CA2666947C - Heating tar sands formations while controlling pressure - Google Patents
Heating tar sands formations while controlling pressure Download PDFInfo
- Publication number
- CA2666947C CA2666947C CA2666947A CA2666947A CA2666947C CA 2666947 C CA2666947 C CA 2666947C CA 2666947 A CA2666947 A CA 2666947A CA 2666947 A CA2666947 A CA 2666947A CA 2666947 C CA2666947 C CA 2666947C
- Authority
- CA
- Canada
- Prior art keywords
- formation
- fluids
- temperature
- pressure
- production
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 595
- 238000010438 heat treatment Methods 0.000 title claims abstract description 111
- 238000005755 formation reaction Methods 0.000 title description 562
- 239000012530 fluid Substances 0.000 claims abstract description 298
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 279
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 277
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 141
- 238000000034 method Methods 0.000 claims abstract description 113
- 238000000197 pyrolysis Methods 0.000 claims abstract description 42
- 238000004939 coking Methods 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 abstract description 21
- 238000004519 manufacturing process Methods 0.000 description 223
- 239000003921 oil Substances 0.000 description 109
- 230000008569 process Effects 0.000 description 84
- 239000007789 gas Substances 0.000 description 64
- 238000011065 in-situ storage Methods 0.000 description 49
- 230000005484 gravity Effects 0.000 description 45
- 239000008186 active pharmaceutical agent Substances 0.000 description 42
- 239000011269 tar Substances 0.000 description 42
- 239000010426 asphalt Substances 0.000 description 37
- 230000035699 permeability Effects 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 229910001868 water Inorganic materials 0.000 description 32
- 238000011084 recovery Methods 0.000 description 30
- 238000002347 injection Methods 0.000 description 25
- 239000007924 injection Substances 0.000 description 25
- 238000004088 simulation Methods 0.000 description 25
- 239000000203 mixture Substances 0.000 description 23
- 239000000047 product Substances 0.000 description 22
- 239000007788 liquid Substances 0.000 description 17
- 239000001569 carbon dioxide Substances 0.000 description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- 239000000571 coke Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 230000002596 correlated effect Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 239000000295 fuel oil Substances 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 239000011435 rock Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000010459 dolomite Substances 0.000 description 8
- 229910000514 dolomite Inorganic materials 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 238000010793 Steam injection (oil industry) Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- -1 crude oil Chemical class 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000012184 mineral wax Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010796 Steam-assisted gravity drainage Methods 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000011275 tar sand Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910001748 carbonate mineral Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/02—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/02—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/02—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners
- E21B36/025—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners the burners being above ground or outside the bore hole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/02—Determining slope or direction
- E21B47/022—Determining slope or direction of the borehole, e.g. using geomagnetism
- E21B47/0228—Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4037—In-situ processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/14—Obtaining from a multiple-zone well
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Geophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Wire Bonding (AREA)
- Working-Up Tar And Pitch (AREA)
- Lubricants (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Coke Industry (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Chemical Vapour Deposition (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Road Paving Machines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Industrial Gases (AREA)
Abstract
A method for treating a tar sands formation is disclosed. The method includes heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section is maintained below a fracture pressure of the formation. The pressure in the majority of the section is reduced to a selected pressure after the average temperature reaches a temperature that is above 240 °C and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids are produced from the formation.
Description
HEATING TAR SANDS FORMATIONS WHILE CONTROLLING PRESSURE
BACKGROUND
1. Field of the Invention [0001] The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations (for example, tar sands formations).
BACKGROUND
1. Field of the Invention [0001] The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations (for example, tar sands formations).
2. Description of Related Art [0002] Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material in a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density changes, phase changes, and/or viscosity changes of the hydrocarbon material in the formation. A fluid may be, but is not limited to, a gas, a liquid, an emulsion, a slurry, and/or a stream of solid particles that has flow characteristics similar to liquid flow.
[0003] Large deposits of heavy hydrocarbons (heavy oil and/or tar) contained in relatively permeable formations (for example in tar sands) are found in North America, South America, Africa, and Asia. Tar can be surface-mined and upgraded to lighter hydrocarbons such as crude oil, naphtha, kerosene, and/or gas oil. Surface milling processes may further separate the bitumen from sand. The separated bitumen may be converted to light hydrocarbons using conventional refinery methods. Mining and upgrading tar sand is usually substantially more expensive than producing lighter hydrocarbons from conventional oil reservoirs.
[0004] In situ production of hydrocarbons from tar sand may be accomplished by heating and/or injecting a gas into the formation. U.S. Patent Nos. 5,211,230 to Ostapovich et al.
and 5,339,897 to Leaute describe a horizontal production well located in an oil-bearing reservoir. A vertical conduit may be used to inject an oxidant gas into the reservoir for in situ combustion.
and 5,339,897 to Leaute describe a horizontal production well located in an oil-bearing reservoir. A vertical conduit may be used to inject an oxidant gas into the reservoir for in situ combustion.
[0005] U.S. Patent No. 2,780,450 to Ljungstrom describes heating bituminous geological formations in situ to convert or crack a liquid tar-like substance into oils and gases.
[0006] U.S. Patent No. 4,597,441 to Ware et al. describes contacting oil, heat, and hydrogen simultaneously in a reservoir. Hydrogenation may enhance recovery of oil from the reservoir.
[0007] U.S. Patent No. 5,046,559 to Glandt and 5,060,726 to Glandt et al.
describe preheating a portion of a tar sand formation between an injector well and a producer well.
Steam may be injected from the injector well into the formation to produce hydrocarbons at the producer well.
describe preheating a portion of a tar sand formation between an injector well and a producer well.
Steam may be injected from the injector well into the formation to produce hydrocarbons at the producer well.
[0008] As outlined above, there has been a significant amount of effort to develop methods and systems to economically produce hydrocarbons, hydrogen, and/or other products from hydrocarbon containing formations. At present, however, there are still many hydrocarbon containing formations from which hydrocarbons, hydrogen, and/or other products cannot be economically produced. Thus, there is still a need for improved methods and systems for production of hydrocarbons, hydrogen, and/or other products from various hydrocarbon containing formations.
SUMMARY
SUMMARY
[0009] Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.
[0010] In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.
[0011] In some embodiments, the invention provides a method for treating a tar sands formation, comprising: heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation while heating the section to a temperature between about 200 C to 240 C; maintaining a pressure in the majority of the section below a fracture pressure of the formation; reducing the pressure in the majority of the section to a selected pressure after the average temperature reaches a temperature that is above 240 C and is at or below pyrolysis temperatures of hydrocarbons in the section; and producing at least some hydrocarbon fluids from the formation..
[0012] In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.
[0013] In further embodiments, treating a subsurface formation is performed using any of the methods, systems, or heaters described herein.
[0014] In further embodiments, additional features may be added to the specific embodiments described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description and upon reference to the accompanying drawings in which:
[0016] FIG. 1 depicts an illustration of stages of heating a hydrocarbon containing formation.
[0017] FIG. 2 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.
[0018] FIG. 3 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a relatively thin hydrocarbon layer.
[0019] FIG. 4 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG. 3.
[0020] FIG. 5 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG. 4.
[0021] FIG. 6 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a hydrocarbon layer that has a shale break.
[0022] FIG. 7 depicts a top view representation of an embodiment for preheating using heaters for the drive process.
[0023] FIG. 8 depicts a side view representation of an embodiment using at least three treatment sections in a tar sands formation.
[0024] FIG. 9 depicts a side view representation of an embodiment for preheating using heaters for the drive process.
[0025] FIG. 10 depicts a temperature profile in the formation after 360 days using the STARS simulation.
[0026] FIG. 11 depicts an oil saturation profile in the formation after 360 days using the STARS simulation.
[0027] FIG. 12 depicts the oil saturation profile in the formation after 1095 days using the STARS simulation.
[0028] FIG. 13 depicts the oil saturation profile in the formation after 1470 days using the STARS simulation.
[0029] FIG. 14 depicts the oil saturation profile in the formation after 1826 days using the STARS simulation.
[0030] FIG. 15 depicts the temperature profile in the formation after 1826 days using the STARS simulation.
[0031] FIG. 16 depicts oil production rate and gas production rate versus time.
[0032] FIG. 17 depicts weight percentage of original bitumen in place (OBIP)(left axis) and volume percentage of OBIP (right axis) versus temperature ( C).
[0033] FIG. 18 depicts bitumen conversion percentage (weight percentage of (OBIP))(left axis) and oil, gas, and coke weight percentage (as a weight percentage of OBIP)(right axis) versus temperature ( C).
[0034] FIG. 19 depicts API gravity ( )(left axis) of produced fluids, blow down production, and oil left in place along with pressure (psig)(right axis) versus temperature ( C).
[0035] FIG. 20A-D depict gas-to-oil ratios (GOR) in thousand cubic feet per barrel ((Mcf/
bbl)(y-axis) versus temperature ( C)(x-axis) for different types of gas at a low temperature blow down (about 277 C) and a high temperature blow down (at about 290 C).
bbl)(y-axis) versus temperature ( C)(x-axis) for different types of gas at a low temperature blow down (about 277 C) and a high temperature blow down (at about 290 C).
[0036] FIG. 21 depicts coke yield (weight percentage)(y-axis) versus temperature ( C)(x-axis).
[0037] FIG. 22A-D depict assessed hydrocarbon isomer shifts in fluids produced from the experimental cells as a function of temperature and bitumen conversion.
[0038] FIG. 23 depicts weight percentage (Wt%)(y-axis) of saturates from SARA
analysis of the produced fluids versus temperature ( C)(x-axis).
analysis of the produced fluids versus temperature ( C)(x-axis).
[0039] FIG. 24 depicts weight percentage (Wt%)(y-axis) of n-C7 of the produced fluids versus temperature ( C)(x-axis).
[0040] FIG. 25 depicts oil recovery (volume percentage bitumen in place (vol%
BIP)) versus API gravity ( ) as determined by the pressure (MPa) in the formation in an experiment.
BIP)) versus API gravity ( ) as determined by the pressure (MPa) in the formation in an experiment.
[0041] FIG. 26 depicts recovery efficiency (%) versus temperature ( C) at different pressures in an experiment.
[0042] While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives of the present invention as defined by the appended claims.
DETAILED DESCRIPTION
DETAILED DESCRIPTION
[0043] The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.
[0044] "API gravity" refers to API gravity at 15.5 C (60 F). API gravity is as determined by ASTM Method D6822 or ASTM Method D1298.
[0045] "Bromine number" refers to a weight percentage of olefins in grams per 100 gram of portion of the produced fluid that has a boiling range below 246 C and testing the portion using ASTM Method D1159.
[0046] "Cracking" refers to a process involving decomposition and molecular recombination of organic compounds to produce a greater number of molecules than were initially present. In cracking, a series of reactions take place accompanied by a transfer of hydrogen atoms between molecules. For example, naphtha may undergo a thermal cracking reaction to form ethene and H2.
[0047] "Fluid pressure" is a pressure generated by a fluid in a formation.
"Lithostatic pressure" (sometimes referred to as "lithostatic stress") is a pressure in a formation equal to a weight per unit area of an overlying rock mass. "Hydrostatic pressure" is a pressure in a formation exerted by a column of water.
"Lithostatic pressure" (sometimes referred to as "lithostatic stress") is a pressure in a formation equal to a weight per unit area of an overlying rock mass. "Hydrostatic pressure" is a pressure in a formation exerted by a column of water.
[0048] A "formation" includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. "Hydrocarbon layers"
refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The "overburden"
and/or the "underburden" include one or more different types of impermeable materials.
For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden.
For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.
refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The "overburden"
and/or the "underburden" include one or more different types of impermeable materials.
For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden.
For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.
[0049] "Formation fluids" refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbon, and water (steam).
Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term "mobilized fluid" refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. "Produced fluids"
refer to fluids removed from the formation.
Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term "mobilized fluid" refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. "Produced fluids"
refer to fluids removed from the formation.
[0050] A "heat source" is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A heat source may also include systems that generate heat by burning a fuel external to or in a formation. The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. Thus, for example, for a given formation some heat sources may supply heat from electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (for example, an oxidation reaction). A heat source may also include a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
[0051] A "heater" is any system or heat source for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.
[0052] "Heavy hydrocarbons" are viscous hydrocarbon fluids. Heavy hydrocarbons may include highly viscous hydrocarbon fluids such as heavy oil, tar, and/or asphalt. Heavy hydrocarbons may include carbon and hydrogen, as well as smaller concentrations of sulfur, oxygen, and nitrogen. Additional elements may also be present in heavy hydrocarbons in trace amounts. Heavy hydrocarbons may be classified by API
gravity.
Heavy hydrocarbons generally have an API gravity below about 20 . Heavy oil, for example, generally has an API gravity of about 10-20 , whereas tar generally has an API
gravity below about 10 . The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15 C. Heavy hydrocarbons may include aromatics or other complex ring hydrocarbons.
gravity.
Heavy hydrocarbons generally have an API gravity below about 20 . Heavy oil, for example, generally has an API gravity of about 10-20 , whereas tar generally has an API
gravity below about 10 . The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15 C. Heavy hydrocarbons may include aromatics or other complex ring hydrocarbons.
[0053] Heavy hydrocarbons may be found in a relatively permeable formation.
The relatively permeable formation may include heavy hydrocarbons entrained in, for example, sand or carbonate. "Relatively permeable" is defined, with respect to formations or portions thereof, as an average permeability of 10 millidarcy or more (for example, 10 or 100 millidarcy). "Relatively low permeability" is defined, with respect to formations or portions thereof, as an average permeability of less than about 10 millidarcy.
One darcy is equal to about 0.99 square micrometers. An impermeable layer generally has a permeability of less than about 0.1 millidarcy.
The relatively permeable formation may include heavy hydrocarbons entrained in, for example, sand or carbonate. "Relatively permeable" is defined, with respect to formations or portions thereof, as an average permeability of 10 millidarcy or more (for example, 10 or 100 millidarcy). "Relatively low permeability" is defined, with respect to formations or portions thereof, as an average permeability of less than about 10 millidarcy.
One darcy is equal to about 0.99 square micrometers. An impermeable layer generally has a permeability of less than about 0.1 millidarcy.
[0054] Certain types of formations that include heavy hydrocarbons may also include, but are not limited to, natural mineral waxes, or natural asphaltites. "Natural mineral waxes"
typically occur in substantially tubular veins that may be several meters wide, several kilometers long, and hundreds of meters deep. "Natural asphaltites" include solid hydrocarbons of an aromatic composition and typically occur in large veins. In situ recovery of hydrocarbons from formations such as natural mineral waxes and natural asphaltites may include melting to form liquid hydrocarbons and/or solution mining of hydrocarbons from the formations.
typically occur in substantially tubular veins that may be several meters wide, several kilometers long, and hundreds of meters deep. "Natural asphaltites" include solid hydrocarbons of an aromatic composition and typically occur in large veins. In situ recovery of hydrocarbons from formations such as natural mineral waxes and natural asphaltites may include melting to form liquid hydrocarbons and/or solution mining of hydrocarbons from the formations.
[0055] "Hydrocarbons" are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites. Hydrocarbons may be located in or adjacent to mineral matrices in the earth.
Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.
Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.
[0056] An "in situ conversion process" refers to a process of heating a hydrocarbon containing formation from heat sources to raise the temperature of at least a portion of the formation above a pyrolysis temperature so that pyrolyzation fluid is produced in the formation.
[0057] An "in situ heat treatment process" refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a temperature that results in mobilized fluid, visbreaking, and/or pyrolysis of hydrocarbon containing material so that mobilized fluids, visbroken fluids, and/or pyrolyzation fluids are produced in the formation.
[0058] "Karst" is a subsurface shaped by the dissolution of a soluble layer or layers of bedrock, usually carbonate rock such as limestone or dolomite. The dissolution may be caused by meteoric or acidic water. The Grosmont formation in Alberta, Canada is an example of a karst (or "karsted") carbonate formation.
[0059] "P (peptization) value" or "P-value" refers to a numerical value, which represents the flocculation tendency of asphaltenes in a formation fluid. P-value is determined by ASTM method D7060.
[0060] "Pyrolysis" is the breaking of chemical bonds due to the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis.
[0061] "Superposition of heat" refers to providing heat from two or more heat sources to a selected section of a formation such that the temperature of the formation at least at one location between the heat sources is influenced by the heat sources.
[0062] "Tar" is a viscous hydrocarbon that generally has a viscosity greater than about 10,000 centipoise at 15 C. The specific gravity of tar generally is greater than 1.000. Tar may have an API gravity less than 10 .
[0063] A "tar sands formation" is a formation in which hydrocarbons are predominantly present in the form of heavy hydrocarbons and/or tar entrained in a mineral grain framework or other host lithology (for example, sand or carbonate). Examples of tar sands formations include formations such as the Athabasca formation, the Grosmont formation, and the Peace River formation, all three in Alberta, Canada; and the Faj a formation in the Orinoco belt in Venezuela.
[0064] "Temperature limited heater" generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices. Temperature limited heaters may be AC (alternating current) or modulated (for example, "chopped") DC (direct current) powered electrical resistance heaters.
[0065] "Thickness" of a layer refers to the thickness of a cross section of the layer, wherein the cross section is normal to a face of the layer.
[0066] A "u-shaped wellbore" refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a "v" or "u", with the understanding that the "legs" of the "u" do not need to be parallel to each other, or perpendicular to the "bottom" of the "u" for the wellbore to be considered "u-shaped".
[0067] "Upgrade" refers to increasing the quality of hydrocarbons. For example, upgrading heavy hydrocarbons may result in an increase in the API gravity of the heavy hydrocarbons.
[0068] "Visbreaking" refers to the untangling of molecules in fluid during heat treatment and/or to the breaking of large molecules into smaller molecules during heat treatment, which results in a reduction of the viscosity of the fluid.
[0069] "Viscosity" refers to kinematic viscosity at 40 C unless specified.
Viscosity is as determined by ASTM Method D445.
Viscosity is as determined by ASTM Method D445.
[0070] A "vug" is a cavity, void or large pore in a rock that is commonly lined with mineral precipitates.
[0071] The term "wellbore" refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape. As used herein, the terms "well" and "opening,"
when referring to an opening in the formation may be used interchangeably with the term "wellbore."
when referring to an opening in the formation may be used interchangeably with the term "wellbore."
[0072] Hydrocarbons in formations may be treated in various ways to produce many different products. In certain embodiments, hydrocarbons in formations are treated in stages. FIG. 1 depicts an illustration of stages of heating the hydrocarbon containing formation. FIG. 1 also depicts an example of yield ("Y") in barrels of oil equivalent per ton (y axis) of formation fluids from the formation versus temperature ("T") of the heated formation in degrees Celsius (x axis).
[0073] Desorption of methane and vaporization of water occurs during stage 1 heating.
Heating of the formation through stage 1 may be performed as quickly as possible. For example, when the hydrocarbon containing formation is initially heated, hydrocarbons in the formation desorb adsorbed methane. The desorbed methane may be produced from the formation. If the hydrocarbon containing formation is heated further, water in the hydrocarbon containing formation is vaporized. Water may occupy, in some hydrocarbon containing formations, between 10% and 50% of the pore volume in the formation. In other formations, water occupies larger or smaller portions of the pore volume. Water typically is vaporized in a formation between 160 C and 285 C at pressures of 600 kPa absolute to 7000 kPa absolute. In some embodiments, the vaporized water produces wettability changes in the formation and/or increased formation pressure. The wettability changes and/or increased pressure may affect pyrolysis reactions or other reactions in the formation. In certain embodiments, the vaporized water is produced from the formation.
In other embodiments, the vaporized water is used for steam extraction and/or distillation in the formation or outside the formation. Removing the water from and increasing the pore volume in the formation increases the storage space for hydrocarbons in the pore volume.
Heating of the formation through stage 1 may be performed as quickly as possible. For example, when the hydrocarbon containing formation is initially heated, hydrocarbons in the formation desorb adsorbed methane. The desorbed methane may be produced from the formation. If the hydrocarbon containing formation is heated further, water in the hydrocarbon containing formation is vaporized. Water may occupy, in some hydrocarbon containing formations, between 10% and 50% of the pore volume in the formation. In other formations, water occupies larger or smaller portions of the pore volume. Water typically is vaporized in a formation between 160 C and 285 C at pressures of 600 kPa absolute to 7000 kPa absolute. In some embodiments, the vaporized water produces wettability changes in the formation and/or increased formation pressure. The wettability changes and/or increased pressure may affect pyrolysis reactions or other reactions in the formation. In certain embodiments, the vaporized water is produced from the formation.
In other embodiments, the vaporized water is used for steam extraction and/or distillation in the formation or outside the formation. Removing the water from and increasing the pore volume in the formation increases the storage space for hydrocarbons in the pore volume.
[0074] In certain embodiments, after stage 1 heating, the formation is heated further, such that a temperature in the formation reaches (at least) an initial pyrolyzation temperature (such as a temperature at the lower end of the temperature range shown as stage 2).
Hydrocarbons in the formation may be pyrolyzed throughout stage 2. A pyrolysis temperature range varies depending on the types of hydrocarbons in the formation. The pyrolysis temperature range may include temperatures between 250 C and 900 C. The pyrolysis temperature range for producing desired products may extend through only a portion of the total pyrolysis temperature range. In some embodiments, the pyrolysis temperature range for producing desired products may include temperatures between 250 C and 400 C or temperatures between 270 C and 350 C. If a temperature of hydrocarbons in the formation is slowly raised through the temperature range from 250 C
to 400 C, production of pyrolysis products may be substantially complete when the temperature approaches 400 C. Average temperature of the hydrocarbons may be raised at a rate of less than 5 C per day, less than 2 C per day, less than 1 C
per day, or less than 0.5 C per day through the pyrolysis temperature range for producing desired products. Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that slowly raise the temperature of hydrocarbons in the formation through the pyrolysis temperature range.
Hydrocarbons in the formation may be pyrolyzed throughout stage 2. A pyrolysis temperature range varies depending on the types of hydrocarbons in the formation. The pyrolysis temperature range may include temperatures between 250 C and 900 C. The pyrolysis temperature range for producing desired products may extend through only a portion of the total pyrolysis temperature range. In some embodiments, the pyrolysis temperature range for producing desired products may include temperatures between 250 C and 400 C or temperatures between 270 C and 350 C. If a temperature of hydrocarbons in the formation is slowly raised through the temperature range from 250 C
to 400 C, production of pyrolysis products may be substantially complete when the temperature approaches 400 C. Average temperature of the hydrocarbons may be raised at a rate of less than 5 C per day, less than 2 C per day, less than 1 C
per day, or less than 0.5 C per day through the pyrolysis temperature range for producing desired products. Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that slowly raise the temperature of hydrocarbons in the formation through the pyrolysis temperature range.
[0075] The rate of temperature increase through the pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation. Raising the temperature slowly through the pyrolysis temperature range for desired products may inhibit mobilization of large chain molecules in the formation. Raising the temperature slowly through the pyrolysis temperature range for desired products may limit reactions between mobilized hydrocarbons that produce undesired products. Slowly raising the temperature of the formation through the pyrolysis temperature range for desired products may allow for the production of high quality, high API gravity hydrocarbons from the formation.
Slowly raising the temperature of the formation through the pyrolysis temperature range for desired products may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.
Slowly raising the temperature of the formation through the pyrolysis temperature range for desired products may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.
[0076] In some in situ heat treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly heating the temperature through a temperature range. In some embodiments, the desired temperature is 300 C, 325 C, or 350 C. Other temperatures may be selected as the desired temperature. Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at the desired temperature. The heated portion of the formation is maintained substantially at the desired temperature until pyrolysis declines such that production of desired formation fluids from the formation becomes uneconomical. Parts of the formation that are subjected to pyrolysis may include regions brought into a pyrolysis temperature range by heat transfer from only one heat source.
[0077] In certain embodiments, formation fluids including pyrolyzation fluids are produced from the formation. As the temperature of the formation increases, the amount of condensable hydrocarbons in the produced formation fluid may decrease. At high temperatures, the formation may produce mostly methane and/or hydrogen. If the hydrocarbon containing formation is heated throughout an entire pyrolysis range, the formation may produce only small amounts of hydrogen towards an upper limit of the pyrolysis range. After all of the available hydrogen is depleted, a minimal amount of fluid production from the formation will typically occur.
[0078] After pyrolysis of hydrocarbons, a large amount of carbon and some hydrogen may still be present in the formation. A significant portion of carbon remaining in the formation can be produced from the formation in the form of synthesis gas. Synthesis gas generation may take place during stage 3 heating depicted in FIG. 1. Stage 3 may include heating a hydrocarbon containing formation to a temperature sufficient to allow synthesis gas generation. For example, synthesis gas may be produced in a temperature range from about 400 C to about 1200 C, about 500 C to about 1100 C, or about 550 C
to about 1000 C. The temperature of the heated portion of the formation when the synthesis gas generating fluid is introduced to the formation determines the composition of synthesis gas produced in the formation. The generated synthesis gas may be removed from the formation through a production well or production wells.
to about 1000 C. The temperature of the heated portion of the formation when the synthesis gas generating fluid is introduced to the formation determines the composition of synthesis gas produced in the formation. The generated synthesis gas may be removed from the formation through a production well or production wells.
[0079] Total energy content of fluids produced from the hydrocarbon containing formation may stay relatively constant throughout pyrolysis and synthesis gas generation. During pyrolysis at relatively low formation temperatures, a significant portion of the produced fluid may be condensable hydrocarbons that have a high energy content. At higher pyrolysis temperatures, however, less of the formation fluid may include condensable hydrocarbons. More non-condensable formation fluids may be produced from the formation. Energy content per unit volume of the produced fluid may decline slightly during generation of predominantly non-condensable formation fluids. During synthesis gas generation, energy content per unit volume of produced synthesis gas declines significantly compared to energy content of pyrolyzation fluid. The volume of the produced synthesis gas, however, will in many instances increase substantially, thereby compensating for the decreased energy content.
[0080] FIG. 2 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 100. Barrier wells are used to form a barrier around a treatment area. The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum wells, capture wells, injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 100 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated. In the embodiment depicted in FIG.
2, the barrier wells 100 are shown extending only along one side of heat sources 102, but the barrier wells typically encircle all heat sources 102 used, or to be used, to heat a treatment area of the formation.
2, the barrier wells 100 are shown extending only along one side of heat sources 102, but the barrier wells typically encircle all heat sources 102 used, or to be used, to heat a treatment area of the formation.
[0081] Heat sources 102 are placed in at least a portion of the formation.
Heat sources 102 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 102 may also include other types of heaters. Heat sources 102 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 102 through supply lines 104. Supply lines 104 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 104 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.
Heat sources 102 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 102 may also include other types of heaters. Heat sources 102 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 102 through supply lines 104. Supply lines 104 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 104 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.
[0082] Production wells 106 are used to remove formation fluid from the formation. In some embodiments, production well 106 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source.
[0083] In some embodiments, the heat source in production well 106 allows for vapor phase removal of formation fluids from the formation. Providing heating at or through the production well may: (1) inhibit condensation and/or refluxing of production fluid when such production fluid is moving in the production well proximate the overburden, (2) increase heat input into the formation, (3) increase production rate from the production well as compared to a production well without a heat source, (4) inhibit condensation of high carbon number compounds (C6 and above) in the production well, and/or (5) increase formation permeability at or proximate the production well.
[0084] Subsurface pressure in the formation may correspond to the fluid pressure generated in the formation. As temperatures in the heated portion of the formation increase, the pressure in the heated portion may increase as a result of increased fluid generation and vaporization of water. Controlling rate of fluid removal from the formation may allow for control of pressure in the formation. Pressure in the formation may be determined at a number of different locations, such as near or at production wells, near or at heat sources, or at monitor wells.
[0085] In some hydrocarbon containing formations, production of hydrocarbons from the formation is inhibited until at least some hydrocarbons in the formation have been pyrolyzed. Formation fluid may be produced from the formation when the formation fluid is of a selected quality. In some embodiments, the selected quality includes an API gravity of at least about 20 , 30 , or 40 . Inhibiting production until at least some hydrocarbons are pyrolyzed may increase conversion of heavy hydrocarbons to light hydrocarbons.
Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.
Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.
[0086] After pyrolysis temperatures are reached and production from the formation is allowed, pressure in the formation may be varied to alter and/or control a composition of formation fluid produced, to control a percentage of condensable fluid as compared to non-condensable fluid in the formation fluid, and/or to control an API gravity of formation fluid being produced. For example, decreasing pressure may result in production of a larger condensable fluid component. The condensable fluid component may contain a larger percentage of olefins.
[0087] In some in situ heat treatment process embodiments, pressure in the formation may be maintained high enough to promote production of formation fluid with an API
gravity of greater than 20 . Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may facilitate vapor phase production of fluids from the formation. Vapor phase production may allow for a reduction in size of collection conduits used to transport fluids produced from the formation. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.
gravity of greater than 20 . Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may facilitate vapor phase production of fluids from the formation. Vapor phase production may allow for a reduction in size of collection conduits used to transport fluids produced from the formation. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.
[0088] Maintaining increased pressure in a heated portion of the formation may surprisingly allow for production of large quantities of hydrocarbons of increased quality and of relatively low molecular weight. Pressure may be maintained so that formation fluid produced has a minimal amount of compounds above a selected carbon number. The selected carbon number may be at most 25, at most 20, at most 12, or at most 8. Some high carbon number compounds may be entrained in vapor in the formation and may be removed from the formation with the vapor. Maintaining increased pressure in the formation may inhibit entrainment of high carbon number compounds and/or multi-ring hydrocarbon compounds in the vapor. High carbon number compounds and/or multi-ring hydrocarbon compounds may remain in a liquid phase in the formation for significant time periods. The significant time periods may provide sufficient time for the compounds to pyrolyze to form lower carbon number compounds.
[0089] Formation fluid produced from production wells 106 may be transported through collection piping 108 to treatment facilities 110. Formation fluids may also be produced from heat sources 102. For example, fluid may be produced from heat sources 102 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 102 may be transported through tubing or piping to collection piping 108 or the produced fluid may be transported through tubing or piping directly to treatment facilities 110. Treatment facilities 110 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel, such as JP-8.
[0090] In certain embodiments, a temperature limited heater is utilized for heavy oil applications (for example, treatment of relatively permeable formations or tar sands formations). A temperature limited heater may provide a relatively low Curie temperature and/or phase transformation temperature range so that a maximum average operating temperature of the heater is less than 350 C, 300 C, 250 C, 225 C, 200 C, or 150 C.
In an embodiment (for example, for a tar sands formation), a maximum temperature of the heater is less than about 250 C to inhibit olefin generation and production of other cracked products. In some embodiments, a maximum temperature of the heater above about C is used to produce lighter hydrocarbon products. For example, the maximum temperature of the heater may be at or less than about 500 C.
In an embodiment (for example, for a tar sands formation), a maximum temperature of the heater is less than about 250 C to inhibit olefin generation and production of other cracked products. In some embodiments, a maximum temperature of the heater above about C is used to produce lighter hydrocarbon products. For example, the maximum temperature of the heater may be at or less than about 500 C.
[0091] A heater may heat a volume of formation adjacent to a production wellbore (a near production wellbore region) so that the temperature of fluid in the production wellbore and in the volume adjacent to the production wellbore is less than the temperature that causes degradation of the fluid. The heat source may be located in the production wellbore or near the production wellbore. In some embodiments, the heat source is a temperature limited heater. In some embodiments, two or more heat sources may supply heat to the volume. Heat from the heat source may reduce the viscosity of crude oil in or near the production wellbore. In some embodiments, heat from the heat source mobilizes fluids in or near the production wellbore and/or enhances the flow of fluids to the production wellbore. In some embodiments, reducing the viscosity of crude oil allows or enhances gas lifting of heavy oil (approximately at most 10 API gravity oil) or intermediate gravity oil (approximately 12 to 20 API gravity oil) from the production wellbore. In certain embodiments, the initial API gravity of oil in the formation is at most 10 , at most 20 , at most 25 , or at most 30 . In certain embodiments, the viscosity of oil in the formation is at least 0.05 Pa.s (50 cp). In some embodiments, the viscosity of oil in the formation is at least 0.10 Pa.s (100 cp), at least 0.15 Pa.s (150 cp), or at least at least 0.20 Pa.s (200 cp).
