WO2011045964A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2011045964A1
WO2011045964A1 PCT/JP2010/062475 JP2010062475W WO2011045964A1 WO 2011045964 A1 WO2011045964 A1 WO 2011045964A1 JP 2010062475 W JP2010062475 W JP 2010062475W WO 2011045964 A1 WO2011045964 A1 WO 2011045964A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
power
torque
rotating machine
Prior art date
Application number
PCT/JP2010/062475
Other languages
English (en)
French (fr)
Inventor
重光 圷
阿部 典行
広太 笠岡
板東 真史
大矢 聡義
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/501,383 priority Critical patent/US8666579B2/en
Priority to JP2011536064A priority patent/JP5362840B2/ja
Priority to DE112010004022T priority patent/DE112010004022T5/de
Priority to CN201080043607.8A priority patent/CN102574452A/zh
Publication of WO2011045964A1 publication Critical patent/WO2011045964A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/18Reluctance machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/114Super-capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle driven by a power unit for driving a driven part.
  • Patent Document 1 As a conventional power plant of this type, for example, one disclosed in Patent Document 1 is known.
  • This power plant is for driving the left and right drive wheels of the vehicle, and includes an internal combustion engine as a power source, and a transmission connected to the internal combustion engine and the drive wheels.
  • This transmission has a first and a second planetary gear set constructed in a general single pinion type, and a first and a second rotating machine provided with one rotor and one stator, respectively.
  • the first ring gear, the first carrier, and the first sun gear of the first planetary gear set are mechanically connected to the internal combustion engine, the second carrier of the second planetary gear set, and the first rotating machine, respectively. It is done.
  • the second sun gear, the second carrier, and the second ring gear of the second planetary gear set are mechanically connected to the second rotating machine, the driving wheel, and the first rotating machine, respectively.
  • the first and second rotating machines are electrically connected to each other via a controller.
  • mechanical connections are indicated by solid lines and electrical connections are indicated by dashed dotted lines in connection with elements.
  • the flow of power and power is indicated by thick solid lines with arrows.
  • the power of the internal combustion engine is transmitted to the drive wheels, for example, in the following manner while the vehicle is traveling. That is, as shown in FIG. 141, after the power of the internal combustion engine is transmitted to the first ring gear, it is synthesized with the power transmitted to the first sun gear as described later, and this synthesized power is transmitted through the first carrier. Is transmitted to the second carrier. Further, in this case, power generation is performed by the second rotating machine, and the generated electric power is supplied to the first rotating machine via the controller. With this power generation, a part of the combined power transmitted to the second carrier is distributed to the second sun gear and the second ring gear, and the remaining combined power is transferred to the drive wheels.
  • the power distributed to the second sun gear is transmitted to the second rotating machine, and the power distributed to the second ring gear is transmitted to the first sun gear via the first rotating machine. Further, the power of the first rotating machine generated along with the supply of the power described above is transmitted to the first sun gear.
  • the power plant in addition to the first and second rotating machines, at least two planetary gear units for distributing and combining the power are essential in its construction, and accordingly, the power plant has a large size Will lead to
  • the path consisting of the first carrier ⁇ second carrier ⁇ second ring gear ⁇ first rotating machine ⁇ first sun gear ⁇ first carrier, and the first carrier ⁇ second carrier ⁇ Power is recirculated in a path consisting of second sun gear ⁇ second rotating machine ⁇ first rotating machine ⁇ first sun gear ⁇ first carrier. Because the very large combined power from the first ring gear and the first sun gear passes through the first carrier and passes directly through the second carrier by this power recirculation, in order to withstand this large combined power.
  • the size of the first and second planetary gear units has to be increased, which leads to a further increase in size and cost of the power plant. Furthermore, with the enlargement of such a power plant and the increase in the power passing through the power plant, the loss generated in the power plant is also increased, and the drive efficiency of the power plant is lowered.
  • An object of the present invention is to provide a hybrid vehicle driven by a power plant that can achieve downsizing and cost reduction and can improve driving efficiency.
  • a hybrid vehicle is a first rotor in which two adjacent magnetic poles have circumferentially arranged pole rows having mutually different polarities ((1) For example, due to changes in the magnetic poles generated in the plurality of armatures arranged in the circumferential direction and arranged to face the A1 rotor 24 and the first rotor 14) and the first rotor in the radial direction in the embodiment.
  • a first stator (for example, the stator 23 and the stator 16 in the embodiment) having an armature row generating a rotating magnetic field moving in the circumferential direction, and the first rotor and the first stator, which are disposed between each other
  • a second rotor (for example, the A2 rotor 25 and the second rotor 15 in the embodiment) having a plurality of soft magnetic bodies arranged in the circumferential direction at intervals; and the electric machine of the first stator Child row
  • the ratio of the number of generated magnetic poles, the number of magnetic poles of the magnetic pole row of the first rotor, and the number of soft magnetic bodies of the second rotor is 1: m: (1 + m) / 2 (where m is an integer)
  • a first rotating machine (for example, the first rotating machine 21 and the first rotating machine 10 in the embodiment) in which the first rotor and one of the second rotors are connected to the drive shaft
  • a motor for example, the engine 3 in the embodiment) whose output shaft is
  • a capacitor capable of transferring power between the first rotating machine and the second rotating machine e.g. And a battery 33, a battery 33
  • the battery is a state detection unit (for example, a current / voltage sensor 56 in the embodiment) for detecting the charge state of the capacitor.
  • a control unit for example, the ECU 2 in the embodiment for controlling the power unit, the control unit controlling the remaining capacity of the storage battery when driving the prime mover to start the hybrid vehicle It is characterized by controlling the output of said motor based on it.
  • the control unit controls the power unit such that the remaining capacity of the capacitor falls within the range from the lower limit value to the upper limit value, and the remaining capacity of the capacitor is When driving the motor for forward start of the hybrid vehicle at a first threshold value or lower lower than the upper limit value, the rotational magnetic field generated in the first stator of the first rotating machine It is characterized in that the output of the prime mover is lowered by controlling the rotational speed of the magnetic field so as to limit the number of turns of the prime mover low.
  • the control unit controls the power unit such that the remaining capacity of the capacitor falls within the range from the lower limit value to the upper limit value, and the remaining capacity of the capacitor is When driving the motor for backward start of the hybrid vehicle under a second threshold value higher than the lower limit value, the rotating magnetic field generated in the first stator of the first rotating machine It is characterized in that the output of the prime mover is lowered by controlling the rotational speed of the magnetic field so as to limit the number of turns of the prime mover low.
  • control unit controls the prime mover to maintain an output torque of the prime mover.
  • control unit is configured to calculate a predetermined value of the regenerative energy per unit time generated in the first stator of the first rotating machine with respect to the torque required for the prime mover. If so, it is characterized in that the prime mover is controlled to limit the output torque of the prime mover low.
  • the control unit controls the power unit such that the remaining capacity of the storage battery falls within the range from the lower limit value to the upper limit value, and the hybrid vehicle
  • the motor is driven to drive the first stator of the first rotating machine It controls so that the magnetic field rotational speed of the said rotating magnetic field which generate
  • the second rotating machine includes a rotor (for example, the rotor 103 in the embodiment) and an armature (for example, the stator 102 in the embodiment).
  • a first rotating element for example, a first sun gear S1 in the embodiment
  • a second rotating element for example, in the embodiment that operate in alignment with a motor (for example, the rotating machine 101 in the embodiment).
  • a third rotating element (for example, the first ring gear R1 in the embodiment) connected to the rotor, and the energy input to the second rotating element is It has a function of distributing to the first rotating element and the third rotating element, and a function of combining the respective energy inputted to the first rotating element and the third rotating element and outputting the energy to the second rotating element.
  • Rotation mechanism eg A first planetary gear unit PS1 in the embodiment, one of the first rotor and the second rotating element, and the second rotor and the first rotating element is the motor It is characterized in that it is connected to an output shaft and the other is connected to the drive shaft.
  • a third rotor (for example, an embodiment) in which magnetic pole arrays having two adjacent magnetic poles having different polarities are provided in the circumferential direction.
  • B1 rotor 34 the B1 rotor 34
  • the third rotor and a rotating magnetic field moving in the circumferential direction is generated due to changes in the magnetic poles generated in the plurality of armatures aligned in the circumferential direction.
  • a second stator (for example, a stator 33 in the embodiment) having an armature row, and a plurality of soft members arranged between the third rotor and the second stator and spaced apart from each other in the circumferential direction
  • a fourth rotor (for example, the B2 rotor 35 in the embodiment) having a magnetic body, and the number of magnetic poles generated in the armature row of the second stator, and the magnetic pole row of the third rotor Number of magnetic poles,
  • the ratio of the fourth rotor to the number of the soft magnetic members is set to 1: m: (1 + m) / 2 (where m ⁇ 1), the first rotor is connected to the drive shaft, and the motor
  • the fourth rotor When the second rotor is connected to the output shaft, the fourth rotor is connected to the drive shaft, the third rotor is connected to the output shaft of the motor, and the second drive shaft is connected to the second drive shaft.
  • the third rotor is connected to the output shaft of
  • the hybrid vehicle of the first aspect of the present invention it is possible to prevent overcharge and discharge of the storage battery.
  • FIG. 1 schematically shows a power plant according to a first embodiment
  • FIG. It is a block diagram which shows the control apparatus which controls the engine etc. which are shown in FIG. It is an expanded sectional view of the 1st rotary machine shown in FIG. It is a figure which develops the stator of the 1st rotating machine shown in Drawing 1, and the rotor of A1 and A2 in the peripheral direction, and is schematically shown. It is a figure which shows the equivalent circuit of a 1st rotary machine.
  • FIG. 6 is a velocity collinear diagram showing an example of the relationship between the first magnetic field electrical angular velocity and the rotor electrical angular velocities A1 and A2 in the first rotary machine shown in FIG.
  • FIGS. 7 (a) to 7 (d) are diagrams for explaining the subsequent operation of FIGS. 7 (a) to 7 (c).
  • (A), (b) is a figure for demonstrating the operation
  • FIG. 8 is a view for explaining the positional relationship between the first stator magnetic pole and the core when the first stator magnetic pole is rotated by an electrical angle 2 ⁇ from the states shown in FIGS. 7 (a) to 7 (c).
  • FIG. 7 is a diagram showing an example of transition of back electromotive force of U-phase to W-phase when the A1 rotor of the first rotating machine is held non-rotatable.
  • FIG. 8 is a diagram showing an example of transition of back electromotive force of U-phase to W-phase when the A2 rotor of the first rotating machine is held non-rotatable. It is a figure which shows an example of transition of the rotor transmission torque of 1st driving equivalent torque and A1 and A2 in, when holding A2 rotor of a 1st rotary machine non-rotatably. It is an expanded sectional view of the 2nd rotary machine shown in FIG.
  • FIG. 20 is a diagram for describing a shift operation of the power plant shown in FIG. 19;
  • FIG. 21 is a view showing an example of the relationship between rotational speeds and torques of various types of rotary elements in the power plant shown in FIG. 19, in the case of starting the heat engine while the driven parts are being driven by the first and second rotary machines.
  • FIG. 20 is a view showing an example of the relationship between rotational speeds and torques of various types of rotary elements in the power plant shown in FIG. 19 in the case of rapidly increasing the speed of the driven portion.
  • FIG. 5 is a diagram showing a state of transmission of torque in the power plant of FIG. 1 during EV creep.
  • (A) is each velocity alignment chart of the 1st and 2nd rotary machines 21 and 31 during EV creep of the power plant shown in FIG. 1
  • (b) is the velocity alignment chart which synthesize
  • (A) is an example of each speed alignment chart of the 1st and 2nd rotary machines 21 and 31 at the time of EV start of the power plant shown in FIG.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 at the time of ENG start during EV traveling.
  • FIG. 6 is a velocity collinear chart of first and second rotating machines 21 and 31 at the time of ENG start during EV traveling of the power plant shown in FIG. 1. It is the speed alignment chart which synthesize
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 during ENG traveling in a battery input / output zero mode.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 during ENG traveling in the assist mode.
  • FIG. 6 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 during ENG travel in a drive charging mode.
  • (A) is an example of each speed alignment chart of the 1st and 2nd rotary machines 21 and 31 at the time of the start of the sudden acceleration operation under ENG driving of the power plant shown in FIG.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 at the time of ENG start while the vehicle is stopped.
  • A) is an example of each speed alignment chart of the 1st and 2nd rotating machines 21 and 31 at the time of ENG start during stop of the power plant shown in FIG.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 during ENG creep.
  • A) is an example of each speed alignment chart of the 1st and 2nd rotating machines 21 and 31 during ENG creep of the power plant shown in FIG. 1,
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 at the time of ENG start.
  • A) is an example of each speed alignment chart of the 1st and 2nd rotary machines 21 and 31 at the time of ENG start of the power plant shown in FIG.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 at the time of EV reverse start.
  • (A) is an example of each speed alignment chart of the 1st and 2nd rotary machines 21 and 31 at the time of EV reverse start of the power plant shown in FIG. 1
  • (b) is a composition of two speed alignment charts It is a velocity alignment chart.
  • FIG. 7 is a diagram showing a state of transmission of torque in the power plant shown in FIG. 1 at the time of ENG backward start.
  • A) is an example of each speed alignment chart of the 1st and 2nd rotary machines 21 and 31 at the time of ENG reverse start of the power plant shown in FIG.
  • (b) is a composition of two speed alignment charts It is a velocity alignment chart. It is a figure which shows the range of battery SOC by which charging / discharging is repeated.
  • (A), (b) shows the speed alignment chart when (a) battery SOC is less than the first threshold when the operation mode of the operation apparatus 1 is "ENG start", (b) (b) the battery SOC is The velocity alignment chart at one threshold or more is shown.
  • (A), (b) shows the speed alignment chart when (a) the battery SOC is higher than the second threshold when the operation mode of the operation apparatus 1 is "EV travel”, (b) (b) the battery SOC is The velocity alignment chart at the time of 2 threshold values or less is shown.
  • (A), (b) shows the speed alignment chart when (a) the battery SOC is higher than the second threshold when the operation mode of the operating device 1 is "ENG backward start", (b) the battery SOC is The velocity alignment chart at the time of below a 2nd threshold value is shown. It is a figure showing roughly the power plant by a 2nd embodiment. It is a figure showing roughly the power plant by a 3rd embodiment. It is a figure showing roughly the power plant by a 4th embodiment. It is a figure showing roughly the power plant by a 5th embodiment. It is a figure showing roughly the power plant by a 6th embodiment. It is a figure showing roughly the power plant by a 7th embodiment.
