BR112016018637B1 - Método para mover um veículo com um trem de potência híbrido, e, veículo com um sistema de transmissão híbrido - Google Patents

Método para mover um veículo com um trem de potência híbrido, e, veículo com um sistema de transmissão híbrido Download PDF

Info

Publication number
BR112016018637B1
BR112016018637B1 BR112016018637-0A BR112016018637A BR112016018637B1 BR 112016018637 B1 BR112016018637 B1 BR 112016018637B1 BR 112016018637 A BR112016018637 A BR 112016018637A BR 112016018637 B1 BR112016018637 B1 BR 112016018637B1
Authority
BR
Brazil
Prior art keywords
planetary gear
gear
planetary
gears
output shaft
Prior art date
Application number
BR112016018637-0A
Other languages
English (en)
Other versions
BR112016018637A2 (pt
Inventor
Johan Lindström
Mathias Björkman
Niklas Pettersson
Mikael Bergquist
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Publication of BR112016018637A2 publication Critical patent/BR112016018637A2/pt
Publication of BR112016018637B1 publication Critical patent/BR112016018637B1/pt

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/34Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the absence of energy storing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/148Semi-trailers, articulated vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18025Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/70Control of gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/73Planetary gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/101Power split variators with one differential at each end of the CVT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • F16H3/0915Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft with coaxial input and output shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • Y10S903/911Orbital, e.g. planetary gears with two or more gear sets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/917Specific drive or transmission adapted for hev with transmission for changing gear ratio
    • Y10S903/919Stepped shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

MÉTODO PARA PARTIDA DE VEÍCULO QUE COMPREENDE SISTEMA DE TRANSMISSÃO HÍBRIDO Trata-se de um método para mover um veículo com um trem de potência híbrido (3), que compreende um motor a combustão (4); uma caixa de engrenagens (2) com um eixo de entrada (8) e um eixo de saída (20); uma primeira engrenagem planetária (10), que é conectada ao eixo de entrada (8) e um primeiro eixo principal (34); uma segunda engrenagem planetária (12), que é conectada à primeira engrenagem planetária (10) e um segundo eixo principal (36); uma primeira máquina elétrica (14), que é conectada à primeira engrenagem planetária (10); uma segunda máquina elétrica (16), que é co-nectada à segunda engrenagem planetária (12), em que as máquinas elétri-cas (14, 16) podem operar uma à outra; pelo menos um par de engrenagens (G1, 60, 72), conectado com a primeira engrenagem planetária (10) e com o eixo de saída (20); e pelo menos um par de engrenagens (G2, 66, 78), conec-tado com a segunda engrenagem planetária (12) e com o eixo de saída (20), em que o motor a combustão, através do eixo de entrada (8), é conectado com um primeiro suporte de roda planetária (50), disposto na primeira engre-nagem planetária (10), em que o segundo eixo principal (36) é conectado com um segundo suporte de roda planetária (51), disposto na segunda engrena-gem planetária (12). O método compreende as etapas de, enquanto o motor a combustão (4) está em operação: a) garantir que os componentes giratórios (26, 50) da primeira engrenagem planetária (10) sejam desconectados um do outro, e garantir que os componentes giratórios (32, 51) da segunda engre-nagem planetária (12) sejam desconectados um do outro, b) garantir que pelo menos uma engrenagem seja engatada, que corresponde a pelo menos um par de engrenagens (G1, 60, 72), que é conectado com a primeira engre-nagem planetária (10), e/ou o pelo menos um par de engrenagens (G2, 66, 78), que é conectado com a segunda engrenagem planetária (12), e c) ativar a primeira máquina elétrica (14) e a segunda máquina elétrica (16), de modo que a saída de potência total da primeira e da segunda máquinas elétricas (14, 16) seja zero, e de modo que um torque seja gerado no eixo de saída (20). A invenção também se refere a um veículo (1), que é movido de acordo com o método de acordo com a invenção. A invenção também se refere a um programa de computador (P) para mover um veículo com um trem de potência híbrido (3) e um produto de programa de computador que compreende código de programa para um dispositivo de controle eletrônico (48) ou outro compu-tador (53) para implantar o método de acordo com a invenção.