Large amounts of natural gas may have to be utilized to provide gas lift of oil with viscosities above 0.05 Pa.s. Reducing the viscosity of oil at or near the production wellbore in the formation to a viscosity of 0.05 Pa.s (50 cp), 0.03 Pa.s (30 cp), 0.02 Pa.s (20 cp), 0.01 Pa.s (10 cp), or less (down to 0.001 Pa.s (1 cp) or lower) lowers the amount of natural gas needed to lift oil from the formation. In some embodiments, reduced viscosity oil is produced by other methods such as pumping.
Large amounts of natural gas may have to be utilized to provide gas lift of oil with viscosities above 0.05 Pa.s. Reducing the viscosity of oil at or near the production wellbore in the formation to a viscosity of 0.05 Pa.s (50 cp), 0.03 Pa.s (30 cp), 0.02 Pa.s (20 cp), 0.01 Pa.s (10 cp), or less (down to 0.001 Pa.s (1 cp) or lower) lowers the amount of natural gas needed to lift oil from the formation. In some embodiments, reduced viscosity oil is produced by other methods such as pumping.
[0092] The rate of production of oil from the formation may be increased by raising the temperature at or near a production wellbore to reduce the viscosity of the oil in the formation in and adjacent to the production wellbore. In certain embodiments, the rate of production of oil from the formation is increased by 2 times, 3 times, 4 times, or greater, or up to 20 times over standard cold production, which has no external heating of formation during production. Certain formations may be more economically viable for enhanced oil production using the heating of the near production wellbore region.
Formations that have a cold production rate approximately between 0.05 m3/(day per meter of wellbore length) and 0.20 m3/(day per meter of wellbore length) may have significant improvements in production rate using heating to reduce the viscosity in the near production wellbore region. In some formations, production wells up to 775 m, up to 1000 m, or up to 1500 m in length are used. For example, production wells between 450 m and 775 m in length are used, between 550 m and 800 m are used, or between 650 m and 900 m are used.
Thus, a significant increase in production is achievable in some formations. Heating the near production wellbore region may be used in formations where the cold production rate is not between 0.05 m3/(day per meter of wellbore length) and 0.20 m3/(day per meter of wellbore length), but heating such formations may not be as economically favorable.
Higher cold production rates may not be significantly increased by heating the near wellbore region, while lower production rates may not be increased to an economically useful value.
Formations that have a cold production rate approximately between 0.05 m3/(day per meter of wellbore length) and 0.20 m3/(day per meter of wellbore length) may have significant improvements in production rate using heating to reduce the viscosity in the near production wellbore region. In some formations, production wells up to 775 m, up to 1000 m, or up to 1500 m in length are used. For example, production wells between 450 m and 775 m in length are used, between 550 m and 800 m are used, or between 650 m and 900 m are used.
Thus, a significant increase in production is achievable in some formations. Heating the near production wellbore region may be used in formations where the cold production rate is not between 0.05 m3/(day per meter of wellbore length) and 0.20 m3/(day per meter of wellbore length), but heating such formations may not be as economically favorable.
Higher cold production rates may not be significantly increased by heating the near wellbore region, while lower production rates may not be increased to an economically useful value.
[0093] Using the temperature limited heater to reduce the viscosity of oil at or near the production well inhibits problems associated with non-temperature limited heaters and heating the oil in the formation due to hot spots. One possible problem is that non-temperature limited heaters can causing coking of oil at or near the production well if the heater overheats the oil because the heaters are at too high a temperature.
Higher temperatures in the production well may also cause brine to boil in the well, which may lead to scale formation in the well. Non-temperature limited heaters that reach higher temperatures may also cause damage to other wellbore components (for example, screens used for sand control, pumps, or valves). Hot spots may be caused by portions of the formation expanding against or collapsing on the heater. In some embodiments, the heater (either the temperature limited heater or another type of non-temperature limited heater) has sections that are lower because of sagging over long heater distances.
These lower sections may sit in heavy oil or bitumen that collects in lower portions of the wellbore. At these lower sections, the heater may develop hot spots due to coking of the heavy oil or bitumen. A standard non-temperature limited heater may overheat at these hot spots, thus producing a non-uniform amount of heat along the length of the heater. Using the temperature limited heater may inhibit overheating of the heater at hot spots or lower sections and provide more uniform heating along the length of the wellbore.
Higher temperatures in the production well may also cause brine to boil in the well, which may lead to scale formation in the well. Non-temperature limited heaters that reach higher temperatures may also cause damage to other wellbore components (for example, screens used for sand control, pumps, or valves). Hot spots may be caused by portions of the formation expanding against or collapsing on the heater. In some embodiments, the heater (either the temperature limited heater or another type of non-temperature limited heater) has sections that are lower because of sagging over long heater distances.
These lower sections may sit in heavy oil or bitumen that collects in lower portions of the wellbore. At these lower sections, the heater may develop hot spots due to coking of the heavy oil or bitumen. A standard non-temperature limited heater may overheat at these hot spots, thus producing a non-uniform amount of heat along the length of the heater. Using the temperature limited heater may inhibit overheating of the heater at hot spots or lower sections and provide more uniform heating along the length of the wellbore.
[0094] In certain embodiments, fluids in the relatively permeable formation containing heavy hydrocarbons are produced with little or no pyrolyzation of hydrocarbons in the formation. In certain embodiments, the relatively permeable formation containing heavy hydrocarbons is a tar sands formation. For example, the formation may be a tar sands formation such as the Athabasca tar sands formation in Alberta, Canada or a carbonate formation such as the Grosmont carbonate formation in Alberta, Canada. The fluids produced from the formation are mobilized fluids. Producing mobilized fluids may be more economical than producing pyrolyzed fluids from the tar sands formation.
Producing mobilized fluids may also increase the total amount of hydrocarbons produced from the tar sands formation.
Producing mobilized fluids may also increase the total amount of hydrocarbons produced from the tar sands formation.
[0095] FIGS. 3-6 depict side view representations of embodiments for producing mobilized fluids from tar sands formations. In FIGS. 3-6, heaters 116 have substantially horizontal heating sections in hydrocarbon layer 114 (as shown, the heaters have heating sections that go into and out of the page). Hydrocarbon layer 114 may be below overburden 112. FIG. 3 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a relatively thin hydrocarbon layer. FIG.
4 depicts a side view representation of an embodiment for producing mobilized fluids from a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG. 3. FIG. 5 depicts a side view representation of an embodiment for producing mobilized fluids from a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG.
4. FIG. 6 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a hydrocarbon layer that has a shale break.
4 depicts a side view representation of an embodiment for producing mobilized fluids from a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG. 3. FIG. 5 depicts a side view representation of an embodiment for producing mobilized fluids from a hydrocarbon layer that is thicker than the hydrocarbon layer depicted in FIG.
4. FIG. 6 depicts a side view representation of an embodiment for producing mobilized fluids from a tar sands formation with a hydrocarbon layer that has a shale break.
[0096] In FIG. 3, heaters 116 are placed in an alternating triangular pattern in hydrocarbon layer 114. In FIGS. 4, 5, and 6, heaters 116 are placed in an alternating triangular pattern in hydrocarbon layer 114 that repeats vertically to encompass a majority or all of the hydrocarbon layer. In FIG. 6, the alternating triangular pattern of heaters 116 in hydrocarbon layer 114 repeats uninterrupted across shale break 118. In FIGS. 3-6, heaters 116 may be equidistantly spaced from each other. In the embodiments depicted in FIGS.
3-6, the number of vertical rows of heaters 116 depends on factors such as, but not limited to, the desired spacing between the heaters, the thickness of hydrocarbon layer 114, and/or the number and location of shale breaks 118. In some embodiments, heaters 116 are arranged in other patterns. For example, heaters 116 may be arranged in patterns such as, but not limited to, hexagonal patterns, square patterns, or rectangular patterns.
3-6, the number of vertical rows of heaters 116 depends on factors such as, but not limited to, the desired spacing between the heaters, the thickness of hydrocarbon layer 114, and/or the number and location of shale breaks 118. In some embodiments, heaters 116 are arranged in other patterns. For example, heaters 116 may be arranged in patterns such as, but not limited to, hexagonal patterns, square patterns, or rectangular patterns.
[0097] In the embodiments depicted in FIGS. 3-6, heaters 116 provide heat that mobilizes hydrocarbons (reduces the viscosity of the hydrocarbons) in hydrocarbon layer 114. In certain embodiments, heaters 116 provide heat that reduces the viscosity of the hydrocarbons in hydrocarbon layer 114 below about 0.50 Pa.s (500 cp), below about 0.10 Pa.s (100 cp), or below about 0.05 Pa.s (50 cp). The spacing between heaters 116 and/or the heat output of the heaters may be designed and/or controlled to reduce the viscosity of the hydrocarbons in hydrocarbon layer 114 to desirable values. Heat provided by heaters 116 may be controlled so that little or no pyrolyzation occurs in hydrocarbon layer 114.
Superposition of heat between the heaters may create one or more drainage paths (for example, paths for flow of fluids) between the heaters. In certain embodiments, production wells 106A and/or production wells 106B are located proximate heaters 116 so that heat from the heaters superimposes over the production wells. The superimposition of heat from heaters 116 over production wells 106A and/or production wells 106B
creates one or more drainage paths from the heaters to the production wells. In certain embodiments, one or more of the drainage paths converge. For example, the drainage paths may converge at or near a bottommost heater and/or the drainage paths may converge at or near production wells 106A and/or production wells 106B. Fluids mobilized in hydrocarbon layer 114 tend to flow towards the bottommost heaters 116, production wells 106A and/or production wells 106B in the hydrocarbon layer because of gravity and the heat and pressure gradients established by the heaters and/or the production wells. The drainage paths and/or the converged drainage paths allow production wells 106A and/or production wells 106B to collect mobilized fluids in hydrocarbon layer 114.
Superposition of heat between the heaters may create one or more drainage paths (for example, paths for flow of fluids) between the heaters. In certain embodiments, production wells 106A and/or production wells 106B are located proximate heaters 116 so that heat from the heaters superimposes over the production wells. The superimposition of heat from heaters 116 over production wells 106A and/or production wells 106B
creates one or more drainage paths from the heaters to the production wells. In certain embodiments, one or more of the drainage paths converge. For example, the drainage paths may converge at or near a bottommost heater and/or the drainage paths may converge at or near production wells 106A and/or production wells 106B. Fluids mobilized in hydrocarbon layer 114 tend to flow towards the bottommost heaters 116, production wells 106A and/or production wells 106B in the hydrocarbon layer because of gravity and the heat and pressure gradients established by the heaters and/or the production wells. The drainage paths and/or the converged drainage paths allow production wells 106A and/or production wells 106B to collect mobilized fluids in hydrocarbon layer 114.
[0098] In certain embodiments, hydrocarbon layer 114 has sufficient permeability to allow mobilized fluids to drain to production wells 106A and/or production wells 106B. For example, hydrocarbon layer 114 may have a permeability of at least about 0.1 darcy, at least about 1 darcy, at least about 10 darcy, or at least about 100 darcy. In some embodiments, hydrocarbon layer 114 has a relatively large vertical permeability to horizontal permeability ratio (Kv/Kh). For example, hydrocarbon layer 114 may have a Kv/Kh ratio between about 0.01 and about 2, between about 0.1 and about 1, or between about 0.3 and about 0.7.
[0099] In certain embodiments, fluids are produced through production wells 106A located near heaters 116 in the lower portion of hydrocarbon layer 114. In some embodiments, fluids are produced through production wells 106B located below and approximately midway between heaters 116 in the lower portion of hydrocarbon layer 114. At least a portion of production wells 106A and/or production wells 106B may be oriented substantially horizontal in hydrocarbon layer 114 (as shown in FIGS. 3-6, the production wells have horizontal portions that go into and out of the page). Production wells 106A
and/or 106B may be located proximate lower portion heaters 116 or the bottommost heaters.
and/or 106B may be located proximate lower portion heaters 116 or the bottommost heaters.
[0100] In some embodiments, production wells 106A are positioned substantially vertically below the bottommost heaters in hydrocarbon layer 114. Production wells 106A
may be located below heaters 116 at the bottom vertex of a pattern of the heaters (for example, at the bottom vertex of the triangular pattern of heaters depicted in FIGS. 3-6).
Locating production wells 106A substantially vertically below the bottommost heaters may allow for efficient collection of mobilized fluids from hydrocarbon layer 114.
may be located below heaters 116 at the bottom vertex of a pattern of the heaters (for example, at the bottom vertex of the triangular pattern of heaters depicted in FIGS. 3-6).
Locating production wells 106A substantially vertically below the bottommost heaters may allow for efficient collection of mobilized fluids from hydrocarbon layer 114.
[0101] In certain embodiments, the bottommost heaters are located between about 2 m and about 10 m from the bottom of hydrocarbon layer 114, between about 4 m and about 8 m from the bottom of the hydrocarbon layer, or between about 5 m and about 7 m from the bottom of the hydrocarbon layer. In certain embodiments, production wells 106A
and/or production wells 106B are located at a distance from the bottommost heaters 116 that allows heat from the heaters to superimpose over the production wells but at a distance from the heaters that inhibits coking at the production wells. Production wells 106A and/or production wells 106B may be located a distance from the nearest heater (for example, the bottommost heater) of at most 3/4 of the spacing between heaters in the pattern of heaters (for example, the triangular pattern of heaters depicted in FIGS. 3-6). In some embodiments, production wells 106A and/or production wells 106B are located a distance from the nearest heater of at most %, at most 1/2, or at most 1/3 of the spacing between heaters in the pattern of heaters. In certain embodiments, production wells 106A and/or production wells 106B are located between about 2 m and about 10 m from the bottommost heaters, between about 4 m and about 8 m from the bottommost heaters, or between about 5 m and about 7 m from the bottommost heaters. Production wells and/or production wells 106B may be located between about 0.5 m and about 8 m from the bottom of hydrocarbon layer 114, between about 1 m and about 5 m from the bottom of the hydrocarbon layer, or between about 2 m and about 4 m from the bottom of the hydrocarbon layer.
and/or production wells 106B are located at a distance from the bottommost heaters 116 that allows heat from the heaters to superimpose over the production wells but at a distance from the heaters that inhibits coking at the production wells. Production wells 106A and/or production wells 106B may be located a distance from the nearest heater (for example, the bottommost heater) of at most 3/4 of the spacing between heaters in the pattern of heaters (for example, the triangular pattern of heaters depicted in FIGS. 3-6). In some embodiments, production wells 106A and/or production wells 106B are located a distance from the nearest heater of at most %, at most 1/2, or at most 1/3 of the spacing between heaters in the pattern of heaters. In certain embodiments, production wells 106A and/or production wells 106B are located between about 2 m and about 10 m from the bottommost heaters, between about 4 m and about 8 m from the bottommost heaters, or between about 5 m and about 7 m from the bottommost heaters. Production wells and/or production wells 106B may be located between about 0.5 m and about 8 m from the bottom of hydrocarbon layer 114, between about 1 m and about 5 m from the bottom of the hydrocarbon layer, or between about 2 m and about 4 m from the bottom of the hydrocarbon layer.
[0102] In some embodiments, at least some production wells 106A are located substantially vertically below heaters 116 near shale break 118, as depicted in FIG. 6.
Production wells 106A may be located between heaters 116 and shale break 118 to produce fluids that flow and collect above the shale break. Shale break 118 may be an impermeable barrier in hydrocarbon layer 114. In some embodiments, shale break 118 has a thickness between about 1 m and about 6 m, between about 2 m and about 5 m, or between about 3 m and about 4 m. Production wells 106A between heaters 116 and shale break 118 may produce fluids from the upper portion of hydrocarbon layer 114 (above the shale break) and production wells 106A below the bottommost heaters in the hydrocarbon layer may produce fluids from the lower portion of the hydrocarbon layer (below the shale break), as depicted in FIG. 6. In some embodiments, two or more shale breaks may exist in a hydrocarbon layer. In such an embodiment, production wells are placed at or near each of the shale breaks to produce fluids flowing and collecting above the shale breaks.
Production wells 106A may be located between heaters 116 and shale break 118 to produce fluids that flow and collect above the shale break. Shale break 118 may be an impermeable barrier in hydrocarbon layer 114. In some embodiments, shale break 118 has a thickness between about 1 m and about 6 m, between about 2 m and about 5 m, or between about 3 m and about 4 m. Production wells 106A between heaters 116 and shale break 118 may produce fluids from the upper portion of hydrocarbon layer 114 (above the shale break) and production wells 106A below the bottommost heaters in the hydrocarbon layer may produce fluids from the lower portion of the hydrocarbon layer (below the shale break), as depicted in FIG. 6. In some embodiments, two or more shale breaks may exist in a hydrocarbon layer. In such an embodiment, production wells are placed at or near each of the shale breaks to produce fluids flowing and collecting above the shale breaks.
[0103] In some embodiments, shale break 118 breaks down (is desiccated) as the shale break is heated by heaters 116 on either side of the shale break. As shale break 118 breaks down, the permeability of the shale break increases and the shale break allows fluids to flow through the shale break. Once fluids are able to flow through shale break 118, production wells above the shale break may not be needed for production as fluids can flow to production wells at or near the bottom of hydrocarbon layer 114 and be produced there.
[0104] In certain embodiments, the bottommost heaters above shale break 118 are located between about 2 m and about 10 m from the shale break, between about 4 m and about 8 m from the bottom of the shale break, or between about 5 m and about 7 m from the shale break. Production wells 106A may be located between about 2 m and about 10 m from the bottommost heaters above shale break 118, between about 4 m and about 8 m from the bottommost heaters above the shale break, or between about 5 m and about 7 m from the bottommost heaters above the shale break. Production wells 106A may be located between about 0.5 m and about 8 m from shale break 118, between about 1 m and about 5 m from the shale break, or between about 2 m and about 4 m from the shale break.
[0105] In some embodiments, heat is provided in production wells 106A and/or production wells 106B, depicted in FIGS. 3-6. Providing heat in production wells 106A
and/or production wells 106B may maintain and/or enhance the mobility of the fluids in the production wells. Heat provided in production wells 106A and/or production wells 106B
may superpose with heat from heaters 116 to create the flow path from the heaters to the production wells. In some embodiments, production wells 106A and/or production wells 106B include a pump to move fluids to the surface of the formation. In some embodiments, the viscosity of fluids (oil) in production wells 106A and/or production wells 106B is lowered using heaters and/or diluent injection (for example, using a conduit in the production wells for injecting the diluent).
and/or production wells 106B may maintain and/or enhance the mobility of the fluids in the production wells. Heat provided in production wells 106A and/or production wells 106B
may superpose with heat from heaters 116 to create the flow path from the heaters to the production wells. In some embodiments, production wells 106A and/or production wells 106B include a pump to move fluids to the surface of the formation. In some embodiments, the viscosity of fluids (oil) in production wells 106A and/or production wells 106B is lowered using heaters and/or diluent injection (for example, using a conduit in the production wells for injecting the diluent).
[0106] In certain embodiments, in situ heat treatment of the relatively permeable formation containing hydrocarbons (for example, the tar sands formation) includes heating the formation to visbreaking temperatures. For example, the formation may be heated to temperatures between about 100 C and 260 C, between about 150 C and about 250 C, between about 200 C and about 240 C, between about 205 C and 230 C, between about 210 C and 225 C. In one embodiment, the formation is heated to a temperature of about 220 C. In one embodiment, the formation is heated to a temperature of about 230 C. At visbreaking temperatures, fluids in the formation have a reduced viscosity (versus their initial viscosity at initial formation temperature) that allows fluids to flow in the formation.
The reduced viscosity at visbreaking temperatures may be a permanent reduction in viscosity as the hydrocarbons go through a step change in viscosity at visbreaking temperatures (versus heating to mobilization temperatures, which may only temporarily reduce the viscosity). The visbroken fluids may have API gravities that are relatively low (for example, at most about 10 , about 12 , about 15 , or about 19 API
gravity), but the API gravities are higher than the API gravity of non-visbroken fluid from the formation.
The non-visbroken fluid from the formation may have an API gravity of 7 or less.
The reduced viscosity at visbreaking temperatures may be a permanent reduction in viscosity as the hydrocarbons go through a step change in viscosity at visbreaking temperatures (versus heating to mobilization temperatures, which may only temporarily reduce the viscosity). The visbroken fluids may have API gravities that are relatively low (for example, at most about 10 , about 12 , about 15 , or about 19 API
gravity), but the API gravities are higher than the API gravity of non-visbroken fluid from the formation.
The non-visbroken fluid from the formation may have an API gravity of 7 or less.
[0107] In some embodiments, heaters in the formation are operated at full power output to heat the formation to visbreaking temperatures or higher temperatures.
Operating at full power may rapidly increase the pressure in the formation. In certain embodiments, fluids are produced from the formation to maintain a pressure in the formation below a selected pressure as the temperature of the formation increases. In some embodiments, the selected pressure is a fracture pressure of the formation. In certain embodiments, the selected pressure is between about 1000 kPa and about 15000 kPa, between about 2000 kPa and about 10000 kPa, or between about 2500 kPa and about 5000 kPa. In one embodiment, the selected pressure is about 10000 kPa. Maintaining the pressure as close to the fracture pressure as possible may minimize the number of production wells needed for producing fluids from the formation.
Operating at full power may rapidly increase the pressure in the formation. In certain embodiments, fluids are produced from the formation to maintain a pressure in the formation below a selected pressure as the temperature of the formation increases. In some embodiments, the selected pressure is a fracture pressure of the formation. In certain embodiments, the selected pressure is between about 1000 kPa and about 15000 kPa, between about 2000 kPa and about 10000 kPa, or between about 2500 kPa and about 5000 kPa. In one embodiment, the selected pressure is about 10000 kPa. Maintaining the pressure as close to the fracture pressure as possible may minimize the number of production wells needed for producing fluids from the formation.
[0108] In certain embodiments, treating the formation includes maintaining the temperature at or near visbreaking temperatures (as described above) during the entire production phase while maintaining the pressure below the fracture pressure.
The heat provided to the formation may be reduced or eliminated to maintain the temperature at or near visbreaking temperatures. Heating to visbreaking temperatures but maintaining the temperature below pyrolysis temperatures or near pyrolysis temperatures (for example, below about 230 C) inhibits coke formation and/or higher level reactions.
Heating to visbreaking temperatures at higher pressures (for example, pressures near but below the fracture pressure) keeps produced gases in the liquid oil (hydrocarbons) in the formation and increases hydrogen reduction in the formation with higher hydrogen partial pressures.
Heating the formation to only visbreaking temperatures also uses less energy input than heating the formation to pyrolysis temperatures.
The heat provided to the formation may be reduced or eliminated to maintain the temperature at or near visbreaking temperatures. Heating to visbreaking temperatures but maintaining the temperature below pyrolysis temperatures or near pyrolysis temperatures (for example, below about 230 C) inhibits coke formation and/or higher level reactions.
Heating to visbreaking temperatures at higher pressures (for example, pressures near but below the fracture pressure) keeps produced gases in the liquid oil (hydrocarbons) in the formation and increases hydrogen reduction in the formation with higher hydrogen partial pressures.
Heating the formation to only visbreaking temperatures also uses less energy input than heating the formation to pyrolysis temperatures.
[0109] Fluids produced from the formation may include visbroken fluids, mobilized fluids, and/or pyrolyzed fluids. In some embodiments, a produced mixture that includes these fluids is produced from the formation. The produced mixture may have assessable properties (for example, measurable properties). The produced mixture properties are determined by operating conditions in the formation being treated (for example, temperature and/or pressure in the formation). In certain embodiments, the operating conditions may be selected, varied, and/or maintained to produce desirable properties in the produced mixture. For example, the produced mixture may have properties that allow the mixture to be easily transported (for example, sent through a pipeline without adding diluent or blending the mixture with another fluid).
[0110] Examples of produced mixture properties that may be measured and used to assess the produced mixture include, but are not limited to, liquid hydrocarbon properties such as API gravity, viscosity, asphaltene stability (P-value), and bromine number. In certain embodiments, operating conditions are selected, varied, and/or maintained to produce an API gravity of at least about 15 , at least about 17 , at least about 19 , or at least about 20 in the produced mixture. In certain embodiments, operating conditions are selected, varied, and/or maintained to produce a viscosity (measured at 1 atm and 5 C) of at most about 400 cp, at most about 350 cp, at most about 250 cp, or at most about 100 cp in the produced mixture. As an example, the initial viscosity in the formation of above about 1000 cp or, in some cases, above about 1 million cp. In certain embodiments, operating conditions are selected, varied, and/or maintained to produce an asphaltene stability (P-value) of at least about 1, at least about 1.1, at least about 1.2, or at least about 1.3 in the produced mixture. In certain embodiments, operating conditions are selected, varied, and/or maintained to produce a bromine number of at most about 3%, at most about 2.5%, at most about 2%, or at most about 1.5% in the produced mixture.
[0111] In certain embodiments, the mixture is produced from one or more production wells located at or near the bottom of the hydrocarbon layer being treated. In other embodiments, the mixture is produced from other locations in the hydrocarbon layer being treated (for example, from an upper portion of the layer or a middle portion of the layer).
[0112] In one embodiment, the formation is heated to 220 C or 230 C while maintaining the pressure in the formation below 10000 kPa. The mixture produced from the formation may have several desirable properties such as, but not limited to, an API
gravity of at least 19 , a viscosity of at most 350 cp, a P-value of at least 1.1, and a bromine number of at most 2%. Such a produced mixture may be transportable through a pipeline without adding diluent or blending the mixture with another fluid. The mixture may be produced from one or more production wells located at or near the bottom of the hydrocarbon layer being treated.
gravity of at least 19 , a viscosity of at most 350 cp, a P-value of at least 1.1, and a bromine number of at most 2%. Such a produced mixture may be transportable through a pipeline without adding diluent or blending the mixture with another fluid. The mixture may be produced from one or more production wells located at or near the bottom of the hydrocarbon layer being treated.
[0113] In some embodiments, after the formation reaches visbreaking temperatures, the pressure in the formation is reduced. In certain embodiments, the pressure in the formation is reduced at temperatures above visbreaking temperatures. Reducing the pressure at higher temperatures allows more of the hydrocarbons in the formation to be converted to higher quality hydrocarbons by visbreaking and/or pyrolysis. Allowing the formation to reach higher temperatures before pressure reduction, however, may increase the amount of carbon dioxide produced and/or the amount of coking in the formation. For example, in some formations, coking of bitumen (at pressures above 700 kPa) begins at about 280 C
and reaches a maximum rate at about 340 C. At pressures below about 700 kPa, the coking rate in the formation is minimal. Allowing the formation to reach higher temperatures before pressure reduction may decrease the amount of hydrocarbons produced from the formation.
and reaches a maximum rate at about 340 C. At pressures below about 700 kPa, the coking rate in the formation is minimal. Allowing the formation to reach higher temperatures before pressure reduction may decrease the amount of hydrocarbons produced from the formation.
[0114] In certain embodiments, the temperature in the formation (for example, an average temperature of the formation) when the pressure in the formation is reduced is selected to balance one or more factors. The factors considered may include: the quality of hydrocarbons produced, the amount of hydrocarbons produced, the amount of carbon dioxide produced, the amount hydrogen sulfide produced, the degree of coking in the formation, and/or the amount of water produced. Experimental assessments using formation samples and/or simulated assessments based on the formation properties may be used to assess results of treating the formation using the in situ heat treatment process.
These results may be used to determine a selected temperature, or temperature range, for when the pressure in the formation is to be reduced. The selected temperature, or temperature range, may also be affected by factors such as, but not limited to, hydrocarbon or oil market conditions and other economic factors. In certain embodiments, the selected temperature is in a range between about 275 C and about 305 C, between about and about 300 C, or between about 285 C and about 295 C.
These results may be used to determine a selected temperature, or temperature range, for when the pressure in the formation is to be reduced. The selected temperature, or temperature range, may also be affected by factors such as, but not limited to, hydrocarbon or oil market conditions and other economic factors. In certain embodiments, the selected temperature is in a range between about 275 C and about 305 C, between about and about 300 C, or between about 285 C and about 295 C.
[0115] In certain embodiments, an average temperature in the formation is assessed from an analysis of fluids produced from the formation. For example, the average temperature of the formation may be assessed from an analysis of the fluids that have been produced to maintain the pressure in the formation below the fracture pressure of the formation.
[0116] In some embodiments, values of the hydrocarbon isomer shift in fluids (for example, gases) produced from the formation is used to indicate the average temperature in the formation. Experimental analysis and/or simulation may be used to assess one or more hydrocarbon isomer shifts and relate the values of the hydrocarbon isomer shifts to the average temperature in the formation. The assessed relation between the hydrocarbon isomer shifts and the average temperature may then be used in the field to assess the average temperature in the formation by monitoring one or more of the hydrocarbon isomer shifts in fluids produced from the formation. In some embodiments, the pressure in the formation is reduced when the monitored hydrocarbon isomer shift reaches a selected value. The selected value of the hydrocarbon isomer shift may be chosen based on the selected temperature, or temperature range, in the formation for reducing the pressure in the formation and the assessed relation between the hydrocarbon isomer shift and the average temperature. Examples of hydrocarbon isomer shifts that may be assessed include, but are not limited to, n-butane-613C4 percentage versus propane- 613C3 percentage, n-pentane- 613C5 percentage versus propane- 613C3 percentage, n-pentane- 613C5 percentage versus n-butane- 613C4 percentage, and i-pentane- 613C5 percentage versus i-butane- 613C4 percentage. In some embodiments, the hydrocarbon isomer shift in produced fluids is used to indicate the amount of conversion (for example, amount of pyrolysis) that has taken place in the formation.
[0117] In some embodiments, weight percentages of saturates in fluids produced from the formation is used to indicate the average temperature in the formation.
Experimental analysis and/or simulation may be used to assess the weight percentage of saturates as a function of the average temperature in the formation. For example, SARA
(Saturates, Aromatics, Resins, and Asphaltenes) analysis (sometimes referred to as Asphaltene/Wax/Hydrate Deposition analysis) may be used to assess the weight percentage of saturates in a sample of fluids from the formation. In some formations, the weight percentage of saturates has a linear relationship to the average temperature in the formation. The relation between the weight percentage of saturates and the average temperature may then be used in the field to assess the average temperature in the formation by monitoring the weight percentage of saturates in fluids produced from the formation. In some embodiments, the pressure in the formation is reduced when the monitored weight percentage of saturates reaches a selected value. The selected value of the weight percentage of saturates may be chosen based on the selected temperature, or temperature range, in the formation for reducing the pressure in the formation and the relation between the weight percentage of saturates and the average temperature.
Experimental analysis and/or simulation may be used to assess the weight percentage of saturates as a function of the average temperature in the formation. For example, SARA
(Saturates, Aromatics, Resins, and Asphaltenes) analysis (sometimes referred to as Asphaltene/Wax/Hydrate Deposition analysis) may be used to assess the weight percentage of saturates in a sample of fluids from the formation. In some formations, the weight percentage of saturates has a linear relationship to the average temperature in the formation. The relation between the weight percentage of saturates and the average temperature may then be used in the field to assess the average temperature in the formation by monitoring the weight percentage of saturates in fluids produced from the formation. In some embodiments, the pressure in the formation is reduced when the monitored weight percentage of saturates reaches a selected value. The selected value of the weight percentage of saturates may be chosen based on the selected temperature, or temperature range, in the formation for reducing the pressure in the formation and the relation between the weight percentage of saturates and the average temperature.