  • FIG. 60 is a diagram for illustrating a shift operation of the first power unit shown in FIG. 59.
  • the figure which shows an example of the relationship between the rotational speed of various rotation elements in the 1st power plant shown in FIG. 59, and a torque about the case where a heat engine is started during driving of the driven part by the 1st and 2nd rotary machine. It is.
  • FIG. 60 A diagram showing an example of a relationship between rotational speeds and torques of various types of rotary elements in the first power plant shown in FIG. 59 in the case of rapidly increasing the speed of the driven portion.
  • FIG. 64 is a diagram for illustrating a shift operation of the second power unit shown in FIG. 63.
  • the figure which shows an example of the relationship between the rotational speed of various rotation elements in the 2nd power plant shown in FIG. 63, and a torque about the case where a heat engine is started during driving of the driven part by the 1st and 2nd rotary machine. It is.
  • FIG. 64 is a diagram showing an example of the relationship between rotational speeds and torques of various types of rotary elements in the second power plant shown in FIG. 63, in the case of rapidly increasing the speed of the driven portion.
  • FIG. 64 is a diagram for illustrating a shift operation of the second power unit shown in FIG. 63.
  • the figure which shows an example of the relationship between the rotational speed of various rotation elements in the 2nd power plant shown in FIG. 63, and a torque about the case where a heat engine is started during driving of the driven part by the 1st and 2nd rotary machine. It is.
  • FIG. 64 is a diagram showing
  • FIG. 59 is a block diagram showing a control device that controls an engine and the like shown in FIG. 58. It is a block diagram which shows the driving force control in the power plant 1F of FIG. It is a speed collinear diagram in the power unit 1F which has the structure of 1 collinear 4 elements.
  • FIG. 59 is a diagram showing an example of the relationship between rotational speeds and torques of various types of rotary elements in the power plant shown in FIG. 58, at the start of ENG start during EV travel.
  • FIG. 61 is a diagram for describing a speed change operation by the first rotating machine or the rotating machine in the power plant shown in FIG. 58.
  • FIG. 59 is a diagram showing an example of a relationship between rotational speeds and torques of various types of rotary elements in the power plant shown in FIG. 58 at the start of a sudden acceleration operation during ENG traveling.
  • FIG. 18 schematically shows a power plant according to an eighth embodiment. It is a figure showing roughly the power plant by a 9th embodiment. It is a figure showing roughly the power plant by a 10th embodiment.
  • FIG. 21 schematically shows a power plant according to an eleventh embodiment. It is a figure showing roughly the power plant by a 12th embodiment. It is a figure showing roughly the power plant by a 13th embodiment.
  • a velocity collinear chart showing an example of the relationship between the first sun gear rotational speed, the first carrier rotational speed and the first ring gear rotational speed, for the second sun gear rotational speed, the second carrier rotational speed and the second ring gear rotational speed A diagram showing a velocity collinear diagram showing an example of the relationship, (b) an example of the relationship between the rotational speeds of four rotating elements configured by coupling of the first and second planetary gear devices in the power plant shown in FIG. It is a velocity alignment chart shown.
  • FIG. 6 is a velocity collinear diagram showing an example of the relationship between the rotational speeds of the five rotating elements.
  • A shows an example of the relationship between the rotational speeds of various types of rotary elements in the power plant shown in FIG. 78, (a) in the first shift mode, (b) in the second shift mode It is a velocity alignment chart.
  • (A), (b) shows an example of the relationship between the rotational speeds and torques of various rotating elements at the start of the rapid acceleration operation during ENG traveling in the power unit shown in FIG. 78; 7B is a view showing (b) during the second shift mode.
  • (A), (b) shows an example of the relationship between the rotational speeds of various types of rotary elements in the power plant, (a) a speed alignment chart showing each during the first shift mode and (b) during the second shift mode It is.
  • (A) and (b) show an example of the relationship between the rotational speeds and torques of various types of rotary elements in the power plant when the speed of the driven part is to be rapidly increased, and (a) in the first shift mode (B) It is a figure shown about during 2nd speed change mode, respectively.
  • FIG. 90 is a diagram showing an example of a relationship between rotational speeds and torques of various rotating elements in the power plant shown in FIG. 87 at the start of ENG start during EV traveling.
  • FIG. 90 is a diagram for describing a speed change operation by the rotating machine or the second rotating machine in the power plant shown in FIG. 87.
  • FIG. 90 is a diagram showing an example of a relationship between rotational speeds and torques of various types of rotary elements in the power plant shown in FIG.
  • a velocity collinear chart showing an example of the relationship between the first sun gear rotational speed, the first carrier rotational speed and the first ring gear rotational speed, for the second sun gear rotational speed, the second carrier rotational speed and the second ring gear rotational speed A diagram showing a velocity collinear diagram showing an example of the relationship, (b) an example of the relationship between the rotational speeds of four rotating elements configured by the connection of the first and second planetary gear devices in the power plant shown in FIG. It is a velocity alignment chart shown.
  • FIG. 6 is a velocity collinear diagram showing an example of the relationship between the rotational speeds of the five rotating elements.
  • (A) shows an example of the relationship between the rotational speeds of various types of rotary elements in the power plant shown in FIG. 95, (a) in the first shift mode, (b) in the second shift mode It is a velocity alignment chart.
  • (A) and (b) show an example of the relationship between the rotational speeds and torques of various rotating elements at the start of ENG start during EV traveling in the power unit shown in FIG. (B) It is a figure shown about during 2nd speed change mode, respectively.
  • (A), (b) shows an example of the relationship between the rotational speeds of various types of rotary elements in the power plant, (a) a speed alignment chart showing each during the first shift mode and (b) during the second shift mode It is.
  • (A) and (b) show an example of the relationship between the rotational speeds and torques of various types of rotary elements in the power plant when starting the heat engine during driving of the driven parts by the first and second rotary machines, And (a) shows during the first shift mode and (b) shows during the second shift mode.
  • FIG. 24 schematically shows a power plant according to a twenty-second embodiment. It is a figure which shows schematic structure of the power plant which concerns on 23rd Embodiment, and a hybrid vehicle to which this is applied. It is a figure which shows schematic structure of the power plant of 23rd Embodiment. It is sectional drawing which shows typically schematic structure of a 1st rotary machine and a 2nd rotary machine.
  • FIG. 107 is a diagram schematically showing, in a straight line, an annular cross section broken along the circumferential direction at the position of the AA line in FIG. 106.
  • FIG. 2 is a diagram showing an equivalent circuit corresponding to the first rotating machine 10.
  • FIG. 5 is a velocity collinear diagram showing an example of the relationship between the magnetic field electrical angular velocity ⁇ mf, the first rotor electrical angular velocity ⁇ e1, and the second rotor electrical angular velocity ⁇ e2 in the first rotating machine 10.
  • FIG. 16 is a velocity collinear diagram showing an example of the relationship between the magnetic field electrical angular velocity ⁇ MFR, the first rotor electrical angular velocity ⁇ ER1, and the second rotor electrical angular velocity ⁇ ER2.
  • (A)-(c) is a figure for demonstrating the operation
  • FIG. 110 is a diagram for describing a positional relationship between stator magnetic poles and a soft magnetic core when the stator magnetic poles rotate by an electrical angle 2 ⁇ from the state shown in FIG. 110.
  • (A)-(c) is a figure for demonstrating the operation
  • FIG. 115 (a)-(c).
  • (A), (b) is a figure for demonstrating the operation
  • It is a block diagram which shows the driving force control in the power plant 1 of FIG.
  • It is a velocity collinear diagram in the power unit 1 which has the structure of 1 collinear 3 elements.
  • It is a velocity collinear chart showing an example of a relation of three electric angular velocities and three torques in case pole number ratio alpha in the 1st rotation machine of a power plant of a 23rd embodiment is made into an arbitrary value.
  • FIG. 1 It is a figure which shows another example at the time of providing a transmission in the power plant of 23rd Embodiment. It is a figure which shows the range of battery SOC by which charging / discharging is repeated.
  • (A), (b) shows the speed alignment chart when (a) the battery SOC is less than the first threshold when the operation mode of the operating device 1 is "in engine operation", (b) the battery SOC is The velocity alignment chart at the time of more than a 1st threshold is shown.
  • (A), (b) shows the speed alignment chart when (a) the battery SOC is higher than the second threshold when the operation mode of the operation apparatus 1 is "EV travel", (b) (b) the battery SOC is The velocity alignment chart at the time of 2 threshold values or less is shown.
  • (A), (b) shows the speed alignment chart when (a) the battery SOC is less than the first threshold when the operation mode of the operating device 1 is "ENG backward start", (b) the battery SOC is The velocity alignment chart at the time of more than a 1st threshold is shown. It is a figure showing the schematic structure of the power plant concerning a 24th embodiment. It is a figure which shows an example at the time of providing a transmission in the power plant of 24th Embodiment. It is a figure showing the schematic structure of the power plant concerning a 25th embodiment. It is a figure showing the schematic structure of the power plant concerning a 26th embodiment.
  • First Embodiment 1 and 2 schematically show a power plant 1 according to a first embodiment.
  • the power plant 1 is for driving the left and right drive wheels DW, DW (driven parts) of a vehicle (not shown), and as shown in FIG. Engine), the first rotary machine 21 and the second rotary machine 31, the differential gear mechanism 9 coupled to the drive wheels DW, DW via the drive shafts 10, 10, and the first power drive unit (hereinafter "the first PDU” And a second power drive unit (hereinafter referred to as “second PDU”) 42 and a bidirectional buck-boost converter (hereinafter referred to as “VCU”) 44.
  • the power plant 1 includes an ECU 2 for controlling the operation of the internal combustion engine 3 and the first and second rotating machines 21 and 31.
  • the first and second rotating machines 21 and 31 also function as a continuously variable transmission as described later.
  • An internal combustion engine (hereinafter referred to as “engine”) 3 is, for example, a gasoline engine, and a first rotation shaft 4 rotatably supported by bearings 4 a is mounted on a crankshaft 3 a of the engine 3 via a flywheel 5. It is directly connected. Further, the connecting shaft 6 and the second rotating shaft 7 are concentrically arranged with respect to the first rotating shaft 4 and the idler shaft 8 is arranged in parallel with each other. The connecting shaft 6, the second rotating shaft 7 and the idler shaft 8 are rotatably supported by bearings 6a, 7a and 8a, 8a, respectively.
  • the connecting shaft 6 is formed hollow, and the above-mentioned first rotating shaft 4 is rotatably fitted inside thereof.
  • the idler shaft 8 is integrally provided with a first gear 8b and a second gear 8c.
  • the former 8b is a gear 7b integral with the second rotary shaft 7, and the latter 8c is a gear 9a of the differential gear mechanism 9. , Each meshing.
  • the second rotation shaft 7 is connected to the drive wheels DW and DW via the idler shaft 8 and the differential gear mechanism 9.
  • the circumferential direction, the axial direction and the radial direction of the first rotation shaft 4, the connection shaft 6 and the second rotation shaft 7 will be simply referred to as “circumferential direction”, “axial direction” and “radial direction”.
  • the first rotating machine 21 includes a stator 23, an A1 rotor 24 provided so as to face the stator 23, and a space between the two 23 and 24.
  • An A2 rotor 25 is provided.
  • the stator 23, the A2 rotor 25 and the A1 rotor 24 are arranged in this order from the outer side in the radial direction and arranged concentrically.
  • some elements such as the first rotation axis 4 are depicted in a skeleton diagram for the convenience of illustration.
  • the above-mentioned stator 23 generates the first rotating magnetic field, and as shown in FIGS. 3 and 4, the iron core 23a and U-phase, V-phase and W-phase coils provided on the iron core 23a. 23c, 23d, and 23e. In FIG. 3, only the U-phase coil 23 c is shown for convenience.
  • the iron core 23a has a cylindrical shape in which a plurality of steel plates are stacked, extends in the axial direction, and is fixed to the immovable case CA. Further, twelve slots 23b are formed on the inner peripheral surface of the iron core 23a, and the slots 23b extend in the axial direction and are arranged at equal intervals in the circumferential direction.
  • the U-phase to W-phase coils 23c to 23e are wound in the slots 23b by distributed winding (wave winding), and are connected to the battery 43 via the first PDU 41 and the VCU 44 described above.
  • the first PDU 41 is formed of an electric circuit including an inverter or the like, and is connected to the second PDU 42 and the ECU 2 (see FIG. 1).
  • the iron core is supplied with electric power from the battery 43 and current flows to the U-phase to W-phase coils 23c to 23e, or when power generation is performed as described later.
  • Four magnetic poles are generated at equal intervals in the circumferential direction at the end on the A1 rotor 24 side of 23a (see FIGS. 7A to 7C), and the first rotating magnetic field by these magnetic poles is circumferentially Moving.
  • the magnetic pole generated on the iron core 23 a is referred to as “first stator magnetic pole”.
  • the polarities of the two first stator magnetic poles adjacent in the circumferential direction are different from each other. 7 (a) to 7 (c) and other drawings described later, (N) and (S) the first stator magnetic pole on the iron core 23a and the coils 23c to 23e of U phase to W phase. Indicated in.
  • the A1 rotor 24 has a first magnetic pole row consisting of eight permanent magnets 24a.
  • the permanent magnets 24 a are arranged at equal intervals in the circumferential direction, and the first magnetic pole row faces the iron core 23 a of the stator 23.
  • Each permanent magnet 24 a extends in the axial direction, and the length in the axial direction is set to the same as that of the iron core 23 a of the stator 23.
  • the permanent magnet 24a is attached to the outer peripheral surface of the ring-shaped fixed portion 24b.
  • the fixing portion 24 b is formed of a soft magnetic material, for example, a lamination of iron or a plurality of steel plates, and the inner peripheral surface thereof is attached to the outer peripheral surface of the donut plate-like flange.
  • the flange is integrally provided on the connecting shaft 6 described above.
  • the A1 rotor 24 including the permanent magnet 24 a is rotatable integrally with the connecting shaft 6.
  • each permanent magnet 24a since the permanent magnets 24a are attached to the outer peripheral surface of the fixed portion 24b made of the soft magnetic material as described above, each permanent magnet 24a has (N) or (N) One pole of S) appears.
  • the magnetic poles of the permanent magnet 24 a are denoted by (N) and (S). Further, the polarities of the two permanent magnets 24a adjacent in the circumferential direction are different from each other.