Description

ANTECEDENTES DA INVENÇÃO E TÉCNICA ANTERIOR
[0001] A presente invenção refere-se a um método para mover um motor com um motor a combustão em um trem de potência (powertrain) híbrido de acordo com o preâmbulo da reivindicação 1. A invenção também se refere a um veículo, que compreende tal trem de potência híbrido de acordo com o preâmbulo da reivindicação 10, um programa de computador para controlar o movimento de um veículo de acordo com o preâmbulo da reivindicação 11, e um produto de programa de computador que compreende código de programa de acordo com o preâmbulo da reivindicação 12.
[0002] Os veículos híbridos podem ser acionados por um motor primário, que pode ser um motor a combustão e um motor secundário, que pode ser uma máquina elétrica. A máquina elétrica é equipada com pelo menos um dispositivo de armazenamento de energia, tal como um dispositivo de armazenamento de energia eletroquímico, para o armazenamento de potência elétrica e equipamento de controle para controlar o fluxo de potência elétrica entre o dispositivo de armazenamento de energia e a máquina elétrica. A máquina elétrica pode, desse modo, operar alternadamente como um motor e como um gerador, dependendo do modo de operação do veículo. Quando o veículo é frenado, a máquina elétrica gera potência elétrica, que é armazenada no dispositivo de armazenamento de energia. Refere-se normalmente a isso como frenagem regenerativa, que implica que o veículo é desacelerado com o auxílio da máquina elétrica e do motor a combustão. A potência elétrica armazenada é usada posteriormente para a operação do veículo.
[0003] Uma caixa de engrenagens em um veículo híbrido pode compreender uma engrenagem planetária. Uma engrenagem planetária compreende normalmente três componentes, que são dispostos de modo giratório um em relação ao outro, a saber, uma roda solar, um suporte de roda planetária e uma engrenagem anular. Com conhecimento sobre o número de dentes na roda solar e na engrenagem anular interna, as velocidades mútuas dos três componentes podem ser determinadas durante a operação. Um dentre os componentes da engrenagem planetária pode ser conectado a um eixo de saída em um motor a combustão. Esse componente da engrenagem planetária, desse modo, gira com uma velocidade de rotação correspondente à velocidade de rotação do eixo de saída no motor a combustão. Um segundo componente na engrenagem planetária pode ser conectado a um eixo de entrada a um dispositivo de transmissão. Esse componente da engrenagem planetária, desse modo, gira com a mesma velocidade de rotação que o eixo de entrada para o dispositivo de transmissão. Um terceiro componente na engrenagem planetária é usado para obter operação híbrido, conectado a um rotor em uma máquina elétrica. Esse componente na engrenagem planetária, desse modo, gira com a mesma velocidade rotacional que o rotor da máquina elétrica se os mesmos forem conectados diretamente um com o outro. Alternativamente, a máquina elétrica pode ser conectada ao terceiro componente da engrenagem planetária através de uma transmissão que tem um conjunto de engrenagens. Nesse caso, a máquina elétrica e o terceiro componente na engrenagem planetária podem girar com velocidades rotacionais diferentes. A velocidade de motor e/ou o torque da máquina elétrica podem ser controlados em etapas. Nos modos de operação em que o eixo de entrada para o dispositivo de transmissão deve ser dotado de uma velocidade de rotação e/ou um torque desejados, um dispositivo de controle que tem conhecimento sobre a velocidade de motor do motor a combustão calcula a velocidade de rotação com a qual o terceiro componente deve ser operado, a fim do eixo de entrada para o dispositivo de transmissão obter a velocidade de rotação desejada. Um dispositivo de controle ativa a máquina elétrica, de modo a mesma forneça o terceiro componente com velocidade de rotação calculada e, desse modo, o eixo de entrada para o dispositivo de transmissão com a velocidade de rotação desejada.
[0004] Conectando-se o eixo de saída do motor a combustão, o rotor da máquina elétrica e o eixo de entrada do dispositivo de transmissão com uma engrenagem planetária, o mecanismo de embreagem convencional pode ser evitado. Na aceleração do veículo, um torque aumentado deve ser distribuído a partir do motor a combustão e da máquina elétrica para o dispositivo de transmissão, e, adicionalmente, para as rodas de acionamento do veículo. Visto que tanto o motor a combustão quanto a máquina elétrica são conectados com a engrenagem planetária, o maior torque possível distribuído pelo motor a combustão e pela máquina elétrica será limitado por uma dentre essas unidades de acionamento; isto é, aquela cujo torque máximo seja mais inferior que o torque máximo da segunda unidade de acionamento, em relação ao conjunto de engrenagens entre as mesmas. No caso em que o maior torque da máquina elétrica for mais inferior que o maior torque do motor a combustão, em relação ao conjunto de engrenagens entre os mesmos, a máquina elétrica não terá a capacidade para gerar um torque de reação suficientemente grande para a engrenagem planetária, em que implica que o motor a combustão pode não transferir seu maior torque para o dispositivo de transmissão, e prossegue mais adiante até as rodas de acionamento do veículo. Desse modo, o maior torque que pode ser transferido para o dispositivo de transmissão é limitado pela resistência da máquina elétrica. Isso também se torna evidente a partir da chamada equação planetária.
[0005] O uso de embreagem convencional, que desconecta o eixo de entrada da caixa de engrenagens do motor a combustão durante os processos de mudança na caixa de engrenagens, implica desvantagens, tais como aquecimento dos discos de embreagem, que resultam em desgaste dos discos de embreagem e em um consumo de combustível aumentado. Um mecanismo de embreagem convencional também é relativamente pesado e dispendioso. O mesmo também ocupa um espaço relativamente maior no veículo.
[0006] Em um veículo, o espaço disponível para a disposição de acionamento é frequentemente limitado. Se a disposição de acionamento compreende diversos componentes, tal como um motor a combustão, uma máquina elétrica, uma caixa de engrenagens e uma engrenagem planetária, a construção deve ser compacta. Se houver componentes adicionais, tal como um dispositivo de frenagem regenerativa, as exigências de que as partes de componente devam ter uma construção compacta são ainda mais rigorosas. Ao mesmo tempo, as partes de componente na disposição de acionamento devem ser projetadas com dimensões que tenham a capacidade para absorver as forças e o torque exigidos.
[0007] Para alguns tipos de veículos, especialmente veículos de bens pesados e ônibus, é exigido um número grande de passos de engrenagem. Desse modo, o número de partes de componente na caixa de engrenagens aumenta, que também devem ser dimensionadas para ter a capacidade para absorver forças e torque grandes que surgem em tais veículos de bens pesados. Isso resulta em um aumento de tamanho e de peso da caixa de engrenagens.
[0008] Também há exigências por confiabilidade alta e dependência alta dos componentes compreendidos no dispositivo de acionamento. No caso em que a caixa de engrenagens compreende embreagens de múltiplas placas, surge um desgaste que impacta a confiabilidade e a vida útil da caixa de engrenagens.
[0009] Na frenagem regenerativa, a energia cinética é convertida em potência elétrica, que é armazenada em um dispositivo de armazenamento de energia, tais como acumuladores. Um fator que impacta a vida útil do dispositivo de armazenamento de energia é o número de ciclos nos quais o dispositivo de armazenamento de energia fornece e extrai potência para e a partir das máquinas elétricas. Quanto mais ciclos, mais curta é a vida útil do dispositivo de armazenamento de energia.
[0010] Ao mover um veículo que compreende um trem de potência híbrido, o motor a combustão e/ou o motor elétrico podem ser usados para acelerar o veículo a partir de um estado parado para uma velocidade desejada. Quando o motor elétrico é usado, a potência de um dispositivo de armazenamento de energia é usada para operar o motor elétrico.
[0011] O documento n° EP-B1-1126987 mostra uma caixa de engrenagens com engrenagens planetárias duplas. Cada roda solar da engrenagem planetária é conectada a uma máquina elétrica, e as rodas internas das engrenagens planetárias são conectadas umas com as outras. O suporte de roda planetária em cada engrenagem planetária é conectado a um número de pares de engrenagens, de modo que um número infinito de passos de engrenagem seja obtido. Outro documento n° EP-B1-1280677, também mostra como as engrenagens planetárias podem ser ligadas com um passo de engrenagem disposto no eixo de saída do motor a combustão.
[0012] O documento n° US-A1-20050227803 mostra uma transmissão de veículo com duas máquinas elétricas, conectadas às respectivas rodas solares nas duas engrenagens planetárias. As engrenagens planetárias têm um suporte de roda planetária comum, que é conectado ao eixo de entrada da transmissão.
[0013] O documento n° WO2008/046185-A1 mostra uma transmissão híbrido com duas engrenagens planetárias, em que uma máquina elétrica é conectada a uma dentre as engrenagens planetárias e uma embreagem dupla interage com a segunda engrenagem planetária. Ambas as engrenagens planetárias também interagem uma com a outra através de uma transmissão de roda dentada.
SUMÁRIO DA INVENÇÃO
[0014] Apesar das soluções da técnica anterior no campo da técnica, há necessidade de desenvolver adicionalmente um trem de potência híbrido para alcançar o movimento de um veículo, e aumentar a vida útil de um dispositivo de armazenamento de energia no sistema de transmissão híbrido.
[0015] O objetivo da presente invenção é, desse modo, alcançar o movimento de um veículo, que é equipado com um trem de potência híbrido.
[0016] Outro objetivo da presente invenção é aumentar a vida útil de um dispositivo de armazenamento de energia no trem de potência híbrido.
[0017] Outro objetivo da invenção é fornecer um programa de computador inovador e vantajoso para alcançar o movimento do veículo, que é equipado com o trem de potência híbrido.
[0018] Esses objetivos são alcançados com o método especificado no início, que é distinguido pelos recursos especificados na porção caracterizante da reivindicação 1.
[0019] Esses objetivos também são alcançados com o veículo especificado no início, que é distinguido pelos recursos especificados na porção caracterizante da reivindicação 10.
[0020] Esses objetivos também são alcançados com o programa de computador para mover o veículo equipado com o trem de potência híbrido, distinguido pelos recursos especificados na porção caracterizante da reivindicação 11.
[0021] Esses objetivos também são alcançados com o produto de programa de computador para mover o veículo equipado com o trem de potência híbrido, em que o produto de programa de computador é distinguido pelos recursos especificados na porção caracterizante da reivindicação 12.
[0022] Com o método de acordo com a invenção, um movimento eficaz do veículo, que é equipado com o trem de potência híbrido, é alcançado. O veículo é movido a partir de um estado autônomo do veículo, ou a partir de um estado em que o veículo está percorrendo em uma velocidade baixa. Quando o condutor do veículo move um controle de velocidade para um estado desejado, as máquinas elétricas são controladas de modo que um torque seja gerado no eixo de saída. O veículo, então, acelerará para a velocidade desejada com o auxílio do motor a combustão. Enquanto move o veículo, os componentes giratórios das engrenagens planetárias são desconectados uns dos outros e uma engrenagem adequada é engatada na caixa de engrenagens.
[0023] De acordo com uma modalidade do método, a primeira máquina elétrica é ativada para exercer um primeiro torque, e uma segunda máquina elétrica é ativada para exercer um segundo torque, em que o tamanho do primeiro e do segundo torque influenciam a potência transferida entre a primeira e a segunda máquina elétrica. Quando a potência total das máquinas elétricas cancelar uma à outra e a soma da saída de potência for zero, o dispositivo de armazenamento de energia não será usado. É possível, desse modo, selecionar um primeiro e um segundo torque, que as máquinas elétricas devem gerar para obter uma determinada saída de potência em cada uma das máquinas elétricas, em que a soma da saída de potência a partir da primeira e da segunda máquina elétrica é zero.
[0024] As máquinas elétricas, que são conectadas às engrenagens planetárias, podem gerar torque de potência e/ou de suprimento, dependendo do modo de operação desejado. As máquinas elétricas, de acordo com a invenção, suprirão uma à outra com potência enquanto o veículo se move. Desse modo, a frequência de extração de e suprimento de potência para o dispositivo de armazenamento de energia diminui, o que resulta em um aumento da vida útil do dispositivo de armazenamento de energia.
[0025] É possível, desse modo, acionar o veículo com o trem de potência híbrido sem usar o dispositivo de armazenamento de energia. As funções que estão ativas quando o motor a combustão é desligado, não serão, no entanto, possíveis de serem realizadas sem qualquer impacto pelo dispositivo de armazenamento de energia. Quando o dispositivo de armazenamento de energia é desconectado durante a operação de movimento, a primeira máquina elétrica é usada para controlar a tensão entre as máquinas elétricas. A segunda máquina elétrica é controlada para emitir o torque desejado. Qual dentre as máquinas elétricas que controla a tensão e qual é controlada para um torque desejado variará dependendo do tipo de situação de operação.
[0026] Em algumas aplicações, pode ser vantajoso não equipar o veículo com um dispositivo de armazenamento de energia. Os dispositivos de armazenamento de energia são dispendiosos, têm um peso considerável e são volumosos. Mesmo se o veículo for, ou se tornar, equipado com um dispositivo de armazenamento de energia, podem surgir situações em que o dispositivo de armazenamento de energia seja insuficiente, tal como quando há problemas de operação, ou em condições de operação especiais, tais como temperaturas extremas. Adicionalmente, os dispositivos de armazenamento de energia podem ser retirados da operação durante um determinado estágio de produção, ou em conexão com o reparo do veículo e do dispositivo de armazenamento de energia. Nesse caso, é uma vantagem se o veículo puder ser usado com a função mais normal possível. Levando-se a potência elétrica a partir da primeira máquina elétrica para a segunda máquina elétrica através de um comutador, nenhuma potência elétrica será levada para e a partir do dispositivo de armazenamento de energia. Desse modo, as condições são criadas para uma vida útil aumentada do dispositivo de armazenamento de energia.
[0027] Fornecendo-se um primeiro suporte de roda planetária na primeira engrenagem planetária, conectado com uma segunda roda solar na segunda engrenagem planetária; uma primeira roda solar na primeira engrenagem planetária, conectada com o primeiro eixo principal; e um segundo suporte de roda planetária na segunda engrenagem planetária, conectado com o segundo eixo principal, uma transmissão que desloca engrenagens sem a interrupção de torque pode ser alcançada.
[0028] A caixa de engrenagens pode ser equipada com um número de pares de engrenagens, que compreende rodas dentadas que podem ser travadas mecanicamente com e liberadas de um contraeixo. Desse modo, um número de passos de engrenagem fixos é obtido, que pode ser deslocado sem interrupção de torque. As rodas dentadas que podem ser travadas no contraeixo também resultam em uma construção compacta com confiabilidade alta e dependência alta. Alternativamente, as engrenagens de pinhão nos pares de engrenagens podem ser dispostas para serem traváveis e desconectáveis no primeiro e/ou no segundo eixo principal.
[0029] Com a caixa de engrenagens de acordo com a invenção, embreagens deslizantes convencionais entre o motor a combustão e a caixa de engrenagens podem ser evitadas.
[0030] Um mecanismo de travamento é disposto para conectar de modo fixo o eixo de saída do motor a combustão com o alojamento de caixa de engrenagens. Portanto, o primeiro suporte de roda planetária também será travado no alojamento de caixa de engrenagens. Travando-se o eixo de saída do motor a combustão com o mecanismo de travamento e o primeiro suporte de roda planetária com o alojamento da caixa de engrenagens, a caixa de engrenagens e, desse modo, o veículo, se torna adaptada para operação elétrica pelas máquinas elétricas. As máquinas elétricas, desse modo, emitem um torque ao eixo de saída da caixa de engrenagens.
[0031] Um primeiro e um segundo dispositivo de acoplamento são dispostos entre o suporte de roda planetária e a roda solar das respectivas engrenagens planetárias. A tarefa dos dispositivos de acoplamento é travar os respectivos suportes de roda planetária com a roda solar. Quando o suporte de roda planetária e a roda solar forem conectados um ao outro, a potência do motor a combustão passará através do suporte de roda planetária, do dispositivo de acoplamento, da roda solar e prosseguirá mais adiante até a caixa de engrenagens, o que implica que as rodas planetárias não absorvem qualquer torque. Isso implica que a dimensão das rodas planetárias pode ser adaptada apenas para o torque da máquina elétrica em vez do torque do motor a combustão, o que, por sua vez, significa que as rodas planetárias podem ser projetadas com dimensões menores. Desse modo, é obtida uma disposição de acionamento, de acordo com a invenção, que tem uma construção compacta, um peso baixo e um custo de fabricação baixo.
[0032] Os dispositivos de acoplamento e os mecanismos de travamento compreendem preferencialmente uma manga anular, que é deslocada axialmente entre um estado conectado e um estado desconectado. A manga envolve, substancialmente de modo concêntrico, os componentes giratórios da caixa de engrenagens e é movida entre o estado conectado e o estado desconectado com um elemento de potência. Desse modo, uma construção compacta é obtida, com um peso baixo e um custo de fabricação baixo.
[0033] A fim de conectar, com o primeiro e com o segundo dispositivos de acoplamento, respectivamente, a roda solar e o suporte de roda planetária da respectiva engrenagem planetária, o motor a combustão e/ou a primeira máquina elétrica e/ou a segunda máquina elétrica são controlados de modo que uma velocidade de rotação síncrona seja alcançada entre a roda solar e o suporte de roda planetária. Quando uma velocidade de rotação síncrona tiver sido alcançada, o dispositivo de acoplamento é deslocado, de modo que a roda solar e o suporte de roda planetária se tornem mecanicamente conectados um ao outro.
[0034] A fim de desconectar o suporte de roda planetária e a respectiva roda solar da engrenagem planetária um do outro, a primeira e/ou a segunda máquinas elétricas são controladas, de modo que o equilíbrio de torque seja alcançado na engrenagem planetária. Quando um equilíbrio de torque tiver sido alcançado, o dispositivo de acoplamento é deslocado, de modo que a roda solar e o suporte de roda planetária não são mais mecanicamente conectados um ao outro.