[0118] In some embodiments, weight percentages of n-C7 in fluids produced from the formation is used to indicate the average temperature in the formation.
Experimental analysis and/or simulation may be used to assess the weight percentages of n-C7 as a function of the average temperature in the formation. In some formations, the weight percentages of n-C7 has a linear relationship to the average temperature in the formation.
The relation between the weight percentages of n-C7 and the average temperature may then be used in the field to assess the average temperature in the formation by monitoring the weight percentages of n-C7 in fluids produced from the formation. In some embodiments, the pressure in the formation is reduced when the monitored weight percentage of n-C7 reaches a selected value. The selected value of the weight percentage of n-C7 may be chosen based on the selected temperature, or temperature range, in the formation for reducing the pressure in the formation and the relation between the weight percentage of n-C7 and the average temperature.
Experimental analysis and/or simulation may be used to assess the weight percentages of n-C7 as a function of the average temperature in the formation. In some formations, the weight percentages of n-C7 has a linear relationship to the average temperature in the formation.
The relation between the weight percentages of n-C7 and the average temperature may then be used in the field to assess the average temperature in the formation by monitoring the weight percentages of n-C7 in fluids produced from the formation. In some embodiments, the pressure in the formation is reduced when the monitored weight percentage of n-C7 reaches a selected value. The selected value of the weight percentage of n-C7 may be chosen based on the selected temperature, or temperature range, in the formation for reducing the pressure in the formation and the relation between the weight percentage of n-C7 and the average temperature.
[0119] The pressure in the formation may be reduced by producing fluids (for example, visbroken fluids and/or mobilized fluids) from the formation. In some embodiments, the pressure is reduced below a pressure at which fluids coke in the formation to inhibit coking at pyrolysis temperatures. For example, the pressure is reduced to a pressure below about 1000 kPa, below about 800 kPa, or below about 700 kPa (for example, about 690 kPa). In certain embodiments, the selected pressure is at least about 100 kPa, at least about 200 kPa, or at least about 300 kPa. The pressure may be reduced to inhibit coking of asphaltenes or other high molecular weight hydrocarbons in the formation. In some embodiments, the pressure may be maintained below a pressure at which water passes through a liquid phase at downhole (formation) temperatures to inhibit liquid water and dolomite reactions. After reducing the pressure in the formation, the temperature may be increased to pyrolysis temperatures to begin pyrolyzation and/or upgrading of fluids in the formation. The pyrolyzed and/or upgraded fluids may be produced from the formation.
[0120] In certain embodiments, the amount of fluids produced at temperatures below visbreaking temperatures, the amount of fluids produced at visbreaking temperatures, the amount of fluids produced before reducing the pressure in the formation, and/or the amount of upgraded or pyrolyzed fluids produced may be varied to control the quality and amount of fluids produced from the formation and the total recovery of hydrocarbons from the formation. For example, producing more fluid during the early stages of treatment (for example, producing fluids before reducing the pressure in the formation) may increase the total recovery of hydrocarbons from the formation while reducing the overall quality (lowering the overall API gravity) of fluid produced from the formation. The overall quality is reduced because more heavy hydrocarbons are produced by producing more fluids at the lower temperatures. Producing less fluids at the lower temperatures may increase the overall quality of the fluids produced from the formation but may lower the total recovery of hydrocarbons from the formation. The total recovery may be lower because more coking occurs in the formation when less fluids are produced at lower temperatures.
[0121] In certain embodiments, the formation is heated using isolated cells of heaters (cells or sections of the formation that are not interconnected for fluid flow). The isolated cells may be created by using larger heater spacings in the formation. For example, large heater spacings may be used in the embodiments depicted in FIGS. 3-6. These isolated cells may be produced during early stages of heating (for example, at temperatures below visbreaking temperatures). Because the cells are isolated from other cells in the formation, the pressures in the isolated cells are high and more liquids are producible from the isolated cells. Thus, more liquids may be produced from the formation and a higher total recovery of hydrocarbons may be reached. During later stages of heating, the heat gradient may interconnect the isolated cells and pressures in the formation will drop.
[0122] In certain embodiments, the heat gradient in the formation is modified so that a gas cap is created at or near an upper portion of the hydrocarbon layer. For example, the heat gradient made by heaters 116 depicted in the embodiments depicted in FIGS. 3-6 may be modified to create the gas cap at or near overburden 112 of hydrocarbon layer 114. The gas cap may push or drive liquids to the bottom of the hydrocarbon layer so that more liquids may be produced from the formation. In situ generation of the gas cap may be more efficient than introducing pressurized fluid into the formation. The in situ generated gas cap applies force evenly through the formation with little or no channeling or fingering that may reduce the effectiveness of introduced pressurized fluid.
[0123] In certain embodiments, the number and/or location of production wells in the formation is varied based on the viscosity of the formation. More or less production wells may be located in zones of the formation with different viscosities. The viscosities of the zones may be assessed before placing the production wells in the formation, before heating the formation, and/or after heating the formation. In some embodiments, more production wells are located in zones in the formation that have lower viscosities. For example, in certain formations, upper portions, or zones, of the formation may have lower viscosities.
Thus, more production wells may be located in the upper zones. Locating production wells in the less viscous zones of the formation allows for better pressure control in the formation and/or producing higher quality (more upgraded) oil from the formation.
Thus, more production wells may be located in the upper zones. Locating production wells in the less viscous zones of the formation allows for better pressure control in the formation and/or producing higher quality (more upgraded) oil from the formation.
[0124] In some embodiments, zones in the formation with different assessed viscosities are heated at different rates. In certain embodiments, zones in the formation with higher viscosities are heated at higher heating rates than zones with lower viscosities. Heating the zones with higher viscosities at the higher heating rates mobilizes and/or upgrades these zones at a faster rate so that these zones may "catch up" in viscosity and/or quality to the slower heated zones.
[0125] In some embodiments, the heater spacing is varied to provide different heating rates to zones in the formation with different assessed viscosities. For example, denser heater spacings (less spaces between heaters) may be used in zones with higher viscosities to heat these zones at higher heating rates. In some embodiments, a production well (for example, a substantially vertical production well) is located in the zones with denser heater spacings and higher viscosities. The production well may be used to remove fluids from the formation and relieve pressure from the higher viscosity zones. In some embodiments, one or more substantially vertical openings, or production wells, are located in the higher viscosity zones to allow fluids to drain in the higher viscosity zones. The draining fluids may be produced from the formation through production wells located near the bottom of the higher viscosity zones.
[0126] In certain embodiments, production wells are located in more than one zone in the formation. The zones may have different initial permeabilities. In certain embodiments, a first zone has an initial permeability of at least about 1 darcy and a second zone has an initial permeability of at most about 0.1 darcy. In some embodiments, the first zone has an initial permeability of between about 1 darcy and about 10 darcy. In some embodiments, the second zone has an initial permeability between about 0.01 darcy and 0.1 darcy. The zones may be separated by a substantially impermeable barrier (with an initial permeability of at most about 10 udarcy or less). Having the production well located in both zones allows for fluid communication (permeability) between the zones and/or pressure equalization between the zones.
[0127] In some embodiments, openings (for example, substantially vertical openings) are formed between zones with different initial permeabilities that are separated by a substantially impermeable barrier. Bridging the zones with the openings allows for fluid communication (permeability) between the zones and/or pressure equalization between the zones. In some embodiments, openings in the formation (such as pressure relief openings and/or production wells) allow gases or low viscosity fluids to rise in the openings. As the gases or low viscosity fluids rise, the fluids may condense or increase viscosity in the openings so that the fluids drain back down the openings to be further upgraded in the formation. Thus, the openings may act as heat pipes by transferring heat from the lower portions to the upper portions where the fluids condense. The wellbores may be packed and sealed near or at the overburden to inhibit transport of formation fluid to the surface.
[0128] In some embodiments, production of fluids is continued after reducing and/or turning off heating of the formation. The formation may be heated for a selected time. For example, the formation may be heated until it reaches a selected average temperature.
Production from the formation may continue after the selected time. Continuing production may produce more fluid from the formation as fluids drain towards the bottom of the formation and/or fluids are upgraded by passing by hot spots in the formation. In some embodiments, a horizontal production well is located at or near the bottom of the formation (or a zone of the formation) to produce fluids after heating is turned down and/or off.
Production from the formation may continue after the selected time. Continuing production may produce more fluid from the formation as fluids drain towards the bottom of the formation and/or fluids are upgraded by passing by hot spots in the formation. In some embodiments, a horizontal production well is located at or near the bottom of the formation (or a zone of the formation) to produce fluids after heating is turned down and/or off.
[0129] In certain embodiments, initially produced fluids (for example, fluids produced below visbreaking temperatures), fluids produced at visbreaking temperatures, and/or other viscous fluids produced from the formation are blended with diluent to produce fluids with lower viscosities. In some embodiments, the diluent includes upgraded or pyrolyzed fluids produced from the formation. In some embodiments, the diluent includes upgraded or pyrolyzed fluids produced from another portion of the formation or another formation. In certain embodiments, the amount of fluids produced at temperatures below visbreaking temperatures and/or fluids produced at visbreaking temperatures that are blended with upgraded fluids from the formation is adjusted to create a fluid suitable for transportation and/or use in a refinery. The amount of blending may be adjusted so that the fluid has chemical and physical stability. Maintaining the chemical and physical stability of the fluid may allow the fluid to be transported, reduce pre-treatment processes at a refinery and/or reduce or eliminate the need for adjusting the refinery process to compensate for the fluid.
[0130] In certain embodiments, formation conditions (for example, pressure and temperature) and/or fluid production are controlled to produce fluids with selected properties. For example, formation conditions and/or fluid production may be controlled to produce fluids with a selected API gravity and/or a selected viscosity. The selected API
gravity and/or selected viscosity may be produced by combining fluids produced at different formation conditions (for example, combining fluids produced at different temperatures during the treatment as described above). As an example, formation conditions and/or fluid production may be controlled to produce fluids with an API gravity of about 19 and a viscosity of about 0.35 Pa.s (350 cp) at 19 C.
gravity and/or selected viscosity may be produced by combining fluids produced at different formation conditions (for example, combining fluids produced at different temperatures during the treatment as described above). As an example, formation conditions and/or fluid production may be controlled to produce fluids with an API gravity of about 19 and a viscosity of about 0.35 Pa.s (350 cp) at 19 C.
[0131] In some embodiments, formation conditions and/or fluid production is controlled so that water (for example, connate water) is recondensed in the treatment area.
Recondensing water in the treatment area keeps the heat of condensation in the formation.
In addition, having liquid water in the formation may increase mobility of liquid hydrocarbons (oil) in the formation. Liquid water may wet rock or other strata in the formation by occupying pores or corners in the strata and creating a slick surface that allows liquid hydrocarbons to move more readily through the formation.
Recondensing water in the treatment area keeps the heat of condensation in the formation.
In addition, having liquid water in the formation may increase mobility of liquid hydrocarbons (oil) in the formation. Liquid water may wet rock or other strata in the formation by occupying pores or corners in the strata and creating a slick surface that allows liquid hydrocarbons to move more readily through the formation.
[0132] In certain embodiments, a drive process (for example, a steam injection process such as cyclic steam injection, a steam assisted gravity drainage process (SAGD), a solvent injection process, a vapor solvent and SAGD process, or a carbon dioxide injection process) is used to treat the tar sands formation in addition to the in situ heat treatment process. In some embodiments, heaters are used to create high permeability zones (or injection zones) in the formation for the drive process. Heaters may be used to create a mobilization geometry or production network in the formation to allow fluids to flow through the formation during the drive process. For example, heaters may be used to create drainage paths between the heaters and production wells for the drive process. In some embodiments, the heaters are used to provide heat during the drive process. The amount of heat provided by the heaters may be small compared to the heat input from the drive process (for example, the heat input from steam injection).
[0133] In some embodiments, the in situ heat treatment process creates or produces the drive fluid in situ. The in situ produced drive fluid may move through the formation and move mobilized hydrocarbons from one portion of the formation to another portion of the formation.
[0134] In some embodiments, the in situ heat treatment process may provide less heat to the formation (for example, use a wider heater spacing) if the in situ heat treatment process is followed by the drive process. The drive process may be used to increase the amount of heat provided to the formation to compensate for the loss of heat injection.
[0135] In some embodiments, the drive process is used to treat the formation and produce hydrocarbons from the formation. The drive process may recover a low amount of oil in place from the formation (for example, less than 20% recovery of oil in place from the formation). The in situ heat treatment process may be used following the drive process to increase the recovery of oil in place from the formation. In some embodiments, the drive process preheats the formation for the in situ heat treatment process. In some embodiments, the formation is treated using the in situ heat treatment process a significant time after the formation has been treated using the drive process. For example, the in situ heat treatment process is used 1 year, 2 years, 3 years, or longer after a formation has been treated using the drive process. The in situ heat treatment process may be used on formations that have been left dormant after the drive process treatment because further hydrocarbon production using the drive process is not possible and/or not economically feasible. In some embodiments, the formation remains at least somewhat preheated from the drive process even after the significant time.
[0136] In some embodiments, heaters are used to preheat the formation for the drive process. For example, heaters may be used to create injectivity in the formation for a drive fluid. The heaters may create high mobility zones (or injection zones) in the formation for the drive process. In certain embodiments, heaters are used to create injectivity in formations with little or no initial injectivity. Heating the formation may create a mobilization geometry or production network in the formation to allow fluids to flow through the formation for the drive process. For example, heaters may be used to create a fluid production network between a horizontal heater and a vertical production well. The heaters used to preheat the formation for the drive process may also be used to provide heat during the drive process.
[0137] FIG. 7 depicts a top view representation of an embodiment for preheating using heaters for the drive process. Injection wells 120 and production wells 106 are substantially vertical wells. Heaters 116 are long substantially horizontal heaters positioned so that the heaters pass in the vicinity of injection wells 120.
Heaters 116 intersect the vertical well patterns slightly displaced from the vertical wells.
Heaters 116 intersect the vertical well patterns slightly displaced from the vertical wells.
[0138] The vertical location of heaters 116 with respect to injection wells 120 and production wells 106 depends on, for example, the vertical permeability of the formation.
In formations with at least some vertical permeability, injected steam will rise to the top of the permeable layer in the formation. In such formations, heaters 116 may be located near the bottom of hydrocarbon layer 114, as shown in FIG. 9. In formations with very low vertical permeabilities, more than one horizontal heater may be used with the heaters stacked substantially vertically or with heaters at varying depths in the hydrocarbon layer (for example, heater patterns as shown in FIGS. 3-6). The vertical spacing between the horizontal heaters in such formations may correspond to the distance between the heaters and the injection wells. Heaters 116 are located in the vicinity of injection wells 120 and/or production wells 106 so that sufficient energy is delivered by the heaters to provide flow rates for the drive process that are economically viable. The spacing between heaters 116 and injection wells 120 or production wells 106 may be varied to provide an economically viable drive process. The amount of preheating may also be varied to provide an economically viable process.
In formations with at least some vertical permeability, injected steam will rise to the top of the permeable layer in the formation. In such formations, heaters 116 may be located near the bottom of hydrocarbon layer 114, as shown in FIG. 9. In formations with very low vertical permeabilities, more than one horizontal heater may be used with the heaters stacked substantially vertically or with heaters at varying depths in the hydrocarbon layer (for example, heater patterns as shown in FIGS. 3-6). The vertical spacing between the horizontal heaters in such formations may correspond to the distance between the heaters and the injection wells. Heaters 116 are located in the vicinity of injection wells 120 and/or production wells 106 so that sufficient energy is delivered by the heaters to provide flow rates for the drive process that are economically viable. The spacing between heaters 116 and injection wells 120 or production wells 106 may be varied to provide an economically viable drive process. The amount of preheating may also be varied to provide an economically viable process.
[0139] In certain embodiments, a fluid is injected into the formation (for example, a drive fluid or an oxidizing fluid) to move hydrocarbons through the formation from a first section to a second section. In some embodiments, the hydrocarbons are moved from the first section to the second section through a third section. FIG. 8 depicts a side view representation of an embodiment using at least three treatment sections in a tar sands formation. Hydrocarbon layer 114 may be divide into three or more treatment sections. In certain embodiments, hydrocarbon layer 114 includes three different types of treatment sections: section 121A, section 121B, and section 121C. Section 121C and sections 121A
are separated by sections 121B. Section 121C, sections 121A, and sections 121B
may be horizontally displaced from each other in the formation. In some embodiments, one side of section 121C is adjacent to an edge of the treatment area of the formation or an untreated section of the formation is left on one side of section 121C before the same or a different pattern is formed on the opposite side of the untreated section.
are separated by sections 121B. Section 121C, sections 121A, and sections 121B
may be horizontally displaced from each other in the formation. In some embodiments, one side of section 121C is adjacent to an edge of the treatment area of the formation or an untreated section of the formation is left on one side of section 121C before the same or a different pattern is formed on the opposite side of the untreated section.
[0140] In certain embodiments, sections 121A and 121C are heated at or near the same time to similar temperatures (for example, pyrolysis temperatures). Sections 121A and 121C may be heated to mobilize and/or pyrolyze hydrocarbons in the sections.
The mobilized and/or pyrolyzed hydrocarbons may be produced (for example, through one or more production wells) from section 121A and/or section 121C. Section 121B may be heated to lower temperatures (for example, mobilization temperatures). Little or no production of hydrocarbons to the surface may take place through section 121B.
For example, sections 121A and 121C may be heated to average temperatures of about while section 121B is heated to an average temperature of about 100 C and no production wells are operated in section 121B.
The mobilized and/or pyrolyzed hydrocarbons may be produced (for example, through one or more production wells) from section 121A and/or section 121C. Section 121B may be heated to lower temperatures (for example, mobilization temperatures). Little or no production of hydrocarbons to the surface may take place through section 121B.
For example, sections 121A and 121C may be heated to average temperatures of about while section 121B is heated to an average temperature of about 100 C and no production wells are operated in section 121B.
[0141] In certain embodiments, heating and producing hydrocarbons from section creates fluid injectivity in the section. After fluid injectivity has been created in section 121C, a fluid such as a drive fluid (for example, steam, water, or hydrocarbons) and/or an oxidizing fluid (for example, air, oxygen, enriched oxygen, or other oxidants) may be injected into the section. The fluid may be injected through heaters 116, a production well, and/or an injection well located in section 121C. In some embodiments, heaters continue to provide heat while the fluid is being injected. In other embodiments, heaters 116 may be turned down or off before or during fluid injection.
[0142] In some embodiments, providing oxidizing fluid such as air to section 121C causes oxidation of hydrocarbons in the section. For example, coked hydrocarbons and/or heated hydrocarbons in section 121C may oxidize if the temperature of the hydrocarbons is above an oxidation ignition temperature. In some embodiments, treatment of section 121C with the heaters creates coked hydrocarbons with substantially uniform porosity and/or substantially uniform injectivity so that heating of the section is controllable when oxidizing fluid is introduced to the section. The oxidation of hydrocarbons in section 121C
will maintain the average temperature of the section or increase the average temperature of the section to higher temperatures (for example, about 400 C or above).
will maintain the average temperature of the section or increase the average temperature of the section to higher temperatures (for example, about 400 C or above).
[0143] In some embodiments, injection of the oxidizing fluid is used to heat section 121C
and a second fluid is introduced into the formation after or with the oxidizing fluid to create drive fluids in the section. During injection of air, excess air and/or oxidation products may be removed from section 121C through one or more producer wells.
After the formation is raised to a desired temperature, a second fluid may be introduced into section 121C to react with coke and/or hydrocarbons and generate drive fluid (for example, synthesis gas). In some embodiments, the second fluid includes water and/or steam.
Reactions of the second fluid with carbon in the formation may be endothermic reactions that cool the formation. In some embodiments, oxidizing fluid is added with the second fluid so that some heating of section 121C occurs simultaneous with the endothermic reactions. In some embodiments, section 121C may be treated in alternating steps of adding oxidant to heat the formation, and then adding second fluid to generate drive fluids.
and a second fluid is introduced into the formation after or with the oxidizing fluid to create drive fluids in the section. During injection of air, excess air and/or oxidation products may be removed from section 121C through one or more producer wells.
After the formation is raised to a desired temperature, a second fluid may be introduced into section 121C to react with coke and/or hydrocarbons and generate drive fluid (for example, synthesis gas). In some embodiments, the second fluid includes water and/or steam.
Reactions of the second fluid with carbon in the formation may be endothermic reactions that cool the formation. In some embodiments, oxidizing fluid is added with the second fluid so that some heating of section 121C occurs simultaneous with the endothermic reactions. In some embodiments, section 121C may be treated in alternating steps of adding oxidant to heat the formation, and then adding second fluid to generate drive fluids.
[0144] The generated drive fluids in section 121C may include steam, carbon dioxide, carbon monoxide, hydrogen, methane, and/or pyrolyzed hydrocarbons. The high temperature in section 121C and the generation of drive fluid in the section may increase the pressure of the section so the drive fluids move out of the section into adjacent sections.
The increased temperature of section 121C may also provide heat to section 121B through conductive heat transfer and/or convective heat transfer from fluid flow (for example, hydrocarbons and/or drive fluid) to section 121B.
The increased temperature of section 121C may also provide heat to section 121B through conductive heat transfer and/or convective heat transfer from fluid flow (for example, hydrocarbons and/or drive fluid) to section 121B.
[0145] In some embodiments, hydrocarbons (for example, hydrocarbons produced from section 121C) are provided as a portion of the drive fluid. The injected hydrocarbons may include at least some pyrolyzed hydrocarbons such as pyrolyzed hydrocarbons produced from section 121C. In some embodiments, steam or water are provided as a portion of the drive fluid. Providing steam or water in the drive fluid may be used to control temperatures in the formation. For example, steam or water may be used to keep temperatures lower in the formation. In some embodiments, water injected as the drive fluid is turned into steam in the formation due to the higher temperatures in the formation.
The conversion of water to steam may be used to reduce temperatures or maintain lower temperatures in the formation.
The conversion of water to steam may be used to reduce temperatures or maintain lower temperatures in the formation.
[0146] Fluids injected in section 121C may flow towards section 121B, as shown by the arrows in FIG. 8. Fluid movement through the formation transfers heat convectively through hydrocarbon layer 114 into sections 121B and/or 121A. In addition, some heat may transfer conductively through the hydrocarbon layer between the sections.
[0147] Low level heating of section 121B mobilizes hydrocarbons in the section. The mobilized hydrocarbons in section 121B may be moved by the injected fluid through the section towards section 121A, as shown by the arrows in FIG. 8. Thus, the injected fluid is pushing hydrocarbons from section 121C through section 121B to section 121A.
Mobilized hydrocarbons may be upgraded in section 121A due to the higher temperatures in the section. Pyrolyzed hydrocarbons that move into section 121A may also be further upgraded in the section. The upgraded hydrocarbons may be produced through production wells located in section 121A.
Mobilized hydrocarbons may be upgraded in section 121A due to the higher temperatures in the section. Pyrolyzed hydrocarbons that move into section 121A may also be further upgraded in the section. The upgraded hydrocarbons may be produced through production wells located in section 121A.
[0148] In certain embodiments, at least some hydrocarbons in section 121B are mobilized and drained from the section prior to injecting the fluid into the formation.
Some formations may have high oil saturation (for example, the Grosmont formation has high oil saturation). The high oil saturation corresponds to low gas permeability in the formation that may inhibit fluid flow through the formation. Thus, mobilizing and draining (removing) some oil (hydrocarbons) from the formation may create gas permeability for the injected fluids.
Some formations may have high oil saturation (for example, the Grosmont formation has high oil saturation). The high oil saturation corresponds to low gas permeability in the formation that may inhibit fluid flow through the formation. Thus, mobilizing and draining (removing) some oil (hydrocarbons) from the formation may create gas permeability for the injected fluids.
[0149] Fluids in hydrocarbon layer 114 may preferentially move horizontally within the hydrocarbon layer from the point of injection because tar sands tend to have a larger horizontal permeability than vertical permeability. The higher horizontal permeability allows the injected fluid to move hydrocarbons between sections preferentially versus fluids draining vertically due to gravity in the formation. Providing sufficient fluid pressure with the injected fluid may ensure that fluids are moved to section 121A for upgrading and/or production.
[0150] In certain embodiments, section 121B has a larger volume than section 121A and/or section 121C. Section 121B may be larger in volume than the other sections so that more hydrocarbons are produced for less energy input into the formation. Because less heat is provided to section 121B (the section is heated to lower temperatures), having a larger volume in section 121B reduces the total energy input to the formation per unit volume.
The desired volume of section 121B may depend on factors such as, but not limited to, viscosity, oil saturation, and permeability. In addition, the degree of coking is much less in section 121B due to the lower temperature so less hydrocarbons are coked in the formation when section 121B has a larger volume. In some embodiments, the lower degree of heating in section 121B allows for cheaper capital costs as lower temperature materials (cheaper materials) may be used for heaters used in section 121B.
The desired volume of section 121B may depend on factors such as, but not limited to, viscosity, oil saturation, and permeability. In addition, the degree of coking is much less in section 121B due to the lower temperature so less hydrocarbons are coked in the formation when section 121B has a larger volume. In some embodiments, the lower degree of heating in section 121B allows for cheaper capital costs as lower temperature materials (cheaper materials) may be used for heaters used in section 121B.
[0151] Some formations with little or no initial injectivity (such as karsted formations or karsted layers in formations) may have tight vugs in one or more layers of the formations.
The tight vugs may be vugs filled with viscous fluids such as bitumen or heavy oil. In some embodiments, the vugs have a porosity of at least about 20 porosity units, at least about 30 porosity units, or at least about 35 porosity units. The formation may have a porosity of at most about 15 porosity units, at most about 10 porosity units, or at most about 5 porosity units. The tight vugs inhibit steam or other fluids from being injected into the formation or the layers with tight vugs. In certain embodiments, the karsted formation or karsted layers of the formation are treated using the in situ heat treatment process.
Heating of these formations or layers may decrease the viscosity of the fluids in the tight vugs and allow the fluids to drain (for example, mobilize the fluids).
The tight vugs may be vugs filled with viscous fluids such as bitumen or heavy oil. In some embodiments, the vugs have a porosity of at least about 20 porosity units, at least about 30 porosity units, or at least about 35 porosity units. The formation may have a porosity of at most about 15 porosity units, at most about 10 porosity units, or at most about 5 porosity units. The tight vugs inhibit steam or other fluids from being injected into the formation or the layers with tight vugs. In certain embodiments, the karsted formation or karsted layers of the formation are treated using the in situ heat treatment process.
Heating of these formations or layers may decrease the viscosity of the fluids in the tight vugs and allow the fluids to drain (for example, mobilize the fluids).
[0152] In certain embodiments, only the karsted layers of the formation are treated using the in situ heat treatment process. Other non-karsted layers of the formation may be used as seals for the in situ heat treatment process.
[0153] In some embodiments, the drive process is used after the in situ heat treatment of the karsted formation or karsted layers. In some embodiments, heaters are used to preheat the karsted formation or karsted layers to create injectivity in the formation.
[0154] In certain embodiments, the karsted formation or karsted layers are heated to temperatures below the decomposition temperature of rock (for example, dolomite) in the formation (for example, temperatures of at most about 400 C). In some embodiments, the karsted formation or karsted layers are heated to temperatures above the decomposition temperature of dolomite in the formation. At temperatures above the dolomite decomposition temperature, the dolomite may decompose to produce carbon dioxide. The decomposition of the dolomite and the carbon dioxide production may create permeability in the formation and mobilize viscous fluids in the formation. In some embodiments, the produced carbon dioxide is maintained in the formation to produce a gas cap in the formation. The carbon dioxide may be allowed to rise to the upper portions of the karsted layers to produce the gas cap.
[0155] In some embodiments, heaters are used to produce and/or maintain the gas cap in the formation for the in situ heat treatment process and/or the drive process.
The gas cap may drive fluids from upper portions to lower portions of the formation and/or from portions of the formation towards portions of the formation at lower pressures (for example, portions with production wells). In some embodiments, little or no heating is provided in the portions of the formation with the gas cap. In some embodiments, heaters in the gas cap are turned down and/or off after formation of the gas cap.
Using less heating in the gas cap may reduce the energy input into the formation and increase the efficiency of the in situ heat treatment process and/or the drive process. In some embodiments, production wells and/or heater wells that are located in the gas cap portion of the formation may be used for injection of fluid (for example, steam) to maintain the gas cap.
The gas cap may drive fluids from upper portions to lower portions of the formation and/or from portions of the formation towards portions of the formation at lower pressures (for example, portions with production wells). In some embodiments, little or no heating is provided in the portions of the formation with the gas cap. In some embodiments, heaters in the gas cap are turned down and/or off after formation of the gas cap.
Using less heating in the gas cap may reduce the energy input into the formation and increase the efficiency of the in situ heat treatment process and/or the drive process. In some embodiments, production wells and/or heater wells that are located in the gas cap portion of the formation may be used for injection of fluid (for example, steam) to maintain the gas cap.
[0156] In some embodiments, the production front of the drive process follows behind the heat front of the in situ heat treatment process. In some embodiments, areas behind the production front are further heated to produce more fluids from the formation.
Further heating behind the production front may also maintain the gas cap behind the production front and/or maintain quality in the production front of the drive process.
Further heating behind the production front may also maintain the gas cap behind the production front and/or maintain quality in the production front of the drive process.
[0157] In certain embodiments, the drive process is used before the in situ heat treatment of the formation. In some embodiments, the drive process is used to mobilize fluids in a first section of the formation. The mobilized fluids may then be pushed into a second section by heating the first section with heaters. Fluids may be produced from the second section. In some embodiments, the fluids in the second section are pyrolyzed and/or upgraded using the heaters.
[0158] In formations with low permeabilities, the drive process may be used to create a "gas cushion" or pressure sink before the in situ heat treatment process. The gas cushion may inhibit pressures from increasing quickly to fracture pressure during the in situ heat treatment process. The gas cushion may provide a path for gases to escape or travel during early stages of heating during the in situ heat treatment process.
[0159] In some embodiments, the drive process (for example, the steam injection process) is used to mobilize fluids before the in situ heat treatment process. Steam injection may be used to get hydrocarbons (oil) away from rock or other strata in the formation. The steam injection may mobilize the oil without significantly heating the rock.
[0160] In some embodiments, injection of a fluid (for example, steam or carbon dioxide) may consume heat in the formation and cool the formation depending on the pressure in the formation. In some embodiments, the injected fluid is used to recover heat from the formation. The recovered heat may be used in surface processing of fluids and/or to preheat other portions of the formation using the drive process.
Examples
Examples
[0161] Non-restrictive examples are set forth below.
Tar Sands Simulation
Tar Sands Simulation
[0162] A STARS simulation was used to simulate heating of a tar sands formation using the heater well pattern depicted in FIG. 3. The heaters had a horizontal length in the tar sands formation of 600 m. The heating rate of the heaters was about 750 W/m.
Production well 106B, depicted in FIG. 3, was used at the production well in the simulation. The bottom hole pressure in the horizontal production well was maintained at about 690 kPa.
The tar sands formation properties were based on Athabasca tar sands. Input properties for the tar sands formation simulation included: initial porosity equals 0.28;
initial oil saturation equals 0.8; initial water saturation equals 0.2; initial fee gas saturation equals 0.0; initial vertical permeability equals 250 millidarcy; initial horizontal permeability equals 500 millidarcy; initial Kv/Kh equals 0.5; hydrocarbon layer thickness equals 28 m;
depth of hydrocarbon layer equals 587 m; initial reservoir pressure equals 3771 kPa;
distance between production well and lower boundary of hydrocarbon layer equals 2.5 meter; distance of topmost heaters and overburden equals 9 meter; spacing between heaters equals 9.5 meter; initial hydrocarbon layer temperature equals 18.6 C;
viscosity at initial temperature equals 53 Pa.s (53000 cp); and gas to oil ratio (GOR) in the tar equals 50 standard cubic feet/standard barrel. The heaters were constant wattage heaters with a highest temperature of 538 C at the sand face and a heater power of 755 W/m.