  • the A2 rotor 25 has a first soft magnetic material array consisting of six cores 25a. These cores 25a are arranged at equal intervals in the circumferential direction, and this first soft magnetic material row has a predetermined interval between the iron core 23a of the stator 23 and the first magnetic pole row of the A1 rotor 24, respectively. It is placed apart. Each core 25a is formed by laminating a soft magnetic material, for example, a plurality of steel plates, and extends in the axial direction. Moreover, the length of the axial direction of the core 25a is set to the same as that of the iron core 23a of the stator 23 like the permanent magnet 24a.
  • the core 25a is attached to the outer end of the disk-shaped flange 25b via a cylindrical connecting portion 25c which slightly extends in the axial direction.
  • the flange 25 b is integrally provided on the first rotation shaft 4 described above.
  • the A2 rotor 25 including the core 25 a is rotatable integrally with the first rotation shaft 4.
  • the connecting portion 25c and the flange 25b are omitted for the sake of convenience.
  • first stator 23 is referred to as a "first stator”
  • A1 rotor 24 is referred to as a "first rotor”
  • the A2 rotor 25 is referred to as a “second rotor”.
  • first driving equivalent torque Te1 a torque equivalent to the electric power supplied to the first stator and the electric angular velocity ⁇ mf of the first rotating magnetic field.
  • first rotor transmission torque T1 first driving equivalent torque Te1 and the torques transmitted to the first and second rotors
  • second rotor transmission torque T2 respectively
  • the first stator has three-phase coils of U-phase, V-phase and W-phase (B) Two first stator poles and four first poles, that is, the N pole and S of the first stator pole The number of pole pairs is 1 and the number of pole pairs is 1.
  • the first soft magnetic material is a first core, a second core and a third pole.
  • the “pole pair” used in the present specification refers to one pair of an N pole and an S pole.
  • the magnetic flux ⁇ k1 of the first magnetic pole passing through the first core of the first soft magnetic body is expressed by the following equation (1).
  • ⁇ f is the maximum value of the magnetic flux of the first magnetic pole
  • ⁇ 1 and ⁇ 2 are the rotational angular position of the first magnetic pole relative to the U-phase coil and the rotational angular position of the first core.
  • the magnetic flux ⁇ u1 of the first magnetic pole passing through the U-phase coil via the first core is expressed by the following equation (2) obtained by multiplying the equation (1) by cos ⁇ 2.
  • the magnetic flux ⁇ u2 of the first magnetic pole passing through the U-phase coil via the second core is expressed by the following equation (4) obtained by multiplying the equation (3) by cos ( ⁇ 2 + 2 ⁇ / 3) .
  • the magnetic flux ⁇ u3 of the first magnetic pole passing through the U-phase coil through the third core of the first soft magnetic body is expressed by the following equation (5).
  • the magnetic flux ⁇ u of the first magnetic pole passing through the U-phase coil through the first soft magnetic material is represented by the above formulas (2), (4) and (5).
  • the resultant magnetic fluxes 1u1 to ⁇ u3 are added together, which is expressed by the following equation (6).
  • the magnetic flux ⁇ u of the first magnetic pole passing through the U-phase coil via the first soft magnetic body is expressed by the following equation (7).
  • a, b and c are the number of pole pairs of the first magnetic pole, the number of first soft magnetic bodies, and the number of pole pairs of the first stator pole.
  • equation (7) can be modified based on the formula of the sum and product of trigonometric functions to obtain the following equation (8).
  • the second term of the right side of the equation (10) becomes a value 0 as apparent from the following equation (11) when it is arranged based on the sum of series and the Euler's formula, with ac ⁇ 0 as a condition.
  • the third term of the right side of the above equation (10) is also a value 0 as apparent from the following equation (12) when it is arranged based on the sum of series and Euler's formula, with ac ⁇ 0 as a condition. become.
  • the electrical angle position of the first core with respect to the U-phase coil Represents Further, as apparent from the fact that ⁇ e1 multiplies the rotational angle position ⁇ 1 of the first magnetic pole with respect to the U-phase coil by the pole count c of the first stator magnetic pole, the electrical angular position of the first magnetic pole with respect to the U-phase coil is Represent.
  • the magnetic flux ⁇ v of the first magnetic pole passing through the V phase coil through the first soft magnetic material is because the electrical angle position of the V phase coil is advanced by an electrical angle 2 ⁇ / 3 with respect to the U phase coil It is represented by following Formula (16). Further, since the electric angle position of the W phase coil is delayed by the electric angle 2 ⁇ / 3 with respect to the U phase coil, the magnetic flux ⁇ w of the first magnetic pole passing through the W phase coil via the first soft magnetic body is It is expressed by the following equation (17).
  • ⁇ e1 is a time differential value of ⁇ e1, that is, a value obtained by converting the angular velocity of the first rotor with respect to the first stator to an electrical angular velocity (hereinafter referred to as “first rotor electrical angular velocity”)
  • ⁇ e2 is a time of ⁇ e2 It is a differential value, that is, a value obtained by converting the angular velocity of the second rotor with respect to the first stator into an electrical angular velocity (hereinafter referred to as “second rotor electrical angular velocity”).
  • the magnetic flux of the first magnetic pole that passes directly through the U-phase to W-phase coils without passing through the first soft magnetic material is extremely small, and its effect can be ignored.
  • the time derivative values d ⁇ u / dt to d ⁇ w / dt of the magnetic flux ⁇ u to ⁇ w of the first magnetic pole passing through the U-phase to W-phase coils through the first soft magnetic body (Equations (18) to (20) Shows the counter electromotive voltage (induced electromotive voltage) generated in the U-phase to W-phase coils as the first magnetic pole and the first soft magnetic material rotate with respect to the first stator row.
  • I is the amplitude (maximum value) of the current flowing through the U-phase to W-phase coils.
  • the electrical angle position ⁇ mf of the vector of the first rotating magnetic field with respect to the U phase coil is expressed by the following equation (24), and the first rotating magnetic field for the U phase coil
  • the electric angular velocity (hereinafter referred to as “magnetic field electric angular velocity”) ⁇ mf of is expressed by the following equation (25).
  • the mechanical output (power) W output to the first and second rotors by the currents Iu to Iw flowing respectively through the U-phase to W-phase coils has the following formula (26) when the reluctance component is removed. Is represented by
  • the first stator magnetic pole It represents that the ratio of the number, the number of first magnetic poles, and the number of first soft magnetic bodies is 1: m: (1 + m) / 2. Further, that the condition of a ⁇ c ⁇ 0 holds indicates that m ⁇ 1.0.
  • the ratio of the number of first stator magnetic poles, the number of first magnetic poles, and the number of first soft magnetic bodies is 1: m: (1 + m) / 2 (m ⁇ 1. Since it is set to 0), it is understood that the relationship between the electric angular velocity shown in equation (25) and the torque shown in equation (32) holds, and the first rotating machine 21 operates properly.
  • a / c, that is, the ratio of the pole pair number of the first magnetic pole to the pole pair number of the first stator pole (hereinafter referred to as “first pole number ratio”
  • first pole number ratio the ratio of the pole pair number of the first magnetic pole to the pole pair number of the first stator pole
  • the first rotating machine 21 when the first rotating magnetic field is generated by the power supply to the first stator, the magnetic lines of force connecting the first magnetic pole, the first soft magnetic body, and the first stator magnetic pole described above.
  • the electric power supplied to the first stator is converted into motive power by the action of the magnetic force due to the magnetic lines of force, and the motive power is output from the first rotor and the second rotor, and the electric angular velocity or electric power as described above
  • the relationship of torque is established. Therefore, when at least one of the first and second rotors is rotated with respect to the first stator by inputting power to at least one of the first and second rotors while power is not supplied to the first stator.
  • the first stator power generation is performed and a first rotating magnetic field is generated, and also in this case, magnetic lines of force connecting the first magnetic pole, the first soft magnetic body, and the first stator magnetic pole are generated.
  • the relationship between the electrical angular velocity shown in the above-mentioned equation (25) and the relationship between the torque shown in the equation (32) are established by the action of the magnetic force due to.
  • the first rotating machine 21 of the present embodiment has the same function as a device combining a planetary gear device and a general one-rotor type rotating machine.
  • first magnetic poles there are four first stator magnetic poles, eight magnetic poles of the permanent magnet 24a (hereinafter referred to as "first magnetic poles"), and six cores 25a. That is, the ratio of the number of first stator magnetic poles to the number of first magnetic poles and the number of cores 25a is set to 1: 2.0: (1 + 2.0) / 2, and the number of pole pairs of the first stator magnetic pole is The ratio of the number of pole pairs of the first magnetic pole to the pole number (hereinafter referred to as the “first number of pole pairs ratio ⁇ ”) is set to the value 2.0.
  • ⁇ F is the maximum value of the magnetic flux of the first magnetic pole.
  • ⁇ ER1 is an A1 rotor electrical angle
  • the rotational angle position of a specific permanent magnet 24a of the A1 rotor 24 with respect to a specific U phase coil 23c (hereinafter referred to as “first reference coil”) is converted into an electrical angle position. It is a value. That is, the A1 rotor electrical angle ⁇ ER1 is a value obtained by multiplying the number of pole pairs of the first stator magnetic pole, that is, the value 2 by the rotation angle position of the specific permanent magnet 24a (hereinafter referred to as “A1 rotor rotation angle ⁇ A1”).
  • ⁇ ER2 is an A2 rotor electrical angle, which is a value obtained by converting the rotational angle position of the specific core 25a of the A2 rotor 25 with respect to the first reference coil described above into an electrical angle position. That is, the A2 rotor electrical angle ⁇ ER2 is a value obtained by multiplying the rotation angle position of the specific core 25a (hereinafter referred to as "A2 rotor rotation angle ⁇ A2") by the number of pole pairs (value 2) of the first stator magnetic pole.
  • ⁇ ER1 in the above equations (33) to (35) is a time differential value of ⁇ ER1, that is, a value obtained by converting the angular velocity of the A1 rotor 24 with respect to the stator 23 into an electrical angular velocity (hereinafter referred to as “A1 rotor electrical angular velocity”) is there.
  • ⁇ ER2 is a time differential value of ⁇ ER2, that is, a value obtained by converting the angular velocity of the A2 rotor 25 with respect to the stator 23 into an electrical angular velocity (hereinafter referred to as “A2 rotor electrical angular velocity”).
  • I is the amplitude (maximum value) of the current flowing through the U-phase to W-phase coils 23c to 23e.
  • first magnetic field electrical angular position ⁇ MFR is expressed by the following equation (39), and the electrical angular velocity of the first rotating magnetic field relative to the stator 23 (hereinafter referred to as “first magnetic field electrical angular velocity ⁇ MFR”) is represented by the following equation (40) It is represented by).
  • the relationship between the first magnetic field electrical angular velocity ⁇ MFR, the A1 rotor electrical angular velocity ⁇ ER1 and the A2 rotor electrical angular velocity ⁇ ER2 is represented as a so-called collinear diagram, for example, as shown in FIG.
  • FIGS. 7 (a) to 7 (c) to 9 (a) and 9 (b) the case where power is supplied to the stator 23 in a state where the A1 rotor 24 is held non-rotatable will be described with reference to FIGS. 7 (a) to 7 (c) to 9 (a) and 9 (b).
  • FIGS. 7 (a) to 7 (c) to 9 (a) and 9 (b) reference numerals of a plurality of constituent elements are omitted for convenience. The same applies to the other drawings described later. Further, for ease of understanding, the same one first stator magnetic pole and core 25a shown in FIGS. 7 (a) to (c) to FIGS. 9 (a) and 9 (b) are hatched. .
  • the center of one core 25a and the center of one permanent magnet 24a coincide with each other in the circumferential direction, and the third core 25a from the core 25a From the state in which the center and the center of the fourth permanent magnet 24a from the permanent magnet 24a coincide with each other in the circumferential direction, the first rotating magnetic field is generated so as to rotate to the left in the figure.
  • the positions of every other first stator pole having the same polarity are made to coincide with the center of each permanent magnet 24a whose center coincides with the core 25a, and The polarity of one stator pole is made different from the polarity of the first pole of the permanent magnet 24a.
  • the first rotating magnetic field generated by the stator 23 is generated between itself and the A1 rotor 24, and the A2 rotor 25 having the core 25a is disposed between the stator 23 and the A1 rotor 24.
  • Each core 25a is magnetized by the stator magnetic pole and the first magnetic pole. Because of this and the gaps between the adjacent cores 25a, lines of magnetic force ML connecting the first stator magnetic pole, the core 25a, and the first magnetic pole are generated.
  • FIGS. 7A to 7C to 9A and 9B the magnetic lines of force ML in the iron core 23a and the fixing portion 24b are omitted for the sake of convenience. The same applies to the other drawings described later.
  • the magnetic lines of force ML connect the first stator magnetic pole, the core 25a and the first magnetic pole whose circumferential positions coincide with each other, and these first stator magnetic poles, the core 25a and The first stator magnetic pole, the core 25a, and the first magnetic pole adjacent to both sides in the circumferential direction of the first magnetic pole are generated so as to be connected. Further, in this state, since the magnetic lines of force ML are linear, no magnetic force for circumferentially rotating the core 25a acts on the core 25a.
  • the magnetic lines of force ML are bent.
  • a magnetic force acts on the core 25a so that ML is linear.
  • the magnetic field line ML corresponds to the rotation direction of the first rotating magnetic field (hereinafter referred to as "magnetic field rotation direction") in this core 25a.
  • the magnetic force acts to drive the core 25 a in the direction of the magnetic field rotation because the magnetic force in the opposite direction is bent in the opposite direction.
  • the core 25a is driven in the direction of magnetic field rotation by the action of the magnetic force due to the magnetic lines of force ML and rotates to the position shown in FIG. 7C, and the A2 rotor 25 provided with the core 25a also rotates in the direction of magnetic field rotation.
  • the broken lines in FIGS. 7B and 7C indicate that the magnetic flux amount of the magnetic field lines ML is extremely small, and the magnetic connection between the first stator magnetic pole, the core 25a, and the first magnetic pole is weak. The same applies to the other drawings described later.
  • the power supplied to the stator 23 is motive power by the action of the magnetic force due to the magnetic lines of force ML as described above.
  • the power is output from the A2 rotor 25.
  • FIGS. 11 (a) to (c) to FIGS. 13 (a) and 13 (b) the operation when power is supplied to the stator 23 with the A2 rotor 25 held unrotatable explain.
  • FIGS. 11 (a) to (c) to 13 (a) and (b) the same one first stator magnetic pole and permanent magnet 24a are hatched for easy understanding. .
  • FIG. 11A as in the case of FIG. 7A described above, the center of a certain core 25a and the center of a certain permanent magnet 24a coincide with each other in the circumferential direction.
  • the first rotating magnetic field is It generates to rotate in the direction.