[0035] O equilíbrio de torque se refere a um estado em que um torque atua em uma engrenagem anular interna disposta na engrenagem planetária, que representa o produto do torque que atua no suporte de roda planetária da engrenagem planetária e na razão de engrenagem da engrenagem planetária, enquanto, simultaneamente, um torque atua na roda solar da engrenagem planetária, que representa o produto do torque que atua no suporte de roda planetária e (1- a razão de engrenagem da engrenagem planetária). No caso de duas dentre as partes de componente da engrenagem planetária, isto é, a roda solar, a engrenagem anular interna ou os suportes de roda planetária, serem conectadas a um dispositivo de acoplamento, esse dispositivo de acoplamento não transfere qualquer torque entre as partes da engrenagem planetária quando o equilíbrio de torque prevalece. Consequentemente, o dispositivo de acoplamento pode ser facilmente deslocado e as partes de componente da engrenagem planetária podem ser deslocadas.
BREVE DESCRIÇÃO DOS DESENHOS
[0036] É apresentada abaixo uma descrição, como um exemplo, de modalidades preferidas da invenção com referência aos desenhos incluídos, nos quais:
[0037] A Figura 1 mostra esquematicamente um veículo com um trem de potência híbrido em uma vista lateral, disposto para ser movido de acordo com o método, de acordo com a presente invenção,
[0038] A Figura 2 mostra uma vista esquemática de um trem de potência híbrido, adaptado para o movimento de acordo com o método, de acordo com a presente invenção,
[0039] A Figura 3 mostra uma vista esquemática de um trem de potência híbrido adaptado para mover de acordo com o método, de acordo com a presente invenção, e
[0040] A Figura 4 mostra um fluxograma relacionado ao método para mover um veículo de acordo com a presente invenção.
DESCRIÇÃO DETALHADA DAS MODALIDADES PREFERIDAS DA INVENÇÃO
[0041] A Figura 1 mostra uma vista lateral esquemática de um veículo 1, que compreende uma caixa de engrenagens 2 e um motor a combustão 4, que são compreendidos em um trem de potência híbrido 3. O motor a combustão 4 é conectado à caixa de engrenagens 2 e a caixa de engrenagens 2 é conectada adicionalmente às rodas de acionamento 6 do veículo 1 através de um eixo propulsor 9. As rodas de acionamento 6 são equipadas com dispositivos de frenagem 7 para frenar o veículo 1.
[0042] A Figura 2 mostra uma vista lateral esquemática de um trem de potência híbrido 3 com uma caixa de engrenagens 2, que compreende um eixo de entrada 8, uma primeira e uma segunda engrenagem planetária 10 e 12, respectivamente, uma primeira e uma segunda máquina elétrica 14 e 16, respectivamente, um contraeixo 18 e um eixo de saída 20. O trem de potência compreende um motor a combustão 4, conectado à caixa de engrenagens 2. O motor a combustão 4 é conectado com a caixa de engrenagens 2 através do eixo de entrada 8 da caixa de engrenagens. O motor a combustão tem um eixo de saída 97. O eixo de saída 97 do motor a combustão 4 é conectado ao eixo de entrada da caixa de engrenagens 2. Uma primeira engrenagem planetária 10 tem uma primeira engrenagem de anel interna 22, à qual um primeiro rotor 24 na primeira máquina elétrica 14 é conectado. A primeira engrenagem planetária 10 também tem uma primeira roda solar 26 e um primeiro suporte de roda planetária 50. A primeira engrenagem planetária 10 é conectada a um primeiro eixo principal 34. O primeiro eixo principal 34 é conectado com a primeira roda solar 26, disposta na primeira engrenagem planetária 10. A segunda engrenagem planetária 12 tem uma segunda engrenagem anular interna 28, à qual um segundo rotor 30 da segunda máquina elétrica 16 é conectado. A segunda engrenagem planetária 12 tem uma segunda roda solar 32 e um segundo suporte de roda planetária 51. A segunda engrenagem planetária 12 é conectada a um segundo eixo principal 36. A primeira e a segunda rodas solares 26 e 32, respectivamente, são dispostas coaxialmente, em que, de acordo com a modalidade exibida, implica que um primeiro eixo principal 34 disposto na primeira roda solar 26 se estende dentro de um segundo eixo principal 36, que é equipado com um orifício central 38, disposto no segundo suporte de roda planetária 51. Também é possível dispor a primeira e a segunda rodas solares 26 e 32, respectivamente, e também o primeiro eixo principal 34 e o segundo eixo principal 36, em paralelo com e próximos um do outro. Nesse caso, o contraeixo 18 é disposto adequadamente entre o primeiro eixo principal 34 e o segundo eixo principal 36, e o torque pode ser extraído diretamente do contraeixo 18. O contraeixo 18, desse modo, constitui, nesse caso, o eixo de saída 20.
[0043] O motor a combustão 4 é conectado ao primeiro suporte de roda planetária 50 e o primeiro suporte de roda planetária 50 é conectado à segunda roda solar 32.
[0044] A primeira máquina elétrica 14 é equipada com um primeiro estator 40 que é conectado ao veículo 1, através de um alojamento de engrenagem 42 que envolve a caixa de engrenagens 2. A segunda máquina elétrica 16 é equipada com um segundo estator 44 que é conectado ao veículo 1, através de um alojamento de engrenagem 42 que envolve a caixa de engrenagens 2. A primeira e a segunda máquina elétrica 16 são conectadas a um dispositivo de armazenamento de energia 46, tal como uma bateria, que, dependendo do modo de operação do veículo 1, opera as máquinas elétricas 14 e 16, respectivamente. Em outros modos de operação, as máquinas elétricas 14 e 16, respectivamente, podem funcionar como geradores, em que a potência é suprida para o dispositivo de armazenamento de energia 46. Um dispositivo de controle eletrônico 48 é conectado ao dispositivo de armazenamento de energia 46 e controla o suprimento de potência para as máquinas elétricas 14 e 16, respectivamente. Preferencialmente, o dispositivo de armazenamento de energia 46 é conectado às máquinas elétricas 14 e 16, respectivamente, através de um comutador 49, que é conectado ao dispositivo de controle 48. As máquinas elétricas 14 e 16 também podem operar uma à outra. A energia elétrica é, então, levada a partir de uma dentre as máquinas elétricas 14, 16 para a segunda máquina elétrica 14, 16 através do comutador 49 conectado às máquinas elétricas 14, 16. Desse modo, é possível obter um equilíbrio de potência entre as máquinas elétricas 14, 16. Outro computador 53 também pode ser conectado ao dispositivo de controle 48 e à caixa de engrenagens 2. Levando-se a potência elétrica a partir da primeira máquina elétrica 14, 16 para a segunda máquina elétrica 14, 16 através de um comutador 49, nenhuma potência elétrica será levada para e a partir do dispositivo de armazenamento de energia 46. Desse modo, as condições são criadas para uma vida útil aumentada do dispositivo de armazenamento de energia 46. Enquanto move o veículo 1, é possível selecionar um primeiro e um segundo torque, que as máquinas elétricas 14, 16 devem gerar para obter uma determinada saída de potência em cada uma das máquinas elétricas 14, 16, em que a soma da saída de potência da primeira e da segunda máquina elétrica 14, 16 é zero. As máquinas elétricas 14, 16 irão, desse modo, enquanto o veículo 1 é movido, suprir alternadamente uma à outra com potência. Desse modo, a frequência de extração e suprimento de potência a partir de e para o dispositivo de armazenamento de energia 46 diminui, o que resulta em um aumento da vida útil do dispositivo de armazenamento de energia 46.
[0045] A primeira engrenagem planetária 10 é equipada com um primeiro suporte de roda planetária 50, no qual um primeiro conjunto de rodas planetárias 52 é montado. A segunda engrenagem planetária 12 é equipada com um segundo suporte de roda planetária 51, no qual um segundo conjunto de rodas planetárias 54 é montado. O segundo eixo principal 36 é conectado com o segundo suporte de roda planetária 51, disposto na segunda engrenagem planetária 12. O primeiro conjunto de rodas planetárias 52 interage com a primeira engrenagem anular interna 22 e com a primeira roda solar 26. O segundo conjunto de rodas planetárias 54 interage com a segunda engrenagem anular interna 28 e com a segunda roda solar 32. O eixo de entrada 8 da caixa de engrenagens 2 é conectado ao primeiro suporte de roda planetária 50. O primeiro suporte de roda planetária 50 na primeira engrenagem planetária 10 é conectado direta e fixamente com a segunda roda solar 32 da segunda engrenagem planetária 12. Desse modo, o primeiro suporte de roda planetária 50 e a segunda roda solar 32 sempre terão a mesma direção rotacional e a mesma velocidade de rotação.
[0046] Um primeiro dispositivo de acoplamento 56 é disposto entre a primeira roda solar 26 e o primeiro suporte de roda planetária 50. Dispondo-se o primeiro dispositivo de acoplamento 56, de modo que a primeira roda solar 26 e o primeiro suporte de roda planetária 50 sejam conectados um com o outro, e possam, portanto, não girar um em relação ao outro, o primeiro suporte de roda planetária 50 e a primeira roda solar 26 girarão com velocidades rotacionais iguais.
[0047] Um segundo dispositivo de acoplamento 58 é disposto entre a segunda roda solar 32 e o segundo suporte de roda planetária 51. Dispondo-se o segundo dispositivo de acoplamento 58, de modo que a segunda roda solar 32 e o segundo suporte de roda planetária 51 sejam conectados um com o outro, e possam, portanto, não girar um em relação ao outro, o segundo suporte de roda planetária 51 e a primeira roda solar 32 girarão com velocidades rotacionais iguais.
[0048] Preferencialmente, o primeiro e o segundo dispositivos de acoplamento 56, 58 compreendem uma primeira e uma segunda manga de acoplamento equipadas com estrias 55 e 57, respectivamente, que são deslocáveis axialmente em uma seção equipada com estrias no primeiro e no segundo, respectivamente, suporte de roda planetária 50 e 51, e em uma seção equipada com estrias nas respectivas rodas solares 26 e 32. Deslocando-se a manga de acoplamento respectiva 55, 57, de modo que as seções equipadas com estrias sejam conectadas através das mangas de acoplamento respectivas 55, 57, o primeiro suporte de roda planetária 50 e a primeira roda solar 26, bem como o segundo suporte de roda planetária 51 e a segunda roda solar 32, respectivamente, se tornam intertravados mutuamente um com o outro e podem não girar um em relação ao outro.
[0049] O primeiro e o segundo dispositivos de acoplamento 56, 58, de acordo com a modalidade exibida na Figura 2, são dispostos entre a primeira roda solar 26 e o primeiro suporte de roda planetária 50, e entre a segunda roda solar 28 e o segundo suporte de roda planetária 51, respectivamente. No entanto, é possível dispor um dispositivo de acoplamento adicional ou alternativo (não exibido) entre a primeira engrenagem anular interna 22 e o primeiro suporte de roda planetária 50, e também dispor um dispositivo de acoplamento adicional ou alternativo (não exibido) entre a segunda engrenagem anular interna 28 e o segundo suporte de roda planetária 51.
[0050] O primeiro suporte de roda planetária 50 da primeira engrenagem planetária 10, nessa modalidade, é conectado fixamente à segunda roda solar 32 da segunda engrenagem planetária 12. Alternativamente, o primeiro suporte de roda planetária 50 é conectado fixamente à segunda engrenagem anular interna 28 da segunda engrenagem planetária 12. Alternativamente, o primeiro eixo principal 34 é conectado com uma primeira engrenagem anular 22, disposta na primeira engrenagem planetária 10.
[0051] Nessa modalidade, um terceiro dispositivo de acoplamento 59 é disposto entre a primeira engrenagem anular 22 e o alojamento de engrenagem 42. Atuando- se o terceiro dispositivo de acoplamento 59, de modo que a primeira engrenagem anular 22 e o alojamento de engrenagem 42 sejam conectados um com o outro e, consequentemente, não possam girar um em relação ao outro, um deslocamento para baixo de torque ocorrerá, isto é, um deslocamento para cima da velocidade de rotação a partir do suporte de roda planetária 50 para a primeira roda solar 26 ocorrerá.
[0052] Nessa modalidade, um quarto dispositivo de acoplamento 61 é disposto entre a segunda engrenagem anular interna 28 e o alojamento de engrenagem 42. Atuando-se o quarto dispositivo de acoplamento 61, de modo que a segunda engrenagem anular 28 e o alojamento de engrenagem 42 sejam conectados um com o outro e, consequentemente, não possam girar um em relação ao outro, um deslocamento para baixo de torque ocorrerá, isto é, um deslocamento para cima da velocidade de rotação ocorrerá a partir do suporte de roda planetária 50 para a segunda roda solar 32.
[0053] Preferencialmente, o terceiro e o quarto dispositivos de acoplamento 59, 61 compreende uma terceira e uma quarta manga de acoplamento equipada com estrias 65 e 67, respectivamente, que são deslocáveis axialmente nas seções equipadas com respectivas estrias da primeira e da segunda engrenagens anelares 22 e 28, bem como em uma seção equipada com estrias do alojamento de engrenagem 42. Deslocando-se as respectivas mangas de acoplamento 65, 67 de modo que as seções equipadas com estrias sejam conectadas através das respectivas mangas de acoplamento 65, 67, da primeira engrenagem anular 22 e do alojamento de engrenagem 42, e a segunda engrenagem anular 28 e o alojamento de engrenagem 42, respectivamente, sejam intertravados e não possam girar um em relação ao outro.
[0054] Um dispositivo de transmissão 19, que compreende um primeiro par de engrenagens 60, disposto entre a primeira engrenagem planetária 10 e o eixo de saída 20, é conectado ao primeiro e ao segundo eixo principal 34, 36. O primeiro par de engrenagens 60 compreende uma primeira engrenagem de pinhão 62 e uma primeira roda dentada 64, que estão em engate um com o outro. Um segundo par de engrenagens 66 é disposto entre a segunda engrenagem planetária 12 e o eixo de saída 20. O segundo par de engrenagens 66 compreende uma segunda engrenagem de pinhão 68 e uma segunda roda dentada 70, que estão em engate um com o outro. Um terceiro par de engrenagens 72 é disposto entre a primeira engrenagem planetária 10 e o eixo de saída 20. O terceiro par de engrenagens 72 compreende uma terceira engrenagem de pinhão 74 e uma terceira roda dentada 76, que estão em engate um com o outro. Um quarto par de engrenagens 78 é disposto entre a segunda engrenagem planetária 12 e o eixo de saída 20. O quarto par de engrenagens 78 compreende uma quarta engrenagem de pinhão 80 e uma quarta roda dentada 82, que estão em engate um com o outro.
[0055] No primeiro eixo principal 34, a primeira e a terceira engrenagens de pinhão 62 e 74, respectivamente, são dispostas. A primeira e a terceira engrenagens de pinhão 62 e 74, respectivamente, são conectadas fixamente com o primeiro eixo principal 34, de modo que as mesmas não possam girar em relação ao primeiro eixo principal 34. No segundo eixo principal 36, a segunda e a quarta engrenagens de pinhão 68 e 80, respectivamente, são dispostas. A segunda e a quarta engrenagens de pinhão 68 e 80, respectivamente, são conectadas fixamente com o segundo eixo principal 36, de modo que as mesmas não possam girar em relação ao segundo eixo principal 36.
[0056] O contraeixo 18 se estende substancialmente em paralelo com o primeiro e com o segundo eixo principal 34 e 36, respectivamente. No contraeixo 18, a primeira, a segunda, a terceira e a quarta rodas dentadas 64, 70, 76 e 82, respectivamente, são montadas. A primeira engrenagem de pinhão 62 engata com a primeira roda dentada 64, a segunda engrenagem de pinhão 68 engata com a segunda roda dentada 70, a terceira engrenagem de pinhão 74 engata com a terceira roda dentada 76 e a quarta engrenagem de pinhão 80 engata com a quarta roda dentada 82.
[0057] A primeira, a segunda, a terceira e a quarta rodas dentadas 64, 70, 76 e 82, respectivamente, podem ser travadas individualmente com e liberadas a partir do contraeixo 18 com o auxílio do primeiro, do segundo, do terceiro e do quarto elementos de acoplamento 84, 86, 88 e 90, respectivamente. Os elementos de acoplamento 84, 86, 88 e 90, respectivamente, consistem, preferencialmente, nas seções equipadas com estrias nas rodas dentadas 64, 70, 76 e 82, respectivamente, e no contraeixo 18, que interage com quinta e com sexta mangas de acoplamento 83, 85 que engatam mecanicamente com as seções equipadas com estrias da primeira à quarta respectiva roda dentada 64, 70, 76 e 82 e do contraeixo 18. O primeiro e terceiro elementos de acoplamento 84, 88 são equipados, preferencialmente, com uma manga de acoplamento comum 83, e o segunda e o quarto elementos de acoplamento 86, 90 são equipados, preferencialmente, com uma manga de acoplamento comum 85. No estado liberado, uma rotação relativa pode ocorrer entre as rodas dentadas 64, 70, 76 e 82 e o contraeixo 18. Os elementos de acoplamento 84, 86, 88 e 90, respectivamente, também podem consistir em embreagens por atrito. No contraeixo 18 uma quinta roda dentada 92 também é disposta, que engata com um uma sexta roda dentada 94, que é disposta no eixo de saída 20 da caixa de engrenagens 2.
[0058] O contraeixo 18 é disposto entre a respectiva primeira e a respectiva segunda engrenagens planetárias 10, 12 e o eixo de saída 20, de modo que o contraeixo 18 seja conectado com o eixo de saída 20 através de um quinto par de engrenagens 21, que compreende a quinta e a sexta roda dentada 92, 94. A quinta roda dentada 92 é disposta de modo a ser conectada com e desconectada do contraeixo 18 com um quinto elemento de acoplamento 93.
[0059] Desconectando-se a quinta roda dentada 92, que é disposta para ser desconectável do contraeixo 18, é possível transferir torque a partir de uma segunda engrenagem planetária 12 ao contraeixo 18 através do segundo par de engrenagens 66, e para transferir, adicionalmente, torque do contraeixo 18 para o eixo de saída 20 através do primeiro par de engrenagens 60. Desse modo, um número de passos de engrenagem é obtido, em que o torque a partir de uma dentre as engrenagens planetárias 10, 12 pode ser transferido para o contraeixo 18, e mais adiante ao longo do contraeixo 18 para o eixo principal 34, 36 conectado com a segunda engrenagem planetária 10, 12, finalmente transferir o torque para o eixo de saída 20 da caixa de engrenagens 2. Supõe-se, no entanto, que um mecanismo de acoplamento 96 disposto o primeiro eixo principal 34 e o eixo de saída 20 sejam conectados, o é descrito em maiores detalhes abaixo.
[0060] A quinta roda dentada 92 pode ser travada a e liberada do contraeixo 18 com o auxílio de um quinto elemento de acoplamento 93. O elemento de acoplamento 93 consiste, preferencialmente, nas seções equipadas com estrias adaptadas na quinta roda dentada 92 e no contraeixo 18, em que as seções interagem com uma nona manga de acoplamento 87, que se engata mecanicamente com as seções equipadas com estrias da quinta roda dentada 92 e do contraeixo 18. No estado liberado, uma rotação relativa pode ocorrer entre a quinta roda dentada 92 e o contraeixo 18. O quinto elemento de acoplamento 93 também pode consistir nas embreagens por atrito.