The heater wells had a diameter of 15.2 cm.
Production well 106B, depicted in FIG. 3, was used at the production well in the simulation. The bottom hole pressure in the horizontal production well was maintained at about 690 kPa.
The tar sands formation properties were based on Athabasca tar sands. Input properties for the tar sands formation simulation included: initial porosity equals 0.28;
initial oil saturation equals 0.8; initial water saturation equals 0.2; initial fee gas saturation equals 0.0; initial vertical permeability equals 250 millidarcy; initial horizontal permeability equals 500 millidarcy; initial Kv/Kh equals 0.5; hydrocarbon layer thickness equals 28 m;
depth of hydrocarbon layer equals 587 m; initial reservoir pressure equals 3771 kPa;
distance between production well and lower boundary of hydrocarbon layer equals 2.5 meter; distance of topmost heaters and overburden equals 9 meter; spacing between heaters equals 9.5 meter; initial hydrocarbon layer temperature equals 18.6 C;
viscosity at initial temperature equals 53 Pa.s (53000 cp); and gas to oil ratio (GOR) in the tar equals 50 standard cubic feet/standard barrel. The heaters were constant wattage heaters with a highest temperature of 538 C at the sand face and a heater power of 755 W/m.
The heater wells had a diameter of 15.2 cm.
[0163] FIG. 10 depicts a temperature profile in the formation after 360 days using the STARS simulation. The hottest spots are at or near heaters 116. The temperature profile shows that portions of the formation between the heaters are warmer than other portions of the formation. These warmer portions create more mobility between the heaters and create a flow path for fluids in the formation to drain downwards towards the production wells.
[0164] FIG. 11 depicts an oil saturation profile in the formation after 360 days using the STARS simulation. Oil saturation is shown on a scale of 0.00 to 1.00 with 1.00 being 100% oil saturation. The oil saturation scale is shown in the sidebar. Oil saturation, at 360 days, is somewhat lower at heaters 116 and production well 106B. FIG. 12 depicts the oil saturation profile in the formation after 1095 days using the STARS
simulation. Oil saturation decreased overall in the formation with a greater decrease in oil saturation near the heaters and in between the heaters after 1095 days. FIG. 13 depicts the oil saturation profile in the formation after 1470 days using the STARS simulation. The oil saturation profile in FIG. 13 shows that the oil is mobilized and flowing towards the lower portions of the formation. FIG. 14 depicts the oil saturation profile in the formation after 1826 days using the STARS simulation. The oil saturation is low in a majority of the formation with some higher oil saturation remaining at or near the bottom of the formation in portions below production well 106B. This oil saturation profile shows that a majority of oil in the formation has been produced from the formation after 1826 days.
simulation. Oil saturation decreased overall in the formation with a greater decrease in oil saturation near the heaters and in between the heaters after 1095 days. FIG. 13 depicts the oil saturation profile in the formation after 1470 days using the STARS simulation. The oil saturation profile in FIG. 13 shows that the oil is mobilized and flowing towards the lower portions of the formation. FIG. 14 depicts the oil saturation profile in the formation after 1826 days using the STARS simulation. The oil saturation is low in a majority of the formation with some higher oil saturation remaining at or near the bottom of the formation in portions below production well 106B. This oil saturation profile shows that a majority of oil in the formation has been produced from the formation after 1826 days.
[0165] FIG. 15 depicts the temperature profile in the formation after 1826 days using the STARS simulation. The temperature profile shows a relatively uniform temperature profile in the formation except at heaters 116 and in the extreme (corner) portions of the formation. The temperature profile shows that a flow path has been created between the heaters and to production well 106B.
[0166] FIG. 16 depicts oil production rate 122 (bbl/day)(left axis) and gas production rate 124 (ft3/day)(right axis) versus time (years). The oil production and gas production plots show that oil is produced at early stages (0-1.5 years) of production with little gas production. The oil produced during this time was most likely heavier mobilized oil that is unpyrolyzed. After about 1.5 years, gas production increased sharply as oil production decreased sharply. The gas production rate quickly decreased at about 2 years.
Oil production then slowly increased up to a maximum production around about 3.75 years.
Oil production then slowly decreased as oil in the formation was depleted.
Oil production then slowly increased up to a maximum production around about 3.75 years.
Oil production then slowly decreased as oil in the formation was depleted.
[0167] From the STARS simulation, the ratio of energy out (produced oil and gas energy content) versus energy in (heater input into the formation) was calculated to be about 12 to 1 after about 5 years. The total recovery percentage of oil in place was calculated to be about 60% after about 5 years. Thus, producing oil from a tar sands formation using an embodiment of the heater and production well pattern depicted in FIG. 3 may produce high oil recoveries and high energy out to energy in ratios.
Tar Sands Example
Tar Sands Example
[0168] A STARS simulation was used in combination with experimental analysis to simulate an in situ heat treatment process of a tar sands formation. Heating conditions for the experimental analysis were determined from reservoir simulations. The experimental analysis included heating a cell of tar sands from the formation to a selected temperature and then reducing the pressure of the cell (blow down) to 100 psig. The process was repeated for several different selected temperatures. While heating the cells, formation and fluid properties of the cells were monitored while producing fluids to maintain the pressure below an optimum pressure of 12 MPa before blow down and while producing fluids after blow down (although the pressure may have reached higher pressures in some cases, the pressure was quickly adjusted and does not affect the results of the experiments). FIGS.
17-24 depict results from the simulation and experiments.
17-24 depict results from the simulation and experiments.
[0169] FIG. 17 depicts weight percentage of original bitumen in place (OBIP)(left axis) and volume percentage of OBIP (right axis) versus temperature ( C). The term "OBIP"
refers, in these experiments, to the amount of bitumen that was in the laboratory vessel with 100% being the original amount of bitumen in the laboratory vessel. Plot 126 depicts bitumen conversion (correlated to weight percentage of OBIP). Plot 126 shows that bitumen conversion began to be significant at about 270 C and ended at about 340 C and is relatively linear over the temperature range.
refers, in these experiments, to the amount of bitumen that was in the laboratory vessel with 100% being the original amount of bitumen in the laboratory vessel. Plot 126 depicts bitumen conversion (correlated to weight percentage of OBIP). Plot 126 shows that bitumen conversion began to be significant at about 270 C and ended at about 340 C and is relatively linear over the temperature range.
[0170] Plot 128 depicts barrels of oil equivalent from producing fluids and production at blow down (correlated to volume percentage of OBIP). Plot 130 depicts bands of oil equivalent from producing fluids (correlated to volume percentage of OBIP).
Plot 132 depicts oil production from producing fluids (correlated to volume percentage of OBIP).
Plot 134 depicts bands of oil equivalent from production at blow down (correlated to volume percentage of OBIP). Plot 136 depicts oil production at blow down (correlated to volume percentage of OBIP). As shown in FIG. 17, the production volume began to significantly increase as bitumen conversion began at about 270 C with a significant portion of the oil and bands of oil equivalent (the production volume) coming from producing fluids and only some volume coming from the blow down.
Plot 132 depicts oil production from producing fluids (correlated to volume percentage of OBIP).
Plot 134 depicts bands of oil equivalent from production at blow down (correlated to volume percentage of OBIP). Plot 136 depicts oil production at blow down (correlated to volume percentage of OBIP). As shown in FIG. 17, the production volume began to significantly increase as bitumen conversion began at about 270 C with a significant portion of the oil and bands of oil equivalent (the production volume) coming from producing fluids and only some volume coming from the blow down.
[0171] FIG. 18 depicts bitumen conversion percentage (weight percentage of (OBIP))(left axis) and oil, gas, and coke weight percentage (as a weight percentage of OBIP)(right axis) versus temperature ( C). Plot 138 depicts bitumen conversion (correlated to weight percentage of OBIP). Plot 140 depicts oil production from producing fluids correlated to weight percentage of OBIP (right axis). Plot 142 depicts coke production correlated to weight percentage of OBIP (right axis). Plot 144 depicts gas production from producing fluids correlated to weight percentage of OBIP (right axis). Plot 146 depicts oil production from blow down production correlated to weight percentage of OBIP (right axis). Plot 148 depicts gas production from blow down production correlated to weight percentage of OBIP (right axis). FIG. 18 shows that coke production begins to increase at about 280 C
and maximizes around 340 C. FIG. 18 also shows that the majority of oil and gas production is from produced fluids with only a small fraction from blow down production.
and maximizes around 340 C. FIG. 18 also shows that the majority of oil and gas production is from produced fluids with only a small fraction from blow down production.
[0172] FIG. 19 depicts API gravity ( )(left axis) of produced fluids, blow down production, and oil left in place along with pressure (psig)(right axis) versus temperature ( C). Plot 150 depicts API gravity of produced fluids versus temperature. Plot 152 depicts API gravity of fluids produced at blow down versus temperature. Plot 154 depicts pressure versus temperature. Plot 156 depicts API gravity of oil (bitumen) in the formation versus temperature. FIG. 19 shows that the API gravity of the oil in the formation remains relatively constant at about10 API and that the API gravity of produced fluids and fluids produced at blow down increases slightly at blow down.
[0173] FIGS. 20A-D depict gas-to-oil ratios (GOR) in thousand cubic feet per ban-el ((Mcf/ bbl)(y-axis) versus temperature ( C)(x-axis) for different types of gas at a low temperature blow down (about 277 C) and a high temperature blow down (at about 290 C). FIG. 20A depicts the GOR versus temperature for carbon dioxide (CO2). Plot depicts the GOR for the low temperature blow down. Plot 160 depicts the GOR
for the high temperature blow down. FIG. 20B depicts the GOR versus temperature for hydrocarbons. FIG. 20C depicts the GOR for hydrogen sulfide (H25). FIG. 20D
depicts the GOR for hydrogen (H2). In FIGS. 20B-D, the GORs were approximately the same for both the low temperature and high temperature blow downs. The GORs for CO2 (shown in FIG. 20) was different for the high temperature blow down and the low temperature blow down. The reason for the difference in the GORs for CO2 may be that CO2 was produced early (at low temperatures) by the hydrous decomposition of dolomite and other carbonate minerals and clays. At these low temperatures, there was hardly any produced oil so the GOR is very high because the denominator in the ratio is practically zero. The other gases (hydrocarbons, H2S, and H2) were produced concurrently with the oil either because they were all generated by the upgrading of bitumen (for example, (hydrocarbons, H2, and oil) or because they were generated by the decomposition of minerals (such as pyrite) in the same temperature range as that of bitumen upgrading (for example, H2S). Thus, when the GOR was calculated, the denominator (oil) was non zero for hydrocarbons, H2S, and H2.
for the high temperature blow down. FIG. 20B depicts the GOR versus temperature for hydrocarbons. FIG. 20C depicts the GOR for hydrogen sulfide (H25). FIG. 20D
depicts the GOR for hydrogen (H2). In FIGS. 20B-D, the GORs were approximately the same for both the low temperature and high temperature blow downs. The GORs for CO2 (shown in FIG. 20) was different for the high temperature blow down and the low temperature blow down. The reason for the difference in the GORs for CO2 may be that CO2 was produced early (at low temperatures) by the hydrous decomposition of dolomite and other carbonate minerals and clays. At these low temperatures, there was hardly any produced oil so the GOR is very high because the denominator in the ratio is practically zero. The other gases (hydrocarbons, H2S, and H2) were produced concurrently with the oil either because they were all generated by the upgrading of bitumen (for example, (hydrocarbons, H2, and oil) or because they were generated by the decomposition of minerals (such as pyrite) in the same temperature range as that of bitumen upgrading (for example, H2S). Thus, when the GOR was calculated, the denominator (oil) was non zero for hydrocarbons, H2S, and H2.
[0174] FIG. 21 depicts coke yield (weight percentage)(y-axis) versus temperature ( C)(x-axis). Plot 162 depicts bitumen and kerogen coke as a weight percent of original mass in the formation. Plot 164 depicts bitumen coke as a weight percent of original bitumen in place (OBIP) in the formation. FIG. 21 shows that kerogen coke is already present at a temperature of about 260 C (the lowest temperature cell experiment) while bitumen coke begins to form at about 280 C and maximizes at about 340 C.
[0175] FIGS. 22A-D depict assessed hydrocarbon isomer shifts in fluids produced from the experimental cells as a function of temperature and bitumen conversion.
Bitumen conversion and temperature increase from left to right in the plots in FIGS.
22A-D with the minimum bitumen conversion being 10%, the maximum bitumen conversion being 100%, the minimum temperature being 277 C, and the maximum temperature being 350 C. The arrows in FIGS. 22A-D show the direction of increasing bitumen conversion and temperature.
Bitumen conversion and temperature increase from left to right in the plots in FIGS.
22A-D with the minimum bitumen conversion being 10%, the maximum bitumen conversion being 100%, the minimum temperature being 277 C, and the maximum temperature being 350 C. The arrows in FIGS. 22A-D show the direction of increasing bitumen conversion and temperature.
[0176] FIG. 22A depicts the hydrocarbon isomer shift of n-butane-613C4 percentage (y-axis) versus propane- 613C3 percentage (x-axis). FIG. 22B depicts the hydrocarbon isomer shift of n-pentane- 613C5 percentage (y-axis) versus propane- 613C3 percentage (x-axis).
FIG. 22C depicts the hydrocarbon isomer shift of n-pentane- 613C5 percentage (y-axis) versus n-butane- 613C4 percentage (x-axis). FIG. 22D depicts the hydrocarbon isomer shift of i-pentane- 613C5 percentage (y-axis) versus i-butane- 613C4 percentage (x-axis). FIGS.
22A-D show that there is a relatively linear relationship between the hydrocarbon isomer shifts and both temperature and bitumen conversion. The relatively linear relationship may be used to assess formation temperature and/or bitumen conversion by monitoring the hydrocarbon isomer shifts in fluids produced from the formation.
FIG. 22C depicts the hydrocarbon isomer shift of n-pentane- 613C5 percentage (y-axis) versus n-butane- 613C4 percentage (x-axis). FIG. 22D depicts the hydrocarbon isomer shift of i-pentane- 613C5 percentage (y-axis) versus i-butane- 613C4 percentage (x-axis). FIGS.
22A-D show that there is a relatively linear relationship between the hydrocarbon isomer shifts and both temperature and bitumen conversion. The relatively linear relationship may be used to assess formation temperature and/or bitumen conversion by monitoring the hydrocarbon isomer shifts in fluids produced from the formation.
[0177] FIG. 23 depicts weight percentage (Wt%)(y-axis) of saturates from SARA
analysis of the produced fluids versus temperature ( C)(x-axis). The logarithmic relationship between the weight percentage of saturates and temperature may be used to assess formation temperature by monitoring the weight percentage of saturates in fluids produced from the formation.
analysis of the produced fluids versus temperature ( C)(x-axis). The logarithmic relationship between the weight percentage of saturates and temperature may be used to assess formation temperature by monitoring the weight percentage of saturates in fluids produced from the formation.
[0178] FIG. 24 depicts weight percentage (Wt%)(y-axis) of n-C7 of the produced fluids versus temperature ( C)(x-axis). The linear relationship between the weight percentage of n-C7 and temperature may be used to assess formation temperature by monitoring the weight percentage of n-C7 in fluids produced from the formation.
Pre-Heating Using Heaters For Infectivity Before Steam Drive Example
Pre-Heating Using Heaters For Infectivity Before Steam Drive Example
[0179] An example uses the embodiment depicted in FIGS. 7 and 9 to preheat using heaters for the drive process is described. Injection wells 120 and production wells 106 are substantially vertical wells. Heaters 116 are long substantially horizontal heaters positioned so that the heaters pass in the vicinity of injection wells 120.
Heaters 116 intersect the vertical well patterns slightly displaced from the vertical wells.
Heaters 116 intersect the vertical well patterns slightly displaced from the vertical wells.
[0180] The following conditions were assumed for purposes of this example:
(a) heater well spacing; s = 330 ft;
(b) formation thickness; h = 100 ft;
(c) formation heat capacity; pc = 35 BTU/cu. ft.- F
(d) formation thermal conductivity; X, = 1.2 BTU/ft-hr- F;
(e) electric heating rate; qh = 200 watts/ft;
(f) steam injection rate; qs = 500 bbls/day;
(g) enthalpy of steam; hs = 1000 BTU/lb;
(h) time of heating; t = 1 year;
(i) total electric heat injection; QE = BTU/pattern/year;
(j) radius of electric heat; r = ft; and (k) total steam heat injected; Q, = BTU/pattern/year.
(a) heater well spacing; s = 330 ft;
(b) formation thickness; h = 100 ft;
(c) formation heat capacity; pc = 35 BTU/cu. ft.- F
(d) formation thermal conductivity; X, = 1.2 BTU/ft-hr- F;
(e) electric heating rate; qh = 200 watts/ft;
(f) steam injection rate; qs = 500 bbls/day;
(g) enthalpy of steam; hs = 1000 BTU/lb;
(h) time of heating; t = 1 year;
(i) total electric heat injection; QE = BTU/pattern/year;
(j) radius of electric heat; r = ft; and (k) total steam heat injected; Q, = BTU/pattern/year.
[0181] Electric heating for one well pattern for one year is given by:
(EQN. 1) QE = qh=t=s (BTU/pattern/year);
with QE = (200 watts/ft)[0.001 kw/watt](1 yr)[365 day/yr][24 hr/day][3413 BTU/kw=hr1(330 ft) = 1.9733x109 BTU/pattern/year.
(EQN. 1) QE = qh=t=s (BTU/pattern/year);
with QE = (200 watts/ft)[0.001 kw/watt](1 yr)[365 day/yr][24 hr/day][3413 BTU/kw=hr1(330 ft) = 1.9733x109 BTU/pattern/year.
[0182] Steam heating for one well pattern for one year is given by:
(EQN. 2) Qs = cls.t.hs (BTU/pattern/Year);
with Qs = (500 bbls/day)(1 yr) 11365 day/yr][1000 BTU/lb][350 lbs/bbl] =
63.875x109 BTU/pattern/year.
(EQN. 2) Qs = cls.t.hs (BTU/pattern/Year);
with Qs = (500 bbls/day)(1 yr) 11365 day/yr][1000 BTU/lb][350 lbs/bbl] =
63.875x109 BTU/pattern/year.
[0183] Thus, electric heat divided by total heat is given by:
(EQN. 3) QE/(QE+Qs) x100 = 3% of the total heat.
(EQN. 3) QE/(QE+Qs) x100 = 3% of the total heat.
[0184] Thus, the electrical energy is only a small fraction of the total heat injected into the formation.
[0185] The actual temperature of the region around a heater is described by an exponential integral function. The integrated form of the exponential integral function shows that about half the energy injected is nearly equal to about half of the injection well temperature. The temperature required to reduce viscosity of the heavy oil is assumed to be 500 F. The volume heated to 500 F by an electric heater in one year is give by:
(EQN. 4) YE = 7L12.
(EQN. 4) YE = 7L12.
[0186] The heat balance is given by:
(EQN. 5) QE = (7E112)(s)(Pc)(AT).
(EQN. 5) QE = (7E112)(s)(Pc)(AT).
[0187] Thus, rE can be solved for and is found to be 10.4 ft. For an electric heater operated at 1000 F, the diameter of a cylinder heated to half that temperature for one year would be about 23 ft. Depending on the permeability profile in the injection wells, additional horizontal wells may be stacked above the one at the bottom of the formation and/or periods of electric heating may be extended. For a ten year heating period, the diameter of the region heated above 500 F would be about 60 ft.
[0188] If all the steam were injected uniformly into the steam injectors over the 100 ft.
interval for a period of one year, the equivalent volume of formation that could be heated to 500 F would be given by:
(EQN. 6) Qs = (7Ers2)(s)(Pc)(AT).
interval for a period of one year, the equivalent volume of formation that could be heated to 500 F would be given by:
(EQN. 6) Qs = (7Ers2)(s)(Pc)(AT).
[0189] Solve for rs give an rs of 107 ft. This amount of heat would be sufficient to heat about 3/4 of the pattern to 500 F.
Tar Sands Oil Recovery Example
Tar Sands Oil Recovery Example
[0190] A STARS simulation was used in combination with experimental analysis to simulate an in situ heat treatment process of a tar sands formation. The experiments and simulations were used to determine oil recovery (measured by volume percentage (vol%) of oil in place (bitumen in place) versus API gravity of the produced fluid as affected by pressure in the formation. The experiments and simulations also were used to determine recovery efficiency (percentage of oil (bitumen) recovered) versus temperature at different pressures.
[0191] FIG. 25 depicts oil recovery (volume percentage bitumen in place (vol%
BIP)) versus API gravity ( ) as determined by the pressure (MPa) in the formation.
As shown in FIG. 25, oil recovery decreases with increasing API gravity and increasing pressure up to a certain pressure (about 2.9 MPa in this experiment). Above that pressure, oil recovery and API gravity decrease with increasing pressure (up to about 10 MPa in the experiment).
Thus, it may be advantageous to control the pressure in the formation below a selected value to get higher oil recovery along with a desired API gravity in the produced fluid.
BIP)) versus API gravity ( ) as determined by the pressure (MPa) in the formation.
As shown in FIG. 25, oil recovery decreases with increasing API gravity and increasing pressure up to a certain pressure (about 2.9 MPa in this experiment). Above that pressure, oil recovery and API gravity decrease with increasing pressure (up to about 10 MPa in the experiment).
Thus, it may be advantageous to control the pressure in the formation below a selected value to get higher oil recovery along with a desired API gravity in the produced fluid.
[0192] FIG. 26 depicts recovery efficiency (%) versus temperature ( C) at different pressures. Curve 166 depicts recovery efficiency versus temperature at 0 MPa.
Curve 168 depicts recovery efficiency versus temperature at 0.7 MPa. Curve 170 depicts recovery efficiency versus temperature at 5 MPa. Curve 172 depicts recovery efficiency versus temperature at 10 MPa. As shown by these curves, increasing the pressure reduces the recovery efficiency in the formation at pyrolysis temperatures (temperatures above about 300 C in the experiment). The effect of pressure may be reduced by reducing the pressure in the formation at higher temperatures, as shown by curve 174. Curve 174 depicts recovery efficiency versus temperature with the pressure being 5 MPa up until about 380 C, when the pressure is reduced to 0.7 MPa. As shown by curve 174, the recovery efficiency can be increased by reducing the pressure even at higher temperatures. The effect of higher pressures on the recovery efficiency is reduced when the pressure is reduced before hydrocarbons (oil) in the formation have been converted to coke.
Curve 168 depicts recovery efficiency versus temperature at 0.7 MPa. Curve 170 depicts recovery efficiency versus temperature at 5 MPa. Curve 172 depicts recovery efficiency versus temperature at 10 MPa. As shown by these curves, increasing the pressure reduces the recovery efficiency in the formation at pyrolysis temperatures (temperatures above about 300 C in the experiment). The effect of pressure may be reduced by reducing the pressure in the formation at higher temperatures, as shown by curve 174. Curve 174 depicts recovery efficiency versus temperature with the pressure being 5 MPa up until about 380 C, when the pressure is reduced to 0.7 MPa. As shown by curve 174, the recovery efficiency can be increased by reducing the pressure even at higher temperatures. The effect of higher pressures on the recovery efficiency is reduced when the pressure is reduced before hydrocarbons (oil) in the formation have been converted to coke.
[0193] Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.
Claims (10)
1. A method for treating a tar sands formation, comprising:
heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation;
maintaining a pressure in the section below a fracture pressure of the formation while heating the section to a temperature between about 200 °C and 240 °C;
reducing the pressure in the majority of the section to a pressure to inhibit coking after the average temperature reaches a temperature that is above 240 °C and is at or below pyrolysis temperatures of hydrocarbons in the section; and producing at least some hydrocarbon fluids from the formation.
heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation;
maintaining a pressure in the section below a fracture pressure of the formation while heating the section to a temperature between about 200 °C and 240 °C;
reducing the pressure in the majority of the section to a pressure to inhibit coking after the average temperature reaches a temperature that is above 240 °C and is at or below pyrolysis temperatures of hydrocarbons in the section; and producing at least some hydrocarbon fluids from the formation.
2. The method of claim 1, further comprising operating the heaters at substantially full power until the portion of the formation reaches the visbreaking temperature.
3. The method of any of claims 1 or 2, further comprising maintaining the pressure within about 1 MPa of the fracture pressure.
4. The method of any of claims 1-3, further comprising maintaining the pressure in the formation below the fracture pressure of the formation by removing at least some fluids from the formation.
5. The method of any of claims 1-4, wherein the fracture pressure of the formation is between about 2000 kPa and about 15000 kPa.
6. The method of any of claims 1-5, wherein the selected pressure is between 300 kPa and 1000 kPa.
7. The method of any of claims 1-6, wherein reducing the pressure to the selected pressure inhibits coking in the formation.
8. The method of any of claims 1-7, further comprising increasing the temperature of the portion of the formation to temperatures above 270 °C after reducing the pressure to the selected pressure.
9. The method of any of claims 1-8, further comprising producing at least some mobilized hydrocarbons from the formation, at least some visbroken hydrocarbons from the formation, and/or at least some pyrolyzed hydrocarbons from the formation.