  • the positions of every other first stator pole having the same polarity are made to coincide with the center of each permanent magnet 24a whose center coincides with the core 25a, and The polarity of one stator pole is made different from the polarity of the first pole of the permanent magnet 24a.
  • the magnetic field lines ML connect the first stator magnetic pole, the core 25a, and the first magnetic pole whose circumferential positions coincide with each other, and The first stator magnetic pole, the core 25a and the first magnetic pole are generated so as to connect the first stator magnetic pole, the core 25a and the first magnetic pole adjacent to both sides in the circumferential direction of each of the cores. Further, in this state, since the magnetic force lines ML are linear, no magnetic force for circumferentially rotating the permanent magnet 24 a acts on the permanent magnet 24 a.
  • the magnetic lines of force ML are bent.
  • a magnetic force acts on the permanent magnet 24 a so that the ML is linear.
  • the above magnetic force is a permanent magnet on the extension It acts to position the permanent magnet 24a, that is, to drive the permanent magnet 24a in the direction opposite to the magnetic field rotation direction.
  • the permanent magnet 24a By the action of the magnetic force due to such magnetic lines of force ML, the permanent magnet 24a is driven in the direction opposite to the magnetic field rotation direction, rotates to the position shown in FIG. 11C, and the A1 rotor 24 provided with the permanent magnet 24a is also It rotates in the direction opposite to the magnetic field rotation direction.
  • the above-described series of operations that is, “the permanent magnet is bent more than the extension of the first stator magnetic pole and the core 25a mutually connected by the magnetic field lines ML, 24a is located at a position where the magnetic field rotates in the direction of the magnetic field rotation ⁇ A magnetic force acts on the permanent magnet 24 a so that the magnetic lines of force ML are linear ⁇ the permanent magnet 24 a and the A1 rotor 24 rotate in the direction opposite to the magnetic field rotation direction
  • This operation is repeated as shown in FIGS. 12 (a) to 12 (d) and FIGS. 13 (a) and 13 (b).
  • the power supplied to the stator 23 is motive power by the action of the magnetic force by the magnetic lines of force ML as described above.
  • the power is output from the A1 rotor 24.
  • FIG. 13 (b) shows a state in which the first stator magnetic pole is rotated by an electrical angle 2 ⁇ from the state of FIG. 11 (a), which is apparent from the comparison of FIG. 13 (b) and FIG. 11 (a).
  • the permanent magnet 24a is rotating in the reverse direction by a 1/2 rotation angle with respect to the first stator pole.
  • FIG. 14 shows an example of the transition of the back electromotive voltages Vcu to Vcw of the U phase to the W phase while the A2 rotor electrical angle ⁇ ER2 changes to a value of 0 to 2 ⁇ .
  • the A1 rotor 24 is held non-rotatable, the pole pairs of the first stator magnetic pole and the first magnetic pole have the values 8 and 10, respectively, and from the equation (25), the first magnetic field
  • ⁇ MFR 2.25 ⁇ ⁇ ER2.
  • counter electromotive voltages Vcu to Vcw of U phase to W phase are generated for approximately 2.25 cycles.
  • FIG. 15 shows an example of the transition of the rotor transmission torques TRA1 and TRA2 of the first driving equivalent torques TSE1, A1 and A2.
  • the number of pole pairs of the first stator magnetic pole and the first magnetic pole is 8 and 10, respectively, and from the equation (32), the rotor transmission torques TRA1, TRA1 of the first driving equivalent torques TSE1, A1 and A2.
  • the first driving equivalent torque TSE1 is approximately ⁇ TREF
  • the A1 rotor transmission torque TRA1 is approximately 1.25 ⁇ ( ⁇ TREF)
  • the A2 rotor transmission torque TRA2 is approximately 2.25. ⁇ It is TREF.
  • This TREF is a predetermined torque value (for example, 200 Nm).
  • FIG. 16 and 17 set the number of first stator magnetic poles, cores 25a and permanent magnets 24a in the same manner as in FIGS. 14 and 15, and instead of A1 rotor 24, keep A2 rotor 25 unrotatable.
  • FIG. 16 shows an example of the transition of the U-phase to W-phase counter electromotive voltages Vcu to Vcw while the A1 rotor electrical angle ⁇ ER1 changes to a value of 0 to 2 ⁇ .
  • the A2 rotor 25 is held non-rotatable, the number of pole pairs of the first stator magnetic pole and the first magnetic pole is 8 and 10 respectively, and from the equation (25), the magnetic field electrical angular velocity
  • ⁇ MFR ⁇ 1.25 ⁇ ⁇ ER1.
  • FIG. 17 shows an example of the transition of the rotor transmission torques TRA1 and TRA2 of the first driving equivalent torques TSE1, A1 and A2.
  • the first driving equivalent torque TSE1 is approximately TREF
  • the A1 rotor transmission torque TRA1 is approximately 1.25 ⁇ TREF
  • the A2 rotor transmission torque TRA2 is approximately ⁇ 2.25 ⁇ TREF. It has become.
  • the magnetic lines of magnetic force ML connecting the first magnetic pole, the core 25 a and the first stator magnetic pole are generated.
  • the power supplied to the stator 23 is converted into motive power by the action of the magnetic force due to the magnetic force lines ML, and the motive power is output from the A1 rotor 24 or the A2 rotor 25.
  • the relationship shown in the equation (40) is established between the rotor electrical angular velocities ⁇ ER1, ⁇ ER2 of the magnetic field electrical angular velocity ⁇ MFR, A1 and A2, and the rotor transmission torque of the first equivalent torque TSE1, A1 and A2 for driving.
  • the relationship shown in the equation (41) is established between TRA1 and TRA2.
  • stator 23 when power is supplied to at least one of A1 and A2 rotors 34 and 35 while power is not supplied to stator 23, rotation of at least one of them relative to stator 23 causes stator 23 to rotate. Power generation is performed, and a first rotating magnetic field is generated. Also in this case, a magnetic line of magnetic force ML is generated to connect the first magnetic pole, the core 25a, and the first stator magnetic pole, and the magnetic force by the magnetic line of magnetic force acts.
  • the relationship between the electrical angular velocity shown in equation (40) and the relationship between torques shown in equation (41) is established.
  • first magnetic field rotational speed VMF1 the rotational speed of the first rotating magnetic field
  • the following equation (43) is established between the A1 rotor rotational speed VRA1 and the A2 rotor rotational speed VRA2.
  • the first rotating machine 21 has the same function as a device combining a planetary gear device and a general one-rotor type rotating machine.
  • the second rotary machine 31 is configured in the same manner as the first rotary machine 21.
  • the configuration and operation of the second rotary machine 31 will be briefly described below.
  • the second rotating machine 31 includes a stator 33, a B1 rotor 34 provided to face the stator 33, and a B2 rotor 35 provided between the two.
  • the stator 33, the B2 rotor 35, and the B1 rotor 34 are arranged radially in this order from the outside in this order and arranged concentrically.
  • FIG. 18, as in FIG. 3, some elements such as the first rotation shaft 4 are drawn in a skeleton diagram for convenience of illustration.
  • the above-mentioned stator 33 generates a second rotating magnetic field, and as shown in FIG. 18, it has an iron core 33a and U-phase, V-phase and W-phase coils 33b provided on the iron core 33a. doing.
  • the iron core 33a has a cylindrical shape in which a plurality of steel plates are stacked, extends in the axial direction, and is fixed to the case CA.
  • 12 slots are formed in the inner peripheral surface of the iron core 33a, and these slots are located in a line at equal intervals in the circumferential direction.
  • the U-phase to W-phase coils 33b are wound in slots in distributed winding (wave winding), and are connected to the battery 43 via the second PDU 42 and the VCU 44 described above.
  • the second PDU 42 is configured by an electric circuit including an inverter or the like, and is connected to the first PDU 41 and the ECU 2 (see FIG. 1).
  • stator 33 In the stator 33 configured as described above, when power is supplied from the battery 43 and current flows through the U-phase to W-phase coils 33b, or when power generation is performed as described later, Four magnetic poles are generated at equal intervals in the circumferential direction at the end on the B1 rotor 34 side, and the second rotating magnetic field by these magnetic poles moves in the circumferential direction.
  • the magnetic pole generated on the iron core 33a is referred to as "second stator magnetic pole”. Further, the polarities of the two second stator magnetic poles adjacent in the circumferential direction are different from each other.
  • the B1 rotor 34 has a second magnetic pole row consisting of eight permanent magnets 34a (only two are shown).
  • the permanent magnets 34 a are arranged at equal intervals in the circumferential direction, and the second magnetic pole row faces the iron core 33 a of the stator 33.
  • Each permanent magnet 34 a extends in the axial direction, and the length in the axial direction is set to the same as that of the iron core 33 a of the stator 33.
  • the permanent magnet 34a is attached to the outer peripheral surface of the ring-shaped fixed portion 34b.
  • the fixing portion 34b is formed of a soft magnetic material, for example, a laminated member of iron or a plurality of steel plates, and the inner peripheral surface thereof is attached to the outer peripheral surface of the disk-shaped flange 34c.
  • the flange 34 c is provided integrally with the first rotation shaft 4 described above.
  • the B1 rotor 34 including the permanent magnet 34 a is rotatable integrally with the first rotation shaft 4.
  • each permanent magnet 34a since the permanent magnet 34a is attached to the outer peripheral surface of the fixing portion 34b made of the soft magnetic material as described above, each permanent magnet 34a has the (N) or (N) One pole of S) appears. Further, the polarities of the two permanent magnets 34a adjacent in the circumferential direction are different from each other.
  • the B2 rotor 35 has a second soft magnetic material row consisting of six cores 35a (only two are shown). These cores 35 a are arranged at equal intervals in the circumferential direction, and the second soft magnetic material rows are separated between the iron core 33 a of the stator 33 and the magnetic pole rows of the B1 rotor 34 at predetermined intervals, respectively. It is arranged.
  • Each core 35a is formed by laminating a soft magnetic material, for example, a plurality of steel plates, and extends in the axial direction. Moreover, the length of the axial direction of the core 35a is set to the same as that of the iron core 33a of the stator 33 similarly to the permanent magnet 34a.
  • the core 35a is attached to the outer end portions of the disk-shaped flanges 35b and 35c via cylindrical connecting portions 35d and 35e extending slightly in the axial direction, respectively.
  • the flanges 35 b and 35 c are integrally provided on the connecting shaft 6 and the second rotating shaft 7 described above.
  • the B2 rotor 35 including the core 35 a is rotatable integrally with the connecting shaft 6 and the second rotation shaft 7.
  • the second rotating machine 31 since the second rotating machine 31 is configured in the same manner as the first rotating machine 21, the second rotating machine 31 has the same function as an apparatus combining a planetary gear device and a general one-rotor type rotating machine. That is, during power supply to stator 33 and during power generation, the relationship shown in equation (25) holds between the electrical angular velocity of the second rotating magnetic field and the electrical angular velocity of B1 rotor 34 and B2 rotor 35.
  • the ratio of the number of second stator magnetic poles to the number of second magnetic poles to the number of cores 35 a is the ratio of the number of first stator magnetic poles of the first rotary machine 21 to the number of first magnetic poles to the number of cores 25 a.
  • it is set to 1: 2.0: (1 + 2.0) / 2.
  • the ratio of the number of pole pairs of the second magnetic pole to the number of pole pairs of the second stator pole (hereinafter referred to as "the second number of pole pairs ratio ⁇ ") is set to a value 2.0 .
  • the second rotating machine 31 since the second rotating machine 31 is configured in the same manner as the first rotating machine 21, it has the same function as the first rotating machine 21.
  • the power supplied to stator 33 is converted to power, and the power is output from B1 rotor 34 and B2 rotor 35, and the power input to B1 rotor 34 or B2 rotor 35 is converted to power and is output from stator 33 .
  • the second rotating magnetic field the B1 and B2 rotors 34, 35 rotate while maintaining the collinear relationship regarding the rotational speed as shown in the equation (40).
  • the rotational speed of the second rotating magnetic field (hereinafter referred to as “second magnetic field rotational speed VMF2”) and the rotational speeds of the rotors 34 and 35 of B1 and B2 (hereinafter referred to as “B1 rotor rotational speed VRB1” “B2
  • VMF2 ( ⁇ + 1)
  • VRB2- ⁇ ⁇ VRB1 3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (44)
  • the torque equivalent to the electric power supplied to the stator 33 and the second rotating magnetic field is "the second driving equivalent torque TSE2”
  • the torque is transmitted to the second driving equivalent torque TSE2 and the rotors 34 and 35 of B1 and B2.
  • the following equation (45) is established between the set torques (hereinafter referred to as “B1 rotor transmission torque TRB1” and “B2 rotor transmission torque TRB2”, respectively).
  • the second rotating machine 31 has the same function as an apparatus combining a planetary gear device and a general one-rotor type rotating machine.
  • the ECU 2 controls the VCU 44 that steps up or down the output voltage of the battery 43 or the charging voltage to the battery 43.
  • the control of the VCU 44 by the ECU 2 changes the transformation ratio of the VCU 44 and the like.
  • the ECU 2 controls the first PDU 41 to thereby supply the electric power supplied to the stator 23 of the first rotating machine 21 and the first magnetic field rotational speed VMF1 of the first rotating magnetic field generated in the stator 23 along with the supply of the electric power. Control.
  • the ECU 2 controls the first PDU 41 to control the electric power generated by the stator 23 and the first magnetic field rotational speed VMF1 of the first rotating magnetic field generated by the stator 23 along with the power generation.
  • the ECU 2 controls the second PDU 42 so that the electric power supplied to the stator 33 of the second rotating machine 31 and the second magnetic field rotational speed VMF2 of the second rotating magnetic field generated in the stator 33 along with the supply of the electric power. Control. Furthermore, the ECU 2 controls the second PDU 42 to control the electric power generated by the stator 33 and the second magnetic field rotational speed VMF2 of the second rotating magnetic field generated by the stator 33 along with the power generation.
  • the crankshaft 3 a of the engine 3, the A2 rotor 25 of the first rotating machine 21, and the B1 rotor 34 of the second rotating machine 31 mechanically communicate with each other via the first rotating shaft 4.
  • the A1 rotor 24 of the first rotating machine 21 and the B2 rotor 35 of the second rotating machine 31 are mechanically connected to each other through the connecting shaft 6, and the B2 rotor 35 and the drive wheels DW and DW They are mechanically connected to each other via a two rotation shaft 7 or the like. That is, the A1 rotor 24 and the B2 rotor 35 are mechanically connected to the drive wheels DW and DW.
  • stator 23 of the first rotating machine 21 and the stator 33 of the second rotating machine 31 are electrically connected to each other via the first and second PDUs 41 and 42.