[0061] Em inúmeras situações de conjunto de engrenagens, em que as engrenagens anelares das engrenagens planetárias 10, 12 são travadas com o alojamento de engrenagem 42 com o auxílio do terceiro e do quarto dispositivos de acoplamento 59, 61, o torque será deslocado para baixo após a primeira engrenagem planetária 10 e deslocado para cima após a segunda engrenagem planetária 12. Quando a transferência de torque ao longo do primeiro eixo principal 34 através do contraeixo 18 diminuir após a primeira engrenagem planetária 10, os eixos, engrenagens de pinhão e rodas dentadas conectadas nessa podem ser projetados para serem menores, o que torna a caixa de engrenagens 2 mais compacta. Um número grande de passos de engrenagem também pode ser obtido sem qualquer necessidade de dispor um número de pares de engrenagens adicionais na caixa de engrenagens. Consequentemente, o peso e o custo da caixa de engrenagens 2 também são reduzidos. A quinta e a sexta rodas dentadas 92 e 94, respectivamente, funcionarão como um quinto par de engrenagens 21, que, em determinados passos de engrenagem, desloca para cima o torque para o eixo de saída 20 da caixa de engrenagens 2.
[0062] A transferência de torque a partir do eixo de entrada 8 da caixa de engrenagens 2 para o eixo de saída 20 da caixa de engrenagens 2 pode ocorrer através da primeira ou da segunda engrenagem planetária 10 e 12, respectivamente, e o contraeixo 18. A transferência de torque também pode ocorrer diretamente através da primeira engrenagem planetária 10, cuja primeira roda solar 26 é conectada, através do primeiro eixo principal 34, ao eixo de saída 20 da caixa de engrenagens 2 através de um mecanismo de acoplamento 96. O mecanismo de acoplamento 96, preferencialmente, compreende uma sétima manga de acoplamento equipada com estrias 100, que é deslocável axialmente no primeiro eixo principal 34 e nas seções equipadas com estrias do eixo de saída 20. Deslocando-se a sétima manga de acoplamento 100, de modo que as seções equipadas com estrias sejam conectadas através da sétima manga de acoplamento 100, o primeiro eixo principal 34 se torna travado com o eixo de saída 20, que, quando gira, terá, portanto, a mesma velocidade de rotação. Desconectando-se a quinta roda dentada 92 do quinto par de engrenagens 21 do contraeixo 18, o torque a partir da segunda engrenagem planetária 12 pode ser transferida para o contraeixo 18, e mais adiante ao longo do contraeixo 18 para o primeiro eixo principal 34, conectado com a primeira engrenagem planetária 10, a fim de finalmente transferir o torque através do mecanismo de acoplamento 96 para o eixo de saída 20 da caixa de engrenagens 2.
[0063] Em alguns modos de operação, a caixa de engrenagens 2 pode operar de modo que uma dentre as rodas solares 26 e 32, respectivamente, sejam travadas com o primeiro e com o segundo suporte de roda planetária 50 e 51, respectivamente, com a ajuda do primeiro e do segundo dispositivo de acoplamento 56 e 58, respectivamente. O primeiro e o segundo eixo principal 34 e 36, respectivamente, então, obtêm a mesma velocidade de rotação que o eixo de entrada 8 da caixa de engrenagens 2, dependendo de qual roda solar 26 e 32, respectivamente, é travada com os respectivos suportes de roda planetária 50 e 51. Uma ou ambas as máquinas elétricas 14 e 16, respectivamente, podem operar como um gerador para gerar potência elétrica para o dispositivo de armazenamento de energia 46. Alternativamente, a máquina elétrica 14 e 16, respectivamente, pode fornecer uma injeção de torque, a fim de, desse modo, aumentar o torque no eixo de saída 20. Em alguns tempos de operação, as máquinas elétricas 14 e 16, respectivamente, suprirão uma à outra com potência elétrica, independentemente do dispositivo de armazenamento de energia 46.
[0064] Em alguns modos de operação, a caixa de engrenagens 2 pode operar de tal forma que um dos rotores 24 e 30, respectivamente, das máquinas elétricas 14 e 16, respectivamente, é travada com o alojamento de engrenagem 42 através das respectivas engrenagens anelares 22 e 28, enquanto a segunda máquina elétrica 14 e 16, respectivamente, opera como um gerador para gerar potência elétrica para o dispositivo de armazenamento de energia 46, que será explicado em maiores detalhes abaixo. A máquina elétrica 14 e 16, respectivamente, cujo respectivo rotor 24 e 30, é travado com o alojamento de engrenagem 42, absorve um torque de reação da engrenagem anular 22 e 28, respectivamente, de modo que o equilíbrio de torque prevaleça após o travamento ser realizado com a ajuda do terceiro e do quarto dispositivos de acoplamento 59 e 61, respectivamente. Em vez de operar como um gerador, as máquinas elétricas 14 e 16, respectivamente, podem fornecer uma injeção de torque, a fim de, desse modo, aumentar o torque no eixo de saída 20. O equilíbrio de torque compreende um estado de torque substancialmente zero por um lado, e um torque neutralizante por outro, a fim dos dispositivos de acoplamento 59, 61 serem colocados em um estado, em que os mesmos não transferem torque entre as engrenagens anelares 22, 28 e o alojamento de engrenagem 42.
[0065] Também é possível que o torque de reação total tanto da primeira quanto da segunda máquina elétrica 14 e 16, respectivamente, gere potência para o dispositivo de armazenamento de energia 46. Na frenagem motora o condutor libera o pedal de acelerador (não exibido) do veículo 1. O eixo de saída 20 da caixa de engrenagens 2, então, opera uma ou ambas as máquinas elétricas 14 e 16, respectivamente, enquanto o motor a combustão 4 e as máquinas elétricas 14 e 16, respectivamente, realizam a frenagem motor. As máquinas elétricas 14 e 16, respectivamente, nesse caso, geram potência elétrica, que é armazenada no dispositivo de armazenamento de energia 46 no veículo 1. Esse estado de operação é chamado como frenagem regenerativa. A fim de facilitar um efeito de frenagem mais potente, o eixo de saída 97 do motor a combustão 4 pode ser travado e, dessa forma, impedido de girar. Desse modo, apenas uma dentre ou ambas as máquinas elétricas 14 e 16, respectivamente, funcionarão como freios e 16 gera potência elétrica, que é armazenada no dispositivo de armazenamento de energia 46. O travamento do eixo de saída 97 do motor a combustão 4 também pode ser realizado quando o veículo deve acelerar por apenas uma ou ambas as máquinas elétricas 14 e 16, respectivamente. Se o torque de uma ou ambas das respectivas máquinas elétricas 14 e 16 superar o torque fora do motor a combustão 4 e, em relação ao conjunto de engrenagens entre as mesmas, o motor a combustão 4 não terá a capacidade para resistir ao torque grande, que as respectivas máquinas elétricas 14 e 16 geram, de modo que se torna necessário travar o eixo de saída 97 do motor a combustão 4. O travamento do eixo de saída 97 do motor a combustão 4 é realizado, preferencialmente, com um dispositivo de travamento 102, que é disposto entre o primeiro suporte de roda planetária 50 e o alojamento de engrenagem 42. Travando-se o primeiro transportador de roda planetária 50 e o alojamento de engrenagem 42, o eixo de saída 97 do motor a combustão 4 também será travado, visto que o eixo de saída 97 dos motores a combustão 4 é conectado com primeiro transportador de roda planetária 50 através do eixo de entrada 8 da caixa de engrenagens. O dispositivo de travamento 102 compreende, preferencialmente, uma oitava manga de acoplamento equipada com estrias 104, que é deslocável axialmente em uma seção equipada com estrias do primeiro suporte de roda planetária 50, e em uma seção equipada com estrias do alojamento de engrenagem. Deslocando-se a oitava manga de acoplamento 104 de modo que as seções equipadas com estrias sejam conectadas através da manga de acoplamento 104, do primeiro suporte de roda planetária 50, e, portanto, o eixo de saída 97 do motor a combustão 4 é impedido de girar.
[0066] O dispositivo de controle 48 é conectado às máquinas elétricas 14 e 16, respectivamente, para controlar as respectivas máquinas elétricas 14 e 16, de modo que as mesmas, durante determinados tempos de operação, usem a potência elétrica armazenada para suprir a potência de acionamento para o eixo de saída 20 da caixa de engrenagens 2, e durante outros tempos de operação usam a energia cinética do eixo de saída 20 da caixa de engrenagens 2 para extrair e armazenar potência elétrica. O dispositivo de controle 48, desse modo, detecta a velocidade de rotação e/ou o torque do eixo de saída 97 do motor a combustão 4 através de sensores 98 dispostos nas máquinas elétricas 14 e 16, respectivamente, e no eixo de saída 20 da caixa de engrenagens 2, a fim de, desse modo, coletar informações e para controlar as máquinas elétricas 14 e 16, respectivamente, para operar como motores ou geradores elétricos. O dispositivo de controle 48 pode ser um computador com software adequado para esse propósito. O dispositivo de controle 48 também controla o fluxo de potência entre o dispositivo de armazenamento de energia 46 e os respectivos estatores 40 e 44 das máquinas elétricas 14 e 16, respectivamente. Em tempos em que as máquinas elétricas 14 e 16, respectivamente, operam como motores, a potência elétrica armazenada é suprida a partir do dispositivo de armazenamento de energia 46 para os respectivos estatores 40 e 44. Nos tempos em que as máquinas elétricas 14 e 16 operam conforme a potência elétrica de geradores é suprida a partir dos respectivos estatores 40 e 44 para o dispositivo de armazenamento de energia 46. No entanto, conforme declarado acima, as máquinas elétricas 14 e 16, respectivamente, podem, durante determinados tempos de operação, suprir uma à outra com potência elétrica, independentemente do dispositivo de armazenamento de energia 46.
[0067] O primeiro, o segundo, o terceiro e o quarto dispositivos de acoplamento 56, 58, 59 e 61, respectivamente, o primeiro, o segundo, o terceiro, o quarto e o quinto elementos de acoplamento 84, 86, 88, 90 e 93, respectivamente, o mecanismo de acoplamento 96 entre o primeiro eixo principal 34 e o eixo de saída 20, e o dispositivo de travamento 102 entre o primeiro suporte de roda planetária 50 e o alojamento de engrenagem 42, são conectados para o dispositivo de controle 48 através de suas respectivas mangas de acoplamento. Esses componentes são ativados e desativados, preferencialmente, por sinais elétricos do dispositivo de controle 48. As mangas de acoplamento são deslocadas, preferencialmente, por elementos de potência não exibidos, tais como cilindros operados hidráulica ou pneumaticamente. Também é possível deslocar as mangas de acoplamento com elementos de potência alimentados eletricamente.
[0068] A modalidade exemplificativa na Figura 2 mostra quatro engrenagens de pinhão 62, 68, 74 e 80, respectivamente, e quatro rodas dentadas 64, 70, 76 e 82, respectivamente, e duas respectivas engrenagens planetárias 10 e 12, com máquinas elétricas associadas 14 e 16, respectivamente. No entanto, é possível adaptar a caixa de engrenagens 2 com mais ou menos engrenagens de pinhão e rodas dentadas, e com mais engrenagens planetárias com máquinas elétricas associadas.
[0069] Abaixo, um deslocamento para cima a partir da primeira para a maior engrenagem, será descrito, em que a caixa de engrenagens 2 é disposta em um veículo 1. O deslocamento para cima ocorre enquanto o motor a combustão 4 está em operação. O eixo de entrada 8 da caixa de engrenagens 2 é conectado com o eixo de saída 97 do motor a combustão 4 do veículo 1. O eixo de saída 20 da caixa de engrenagens 2 é conectado a um eixo de acionamento 99 no veículo 1. Na ociosidade do motor a combustão 4 e quando o veículo 1 estiver parado, o eixo de entrada 8 da caixa de engrenagens 2 gira ao mesmo tempo em que o eixo de saída 20 da caixa de engrenagens 2 está parado. A disposição de travamento 102 é desativado, de modo que o eixo de saída 97 do motor a combustão 4 possa girar livremente. Visto que o eixo de entrada 8 da caixa de engrenagens 2 gira, o primeiro suporte de roda planetária 50 também girará, que implica que o primeiro conjunto de rodas planetárias 52 girará. Visto que o primeiro suporte de roda planetária 50 é conectado à segunda roda solar 32, à segunda roda solar 32, e, desse modo, também o segundo conjunto de rodas planetárias 54, girará. Não se suprindo potência para ou extrair potência da primeira e a segunda máquinas elétricas 14 e 16, respectivamente, o primeiro e o segundo anéis internos 22 e 28, respectivamente, que são conectados com o respectivo primeiro e o respectivo segundo rotor 24 e 30 das máquinas elétricas 14 e 16, respectivamente, girarão livremente, de modo que nenhum torque é absorvido pelos respectivos anéis internos 22 e 28. O primeiro, o segundo, o terceiro e o quarto dispositivos de acoplamento 56, 58, 59 e 61, respectivamente, são desconectados e, desse modo, não atuados. Desse modo, nenhum torque será transferido a partir do motor a combustão 4 para as rodas solares 26 e 32 das engrenagens planetárias 10 e 12. O mecanismo de acoplamento 96 entre o primeiro eixo principal 34 e o eixo de saída 20 é desconectado, de modo que o primeiro eixo principal 34 e o eixo de saída 20 possam girar livremente em relação entre si. Visto que o eixo de saída 20 da caixa de engrenagens 2 nesse estágio está parado, o contraeixo 18 também está parado. Em uma primeira etapa, a quarta roda dentada 82 e a terceira roda dentada 76 são conectadas com o contraeixo 18 com o auxílio do quarto e do terceiro elementos de acoplamento 90 e 88, respectivamente. A primeira roda dentada 64 e a segunda roda dentada 70 são desconectadas do contraeixo 18. Desse modo, a primeira roda dentada 64 e a segunda roda dentada 70 são permitidas girarem livremente em relação ao contraeixo 18. A quinta roda dentada 92 do quinto par de engrenagens 21 é travada no contraeixo 18 com o auxílio do quinto elemento de acoplamento 93.
[0070] A fim de iniciar a rotação do eixo de saída 20 da caixa de engrenagens 2, com o objetivo de acionar o veículo 1, a quarta engrenagem de pinhão 80 e a quarta roda dentada 82 no contraeixo 18 devem ser giradas. Isso é alcançado ao fazer o segundo suporte de roda planetária 51 girar. Quando o segundo suporte de roda planetária gira, o segundo eixo principal 36 também gira, e, desse modo, a quarta engrenagem de pinhão 80, que é disposta no segundo eixo principal 36, também gira. O segundo suporte de roda planetária 51 é girado controlando-se a segunda engrenagem anular interna 28 com a segunda máquina elétrica 16. Ativando-se a segunda máquina elétrica 16 e controlar o motor a combustão 4 para uma velocidade de motor adequada, o veículo 1 começa a se mover conforme o segundo eixo principal 36 começa a girar. Quando o segundo suporte de roda planetária 51 e a segunda roda solar 32 alcança a mesma velocidade de rotação, a segunda roda solar 32 é travada com o segundo suporte de roda planetária 51 com o auxílio do segundo dispositivo de acoplamento 58. Conforme mencionado acima, o segundo dispositivo de acoplamento 58 é adaptado, preferencialmente, de modo que a segunda roda solar 32 e o segundo suporte de roda planetária 51 se engatam mecanicamente um com o outro. Alternativamente, o segundo dispositivo de acoplamento 58 pode ser adaptado como um freio de deslizamento ou uma embreagem de múltiplas placas que conecta, de uma maneira suave, a segunda roda solar 32 com o segundo suporte de roda planetária 51. Quando a segunda roda solar 32 for conectada com o segundo suporte de roda planetária 51, o segundo suporte de roda planetária 51 girará com a mesma velocidade de rotação que o eixo de saída 97 do motor a combustão 4. Desse modo, o torque gerado pelo motor a combustão 4 é transferido ao eixo de saída 20 da caixa de engrenagens 2 através da quarta engrenagem de pinhão 80, da quarta roda dentada 82 no contraeixo 18, da quinta roda dentada 92 no contraeixo 18 e da sexta roda dentada 94 no eixo de saída 20 da caixa de engrenagens 2. O veículo 1, desse modo, começará a se mover e será impulsionado pela primeira engrenagem.
[0071] Cada um dentre o primeiro, o segundo, o terceiro e o quarto pares de engrenagens 60, 66, 72, 78 tem um conjunto de engrenagens, que é adaptado para as características de acionamento desejadas do veículo 1. De acordo com a modalidade exemplificativa exibida na Figura 2, o quarto par de engrenagens 78 tem o maior conjunto de engrenagens em comparação ao primeiro, segundo e terceiro pares de engrenagens 60, 66, 72, em que resulta no quarto par de engrenagens 78 que é conectado quando a menor engrenagem é engatada. O segundo par de engrenagens 66 transfere, como o quarto par de engrenagens 78, o torque entre o segundo eixo principal 36 e o contraeixo 18, e pode, em vez disso, ser encaixado com o maior conjunto de engrenagens, em comparação aos outros pares de engrenagens 60, 72, 78, que é o motivo de em tal modalidade o segundo par de engrenagens 66 pode ser conectado quando a menor engrenagem é engatada.
[0072] Quando o contraeixo 18 for girado pela quarta roda dentada 82 no contraeixo 18, a terceira roda dentada 76 no contraeixo 18 também girará. Desse modo, o contraeixo 18 opera a terceira roda dentada 76, que por sua vez opera a terceira engrenagem de pinhão 74 no primeiro eixo principal 34. Quando o primeiro eixo principal 34 girar, a primeira roda solar 26 também girará, e, desse modo, dependendo da velocidade de rotação do eixo de saída 97 do motor a combustão 4 e, desse modo, a velocidade de rotação do primeiro suporte de roda planetária 50, fará com que a primeira engrenagem anular interna 22 e o primeiro rotor 24 da primeira máquina elétrica 14 girem. Desse modo, é possível permitir que a primeira máquina elétrica 14 opere como um gerador para suprir potência para o dispositivo de armazenamento de energia 46, e/ou para suprir potência para a segunda máquina elétrica 16. Também é possível para a segunda máquina elétrica 16 ser operada como um gerador. Alternativamente, a primeira máquina elétrica 14 pode emitir uma injeção de torque, através do dispositivo de controle 48 que controla a primeira máquina elétrica 14 para fornecer um torque de acionamento.
[0073] A fim de se deslocar a partir de uma primeira engrenagem para uma segunda engrenagem, o travamento entre a segunda roda solar 32 e o segundo suporte de roda planetária 51 deve parar, o que é alcançado através da primeira e/ou da segunda máquina elétrica 14, 16 que é controlada de modo que o equilíbrio de torque prevaleça na segunda engrenagem planetária 12. Subsequentemente, o segundo dispositivo de acoplamento 58 é controlado, de modo que desconecte a segunda roda solar 32 e o segundo suporte de roda planetária 51 um do outro. O segundo suporte de roda planetária 51 e também o segundo eixo principal 36 podem girar livremente, que implica que a segunda roda solar 32, o segundo suporte de roda planetária 51 e o segundo eixo principal 36 não operam mais a quarta engrenagem de pinhão 80, disposta no segundo eixo principal 36. Supõe-se que a segunda máquina elétrica 16 não opera a segunda engrenagem anular 28. A segunda engrenagem é conectada, através do dispositivo de controle 48 que controla o motor a combustão 4, de modo que a velocidade de rotação síncrona aumente entre o primeiro suporte de roda planetária 50 e a primeira roda solar 26, a fim de alcançar um travamento entre o primeiro suporte de roda planetária 50 e a primeira roda solar 26. Isso é alcançado através do controle do primeiro dispositivo de acoplamento 56 de maneira que o primeiro suporte de roda planetária 50 e a primeira roda solar 26 sejam mecanicamente conectados um com o outro. Alternativamente, o primeiro dispositivo de acoplamento 56 pode ser adaptado como um freio de deslizamento ou uma embreagem de múltiplas placas que conecta, de uma maneira suave, a primeira roda solar 26 com o primeiro suporte de roda planetária 50. Sincronizando-se o controle do motor a combustão 4 e a segunda e a primeira máquina elétrica 14 e 16, respectivamente, uma transição suave e sem interrupção a partir da primeira a segunda engrenagem pode ser realizada.