10. The method of any of claims 1-9, further comprising using the produced fluids to make a transportation fuel.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85309606P | 2006-10-20 | 2006-10-20 | |
US60/853,096 | 2006-10-20 | ||
US92568507P | 2007-04-20 | 2007-04-20 | |
US60/925,685 | 2007-04-20 | ||
PCT/US2007/081901 WO2008051827A2 (en) | 2006-10-20 | 2007-10-19 | Heating tar sands formations while controlling pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2666947A1 CA2666947A1 (en) | 2008-05-02 |
CA2666947C true CA2666947C (en) | 2016-04-26 |
Family
ID=39324928
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002666206A Abandoned CA2666206A1 (en) | 2006-10-20 | 2007-10-19 | In situ heat treatment process utilizing oxidizers to heat a subsurface formation |
CA2665869A Expired - Fee Related CA2665869C (en) | 2006-10-20 | 2007-10-19 | In situ heat treatment process utilizing a closed loop heating system |
CA002667274A Abandoned CA2667274A1 (en) | 2006-10-20 | 2007-10-19 | Systems and processes for use in treating subsurface formations |
CA2666956A Active CA2666956C (en) | 2006-10-20 | 2007-10-19 | Heating tar sands formations to visbreaking temperatures |
CA2666947A Expired - Fee Related CA2666947C (en) | 2006-10-20 | 2007-10-19 | Heating tar sands formations while controlling pressure |
CA2666959A Expired - Fee Related CA2666959C (en) | 2006-10-20 | 2007-10-19 | Moving hydrocarbons through portions of tar sands formations with a fluid |
CA2665862A Expired - Fee Related CA2665862C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a line drive staged process |
CA2665864A Expired - Fee Related CA2665864C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
CA2665865A Expired - Fee Related CA2665865C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a spiral startup staged sequence |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002666206A Abandoned CA2666206A1 (en) | 2006-10-20 | 2007-10-19 | In situ heat treatment process utilizing oxidizers to heat a subsurface formation |
CA2665869A Expired - Fee Related CA2665869C (en) | 2006-10-20 | 2007-10-19 | In situ heat treatment process utilizing a closed loop heating system |
CA002667274A Abandoned CA2667274A1 (en) | 2006-10-20 | 2007-10-19 | Systems and processes for use in treating subsurface formations |
CA2666956A Active CA2666956C (en) | 2006-10-20 | 2007-10-19 | Heating tar sands formations to visbreaking temperatures |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2666959A Expired - Fee Related CA2666959C (en) | 2006-10-20 | 2007-10-19 | Moving hydrocarbons through portions of tar sands formations with a fluid |
CA2665862A Expired - Fee Related CA2665862C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a line drive staged process |
CA2665864A Expired - Fee Related CA2665864C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
CA2665865A Expired - Fee Related CA2665865C (en) | 2006-10-20 | 2007-10-19 | Heating hydrocarbon containing formations in a spiral startup staged sequence |
Country Status (11)
Country | Link |
---|---|
US (18) | US7540324B2 (en) |
EP (5) | EP2074283A2 (en) |
JP (5) | JP5643513B2 (en) |
BR (2) | BRPI0718467A2 (en) |
CA (9) | CA2666206A1 (en) |
GB (3) | GB2461362A (en) |
IL (5) | IL198024A (en) |
MA (7) | MA30897B1 (en) |
MX (5) | MX2009004135A (en) |
RU (7) | RU2453692C2 (en) |
WO (10) | WO2008051831A2 (en) |
Families Citing this family (272)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
DE10245103A1 (en) * | 2002-09-27 | 2004-04-08 | General Electric Co. | Control cabinet for a wind turbine and method for operating a wind turbine |
NZ567052A (en) | 2003-04-24 | 2009-11-27 | Shell Int Research | Thermal process for subsurface formations |
DE10323774A1 (en) * | 2003-05-26 | 2004-12-16 | Khd Humboldt Wedag Ag | Process and plant for the thermal drying of a wet ground cement raw meal |
US8296968B2 (en) * | 2003-06-13 | 2012-10-30 | Charles Hensley | Surface drying apparatus and method |
SE527166C2 (en) * | 2003-08-21 | 2006-01-10 | Kerttu Eriksson | Method and apparatus for dehumidification |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
DE102004025528B4 (en) * | 2004-05-25 | 2010-03-04 | Eisenmann Anlagenbau Gmbh & Co. Kg | Method and apparatus for drying coated articles |
JP2006147827A (en) * | 2004-11-19 | 2006-06-08 | Seiko Epson Corp | Method for forming wiring pattern, process for manufacturing device, device, electrooptical device, and electronic apparatus |
DE102005000782A1 (en) * | 2005-01-05 | 2006-07-20 | Voith Paper Patent Gmbh | Drying cylinder for use in the production or finishing of fibrous webs, e.g. paper, comprises heating fluid channels between a supporting structure and a thin outer casing |
ATE435964T1 (en) | 2005-04-22 | 2009-07-15 | Shell Int Research | IN-SITU CONVERSION PROCESS USING A CIRCUIT HEATING SYSTEM |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
GB2451311A (en) | 2005-10-24 | 2009-01-28 | Shell Int Research | Systems,methods and processes for use in treating subsurface formations |
EP2010754A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7603261B2 (en) * | 2006-07-11 | 2009-10-13 | Schlumberger Technology Corporation | Method for predicting acid placement in carbonate reservoirs |
US8146654B2 (en) * | 2006-08-23 | 2012-04-03 | Exxonmobil Upstream Research Company | Composition and method for using waxy oil-external emulsions to modify reservoir permeability profiles |
ATE532615T1 (en) * | 2006-09-20 | 2011-11-15 | Econ Maschb Und Steuerungstechnik Gmbh | DEVICE FOR DEWATERING AND DRYING SOLIDS, IN PARTICULAR UNDERWATER GRANULATED PLASTIC |
JP4986559B2 (en) * | 2006-09-25 | 2012-07-25 | 株式会社Kelk | Fluid temperature control apparatus and method |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
JP5180466B2 (en) * | 2006-12-19 | 2013-04-10 | 昭和シェル石油株式会社 | Lubricating oil composition |
KR100814858B1 (en) * | 2007-02-21 | 2008-03-20 | 삼성에스디아이 주식회사 | Driving method for heating unit used in reformer, reformer applied the same, and fuel cell system applied the same |
WO2008131182A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
JP5063195B2 (en) * | 2007-05-31 | 2012-10-31 | ラピスセミコンダクタ株式会社 | Data processing device |
US7919645B2 (en) | 2007-06-27 | 2011-04-05 | H R D Corporation | High shear system and process for the production of acetic anhydride |
US7836957B2 (en) * | 2007-09-11 | 2010-11-23 | Singleton Alan H | In situ conversion of subsurface hydrocarbon deposits to synthesis gas |
EP2198118A1 (en) | 2007-10-19 | 2010-06-23 | Shell Internationale Research Maatschappij B.V. | Irregular spacing of heat sources for treating hydrocarbon containing formations |
WO2009067418A1 (en) * | 2007-11-19 | 2009-05-28 | Shell Oil Company | Systems and methods for producing oil and/or gas |
CA2706083A1 (en) * | 2007-11-19 | 2009-05-28 | Shell Internationale Research Maatschappij B.V. | Systems and methods for producing oil and/or gas |
US7673687B2 (en) * | 2007-12-05 | 2010-03-09 | Halliburton Energy Services, Inc. | Cement compositions comprising crystalline organic materials and methods of using same |
US7882893B2 (en) * | 2008-01-11 | 2011-02-08 | Legacy Energy | Combined miscible drive for heavy oil production |
CA2713536C (en) * | 2008-02-06 | 2013-06-25 | Osum Oil Sands Corp. | Method of controlling a recovery and upgrading operation in a reservoir |
US8528645B2 (en) * | 2008-02-27 | 2013-09-10 | Shell Oil Company | Systems and methods for producing oil and/or gas |
US20090260825A1 (en) * | 2008-04-18 | 2009-10-22 | Stanley Nemec Milam | Method for recovery of hydrocarbons from a subsurface hydrocarbon containing formation |
US20090260810A1 (en) * | 2008-04-18 | 2009-10-22 | Michael Anthony Reynolds | Method for treating a hydrocarbon containing formation |
US20090260811A1 (en) * | 2008-04-18 | 2009-10-22 | Jingyu Cui | Methods for generation of subsurface heat for treatment of a hydrocarbon containing formation |
US20090260812A1 (en) * | 2008-04-18 | 2009-10-22 | Michael Anthony Reynolds | Methods of treating a hydrocarbon containing formation |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
US7841407B2 (en) * | 2008-04-18 | 2010-11-30 | Shell Oil Company | Method for treating a hydrocarbon containing formation |
US20090260809A1 (en) * | 2008-04-18 | 2009-10-22 | Scott Lee Wellington | Method for treating a hydrocarbon containing formation |
GB2460668B (en) * | 2008-06-04 | 2012-08-01 | Schlumberger Holdings | Subsea fluid sampling and analysis |
US8485257B2 (en) * | 2008-08-06 | 2013-07-16 | Chevron U.S.A. Inc. | Supercritical pentane as an extractant for oil shale |
US20120125613A1 (en) * | 2008-09-13 | 2012-05-24 | Bilhete Louis | Method and Apparatus for Underground Oil Extraction |
JP2010073002A (en) * | 2008-09-19 | 2010-04-02 | Hoya Corp | Image processor and camera |
US20100101783A1 (en) * | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
US9052116B2 (en) | 2008-10-30 | 2015-06-09 | Power Generation Technologies Development Fund, L.P. | Toroidal heat exchanger |
WO2010051338A1 (en) | 2008-10-30 | 2010-05-06 | Power Generation Technologies Development Fund L.P. | Toroidal boundary layer gas turbine |
CA2780335A1 (en) * | 2008-11-03 | 2010-05-03 | Laricina Energy Ltd. | Passive heating assisted recovery methods |
US8398862B1 (en) * | 2008-12-05 | 2013-03-19 | Charles Saron Knobloch | Geothermal recovery method and system |
BRPI0923807A2 (en) * | 2008-12-31 | 2015-07-14 | Chevron Usa Inc | Method for producing hydrocarbons from an underground reservoir, and System for producing natural gas from an underground reservoir |
US7909093B2 (en) * | 2009-01-15 | 2011-03-22 | Conocophillips Company | In situ combustion as adjacent formation heat source |
CA2692204C (en) * | 2009-02-06 | 2014-01-21 | Javier Enrique Sanmiguel | Method of gas-cap air injection for thermal oil recovery |
US9034176B2 (en) | 2009-03-02 | 2015-05-19 | Harris Corporation | Radio frequency heating of petroleum ore by particle susceptors |
US8494775B2 (en) * | 2009-03-02 | 2013-07-23 | Harris Corporation | Reflectometry real time remote sensing for in situ hydrocarbon processing |
US8616323B1 (en) | 2009-03-11 | 2013-12-31 | Echogen Power Systems | Hybrid power systems |
WO2010118315A1 (en) * | 2009-04-10 | 2010-10-14 | Shell Oil Company | Treatment methodologies for subsurface hydrocarbon containing formations |
US9107666B2 (en) | 2009-04-17 | 2015-08-18 | Domain Surgical, Inc. | Thermal resecting loop |
US9078655B2 (en) | 2009-04-17 | 2015-07-14 | Domain Surgical, Inc. | Heated balloon catheter |
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
US8506561B2 (en) | 2009-04-17 | 2013-08-13 | Domain Surgical, Inc. | Catheter with inductively heated regions |
US9265556B2 (en) | 2009-04-17 | 2016-02-23 | Domain Surgical, Inc. | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US9074465B2 (en) | 2009-06-03 | 2015-07-07 | Schlumberger Technology Corporation | Methods for allocating commingled oil production |
CA2766637A1 (en) | 2009-06-22 | 2010-12-29 | Echogen Power Systems Inc. | System and method for managing thermal issues in one or more industrial processes |
US8332191B2 (en) * | 2009-07-14 | 2012-12-11 | Schlumberger Technology Corporation | Correction factors for electromagnetic measurements made through conductive material |
US8833454B2 (en) * | 2009-07-22 | 2014-09-16 | Conocophillips Company | Hydrocarbon recovery method |
WO2011017476A1 (en) | 2009-08-04 | 2011-02-10 | Echogen Power Systems Inc. | Heat pump with integral solar collector |
US8453760B2 (en) * | 2009-08-25 | 2013-06-04 | Baker Hughes Incorporated | Method and apparatus for controlling bottomhole temperature in deviated wells |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US20120198844A1 (en) * | 2009-10-22 | 2012-08-09 | Kaminsky Robert D | System and Method For Producing Geothermal Energy |
US8602103B2 (en) * | 2009-11-24 | 2013-12-10 | Conocophillips Company | Generation of fluid for hydrocarbon recovery |
CN102741500A (en) * | 2009-12-15 | 2012-10-17 | 雪佛龙美国公司 | System, method and assembly for wellbore maintenance operations |
EP2526339A4 (en) | 2010-01-21 | 2015-03-11 | Powerdyne Inc | Generating steam from carbonaceous material |
US20110198095A1 (en) * | 2010-02-15 | 2011-08-18 | Marc Vianello | System and process for flue gas processing |
CA2693640C (en) | 2010-02-17 | 2013-10-01 | Exxonmobil Upstream Research Company | Solvent separation in a solvent-dominated recovery process |
CA2696638C (en) | 2010-03-16 | 2012-08-07 | Exxonmobil Upstream Research Company | Use of a solvent-external emulsion for in situ oil recovery |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
EP2556208A4 (en) * | 2010-04-09 | 2014-07-02 | Shell Oil Co | Helical winding of insulated conductor heaters for installation |
US8967259B2 (en) | 2010-04-09 | 2015-03-03 | Shell Oil Company | Helical winding of insulated conductor heaters for installation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US20110277996A1 (en) * | 2010-05-11 | 2011-11-17 | Halliburton Energy Services, Inc. | Subterranean flow barriers containing tracers |
US8955591B1 (en) | 2010-05-13 | 2015-02-17 | Future Energy, Llc | Methods and systems for delivery of thermal energy |
CA2705643C (en) | 2010-05-26 | 2016-11-01 | Imperial Oil Resources Limited | Optimization of solvent-dominated recovery |
US9200505B2 (en) | 2010-08-18 | 2015-12-01 | Future Energy, Llc | Methods and systems for enhanced delivery of thermal energy for horizontal wellbores |
US8646527B2 (en) * | 2010-09-20 | 2014-02-11 | Harris Corporation | Radio frequency enhanced steam assisted gravity drainage method for recovery of hydrocarbons |
WO2012040358A1 (en) * | 2010-09-24 | 2012-03-29 | Conocophillips Company | In situ hydrocarbon upgrading with fluid generated to provide steam and hydrogen |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US20150233224A1 (en) * | 2010-12-21 | 2015-08-20 | Chevron U.S.A. Inc. | System and method for enhancing oil recovery from a subterranean reservoir |
US20120152537A1 (en) * | 2010-12-21 | 2012-06-21 | Hamilton Sundstrand Corporation | Auger for gas and liquid recovery from regolith |
US9033033B2 (en) * | 2010-12-21 | 2015-05-19 | Chevron U.S.A. Inc. | Electrokinetic enhanced hydrocarbon recovery from oil shale |
CA2822028A1 (en) * | 2010-12-21 | 2012-06-28 | Chevron U.S.A. Inc. | System and method for enhancing oil recovery from a subterranean reservoir |
US8839860B2 (en) | 2010-12-22 | 2014-09-23 | Chevron U.S.A. Inc. | In-situ Kerogen conversion and product isolation |
US9127897B2 (en) | 2010-12-30 | 2015-09-08 | Kellogg Brown & Root Llc | Submersed heat exchanger |
US8443897B2 (en) * | 2011-01-06 | 2013-05-21 | Halliburton Energy Services, Inc. | Subsea safety system having a protective frangible liner and method of operating same |
JP5287962B2 (en) * | 2011-01-26 | 2013-09-11 | 株式会社デンソー | Welding equipment |
CA2739953A1 (en) * | 2011-02-11 | 2012-08-11 | Cenovus Energy Inc. | Method for displacement of water from a porous and permeable formation |
CA2761321C (en) * | 2011-02-11 | 2014-08-12 | Cenovus Energy, Inc. | Selective displacement of water in pressure communication with a hydrocarbon reservoir |
RU2468452C1 (en) * | 2011-03-02 | 2012-11-27 | Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" | Operating method of nuclear reactor with organic heat carrier |
US20130062058A1 (en) * | 2011-03-03 | 2013-03-14 | Conocophillips Company | In situ combustion following sagd |
US11255173B2 (en) | 2011-04-07 | 2022-02-22 | Typhon Technology Solutions, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
EP4400692A3 (en) | 2011-04-07 | 2024-10-16 | Typhon Technology Solutions, LLC | Electrically powered system for use in fracturing underground formations |
US9140110B2 (en) | 2012-10-05 | 2015-09-22 | Evolution Well Services, Llc | Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas |
US11708752B2 (en) | 2011-04-07 | 2023-07-25 | Typhon Technology Solutions (U.S.), Llc | Multiple generator mobile electric powered fracturing system |
EP2704657A4 (en) | 2011-04-08 | 2014-12-31 | Domain Surgical Inc | Impedance matching circuit |
EP2695247A4 (en) | 2011-04-08 | 2015-09-16 | Shell Int Research | Systems for joining insulated conductors |
US8932279B2 (en) | 2011-04-08 | 2015-01-13 | Domain Surgical, Inc. | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9004164B2 (en) | 2011-04-25 | 2015-04-14 | Conocophillips Company | In situ radio frequency catalytic upgrading |
WO2012158722A2 (en) | 2011-05-16 | 2012-11-22 | Mcnally, David, J. | Surgical instrument guide |
US9051828B2 (en) | 2011-06-17 | 2015-06-09 | Athabasca Oil Sands Corp. | Thermally assisted gravity drainage (TAGD) |
US9279316B2 (en) | 2011-06-17 | 2016-03-08 | Athabasca Oil Corporation | Thermally assisted gravity drainage (TAGD) |
US9518463B2 (en) | 2011-06-22 | 2016-12-13 | Conocophillips Company | Core capture and recovery from unconsolidated or friable formations and methods of use |
US9188691B2 (en) * | 2011-07-05 | 2015-11-17 | Pgs Geophysical As | Towing methods and systems for geophysical surveys |
US10590742B2 (en) * | 2011-07-15 | 2020-03-17 | Exxonmobil Upstream Research Company | Protecting a fluid stream from fouling using a phase change material |
RU2599786C2 (en) | 2011-07-15 | 2016-10-20 | Гарри ХАЙН | System and method of electric power generation using hybrid geothermal power plant containing nuclear power plant |
US9526558B2 (en) | 2011-09-13 | 2016-12-27 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
US9062898B2 (en) | 2011-10-03 | 2015-06-23 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
RU2474677C1 (en) * | 2011-10-03 | 2013-02-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Development method of oil deposit with horizontal wells |
US20130146288A1 (en) * | 2011-10-03 | 2013-06-13 | David Randolph Smith | Method and apparatus to increase recovery of hydrocarbons |
JO3139B1 (en) | 2011-10-07 | 2017-09-20 | Shell Int Research | Forming insulated conductors using a final reduction step after heat treating |
CA2791725A1 (en) * | 2011-10-07 | 2013-04-07 | Shell Internationale Research Maatschappij B.V. | Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
JO3141B1 (en) | 2011-10-07 | 2017-09-20 | Shell Int Research | Integral splice for insulated conductors |
CA2850756C (en) | 2011-10-07 | 2019-09-03 | Scott Vinh Nguyen | Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor |
RU2474678C1 (en) * | 2011-10-13 | 2013-02-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Development method of oil deposit with horizontal wells |
US9243482B2 (en) * | 2011-11-01 | 2016-01-26 | Nem Energy B.V. | Steam supply for enhanced oil recovery |
US9052121B2 (en) | 2011-11-30 | 2015-06-09 | Intelligent Energy, Llc | Mobile water heating apparatus |
CA2857180A1 (en) | 2011-12-06 | 2013-06-13 | Domain Surgical, Inc. | System and method of controlling power delivery to a surgical instrument |
US8851177B2 (en) | 2011-12-22 | 2014-10-07 | Chevron U.S.A. Inc. | In-situ kerogen conversion and oxidant regeneration |
US9181467B2 (en) | 2011-12-22 | 2015-11-10 | Uchicago Argonne, Llc | Preparation and use of nano-catalysts for in-situ reaction with kerogen |
US8701788B2 (en) | 2011-12-22 | 2014-04-22 | Chevron U.S.A. Inc. | Preconditioning a subsurface shale formation by removing extractible organics |
ES2482668T3 (en) * | 2012-01-03 | 2014-08-04 | Quantum Technologie Gmbh | Apparatus and procedure for the exploitation of oil sands |
US9222612B2 (en) | 2012-01-06 | 2015-12-29 | Vadxx Energy LLC | Anti-fouling apparatus for cleaning deposits in pipes and pipe joints |
WO2013110980A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
AU2012367347A1 (en) | 2012-01-23 | 2014-08-28 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
RU2488690C1 (en) * | 2012-01-27 | 2013-07-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Development method of oil deposits with horizontal wells |
CA2766844C (en) * | 2012-02-06 | 2019-05-07 | Imperial Oil Resources Limited | Heating a hydrocarbon reservoir |
AU2013216895A1 (en) | 2012-02-09 | 2014-09-25 | Vadxx Energy LLC | Zone-delineated pyrolysis apparatus for conversion of polymer waste |
PL2814909T3 (en) | 2012-02-15 | 2023-04-11 | Neste Oyj | Dual stage, zone-delineated pyrolysis apparatus |
CA2811666C (en) | 2012-04-05 | 2021-06-29 | Shell Internationale Research Maatschappij B.V. | Compaction of electrical insulation for joining insulated conductors |
NO342628B1 (en) * | 2012-05-24 | 2018-06-25 | Fmc Kongsberg Subsea As | Active control of underwater coolers |
US8992771B2 (en) | 2012-05-25 | 2015-03-31 | Chevron U.S.A. Inc. | Isolating lubricating oils from subsurface shale formations |
RU2507388C1 (en) * | 2012-07-27 | 2014-02-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Method of extra-heavy oil and/or bitumen deposits development with help of inclined wells |
BR112015003646A2 (en) | 2012-08-20 | 2017-07-04 | Echogen Power Systems Llc | supercritical working fluid circuit with one turbo pump and one starter pump in configuration series |
KR20150052257A (en) | 2012-09-05 | 2015-05-13 | 파워다인, 인코포레이티드 | Methods for generating hydrogen gas using plasma sources |
BR112015004831A2 (en) | 2012-09-05 | 2017-07-04 | Powerdyne Inc | method to produce electricity |
EP2893325A4 (en) | 2012-09-05 | 2016-05-18 | Powerdyne Inc | Fuel generation using high-voltage electric fields methods |
WO2014039704A1 (en) | 2012-09-05 | 2014-03-13 | Powerdyne, Inc. | Fuel generation using high-voltage electric fields methods |
KR20150053779A (en) | 2012-09-05 | 2015-05-18 | 파워다인, 인코포레이티드 | Method for sequestering heavy metal particulates using h2o, co2, o2, and a source of particulates |
EP2892984A4 (en) | 2012-09-05 | 2016-05-11 | Powerdyne Inc | System for generating fuel materials using fischer-tropsch catalysts and plasma sources |
EP2893326A4 (en) | 2012-09-05 | 2016-05-18 | Powerdyne Inc | Fuel generation using high-voltage electric fields methods |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
WO2014117068A1 (en) | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Methods for reducing wear on components of a heat engine system at startup |
WO2014117074A1 (en) | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
US9194221B2 (en) | 2013-02-13 | 2015-11-24 | Harris Corporation | Apparatus for heating hydrocarbons with RF antenna assembly having segmented dipole elements and related methods |
WO2014138035A1 (en) | 2013-03-04 | 2014-09-12 | Echogen Power Systems, L.L.C. | Heat engine systems with high net power supercritical carbon dioxide circuits |
US9284826B2 (en) | 2013-03-15 | 2016-03-15 | Chevron U.S.A. Inc. | Oil extraction using radio frequency heating |
US10316644B2 (en) | 2013-04-04 | 2019-06-11 | Shell Oil Company | Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation |
US9738837B2 (en) | 2013-05-13 | 2017-08-22 | Cenovus Energy, Inc. | Process and system for treating oil sands produced gases and liquids |
US10519390B2 (en) * | 2013-05-30 | 2019-12-31 | Clean Coal Technologies, Inc. | Treatment of coal |
WO2014201349A1 (en) * | 2013-06-13 | 2014-12-18 | Conocophillips Company | Chemical treatment for organic fouling in boilers |
US9435175B2 (en) * | 2013-11-08 | 2016-09-06 | Schlumberger Technology Corporation | Oilfield surface equipment cooling system |
CA2929610C (en) * | 2013-11-20 | 2021-07-06 | Shell Internationale Research Maatschappij B.V. | Steam-injecting mineral insulated heater design |
US9556723B2 (en) | 2013-12-09 | 2017-01-31 | Baker Hughes Incorporated | Geosteering boreholes using distributed acoustic sensing |
US9435183B2 (en) | 2014-01-13 | 2016-09-06 | Bernard Compton Chung | Steam environmentally generated drainage system and method |
JP6217426B2 (en) * | 2014-02-07 | 2017-10-25 | いすゞ自動車株式会社 | Waste heat recovery system |
US20150226129A1 (en) * | 2014-02-10 | 2015-08-13 | General Electric Company | Method for Detecting Hazardous Gas Concentrations within a Gas Turbine Enclosure |
CA3176275A1 (en) | 2014-02-18 | 2015-08-18 | Athabasca Oil Corporation | Cable-based well heater |
US20150247886A1 (en) | 2014-02-28 | 2015-09-03 | International Business Machines Corporation | Transformer Phase Permutation Causing More Uniform Transformer Phase Aging and general switching network suitable for same |
US10610842B2 (en) | 2014-03-31 | 2020-04-07 | Schlumberger Technology Corporation | Optimized drive of fracturing fluids blenders |
JP2017512930A (en) | 2014-04-04 | 2017-05-25 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Insulated conductors formed using a final rolling step after heat treatment |
US20150312651A1 (en) * | 2014-04-28 | 2015-10-29 | Honeywell International Inc. | System and method of optimized network traffic in video surveillance system |
US10357306B2 (en) | 2014-05-14 | 2019-07-23 | Domain Surgical, Inc. | Planar ferromagnetic coated surgical tip and method for making |
CA2852766C (en) * | 2014-05-29 | 2021-09-28 | Chris Elliott | Thermally induced expansion drive in heavy oil reservoirs |
RU2583797C2 (en) * | 2014-06-26 | 2016-05-10 | Акционерное общество "Зарубежнефть" | Method of creating combustion source in oil reservoir |
US10233727B2 (en) * | 2014-07-30 | 2019-03-19 | International Business Machines Corporation | Induced control excitation for enhanced reservoir flow characterization |
US11578574B2 (en) | 2014-08-21 | 2023-02-14 | Christopher M Rey | High power dense down-hole heating device for enhanced oil, natural gas, hydrocarbon, and related commodity recovery |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
WO2016057033A1 (en) * | 2014-10-08 | 2016-04-14 | Halliburton Energy Services, Inc. | Electromagnetic imaging for structural inspection |
RU2569375C1 (en) * | 2014-10-21 | 2015-11-27 | Николай Борисович Болотин | Method and device for heating producing oil-bearing formation |
US10570777B2 (en) | 2014-11-03 | 2020-02-25 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US10400563B2 (en) | 2014-11-25 | 2019-09-03 | Salamander Solutions, LLC | Pyrolysis to pressurise oil formations |
US20160169451A1 (en) * | 2014-12-12 | 2016-06-16 | Fccl Partnership | Process and system for delivering steam |
US10408044B2 (en) * | 2014-12-31 | 2019-09-10 | Halliburton Energy Services, Inc. | Methods and systems employing fiber optic sensors for ranging |
CN104785515B (en) * | 2015-04-27 | 2017-10-13 | 沈逍江 | The indirect thermal desorption device of two-part auger |
GB2539045A (en) * | 2015-06-05 | 2016-12-07 | Statoil Asa | Subsurface heater configuration for in situ hydrocarbon production |
WO2017011499A1 (en) * | 2015-07-13 | 2017-01-19 | Halliburton Energy Services, Inc. | Real-time frequency loop shaping for drilling mud viscosity and density measurements |
US10690586B2 (en) | 2015-07-21 | 2020-06-23 | University Of Houston System | Rapid detection and quantification of surface and bulk corrosion and erosion in metals and non-metallic materials with integrated monitoring system |
RU2607127C1 (en) * | 2015-07-24 | 2017-01-10 | Открытое акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт имени академика А.П. Крылова" (ОАО "ВНИИнефть") | Method for development of non-uniform formations |
US9803930B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated hydrocracking and diesel hydrotreating facilities |
US9803507B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities |
US9803505B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics and naphtha block facilities |
US9803513B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities |
US9803511B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities |
US9816401B2 (en) | 2015-08-24 | 2017-11-14 | Saudi Arabian Oil Company | Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling |
US9803506B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities |
US9725652B2 (en) | 2015-08-24 | 2017-08-08 | Saudi Arabian Oil Company | Delayed coking plant combined heating and power generation |
US9803508B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities |
US9745871B2 (en) | 2015-08-24 | 2017-08-29 | Saudi Arabian Oil Company | Kalina cycle based conversion of gas processing plant waste heat into power |
US9556719B1 (en) | 2015-09-10 | 2017-01-31 | Don P. Griffin | Methods for recovering hydrocarbons from shale using thermally-induced microfractures |
RU2599653C1 (en) * | 2015-09-14 | 2016-10-10 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Well operation method |
US10395011B2 (en) | 2015-11-04 | 2019-08-27 | Screening Room Media, Inc. | Monitoring location of a client-side digital content delivery device to prevent digital content misuse |
US10495778B2 (en) * | 2015-11-19 | 2019-12-03 | Halliburton Energy Services, Inc. | System and methods for cross-tool optical fluid model validation and real-time application |
CN105510396B (en) * | 2015-11-24 | 2018-06-29 | 山东科技大学 | A kind of test device and test method for coal-bed flooding wetting range |
HUE060177T2 (en) * | 2016-02-08 | 2023-02-28 | Proton Tech Inc | In-situ process to produce hydrogen from underground hydrocarbon reservoirs |
US20170286802A1 (en) * | 2016-04-01 | 2017-10-05 | Saudi Arabian Oil Company | Automated core description |
EP3252268A1 (en) * | 2016-06-02 | 2017-12-06 | Welltec A/S | Downhole power supply device |
BR112018075632B1 (en) * | 2016-06-10 | 2022-06-21 | Neotechnology, LLC | Processes and systems for upgrading heavy crude oil using induction heating |
IT201600074309A1 (en) * | 2016-07-15 | 2018-01-15 | Eni Spa | CABLELESS BIDIRECTIONAL DATA TRANSMISSION SYSTEM IN A WELL FOR THE EXTRACTION OF FORMATION FLUIDS. |
WO2018050884A1 (en) * | 2016-09-19 | 2018-03-22 | Philips Lighting Holding B.V. | Lighting device comprising a communication element for wireless communication |
KR101800807B1 (en) | 2016-11-11 | 2017-11-23 | 서강대학교산학협력단 | Core-shell composite including iron oxide |
CN106761495B (en) * | 2017-01-16 | 2023-01-17 | 济宁学院 | Hole washing device for coal mine gas extraction hole |
RU2663627C1 (en) * | 2017-07-06 | 2018-08-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Method of super-viscous oil field development |
CA3075856A1 (en) * | 2017-09-13 | 2019-03-21 | Chevron Phillips Chemical Company Lp | Pvdf pipe and methods of making and using same |
CN107965302B (en) * | 2017-10-11 | 2020-10-09 | 中国石油天然气股份有限公司 | Driver and driver processing device and method |
RU2691234C2 (en) * | 2017-10-12 | 2019-06-11 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Development method of super-viscous oil deposit |
WO2019079473A1 (en) * | 2017-10-19 | 2019-04-25 | Shell Oil Company | Mineral insulated power cables for electric motor driven integral compressors |
US10577906B2 (en) | 2018-02-12 | 2020-03-03 | Eagle Technology, Llc | Hydrocarbon resource recovery system and RF antenna assembly with thermal expansion device and related methods |
US10502041B2 (en) | 2018-02-12 | 2019-12-10 | Eagle Technology, Llc | Method for operating RF source and related hydrocarbon resource recovery systems |
US10577905B2 (en) | 2018-02-12 | 2020-03-03 | Eagle Technology, Llc | Hydrocarbon resource recovery system and RF antenna assembly with latching inner conductor and related methods |
US10151187B1 (en) | 2018-02-12 | 2018-12-11 | Eagle Technology, Llc | Hydrocarbon resource recovery system with transverse solvent injectors and related methods |
US10767459B2 (en) | 2018-02-12 | 2020-09-08 | Eagle Technology, Llc | Hydrocarbon resource recovery system and component with pressure housing and related methods |
US10137486B1 (en) * | 2018-02-27 | 2018-11-27 | Chevron U.S.A. Inc. | Systems and methods for thermal treatment of contaminated material |
CN108487871B (en) * | 2018-04-24 | 2024-06-18 | 山西汇永能源工程有限公司 | Coal field drilling device |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
CA3044153C (en) | 2018-07-04 | 2020-09-15 | Eavor Technologies Inc. | Method for forming high efficiency geothermal wellbores |
CN109300564B (en) * | 2018-09-20 | 2022-11-18 | 中国辐射防护研究院 | Device and method for simulating steam blocking and corrosion of filter |
US11762117B2 (en) * | 2018-11-19 | 2023-09-19 | ExxonMobil Technology and Engineering Company | Downhole tools and methods for detecting a downhole obstruction within a wellbore |
CN110067590B (en) * | 2019-04-14 | 2020-11-24 | 徐州赛孚瑞科高分子材料有限公司 | Portable intrinsic safety type small-area dust removal system for underground coal mine |
CN110130861B (en) * | 2019-06-17 | 2024-06-04 | 浙江金龙自控设备有限公司 | Low-shear single-well mixed liquid injection allocation device |
RU2726693C1 (en) * | 2019-08-27 | 2020-07-15 | Анатолий Александрович Чернов | Method for increasing efficiency of hydrocarbon production from oil-kerogen-containing formations and technological complex for its implementation |
RU2726703C1 (en) * | 2019-09-26 | 2020-07-15 | Анатолий Александрович Чернов | Method for increasing efficiency of extracting high-technology oil from petroleum-carbon-bearing formations and technological complex for implementation thereof |