  • the battery 43 is electrically connected to the stators 23 and 33 via the VCU 44 and the first and second PDUs 41 and 42, respectively.
  • FIG. 19 is a conceptual diagram showing an example of a schematic configuration of the power unit 1 and a transmission state of power.
  • the first rotating machine 21 is the “first rotating machine”
  • the stator 23 is the “first stator”
  • the A1 rotor 24 is the “first rotor”
  • the A2 rotor 25 is the “second rotor”
  • the second The rotating machine 31 is “second rotating machine”
  • the stator 33 is “first stator”
  • B1 rotor 34 is “third rotor”
  • B2 rotor 35 is “fourth rotor”
  • engine 3 is "heat engine”
  • drive wheel DW and DW are represented as “driven parts”
  • the first PDU 41 is represented as “first controller”
  • the second PDU 42 is represented as “second controller”.
  • the stator 23 is the “first stator”
  • the A1 rotor 24 is the “first rotor”
  • the second rotor of the first rotating machine and the third rotor of the second rotating machine are mechanically connected to the output of the heat engine, and the first rotor and second rotation of the first rotating machine
  • a fourth rotor of the machine is mechanically connected to the driven part.
  • a first controller for controlling power generation / supply power of the first stator is electrically connected to the first stator of the first rotating machine
  • a second stator of the second rotating machine is
  • a second controller for controlling power generation / supply power is electrically connected
  • the first and second stators are electrically connected to each other via these first and second controllers.
  • mechanical connections are indicated by solid lines, electrical connections by dashed dotted lines, and magnetic connections by broken lines.
  • the flow of power and power is indicated by thick lines with arrows.
  • the power of the heat engine is transmitted to the driven portion, for example, as follows. That is, when the power of the heat engine is transmitted to the driven part, power is generated in the first stator of the first rotating machine using a part of the power of the heat engine under the control of the first and second controllers. , The generated electric power is supplied to the second stator of the second rotating machine. At the time of power generation by this first rotating machine, as shown in FIG.
  • a part of the power of the heat engine is transmitted to the second rotor connected to the output of the heat engine, and further by the magnetic force by the magnetic lines
  • a part of the motive power of the heat engine is transmitted also to the first rotor by the magnetic force of the magnetic field lines. That is, the power of the heat engine transmitted to the second rotor is distributed to the first stator and the first rotor. Furthermore, the power distributed to the first rotor is transmitted to the driven part, while the power distributed to the first stator is supplied to the second stator.
  • the electric power generated by the first stator as described above is supplied to the second stator, the electric power is converted to a motive power and is transmitted to the fourth rotor by the magnetic force of the magnetic lines of force.
  • the remainder of the power of the heat engine is transmitted to the third rotor, and is further transmitted to the fourth rotor by the magnetic force due to the magnetic field lines.
  • the power transmitted to the fourth rotor is transmitted to the driven part. As a result of the above, power having a magnitude equal to that of the heat engine is transmitted to the driven part.
  • the first and second rotating machines have the same function as a device combining the planetary gear unit and a general one-rotor type rotating machine, so Unlike the power unit of the present invention, a planetary gear set for distributing / combining and transmitting power is not necessary, and accordingly, the power unit can be miniaturized accordingly. Further, unlike the conventional case described above, since the power of the heat engine is transmitted to the driven portion without recirculation as described above, the power passing through the first and second rotating machines can be reduced. Therefore, miniaturization and cost reduction of the first and second rotating machines can be achieved, whereby further miniaturization and cost reduction of the power plant can be achieved. Furthermore, by using the first and second rotating machines having torque capacities commensurate with the reduced power as described above, it is possible to suppress the loss of power and to enhance the driving efficiency of the power plant.
  • the power of the heat engine is determined by the second rotor, the magnetic force by the magnetic field lines and the first transmission path consisting of the first rotor, the second rotor, the magnetic force by the magnetic field lines, the first stator, the first controller, the second controller, the second The divided state through a total of three transmission paths of a second transmission path consisting of two stators, a magnetic force by magnetic lines of force, and a fourth rotor, a third transmission path consisting of a third rotor, a magnetic force by magnetic lines of force and a fourth rotor Is transmitted to the driven part.
  • the power (energy) passing through the first and second controllers via the second transmission path can be reduced, so that miniaturization and cost reduction of the first and second controllers can be achieved.
  • further miniaturization and cost reduction of the power plant can be achieved.
  • the motive power of the heat engine is once converted to electric power and then returned to the motive power, and is transmitted to the driven part by a so-called electrical path, while in the first and second transmission paths Since the motive power is transmitted to the driven part by the so-called magnetic path in a non-contact manner by the magnetic force of the magnetic lines without converting the motive power into the electric power, the transmission efficiency is higher than that of the third transmission path.
  • the power of the heat engine is controlled by controlling the rotational speeds of the first and second rotating magnetic fields by the first and second controllers, respectively. It is possible to steplessly shift and transmit to the driven part.
  • the first rotating machine as is apparent from the functions described above, the first rotating magnetic field and the first and second rotors are used during energy distribution / combining between the first stator and the first and second rotors. The rotation is performed while maintaining the collinear relationship regarding the rotation speed as shown in equation (25).
  • the second rotating magnetic field, the third and fourth rotating magnetic fields are divided during energy distribution and synthesis between the second stator, the third and fourth rotors.
  • the rotor rotates while maintaining a collinear relationship with respect to the rotational speed as shown in equation (25).
  • the second and third rotors when both the second and third rotors are directly connected to the output portion of the heat engine without a transmission mechanism such as a gear, the second and third rotors are The rotational speeds are all equal to the rotational speed of the output portion of the heat engine (hereinafter referred to as "the number of rotations of the heat engine").
  • the rotational speeds of the first and fourth rotors are both equal to the speed of the driven part.
  • first to fourth rotor rotational speeds VR1, VR2, VR3, VR4 the rotational speeds of the first and second rotational magnetic fields are respectively It is assumed that “first and second magnetic field rotational speeds VMF1 and VMF2”. From the relationship between the rotational speeds of the various rotating elements described above, the relationship between these rotational speeds VR1 to VR4, VMF1, and VMF2 is shown, for example, as a thick solid line in FIG.
  • the first magnetic field rotational speed VMF1 is increased relative to the second and third rotor rotational speeds VR2 and VR3, and the second magnetic field rotational speed VMF2 is set.
  • the power of the heat engine can be decelerated steplessly and transmitted to the driven part.
  • the first magnetic field rotational speed VMF1 is decreased and the second magnetic field rotational speed VMF2 is increased with respect to the second and third rotor rotational speeds VR2 and VR3.
  • the power of the heat engine can be steplessly accelerated and transmitted to the driven part.
  • the first magnetic field is generated when the rotational speed of the heat engine is higher than the speed of the driven portion (see the two-dot chain line in FIG. 20).
  • the rotational speed VMF1 may be higher than the rotational speed of the heat engine and may be excessive. Therefore, by setting the first pole-log ratio ⁇ to a smaller value, as is apparent from the comparison between the velocity alignment chart shown by a broken line in FIG. 20 and the velocity alignment chart shown by a two-dot chain line, The rotation speed VMF1 can be reduced, and thereby, the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the first magnetic field rotation speed VMF1 can be prevented.
  • the second magnetic field rotation is performed.
  • the velocity VMF2 may be higher than the velocity of the driven part and may be excessive. Therefore, by setting the second pole-log ratio ⁇ to a smaller value, it is apparent from the comparison between the velocity alignment graph shown by the broken line in FIG. 20 and the velocity alignment graph shown by the one-dot chain line.
  • the speed VMF2 can be reduced, which can prevent the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the second magnetic field rotational speed VMF2.
  • the electric power is generated by the first stator of the first rotating machine, thereby equivalent torque for the second drive of the second rotating machine described above.
  • the heat engine is an internal combustion engine.
  • FIG. 21 shows the relationship between the torques of various rotating elements in this case, along with the relationship between the rotational speeds.
  • TDHE is a torque transmitted to the output of the heat engine (hereinafter referred to as “heat engine transmission torque")
  • TOUT is a torque transmitted to the driven part (hereinafter referred to as “driven part transmission torque” ).
  • Tg1 is a first power generation equivalent torque
  • Te2 is a second drive equivalent torque.
  • the second driving equivalent torque Te2 outputs the output of the driven portion and the heat engine with the first power generation equivalent torque Tg1 as a reaction force. Because the torque is transmitted to both of the units, the torque required for the first rotating machine is greater than otherwise. In this case, the torque required for the first rotating machine, that is, the first power generation equivalent torque Tg1 is expressed by the following equation (47).
  • Tg1 ⁇ ⁇ ⁇ TOUT + ( ⁇ + 1) TDHE ⁇ / ( ⁇ + 1 + ⁇ ) (47)
  • the first power generation equivalent torque Tg1 is smaller for the driven portion transmission torque TOUT and the heat engine transmission torque TDHE of the same magnitude as the first pole pair number ratio ⁇ is larger. Become. Therefore, by setting the first pole pair number ratio ⁇ to a larger value, further downsizing and cost reduction of the first rotating machine can be achieved.
  • the speed of the low speed driven part can be rapidly increased by controlling the heat engine and the first and second rotating machines as follows.
  • FIG. 22 shows the relationship between the rotational speeds of the various types of rotary elements at the start of the case where the speed of the driven part is thus rapidly increased, as well as the relationship between the torques of the various types of rotary elements.
  • THE is the torque of the heat engine
  • Tg2 is the equivalent torque for the second power generation described above.
  • the rotational speed of the heat engine is increased to a predetermined rotational speed at which the maximum torque can be obtained. As shown in FIG.
  • the direction of rotation of the second rotating magnetic field to be determined is the reverse direction. Power is generated in the second stator in order to apply a positive torque to the driven portion from the second stator that generates such a second rotating magnetic field. Further, the electric power generated by the second stator is supplied to the first stator, and the first rotating magnetic field is rotated forward.
  • the torque THE of the heat engine, the first driving equivalent torque Te1, and the second power generation equivalent torque Tg2 are all transmitted to the driven part as positive torques, and as a result, the speed of the driven part is rapidly increased. To rise.
  • the torque THE of the heat engine and the first driving equivalent torque Te1 are equivalent to the second power generation equivalent. Since the torque Tg2 is transmitted to the driven part as a reaction force, the torque required of the second rotating machine is larger than in the other cases. In this case, the torque required for the second rotating machine, that is, the second power generation equivalent torque Tg2 is expressed by the following equation (48).
  • Tg2 ⁇ ⁇ ⁇ THE + (1 + ⁇ ) TOUT ⁇ / ( ⁇ + ⁇ + 1) (48)
  • the second power generation equivalent torque Tg2 is smaller with respect to the driven portion transmission torque TOUT and the heat engine torque THE of the same magnitude as the second pole pair ratio ⁇ is larger. Become. Therefore, by setting the second pole pair number ratio ⁇ to a larger value, it is possible to achieve further downsizing and cost reduction of the second rotating machine.
  • the crank angle sensor 51 outputs a detection signal representing a crank angle position of the crankshaft 3 a to the ECU 2.
  • the ECU 2 calculates the engine speed NE based on the crank angle position.
  • a first rotation angle sensor 52 and a second rotation angle sensor 53 are connected to the ECU 2, and these first and second rotation angle sensors 52, 53 are the rotor rotation angles of A1 and A2 described above.
  • Each of ⁇ A1 and ⁇ A2 is detected, and the detection signal thereof is output to the ECU 2.
  • the ECU 2 calculates the rotor rotational speeds VRA1 and VRA2 of A1 and A2, respectively, based on the detected rotor rotational angles ⁇ A1 and ⁇ A2 of A1 and A2.
  • the third rotation angle sensor 54 is a rotation angle position (hereinafter referred to as “B1 rotor rotation”) of a specific permanent magnet 34 a of the B1 rotor 34 with respect to a specific U-phase coil 33 b (hereinafter referred to as “second reference coil”) of the second rotating machine 31. And detects the angle ⁇ B1), and outputs the detection signal to the ECU 2.
  • the ECU 2 calculates the B1 rotor rotational speed VRB1 based on the detected B1 rotor rotational angle ⁇ B1.
  • the fourth rotation angle sensor 55 detects the rotation angle position (hereinafter referred to as "B2 rotor rotation angle ⁇ B2") of the specific core 35a of the B2 rotor 35 with respect to the second reference coil, and outputs the detection signal to the ECU 2. .
  • the ECU 2 calculates the B2 rotor rotational speed VRB2 based on the detected B2 rotor rotational angle ⁇ B2.
  • a detection signal representing the current / voltage value input / output to / from the battery 43 is output to the ECU 2.
  • the ECU 2 calculates the charge state of the battery 43 based on the detection signal.
  • a detection signal representing an accelerator opening degree AP which is a depression amount of the accelerator pedal (not shown) of the vehicle, is output from the accelerator opening sensor 57 to the ECU 2
  • a detection signal representing a vehicle speed VP is output from the vehicle speed sensor 58.
  • Ru The vehicle speed VP is the rotational speed of the drive wheels DW, DW.
  • the ECU 2 is constituted by a microcomputer including an I / O interface, a CPU, a RAM, a ROM and the like, and the engine 3, the first and the second rotations according to detection signals from the various sensors 51 to 58 described above Control the operation of machines 21 and 31.
  • the ECU 2 reads data from the memory 45 that stores various maps and the like that are required when performing the control. Further, the ECU 2 derives the temperature of the battery 43 from the signal detected by the battery temperature sensor 62 attached to the exterior of the battery 43 or its periphery.
  • FIG. 23 is a block diagram showing driving force control in the power unit 1 according to the first embodiment.
  • FIG. 24 is a velocity collinear diagram of the power unit 1 having a one-collinear four-element mechanism.
  • the ECU 2 obtains a detection signal representing the accelerator opening degree AP described above and a detection signal representing the vehicle speed VP.
  • the ECU 2 uses the driving force map stored in the memory 45 to derive a driving force (hereinafter referred to as “required driving force”) according to the accelerator opening degree AP and the vehicle speed VP.
  • the ECU 2 calculates an output according to the required driving force and the vehicle speed VP (hereinafter referred to as "required output").
  • the required output is an output required for the vehicle to travel in accordance with the driver's accelerator pedal operation.
  • the ECU 2 acquires information on the remaining capacity (SOC: State of Charge) of the battery 43 from the detection signal representing the current / voltage value input / output to / from the battery 43 described above.
  • the ECU 2 determines the ratio of the output of the engine 3 to the required output according to the SOC of the battery 43.