[0074] O primeiro eixo principal 34 agora gira, operado pelo eixo de saída 97 do motor a combustão 4, e o primeiro eixo principal 34 agora opera a terceira engrenagem de pinhão 74. Desse modo, o primeiro suporte de roda planetária 50 agora opera a terceira engrenagem de pinhão 74, através da primeira roda solar 26 e do primeiro eixo principal 34. Visto que a terceira roda dentada 76 está em engate com a terceira engrenagem de pinhão 74 e é conectada com o contraeixo 18, a terceira roda dentada 76 operará o contraeixo 18, que por sua vez opera a quinta roda dentada 92 no contraeixo 18. A quinta roda dentada 92 por sua vez opera o eixo de saída 20 da caixa de engrenagens 2 através da sexta roda dentada 94, que é disposta no eixo de saída 20 da caixa de engrenagens 2. O veículo 1 agora é acionado com a segunda engrenagem engatada.
[0075] Quando o contraeixo 18 for girado pela terceira roda dentada 76, a quarta roda dentada 82 também girará. Desse modo, o contraeixo 18 opera a quarta roda dentada 82, que por sua vez opera a quarta engrenagem de pinhão 80 no segundo eixo principal 36. Quando o segundo eixo principal 36 girar, o segundo suporte de roda planetária 51 também girará, e, desse modo, dependendo da velocidade de rotação do eixo de saída 97 do motor a combustão 4 e, desse modo, a velocidade de rotação no primeiro suporte de roda planetária 50, fará com que a segunda engrenagem anular interna 28 e o segundo rotor 30 da segunda máquina elétrica 16 girem. Desse modo, é possível permitir que a segunda máquina elétrica 16 opere como um gerador para suprir potência para o dispositivo de armazenamento de energia 46, e/ou para suprir potência para a primeira máquina elétrica 14. A segunda máquina elétrica 16 também pode emitir uma injeção de torque, através do dispositivo de controle 48 que controla a segunda máquina elétrica 16 para fornecer um torque de propulsão.
[0076] A fim de se deslocar a partir da segunda engrenagem para a terceira engrenagem, a quarta roda dentada 82 no contraeixo 18 deve ser desconectada do contraeixo 18 com o quarto elemento de acoplamento 90, de modo que a quarta roda dentada 82 possa girar livremente em relação ao contraeixo 18. Subsequentemente, o contraeixo 18 é conectado com a segunda roda dentada 70 no contraeixo 18 através do segundo elemento de acoplamento 86. A fim de alcançar uma conexão do contraeixo 18 e da segunda roda dentada 70 no contraeixo 18, preferencialmente, a segunda máquina elétrica 16 é controlada de modo que uma velocidade de rotação síncrona surja entre o contraeixo 18 e a segunda roda dentada 70 no contraeixo 18. A velocidade de rotação síncrona pode ser alcançada através da medição da velocidade de rotação no segundo rotor 30 na segunda máquina elétrica 16, e da medição da velocidade de rotação no eixo de saída 20. Desse modo, a velocidade de rotação no segundo eixo principal 36 e a velocidade de rotação no contraeixo 18 pode ser determinada através de dadas razões de engrenagem. A velocidade de rotação dos respectivos eixos 18, 36 é controlada, e quando uma velocidade de rotação síncrona tiver surgido entre o contraeixo 18 e a segunda roda dentada 70, o contraeixo 18 e a segunda roda dentada 70 são conectados com o auxílio do segundo elemento de acoplamento 86.
[0077] A fim de completar o deslocamento a partir de uma segunda engrenagem para a terceira engrenagem, o travamento entre a primeira roda solar 26 e o primeiro suporte de roda planetária 50 deve parar, o que é alcançado através da primeira e/ou da segunda máquina elétrica 14, 16 que é controlada de modo que o equilíbrio de torque prevaleça na primeira engrenagem planetária 10, e, em seguida, o primeiro dispositivo de acoplamento 56 é controlado, de modo a desconectar a primeira roda solar 26 e o primeiro suporte de roda planetária 50 um do outro. Subsequentemente, o motor a combustão 4 é controlado de modo que uma velocidade de rotação síncrona surja entre a segunda roda solar 32 e o segundo suporte de roda planetária 51, de modo que o segundo dispositivo de acoplamento 58 possa ser engatado a fim de, desse modo, conectar a segunda roda solar 32 com o segundo suporte de roda planetária 51, através da manga de acoplamento 57. Sincronizando-se o controle do motor a combustão 2 e a segunda e a primeira máquina elétrica 14 e 16, respectivamente, uma transição suave e sem interrupção a partir da segunda a terceira engrenagem pode ser realizada.
[0078] A terceira roda dentada 76 é desconectada controlando-se a primeira máquina elétrica 14 de modo que um estado de torque substancialmente igual a zero surja entre o contraeixo 18 e a terceira roda dentada 76. Quando um estado de torque substancialmente igual a zero surgir, a terceira roda dentada 76 é desconectada do contraeixo 18 controlando-se o terceiro elemento de acoplamento 88, de modo a liberar a terceira roda dentada 76 do contraeixo 18. Subsequentemente, a primeira máquina elétrica 14 é controlada de modo que uma velocidade de rotação síncrona surja entre o contraeixo 18 e a primeira roda dentada 64. Quando a velocidade de rotação síncrona surgir, a primeira roda dentada 64 é conectada ao contraeixo 18 através do controle do primeiro elemento de acoplamento 84, de modo a conectar a primeira roda dentada 64 no contraeixo 18. A velocidade de rotação síncrona pode ser determinada, visto que a velocidade de rotação do primeiro rotor 24 na primeira máquina elétrica 14 seja medida e a velocidade de rotação do eixo de saída 20 seja medida, que segue quais velocidades de rotação dos eixos 18, 34 são controladas de modo que uma velocidade de motor síncrona surja. Desse modo, a velocidade de rotação do primeiro eixo principal 34 e a velocidade de rotação do contraeixo 18 pode ser determinada através de dadas razões de engrenagem.
[0079] O segundo eixo principal 36 agora gira com a mesma velocidade de rotação que o eixo de saída 97 do motor a combustão 4, e o segundo eixo principal 36 agora opera a segunda engrenagem de pinhão 68 através do segundo eixo principal 36. Visto que a segunda roda dentada 70 está em engate com a segunda engrenagem de pinhão 68 e é conectada com o contraeixo 18, a segunda roda dentada 70 operará o contraeixo 18, que por sua vez opera a quinta roda dentada 92 no contraeixo 18. A quinta roda dentada 92 por sua vez opera o eixo de saída 20 da caixa de engrenagens 2 através da sexta roda dentada 94, que é disposta no eixo de saída 20 da caixa de engrenagens 2. O veículo 1 agora é acionado em uma terceira engrenagem.
[0080] Quando o contraeixo 18 for girado pela segunda roda dentada 70 no contraeixo 18, a primeira roda dentada 64 no contraeixo 18 também girará. Desse modo, o contraeixo 18 opera a primeira roda dentada 64, que por sua vez opera a primeira engrenagem de pinhão 62 no primeiro eixo principal 34. Quando o primeiro eixo principal 34 girar, a primeira roda solar 26 também girará, e, desse modo, dependendo da velocidade de rotação do eixo de saída 97 do motor a combustão 4 e, desse modo, a velocidade de rotação do primeiro suporte de roda planetária 50, fará com que a primeira engrenagem anular interna 22 e o primeiro rotor 24 da segunda máquina elétrica 16 girem. Desse modo, é possível permitir que a primeira máquina elétrica 14 opere como um gerador para suprir potência para o dispositivo de armazenamento de energia 46, e/ou para suprir potência para a segunda máquina elétrica 16. Alternativamente, a primeira máquina elétrica 14 pode emitir uma injeção de torque, através do dispositivo de controle 48 que controla a primeira máquina elétrica 14 para fornecer um torque de acionamento.
[0081] A fim de completar o deslocamento a partir da terceira engrenagem para a terceira engrenagem, o travamento entre a segunda roda solar 32 e o segundo suporte de roda planetária 51 deve parar, o que é alcançado através da primeira e/ou da segunda máquina elétrica 14, 16 que é controlada de modo que o equilíbrio de torque seja criado na segunda engrenagem planetária 12, e, em seguida, o segundo dispositivo de acoplamento 58 é controlado, de modo a desconectar a segunda roda solar 32 e o segundo suporte de roda planetária 51 um do outro. Subsequentemente, a primeira engrenagem anular 22 é desacelerada, e quando a primeira engrenagem anular 22 está parada, o terceiro dispositivo de acoplamento 59 é controlado de modo que a primeira engrenagem anular 22 seja conectada e unida com o alojamento de engrenagem 42. Sincronizando-se o controle do motor a combustão 4 e a segunda e a primeira máquina elétrica 14 e 16, respectivamente, uma transição suave e sem interrupção a partir da terceira a quarta engrenagem pode ser realizada.
[0082] O primeiro eixo principal 34 é agora operado pelo eixo de saída 97 do motor a combustão 4, e o primeiro eixo principal 34 agora opera a primeira engrenagem de pinhão 62. Visto que a primeira roda dentada 64 está em engate com a primeira engrenagem de pinhão 62 e é conectada com o contraeixo 18, a primeira roda dentada 64 operará o contraeixo 18, que por sua vez opera a quinta roda dentada 92 no contraeixo 18. A quinta roda dentada 92 por sua vez opera o eixo de saída 20 da caixa de engrenagens 2 através da sexta roda dentada 94, que é disposta no eixo de saída 20 da caixa de engrenagens 2. O veículo 1 agora é acionado em uma quarta engrenagem.
[0083] Quando o contraeixo 18 for girado pela primeira roda dentada 64, a segunda roda dentada 70 no contraeixo 18 também girará. Desse modo, o contraeixo 18 opera a segunda roda dentada 70, que por sua vez opera a segunda engrenagem de pinhão 68 no segundo eixo principal 36. Quando o segundo eixo principal 36 girar, o segundo suporte de roda planetária 51 também girará, e, desse modo, dependendo da velocidade de rotação do eixo de saída 97 do motor a combustão 4 e, desse modo, a velocidade de rotação no primeiro suporte de roda planetária 50, fará com que a segunda roda solar 32 e o segundo rotor 28 da segunda máquina elétrica 16 girem. Desse modo, é possível permitir que a segunda máquina elétrica 16 opere como um gerador para suprir potência para o dispositivo de armazenamento de energia 46, e/ou para suprir potência para a primeira máquina elétrica 14. Alternativamente, a segunda máquina elétrica 16 também pode emitir uma injeção de torque, através do dispositivo de controle 48 que controla a segunda máquina elétrica 16 a fim de fornecer um torque de aceleração.
[0084] A fim de se deslocar a partir da quarta engrenagem para a quinta engrenagem, a primeira máquina elétrica 14 é controlada, de modo que o equilíbrio de torque prevaleça entre a primeira engrenagem anular 22 e o alojamento de caixa de engrenagens 42. Quando o equilíbrio de torque prevalecer entre a primeira engrenagem anular 22 e o alojamento de engrenagem 42, o terceiro dispositivo de acoplamento 59 é controlado de modo que a primeira engrenagem anular 22 seja desconectada do alojamento de engrenagem 42. Subsequentemente, a primeira máquina elétrica 14 é controlada de modo que um estado de torque substancialmente zero surja entre o contraeixo 18 e a primeira roda dentada 64. Quando um estado de torque substancialmente zero surgir entre o contraeixo 18 e a primeira roda dentada 64, o primeiro elemento de acoplamento 84 é controlado de modo que a primeira roda dentada 64 seja desconectada do contraeixo 18. Desse modo, a quarta engrenagem foi desengatada. A fim de engatar a quinta engrenagem, a primeira máquina elétrica 14 é controlada de modo que uma velocidade de rotação síncrona surja entre o primeiro eixo principal 34 e o eixo de saída 20. Quando uma velocidade de rotação síncrona surgir entre o primeiro eixo principal 34 e o eixo de saída 20, o mecanismo de acoplamento 96 é acoplado de modo que o primeiro eixo principal 34 e o eixo de saída 20 sejam conectados e unidos um com o outro. Subsequentemente, a primeira máquina elétrica 14 é controlada de modo que um estado de torque substancialmente zero surja entre o contraeixo 18 e a primeira roda dentada 32 do quinto par de engrenagens 21. Quando um estado de torque substancialmente zero surgir entre o contraeixo 18 e a quinta roda dentada 92, o quinto elemento de acoplamento 93 é controlado de modo que a quinta roda dentada 92 seja desconectada do contraeixo 18. Subsequentemente, a primeira máquina elétrica 14 é controlada de modo que uma velocidade de rotação síncrona surja entre o contraeixo 18 e a primeira roda dentada 64. Quando uma velocidade de rotação síncrona surgir entre o contraeixo 18 e a primeira roda dentada 64, o elemento de acoplamento 84 é controlado de modo que a primeira roda dentada 64 seja conectada e unida com o contraeixo 18. Finalmente, o motor a combustão 4 é controlado de modo que a segunda engrenagem anular 28 fique parada em relação ao alojamento de engrenagem 42. Quando a segunda engrenagem anular 28 está parada, o quarto dispositivo de acoplamento 61 é controlado de modo que a segunda engrenagem anular 28 seja conectada e travada com o alojamento de engrenagem 42. Desse modo, o veículo 1 agora é acionado na quinta engrenagem.
[0085] Quando a quinta engrenagem está engatada, o torque do motor a combustão 4 passará o primeiro e o segundo suportes de roda planetária 50, 51 e será transferido a partir do segundo eixo principal 36 através do segundo par de engrenagens 66 ao contraeixo 18, e mais adiante através do primeiro par de engrenagens 60 ao primeiro eixo principal 34, a fim de, subsequentemente, ser transferido ao eixo de saída 20 através do mecanismo de acoplamento 96.
[0086] A fim de se deslocar a partir da quinta engrenagem para a sexta engrenagem, a segunda máquina elétrica 16 é controlada, de modo que o equilíbrio de torque prevaleça entre a segunda engrenagem anular 28 e o alojamento de caixa de engrenagens 42. Quando o equilíbrio de torque prevalecer entre a segunda engrenagem anular 28 e o alojamento de engrenagem 42, o quarto dispositivo de acoplamento 61 é controlado de modo que a segunda engrenagem anular 28 seja desconectada do alojamento de engrenagem 42. Subsequentemente, o motor a combustão 4 é controlado de modo que uma velocidade de rotação síncrona surja entre a primeira roda solar 26 e o primeiro suporte de roda planetária 50. Quando uma velocidade de rotação síncrona surgir entre a primeira roda solar 26 e o primeiro suporte de roda planetária 50, o primeiro dispositivo de acoplamento 56 é controlado de modo que a primeira roda solar 26 seja conectada e unida com o primeiro suporte de roda planetária 50. Subsequentemente, a primeira máquina elétrica 16 é controlada de modo que um estado de torque substancialmente zero surja entre o contraeixo 18 e a primeira roda dentada 64. Quando um estado de torque substancialmente zero surgir entre o contraeixo 18 e a primeira roda dentada 64, o elemento de acoplamento 84 é controlado de modo que a primeira roda dentada 64 seja desconectada do contraeixo 18. Finalmente, a segunda máquina elétrica 16 é controlada de modo que uma velocidade de rotação síncrona surja entre o contraeixo 18 e a primeira roda dentada 76. Quando uma velocidade de rotação síncrona surgir entre o contraeixo 18 e a terceira roda dentada 76, o elemento de acoplamento 88 é controlado de modo que a terceira roda dentada 76 seja conectada e unida com o contraeixo 18. Desse modo, o veículo 1 agora é acionado na sexta engrenagem.
[0087] Quando a sexta engrenagem está engatada, o torque do motor a combustão 4 será transferido a partir do primeiro suporte de roda planetária 50 à primeira roda solar 26, e mais adiante até o primeiro eixo principal 34, a fim de, subsequentemente, ser transferido para o eixo de saída 20 através do mecanismo de acoplamento 96.
[0088] A fim de se deslocar a partir da sexta engrenagem para a sétima engrenagem, a primeira e/ou a segunda máquinas elétricas 14, 16 são controladas de modo que o equilíbrio de torque prevaleça na segunda engrenagem planetária 12. Quando equilíbrio de torque prevalecer na segunda engrenagem planetária 12, o primeiro dispositivo de acoplamento 56 é controlado de modo que a primeira roda solar 26 seja desconectada do primeiro suporte de roda planetária 50. Subsequentemente, o motor a combustão 4 é controlado de modo que uma velocidade de rotação síncrona surja entre a segunda roda solar 32 e o segundo suporte de roda planetária 51. Quando uma velocidade de rotação síncrona surgir entre a segunda roda solar 32 e o segundo suporte de roda planetária 51, o segundo dispositivo de acoplamento 58 é controlado de modo que a segunda roda solar 32 seja conectada e unida com o segundo suporte de roda planetária 51. Desse modo, o veículo 1 agora é acionado na sétima engrenagem.
[0089] Quando a sétima engrenagem for engatada, o torque do motor a combustão 4 passará o primeiro suporte de roda planetária 50 e prosseguirá até o segundo eixo principal 36. Subsequentemente, o torque é transferido a partir do segundo eixo principal 36 através do segundo par de engrenagens 66 ao contraeixo 18, e através do terceiro par de engrenagens 72 ao primeiro eixo principal 34, a fim de, subsequentemente, ser transferido para o eixo de saída 20 através do mecanismo de acoplamento 96.
[0090] De acordo com a modalidade acima, a caixa de engrenagens 2 compreende engrenagens de pinhão 62, 68, 74, 80 e rodas dentadas 64, 70, 76, 82 dispostas nos eixos principais 34, 36 e no contraeixo 18, respectivamente, para transferir velocidade de rotação e torque. No entanto, é possível usar outro tipo de transmissão, tal como acionamentos por corrente e correia, para transferir velocidade de rotação e torque na caixa de engrenagens 2.
[0091] O dispositivo de transmissão 19 tem quatro pares de engrenagens 60, 66, 72, 78 de acordo com a modalidade exemplificativa. No entanto, o dispositivo de transmissão 19 pode compreender qualquer número de pares de engrenagens.
[0092] A Figura 3 ilustra o trem de potência híbrido 3 de acordo com a Figura 2 em uma vista simplificada, em que alguns componentes foram excluídos por uma questão de clareza. G1 na Figura 3 consiste em pelo menos um par de engrenagens conectado com o primeiro eixo principal 34 e, portanto, com a primeira engrenagem planetária 10, e um par de engrenagens G2 consiste em pelo menos um par de engrenagens conectado com o segundo eixo principal 36 e, portanto, com a segunda engrenagem planetária 12. Esses pares de engrenagens G1, G2 também são conectados ao eixo de saída 20 através do contraeixo 18. G1 e G2, respectivamente, podem consistir em um ou diversos pares de engrenagens. O par de engrenagens G1, conectado com a primeira engrenagem planetária 10, pode, por exemplo, consistir no primeiro par de engrenagens 60 e/ou no terceiro par de engrenagens 72, conforme descrito na Figura 2. O par de engrenagens G2, conectado com a segunda engrenagem planetária 12, pode, por exemplo, consistir no segundo par de engrenagens 66 e/ou no quarto par de engrenagens 78, conforme descrito na Figura 2. Adicionalmente, pelo menos um par de engrenagens G3, conectado com o eixo de saída 20 e com o contraeixo, 18 é exibido, que pode consistir no quinto par de engrenagens 21 descrito na Figura 2. G2 pode consistir em um ou diversos pares de engrenagem. Alternativamente, o eixo de saída 20 pode ser omitido, de modo que o torque possa ser extraído diretamente do contraeixo 18, que, desse modo, constitui o eixo de saída.