US10914134B1 (en) | 2019-11-14 | 2021-02-09 | Saudi Arabian Oil Company | Treatment of casing-casing annulus leaks using thermally sensitive sealants |
CN111141400B (en) * | 2019-12-04 | 2021-08-24 | 深圳中广核工程设计有限公司 | Method for measuring temperature of pipe wall of thermal fatigue sensitive area of bent pipe of nuclear power station |
RU2726090C1 (en) * | 2019-12-25 | 2020-07-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Development and extraction method of bitumen oil deposit |
RU2741642C1 (en) * | 2020-02-18 | 2021-01-28 | Прифолио Инвестментс Лимитед | Processing complex for extraction of hard-to-recover hydrocarbons (embodiments) |
CN111460647B (en) * | 2020-03-30 | 2024-07-16 | 中国石油化工股份有限公司 | Quantitative allocation method for sectional targeting steam injection quantity of horizontal well after multiple rounds of huff and puff |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
CN111794722B (en) * | 2020-08-14 | 2022-07-22 | 西南石油大学 | Marine natural gas hydrate reservoir-development simulation experiment system and method |
US11492881B2 (en) * | 2020-10-09 | 2022-11-08 | Saudi Arabian Oil Company | Oil production optimization by admixing two reservoirs using a restrained device |
MA61232A1 (en) | 2020-12-09 | 2024-05-31 | Supercritical Storage Company Inc | THREE-TANK ELECTRIC THERMAL ENERGY STORAGE SYSTEM |
EP4267976A1 (en) * | 2020-12-22 | 2023-11-01 | NxStage Medical, Inc. | Leakage current management systems, devices, and methods |
US11668847B2 (en) | 2021-01-04 | 2023-06-06 | Saudi Arabian Oil Company | Generating synthetic geological formation images based on rock fragment images |
CN112832728B (en) * | 2021-01-08 | 2022-03-18 | 中国矿业大学 | Shale reservoir fracturing method based on methane multistage combustion and explosion |
RU2753290C1 (en) * | 2021-02-10 | 2021-08-12 | Общество с ограниченной ответственностью «АСДМ-Инжиниринг» | Method and system for combating asphalt-resin-paraffin and/or gas hydrate deposits in oil and gas wells |
CN112992394B (en) * | 2021-02-22 | 2022-04-15 | 中国核动力研究设计院 | Method and system for measuring and calculating heat balance of reactor core two-phase heat and mass transfer experiment |
CN113237130B (en) * | 2021-03-30 | 2022-03-18 | 江苏四季沐歌有限公司 | Solar energy and air energy efficient circulating heating system |
CN113092337B (en) * | 2021-04-08 | 2022-01-28 | 西南石油大学 | Method for establishing initial water saturation of compact rock core under in-situ condition |
GB202109034D0 (en) * | 2021-06-23 | 2021-08-04 | Aubin Ltd | Method of insulating an object |
US11952920B2 (en) * | 2021-07-08 | 2024-04-09 | Guy James Daniel | Energy recovery system and methods of use |
CN113586044B (en) * | 2021-08-27 | 2023-07-28 | 中国地质调查局油气资源调查中心 | Optimization method and system for self-injection shale gas test working system |
US11982142B2 (en) | 2021-11-19 | 2024-05-14 | Saudi Arabian Oil Company | Method and apparatus of smart pressures equalizer near bit sub |
CN115434684B (en) * | 2022-08-30 | 2023-11-03 | 中国石油大学(华东) | Air displacement device for oil shale fracturing |
US20240093582A1 (en) * | 2022-09-20 | 2024-03-21 | Halliburton Energy Services, Inc. | Oilfield Applications Using Hydrogen Power |
US11955782B1 (en) | 2022-11-01 | 2024-04-09 | Typhon Technology Solutions (U.S.), Llc | System and method for fracturing of underground formations using electric grid power |
GB2625053A (en) * | 2022-11-30 | 2024-06-12 | James Sowers Hank | Feed water system, water processing system, and associated systems & methods |
Family Cites Families (899)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US345586A (en) | 1886-07-13 | Oil from wells | ||
US2732195A (en) * | 1956-01-24 | Ljungstrom | ||
US2734579A (en) | 1956-02-14 | Production from bituminous sands | ||
SE123138C1 (en) | 1948-01-01 | |||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
US48994A (en) * | 1865-07-25 | Improvement in devices for oil-wells | ||
SE126674C1 (en) | 1949-01-01 | |||
US94813A (en) * | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
SE123136C1 (en) | 1948-01-01 | |||
US326439A (en) * | 1885-09-15 | Protecting wells | ||
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1510655A (en) * | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) * | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US1913395A (en) * | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2144144A (en) * | 1935-10-05 | 1939-01-17 | Meria Tool Company | Means for elevating liquids from wells |
US2288857A (en) | 1937-10-18 | 1942-07-07 | Union Oil Co | Process for the removal of bitumen from bituminous deposits |
US2244255A (en) | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) * | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2381256A (en) | 1942-10-06 | 1945-08-07 | Texas Co | Process for treating hydrocarbon fractions |
US2390770A (en) | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) * | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) * | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) * | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) * | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
GB674082A (en) | 1949-06-15 | 1952-06-18 | Nat Res Dev | Improvements in or relating to the underground gasification of coal |
US2670802A (en) * | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2714930A (en) | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
GB697189A (en) | 1951-04-09 | 1953-09-16 | Nat Res Dev | Improvements relating to the underground gasification of coal |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2777679A (en) * | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2789805A (en) * | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
US2761663A (en) | 1952-09-05 | 1956-09-04 | Louis F Gerdetz | Process of underground gasification of coal |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2847306A (en) | 1953-07-01 | 1958-08-12 | Exxon Research Engineering Co | Process for recovery of oil from shale |
US2902270A (en) | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) * | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2801699A (en) * | 1954-12-24 | 1957-08-06 | Pure Oil Co | Process for temporarily and selectively sealing a well |
US2787325A (en) * | 1954-12-24 | 1957-04-02 | Pure Oil Co | Selective treatment of geological formations |
US2923535A (en) * | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2799341A (en) * | 1955-03-04 | 1957-07-16 | Union Oil Co | Selective plugging in oil wells |
US2801089A (en) | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) * | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2889882A (en) | 1956-06-06 | 1959-06-09 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3120264A (en) * | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
US3016053A (en) | 1956-08-02 | 1962-01-09 | George J Medovick | Underwater breathing apparatus |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US2952449A (en) * | 1957-02-01 | 1960-09-13 | Fmc Corp | Method of forming underground communication between boreholes |
US3127936A (en) * | 1957-07-26 | 1964-04-07 | Svenska Skifferolje Ab | Method of in situ heating of subsurface preferably fuel containing deposits |
US2942223A (en) | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) * | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US3007521A (en) * | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US3010516A (en) | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US2954826A (en) * | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3061009A (en) * | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3062282A (en) * | 1958-01-24 | 1962-11-06 | Phillips Petroleum Co | Initiation of in situ combustion in a carbonaceous stratum |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US3004603A (en) | 1958-03-07 | 1961-10-17 | Phillips Petroleum Co | Heater |
US3032102A (en) | 1958-03-17 | 1962-05-01 | Phillips Petroleum Co | In situ combustion method |
US3004601A (en) | 1958-05-09 | 1961-10-17 | Albert G Bodine | Method and apparatus for augmenting oil recovery from wells by refrigeration |
US3048221A (en) | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3026940A (en) | 1958-05-19 | 1962-03-27 | Electronic Oil Well Heater Inc | Oil well temperature indicator and control |
US3010513A (en) * | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US2958519A (en) * | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US3044545A (en) | 1958-10-02 | 1962-07-17 | Phillips Petroleum Co | In situ combustion process |
US3050123A (en) | 1958-10-07 | 1962-08-21 | Cities Service Res & Dev Co | Gas fired oil-well burner |
US2950240A (en) | 1958-10-10 | 1960-08-23 | Socony Mobil Oil Co Inc | Selective cracking of aliphatic hydrocarbons |
US2974937A (en) * | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) * | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US3036632A (en) * | 1958-12-24 | 1962-05-29 | Socony Mobil Oil Co Inc | Recovery of hydrocarbon materials from earth formations by application of heat |
US2969226A (en) | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3017168A (en) | 1959-01-26 | 1962-01-16 | Phillips Petroleum Co | In situ retorting of oil shale |
US3110345A (en) * | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113619A (en) * | 1959-03-30 | 1963-12-10 | Phillips Petroleum Co | Line drive counterflow in situ combustion process |
US3113620A (en) | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3113623A (en) | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3181613A (en) | 1959-07-20 | 1965-05-04 | Union Oil Co | Method and apparatus for subterranean heating |
US3132692A (en) * | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3116792A (en) * | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3095031A (en) | 1959-12-09 | 1963-06-25 | Eurenius Malte Oscar | Burners for use in bore holes in the ground |
US3131763A (en) * | 1959-12-30 | 1964-05-05 | Texaco Inc | Electrical borehole heater |
US3163745A (en) * | 1960-02-29 | 1964-12-29 | Socony Mobil Oil Co Inc | Heating of an earth formation penetrated by a well borehole |
US3127935A (en) * | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
US3137347A (en) | 1960-05-09 | 1964-06-16 | Phillips Petroleum Co | In situ electrolinking of oil shale |
US3139928A (en) | 1960-05-24 | 1964-07-07 | Shell Oil Co | Thermal process for in situ decomposition of oil shale |
US3058730A (en) * | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3106244A (en) * | 1960-06-20 | 1963-10-08 | Phillips Petroleum Co | Process for producing oil shale in situ by electrocarbonization |
US3142336A (en) | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3105545A (en) | 1960-11-21 | 1963-10-01 | Shell Oil Co | Method of heating underground formations |
US3164207A (en) | 1961-01-17 | 1965-01-05 | Wayne H Thessen | Method for recovering oil |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3191679A (en) | 1961-04-13 | 1965-06-29 | Wendell S Miller | Melting process for recovering bitumens from the earth |
US3207220A (en) | 1961-06-26 | 1965-09-21 | Chester I Williams | Electric well heater |
US3114417A (en) * | 1961-08-14 | 1963-12-17 | Ernest T Saftig | Electric oil well heater apparatus |
US3246695A (en) | 1961-08-21 | 1966-04-19 | Charles L Robinson | Method for heating minerals in situ with radioactive materials |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3183675A (en) | 1961-11-02 | 1965-05-18 | Conch Int Methane Ltd | Method of freezing an earth formation |
US3170842A (en) | 1961-11-06 | 1965-02-23 | Phillips Petroleum Co | Subcritical borehole nuclear reactor and process |
US3209825A (en) | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3205946A (en) | 1962-03-12 | 1965-09-14 | Shell Oil Co | Consolidation by silica coalescence |
US3165154A (en) | 1962-03-23 | 1965-01-12 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3149670A (en) | 1962-03-27 | 1964-09-22 | Smclair Res Inc | In-situ heating process |
US3149672A (en) | 1962-05-04 | 1964-09-22 | Jersey Prod Res Co | Method and apparatus for electrical heating of oil-bearing formations |
US3208531A (en) | 1962-08-21 | 1965-09-28 | Otis Eng Co | Inserting tool for locating and anchoring a device in tubing |
US3182721A (en) * | 1962-11-02 | 1965-05-11 | Sun Oil Co | Method of petroleum production by forward in situ combustion |
US3288648A (en) | 1963-02-04 | 1966-11-29 | Pan American Petroleum Corp | Process for producing electrical energy from geological liquid hydrocarbon formation |
US3205942A (en) | 1963-02-07 | 1965-09-14 | Socony Mobil Oil Co Inc | Method for recovery of hydrocarbons by in situ heating of oil shale |
US3258069A (en) * | 1963-02-07 | 1966-06-28 | Shell Oil Co | Method for producing a source of energy from an overpressured formation |
US3221505A (en) | 1963-02-20 | 1965-12-07 | Gulf Research Development Co | Grouting method |
US3221811A (en) | 1963-03-11 | 1965-12-07 | Shell Oil Co | Mobile in-situ heating of formations |
US3250327A (en) | 1963-04-02 | 1966-05-10 | Socony Mobil Oil Co Inc | Recovering nonflowing hydrocarbons |
US3241611A (en) * | 1963-04-10 | 1966-03-22 | Equity Oil Company | Recovery of petroleum products from oil shale |
GB959945A (en) | 1963-04-18 | 1964-06-03 | Conch Int Methane Ltd | Constructing a frozen wall within the ground |
US3237689A (en) | 1963-04-29 | 1966-03-01 | Clarence I Justheim | Distillation of underground deposits of solid carbonaceous materials in situ |
US3205944A (en) | 1963-06-14 | 1965-09-14 | Socony Mobil Oil Co Inc | Recovery of hydrocarbons from a subterranean reservoir by heating |
US3233668A (en) | 1963-11-15 | 1966-02-08 | Exxon Production Research Co | Recovery of shale oil |
US3285335A (en) | 1963-12-11 | 1966-11-15 | Exxon Research Engineering Co | In situ pyrolysis of oil shale formations |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3273640A (en) | 1963-12-13 | 1966-09-20 | Pyrochem Corp | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
US3303883A (en) | 1964-01-06 | 1967-02-14 | Mobil Oil Corp | Thermal notching technique |
US3275076A (en) | 1964-01-13 | 1966-09-27 | Mobil Oil Corp | Recovery of asphaltic-type petroleum from a subterranean reservoir |
US3342258A (en) | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3294167A (en) | 1964-04-13 | 1966-12-27 | Shell Oil Co | Thermal oil recovery |
US3284281A (en) | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3302707A (en) | 1964-09-30 | 1967-02-07 | Mobil Oil Corp | Method for improving fluid recoveries from earthen formations |
US3316020A (en) | 1964-11-23 | 1967-04-25 | Mobil Oil Corp | In situ retorting method employed in oil shale |
US3380913A (en) | 1964-12-28 | 1968-04-30 | Phillips Petroleum Co | Refining of effluent from in situ combustion operation |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3338306A (en) | 1965-03-09 | 1967-08-29 | Mobil Oil Corp | Recovery of heavy oil from oil sands |
US3358756A (en) | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3262741A (en) | 1965-04-01 | 1966-07-26 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
DE1242535B (en) | 1965-04-13 | 1967-06-22 | Deutsche Erdoel Ag | Process for the removal of residual oil from oil deposits |
US3316344A (en) | 1965-04-26 | 1967-04-25 | Central Electr Generat Board | Prevention of icing of electrical conductors |
US3342267A (en) | 1965-04-29 | 1967-09-19 | Gerald S Cotter | Turbo-generator heater for oil and gas wells and pipe lines |
US3278234A (en) | 1965-05-17 | 1966-10-11 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3352355A (en) | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
US3346044A (en) | 1965-09-08 | 1967-10-10 | Mobil Oil Corp | Method and structure for retorting oil shale in situ by cycling fluid flows |
US3349845A (en) | 1965-10-22 | 1967-10-31 | Sinclair Oil & Gas Company | Method of establishing communication between wells |
US3379248A (en) | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3454365A (en) * | 1966-02-18 | 1969-07-08 | Phillips Petroleum Co | Analysis and control of in situ combustion of underground carbonaceous deposit |
US3386508A (en) | 1966-02-21 | 1968-06-04 | Exxon Production Research Co | Process and system for the recovery of viscous oil |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
US3595082A (en) | 1966-03-04 | 1971-07-27 | Gulf Oil Corp | Temperature measuring apparatus |
US3410977A (en) | 1966-03-28 | 1968-11-12 | Ando Masao | Method of and apparatus for heating the surface part of various construction materials |
DE1615192B1 (en) | 1966-04-01 | 1970-08-20 | Chisso Corp | Inductively heated heating pipe |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3513913A (en) | 1966-04-19 | 1970-05-26 | Shell Oil Co | Oil recovery from oil shales by transverse combustion |
US3372754A (en) | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
US3412011A (en) | 1966-09-02 | 1968-11-19 | Phillips Petroleum Co | Catalytic cracking and in situ combustion process for producing hydrocarbons |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
US3389975A (en) | 1967-03-10 | 1968-06-25 | Sinclair Research Inc | Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide |
NL6803827A (en) | 1967-03-22 | 1968-09-23 | ||
US3438439A (en) | 1967-05-29 | 1969-04-15 | Pan American Petroleum Corp | Method for plugging formations by production of sulfur therein |
US3474863A (en) | 1967-07-28 | 1969-10-28 | Shell Oil Co | Shale oil extraction process |
US3528501A (en) | 1967-08-04 | 1970-09-15 | Phillips Petroleum Co | Recovery of oil from oil shale |
US3480082A (en) * | 1967-09-25 | 1969-11-25 | Continental Oil Co | In situ retorting of oil shale using co2 as heat carrier |
US3434541A (en) | 1967-10-11 | 1969-03-25 | Mobil Oil Corp | In situ combustion process |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3477058A (en) | 1968-02-01 | 1969-11-04 | Gen Electric | Magnesia insulated heating elements and methods of production |
US3580987A (en) | 1968-03-26 | 1971-05-25 | Pirelli | Electric cable |
US3455383A (en) | 1968-04-24 | 1969-07-15 | Shell Oil Co | Method of producing fluidized material from a subterranean formation |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3529682A (en) | 1968-10-03 | 1970-09-22 | Bell Telephone Labor Inc | Location detection and guidance systems for burrowing device |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3502372A (en) | 1968-10-23 | 1970-03-24 | Shell Oil Co | Process of recovering oil and dawsonite from oil shale |
US3545544A (en) * | 1968-10-24 | 1970-12-08 | Phillips Petroleum Co | Recovery of hydrocarbons by in situ combustion |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3501201A (en) | 1968-10-30 | 1970-03-17 | Shell Oil Co | Method of producing shale oil from a subterranean oil shale formation |
US3562401A (en) | 1969-03-03 | 1971-02-09 | Union Carbide Corp | Low temperature electric transmission systems |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3618663A (en) | 1969-05-01 | 1971-11-09 | Phillips Petroleum Co | Shale oil production |
US3605890A (en) | 1969-06-04 | 1971-09-20 | Chevron Res | Hydrogen production from a kerogen-depleted shale formation |
US3572838A (en) | 1969-07-07 | 1971-03-30 | Shell Oil Co | Recovery of aluminum compounds and oil from oil shale formations |
US3526095A (en) | 1969-07-24 | 1970-09-01 | Ralph E Peck | Liquid gas storage system |
US3599714A (en) * | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3547193A (en) | 1969-10-08 | 1970-12-15 | Electrothermic Co | Method and apparatus for recovery of minerals from sub-surface formations using electricity |
US3702886A (en) | 1969-10-10 | 1972-11-14 | Mobil Oil Corp | Crystalline zeolite zsm-5 and method of preparing the same |
US3679264A (en) | 1969-10-22 | 1972-07-25 | Allen T Van Huisen | Geothermal in situ mining and retorting system |
US3661423A (en) | 1970-02-12 | 1972-05-09 | Occidental Petroleum Corp | In situ process for recovery of carbonaceous materials from subterranean deposits |
US3943160A (en) | 1970-03-09 | 1976-03-09 | Shell Oil Company | Heat-stable calcium-compatible waterflood surfactant |
US3858397A (en) | 1970-03-19 | 1975-01-07 | Int Salt Co | Carrying out heat-promotable chemical reactions in sodium chloride formation cavern |
US3676078A (en) | 1970-03-19 | 1972-07-11 | Int Salt Co | Salt solution mining and geothermal heat utilization system |
US3709979A (en) | 1970-04-23 | 1973-01-09 | Mobil Oil Corp | Crystalline zeolite zsm-11 |
US3647358A (en) | 1970-07-23 | 1972-03-07 | Anti Pollution Systems | Method of catalytically inducing oxidation of carbonaceous materials by the use of molten salts |
US3759574A (en) | 1970-09-24 | 1973-09-18 | Shell Oil Co | Method of producing hydrocarbons from an oil shale formation |
US3661424A (en) | 1970-10-20 | 1972-05-09 | Int Salt Co | Geothermal energy recovery from deep caverns in salt deposits by means of air flow |
US4305463A (en) | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3765477A (en) | 1970-12-21 | 1973-10-16 | Huisen A Van | Geothermal-nuclear energy release and recovery system |
US3680633A (en) | 1970-12-28 | 1972-08-01 | Sun Oil Co Delaware | Situ combustion initiation process |
US3675715A (en) | 1970-12-30 | 1972-07-11 | Forrester A Clark | Processes for secondarily recovering oil |
US3770614A (en) | 1971-01-15 | 1973-11-06 | Mobil Oil Corp | Split feed reforming and n-paraffin elimination from low boiling reformate |
US3832449A (en) | 1971-03-18 | 1974-08-27 | Mobil Oil Corp | Crystalline zeolite zsm{14 12 |
US3700280A (en) | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
US3770398A (en) | 1971-09-17 | 1973-11-06 | Cities Service Oil Co | In situ coal gasification process |
US3812913A (en) * | 1971-10-18 | 1974-05-28 | Sun Oil Co | Method of formation consolidation |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3766982A (en) | 1971-12-27 | 1973-10-23 | Justheim Petrol Co | Method for the in-situ treatment of hydrocarbonaceous materials |
US3759328A (en) | 1972-05-11 | 1973-09-18 | Shell Oil Co | Laterally expanding oil shale permeabilization |
US3794116A (en) | 1972-05-30 | 1974-02-26 | Atomic Energy Commission | Situ coal bed gasification |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3779602A (en) | 1972-08-07 | 1973-12-18 | Shell Oil Co | Process for solution mining nahcolite |
US3809159A (en) | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US3804172A (en) | 1972-10-11 | 1974-04-16 | Shell Oil Co | Method for the recovery of oil from oil shale |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US3804169A (en) | 1973-02-07 | 1974-04-16 | Shell Oil Co | Spreading-fluid recovery of subterranean oil |
US3947683A (en) | 1973-06-05 | 1976-03-30 | Texaco Inc. | Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones |
US4076761A (en) | 1973-08-09 | 1978-02-28 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US4016245A (en) | 1973-09-04 | 1977-04-05 | Mobil Oil Corporation | Crystalline zeolite and method of preparing same |
US3881551A (en) | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US3853185A (en) | 1973-11-30 | 1974-12-10 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3907045A (en) | 1973-11-30 | 1975-09-23 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3882941A (en) | 1973-12-17 | 1975-05-13 | Cities Service Res & Dev Co | In situ production of bitumen from oil shale |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US3922148A (en) | 1974-05-16 | 1975-11-25 | Texaco Development Corp | Production of methane-rich gas |
US3948755A (en) | 1974-05-31 | 1976-04-06 | Standard Oil Company | Process for recovering and upgrading hydrocarbons from oil shale and tar sands |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US3948758A (en) | 1974-06-17 | 1976-04-06 | Mobil Oil Corporation | Production of alkyl aromatic hydrocarbons |
US4006778A (en) | 1974-06-21 | 1977-02-08 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbon from tar sands |
US4026357A (en) | 1974-06-26 | 1977-05-31 | Texaco Exploration Canada Ltd. | In situ gasification of solid hydrocarbon materials in a subterranean formation |
US4005752A (en) | 1974-07-26 | 1977-02-01 | Occidental Petroleum Corporation | Method of igniting in situ oil shale retort with fuel rich flue gas |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US3941421A (en) | 1974-08-13 | 1976-03-02 | Occidental Petroleum Corporation | Apparatus for obtaining uniform gas flow through an in situ oil shale retort |
GB1454324A (en) | 1974-08-14 | 1976-11-03 | Iniex | Recovering combustible gases from underground deposits of coal or bituminous shale |
US3948319A (en) | 1974-10-16 | 1976-04-06 | Atlantic Richfield Company | Method and apparatus for producing fluid by varying current flow through subterranean source formation |
AR205595A1 (en) | 1974-11-06 | 1976-05-14 | Haldor Topsoe As | PROCEDURE FOR PREPARING GASES RICH IN METHANE |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US4138442A (en) | 1974-12-05 | 1979-02-06 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3952802A (en) | 1974-12-11 | 1976-04-27 | In Situ Technology, Inc. | Method and apparatus for in situ gasification of coal and the commercial products derived therefrom |
US3986556A (en) | 1975-01-06 | 1976-10-19 | Haynes Charles A | Hydrocarbon recovery from earth strata |
US3958636A (en) | 1975-01-23 | 1976-05-25 | Atlantic Richfield Company | Production of bitumen from a tar sand formation |
US4042026A (en) | 1975-02-08 | 1977-08-16 | Deutsche Texaco Aktiengesellschaft | Method for initiating an in-situ recovery process by the introduction of oxygen |
US3972372A (en) | 1975-03-10 | 1976-08-03 | Fisher Sidney T | Exraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4096163A (en) | 1975-04-08 | 1978-06-20 | Mobil Oil Corporation | Conversion of synthesis gas to hydrocarbon mixtures |
US3924680A (en) | 1975-04-23 | 1975-12-09 | In Situ Technology Inc | Method of pyrolysis of coal in situ |
US3973628A (en) | 1975-04-30 | 1976-08-10 | New Mexico Tech Research Foundation | In situ solution mining of coal |
US4016239A (en) * | 1975-05-22 | 1977-04-05 | Union Oil Company Of California | Recarbonation of spent oil shale |
US3987851A (en) | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US3986557A (en) | 1975-06-06 | 1976-10-19 | Atlantic Richfield Company | Production of bitumen from tar sands |
CA1064890A (en) | 1975-06-10 | 1979-10-23 | Mae K. Rubin | Crystalline zeolite, synthesis and use thereof |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US3993132A (en) | 1975-06-18 | 1976-11-23 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbons from tar sands |
US4069868A (en) | 1975-07-14 | 1978-01-24 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US3954140A (en) | 1975-08-13 | 1976-05-04 | Hendrick Robert P | Recovery of hydrocarbons by in situ thermal extraction |
US3986349A (en) | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US3994340A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Method of recovering viscous petroleum from tar sand |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US3994341A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Recovering viscous petroleum from thick tar sand |
US4087130A (en) | 1975-11-03 | 1978-05-02 | Occidental Petroleum Corporation | Process for the gasification of coal in situ |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4078608A (en) | 1975-11-26 | 1978-03-14 | Texaco Inc. | Thermal oil recovery method |
US4018280A (en) | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US3992474A (en) | 1975-12-15 | 1976-11-16 | Uop Inc. | Motor fuel production with fluid catalytic cracking of high-boiling alkylate |
US4019575A (en) | 1975-12-22 | 1977-04-26 | Chevron Research Company | System for recovering viscous petroleum from thick tar sand |
US3999607A (en) | 1976-01-22 | 1976-12-28 | Exxon Research And Engineering Company | Recovery of hydrocarbons from coal |
US4031956A (en) | 1976-02-12 | 1977-06-28 | In Situ Technology, Inc. | Method of recovering energy from subsurface petroleum reservoirs |
US4008762A (en) | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4010800A (en) | 1976-03-08 | 1977-03-08 | In Situ Technology, Inc. | Producing thin seams of coal in situ |
US4048637A (en) | 1976-03-23 | 1977-09-13 | Westinghouse Electric Corporation | Radar system for detecting slowly moving targets |
DE2615874B2 (en) | 1976-04-10 | 1978-10-19 | Deutsche Texaco Ag, 2000 Hamburg | Application of a method for extracting crude oil and bitumen from underground deposits by means of a combustion front in deposits of any content of intermediate hydrocarbons in the crude oil or bitumen |
GB1544245A (en) | 1976-05-21 | 1979-04-19 | British Gas Corp | Production of substitute natural gas |
US4049053A (en) | 1976-06-10 | 1977-09-20 | Fisher Sidney T | Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating |
US4193451A (en) | 1976-06-17 | 1980-03-18 | The Badger Company, Inc. | Method for production of organic products from kerogen |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4067390A (en) | 1976-07-06 | 1978-01-10 | Technology Application Services Corporation | Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc |
US4057293A (en) | 1976-07-12 | 1977-11-08 | Garrett Donald E | Process for in situ conversion of coal or the like into oil and gas |
US4043393A (en) | 1976-07-29 | 1977-08-23 | Fisher Sidney T | Extraction from underground coal deposits |
US4091869A (en) | 1976-09-07 | 1978-05-30 | Exxon Production Research Company | In situ process for recovery of carbonaceous materials from subterranean deposits |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4059308A (en) | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4140184A (en) | 1976-11-15 | 1979-02-20 | Bechtold Ira C | Method for producing hydrocarbons from igneous sources |
US4077471A (en) | 1976-12-01 | 1978-03-07 | Texaco Inc. | Surfactant oil recovery process usable in high temperature, high salinity formations |
US4064943A (en) * | 1976-12-06 | 1977-12-27 | Shell Oil Co | Plugging permeable earth formation with wax |
US4089374A (en) | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4084637A (en) | 1976-12-16 | 1978-04-18 | Petro Canada Exploration Inc. | Method of producing viscous materials from subterranean formations |
US4093026A (en) | 1977-01-17 | 1978-06-06 | Occidental Oil Shale, Inc. | Removal of sulfur dioxide from process gas using treated oil shale and water |
US4277416A (en) | 1977-02-17 | 1981-07-07 | Aminoil, Usa, Inc. | Process for producing methanol |
US4085803A (en) | 1977-03-14 | 1978-04-25 | Exxon Production Research Company | Method for oil recovery using a horizontal well with indirect heating |
US4137720A (en) | 1977-03-17 | 1979-02-06 | Rex Robert W | Use of calcium halide-water as a heat extraction medium for energy recovery from hot rock systems |
US4099567A (en) | 1977-05-27 | 1978-07-11 | In Situ Technology, Inc. | Generating medium BTU gas from coal in situ |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4140180A (en) | 1977-08-29 | 1979-02-20 | Iit Research Institute | Method for in situ heat processing of hydrocarbonaceous formations |
US4144935A (en) | 1977-08-29 | 1979-03-20 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
NL181941C (en) | 1977-09-16 | 1987-12-01 | Ir Arnold Willem Josephus Grup | METHOD FOR UNDERGROUND GASULATION OF COAL OR BROWN. |
US4125159A (en) | 1977-10-17 | 1978-11-14 | Vann Roy Randell | Method and apparatus for isolating and treating subsurface stratas |
SU915451A1 (en) | 1977-10-21 | 1988-08-23 | Vnii Ispolzovania | Method of underground gasification of fuel |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4114688A (en) | 1977-12-05 | 1978-09-19 | In Situ Technology Inc. | Minimizing environmental effects in production and use of coal |
US4161103A (en) * | 1977-12-15 | 1979-07-17 | United Technologies Corporation | Centrifugal combustor with fluidized bed and construction thereof |
US4158467A (en) | 1977-12-30 | 1979-06-19 | Gulf Oil Corporation | Process for recovering shale oil |
US4148359A (en) | 1978-01-30 | 1979-04-10 | Shell Oil Company | Pressure-balanced oil recovery process for water productive oil shale |
DE2812490A1 (en) | 1978-03-22 | 1979-09-27 | Texaco Ag | PROCEDURE FOR DETERMINING THE SPATIAL EXTENSION OF SUBSEQUENT REACTIONS |
US4197911A (en) | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4186801A (en) | 1978-12-18 | 1980-02-05 | Gulf Research And Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4185692A (en) | 1978-07-14 | 1980-01-29 | In Situ Technology, Inc. | Underground linkage of wells for production of coal in situ |
US4184548A (en) | 1978-07-17 | 1980-01-22 | Standard Oil Company (Indiana) | Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort |
US4257650A (en) | 1978-09-07 | 1981-03-24 | Barber Heavy Oil Process, Inc. | Method for recovering subsurface earth substances |