  • the ECU 2 uses the ENG operation map stored in the memory 45 to derive an optimum operating point according to the output of the engine 3.
  • the ENG operation map is a map based on BSFC (Brake Specific Fuel Consumption) that indicates the fuel consumption rate at each operating point according to the relationship between the shaft rotational speed of the engine 3 and the torque and the output.
  • BSFC Brain Specific Fuel Consumption
  • the ECU 2 derives the shaft rotational speed of the engine 3 at the optimum operating point (hereinafter referred to as “required ENG shaft rotational speed”). Furthermore, the ECU 2 derives the torque of the engine 3 at the optimal operating point (hereinafter referred to as "ENG required torque").
  • the ECU 2 controls the engine 3 to output the ENG required torque.
  • the ECU 2 detects the shaft rotational speed of the engine 3.
  • the shaft rotation speed of the engine 3 detected at this time is referred to as “the actual ENG shaft rotation speed”.
  • the ECU 2 calculates the difference ⁇ rpm between the required ENG axis rotational speed and the actual ENG axis rotational speed.
  • the ECU 2 controls the output torque of the first rotating machine 21 such that the difference ⁇ rpm approaches zero.
  • the control is performed by regenerative power generation by the stator 23 of the first rotating machine 21.
  • the A2 rotor 25 of the first rotating machine 21 (MG1) has a torque T12 shown in the alignment chart of FIG. Is added.
  • electric energy (regenerative energy) generated by regenerative power generation in the stator 23 of the first rotating machine 21 is sent to the first PDU 41.
  • the regenerative energy generated by the stator 23 of the first rotating machine 21 is indicated by a dotted line A.
  • the ECU 2 controls the second PDU 42 such that a torque obtained by subtracting the calculated torque T11 from the previously calculated required driving force is applied to the B2 rotor 35 of the second rotating machine 31.
  • torque T22 is applied to the B2 rotor 35 of the second rotating machine 31 (MG2).
  • the alignment graph of FIG. 24 shows the case where the electrical energy is supplied to the stator 33 of the second rotating machine 31, and the electrical energy at that time is shown by a dotted line B. At this time, when electric energy is supplied to the second rotating machine 31, regenerative energy obtained by regenerative power generation of the first rotating machine 21 may be used.
  • the torque T11 is applied to the A1 rotor 24 of the first rotating machine 21 and the torque T22 is applied to the B2 rotor 35 of the second rotating machine 31. Since the A1 rotor 24 of the first rotating machine 21 is connected to the connecting shaft 6, and the B2 rotor 35 of the second rotating machine 31 is connected to the second rotating shaft 7, torque T11 is applied to the drive wheels DW and DW. And the sum of torque T22.
  • the ECU 2 Since the B1 rotor 34 of the second rotating machine 31 is connected to the shaft of the engine 3, the actual ENG shaft rotational speed of the engine 3 is affected by the torque T21. However, even if the actual ENG axis rotation speed changes, the ECU 2 controls the output torque of the first rotating machine 21 so that the difference ⁇ rpm approaches zero. Since the torque T12 changes by the control and the torque T11 generated in the A1 rotor 24 of the first rotating machine 21 also changes, the ECU 2 changes the torque T22 applied to the B2 rotor 35 of the second rotating machine 31. At this time, the torque T21 generated by the changed torque T22 also changes.
  • the ECU 2 controls the torque generated on the A2 rotor 25 of the first rotating machine 21 so that the engine 3 operates at the optimum operating point, and the required driving force is applied to the drive wheels DW and DW.
  • the torque generated in the B2 rotor 35 of the second rotating machine 31 is controlled so as to be transmitted.
  • the vehicle speed VP is used when deriving the required driving force and when deriving the required output, but instead of the vehicle speed VP, information on the number of revolutions of the axle may be used.
  • the operation modes of the power unit 1 include EV creep, EV start, ENG start during EV travel, ENG travel, deceleration regeneration, stop ENG start, ENG creep, ENG start, EV reverse start, and ENG reverse start.
  • EV creep a diagram showing the transmission state of torque as shown in FIG. 25 and the like, and a velocity collinear diagram showing the relationship between rotational speeds of various rotating elements as shown in FIGS. While, EV creep will be described in order. Before describing this operation mode, these velocity alignment charts will be described.
  • the engine rotational speed NE, the A2 rotor rotational speed VRA2 and the B1 rotor rotational speed VRB1 are equal to one another. Further, assuming that A1 rotor rotational speed VRA1 and B2 rotor rotational speed VRB2 are equal to each other, and assuming that there is no shift by differential gear mechanism 9 etc., vehicle speed VP is equal to A1 rotor rotational speed VRA1 and B2 rotor rotational speed VRB2. .
  • the engine rotational speed NE the vehicle speed VP, the first magnetic field rotational speed VMF1, the A1 rotor rotational speed VRA1, the A2 rotor rotational speed VRA2, the second magnetic field rotational speed VMF2,
  • the relationship between the B1 rotor rotational speed VRB1 and the B2 rotor rotational speed VRB2 is shown by a velocity alignment chart such as in FIGS. 26 (a) and 26 (b).
  • the first and second pole-log ratios ⁇ and ⁇ are both 2.0 as described above.
  • This EV creep is an operation mode in which the creep operation of the vehicle is performed using the first and second rotating machines 21 and 31 in a state where the engine 3 is stopped. Specifically, electric power is supplied from the battery 43 to the stator 33 of the second rotating machine 31, and the second rotating magnetic field generated by the stator 33 is rotated in the forward direction. Further, the power generated by the stator 23 of the first rotating machine 21 is generated using power transmitted to the A1 rotor 24 of the first rotating machine 21 as described later, and the generated power is further supplied to the stator 33.
  • FIG. 25 shows a state of transmission of torque during the above-described EV creep.
  • 26 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 during this EV creep
  • FIG. 26 (b) shows FIG. 26 (a).
  • combined two speed alignment charts is shown, respectively.
  • thick broken or solid lines with arrows indicate the flow of torque.
  • the solid arrows indicate the torque acting in the forward direction
  • the hollow arrows indicate the torque acting in the reverse direction.
  • torque is actually transmitted in the form of electrical energy, but in FIG.
  • the second driving equivalent torque TSE2 from the stator 33 causes the B2 rotor 35 to rotate in the forward direction. And, as indicated by arrow A, act to reverse the B1 rotor 34. Further, part of the torque transmitted to the B2 rotor 35 is transmitted to the drive wheels DW and DW via the second rotation shaft 7 and the differential gear mechanism 9 and the like, whereby the drive wheels DW and DW perform forward rotation. Do.
  • the rest of the torque transmitted to the B2 rotor 35 is transmitted to the A1 rotor 24 through the connecting shaft 6, and thereafter, the stator 23 is generated according to the power generation in the stator 23 of the first rotating machine 21.
  • the first rotating magnetic field generated along with the power generation in the stator 23 is reversed.
  • the first power generation equivalent torque TGE1 generated along with the power generation by the stator 23 acts to cause the A2 rotor 25 to rotate in the forward direction.
  • the torque transmitted to the A1 rotor 24 is further transmitted to the A2 rotor 25 (shown by an arrow C) so as to balance the first electric power generation equivalent torque TGE1, and acts to rotate the A2 rotor 25 forward.
  • the power supplied to the stator 33 and the stator 23 make it possible that the torque for reversing the B1 rotor 34 indicated by the arrow A described above and the torque for rotating the A2 rotor 25 indicated by the arrows B and C balance with each other.
  • the A2 rotor 25, the B1 rotor 34 and the crankshaft 3a connected to each other are held stationary.
  • the rotor rotational speeds VRA2 and VRB1 of A2 and B1 have the value 0, and the engine speed NE also has the value 0.
  • the electric power supplied to the stator 33 of the second rotating machine 31, the electric power generated by the stator 23 of the first rotating machine 21, and the first and second magnetic field rotational speeds VMF1 and VMF2 are respectively
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 are controlled to be very small (FIG. 26 (a), (B)).
  • the creep operation with a very small vehicle speed VP is performed.
  • the creep operation can be performed by the driving force of the first and second rotating machines 21 and 31.
  • This EV start is an operation mode in which the vehicle is started and traveled using the first and second rotating machines 21 and 31 in a state where the engine 3 is stopped during the above-described EV creep.
  • the electric power supplied to the stator 33 of the second rotating machine 31 and the electric power generated by the stator 23 of the first rotating machine 21 are both increased.
  • the rotor rotational speeds VRA2 and VRB1 of A2 and B1 that is, engine rotational speed NE, at 0, reverse rotation is performed during EV creep.
  • the first magnetic field rotational speed VMF1 of the first rotating magnetic field and the second magnetic field rotational speed VMF2 of the second rotating magnetic field that has been forward rotated are increased in the same rotational direction as before.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 ie, the vehicle speed VP rises from the EV creep state shown by the broken line in FIG. Will be launched.
  • the state of transmission of torque during the EV start is the same as the state of transmission of torque during the EV creep shown in FIG. 25, as shown in FIG.
  • This ENG start during EV travel is an operation mode for starting the engine 3 while the vehicle is traveling with the EV start described above.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 ie, the vehicle speed VP at the values at that time
  • the first magnetic field of the first rotating magnetic field reverses at EV start as described above
  • the rotational speed VMF1 is controlled to a value 0, and the second magnetic field rotational speed VMF2 of the second rotating magnetic field, which has been normally rotated, is controlled to be reduced.
  • the first magnetic field rotational speed VMF1 becomes a value 0, in addition to the stator 33 of the second rotating machine 31, power is supplied from the battery 43 to the stator 23 of the first rotating machine 21.
  • the first magnetic field rotational speed VMF1 is increased while rotating the generated first rotating magnetic field forward.
  • FIG. 29 shows a state of transmission of torque in the state where electric power is supplied to both the stators 23 and 33 as described above at the time of ENG start during EV traveling.
  • the second driving equivalent torque TSE2 is transmitted to the B2 rotor 35.
  • the torque transmitted to the B1 rotor 34 as described later is transmitted to the B2 rotor 35. That is, the second driving equivalent torque TSE2 and the B1 rotor transmission torque TRB1 transmitted to the B1 rotor 34 are synthesized and transmitted to the B2 rotor 35.
  • part of the torque transmitted to the B2 rotor 35 is transmitted to the A1 rotor 24 through the connecting shaft 6, and the remaining part is transmitted to the drive wheels DW and DW through the second rotation shaft 7 or the like.
  • the electric power is supplied from the battery 43 to the stator 23 from the function of the first rotating machine 21 described above, so that the first equivalent torque TSE1 for driving is A2.
  • the torque transmitted to the A1 rotor 24 as described above is transmitted to the A2 rotor 25. That is, the first driving equivalent torque TSE1 and the A1 rotor transmission torque TRA1 transmitted to the A1 rotor 24 are synthesized and transmitted to the A2 rotor 25.
  • crankshaft 3a rotates forward. Furthermore, in this case, the power supplied to both the stators 23 and 33 is controlled such that the power is sufficiently transmitted to the drive wheels DW and DW and the engine 3.
  • vehicle speed VP is maintained at the value at the time of ENG start during EV traveling, and rotor rotational speeds VRA2 and VRB1 of A2 and B1 are indicated by the broken line
  • the rotational speed of the crankshaft 3a connected to the A2 and B1 rotors 25 and 34 that is, the engine speed NE also increases.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug (neither is shown) of the engine 3. Further, in this case, by controlling the first and second magnetic field rotational speeds VMF1 and VMF2, the engine speed NE is controlled to a relatively small value suitable for starting the engine 3.
  • FIG. 31 shows a velocity alignment chart obtained by combining the two velocity alignment charts shown in FIG.
  • TDENG is a torque transmitted to the crankshaft 3a of the engine 3 (hereinafter referred to as “engine transmission torque")
  • TDDW is a torque transmitted to the drive wheels DW and DW (hereinafter referred to as “drive wheel transmission torque ”)).
  • the second driving equivalent torque TSE2 is transmitted to both the driving wheels DW and DW and the crankshaft 3a using the first power generation equivalent torque TGE1 as a reaction force,
  • the torque required for one rotating machine 21 is larger than in the other cases.
  • TGE 1 ⁇ ⁇ ⁇ TDDW + ( ⁇ + 1) TDENG ⁇ / ( ⁇ + 1 + ⁇ ) (51)
  • the first power generation equivalent torque TGE1 decreases with respect to the drive wheel transmission torque TDDW and the engine transmission torque TDENG of the same magnitude as the first pole pair number ratio ⁇ increases.
  • the first pole pair number ratio ⁇ is set to the value 2.0, the first power generation equivalent torque TGE1 can be made smaller than when set to the value less than 1.0.
  • the ENG traveling is an operation mode in which the vehicle travels using the power of the engine 3.
  • the motive power (hereinafter referred to as "engine power”) output to the crankshaft 3a by combustion in the engine 3 during ENG travel is basically the best fuel consumption (hereinafter referred to as “best fuel consumption”) within the range where the required torque can be generated. Control to obtain).
  • the required torque is a torque required of the vehicle, and is calculated, for example, by searching a map (not shown) according to the detected vehicle speed VP and accelerator opening degree AP.
  • the second rotating machine is used to generate electric power by the stator 23 of the first rotating machine 21 using engine power transmitted to the A2 rotor 25, and without charging the generated electric power to the battery 43.
  • the stator 33 of 31 is supplied.
  • this operation mode is referred to as "battery input / output zero mode”.
  • FIG. 32 shows a state of transmission of torque in this battery input / output zero mode.
  • the second drive equivalent torque TSE2 and the B1 rotor transmission torque TRB1 are synthesized and transmitted to the B2 rotor 35 as the B2 rotor transmission torque TRB2, as in the ENG start-up during the EV traveling described above. Therefore, during the battery input / output zero mode, the electric power generated by the stator 23 of the first rotating machine 21 as described above is supplied to the stator 33 of the second rotating machine 31, whereby the second equivalent torque for driving TSE2 is obtained. Is transmitted to the B2 rotor 35, the engine torque transmitted to the B1 rotor 34 as described above is transmitted to the B2 rotor 35. Further, the engine torque distributed to the A1 rotor 24 as described above is further transmitted to the B2 rotor 35 via the connecting shaft 6.
  • the first and second rotating machines 21 and 31 function as a continuously variable transmission.
  • the rotor rotational speeds VRA2 and VRB1 of A2 and B1 are maintained while maintaining the speed relationship shown in equations (43) and (44). That is, by increasing the first magnetic field rotational speed VMF1 and decreasing the second magnetic field rotational speed VMF2 with respect to the engine rotational speed NE, the rotor rotational speeds VRA1 and VRB2 of the A1 and B2 ie, the vehicle speed VP are made steplessly. It can be slowed down. Conversely, as indicated by the alternate long and short dash lines in FIGS.