[0093] O pelo menos um par de engrenagens G1, 60, 72, conectado com a primeira engrenagem planetária 10 compreende pelo menos uma engrenagem de pinhão 62, 74 e uma roda dentada 64, 76 dispostas em engate entre si, em que a engrenagem de pinhão 62, 74 pode ser disposta de tal forma que possa ser conectada com e desconectada do eixo principal 34, disposto com a primeira engrenagem planetária 10. A pelo menos uma roda dentada 64, 76 pode ser disposta de modo que possa ser conectada com e desconectada do contraeixo 18.
[0094] O pelo menos um par de engrenagens G2, 66, 78, conectado com a segunda engrenagem planetária 12, compreende pelo menos uma engrenagem de pinhão 68, 80 e uma roda dentada 70, 82 dispostas em engate entre si, em que a engrenagem de pinhão 68, 80 pode ser disposta de tal forma que possa ser conectada com e desconectada do segundo eixo principal 36, disposto com a primeira engrenagem planetária 12. A pelo menos uma roda dentada 70, 82 pode ser disposta de modo que possa ser conectada com e desconectada do contraeixo 18.
[0095] Na Figura 3, o terceiro e o quarto dispositivos de acoplamento 59 e 61 foram excluídos. De acordo com essa modalidade da invenção, ainda é possível acionar o veículo em um número de modos de operação e modos de acionamento. Como exemplo, o deslocamento a partir de uma engrenagem para outra será descrito. Os componentes exibidos na Figura 2 e na Figura 3 são usados para descrever o processo de deslocamento. A engrenagem é engatada quando o primeiro dispositivo de acoplamento 56 é conectado, e, desse modo, une a primeira roda solar 26 e um primeiro suporte de roda planetária 50 dispostos na primeira engrenagem planetária 10 um com o outro, enquanto, simultaneamente, o segundo dispositivo de acoplamento 58 é desconectado, e, desse modo, desconecta a segunda roda solar 32 e o segundo suporte de roda planetária 51, dispostos na segunda engrenagem planetária 12, um do outro. Nessa engrenagem o primeiro eixo principal 34 é operado pelo eixo de saída 97 do motor a combustão 4, e, quando for necessário, pela primeira máquina elétrica 14, que resulta no primeiro eixo principal 34 que opera a primeira engrenagem de pinhão 62. Visto que a primeira roda dentada 64 está em engate com a primeira engrenagem de pinhão 62 e é conectada com o contraeixo 18 através do primeiro elemento de acoplamento 84, a primeira roda dentada 64 operará o contraeixo 18, que por sua vez opera a quinta roda dentada 92 no contraeixo 18. A quinta roda dentada 92 por sua vez opera o eixo de saída 20 da caixa de engrenagens 2 através da sexta roda dentada 94, que é disposta no eixo de saída 20 da caixa de engrenagens 2.
[0096] A fim de se deslocar para a próxima engrenagem, a segunda máquina elétrica 16 é controlada de modo que uma propulsão seja gerada através do segundo eixo principal 36 e através do segundo par de engrenagens 66, em que a segunda roda dentada 70 do segundo par de engrenagens 66 é conectada ao contraeixo 18 através do segundo elemento de acoplamento 86. O torque de propulsão é transmitido adicionalmente através do quinto par de engrenagens 21 e finalmente para o eixo de saída 20.
[0097] A fim de desengatar a primeira roda dentada 64 do contraeixo 18, de modo que a quarta engrenagem seja desconectada, o motor a combustão 4 e a primeira máquina elétrica 14 são controlados primeiro de modo que a primeira roda dentada 64 seja levada para um estado de torque substancialmente zero em relação ao contraeixo 18. Quando um estado de torque substancialmente zero surgir, o primeiro elemento de acoplamento 84 é desengatado, de modo que a primeira roda dentada 64 seja desconectada do contraeixo 18.
[0098] Subsequentemente, a velocidade de rotação do primeiro eixo principal 34 é sincronizada com a velocidade de rotação do eixo de saída 20, e, em seguida, o mecanismo de acoplamento 96 é acoplado de modo que conecte o primeiro eixo principal 34 ao eixo de saída 20.
[0099] Subsequentemente, o motor a combustão 4 e a primeira máquina elétrica 14 são controlados de modo que o torque de propulsão ocorra através do primeiro eixo principal 34 e através do mecanismo de acoplamento 96, e prossegue mais adiante até o eixo de saída 20. Reduzindo-se o torque de propulsão da segunda máquina elétrica 16, o quinto elemento de acoplamento 93 pode ser levado a um estado de torque substancialmente zero em relação ao contraeixo 18. Quando um estado de torque substancialmente igual a zero surgir, o quinto elemento de acoplamento 93 é desengatado, de modo que a quinta roda dentada 92 do quinto par de engrenagens 21 seja desconectada do contraeixo 18.
[00100] Subsequentemente, com a ajuda da segunda máquina elétrica 16, a velocidade de rotação do contraeixo 18 é sincronizada com a velocidade de rotação da terceira roda dentada 76, e, em seguida, o terceiro elemento de acoplamento 88 é controlado de modo que conecta a terceira roda dentada 76 com o contraeixo 18. Quando essa conexão tiver sido concluída, o torque de propulsão pode ser compartilhado entre o motor a combustão 4, a primeira máquina elétrica 14 e a segunda máquina elétrica 16. Subsequentemente, o equilíbrio de torque é criado na primeira engrenagem planetária 10, e, em seguida, o primeiro dispositivo de acoplamento 56 desconecta o primeiro suporte de roda planetária 50 e a primeira roda solar 26 um do outro. Finalmente, o segundo suporte de roda planetária 51 é a velocidade de rotação sincronizada com a segunda roda solar 32, e, em seguida, o segundo dispositivo de acoplamento 58 conectada o segundo suporte de roda planetária 51 e a segunda roda solar 32 entre si.
[00101] O modo como o equilíbrio de torque surge é descrito acima. O equilíbrio de torque se refere a um estado no qual um torque atua em uma engrenagem anular 22, 28, disposta na engrenagem planetária 10, 12, que representa o produto do torque que atua no suporte de roda planetária 50, 51 da engrenagem planetária 10, 12 e da razão de engrenagem da engrenagem planetária 10, 12, enquanto um torque atua na roda solar 26, 32 da engrenagem planetária 10, 12, representando o produto do torque que atua no suporte de roda planetária 50, 51 e (1- a razão de engrenagem da engrenagem planetária). No caso de duas dentre as partes de componente da engrenagem planetária 10, 12, a roda solar 26, 32, a engrenagem anular 22, 28 ou o suporte de roda planetária 50, 51 serem conectadas com um dispositivo de acoplamento 56, 58, esse dispositivo de acoplamento 56, 58 não transfere qualquer torque entre as partes da engrenagem planetária 10, 12, quando o equilíbrio de torque prevalecer. Consequentemente, o dispositivo de acoplamento 56, 58 pode ser facilmente deslocado e as partes de componente da engrenagem planetária 10, 12 podem ser deslocadas.
[00102] Conforme descrito, o torque é extraído da caixa de engrenagens 2 do eixo de saída 20. Também é possível extrair o torque diretamente do primeiro ou do segundo eixo principal 34, 36, ou diretamente a partir do contraeixo 18. O torque também pode ser extraído em paralelo de dois ou todos os três eixos 18, 34, 36 simultaneamente.
[00103] As modalidades abaixo para mover o veículo 1 são descritas. O terceiro e o quarto dispositivos de acoplamento 59 e 61 foram excluídos, visto que os mesmos não são necessários no método para mover o veículo 1.
[00104] A fim de mover o veículo, primeiro o motor a combustão 4 é iniciado, salvo caso já tenha sido iniciado, e, subsequentemente, a primeira roda solar 26 e o primeiro suporte de roda planetária 50 são desconectados um do outro com o primeiro dispositivo de acoplamento 56, e a segunda roda solar 32 e o segundo suporte de roda planetária 51 são conectados um ao outro com o segundo dispositivo de acoplamento 58. A fim de transmitir o torque ao eixo de saída 20, as engrenagens correspondentes ao terceiro e ao quarto pares de engrenagens 72, 78 são engatadas, através da conexão da terceira e da quarta rodas dentadas 76, 82 ao contraeixo 18 para engatar as engrenagens.
[00105] A quinta roda dentada 92 do quinto par de engrenagens 21, que pode ser disposta para ser desconectável do contraeixo 18, é travada no contraeixo 18. Subsequentemente, a primeira máquina elétrica 14 e a segunda máquina elétrica 16 são ativadas, de modo que a primeira máquina elétrica 14 gire na direção oposta à segunda máquina elétrica 16, que implica que um é gerado no eixo de saída 20. A primeira máquina elétrica 14 é ativada para exercer um primeiro torque T1, e a segunda máquina elétrica 16 é ativada para exercer um segundo torque T2, em que o tamanho do primeiro e do segundo torque T1, T2 influenciam a saída de potência P da primeira e da segunda máquinas elétricas 14, 16.
[00106] O torque de trem de potência TD desejado, e, portanto, o torque desejado no eixo de saída 20, são criados através de uma combinação de torque da primeira e da segunda máquinas elétricas 14, 16, de acordo com as equações E1 e E1’ abaixo. Ao mesmo tempo, a potência total consumida pela primeira e pela segunda máquinas elétricas 14, 16 variará de acordo com a equação E2 abaixo. Um dado torque pode, desse modo, ser produzido com consumos de potência total diferentes. Se um determinado consumo de potência for desejado, as duas equações são combinadas, em que o torque da primeira e da segunda máquinas elétricas 14, 16 é obtido a partir da solução das duas equações E1 e E2, e E1’ e E2, respectivamente.
[00107] Nos casos em que o par de engrenagens G3, que é conectado com o contraeixo 18 e com o eixo de saída 20, é conectado e travado no contraeixo 18, e de um mecanismo de acoplamento S6, 96, disposto entre o primeiro eixo principal 34 e o eixo de saída 20 é aberto, o torque TD desejado no eixo de saída 20 da caixa de engrenagens, também chamado de torque de trem de potência, pode ser obtido através de uma combinação de torque da primeira e da segunda máquinas elétricas 14, 16, de acordo com a equação E1 abaixo:
Figure img0001
[00108] em que T1 é o torque que a primeira máquina elétrica 14 emite e T2 é o torque emitido pela segunda máquina elétrica 16. K1 e K2 são constantes, que são determinadas pelo número dentes nas partes de componente das respectivas engrenagens planetárias 10, 12. G1 é a razão de engrenagem entre o primeiro eixo principal 34 e o contraeixo 18, G2 é a razão de engrenagem entre o segundo eixo principal 36 e o contraeixo 18, e G3 é a razão de engrenagem entre o contraeixo 18 e o eixo de saída 20, para os pares de engrenagens conectados selecionados.
[00109] Nos casos em que o par de engrenagens G3, que é conectado com o contraeixo 18 e com o eixo de saída 20, é desconectado do contraeixo 18, e em que o mecanismo de acoplamento 96 é travado e, desse modo, conecta o primeiro eixo principal 34 e o eixo de saída 20, o torque TD no eixo de saída 20 da caixa de engrenagens é determinado pela equação E1’ abaixo:
Figure img0002
[00110] n1 é a velocidade de motor da primeira máquina elétrica 14 e n2 é a velocidade de motor da segunda máquina elétrica 16.
[00111] A potência total PE das máquinas elétricas 14, 16 deve, de acordo com o método inovador, cancelar um ao outro, de modo que a soma da potência PE se torne zero, em relação às perdas elétricas nas máquinas elétricas 14, 16, de modo que o dispositivo de armazenamento de energia 46 não seja usado. Desse modo, é possível de acordo com a invenção, selecionar um primeiro e um segundo torque T1, T2, que as máquinas elétricas devem gerar a fim de obter a determinada saída de potência em cada uma das máquinas elétricas 14, 16, em que a soma da saída de potência PE da primeira e da segunda máquina elétrica 14, 16 é zero. Enquanto se move, a primeira máquina elétrica 14 é usada para controlar a tensão entre as máquinas elétricas 14, 16. A segunda máquina elétrica 16 é controlada a fim de para emitir um torque desejado T2. Desse modo, a frequência de extração e suprimento de potência a partir de e para o dispositivo de armazenamento de energia 46 diminui, que resulta em um aumento da vida útil do dispositivo de armazenamento de energia 46. Desse modo, também é possível que o dispositivo de armazenamento de energia possa ser excluído.
[00112] Quando a segunda roda solar 32 e o segundo suporte de roda planetária 51 giram com uma velocidade de rotação síncrona, a segunda roda solar 32, disposta na segunda engrenagem planetária 12, e um segundo suporte de roda planetária 51 são conectados um com o outro, através do segundo dispositivo de acoplamento 58, de modo que o veículo 1 possa ser operado exclusivamente pelo motor a combustão 4.
[00113] Método para mover um veículo com um trem de potência híbrido 3 de acordo com a invenção, compreende um motor a combustão 4; uma caixa de engrenagens 2 com um eixo de entrada 8 e um eixo de saída 20, em que o motor a combustão é conectado ao eixo de entrada 8; uma primeira engrenagem planetária 10, que é conectada ao eixo de entrada 8; uma segunda engrenagem planetária 12, conectada à primeira engrenagem planetária 10; uma primeira máquina elétrica 14, conectada à primeira engrenagem planetária 10; uma segunda máquina elétrica 16, conectada à segunda engrenagem planetária 12; pelo menos um par de engrenagens G1, 60, 72, conectados à primeira engrenagem planetária 10 e ao eixo de saída 20; e pelo menos um par de engrenagens G2, 66, 78, conectadas à segunda engrenagem planetária 12 e ao eixo de saída 20.
[00114] A Figura 4 mostra um fluxograma relacionada a um método para mover o veículo 1, que compreende as etapas: a) garantir que os componentes giratórios 26, 50 da primeira engrenagem planetária 10 sejam desconectados um do outro e garantir que os componentes giratórios 32, 51 da segunda engrenagem planetária 12 sejam desconectados um do outro, b) garantir que pelo menos uma engrenagem esteja engatada, que corresponde ao pelo menos um par de engrenagens G1, 60, 72, que é conectado com a primeira engrenagem planetária 10 e/ou o pelo menos um par de engrenagens G2, 66, 78 que é conectado com a segunda engrenagem planetária 12, e c) ativar a primeira máquina elétrica 14 e a segunda máquina elétrica 16, de modo que a saída de potência elétrica total a partir da primeira e da segunda máquinas elétricas 14, 16 seja zero, e de modo que um torque seja gerado no eixo de saída 20.
[00115] Preferencialmente, um torque é gerado no eixo de saída 20 através do motor a combustão 4 e através de pelo menos uma dentre a primeira e a segunda máquinas elétricas 14, 16. Preferencialmente, a primeira máquina elétrica 14 controla, na etapa c), a tensão ou a saída entre as máquinas elétricas 14, 16, enquanto a segunda máquina elétrica 16 é controlada para emitir um torque predeterminado T2. No caso de um dispositivo de armazenamento de energia 46 não ser conectado às máquinas elétricas 14, 16, a primeira máquina elétrica controlará apenas a tensão entre as máquinas elétricas 14, 16.
[00116] Preferencialmente, a primeira roda solar 26 e um primeiro suporte de roda planetária 50, dispostos na primeira engrenagem planetária 10, são desconectados um do outro na etapa a) com o uso de um primeiro dispositivo de acoplamento 56; e uma segunda roda solar 32 e o segundo suporte de roda planetária 51, dispostos na segunda engrenagem planetária 12, são desconectados um do outro com o uso de um segundo dispositivo de acoplamento 58.
[00117] Preferencialmente, o motor a combustão 4 é conectado com o primeiro suporte de roda planetária 50, que é conectado com a segunda roda solar 32.
[00118] Preferencialmente, o pelo menos um par de engrenagens G1, 60, 72, que é conectado com a primeira engrenagem planetária 10, compreende pelo menos uma engrenagem de pinhão 62, 74 e roda dentada 64, 76, disposta em engate uma com a outra, em que a engrenagem de pinhão 62, 74 é disposta para ser conectável com e desconectável do primeiro eixo principal 34 disposta com a primeira engrenagem planetária 10, e em que a roda dentada 64, 76 é disposta para ser conectável com e desconectável de um contraeixo 18; e o pelo menos um par de engrenagens G2, 66, 78, que é conectado à segunda engrenagem planetária 12, compreende pelo menos uma engrenagem de pinhão 68, 80 e roda dentada 70, 82, em engate uma com as outras, em que a engrenagem de pinhão 68, 80 é disposta para ser conectável com e desconectável de um segundo eixo principal 36, disposto com a primeira engrenagem planetária 12, e cuja roda dentada 70, 82 é disposta para ser conectável com e desconectável de um contraeixo 18, em que na etapa b) as engrenagens de pinhão 62, 74, 68, 80 são conectadas aos eixos principais 34, 36, e as rodas dentadas 64, 76, 70, 82 são conectadas ao contraeixo 18 para engatar as engrenagens.
[00119] Preferencialmente, um quinto par de engrenagens G3, 21 é disposto entre um contraeixo 18 e o eixo de saída 20, e o quinto par de engrenagens G3, 21 compreende uma quinta roda dentada 92, que é disposta para ser desconectável do contraeixo 18, e, após a etapa c), na etapa d), a quinta roda dentada 92 é travada no contraeixo 18.
[00120] Preferencialmente, após a etapa c) e d), em uma etapa adicional e), uma segunda roda solar 32 e um segundo suporte de roda planetária 51, dispostos na segunda engrenagem planetária 12, são conectados um com o outro com o uso de um segundo dispositivo de acoplamento 58, quando a segunda roda solar 32 e o segundo suporte de roda planetária 51 giram com um a velocidade de rotação síncrona.
[00121] Preferencialmente, na etapa e) a primeira e a segunda máquinas elétricas 14, 16 são ativadas de modo que a primeira máquina elétrica 14 gire na direção oposta a uma segunda máquina elétrica 16.
[00122] Preferencialmente, a primeira máquina elétrica 14 é ativada na etapa e) para exercer um primeiro torque T1, e a segunda máquina elétrica 16 é ativada para exercer um segundo torque T2, em que o tamanho do primeiro e do segundo torque T1, T2 influenciam a saída de potência P da primeira e da segunda máquinas elétricas 14, 16 ao eixo de saída 20.
[00123] De acordo com a invenção, um programa de computador P, armazenado no dispositivo de controle 48 e/ou no computador 53 é fornecido, que pode compreender procedimentos para mover o veículo 1.
[00124] O programa P pode ser armazenado de uma maneira executável, ou de uma maneira comprimida, em uma memória M e/ou uma memória de leitura/gravação R.
[00125] A invenção também se refere a um produto de programa de computador, que compreende código de programa armazenado em um meio legível por um computador, a fim de realizar as etapas do método especificado acima, quando o dito código de programa for executado no dispositivo de controle 48, ou em outro computador 53 conectado ao dispositivo de controle 48. O dito código de programa pode ser armazenado de uma maneira não volátil no dito meio legível por um computador 53.
[00126] Os componentes e os recursos especificados acima podem, na estrutura da invenção, serem combinados entre modalidades diferentes especificadas.

