (en) * 2008-01-14 2009-07-16 Guardian Industries Corp. Methods of making silica-titania coatings, and products containing the same
US8668961B2 (en) * 2008-07-31 2014-03-11 Guardian Industries Corp. Titania coating and method of making same
US7955574B2 (en) * 2008-10-01 2011-06-07 Battelle Memorial Institute Porous thin film and process for analyte preconcentration and determination
JP5370241B2 (ja) * 2009-03-31 2013-12-18 三菱化学株式会社 シリカ多孔質体の製造方法
US8617641B2 (en) * 2009-11-12 2013-12-31 Guardian Industries Corp. Coated article comprising colloidal silica inclusive anti-reflective coating, and method of making the same
JP5777278B2 (ja) * 2009-12-01 2015-09-09 キヤノン株式会社 光学素子の製造方法
KR100984864B1 (ko) * 2010-07-07 2010-10-04 주식회사 힌트 회전 칫솔
US9272949B2 (en) 2010-07-09 2016-03-01 Guardian Industries Corp. Coated glass substrate with heat treatable ultraviolet blocking characteristics
TWI435454B (zh) 2010-10-25 2014-04-21 Au Optronics Corp 太陽能電池
JP5988817B2 (ja) * 2012-10-12 2016-09-07 株式会社アルバック 多孔質シリカ膜前駆体組成物、多孔質シリカ膜の製造方法及び多孔質シリカ膜並びに半導体素子
CN103979543B (zh) * 2014-05-08 2015-12-30 新疆大学 一种多孔硅的修饰方法及其作为生物传感器的用途
CN105731467B (zh) * 2014-12-11 2018-01-05 中国石油天然气股份有限公司 用于吸收声波的二氧化硅膜材料及其合成方法
KR102072312B1 (ko) 2018-11-15 2020-01-31 구형모 독립 공간의 임의 구축과 냉난방 온도 제어의 효율성을 겸한 책상형 텐트
CN111446152A (zh) * 2020-04-03 2020-07-24 上海集成电路研发中心有限公司 一种制备低介电常数介质层的方法
CN115031887B (zh) * 2022-06-06 2023-10-20 深圳大学 多孔压电薄膜及其制备方法、应用和压力传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118841A (ja) * 1999-10-22 2001-04-27 Asahi Kasei Corp 多孔性シリカ
WO2001075957A1 (fr) * 2000-04-03 2001-10-11 Ulvac, Inc. Procede de preparation d'un film poreux sog
US6365266B1 (en) * 1999-12-07 2002-04-02 Air Products And Chemicals, Inc. Mesoporous films having reduced dielectric constants
JP2002173641A (ja) * 2000-09-29 2002-06-21 Asahi Kasei Corp 絶縁薄膜用の多孔性シリカ薄膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610665B2 (ja) * 1996-02-28 2005-01-19 株式会社豊田中央研究所 高密度多孔体及びその製造方法
JP3436037B2 (ja) 1997-01-10 2003-08-11 株式会社豊田中央研究所 バルク状シリカ多孔体の製造方法
JPH1135315A (ja) 1997-07-18 1999-02-09 Toyota Central Res & Dev Lab Inc 高密度メソ多孔体の製造方法
KR100536178B1 (ko) 1998-12-23 2005-12-12 바텔리 메모리얼 인스티튜트 계면활성제를 함유하는 용액으로부터 제조된 메소다공성실리카 필름 및 그 제조방법
US6592980B1 (en) * 1999-12-07 2003-07-15 Air Products And Chemicals, Inc. Mesoporous films having reduced dielectric constants
JP2003089769A (ja) * 2001-09-18 2003-03-28 Asahi Kasei Corp 絶縁薄膜製造用の塗布組成物
JP2003089768A (ja) * 2001-09-18 2003-03-28 Asahi Kasei Corp 絶縁性薄膜製造用の塗布組成物
JP2003163210A (ja) * 2001-11-28 2003-06-06 Asahi Kasei Corp 絶縁薄膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118841A (ja) * 1999-10-22 2001-04-27 Asahi Kasei Corp 多孔性シリカ
US6365266B1 (en) * 1999-12-07 2002-04-02 Air Products And Chemicals, Inc. Mesoporous films having reduced dielectric constants
WO2001075957A1 (fr) * 2000-04-03 2001-10-11 Ulvac, Inc. Procede de preparation d'un film poreux sog
JP2002173641A (ja) * 2000-09-29 2002-06-21 Asahi Kasei Corp 絶縁薄膜用の多孔性シリカ薄膜

Also Published As

Publication number Publication date
KR20040030276A (ko) 2004-04-09
JP4284083B2 (ja) 2009-06-24
US6946161B2 (en) 2005-09-20
CN1495868A (zh) 2004-05-12
US20040058079A1 (en) 2004-03-25
KR100890539B1 (ko) 2009-03-27
TWI284140B (en) 2007-07-21
JP2004143029A (ja) 2004-05-20
TW200407386A (en) 2004-05-16

Similar Documents

Publication Publication Date Title
CN100367474C (zh) 一种多孔氧化硅膜的制备方法
US7307343B2 (en) Low dielectric materials and methods for making same
CN101490145B (zh) 多孔膜的前体组合物及其制备方法、多孔膜及其制作方法、以及半导体装置
US6318124B1 (en) Nanoporous silica treated with siloxane polymers for ULSI applications
US8968864B2 (en) Sealed porous materials, methods for making them, and semiconductor devices comprising them
KR100671850B1 (ko) 다공질 필름의 개질 방법 및 개질된 다공질 필름 및 그 용도
CN100474530C (zh) 改性多孔质二氧化硅膜的制法、由该制法所得改性多孔质二氧化硅膜及含该膜的半导体装置
EP1110239A1 (en) Nanoporous silica via combined stream deposition
JP2005516394A (ja) 狭ギャップ充填用途の誘電フィルム
CN101146874B (zh) 多孔质膜的前体组合物及其制备方法、多孔质膜及其制作方法以及半导体装置
CN1260763A (zh) 高pH值下制造纳米孔介电膜的方法
CN1313371C (zh) 含有中孔二氧化硅层的电子器件及制备该中孔二氧化硅层的组合物
US20030062600A1 (en) Process for optimizing mechanical strength of nanoporous silica
US20100249445A1 (en) Post-spin-on silylation method for hydrophobic and hydrofluoric acid-resistant porous silica films
US20040000715A1 (en) Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane
JP2001520805A (ja) 等級化された密度を有するナノポーラス誘電体フィルム及びそのようなフィルムの製造方法
US20040105986A1 (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
Yu et al. Sol-gel derived mesoporous silica films used as low dielectric constant materials
Tsukuma et al. Liquid phase deposition of a film of silica with an organic functional group
Chen et al. Thermal stability of trimethylsilylated mesoporous silica thin films as the ultralow-k dielectric for copper interconnects
CN100372077C (zh) 一种制备多孔低介电常数薄膜材料的方法
He et al. Effect of catalyst HF concentration on the electrical characteristics of ultra low-k materials
Tang et al. Characterization of Surface Defects in the Sub-Atmospheric Pressure-CVD Borophosphosilicate Glass Films on Silicon Wafer
JP2000212508A (ja) シリカ系被膜形成用塗布液、シリカ系被膜の製造法、シリカ系被膜およびそれを用いた半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080206