  • the first magnetic field rotational speed VMF1 is decreased relative to the rotor rotational speeds VRA2 and VRB1 of A2 and B1, and the second magnetic field rotational speed By raising VMF2, the vehicle speed VP can be steplessly accelerated.
  • the first and second magnetic field rotational speeds VMF1 and VMF2 are controlled so that the engine rotational speed NE becomes the target rotational speed.
  • the target rotational speed is calculated, for example, by searching a map (not shown) in accordance with the vehicle speed VP and the calculated required torque. In this map, the target rotational speed is set to a value such that the best fuel consumption of the engine 3 can be obtained with respect to the vehicle speed VP and the required torque at that time.
  • the engine power is temporarily divided, and the B2 rotor 35 is transmitted via the following first to third transmission paths. While being synthesized and transmitted to the drive wheels DW and DW.
  • First transmission path A2 rotor 25 ⁇ magnetic force by magnetic line of force ML ⁇ A1 rotor 24 ⁇ connecting shaft 6 ⁇ B2 rotor 35
  • Second transmission path B1 rotor 34 ⁇ magnetic force by magnetic line of force ML ⁇ B2 rotor 35
  • Third transmission path A2 rotor 25 ⁇ magnetic force by magnetic line of force ML ⁇ stator 23 ⁇ first PDU 41 ⁇ second PDU 42 ⁇ stator 33 ⁇ magnetic force by magnetic line of force ⁇ B2 rotor 35
  • engine power is transmitted to the drive wheels DW and DW by so-called magnetic paths by the magnetic force due to the magnetic field lines ML without being converted to electric power. Further, in the above-described third transmission path, the engine power is once converted to electric power, is returned to the power again, and is transmitted to the drive wheels DW and DW by a so-called electric path.
  • the electric power generated by the stator 23, and the first and second magnetic field rotational speeds VMF1 and VMF2 are controlled such that the speed relationship shown in equations (43) and (44) is maintained. Be done.
  • the second rotating machine 31 assists the engine 3.
  • this operation mode is referred to as "assist mode".
  • the first predetermined value is calculated by searching a map (not shown) according to the vehicle speed VP, for example. In this map, the first predetermined value is set to a torque value at which the best fuel consumption of the engine 3 can be obtained with respect to the vehicle speed VP at that time.
  • the above lower limit value is set to a value that prevents the battery 43 from being overdischarged.
  • vehicle required power the power required to drive the vehicle (hereinafter referred to as “vehicle required power”) represented by the vehicle speed VP and the required torque at that time is higher than the engine power that provides the best fuel efficiency. And when the battery 43 has enough power remaining.
  • the power generation is performed by the stator 23 using the engine power transmitted to the A2 rotor 25.
  • the electric power charged in the battery 43 is supplied to the stator 33, as shown in FIG. Therefore, a second driving equivalent torque TSE2 based on the power supplied from the stator 23 and the battery 43 is transmitted to the B2 rotor 35.
  • a torque obtained by combining the second driving equivalent torque TSE2, the engine torque distributed to the A1 rotor 24 with power generation, and the engine torque transmitted to the B1 rotor 34 is , And is transmitted to the drive wheels DW and DW via the B2 rotor 35.
  • the power transmitted to the drive wheels DW and DW is equal to the sum of the engine power and the power (energy) supplied from the battery 43.
  • the electric power generated by the stator 23, the electric power supplied from the battery 43 to the stator 33, and the first and second magnetic field rotational speeds VMF1 and VMF2 are expressed by the equations (43) and (44). It is controlled to maintain the speed relationship shown in FIG. As a result, the shortage of engine power with respect to the vehicle required power is compensated by supplying power from the battery 43 to the stator 33.
  • the example described above is an example in which the shortage of engine power with respect to the vehicle required power is relatively small, in the case of a relatively large amount, the first rotary machine 21 is added to the stator 33 of the second rotary machine 31. Power is also supplied from the battery 43 to the stator 23 of the
  • the second predetermined value is calculated by searching a map (not shown) according to the vehicle speed VP, for example. In this map, the second predetermined value is set to a value smaller than the torque value at which the best fuel consumption can be obtained, with respect to the vehicle speed VP at that time. The upper limit value is set to a value that prevents the battery 43 from being overcharged.
  • the driving in the drive charging mode is performed when the vehicle required power is smaller than the engine power for obtaining the best fuel efficiency and when the charging state is relatively small.
  • the stator 33 of the second rotating machine 31 receives the electric power generated by the stator 23 of the first rotating machine 21.
  • the electric power of the magnitude obtained by subtracting the electric power to be charged is supplied, and the second driving equivalent torque TSE2 based on this electric power is transmitted to the B2 rotor 35.
  • a torque obtained by combining the second driving equivalent torque TSE2 the engine torque distributed to the A1 rotor 24 with power generation, and the engine torque transmitted to the B1 rotor 34 is , And is transmitted to the drive wheels DW and DW via the B2 rotor 35.
  • the power transmitted to the drive wheels DW and DW is obtained by subtracting the power (energy) charged in the battery 43 from the engine power. It becomes a size.
  • the power generated by the stator 23, the power charged to the battery 43, and the first and second magnetic field rotational speeds VMF1 and VMF2 are expressed by the equations (43) and (44). It is controlled to maintain the indicated speed relationship. As a result, the surplus of the engine power with respect to the vehicle required power is converted to electric power in the stator 23 of the first rotating machine 21, and the battery 43 is charged.
  • the electric power generated by the stator 23 of the first rotating machine 21 is controlled such that the first power generation equivalent torque TGE1 is 1/3 of the engine torque
  • the engine 3 to the drive wheels DW and DW The transmission of power can be done only by the magnetic path. In this case, a torque having a magnitude of 2/3 times the engine torque is transmitted to the drive wheels DW and DW.
  • the engine 3 When the vehicle speed VP in the low speed state is rapidly increased during ENG traveling (hereinafter, such operation is referred to as "rapid acceleration operation during ENG traveling"), the engine 3, the first and second rotating machines 21, 31 is controlled as follows.
  • 36 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 at the start of the sudden acceleration operation during this ENG traveling, and FIG. The velocity alignment chart which synthesize
  • TENG is engine 3 torque.
  • the engine speed NE is increased to a predetermined speed at which the maximum torque can be obtained. As shown in FIGS.
  • the engine speed NE becomes higher than the vehicle speed VP, and the difference between the two increases.
  • the direction of rotation of the second rotating magnetic field to be determined is the reverse direction. Therefore, in order to apply a positive torque to the drive wheels DW and DW from the stator 33 of the second rotating machine 31 that generates such a second rotating magnetic field, the stator 33 generates power. Further, the electric power generated by the stator 33 is supplied to the stator 23 of the first rotating machine 21 and the first rotating magnetic field is rotated forward.
  • the second power generation equivalent torque TGE2 decreases with respect to the drive wheel transmission torque TDDW and the engine torque TENG having the same magnitude as the second pole pair logarithmic ratio ⁇ increases.
  • the second pole-log ratio ⁇ is set to the value 2.0, the second drive equivalent torque TSE2 can be made smaller than when set to the value less than 1.0.
  • Deceleration regeneration This deceleration regeneration is performed on the first rotating machine 21 or the second rotating machine 31 using the inertia energy of the drive wheels DW and DW while the vehicle is decelerating traveling, that is, when the vehicle is traveling with inertia. This is an operation mode for generating power and charging the generated power to the battery 43.
  • deceleration regeneration when the ratio of the torque of the drive wheels DW, DW transmitted to the engine 3 to the torque of the drive wheels DW, DW (torque due to inertia) is small, a part of the power of the drive wheels DW, DW is used The two stators 23 and 33 generate electric power, and the generated electric power is charged to the battery 43.
  • this power generation is performed using the power transmitted to the A2 rotor 25 as described later in the stator 23 of the first rotating machine 21, and in the stator 33 of the second rotating machine 31, the B2 rotor 35 is generated. It is performed using the power transmitted as will be described later.
  • FIG. 37 shows a state of transmission of torque during the above-described deceleration regeneration.
  • FIG. 38 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 during this deceleration regeneration
  • FIG. 38 (b) shows FIG. 38 (a).
  • combined two speed alignment charts is shown, respectively.
  • a combined torque obtained by combining all of the torque of the drive wheels DW and DW with the torque distributed as described later to the A1 rotor 24 in the B2 rotor 35 along with the power generation in the stator 33 Is transmitted. Further, from the function of the second rotating machine 31 described above, the combined torque transmitted to the B2 rotor 35 is distributed to the stator 33 and the B1 rotor 34.
  • Stop ENG Start This stop ENG start is an operation mode for starting the engine 3 while the vehicle is stopped. At the time of ENG start while stopped, electric power is supplied from the battery 43 to the stator 23 of the first rotating machine 21 and the first rotating magnetic field generated by the stator 23 is made to forward rotate accordingly and the B1 rotor 34 is described later. The generated power is generated by the stator 33 using the transmitted power, and the generated power is further supplied to the stator 23.
  • FIG. 39 shows a state of transmission of torque at the time of ENG start while the vehicle is stopped.
  • FIG. 40 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 at the time of ENG start while the vehicle is stopped
  • FIG. 40 (b) shows FIG. 40 (a).
  • combined two shown velocity alignment charts is shown, respectively.
  • the first driving equivalent torque TSE1 from stator 23 acts to rotate A2 rotor 25 forward.
  • it acts to reverse the A1 rotor 24.
  • part of the torque transmitted to the A2 rotor 25 is transmitted to the crankshaft 3a, whereby the crankshaft 3a performs normal rotation.
  • the rest of the torque transmitted to the A2 rotor 25 is transmitted to the B1 rotor 34, and thereafter, as the stator 33 of the second rotating machine 31 generates electricity, the stator 33 is used as electric energy It is transmitted.
  • the second rotating magnetic field generated as a result of power generation in the stator 33 is reversed.
  • the second power generation equivalent torque TGE2 generated along with the power generation by the stator 33 acts to cause the B2 rotor 35 to rotate in the forward direction.
  • the torque transmitted to the B1 rotor 34 is further transmitted to the B2 rotor 35 (shown by an arrow F) so as to balance the second electric power generation equivalent torque TGE2, and acts to rotate the B2 rotor 35 forward.
  • the torque is supplied to the stator 23 of the first rotating machine 21 so that the torque for reverse rotating the A1 rotor 24 indicated by the arrow D and the torque for normal rotating the B2 rotor 35 indicated by arrows E and F are balanced.
  • the A1 rotor 24, the B2 rotor 35, and the drive wheels DW and DW connected to each other are held stationary.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 become the value 0, and the vehicle speed VP also becomes the value 0.
  • the power relationship supplied to stator 23, the power generated by stator 33, and the first and second magnetic field rotational speeds VMF1 and VMF2 maintain the speed relationship shown in the equations (43) and (44).
  • the rotor rotational speeds VRA2 and VRB1 of A2 and B1 are controlled to be relatively small values (see FIGS. 40 (a) and 40 (b)).
  • the engine speed NE is controlled to a relatively small value suitable for starting the engine 3 while keeping the vehicle speed VP at the value 0.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug of the engine 3 according to the crank angle position.
  • ENG creep This ENG creep is an operation mode for performing a creep operation of a vehicle using engine power.
  • the power generated by the stator 23 is generated using the engine power transmitted to the A2 rotor 25, and the power generated by the stator 33 is generated using the engine power transmitted to the B1 rotor 34. Further, the battery 43 is charged with the power generated by the two stators 23 and 33 as described above.
  • FIG. 41 shows a state of transmission of torque during the ENG creep described above.
  • FIG. 42 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 during this ENG creep, and
  • FIG. 42 (b) shows FIG. 42 (a).
  • combined two speed alignment charts is shown, respectively.
  • a part of the engine torque TENG is transmitted to the A2 rotor 25 along with the power generation in the stator 23 as in the case of the battery input / output zero mode described above.
  • the engine torque TENG transmitted to the A2 rotor 25 is distributed to the stator 23 and the A1 rotor 24. Also, as shown in FIGS.
  • the engine torque TENG distributed to the A1 rotor 24, the second power generation equivalent torque TGE2, and the engine torque TENG transmitted to the B1 rotor 34 are synthesized in the B2 rotor 35.
  • the combined torque is transmitted. Further, this combined torque is transmitted to the drive wheels DW, DW to cause the drive wheels DW, DW to rotate in the forward direction.
  • the electric power generated by the stators 23 and 33, and the first and second magnetic field rotational speeds VMF1 and VMF2 are controlled such that the rotor rotational speeds VRA1 and VRB2 of A1 and B2, ie, the vehicle speed VP become very small (see FIG. 42 (a), (b)), whereby the creep operation is performed.
  • engine torque TENG distributed to A1 rotor 24 along with power generation by stator 23, and B2 rotor via B1 rotor 34 along with power generation by stator 33.
  • the engine torque TENG transmitted to 35 is transmitted to the drive wheels DW and DW. That is, since a part of the engine torque TENG can be transmitted to the drive wheels DW, DW, a large reaction force can be prevented from acting on the engine 3 from the drive wheels DW, DW. Therefore, creep operation does not occur. It can be performed.
  • the above-mentioned driving by ENG creep is mainly performed when the state of charge is small or when the vehicle is climbing.
  • FIG. 43 shows a state of transmission of torque at the time of ENG start.
  • the second magnetic field rotational speed VMF2 of the second rotating magnetic field which was reversed during ENG creep, is controlled to be a value 0, and the first magnetic field rotational speed VMF1 of the first rotating magnetic field that has been forward rotated. And increase engine power.
  • the operation in the above-described battery input / output zero mode is performed.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 that is, the vehicle speed VP increase from the ENG creep state shown by the broken line in FIG. Take off.
  • FIG. 45 shows a state of transmission of torque during the EV reverse start.
  • FIG. 46 (a) shows an example of the respective velocity alignment charts of the first and second rotating machines 21 and 31 during the EV reverse start
  • FIG. 46 (b) shows it in FIG. 46 (a). The velocity alignment chart which synthesize
  • the second driving equivalent torque TSE2 from the stator 33 acts to reverse the B2 rotor 35, and at the same time, the B1 rotor 24 becomes positive. Acts to roll.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 ie, the vehicle speed VP increase in the negative direction from the stopped state shown by the broken line in FIG. And the vehicle starts moving backward.
  • FIG. 47 shows a state of transmission of torque during the ENG backward start.