US4183405A (en) | 1978-10-02 | 1980-01-15 | Magnie Robert L | Enhanced recoveries of petroleum and hydrogen from underground reservoirs |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4311340A (en) | 1978-11-27 | 1982-01-19 | Lyons William C | Uranium leeching process and insitu mining |
NL7811732A (en) | 1978-11-30 | 1980-06-03 | Stamicarbon | METHOD FOR CONVERSION OF DIMETHYL ETHER |
US4299086A (en) | 1978-12-07 | 1981-11-10 | Gulf Research & Development Company | Utilization of energy obtained by substoichiometric combustion of low heating value gases |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4265307A (en) | 1978-12-20 | 1981-05-05 | Standard Oil Company | Shale oil recovery |
US4194562A (en) * | 1978-12-21 | 1980-03-25 | Texaco Inc. | Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion |
US4258955A (en) | 1978-12-26 | 1981-03-31 | Mobil Oil Corporation | Process for in-situ leaching of uranium |
US4274487A (en) | 1979-01-11 | 1981-06-23 | Standard Oil Company (Indiana) | Indirect thermal stimulation of production wells |
US4232902A (en) | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4324292A (en) * | 1979-02-21 | 1982-04-13 | University Of Utah | Process for recovering products from oil shale |
US4289354A (en) | 1979-02-23 | 1981-09-15 | Edwin G. Higgins, Jr. | Borehole mining of solid mineral resources |
US4248306A (en) | 1979-04-02 | 1981-02-03 | Huisen Allan T Van | Geothermal petroleum refining |
US4241953A (en) | 1979-04-23 | 1980-12-30 | Freeport Minerals Company | Sulfur mine bleedwater reuse system |
US4282587A (en) | 1979-05-21 | 1981-08-04 | Daniel Silverman | Method for monitoring the recovery of minerals from shallow geological formations |
US4216079A (en) | 1979-07-09 | 1980-08-05 | Cities Service Company | Emulsion breaking with surfactant recovery |
US4290650A (en) | 1979-08-03 | 1981-09-22 | Ppg Industries Canada Ltd. | Subterranean cavity chimney development for connecting solution mined cavities |
SU793026A1 (en) * | 1979-08-10 | 1996-01-27 | Всесоюзный нефтегазовый научно-исследовательский институт | Method of developing oil pool |
US4228854A (en) | 1979-08-13 | 1980-10-21 | Alberta Research Council | Enhanced oil recovery using electrical means |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4327805A (en) | 1979-09-18 | 1982-05-04 | Carmel Energy, Inc. | Method for producing viscous hydrocarbons |
US4549396A (en) | 1979-10-01 | 1985-10-29 | Mobil Oil Corporation | Conversion of coal to electricity |
US4368114A (en) | 1979-12-05 | 1983-01-11 | Mobil Oil Corporation | Octane and total yield improvement in catalytic cracking |
US4250230A (en) | 1979-12-10 | 1981-02-10 | In Situ Technology, Inc. | Generating electricity from coal in situ |
US4250962A (en) | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4398151A (en) | 1980-01-25 | 1983-08-09 | Shell Oil Company | Method for correcting an electrical log for the presence of shale in a formation |
US4359687A (en) | 1980-01-25 | 1982-11-16 | Shell Oil Company | Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain |
USRE30738E (en) * | 1980-02-06 | 1981-09-08 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4303126A (en) | 1980-02-27 | 1981-12-01 | Chevron Research Company | Arrangement of wells for producing subsurface viscous petroleum |
US4319635A (en) | 1980-02-29 | 1982-03-16 | P. H. Jones Hydrogeology, Inc. | Method for enhanced oil recovery by geopressured waterflood |
US4445574A (en) | 1980-03-24 | 1984-05-01 | Geo Vann, Inc. | Continuous borehole formed horizontally through a hydrocarbon producing formation |
US4417782A (en) | 1980-03-31 | 1983-11-29 | Raychem Corporation | Fiber optic temperature sensing |
JPS56139392A (en) * | 1980-04-01 | 1981-10-30 | Hitachi Shipbuilding Eng Co | Recovery of low level crude oil harnessing solar heat |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
US4273188A (en) | 1980-04-30 | 1981-06-16 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4306621A (en) | 1980-05-23 | 1981-12-22 | Boyd R Michael | Method for in situ coal gasification operations |
US4409090A (en) | 1980-06-02 | 1983-10-11 | University Of Utah | Process for recovering products from tar sand |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4381641A (en) | 1980-06-23 | 1983-05-03 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4310440A (en) | 1980-07-07 | 1982-01-12 | Union Carbide Corporation | Crystalline metallophosphate compositions |
US4401099A (en) | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4299285A (en) | 1980-07-21 | 1981-11-10 | Gulf Research & Development Company | Underground gasification of bituminous coal |
US4396062A (en) | 1980-10-06 | 1983-08-02 | University Of Utah Research Foundation | Apparatus and method for time-domain tracking of high-speed chemical reactions |
US4353418A (en) | 1980-10-20 | 1982-10-12 | Standard Oil Company (Indiana) | In situ retorting of oil shale |
US4384613A (en) * | 1980-10-24 | 1983-05-24 | Terra Tek, Inc. | Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases |
US4366864A (en) | 1980-11-24 | 1983-01-04 | Exxon Research And Engineering Co. | Method for recovery of hydrocarbons from oil-bearing limestone or dolomite |
US4401163A (en) | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4423311A (en) | 1981-01-19 | 1983-12-27 | Varney Sr Paul | Electric heating apparatus for de-icing pipes |
DE3141646C2 (en) * | 1981-02-09 | 1994-04-21 | Hydrocarbon Research Inc | Process for processing heavy oil |
US4366668A (en) | 1981-02-25 | 1983-01-04 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4363361A (en) | 1981-03-19 | 1982-12-14 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4390067A (en) | 1981-04-06 | 1983-06-28 | Exxon Production Research Co. | Method of treating reservoirs containing very viscous crude oil or bitumen |
US4399866A (en) | 1981-04-10 | 1983-08-23 | Atlantic Richfield Company | Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit |
US4444255A (en) | 1981-04-20 | 1984-04-24 | Lloyd Geoffrey | Apparatus and process for the recovery of oil |
US4380930A (en) | 1981-05-01 | 1983-04-26 | Mobil Oil Corporation | System for transmitting ultrasonic energy through core samples |
US4378048A (en) | 1981-05-08 | 1983-03-29 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases using different platinum catalysts |
US4429745A (en) | 1981-05-08 | 1984-02-07 | Mobil Oil Corporation | Oil recovery method |
US4384614A (en) | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US4428700A (en) | 1981-08-03 | 1984-01-31 | E. R. Johnson Associates, Inc. | Method for disposing of waste materials |
US4456065A (en) | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US4344483A (en) | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4452491A (en) | 1981-09-25 | 1984-06-05 | Intercontinental Econergy Associates, Inc. | Recovery of hydrocarbons from deep underground deposits of tar sands |
US4425967A (en) | 1981-10-07 | 1984-01-17 | Standard Oil Company (Indiana) | Ignition procedure and process for in situ retorting of oil shale |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4605680A (en) | 1981-10-13 | 1986-08-12 | Chevron Research Company | Conversion of synthesis gas to diesel fuel and gasoline |
JPS6053159B2 (en) * | 1981-10-20 | 1985-11-22 | 三菱電機株式会社 | Electric heating method for hydrocarbon underground resources |
US4410042A (en) | 1981-11-02 | 1983-10-18 | Mobil Oil Corporation | In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant |
US4444258A (en) * | 1981-11-10 | 1984-04-24 | Nicholas Kalmar | In situ recovery of oil from oil shale |
US4407366A (en) | 1981-12-07 | 1983-10-04 | Union Oil Company Of California | Method for gas capping of idle geothermal steam wells |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
FR2519688A1 (en) | 1982-01-08 | 1983-07-18 | Elf Aquitaine | SEALING SYSTEM FOR DRILLING WELLS IN WHICH CIRCULATES A HOT FLUID |
US4397732A (en) | 1982-02-11 | 1983-08-09 | International Coal Refining Company | Process for coal liquefaction employing selective coal feed |
US4551226A (en) | 1982-02-26 | 1985-11-05 | Chevron Research Company | Heat exchanger antifoulant |
US4441985A (en) * | 1982-03-08 | 1984-04-10 | Exxon Research And Engineering Co. | Process for supplying the heat requirement of a retort for recovering oil from solids by partial indirect heating of in situ combustion gases, and combustion air, without the use of supplemental fuel |
GB2117030B (en) | 1982-03-17 | 1985-09-11 | Cameron Iron Works Inc | Method and apparatus for remote installations of dual tubing strings in a subsea well |
US4530401A (en) | 1982-04-05 | 1985-07-23 | Mobil Oil Corporation | Method for maximum in-situ visbreaking of heavy oil |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4537252A (en) | 1982-04-23 | 1985-08-27 | Standard Oil Company (Indiana) | Method of underground conversion of coal |
US4491179A (en) | 1982-04-26 | 1985-01-01 | Pirson Sylvain J | Method for oil recovery by in situ exfoliation drive |
US4455215A (en) | 1982-04-29 | 1984-06-19 | Jarrott David M | Process for the geoconversion of coal into oil |
US4412585A (en) | 1982-05-03 | 1983-11-01 | Cities Service Company | Electrothermal process for recovering hydrocarbons |
US4524826A (en) | 1982-06-14 | 1985-06-25 | Texaco Inc. | Method of heating an oil shale formation |
US4457374A (en) | 1982-06-29 | 1984-07-03 | Standard Oil Company | Transient response process for detecting in situ retorting conditions |
US4442896A (en) | 1982-07-21 | 1984-04-17 | Reale Lucio V | Treatment of underground beds |
US4440871A (en) | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
US4407973A (en) | 1982-07-28 | 1983-10-04 | The M. W. Kellogg Company | Methanol from coal and natural gas |
US4479541A (en) | 1982-08-23 | 1984-10-30 | Wang Fun Den | Method and apparatus for recovery of oil, gas and mineral deposits by panel opening |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4458767A (en) | 1982-09-28 | 1984-07-10 | Mobil Oil Corporation | Method for directionally drilling a first well to intersect a second well |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4927857A (en) | 1982-09-30 | 1990-05-22 | Engelhard Corporation | Method of methanol production |
US4695713A (en) | 1982-09-30 | 1987-09-22 | Metcal, Inc. | Autoregulating, electrically shielded heater |
US4498531A (en) | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4485869A (en) | 1982-10-22 | 1984-12-04 | Iit Research Institute | Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ |
ATE21340T1 (en) | 1982-11-22 | 1986-08-15 | Shell Int Research | PROCESS FOR THE MANUFACTURE OF A FISCHER-TROPSCH CATALYST, THE CATALYST MANUFACTURED IN THIS WAY AND ITS USE IN THE MANUFACTURE OF HYDROCARBONS. |
US4474238A (en) * | 1982-11-30 | 1984-10-02 | Phillips Petroleum Company | Method and apparatus for treatment of subsurface formations |
US4498535A (en) | 1982-11-30 | 1985-02-12 | Iit Research Institute | Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US4483398A (en) * | 1983-01-14 | 1984-11-20 | Exxon Production Research Co. | In-situ retorting of oil shale |
US4501326A (en) | 1983-01-17 | 1985-02-26 | Gulf Canada Limited | In-situ recovery of viscous hydrocarbonaceous crude oil |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4640352A (en) | 1983-03-21 | 1987-02-03 | Shell Oil Company | In-situ steam drive oil recovery process |
US4500651A (en) | 1983-03-31 | 1985-02-19 | Union Carbide Corporation | Titanium-containing molecular sieves |
US4458757A (en) | 1983-04-25 | 1984-07-10 | Exxon Research And Engineering Co. | In situ shale-oil recovery process |
US4545435A (en) * | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
US4524827A (en) | 1983-04-29 | 1985-06-25 | Iit Research Institute | Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations |
US4518548A (en) | 1983-05-02 | 1985-05-21 | Sulcon, Inc. | Method of overlaying sulphur concrete on horizontal and vertical surfaces |
US4794226A (en) | 1983-05-26 | 1988-12-27 | Metcal, Inc. | Self-regulating porous heater device |
US5073625A (en) | 1983-05-26 | 1991-12-17 | Metcal, Inc. | Self-regulating porous heating device |
DE3319732A1 (en) | 1983-05-31 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | MEDIUM-POWER PLANT WITH INTEGRATED COAL GASIFICATION SYSTEM FOR GENERATING ELECTRICITY AND METHANOL |
US4658215A (en) | 1983-06-20 | 1987-04-14 | Shell Oil Company | Method for induced polarization logging |
US4583046A (en) | 1983-06-20 | 1986-04-15 | Shell Oil Company | Apparatus for focused electrode induced polarization logging |
US4717814A (en) | 1983-06-27 | 1988-01-05 | Metcal, Inc. | Slotted autoregulating heater |
US5209987A (en) | 1983-07-08 | 1993-05-11 | Raychem Limited | Wire and cable |
US4985313A (en) | 1985-01-14 | 1991-01-15 | Raychem Limited | Wire and cable |
US4598392A (en) | 1983-07-26 | 1986-07-01 | Mobil Oil Corporation | Vibratory signal sweep seismic prospecting method and apparatus |
US4501445A (en) | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US4538682A (en) | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4698149A (en) | 1983-11-07 | 1987-10-06 | Mobil Oil Corporation | Enhanced recovery of hydrocarbonaceous fluids oil shale |
US4573530A (en) | 1983-11-07 | 1986-03-04 | Mobil Oil Corporation | In-situ gasification of tar sands utilizing a combustible gas |
US4489782A (en) | 1983-12-12 | 1984-12-25 | Atlantic Richfield Company | Viscous oil production using electrical current heating and lateral drain holes |
US4598772A (en) | 1983-12-28 | 1986-07-08 | Mobil Oil Corporation | Method for operating a production well in an oxygen driven in-situ combustion oil recovery process |
US4571491A (en) | 1983-12-29 | 1986-02-18 | Shell Oil Company | Method of imaging the atomic number of a sample |
US4613754A (en) | 1983-12-29 | 1986-09-23 | Shell Oil Company | Tomographic calibration apparatus |
US4542648A (en) | 1983-12-29 | 1985-09-24 | Shell Oil Company | Method of correlating a core sample with its original position in a borehole |
US4540882A (en) | 1983-12-29 | 1985-09-10 | Shell Oil Company | Method of determining drilling fluid invasion |
US4583242A (en) | 1983-12-29 | 1986-04-15 | Shell Oil Company | Apparatus for positioning a sample in a computerized axial tomographic scanner |
US4635197A (en) | 1983-12-29 | 1987-01-06 | Shell Oil Company | High resolution tomographic imaging method |
US4662439A (en) | 1984-01-20 | 1987-05-05 | Amoco Corporation | Method of underground conversion of coal |
US4572229A (en) | 1984-02-02 | 1986-02-25 | Thomas D. Mueller | Variable proportioner |
US4623401A (en) | 1984-03-06 | 1986-11-18 | Metcal, Inc. | Heat treatment with an autoregulating heater |
US4644283A (en) | 1984-03-19 | 1987-02-17 | Shell Oil Company | In-situ method for determining pore size distribution, capillary pressure and permeability |
US4637464A (en) | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4552214A (en) | 1984-03-22 | 1985-11-12 | Standard Oil Company (Indiana) | Pulsed in situ retorting in an array of oil shale retorts |
US4570715A (en) | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577690A (en) | 1984-04-18 | 1986-03-25 | Mobil Oil Corporation | Method of using seismic data to monitor firefloods |
US4592423A (en) | 1984-05-14 | 1986-06-03 | Texaco Inc. | Hydrocarbon stratum retorting means and method |
US4597441A (en) | 1984-05-25 | 1986-07-01 | World Energy Systems, Inc. | Recovery of oil by in situ hydrogenation |
US4620592A (en) | 1984-06-11 | 1986-11-04 | Atlantic Richfield Company | Progressive sequence for viscous oil recovery |
US4663711A (en) | 1984-06-22 | 1987-05-05 | Shell Oil Company | Method of analyzing fluid saturation using computerized axial tomography |
US4577503A (en) | 1984-09-04 | 1986-03-25 | International Business Machines Corporation | Method and device for detecting a specific acoustic spectral feature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
US4576231A (en) | 1984-09-13 | 1986-03-18 | Texaco Inc. | Method and apparatus for combating encroachment by in situ treated formations |
US4597444A (en) | 1984-09-21 | 1986-07-01 | Atlantic Richfield Company | Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation |
US4691771A (en) | 1984-09-25 | 1987-09-08 | Worldenergy Systems, Inc. | Recovery of oil by in-situ combustion followed by in-situ hydrogenation |
US4616705A (en) | 1984-10-05 | 1986-10-14 | Shell Oil Company | Mini-well temperature profiling process |
US4598770A (en) | 1984-10-25 | 1986-07-08 | Mobil Oil Corporation | Thermal recovery method for viscous oil |
US4572299A (en) | 1984-10-30 | 1986-02-25 | Shell Oil Company | Heater cable installation |
US4669542A (en) | 1984-11-21 | 1987-06-02 | Mobil Oil Corporation | Simultaneous recovery of crude from multiple zones in a reservoir |
US4634187A (en) * | 1984-11-21 | 1987-01-06 | Isl Ventures, Inc. | Method of in-situ leaching of ores |
US4585066A (en) | 1984-11-30 | 1986-04-29 | Shell Oil Company | Well treating process for installing a cable bundle containing strands of changing diameter |
US4704514A (en) | 1985-01-11 | 1987-11-03 | Egmond Cor F Van | Heating rate variant elongated electrical resistance heater |
US4645906A (en) | 1985-03-04 | 1987-02-24 | Thermon Manufacturing Company | Reduced resistance skin effect heat generating system |
US4643256A (en) | 1985-03-18 | 1987-02-17 | Shell Oil Company | Steam-foaming surfactant mixtures which are tolerant of divalent ions |
US4785163A (en) | 1985-03-26 | 1988-11-15 | Raychem Corporation | Method for monitoring a heater |
US4698583A (en) | 1985-03-26 | 1987-10-06 | Raychem Corporation | Method of monitoring a heater for faults |
US4670634A (en) * | 1985-04-05 | 1987-06-02 | Iit Research Institute | In situ decontamination of spills and landfills by radio frequency heating |
FI861646A (en) | 1985-04-19 | 1986-10-20 | Raychem Gmbh | VAERMNINGSANORDNING. |
US4671102A (en) | 1985-06-18 | 1987-06-09 | Shell Oil Company | Method and apparatus for determining distribution of fluids |
US4626665A (en) | 1985-06-24 | 1986-12-02 | Shell Oil Company | Metal oversheathed electrical resistance heater |
US4623444A (en) | 1985-06-27 | 1986-11-18 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4605489A (en) | 1985-06-27 | 1986-08-12 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4662438A (en) | 1985-07-19 | 1987-05-05 | Uentech Corporation | Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole |
US4728892A (en) | 1985-08-13 | 1988-03-01 | Shell Oil Company | NMR imaging of materials |
US4719423A (en) * | 1985-08-13 | 1988-01-12 | Shell Oil Company | NMR imaging of materials for transport properties |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
US4662443A (en) | 1985-12-05 | 1987-05-05 | Amoco Corporation | Combination air-blown and oxygen-blown underground coal gasification process |
US4686029A (en) | 1985-12-06 | 1987-08-11 | Union Carbide Corporation | Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves |
US4849611A (en) | 1985-12-16 | 1989-07-18 | Raychem Corporation | Self-regulating heater employing reactive components |
US4730162A (en) | 1985-12-31 | 1988-03-08 | Shell Oil Company | Time-domain induced polarization logging method and apparatus with gated amplification level |
US4706751A (en) | 1986-01-31 | 1987-11-17 | S-Cal Research Corp. | Heavy oil recovery process |
US4694907A (en) | 1986-02-21 | 1987-09-22 | Carbotek, Inc. | Thermally-enhanced oil recovery method and apparatus |
DE3609253A1 (en) * | 1986-03-19 | 1987-09-24 | Interatom | METHOD FOR TERTIAL OIL EXTRACTION FROM DEEP DRILL HOLES WITH RECOVERY OF THE LEAKING PETROLEUM GAS |
US4640353A (en) | 1986-03-21 | 1987-02-03 | Atlantic Richfield Company | Electrode well and method of completion |
US4734115A (en) | 1986-03-24 | 1988-03-29 | Air Products And Chemicals, Inc. | Low pressure process for C3+ liquids recovery from process product gas |
US4651825A (en) * | 1986-05-09 | 1987-03-24 | Atlantic Richfield Company | Enhanced well production |
US4814587A (en) | 1986-06-10 | 1989-03-21 | Metcal, Inc. | High power self-regulating heater |
US4682652A (en) | 1986-06-30 | 1987-07-28 | Texaco Inc. | Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells |
US4893504A (en) | 1986-07-02 | 1990-01-16 | Shell Oil Company | Method for determining capillary pressure and relative permeability by imaging |
US4769602A (en) | 1986-07-02 | 1988-09-06 | Shell Oil Company | Determining multiphase saturations by NMR imaging of multiple nuclides |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4818370A (en) | 1986-07-23 | 1989-04-04 | Cities Service Oil And Gas Corporation | Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions |
US4772634A (en) | 1986-07-31 | 1988-09-20 | Energy Research Corporation | Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer |
US4744245A (en) | 1986-08-12 | 1988-05-17 | Atlantic Richfield Company | Acoustic measurements in rock formations for determining fracture orientation |
US4696345A (en) | 1986-08-21 | 1987-09-29 | Chevron Research Company | Hasdrive with multiple offset producers |
US5085055A (en) * | 1987-06-15 | 1992-02-04 | The University Of Alabama/Research Foundation | Reversible mechanochemical engines comprised of bioelastomers capable of modulable inverse temperature transitions for the interconversion of chemical and mechanical work |
US4769606A (en) | 1986-09-30 | 1988-09-06 | Shell Oil Company | Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations |
US5316664A (en) | 1986-11-24 | 1994-05-31 | Canadian Occidental Petroleum, Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US5340467A (en) | 1986-11-24 | 1994-08-23 | Canadian Occidental Petroleum Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US4983319A (en) | 1986-11-24 | 1991-01-08 | Canadian Occidental Petroleum Ltd. | Preparation of low-viscosity improved stable crude oil transport emulsions |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4766958A (en) | 1987-01-12 | 1988-08-30 | Mobil Oil Corporation | Method of recovering viscous oil from reservoirs with multiple horizontal zones |
US4756367A (en) | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
US4817711A (en) | 1987-05-27 | 1989-04-04 | Jeambey Calhoun G | System for recovery of petroleum from petroleum impregnated media |
US4818371A (en) | 1987-06-05 | 1989-04-04 | Resource Technology Associates | Viscosity reduction by direct oxidative heating |
US4787452A (en) | 1987-06-08 | 1988-11-29 | Mobil Oil Corporation | Disposal of produced formation fines during oil recovery |
US4821798A (en) | 1987-06-09 | 1989-04-18 | Ors Development Corporation | Heating system for rathole oil well |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4827761A (en) | 1987-06-25 | 1989-05-09 | Shell Oil Company | Sample holder |
US4884455A (en) | 1987-06-25 | 1989-12-05 | Shell Oil Company | Method for analysis of failure of material employing imaging |
US4856341A (en) | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
US4776638A (en) | 1987-07-13 | 1988-10-11 | University Of Kentucky Research Foundation | Method and apparatus for conversion of coal in situ |
SU1483108A1 (en) * | 1987-07-20 | 1989-05-30 | Ивано-Франковский Институт Нефти И Газа | Thermal hoist |
US4848924A (en) | 1987-08-19 | 1989-07-18 | The Babcock & Wilcox Company | Acoustic pyrometer |
US4828031A (en) | 1987-10-13 | 1989-05-09 | Chevron Research Company | In situ chemical stimulation of diatomite formations |
US4762425A (en) | 1987-10-15 | 1988-08-09 | Parthasarathy Shakkottai | System for temperature profile measurement in large furnances and kilns and method therefor |
US5306640A (en) | 1987-10-28 | 1994-04-26 | Shell Oil Company | Method for determining preselected properties of a crude oil |
US4987368A (en) | 1987-11-05 | 1991-01-22 | Shell Oil Company | Nuclear magnetism logging tool using high-temperature superconducting squid detectors |
US4842448A (en) | 1987-11-12 | 1989-06-27 | Drexel University | Method of removing contaminants from contaminated soil in situ |
US4808925A (en) | 1987-11-19 | 1989-02-28 | Halliburton Company | Three magnet casing collar locator |
US4900196A (en) * | 1987-11-20 | 1990-02-13 | Iit Research Institute | Confinement in porous material by driving out water and substituting sealant |
SU1613589A1 (en) * | 1987-12-30 | 1990-12-15 | Институт Геологии И Геохимии Горючих Ископаемых Ан Усср | Method of thermal gas-lift pumping of viscous oil from well |
US4823890A (en) | 1988-02-23 | 1989-04-25 | Longyear Company | Reverse circulation bit apparatus |
US4866983A (en) | 1988-04-14 | 1989-09-19 | Shell Oil Company | Analytical methods and apparatus for measuring the oil content of sponge core |
SU1615340A1 (en) * | 1988-05-16 | 1990-12-23 | Казахский государственный университет им.С.М.Кирова | Method of developing oilfield by inter-formation combustion |
US4885080A (en) | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US5046560A (en) | 1988-06-10 | 1991-09-10 | Exxon Production Research Company | Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents |
US4884635A (en) | 1988-08-24 | 1989-12-05 | Texaco Canada Resources | Enhanced oil recovery with a mixture of water and aromatic hydrocarbons |
US4840720A (en) | 1988-09-02 | 1989-06-20 | Betz Laboratories, Inc. | Process for minimizing fouling of processing equipment |
US4842070A (en) * | 1988-09-15 | 1989-06-27 | Amoco Corporation | Procedure for improving reservoir sweep efficiency using paraffinic or asphaltic hydrocarbons |
US4928765A (en) | 1988-09-27 | 1990-05-29 | Ramex Syn-Fuels International | Method and apparatus for shale gas recovery |
US4856587A (en) | 1988-10-27 | 1989-08-15 | Nielson Jay P | Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix |
US5064006A (en) | 1988-10-28 | 1991-11-12 | Magrange, Inc | Downhole combination tool |
US4848460A (en) | 1988-11-04 | 1989-07-18 | Western Research Institute | Contained recovery of oily waste |
US5065501A (en) | 1988-11-29 | 1991-11-19 | Amp Incorporated | Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4940095A (en) | 1989-01-27 | 1990-07-10 | Dowell Schlumberger Incorporated | Deployment/retrieval method and apparatus for well tools used with coiled tubing |
US5103920A (en) | 1989-03-01 | 1992-04-14 | Patton Consulting Inc. | Surveying system and method for locating target subterranean bodies |
CA2015318C (en) | 1990-04-24 | 1994-02-08 | Jack E. Bridges | Power sources for downhole electrical heating |
US4895206A (en) * | 1989-03-16 | 1990-01-23 | Price Ernest H | Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes |
US4913065A (en) | 1989-03-27 | 1990-04-03 | Indugas, Inc. | In situ thermal waste disposal system |
US5150118A (en) | 1989-05-08 | 1992-09-22 | Hewlett-Packard Company | Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions |
DE3918265A1 (en) | 1989-06-05 | 1991-01-03 | Henkel Kgaa | PROCESS FOR THE PREPARATION OF ETHANE SULPHONATE BASE TENSID MIXTURES AND THEIR USE |
US5059303A (en) | 1989-06-16 | 1991-10-22 | Amoco Corporation | Oil stabilization |
DE3922612C2 (en) * | 1989-07-10 | 1998-07-02 | Krupp Koppers Gmbh | Process for the production of methanol synthesis gas |
US4982786A (en) | 1989-07-14 | 1991-01-08 | Mobil Oil Corporation | Use of CO2 /steam to enhance floods in horizontal wellbores |
US5050386A (en) | 1989-08-16 | 1991-09-24 | Rkk, Limited | Method and apparatus for containment of hazardous material migration in the earth |
US5097903A (en) | 1989-09-22 | 1992-03-24 | Jack C. Sloan | Method for recovering intractable petroleum from subterranean formations |
US5305239A (en) | 1989-10-04 | 1994-04-19 | The Texas A&M University System | Ultrasonic non-destructive evaluation of thin specimens |
US4926941A (en) | 1989-10-10 | 1990-05-22 | Shell Oil Company | Method of producing tar sand deposits containing conductive layers |
US4984594A (en) | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US5656239A (en) | 1989-10-27 | 1997-08-12 | Shell Oil Company | Method for recovering contaminants from soil utilizing electrical heating |
US5020596A (en) | 1990-01-24 | 1991-06-04 | Indugas, Inc. | Enhanced oil recovery system with a radiant tube heater |
US5082055A (en) | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
CA2032131C (en) * | 1990-02-05 | 2000-02-01 | Joseph Madison Nelson | In situ soil decontamination method and apparatus |
US5011329A (en) | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
CA2009782A1 (en) | 1990-02-12 | 1991-08-12 | Anoosh I. Kiamanesh | In-situ tuned microwave oil extraction process |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
US5027896A (en) | 1990-03-21 | 1991-07-02 | Anderson Leonard M | Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry |
GB9007147D0 (en) | 1990-03-30 | 1990-05-30 | Framo Dev Ltd | Thermal mineral extraction system |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5126037A (en) | 1990-05-04 | 1992-06-30 | Union Oil Company Of California | Geopreater heating method and apparatus |
US5050601A (en) | 1990-05-29 | 1991-09-24 | Joel Kupersmith | Cardiac defibrillator electrode arrangement |
US5032042A (en) | 1990-06-26 | 1991-07-16 | New Jersey Institute Of Technology | Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil |
US5201219A (en) | 1990-06-29 | 1993-04-13 | Amoco Corporation | Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core |
US5054551A (en) | 1990-08-03 | 1991-10-08 | Chevron Research And Technology Company | In-situ heated annulus refining process |
US5060726A (en) | 1990-08-23 | 1991-10-29 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5046559A (en) | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
BR9004240A (en) | 1990-08-28 | 1992-03-24 | Petroleo Brasileiro Sa | ELECTRIC PIPE HEATING PROCESS |
US5085276A (en) | 1990-08-29 | 1992-02-04 | Chevron Research And Technology Company | Production of oil from low permeability formations by sequential steam fracturing |
US5207273A (en) | 1990-09-17 | 1993-05-04 | Production Technologies International Inc. | Method and apparatus for pumping wells |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
JPH04272680A (en) | 1990-09-20 | 1992-09-29 | Thermon Mfg Co | Switch-controlled-zone type heating cable and assembling method thereof |
US5182427A (en) | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
US5400430A (en) | 1990-10-01 | 1995-03-21 | Nenniger; John E. | Method for injection well stimulation |
US5517593A (en) | 1990-10-01 | 1996-05-14 | John Nenniger | Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint |
FR2669077B2 (en) | 1990-11-09 | 1995-02-03 | Institut Francais Petrole | METHOD AND DEVICE FOR PERFORMING INTERVENTIONS IN WELLS OR HIGH TEMPERATURES. |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5217076A (en) | 1990-12-04 | 1993-06-08 | Masek John A | Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess) |
US5060287A (en) | 1990-12-04 | 1991-10-22 | Shell Oil Company | Heater utilizing copper-nickel alloy core |
US5190405A (en) | 1990-12-14 | 1993-03-02 | Shell Oil Company | Vacuum method for removing soil contaminants utilizing thermal conduction heating |
SU1836876A3 (en) | 1990-12-29 | 1994-12-30 | Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики | Process of development of coal seams and complex of equipment for its implementation |
US5289882A (en) | 1991-02-06 | 1994-03-01 | Boyd B. Moore | Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas |
US5103909A (en) | 1991-02-19 | 1992-04-14 | Shell Oil Company | Profile control in enhanced oil recovery |
US5261490A (en) | 1991-03-18 | 1993-11-16 | Nkk Corporation | Method for dumping and disposing of carbon dioxide gas and apparatus therefor |
US5102551A (en) | 1991-04-29 | 1992-04-07 | Texaco Inc. | Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent |
US5204270A (en) | 1991-04-29 | 1993-04-20 | Lacount Robert B | Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation |
US5093002A (en) | 1991-04-29 | 1992-03-03 | Texaco Inc. | Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent |
US5246273A (en) | 1991-05-13 | 1993-09-21 | Rosar Edward C | Method and apparatus for solution mining |
DK0519573T3 (en) | 1991-06-21 | 1995-07-03 | Shell Int Research | Hydrogenation catalyst and process |
IT1248535B (en) | 1991-06-24 | 1995-01-19 | Cise Spa | SYSTEM TO MEASURE THE TRANSFER TIME OF A SOUND WAVE |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5215954A (en) | 1991-07-30 | 1993-06-01 | Cri International, Inc. | Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst |
US5189283A (en) | 1991-08-28 | 1993-02-23 | Shell Oil Company | Current to power crossover heater control |
US5168927A (en) | 1991-09-10 | 1992-12-08 | Shell Oil Company | Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation |
US5193618A (en) | 1991-09-12 | 1993-03-16 | Chevron Research And Technology Company | Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations |
RU2019686C1 (en) * | 1991-09-23 | 1994-09-15 | Иван Николаевич Стрижов | Method for development of oil field |
US5173213A (en) | 1991-11-08 | 1992-12-22 | Baker Hughes Incorporated | Corrosion and anti-foulant composition and method of use |