Claims (10)

1. Método para mover um veículo com um trem de potência híbrido (3), que compreende um motor a combustão (4); uma caixa de engrenagens (2) com um eixo de entrada (8) e um eixo de saída (20); uma primeira engrenagem planetária (10), que é conectada ao eixo de entrada (8) e um primeiro eixo principal (34); uma segunda engrenagem planetária (12), que é conectada à primeira engrenagem planetária (10) e um segundo eixo principal (36); uma primeira máquina elétrica (14), que é conectada à primeira engrenagem planetária (10); uma segunda máquina elétrica (16), que é conectada à segunda engrenagem planetária (12), em que as máquinas elétricas (14, 16) podem operar uma à outra; pelo menos um par de engrenagens (G1, 60, 72), conectado com a primeira engrenagem planetária (10) e com o eixo de saída (20); e pelo menos um par de engrenagens (G2, 66, 78), conectado com a segunda engrenagem planetária (12) e com o eixo de saída (20), em que o motor a combustão, através do eixo de entrada (8), é conectado com um primeiro suporte de roda planetária (50), disposto na primeira engrenagem planetária (10), e em que o segundo eixo principal (36) é conectado com um segundo suporte de roda planetária (51), disposto na segunda engrenagem planetária (12), caracterizado pelo fato de que as etapas, enquanto o motor a combustão (4) está em operação, compreendem: a) garantir que os componentes giratórios (22, 26, 50) da primeira engrenagem planetária (10) sejam desconectados uns dos outros pelo uso de um primeiro dispositivo de acoplamento (56), e garantir que os componentes giratórios (28, 32, 51) da segunda engrenagem planetária (12) sejam desconectados uns dos outros pelo uso de um segundo dispositivo de acoplamento (58), b) garantir que um do pelo menos um par de engrenagens (G1, 60, 72) entre a primeira engrenagem planetária (10) e o eixo de saída (20) esteja engatado, e que um do pelo menos um par de engrenagens (G2, 66, 78) entre a segunda engrenagem planetária (12) e o eixo de saída (20) esteja, e c) ativar a primeira máquina elétrica (14) e a segunda máquina elétrica (16), de modo que a saída de potência total a partir da primeira e da segunda máquinas elétricas (14, 16) seja zero, e de modo que um torque seja gerado no eixo de saída (20).
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que na etapa c) a primeira máquina elétrica (14) controla a tensão ou saída entre as máquinas elétricas (14, 16), enquanto a segunda máquina elétrica (16) é controlada para emitir um torque predeterminado (T2).
3. Método, de acordo com qualquer umja das reivindicações 1 ou 2, caracterizado pelo fato de que compreende, na etapa a), desconectar uma primeira roda solar (26), disposta na primeira engrenagem planetária (10), e o primeiro suporte de roda planetária (50) um do outro, com o uso de um primeiro dispositivo de acoplamento (56), e desconectar uma segunda roda solar (32), disposta na segunda engrenagem planetária (12), e o segundo suporte de roda planetária (51) um do outro, com o uso de um segundo dispositivo de acoplamento (58).
4. Método, de acordo com a reivindicação 3, caracterizado pelo fato de que o motor a combustão (4) é conectado com o primeiro suporte de roda planetária (50), que é conectado com a segunda roda solar (32).
5. Método, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que o pelo menos um par de engrenagens (G1, 60, 72), conectado com a primeira engrenagem planetária (10), compreende pelo menos uma engrenagem de pinhão (62, 74) e roda dentada (64, 76), dispostas engatadas uma com a outra, em que a engrenagem de pinhão (62, 74) é disposta de modo a ser conectada com e desconectada do primeiro eixo principal (34) disposto com a primeira engrenagem planetária (10), e em que a roda dentada (64, 76) é disposta de modo a ser conectável com e desconectável de um contraeixo (18); em que o pelo menos um par de engrenagens (G2, 66, 78), conectado à segunda engrenagem planetária (12), compreende pelo menos uma engrenagem de pinhão (68, 80) e roda dentada (70, 82), dispostas em engate uma com a outra, em que a engrenagem de pinhão (68, 80) é disposta para ser conectável com e desconectável do segundo eixo principal (36), disposto com a primeira engrenagem planetária (12), e cuja roda dentada (70, 82) é disposta para ser conectável com e desconectável de um contraeixo (18), em que na etapa b) as engrenagens de pinhão (62, 74, 68, 80) são conectadas aos eixos principais (34, 36), e as rodas dentadas (64, 76, 70, 82) são conectadas ao contraeixo (18) para engatar as engrenagens.
6. Método, de acordo com a reivindicação 5, caracterizado pelo fato de que um quinto par de engrenagens (G3, 21) é disposto entre o contraeixo (18) e o eixo de saída (20), e em que o quinto par de engrenagens (G3, 21) compreende uma quinta roda dentada (92), que é disposta de modo que possa ser desconectada do contraeixo (18), e em que após a etapa c), em uma etapa d), a quinta roda dentada (92) é travada no contraeixo (18).
7. Método, de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que após a etapa c) e d), em uma etapa adicional e), uma segunda roda solar (32), disposta na engrenagem planetária secundária (12), e um segundo suporte de roda planetária (51) são conectados um com o outro, com o uso de um segundo dispositivo de acoplamento (58), quando a segunda roda solar (32) e o segundo suporte de engrenagem planetária (51) giram com uma velocidade de rotação síncrona.
8. Método, de acordo com qualquer uma das reivindicações 1 a 7, caracterizado pelo fato de que na etapa e) a primeira e a segunda máquinas elétricas (14, 16) são ativadas de modo que a primeira máquina elétrica (14) gire na direção oposta à segunda máquina elétrica (16).
9. Método, de acordo com qualquer uma das reivindicações 1 a 8, caracterizado pelo fato de que, na etapa e) a primeira máquina elétrica (14) é ativada para exercer um primeiro torque (T1) e a segunda máquina elétrica (16) é ativada para exercer um segundo torque (T2), em que o tamanho do primeiro e do segundo torque (T1; T2) influencia a saída de potência (P) a partir da primeira e da segunda máquinas elétricas (14, 16) para o eixo de saída (20).
10. Veículo com um sistema de transmissão híbrido (3), que compreende um motor a combustão (4); uma caixa de engrenagens (2) com um eixo de entrada (8) e um eixo de saída (20); uma primeira engrenagem planetária (10), que é conectada ao eixo de entrada (8) e um primeiro eixo principal (34); uma segunda engrenagem planetária (12), que é conectada à primeira engrenagem planetária (10) e a um segundo eixo principal (36); uma primeira máquina elétrica (14), que é conectada à primeira engrenagem planetária (10); uma segunda máquina elétrica (16), que é conectada à segunda engrenagem planetária (12), em que as máquinas elétricas (14, 16) podem operar uma à outra; pelo menos um par de engrenagens (G1, 60, 72), conectado com a primeira engrenagem planetária (10) e com o eixo de saída (20); e pelo menos um par de engrenagens (G2, 66, 78), conectado com a segunda engrenagem planetária (12) e com o eixo de saída (20), em que o motor a combustão através do, primeiro suporte de roda planetária (50), disposto na primeira engrenagem planetária (10), e em que o segundo eixo principal (36) é conectado com um segundo suporte de roda planetária (51), disposto na segunda engrenagem planetária (12), caracterizado pelo fato de que o veículo (1) compreende um dispositivo de controle elétrico (48), que é instalado para controlar o movimento do veículo (1), tal como definido em qualquer uma das reivindicações 1 a 9.
BR112016018637-0A 2014-03-20 2015-03-17 Método para mover um veículo com um trem de potência híbrido, e, veículo com um sistema de transmissão híbrido BR112016018637B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1450328-8 2014-03-20
SE1450328A SE539028C2 (sv) 2014-03-20 2014-03-20 Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
PCT/SE2015/050300 WO2015142260A1 (en) 2014-03-20 2015-03-17 Method for takeoff of a vehicle comprising a hybrid driveline