US5347070A (en) | 1991-11-13 | 1994-09-13 | Battelle Pacific Northwest Labs | Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material |
US5349859A (en) | 1991-11-15 | 1994-09-27 | Scientific Engineering Instruments, Inc. | Method and apparatus for measuring acoustic wave velocity using impulse response |
US5199490A (en) | 1991-11-18 | 1993-04-06 | Texaco Inc. | Formation treating |
RU2019685C1 (en) * | 1991-12-09 | 1994-09-15 | Вели Аннабаевич Аннабаев | Method for drilling-in |
WO1993012349A1 (en) | 1991-12-13 | 1993-06-24 | W.L. Gore & Associates, Inc. | An improved mechanical control cable system |
EP0547961B1 (en) | 1991-12-16 | 1996-03-27 | Institut Français du Pétrole | Active or passive surveillance system for underground formation by means of fixed stations |
CA2058255C (en) | 1991-12-20 | 1997-02-11 | Roland P. Leaute | Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells |
US5246071A (en) | 1992-01-31 | 1993-09-21 | Texaco Inc. | Steamflooding with alternating injection and production cycles |
US5420402A (en) | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
US5211230A (en) | 1992-02-21 | 1993-05-18 | Mobil Oil Corporation | Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion |
GB9207174D0 (en) | 1992-04-01 | 1992-05-13 | Raychem Sa Nv | Method of forming an electrical connection |
US5255740A (en) | 1992-04-13 | 1993-10-26 | Rrkt Company | Secondary recovery process |
US5332036A (en) | 1992-05-15 | 1994-07-26 | The Boc Group, Inc. | Method of recovery of natural gases from underground coal formations |
US5366012A (en) | 1992-06-09 | 1994-11-22 | Shell Oil Company | Method of completing an uncased section of a borehole |
US5297626A (en) | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5255742A (en) | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5226961A (en) | 1992-06-12 | 1993-07-13 | Shell Oil Company | High temperature wellbore cement slurry |
US5392854A (en) | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5236039A (en) | 1992-06-17 | 1993-08-17 | General Electric Company | Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale |
US5295763A (en) | 1992-06-30 | 1994-03-22 | Chambers Development Co., Inc. | Method for controlling gas migration from a landfill |
US5275726A (en) | 1992-07-29 | 1994-01-04 | Exxon Research & Engineering Co. | Spiral wound element for separation |
US5256516A (en) | 1992-07-31 | 1993-10-26 | Xerox Corporation | Toner compositions with dendrimer charge enhancing additives |
US5282957A (en) | 1992-08-19 | 1994-02-01 | Betz Laboratories, Inc. | Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine |
US5305829A (en) | 1992-09-25 | 1994-04-26 | Chevron Research And Technology Company | Oil production from diatomite formations by fracture steamdrive |
US5229583A (en) | 1992-09-28 | 1993-07-20 | Shell Oil Company | Surface heating blanket for soil remediation |
US5339904A (en) | 1992-12-10 | 1994-08-23 | Mobil Oil Corporation | Oil recovery optimization using a well having both horizontal and vertical sections |
US5358045A (en) | 1993-02-12 | 1994-10-25 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition |
US5353874A (en) * | 1993-02-22 | 1994-10-11 | Manulik Matthew C | Horizontal wellbore stimulation technique |
CA2096034C (en) | 1993-05-07 | 1996-07-02 | Kenneth Edwin Kisman | Horizontal well gravity drainage combustion process for oil recovery |
US5360067A (en) | 1993-05-17 | 1994-11-01 | Meo Iii Dominic | Vapor-extraction system for removing hydrocarbons from soil |
DE4323768C1 (en) | 1993-07-15 | 1994-08-18 | Priesemuth W | Plant for generating energy |
US5377756A (en) | 1993-10-28 | 1995-01-03 | Mobil Oil Corporation | Method for producing low permeability reservoirs using a single well |
US5388641A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations |
US5388640A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388645A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388642A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using membrane separation of oxygen from air |
US5388643A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using pressure swing adsorption separation |
US5566755A (en) | 1993-11-03 | 1996-10-22 | Amoco Corporation | Method for recovering methane from a solid carbonaceous subterranean formation |
US5411086A (en) | 1993-12-09 | 1995-05-02 | Mobil Oil Corporation | Oil recovery by enhanced imbitition in low permeability reservoirs |
US5435666A (en) | 1993-12-14 | 1995-07-25 | Environmental Resources Management, Inc. | Methods for isolating a water table and for soil remediation |
US5404952A (en) | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
US5411089A (en) | 1993-12-20 | 1995-05-02 | Shell Oil Company | Heat injection process |
US5433271A (en) | 1993-12-20 | 1995-07-18 | Shell Oil Company | Heat injection process |
US5634984A (en) | 1993-12-22 | 1997-06-03 | Union Oil Company Of California | Method for cleaning an oil-coated substrate |
MY112792A (en) | 1994-01-13 | 2001-09-29 | Shell Int Research | Method of creating a borehole in an earth formation |
US5411104A (en) | 1994-02-16 | 1995-05-02 | Conoco Inc. | Coalbed methane drilling |
CA2144597C (en) | 1994-03-18 | 1999-08-10 | Paul J. Latimer | Improved emat probe and technique for weld inspection |
US5415231A (en) | 1994-03-21 | 1995-05-16 | Mobil Oil Corporation | Method for producing low permeability reservoirs using steam |
US5439054A (en) | 1994-04-01 | 1995-08-08 | Amoco Corporation | Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation |
US5431224A (en) | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5409071A (en) | 1994-05-23 | 1995-04-25 | Shell Oil Company | Method to cement a wellbore |
ZA954204B (en) | 1994-06-01 | 1996-01-22 | Ashland Chemical Inc | A process for improving the effectiveness of a process catalyst |
US5503226A (en) | 1994-06-22 | 1996-04-02 | Wadleigh; Eugene E. | Process for recovering hydrocarbons by thermally assisted gravity segregation |
EP0771419A4 (en) | 1994-07-18 | 1999-06-23 | Babcock & Wilcox Co | Sensor transport system for flash butt welder |
US5458774A (en) | 1994-07-25 | 1995-10-17 | Mannapperuma; Jatal D. | Corrugated spiral membrane module |
US5632336A (en) | 1994-07-28 | 1997-05-27 | Texaco Inc. | Method for improving injectivity of fluids in oil reservoirs |
US5525322A (en) | 1994-10-12 | 1996-06-11 | The Regents Of The University Of California | Method for simultaneous recovery of hydrogen from water and from hydrocarbons |
US5553189A (en) | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5497087A (en) | 1994-10-20 | 1996-03-05 | Shell Oil Company | NMR logging of natural gas reservoirs |
US5624188A (en) | 1994-10-20 | 1997-04-29 | West; David A. | Acoustic thermometer |
US5498960A (en) | 1994-10-20 | 1996-03-12 | Shell Oil Company | NMR logging of natural gas in reservoirs |
US5559263A (en) | 1994-11-16 | 1996-09-24 | Tiorco, Inc. | Aluminum citrate preparations and methods |
US5554453A (en) | 1995-01-04 | 1996-09-10 | Energy Research Corporation | Carbonate fuel cell system with thermally integrated gasification |
GB2311859B (en) | 1995-01-12 | 1999-03-03 | Baker Hughes Inc | A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers |
US6088294A (en) | 1995-01-12 | 2000-07-11 | Baker Hughes Incorporated | Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction |
DE19505517A1 (en) | 1995-02-10 | 1996-08-14 | Siegfried Schwert | Procedure for extracting a pipe laid in the ground |
CA2152521C (en) | 1995-03-01 | 2000-06-20 | Jack E. Bridges | Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits |
US5621844A (en) | 1995-03-01 | 1997-04-15 | Uentech Corporation | Electrical heating of mineral well deposits using downhole impedance transformation networks |
US5935421A (en) | 1995-05-02 | 1999-08-10 | Exxon Research And Engineering Company | Continuous in-situ combination process for upgrading heavy oil |
US5911898A (en) | 1995-05-25 | 1999-06-15 | Electric Power Research Institute | Method and apparatus for providing multiple autoregulated temperatures |
US5571403A (en) | 1995-06-06 | 1996-11-05 | Texaco Inc. | Process for extracting hydrocarbons from diatomite |
US6015015A (en) | 1995-06-20 | 2000-01-18 | Bj Services Company U.S.A. | Insulated and/or concentric coiled tubing |
US5899958A (en) | 1995-09-11 | 1999-05-04 | Halliburton Energy Services, Inc. | Logging while drilling borehole imaging and dipmeter device |
US5759022A (en) | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
US5890840A (en) | 1995-12-08 | 1999-04-06 | Carter, Jr.; Ernest E. | In situ construction of containment vault under a radioactive or hazardous waste site |
ATE191254T1 (en) | 1995-12-27 | 2000-04-15 | Shell Int Research | FLAMELESS COMBUSTION APPARATUS AND METHOD |
IE960011A1 (en) | 1996-01-10 | 1997-07-16 | Padraig Mcalister | Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures |
US5685362A (en) | 1996-01-22 | 1997-11-11 | The Regents Of The University Of California | Storage capacity in hot dry rock reservoirs |
US5751895A (en) | 1996-02-13 | 1998-05-12 | Eor International, Inc. | Selective excitation of heating electrodes for oil wells |
US5826655A (en) | 1996-04-25 | 1998-10-27 | Texaco Inc | Method for enhanced recovery of viscous oil deposits |
US5652389A (en) | 1996-05-22 | 1997-07-29 | The United States Of America As Represented By The Secretary Of Commerce | Non-contact method and apparatus for inspection of inertia welds |
US6022834A (en) | 1996-05-24 | 2000-02-08 | Oil Chem Technologies, Inc. | Alkaline surfactant polymer flooding composition and process |
US5769569A (en) | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5828797A (en) | 1996-06-19 | 1998-10-27 | Meggitt Avionics, Inc. | Fiber optic linked flame sensor |
BR9709857A (en) | 1996-06-21 | 2002-05-21 | Syntroleum Corp | Synthesis gas production process and system |
MY118075A (en) | 1996-07-09 | 2004-08-30 | Syntroleum Corp | Process for converting gas to liquids |
US5826653A (en) | 1996-08-02 | 1998-10-27 | Scientific Applications & Research Associates, Inc. | Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US5861137A (en) | 1996-10-30 | 1999-01-19 | Edlund; David J. | Steam reformer with internal hydrogen purification |
US5816325A (en) | 1996-11-27 | 1998-10-06 | Future Energy, Llc | Methods and apparatus for enhanced recovery of viscous deposits by thermal stimulation |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6427124B1 (en) | 1997-01-24 | 2002-07-30 | Baker Hughes Incorporated | Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
US5744025A (en) | 1997-02-28 | 1998-04-28 | Shell Oil Company | Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock |
GB9704181D0 (en) | 1997-02-28 | 1997-04-16 | Thompson James | Apparatus and method for installation of ducts |
US5926437A (en) | 1997-04-08 | 1999-07-20 | Halliburton Energy Services, Inc. | Method and apparatus for seismic exploration |
US5984578A (en) * | 1997-04-11 | 1999-11-16 | New Jersey Institute Of Technology | Apparatus and method for in situ removal of contaminants using sonic energy |
CA2264632C (en) | 1997-05-02 | 2007-11-27 | Baker Hughes Incorporated | Wellbores utilizing fiber optic-based sensors and operating devices |
WO1998050179A1 (en) | 1997-05-07 | 1998-11-12 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
CA2289080C (en) | 1997-06-05 | 2006-07-25 | Shell Canada Limited | Contaminated soil remediation method |
US6102122A (en) | 1997-06-11 | 2000-08-15 | Shell Oil Company | Control of heat injection based on temperature and in-situ stress measurement |
US6112808A (en) | 1997-09-19 | 2000-09-05 | Isted; Robert Edward | Method and apparatus for subterranean thermal conditioning |
US5984010A (en) | 1997-06-23 | 1999-11-16 | Elias; Ramon | Hydrocarbon recovery systems and methods |
CA2208767A1 (en) | 1997-06-26 | 1998-12-26 | Reginald D. Humphreys | Tar sands extraction process |
US5992522A (en) | 1997-08-12 | 1999-11-30 | Steelhead Reclamation Ltd. | Process and seal for minimizing interzonal migration in boreholes |
US5868202A (en) | 1997-09-22 | 1999-02-09 | Tarim Associates For Scientific Mineral And Oil Exploration Ag | Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations |
US6149344A (en) | 1997-10-04 | 2000-11-21 | Master Corporation | Acid gas disposal |
US6354373B1 (en) | 1997-11-26 | 2002-03-12 | Schlumberger Technology Corporation | Expandable tubing for a well bore hole and method of expanding |
AU1478199A (en) | 1997-12-11 | 1999-06-28 | Petroleum Recovery Institute | Oilfield in situ hydrocarbon upgrading process |
US6152987A (en) | 1997-12-15 | 2000-11-28 | Worcester Polytechnic Institute | Hydrogen gas-extraction module and method of fabrication |
US6094048A (en) | 1997-12-18 | 2000-07-25 | Shell Oil Company | NMR logging of natural gas reservoirs |
NO305720B1 (en) | 1997-12-22 | 1999-07-12 | Eureka Oil Asa | Procedure for increasing oil production from an oil reservoir |
US6026914A (en) | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
MA24902A1 (en) | 1998-03-06 | 2000-04-01 | Shell Int Research | ELECTRIC HEATER |
US6439308B1 (en) | 1998-04-06 | 2002-08-27 | Da Qing Petroleum Administration Bureau | Foam drive method |
US6035701A (en) | 1998-04-15 | 2000-03-14 | Lowry; William E. | Method and system to locate leaks in subsurface containment structures using tracer gases |
MXPA00011041A (en) | 1998-05-12 | 2003-08-01 | Lockheed Corp | System and process for optimizing gravity gradiometer measurements. |
US6016867A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking |
US6016868A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking |
NO984235L (en) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Heating system for metal pipes for crude oil transport |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
US6192748B1 (en) | 1998-10-30 | 2001-02-27 | Computalog Limited | Dynamic orienting reference system for directional drilling |
US5968349A (en) | 1998-11-16 | 1999-10-19 | Bhp Minerals International Inc. | Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands |
US20040035582A1 (en) | 2002-08-22 | 2004-02-26 | Zupanick Joseph A. | System and method for subterranean access |
US6269881B1 (en) | 1998-12-22 | 2001-08-07 | Chevron U.S.A. Inc | Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US6078868A (en) | 1999-01-21 | 2000-06-20 | Baker Hughes Incorporated | Reference signal encoding for seismic while drilling measurement |
US6318469B1 (en) | 1999-02-09 | 2001-11-20 | Schlumberger Technology Corp. | Completion equipment having a plurality of fluid paths for use in a well |
US6218333B1 (en) | 1999-02-15 | 2001-04-17 | Shell Oil Company | Preparation of a hydrotreating catalyst |
US6283230B1 (en) | 1999-03-01 | 2001-09-04 | Jasper N. Peters | Method and apparatus for lateral well drilling utilizing a rotating nozzle |
US6155117A (en) | 1999-03-18 | 2000-12-05 | Mcdermott Technology, Inc. | Edge detection and seam tracking with EMATs |
US6561269B1 (en) | 1999-04-30 | 2003-05-13 | The Regents Of The University Of California | Canister, sealing method and composition for sealing a borehole |
US6110358A (en) | 1999-05-21 | 2000-08-29 | Exxon Research And Engineering Company | Process for manufacturing improved process oils using extraction of hydrotreated distillates |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6269310B1 (en) | 1999-08-25 | 2001-07-31 | Tomoseis Corporation | System for eliminating headwaves in a tomographic process |
US6196350B1 (en) | 1999-10-06 | 2001-03-06 | Tomoseis Corporation | Apparatus and method for attenuating tube waves in a borehole |
US6193010B1 (en) | 1999-10-06 | 2001-02-27 | Tomoseis Corporation | System for generating a seismic signal in a borehole |
US6288372B1 (en) | 1999-11-03 | 2001-09-11 | Tyco Electronics Corporation | Electric cable having braidless polymeric ground plane providing fault detection |
US6353706B1 (en) | 1999-11-18 | 2002-03-05 | Uentech International Corporation | Optimum oil-well casing heating |
US6417268B1 (en) | 1999-12-06 | 2002-07-09 | Hercules Incorporated | Method for making hydrophobically associative polymers, methods of use and compositions |
US6318468B1 (en) * | 1999-12-16 | 2001-11-20 | Consolidated Seven Rocks Mining, Ltd. | Recovery and reforming of crudes at the heads of multifunctional wells and oil mining system with flue gas stimulation |
US6422318B1 (en) | 1999-12-17 | 2002-07-23 | Scioto County Regional Water District #1 | Horizontal well system |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US6679332B2 (en) | 2000-01-24 | 2004-01-20 | Shell Oil Company | Petroleum well having downhole sensors, communication and power |
US6715550B2 (en) | 2000-01-24 | 2004-04-06 | Shell Oil Company | Controllable gas-lift well and valve |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US6981553B2 (en) | 2000-01-24 | 2006-01-03 | Shell Oil Company | Controlled downhole chemical injection |
US6896054B2 (en) * | 2000-02-15 | 2005-05-24 | Mcclung, Iii Guy L. | Microorganism enhancement with earth loop heat exchange systems |
EG22420A (en) | 2000-03-02 | 2003-01-29 | Shell Int Research | Use of downhole high pressure gas in a gas - lift well |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
US6357526B1 (en) | 2000-03-16 | 2002-03-19 | Kellogg Brown & Root, Inc. | Field upgrading of heavy oil and bitumen |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
GB0009662D0 (en) | 2000-04-20 | 2000-06-07 | Scotoil Group Plc | Gas and oil production |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6584406B1 (en) | 2000-06-15 | 2003-06-24 | Geo-X Systems, Ltd. | Downhole process control method utilizing seismic communication |
AU2002246492A1 (en) | 2000-06-29 | 2002-07-30 | Paulo S. Tubel | Method and system for monitoring smart structures utilizing distributed optical sensors |
FR2813209B1 (en) | 2000-08-23 | 2002-11-29 | Inst Francais Du Petrole | SUPPORTED TWO-METAL CATALYST HAVING STRONG INTERACTION BETWEEN GROUP VIII METAL AND TIN AND USE THEREOF IN A CATALYTIC REFORMING PROCESS |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
US20020110476A1 (en) | 2000-12-14 | 2002-08-15 | Maziasz Philip J. | Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US6516891B1 (en) | 2001-02-08 | 2003-02-11 | L. Murray Dallas | Dual string coil tubing injector assembly |
US6821501B2 (en) | 2001-03-05 | 2004-11-23 | Shell Oil Company | Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
CN100545415C (en) * | 2001-04-24 | 2009-09-30 | 国际壳牌研究有限公司 | The method of in-situ processing hydrocarbon containing formation |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US6591908B2 (en) | 2001-08-22 | 2003-07-15 | Alberta Science And Research Authority | Hydrocarbon production process with decreasing steam and/or water/solvent ratio |
MY129091A (en) | 2001-09-07 | 2007-03-30 | Exxonmobil Upstream Res Co | Acid gas disposal method |
US6755251B2 (en) | 2001-09-07 | 2004-06-29 | Exxonmobil Upstream Research Company | Downhole gas separation method and system |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
ATE402294T1 (en) | 2001-10-24 | 2008-08-15 | Shell Int Research | ICING OF SOILS AS AN PRELIMINARY MEASURE FOR THERMAL TREATMENT |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
RU2303693C2 (en) * | 2001-10-24 | 2007-07-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Coal refining and production |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
WO2003036037A2 (en) | 2001-10-24 | 2003-05-01 | Shell Internationale Research Maatschappij B.V. | Installation and use of removable heaters in a hydrocarbon containing formation |
US6759364B2 (en) | 2001-12-17 | 2004-07-06 | Shell Oil Company | Arsenic removal catalyst and method for making same |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
US7032809B1 (en) | 2002-01-18 | 2006-04-25 | Steel Ventures, L.L.C. | Seam-welded metal pipe and method of making the same without seam anneal |
US6854534B2 (en) | 2002-01-22 | 2005-02-15 | James I. Livingstone | Two string drilling system using coil tubing |
US6958195B2 (en) | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
US6715553B2 (en) | 2002-05-31 | 2004-04-06 | Halliburton Energy Services, Inc. | Methods of generating gas in well fluids |
US7093370B2 (en) | 2002-08-01 | 2006-08-22 | The Charles Stark Draper Laboratory, Inc. | Multi-gimbaled borehole navigation system |
US6942037B1 (en) | 2002-08-15 | 2005-09-13 | Clariant Finance (Bvi) Limited | Process for mitigation of wellbore contaminants |
WO2004018827A1 (en) | 2002-08-21 | 2004-03-04 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric drill string |
AU2003261330A1 (en) | 2002-09-16 | 2004-04-30 | The Regents Of The University Of California | Self-regulating nuclear power module |
US20080069289A1 (en) | 2002-09-16 | 2008-03-20 | Peterson Otis G | Self-regulating nuclear power module |
WO2004038175A1 (en) | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US7055602B2 (en) | 2003-03-11 | 2006-06-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery |
NZ567052A (en) | 2003-04-24 | 2009-11-27 | Shell Int Research | Thermal process for subsurface formations |
US6951250B2 (en) | 2003-05-13 | 2005-10-04 | Halliburton Energy Services, Inc. | Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well |
CN100392206C (en) * | 2003-06-24 | 2008-06-04 | 埃克森美孚上游研究公司 | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US20080087420A1 (en) | 2006-10-13 | 2008-04-17 | Kaminsky Robert D | Optimized well spacing for in situ shale oil development |
US7114880B2 (en) | 2003-09-26 | 2006-10-03 | Carter Jr Ernest E | Process for the excavation of buried waste |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
CN1875168B (en) | 2003-11-03 | 2012-10-17 | 艾克森美孚上游研究公司 | Hydrocarbon recovery from impermeable oil shales |
US20060289340A1 (en) | 2003-12-19 | 2006-12-28 | Brownscombe Thomas F | Methods for producing a total product in the presence of sulfur |
US7416653B2 (en) | 2003-12-19 | 2008-08-26 | Shell Oil Company | Systems and methods of producing a crude product |
US20070000810A1 (en) | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method for producing a crude product with reduced tan |
US7534342B2 (en) | 2003-12-19 | 2009-05-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7337841B2 (en) | 2004-03-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Casing comprising stress-absorbing materials and associated methods of use |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
US7070359B2 (en) * | 2004-05-20 | 2006-07-04 | Battelle Energy Alliance, Llc | Microtunneling systems and methods of use |
US20050289536A1 (en) * | 2004-06-23 | 2005-12-29 | International Business Machines Coporation | Automated deployment of an application |
US7582203B2 (en) | 2004-08-10 | 2009-09-01 | Shell Oil Company | Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins |
CA2576329A1 (en) | 2004-08-10 | 2006-02-23 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for making a middle distillate product and lower olefins from a hydrocarbon feedstock |
US7398823B2 (en) | 2005-01-10 | 2008-07-15 | Conocophillips Company | Selective electromagnetic production tool |
BRPI0610670B1 (en) | 2005-04-11 | 2016-01-19 | Shell Int Research | method for producing a crude product, catalyst for producing a crude product, and method for producing a catalyst |
CN101166889B (en) | 2005-04-21 | 2012-11-28 | 国际壳牌研究有限公司 | Systems and methods for producing oil and/or gas |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
ATE435964T1 (en) | 2005-04-22 | 2009-07-15 | Shell Int Research | IN-SITU CONVERSION PROCESS USING A CIRCUIT HEATING SYSTEM |
WO2007002111A1 (en) | 2005-06-20 | 2007-01-04 | Ksn Energies, Llc | Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd) |
GB2451311A (en) | 2005-10-24 | 2009-01-28 | Shell Int Research | Systems,methods and processes for use in treating subsurface formations |
US7124584B1 (en) | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
US7743826B2 (en) | 2006-01-20 | 2010-06-29 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
US7921907B2 (en) | 2006-01-20 | 2011-04-12 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
RU2418158C2 (en) | 2006-02-16 | 2011-05-10 | ШЕВРОН Ю. Эс. Эй. ИНК. | Extraction method of kerogenes from underground shale formation and explosion method of underground shale formation |
EP2010754A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | Adjusting alloy compositions for selected properties in temperature limited heaters |
WO2007126676A2 (en) | 2006-04-21 | 2007-11-08 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
CA2870889C (en) | 2006-09-14 | 2016-11-01 | Ernest E. Carter, Jr. | Method of forming subterranean barriers with molten wax |
US7665524B2 (en) | 2006-09-29 | 2010-02-23 | Ut-Battelle, Llc | Liquid metal heat exchanger for efficient heating of soils and geologic formations |
WO2008048448A2 (en) | 2006-10-13 | 2008-04-24 | Exxonmobil Upstream Research Company | Heating an organic-rich rock formation in situ to produce products with improved properties |
AU2007313393B2 (en) | 2006-10-13 | 2013-08-15 | Exxonmobil Upstream Research Company | Improved method of developing a subsurface freeze zone using formation fractures |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US20080216321A1 (en) | 2007-03-09 | 2008-09-11 | Eveready Battery Company, Inc. | Shaving aid delivery system for use with wet shave razors |
WO2008131182A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
BRPI0810752A2 (en) | 2007-05-15 | 2014-10-21 | Exxonmobil Upstream Res Co | METHODS FOR IN SITU HEATING OF A RICH ROCK FORMATION IN ORGANIC COMPOUND, IN SITU HEATING OF A TARGETED XISTO TRAINING AND TO PRODUCE A FLUID OF HYDROCARBON, SQUARE FOR A RACHOSETUS ORGANIC BUILDING , AND FIELD TO PRODUCE A HYDROCARBON FLUID FROM A TRAINING RICH IN A TARGET ORGANIC COMPOUND. |
WO2008150531A2 (en) | 2007-05-31 | 2008-12-11 | Carter Ernest E Jr | Method for construction of subterranean barriers |
WO2009012374A1 (en) | 2007-07-19 | 2009-01-22 | Shell Oil Company | Methods for producing oil and/or gas |
EP2198118A1 (en) | 2007-10-19 | 2010-06-23 | Shell Internationale Research Maatschappij B.V. | Irregular spacing of heat sources for treating hydrocarbon containing formations |
CA2718767C (en) | 2008-04-18 | 2016-09-06 | Shell Internationale Research Maatschappij B.V. | Using mines and tunnels for treating subsurface hydrocarbon containing formations |
US20100101783A1 (en) | 2008-10-13 | 2010-04-29 | Vinegar Harold J | Using self-regulating nuclear reactors in treating a subsurface formation |
WO2010118315A1 (en) | 2009-04-10 | 2010-10-14 | Shell Oil Company | Treatment methodologies for subsurface hydrocarbon containing formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8464792B2 (en) | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
-
2007
- 2007-10-19 US US11/975,691 patent/US7540324B2/en not_active Expired - Fee Related
- 2007-10-19 RU RU2009118914/03A patent/RU2453692C2/en not_active IP Right Cessation
- 2007-10-19 EP EP07854206A patent/EP2074283A2/en not_active Withdrawn
- 2007-10-19 US US11/975,714 patent/US7703513B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,690 patent/US7845411B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,679 patent/US7717171B2/en not_active Expired - Fee Related
- 2007-10-19 WO PCT/US2007/081905 patent/WO2008051831A2/en active Search and Examination
- 2007-10-19 US US11/975,737 patent/US7677314B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,713 patent/US7644765B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,689 patent/US7677310B2/en not_active Expired - Fee Related
- 2007-10-19 EP EP07854213.1A patent/EP2074281A4/en not_active Withdrawn
- 2007-10-19 WO PCT/US2007/081890 patent/WO2008051822A2/en active Application Filing
- 2007-10-19 CA CA002666206A patent/CA2666206A1/en not_active Abandoned
- 2007-10-19 RU RU2009118915/03A patent/RU2454534C2/en active
- 2007-10-19 WO PCT/US2007/081920 patent/WO2008051837A2/en active Application Filing
- 2007-10-19 WO PCT/US2007/022376 patent/WO2008051495A2/en active Application Filing
- 2007-10-19 WO PCT/US2007/081901 patent/WO2008051827A2/en active Application Filing
- 2007-10-19 MX MX2009004135A patent/MX2009004135A/en active IP Right Grant
- 2007-10-19 JP JP2009533557A patent/JP5643513B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,738 patent/US7730947B2/en not_active Expired - Fee Related
- 2007-10-19 WO PCT/US2007/081918 patent/WO2008051836A2/en active Application Filing
- 2007-10-19 RU RU2009118926/03A patent/RU2451170C2/en not_active IP Right Cessation
- 2007-10-19 GB GB0905850A patent/GB2461362A/en not_active Withdrawn
- 2007-10-19 CA CA2665869A patent/CA2665869C/en not_active Expired - Fee Related
- 2007-10-19 CA CA002667274A patent/CA2667274A1/en not_active Abandoned
- 2007-10-19 US US11/975,678 patent/US7841401B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,688 patent/US7562707B2/en not_active Expired - Fee Related
- 2007-10-19 RU RU2009118928/03A patent/RU2447274C2/en not_active IP Right Cessation
- 2007-10-19 MX MX2009004136A patent/MX2009004136A/en active IP Right Grant
- 2007-10-19 RU RU2009118916/03A patent/RU2447275C2/en not_active IP Right Cessation
- 2007-10-19 WO PCT/US2007/081904 patent/WO2008051830A2/en active Application Filing
- 2007-10-19 US US11/975,736 patent/US7730945B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,676 patent/US7635024B2/en active Active
- 2007-10-19 US US11/975,701 patent/US7631690B2/en active Active
- 2007-10-19 CA CA2666956A patent/CA2666956C/en active Active
- 2007-10-19 GB GB0906325A patent/GB2455947B/en not_active Expired - Fee Related
- 2007-10-19 RU RU2009118924/03A patent/RU2452852C2/en not_active IP Right Cessation
- 2007-10-19 US US11/975,700 patent/US7673681B2/en not_active Expired - Fee Related
- 2007-10-19 WO PCT/US2007/081910 patent/WO2008051833A2/en active Search and Examination
- 2007-10-19 MX MX2009004127A patent/MX2009004127A/en active IP Right Grant
- 2007-10-19 CA CA2666947A patent/CA2666947C/en not_active Expired - Fee Related
- 2007-10-19 CA CA2666959A patent/CA2666959C/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,677 patent/US7730946B2/en not_active Expired - Fee Related
- 2007-10-19 CA CA2665862A patent/CA2665862C/en not_active Expired - Fee Related
- 2007-10-19 EP EP07863432A patent/EP2074279A2/en not_active Withdrawn
- 2007-10-19 BR BRPI0718467-0A patent/BRPI0718467A2/en not_active Application Discontinuation
- 2007-10-19 JP JP2009533559A patent/JP5330999B2/en not_active Expired - Fee Related
- 2007-10-19 CA CA2665864A patent/CA2665864C/en not_active Expired - Fee Related
- 2007-10-19 JP JP2009533555A patent/JP5616634B2/en not_active Expired - Fee Related
- 2007-10-19 WO PCT/US2007/081915 patent/WO2008051834A2/en active Application Filing
- 2007-10-19 EP EP07854216.4A patent/EP2074284A4/en not_active Withdrawn
- 2007-10-19 JP JP2009533560A patent/JP5378223B2/en not_active Expired - Fee Related
- 2007-10-19 EP EP07854223A patent/EP2074282A2/en not_active Withdrawn
- 2007-10-19 BR BRPI0718468A patent/BRPI0718468B8/en active IP Right Grant
- 2007-10-19 MX MX2009004126A patent/MX2009004126A/en active IP Right Grant
- 2007-10-19 JP JP2009533562A patent/JP5331000B2/en not_active Expired - Fee Related
- 2007-10-19 US US11/975,712 patent/US7681647B2/en not_active Expired - Fee Related
- 2007-10-19 MX MX2009004137A patent/MX2009004137A/en active IP Right Grant
- 2007-10-19 GB GB0906326A patent/GB2456251B/en not_active Expired - Fee Related
- 2007-10-19 CA CA2665865A patent/CA2665865C/en not_active Expired - Fee Related
- 2007-10-19 RU RU2009118919/03A patent/RU2460871C2/en not_active IP Right Cessation
- 2007-10-19 WO PCT/US2007/081896 patent/WO2008051825A1/en active Search and Examination
-
2009
- 2009-04-06 IL IL198024A patent/IL198024A/en not_active IP Right Cessation
- 2009-04-07 IL IL198066A patent/IL198066A/en not_active IP Right Cessation
- 2009-04-07 IL IL198063A patent/IL198063A/en not_active IP Right Cessation
- 2009-04-07 IL IL198065A patent/IL198065A/en not_active IP Right Cessation
- 2009-04-07 IL IL198064A patent/IL198064A/en not_active IP Right Cessation
- 2009-05-14 MA MA31884A patent/MA30897B1/en unknown
- 2009-05-14 MA MA31886A patent/MA30899B1/en unknown
- 2009-05-14 MA MA31883A patent/MA30896B1/en unknown
- 2009-05-14 MA MA31880A patent/MA30894B1/en unknown
- 2009-05-14 MA MA31882A patent/MA30956B1/en unknown
- 2009-05-14 MA MA31885A patent/MA30898B1/en unknown
- 2009-05-14 MA MA31879A patent/MA31063B1/en unknown
-
2010
- 2010-04-28 US US12/769,379 patent/US8191630B2/en not_active Expired - Fee Related
-
2012
- 2012-05-31 US US13/485,464 patent/US8555971B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2666947C (en) | Heating tar sands formations while controlling pressure | |
CA2626905C (en) | Systems and methods for producing hydrocarbons from tar sands with heat created drainage paths | |
AU2008242808B2 (en) | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20181019 |