Publications (2)

Publication Number Publication Date
BR112016018637A2 BR112016018637A2 (pt) 2017-08-08
BR112016018637B1 true BR112016018637B1 (pt) 2023-01-24

Family

ID=54145055

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112016018637-0A BR112016018637B1 (pt) 2014-03-20 2015-03-17 Método para mover um veículo com um trem de potência híbrido, e, veículo com um sistema de transmissão híbrido

Country Status (7)

Country Link
US (1) US11155265B2 (pt)
EP (1) EP3119630B1 (pt)
KR (1) KR101829442B1 (pt)
BR (1) BR112016018637B1 (pt)
RU (1) RU2654850C2 (pt)
SE (1) SE539028C2 (pt)
WO (1) WO2015142260A1 (pt)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE539032C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539660C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE538735C2 (sv) * 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539661C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor hos en hybriddrivlina, fordon med en sådan förbränningsmotor, datorprogram för att starta en sådan förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE537897C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramprodukt innefattande programkod
SE538187C2 (sv) 2014-03-20 2016-03-29 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE540692C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE537896C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE539002C2 (sv) 2014-03-20 2017-03-14 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE540245C2 (en) * 2015-12-01 2018-05-15 Scania Cv Ab A method for gear shifting in a gearbox, a gearbox and a vehicle
JP7215967B2 (ja) * 2019-06-18 2023-01-31 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH397818A (de) 1962-10-19 1965-08-31 Bbc Brown Boveri & Cie Druckgasschalter in Kesselbauform
DE4440710C2 (de) 1994-11-15 1998-02-12 Ford Werke Ag Wechselgetriebe mit Vorgelegewelle und Planetenrad-Untersetzungsgetriebe, insbesondere für Kraftfahrzeuge
US5730676A (en) 1996-10-22 1998-03-24 General Motors Corporation Three-mode, input-split hybrid transmission
AU9659898A (en) 1997-10-21 1999-05-10 Stridsberg Innovation Ab A hybrid powertrain
US6306057B1 (en) 1997-12-05 2001-10-23 Toyota Jidosha Kabushiki Kaisha Hybrid drive system
US5980410A (en) 1998-09-28 1999-11-09 Caterpillar Inc. Electro-mechanical transmission
DE19903936A1 (de) 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe, insbesondere für Kraftfahrzeuge
WO2000026053A1 (de) 1998-11-03 2000-05-11 Robert Bosch Gmbh Hybridgetriebe, insbesondere für kraftfahrzeuge
US6672415B1 (en) 1999-05-26 2004-01-06 Toyota Jidosha Kabushiki Kaisha Moving object with fuel cells incorporated therein and method of controlling the same
DE19934696A1 (de) 1999-07-23 2001-05-17 Zahnradfabrik Friedrichshafen Elektrodynamisches Antriebssystem
JP3458795B2 (ja) * 1999-10-08 2003-10-20 トヨタ自動車株式会社 ハイブリッド駆動装置
DE19950679B4 (de) 1999-10-21 2010-01-07 Volkswagen Ag Automatisiertes Doppelkupplungsgetriebe und Verfahren zur Steuerung eines automatisierten Doppelkupplungsgetriebes
US6371882B1 (en) 1999-12-17 2002-04-16 Caterpillar Inc. Control system and method for a multiple range continuously variable transmission using mechanical clutches
DE10021025A1 (de) 2000-05-02 2001-11-15 Bosch Gmbh Robert Getriebe, insbesondere für Kraftfahrzeuge
JP3702749B2 (ja) 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US6579201B2 (en) 2000-08-22 2003-06-17 New Venture Gear, Inc. Electric hybrid four-wheel drive vehicle
GB2370130B (en) 2000-10-11 2004-10-06 Ford Motor Co A control system for a hybrid electric vehicle
ITBO20000607A1 (it) 2000-10-18 2002-04-18 New Holland Italia Spa Gruppo di propulsione per un mezzo semovente
DE10052393A1 (de) 2000-10-20 2002-05-02 Thomas Goetze Doppelkupplungs-Schaltgetriebe, insbesondere mit 2 E-Maschinen in koaxialer Anordnung
US6427549B1 (en) 2001-01-10 2002-08-06 New Venture Gear, Inc. Dual countershaft twin clutch automated transmission
DE10133919A1 (de) 2001-07-12 2003-01-23 Bayerische Motoren Werke Ag Elektromechanisches Getriebe
US6793600B2 (en) 2001-11-28 2004-09-21 Kazuyoshi Hiraiwa Powertrain for hybrid electric vehicles
DE10203760A1 (de) 2002-01-25 2003-08-07 Bosch Gmbh Robert Verfahren zur Einstellung eines Soll-Betriebszustandes eines Hybridantriebes eines Fahrzeuges
DE10203064A1 (de) * 2002-01-28 2003-08-07 Bosch Gmbh Robert Verfahren zur Einstellung eines Betriebspunktes eines Hybridantriebes eines Fahrzeuges
DE10214478B4 (de) 2002-03-30 2004-04-15 Zf Sachs Ag Synchronisiereinrichtung für ein Doppelkupplungsgetriebe auf Grundlage wenigstens zweier Planetenradsätze und entsprechendes Doppelkupplungsgetriebe, sowie entprechender Kraftfahrzeug-Antriebsstrang
JP3857669B2 (ja) * 2002-09-04 2006-12-13 日産自動車株式会社 ハイブリッド変速機
US7014586B2 (en) 2002-10-23 2006-03-21 Switched Reluctance Drives Limited Electro-mechanical transmission systems
JP3640954B2 (ja) 2003-06-12 2005-04-20 本田技研工業株式会社 ハイブリッド車両の動力伝達装置
DE10348960A1 (de) 2003-10-22 2005-05-25 Zf Friedrichshafen Ag Getriebevorrichtung und Antriebsstrang eines Fahrzeugs
JP3991975B2 (ja) * 2003-11-12 2007-10-17 日産自動車株式会社 ハイブリッド変速機の変速制御装置
DE102004003393B3 (de) * 2004-01-23 2005-11-03 Piv Drives Gmbh Fördermittelgetriebe mit Rücklaufsperre
US7128680B2 (en) 2004-04-07 2006-10-31 General Motors Corporation Compound differential dual power path transmission
US7222014B2 (en) 2004-05-14 2007-05-22 General Motors Corporation Method for automatic traction control in a hybrid electric vehicle
US7225782B2 (en) 2005-03-03 2007-06-05 Ford Global Technologies, Llc System and method to control transitions in the number of cylinders in a hybrid vehicle
JP4320649B2 (ja) 2005-06-14 2009-08-26 トヨタ自動車株式会社 車両用駆動装置の制御装置
DE102005044068A1 (de) 2005-09-15 2007-03-29 Daimlerchrysler Ag Lastschaltbares Gruppengetriebe
DE102005046894A1 (de) 2005-09-30 2007-05-03 Zf Friedrichshafen Ag Automatisiertes Kfz-Schaltgetriebe und Verfahren zur Schaltsteuerung eines automatisierten Kfz-Schaltgetriebes
JP2007112258A (ja) 2005-10-19 2007-05-10 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動制御装置
US7427252B2 (en) 2005-10-31 2008-09-23 Gm Global Technology Operations, Inc. Electrically variable transmission with input split mode and compound split modes
US7640744B2 (en) 2005-12-02 2010-01-05 Ford Global Technologies, Llc Method for compensating compressor lag of a hybrid powertrain
WO2007102762A1 (en) 2006-03-09 2007-09-13 Volvo Technology Corporation Hybrid powertrain
CN101037087A (zh) 2006-03-14 2007-09-19 朱荣辉 一种机动车无级变速混合动力节能装置
US7399246B2 (en) 2006-04-12 2008-07-15 Gm Global Technology Operations, Inc. Hybrid power transmission
DE102006025525A1 (de) 2006-06-01 2007-12-06 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
JP4274210B2 (ja) 2006-08-08 2009-06-03 いすゞ自動車株式会社 出力軸減速式デュアルクラッチ変速機
JP4229156B2 (ja) 2006-09-06 2009-02-25 トヨタ自動車株式会社 動力出力装置およびハイブリッド自動車
US7575529B2 (en) 2006-09-13 2009-08-18 Gm Global Technology Operations, Inc. Hybrid electrically variable transmission with geared reverse mode using single motor/generator
EP2081789B1 (en) 2006-10-18 2012-06-27 Magna Powertrain Inc. Hybrid transmissions with planetary gearsets
JP4222406B2 (ja) 2006-10-24 2009-02-12 トヨタ自動車株式会社 動力出力装置およびハイブリッド自動車
US7479081B2 (en) 2006-10-25 2009-01-20 Gm Global Technology Operations Hybrid electrically variable transmission with dual power paths and selective motor connection
JP4079186B1 (ja) 2006-10-31 2008-04-23 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4079185B1 (ja) 2006-10-31 2008-04-23 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4190556B2 (ja) 2006-11-08 2008-12-03 トヨタ自動車株式会社 車両、車両の制御装置および車両の制御方法
JP4229175B2 (ja) 2006-11-22 2009-02-25 トヨタ自動車株式会社 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4229173B2 (ja) 2006-11-22 2009-02-25 トヨタ自動車株式会社 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4165600B2 (ja) 2006-11-22 2008-10-15 トヨタ自動車株式会社 連結装置、それを備えた動力出力装置およびハイブリッド自動車
JP4229174B2 (ja) 2006-11-22 2009-02-25 トヨタ自動車株式会社 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP2008141810A (ja) 2006-11-30 2008-06-19 Toyota Motor Corp 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4222414B2 (ja) 2006-12-04 2009-02-12 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4063310B1 (ja) 2006-12-12 2008-03-19 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4310362B2 (ja) 2006-12-28 2009-08-05 本田技研工業株式会社 動力装置
JP4274257B2 (ja) 2007-02-20 2009-06-03 トヨタ自動車株式会社 ハイブリッド車両
WO2008102885A1 (ja) * 2007-02-23 2008-08-28 Aisin Aw Co., Ltd. 自動変速機
JP4221494B2 (ja) 2007-03-29 2009-02-12 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4264843B2 (ja) * 2007-03-30 2009-05-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2008132893A1 (ja) * 2007-04-20 2008-11-06 Toyota Jidosha Kabushiki Kaisha 車両用動力伝達装置の制御装置
JP4339374B2 (ja) 2007-04-27 2009-10-07 本田技研工業株式会社 動力装置
DE102007022129A1 (de) 2007-05-11 2008-11-13 Daimler Ag Vorrichtung mit einer Planetengetriebeeinheit
JP4169081B1 (ja) 2007-05-25 2008-10-22 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4852474B2 (ja) 2007-05-29 2012-01-11 本田技研工業株式会社 動力装置
JP2008296778A (ja) 2007-05-31 2008-12-11 Toyota Motor Corp 連結装置、変速機およびそれを備えた動力出力装置、ならびに連結装置の制御方法
CN101743140B (zh) 2007-07-17 2013-09-25 雷诺卡车公司 包括优化能量回收系统的动力传动系
WO2009024162A1 (de) 2007-08-18 2009-02-26 Fev Motortechnik Gmbh Hybridantriebssystem mit zwei teilgetrieben
JP4957475B2 (ja) 2007-09-13 2012-06-20 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
DE102007049253B4 (de) * 2007-10-12 2019-05-16 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Regelung eines Leistungsverzweigungsgetriebes
US8121765B2 (en) * 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
DE102008043732A1 (de) 2007-12-13 2009-06-18 Zf Friedrichshafen Ag Zugkraftunterbrechungsfreies Getriebe
JP4529097B2 (ja) * 2008-03-24 2010-08-25 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP2009236264A (ja) * 2008-03-28 2009-10-15 Aisin Aw Co Ltd 自動変速機の制御装置
DE102008032320A1 (de) 2008-07-09 2010-01-14 Magna Steyr Fahrzeugtechnik Ag & Co Kg Hybridantriebsstrang für ein Kraftfahrzeug
JP4450095B2 (ja) * 2008-07-11 2010-04-14 トヨタ自動車株式会社 ハイブリッド車両の制御システム及び制御方法
US20100023436A1 (en) 2008-07-22 2010-01-28 Weild Iv David Perpetual revenue participation interests and methods related thereto
DE102009000723A1 (de) 2009-02-09 2010-08-12 Zf Friedrichshafen Ag Lastschaltgetriebe in Doppelkupplungsbauweise
AR075776A1 (es) 2009-03-03 2011-04-27 Honda Motor Co Ltd Aparato de transmision de potencia para vehiculo hibrido
JP5067642B2 (ja) * 2009-03-31 2012-11-07 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
US20100304920A1 (en) 2009-05-28 2010-12-02 Bernard Joseph Simon Hybrid Assembly , A Hybrid Power-Train , And A Method For Operating A Selectively Movable Assembly
WO2011045964A1 (ja) 2009-10-13 2011-04-21 本田技研工業株式会社 ハイブリッド車両
JP5250523B2 (ja) 2009-10-13 2013-07-31 本田技研工業株式会社 動力装置
US8517875B2 (en) 2009-11-12 2013-08-27 Magna Powertrain, Inc. Transmission having planetary gear drive with variable speed reduction
US20110294620A1 (en) 2010-05-26 2011-12-01 Steve Pruitt Power transmission system for hybrid vehicle
DE102010029597A1 (de) 2010-06-01 2011-12-01 Deere & Company Getriebeanordnung
JP2012017091A (ja) 2010-06-07 2012-01-26 Honda Motor Co Ltd ハイブリッド車両の駆動装置
US9073546B2 (en) 2010-06-15 2015-07-07 Honda Motor Co., Ltd. Hybrid vehicle driving system
KR101251724B1 (ko) 2010-06-18 2013-04-05 현대자동차주식회사 하이브리드 차량의 변속기
WO2011161811A1 (ja) * 2010-06-25 2011-12-29 トヨタ自動車株式会社 モータ駆動装置およびそれを搭載する車両
CN103109110B (zh) 2010-08-16 2016-03-23 艾里逊变速箱公司 用于无级变速传动装置的齿轮系统
JP2012066624A (ja) 2010-09-21 2012-04-05 Suzuki Motor Corp 電動車両の発電制御装置両
WO2012039066A1 (ja) * 2010-09-24 2012-03-29 トヨタ自動車株式会社 車両のエンジン始動制御装置
WO2012055527A1 (de) 2010-10-25 2012-05-03 Magna Powertrain Ag & Co Kg Getriebeeinheit und elektrische ergänzungseinheit
WO2012063309A1 (ja) 2010-11-08 2012-05-18 トヨタ自動車株式会社 エンジン始動装置
WO2012073651A1 (ja) 2010-12-03 2012-06-07 本田技研工業株式会社 ハイブリッド駆動装置
WO2012112028A2 (en) 2010-12-17 2012-08-23 Dti Group B.V. Transmission system, as well as method for changing a first gear ratio
US8858377B2 (en) 2010-12-22 2014-10-14 Toyota Jidosha Kabushiki Kaisha Vehicle power transmission device
JP2012180004A (ja) 2011-03-01 2012-09-20 Toyota Motor Corp 車両および車両の制御方法
DE102011005028A1 (de) 2011-03-03 2012-09-06 Zf Friedrichshafen Ag Doppelkupplungsgetriebe
JP5382467B2 (ja) 2011-04-20 2014-01-08 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP5273305B2 (ja) 2011-05-18 2013-08-28 トヨタ自動車株式会社 クランキングトルク制御装置
SE536050C2 (sv) 2011-06-27 2013-04-16 Scania Cv Ab Drivanordning för ett fordon och förfarande för att styra en sådan drivanordning
KR20130002712A (ko) * 2011-06-29 2013-01-08 현대자동차주식회사 하이브리드 자동차의 파워트레인 제어방법
MY171023A (en) * 2011-07-04 2019-09-23 Honda Motor Co Ltd Vehicle driving device
US8496561B2 (en) 2011-07-19 2013-07-30 GM Global Technology Operations LLC Fluid coupling for a hybrid powertrain system
DE102011080069A1 (de) 2011-07-29 2013-01-31 Zf Friedrichshafen Ag Automatisiertes Gruppengetriebe eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
JP6099649B2 (ja) 2011-08-24 2017-03-22 ツェットエフ ウィンド パワー アントワープ エヌ ヴイZf Wind Power Antwerpen N.V. ギア変速システム
KR20140062506A (ko) 2011-09-05 2014-05-23 혼다 기켄 고교 가부시키가이샤 하이브리드 차량의 제어 장치 및 제어 방법
KR101262980B1 (ko) 2011-11-11 2013-05-08 현대자동차주식회사 자동화 수동변속기
JP6009757B2 (ja) 2011-11-24 2016-10-19 トヨタ自動車株式会社 車両および車両の制御方法
US20140371025A1 (en) 2011-12-15 2014-12-18 Toyota Jidosha Kabushiki Kaisha Automatic transmission for vehicle
EP2810806B1 (en) 2012-02-01 2018-09-19 Toyota Jidosha Kabushiki Kaisha Drive apparatus for hybrid vehicle
JP5965700B2 (ja) * 2012-03-30 2016-08-10 本田技研工業株式会社 車両用駆動装置
US8733190B2 (en) * 2012-04-25 2014-05-27 Remy Technologies, Llc Starter machine system and method
US20130324347A1 (en) 2012-05-30 2013-12-05 Bison Gear & Engineering Corp. Reversible rotation gearbox and applications thereof
US9234565B2 (en) 2012-05-31 2016-01-12 Robert Bosch Gmbh Two-speed transmission and electric vehicle
SE536641C2 (sv) 2012-06-27 2014-04-22 Scania Cv Ab Förfarande för styrning av ett drivsystem hos ett fordon, ett drivsystem, ett datorprogram, en datorprogramprodukt och ett fordon
SE1250717A1 (sv) * 2012-06-27 2013-12-28 Scania Cv Ab Drivsystem och förfarande för att driva ett fordon
SE536519C2 (sv) 2012-06-27 2014-01-28 Scania Cv Ab Drivsystem och förfarande för att driva ett fordon
SE538161C2 (sv) 2012-06-27 2016-03-22 Scania Cv Ab Drivsystem och förfarande för att driva ett fordon
JP5967199B2 (ja) 2012-07-17 2016-08-10 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
GB201213466D0 (en) 2012-07-27 2012-09-12 Mclaren Automotive Ltd Gearbox
WO2014046580A1 (en) 2012-09-20 2014-03-27 Scania Cv Ab Electrically hybridised gearbox
EP2716482A3 (en) 2012-10-03 2016-08-31 Dana Limited Hybrid drivetrain and method of operation thereof
DE102012220063A1 (de) 2012-11-05 2014-05-08 Zf Friedrichshafen Ag Doppelkupplungsgetriebe in Vorgelegebauweise
JP2014092272A (ja) 2012-11-05 2014-05-19 Hyundai Motor Company Co Ltd 車両用自動変速機の遊星ギヤトレイン
AT512915B1 (de) 2012-11-08 2013-12-15 Avl List Gmbh Mehrstufengetriebe für Kraftfahrzeuge
KR101339274B1 (ko) 2012-12-10 2013-12-09 현대자동차 주식회사 차량용 자동변속기의 유성기어트레인
KR101427959B1 (ko) 2012-12-12 2014-08-11 현대자동차 주식회사 하이브리드 자동차의 동력전달장치
KR20150100742A (ko) 2012-12-20 2015-09-02 볼보 컨스트럭션 이큅먼트 에이비 연속 가변 변속기 및 연속 가변 변속기를 포함하는 작업 기계
BR112015015749A2 (pt) 2012-12-28 2017-07-11 Liu Guangquan transmissão de variação contínua, e, veículo
US9045136B2 (en) 2013-02-08 2015-06-02 Efficient Drivetrains, Inc. Systems and methods for implementing dynamic operating modes and control policies for hybrid electric vehicles
DE102013202895A1 (de) 2013-02-22 2014-08-28 Zf Friedrichshafen Ag Mehrstufengetriebe in Planetenbauweise
DE102013102161A1 (de) 2013-03-05 2014-09-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schaltgetriebe zur Verwendung mit einer Elektromaschine
SE1350392A1 (sv) 2013-03-27 2014-09-28 Scania Cv Ab Växellåda, fordon med en sådan växellåda, förfarande för attstyra en sådan växellåda, datorprogram för att styra en sådan växellåda, samt en datorprogramprodukt innefattande programkod
SE1350393A1 (sv) 2013-03-27 2014-09-28 Scania Cv Ab Växellåda, fordon med en sådan växellåda, förfarande för attstyra en sådan växellåda, datorprogram för att styra en sådan växellåda, samt en datorprogramprodukt innefattande programkod
EP2978620B1 (en) 2013-03-27 2021-05-12 Scania CV AB Hybrid powertrain with a gearbox and method to control such a hybrid drivetrain
US9539892B2 (en) 2013-05-30 2017-01-10 GM Global Technology Operations LLC Automated manual transmission with electric motor-generator
US9222550B2 (en) 2013-06-13 2015-12-29 Ford Global Technologies, Llc Multi-speed transmission
KR101459918B1 (ko) 2013-06-14 2014-11-07 현대자동차주식회사 차량의 자동화 수동 변속기
FR3008323A1 (fr) 2013-07-15 2015-01-16 Centre Nat Rech Scient Utilisation de certaines plantes accumulatrices de platinoides pour la mise en œuvre de reactions de chimie organique
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
SE538736C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera det drivande momentet från en hos hybriddrivlinan anordnad förbränningsmotor
SE538735C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539032C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
US9562602B2 (en) 2014-07-07 2017-02-07 Solar Turbines Incorporated Tri-lobe bearing for a gearbox
US9783039B2 (en) 2014-08-13 2017-10-10 Hyundai Motor Company Power transmission system of hybrid electric vehicle
DE102015208160A1 (de) 2014-09-25 2016-03-31 Deere & Company Getriebesteuerverfahren
BR112017005301B1 (pt) 2014-09-29 2023-02-28 Scania Cv Ab Trem de potência híbrido, método para controlar trem de potência híbrido e veículo compreendendo tal trem de potência híbrido
SE539295C2 (sv) 2014-09-29 2017-06-20 Scania Cv Ab Hybriddrivlina innefattande en rangeväxel och ett fordon meden sådan hybriddrivlina
SE540406C2 (sv) 2014-09-29 2018-09-11 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
US9500124B2 (en) 2014-11-13 2016-11-22 Caterpillar Inc. Hybrid powertrain and method for operating same
US9482330B1 (en) 2015-05-12 2016-11-01 GM Global Technology Operations LLC Hybrid transmission
JP6281531B2 (ja) 2015-07-10 2018-02-21 トヨタ自動車株式会社 動力伝達装置の制御装置

Also Published As

Publication number Publication date
US20170015325A1 (en) 2017-01-19
RU2016140144A (ru) 2018-04-20
SE1450328A1 (sv) 2015-09-21
KR101829442B1 (ko) 2018-02-13
EP3119630A4 (en) 2017-12-27
BR112016018637A2 (pt) 2017-08-08
WO2015142260A1 (en) 2015-09-24
RU2654850C2 (ru) 2018-05-22
EP3119630A1 (en) 2017-01-25
KR20160132486A (ko) 2016-11-18
US11155265B2 (en) 2021-10-26
EP3119630B1 (en) 2023-04-12
SE539028C2 (sv) 2017-03-21

Similar Documents

Publication Publication Date Title
BR112016018637B1 (pt) Método para mover um veículo com um trem de potência híbrido, e, veículo com um sistema de transmissão híbrido
BR112016018923B1 (pt) Método para controlar um trem de potência híbrido, e, veículo
BR112016018865B1 (pt) Método para controlar um trem de potência híbrido para otimizar o torque a partir de um motor a combustão disposto no trem de potência e veículo
US10077044B2 (en) Method for controlling a hybrid driveline for reducing electrical losses
US10821978B2 (en) Method to control a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program for controlling such a hybrid powertrain, and a computer program product comprising program code
BR112016018858B1 (pt) Método para controlar um trem de potência híbrido para otimizar consumo de combustível, e, veículo com um trem de potência híbrido
BR112017005287B1 (pt) Conjunto de força híbrido e um veículo com tal conjunto de força híbrido
US10479350B2 (en) Method for controlling a hybrid vehicle driveline
US20160061297A1 (en) Gearbox for a hybrid powertrain and method to control the gearbox
US9944273B2 (en) Method for controlling a hybrid driveline in order to achieve gear change without interruption of torque
BR112017005301B1 (pt) Trem de potência híbrido, método para controlar trem de potência híbrido e veículo compreendendo tal trem de potência híbrido
BR112016018919B1 (pt) Método para controlar um sistema de transmissão híbrido, e veículo
BR112016019367B1 (pt) Método para controlar um trem de potência híbrido, veículo com um trem de potência híbrido, e, meio não transitório legível por computador
US20170291610A1 (en) Method to control a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program for controlling such a hybrid powertrain, and a computer program product comprising program code
US10195931B2 (en) Method to control a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program to control such a hybrid powertrain, and a computer program product comprising program code
BR112016019349B1 (pt) Método para controlar um sistema de transmissão de veículo híbrido, e veículo
US10293806B2 (en) Method for starting a combustion engine in a hybrid driveline
BR112016019513B1 (pt) Método para iniciar motor a combustão em um trem de potência híbrido e veículo
BR112016019352B1 (pt) Método para iniciar motor a combustão em um sistema de transmissão híbrido e veículo
BR112016018928B1 (pt) Método para a movimentação de um veículo com um trem de potência híbrido, e, veículo
US10576962B2 (en) Method to control a hybrid powertrain, vehicle comprising such a hybrid powertrain, computer program for controlling such a hybrid powertrain, and a computer program product comprising program code
BR112015024719B1 (pt) Caixa de engrenagens, veículo, método para controlar tal caixa de engrenagens e meio legível por computador

Legal Events

Date Code Title Description
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 17/03/2015, OBSERVADAS AS CONDICOES LEGAIS