  • the second magnetic field rotational speed VMF2 of the second rotating field reversed during ENG creep is controlled so as to further increase in the negative direction, and the first rotating field is rotated in the normal direction While increasing the magnetic field rotational speed VMF1, the engine power is increased.
  • the vehicle speed VP rises in the negative direction from the ENG creep state shown by the broken line in the figure, and the vehicle starts to move backward.
  • the first and second rotating machines 21 and 31 have the same function as a device combining the planetary gear device and a general one-rotor type rotating machine, Unlike a conventional power plant, a planetary gear set for distributing / combining and transmitting power is not necessary, and accordingly, the power plant 1 can be miniaturized accordingly. Also, unlike the conventional case described above, as described with reference to FIG. 32, the engine power is transmitted to the drive wheels DW and DW without recirculation, so the first and second rotating machines 21 and 31 The power to pass through can be reduced. Therefore, downsizing and cost reduction of the first and second rotating machines 21 and 31 can be achieved, whereby further downsizing and cost reduction of the power plant 1 can be achieved. Furthermore, by using the first and second rotating machines 21 and 31 having torque capacities commensurate with the reduced power as described above, the loss of power can be suppressed and the driving efficiency of the power unit 1 can be enhanced. it can.
  • the engine power is obtained by the first transmission path (A2 rotor 25, magnetic force by magnetic line of force ML, A1 rotor 24, connecting shaft 6, B2 rotor 35) and second transmission path (B1 rotor 34, magnetic force by magnetic line of force ML) B2 rotor 35), through a total of three paths of the third transmission path (A2 rotor 25, magnetic force by magnetic field line ML, stator 23, first PDU 41, second PDU 42, stator 33, magnetic force by magnetic field line ML, B2 rotor 35)
  • the divided wheels are transmitted to the drive wheels DW and DW.
  • the power (energy) passing through the first and second PDUs 41 and 42 via the third transmission path can be reduced, and therefore, downsizing and cost reduction of the first and second PDUs 41 and 42 can be achieved.
  • further miniaturization and cost reduction of the power plant 1 can be achieved.
  • engine power is transmitted to the drive wheels DW and DW by electrical paths
  • power is transmitted to the drive wheels DW and DW by magnetic paths.
  • the transmission efficiency is higher than the third transmission path.
  • the engine power is continuously shifted, and the drive wheels DW, It is transmitted to DW. Furthermore, in this case, since the first and second magnetic field rotational speeds VMF1 and VMF2 are controlled such that the engine rotational speed NE becomes the target rotational speed set so as to obtain the best fuel consumption, the best fuel consumption is obtained.
  • the drive wheels DW and DW can be driven while controlling the engine power as described above. Therefore, the drive efficiency of the power plant 1 can be further enhanced.
  • the first pole pair number ratio ⁇ of the first rotating machine 21 is set to the value 2.0, the above-mentioned equation (when starting ENG during EV traveling in which the torque required for the first rotating machine 21 becomes particularly large) As described using 51), the first power generation equivalent torque TGE1 can be made smaller than when the first pole pair number ratio ⁇ is set to a value less than 1.0, and therefore, the first rotary machine 21 Further miniaturization and cost reduction can be achieved.
  • the second pole pair ratio ⁇ of the second rotating machine 31 is set to the value 2.0, the time of the start of the rapid acceleration operation during ENG traveling where the torque required for the second rotating machine 31 becomes particularly large
  • the second drive equivalent torque TSE2 can be made smaller than when the second pole logarithm ratio ⁇ is set to a value less than 1.0, and therefore the second Further downsizing and cost reduction of the rotating machine 31 can be achieved.
  • the driving in the drive charging mode is performed when the required vehicle power is smaller than the engine power for obtaining the best fuel efficiency, and during the driving charge mode, the engine power is controlled to obtain the best fuel efficiency.
  • the surplus of the engine power with respect to the vehicle required power is charged to the battery 43 as electric power.
  • the operation in the assist mode is performed when the required vehicle power is larger than the engine power for obtaining the best fuel efficiency, and during the assist mode, the engine power is controlled to obtain the best fuel efficiency, and The shortage of engine power for the engine is compensated by the supply of power from the battery 43. Therefore, regardless of the size of the load of the drive wheels DW, DW, the drive efficiency of the power plant 1 can be further enhanced.
  • the power is supplied from the battery 43 to the first rotating machine 21 and / or the second rotating machine 31, and the first rotating machine 21 and The power generated by the second rotating machine 31 is charged to the battery 43. Further, as described above, the ECU 2 calculates the state of charge of the battery 43 based on the detection signal from the current / voltage sensor 56.
  • the battery 43 is configured by a secondary battery such as a nickel hydrogen battery or a lithium ion battery.
  • a secondary battery such as a nickel hydrogen battery or a lithium ion battery.
  • SOC State of Charge
  • the ECU 2 of the present embodiment performs control in accordance with the SOC of the battery 43 (hereinafter referred to as "battery SOC").
  • FIG. 49 is a diagram showing the range of the battery SOC in which charge and discharge are repeated. As shown in FIG. 49, the ECU 2 controls the operations of the engine 3 and the first and second rotating machines 21 and 31 so that the battery SOC falls within the range from the lower limit SOC to the upper limit SOC.
  • the operation device 1 continues the ENG start operation, and as indicated by thick solid lines in FIGS. 44 (a) and 44 (b), the rotation direction of the second rotating magnetic field in the stator 33 of the second rotating machine 31 is positive.
  • the stator 33 In the turning direction, the stator 33 is in a power running state, and consumes electrical energy.
  • the regenerative energy obtained by the regenerative power generation of the first rotating machine 21 is used.
  • the battery 43 is charged by the surplus regenerative energy.
  • the battery 43 is charged by the regenerative energy.
  • the battery SOC may exceed the upper limit SOC. Therefore, when the battery SOC is equal to or higher than the first threshold value lower than the upper limit SOC shown in FIG. 49, the ECU 2 performs the control described below.
  • FIGS. 50 (a) and 50 (b) show (a) a speed alignment chart when the battery SOC is less than the first threshold when the operation mode of the operation apparatus 1 is "ENG start", and (b) the battery The velocity alignment chart when SOC is more than a 1st threshold value is shown. As shown in FIG.
  • the first magnetic field rotational speed VMF1 of the first rotating magnetic field in the stator 23 of the first rotating machine 21 is as shown in FIG. It is controlled to be lower than the first magnetic field rotational speed VMF1 shown in FIG.
  • the regenerative energy generated by the first rotating machine 21 in the case shown in FIG. 50 (b) is lower than the regenerative energy in the case shown in FIG. 50 (a).
  • the rotation direction of the second rotating magnetic field in the stator 33 of the second rotating machine 31 is the reverse direction, the regenerative energy generated by the second rotating machine 31 in the case shown in FIG. It is lower than the regenerative energy in the case shown in).
  • the rotation direction of the second rotating magnetic field in the stator 33 of the second rotating machine 31 is the normal direction, the energy consumed by the second rotating machine 31 in the case shown in FIG. It is higher than the energy consumption shown in a).
  • the ECU 2 controls the engine 3 to operate at the shaft rotation speed lower than the required ENG shaft rotation speed and without changing the output torque. As a result, the charge amount to the battery 43 is reduced. Therefore, when the battery SOC is equal to or higher than the first threshold value close to the upper limit SOC, the ECU 2 can perform the control to prevent the battery 43 from being overcharged. However, as a result of the control, the output of the engine 3 is reduced. However, as shown in FIG. 50 (b), since the torque from the second rotating machine 31 is applied, the output torque transmitted to the drive wheels DW, DW does not change.
  • the torque that the ECU 2 requests the engine 3 at the time of the control described above may be less than the ENG required torque described with reference to FIG.
  • the ECU 2 controls the engine 3 to output a torque according to the shaft rotational speed at the time of the above control.
  • the torque at the optimum operating point when the shaft rotation speed of the engine 3 is low is approximately proportional to the shaft rotation speed, so the torque at this time is smaller than the ENG required torque. With such control, the output of the engine 3 is further reduced, but the engine 3 can be operated at the optimum operating point.
  • the engine 3 is controlled to operate at a shaft rotation number lower than the required ENG shaft rotation number of the engine 3.
  • the regenerative energy per unit time generated in the stator 23 of the first rotating machine 21 with respect to the torque required for the engine 3 exceeds the specified value, it is lower than the ENG required torque described with reference to FIG.
  • the engine 3 may be controlled to output a torque.
  • the shaft rotational speed of the engine 3 may be equal to or less than the required ENG shaft rotational speed described with reference to FIG.
  • the battery 43 is discharged when the operation mode of the operation device 1 is "EV travel".
  • the battery SOC may fall below the lower limit SOC. Therefore, when the battery SOC is equal to or lower than the second threshold value higher than the lower limit SOC shown in FIG. 49, the ECU 2 performs the control described below.
  • FIGS. 51 (a) and 51 (b) show (a) a speed alignment chart when the battery SOC is higher than the second threshold when the operation mode of the operation apparatus 1 is "EV travel", and (b) the battery The velocity alignment chart when SOC is below a 2nd threshold value is shown.
  • the second magnetic field rotational speed VMF2 of the second rotating magnetic field in the stator 33 of the second rotating machine 31 is the second magnetic field rotation shown in FIG. 51 (a). It is controlled to be lower than the speed VMF2.
  • the upper limit of the number of shaft revolutions of the engine 3 during the control is the number of revolutions until the first magnetic field rotational speed VMF1 of the first rotating magnetic field in the stator 23 of the first rotating machine 21 is controlled to zero.
  • the discharge amount of the battery 43 is reduced by controlling the engine 3 to operate. Therefore, when the battery SOC is equal to or lower than the second threshold value close to the lower limit SOC, the ECU 2 can perform the control to prevent the overdischarge of the battery 43.
  • the second threshold is variable.
  • the energy required when the first rotating machine 21 starts the engine 3 varies depending on the vehicle speed VP, and the energy required is larger when the vehicle speed VP is higher. Therefore, the ECU 2 sets a second threshold according to the vehicle speed VP. That is, the ECU 2 sets the second threshold value higher as the vehicle speed VP is higher.
  • the battery 43 is discharged when the operation mode of the operation device 1 is “ENG backward start”. However, when the battery 43 is discharged in a state where the battery SOC is close to the lower limit SOC, the battery SOC may fall below the lower limit SOC. Therefore, when the battery SOC is equal to or lower than the second threshold value higher than the lower limit SOC shown in FIG. 49, the ECU 2 performs the control described below.
  • FIGS. 52 (a) and 52 (b) are (a) velocity alignment charts when the battery SOC is higher than the second threshold when the operation mode of the operating device 1 is "ENG backward start", and (b) FIG. 17 shows a velocity alignment chart when the battery SOC is less than or equal to a second threshold value. As shown in FIG.
  • the absolute value of the second magnetic field rotational speed VMF2 of the second rotating magnetic field in the stator 33 of the second rotating machine 31 is as shown in FIG. It is controlled to be lower than the absolute value of the second magnetic field rotational speed VMF2 shown in (a). As a result, the energy consumed by the second rotating machine 31 is reduced.
  • the ECU 2 controls the engine 3 to operate at the shaft rotation speed lower than the required ENG shaft rotation speed and without changing the output torque. As a result, the amount of discharge of the battery 43 is reduced. Therefore, when the battery SOC is equal to or lower than the second threshold value close to the lower limit SOC, the ECU 2 can perform the control to prevent the overdischarge of the battery 43. However, as a result of the control, the output of the engine 3 is reduced. However, since the output torque of the engine 3 does not change, the output torque transmitted to the drive wheels DW and DW does not change.
  • the torque that the ECU 2 requests the engine 3 at the time of the control described above may be less than the ENG required torque described with reference to FIG.
  • the ECU 2 controls the engine 3 to output a torque according to the shaft rotational speed at the time of the above control.
  • the torque at the optimum operating point when the shaft rotation speed of the engine 3 is low is approximately proportional to the shaft rotation speed, so the torque at this time is smaller than the ENG required torque. With such control, the output of the engine 3 is further reduced, but the engine 3 can be operated at the optimum operating point.
  • the engine 3 is controlled to operate at a shaft rotation number lower than the required ENG shaft rotation number of the engine 3.
  • the energy per unit time consumed by the stator 33 of the second rotating machine 31 for the torque required for the engine 3 exceeds the specified value, it is lower than the ENG required torque described with reference to FIG.
  • the engine 3 may be controlled to output a torque.
  • the shaft rotational speed of the engine 3 may be equal to or less than the required ENG shaft rotational speed described with reference to FIG.
  • FIG. These power units 1A to 1D are mainly different from the first embodiment in that they further include transmissions 61, 71, 81 and 91, and any of the second to fifth embodiments.
  • the connection between the engine 3, the first and second rotating machines 21 and 31, and the drive wheels DW and DW is the same as that in the first embodiment. That is, the A2 and B1 rotors 25 and 34 are mechanically connected to the crankshaft 3a of the engine 3, and the A1 and B2 rotors 24 and 35 are mechanically connected to the drive wheels DW and DW.
  • FIG. 53 to FIG. 56 the same components as in the first embodiment are indicated using the same reference numerals. The same applies to the drawings for explaining the other embodiments described later. Hereinafter, the differences from the first embodiment will be mainly described in order from the power unit 1A of the second embodiment.
  • the transmission 61 is provided in place of the aforementioned gear 7b and the first gear 8b.
  • the transmission 61 is a belt-type continuously variable transmission, and is provided on the input shaft connected to the second rotation shaft 7 described above, the output shaft connected to the idler shaft 8, and the input shaft and the output shaft. And a metal belt (not shown) wound around the pulleys.
  • the transmission 61 outputs the power input to the input shaft to the output shaft in a shifted state by changing the effective diameters of the pulleys. Further, the transmission ratio of the transmission 61 (rotation speed of input shaft / rotation speed of output shaft) is controlled by the ECU 2.
  • the transmission 61 is provided between the A1 and B2 rotors 24 and 35 and the driving wheels DW and DW, and the power transmitted to the A1 and B2 rotors 24 and 35 is the transmission It is shifted by 61 and transmitted to the drive wheels DW and DW.
  • the transmission ratio is controlled to a predetermined value on the deceleration side larger than the value 1.0.
  • the torques transmitted to the A1 and B2 rotors 24 and 35 are increased in the transmission 61 and then transmitted to the drive wheels DW and DW.
  • the electric power generated by the first rotating machine 21 and the electric power supplied to the second rotating machine 31 the generated electric power so that the torque transmitted to the rotors 24 and 35 of A1 and B2 decreases.
  • the maximum value of the torque required for the first and second rotating machines 21 and 31 can be reduced, and the further downsizing of the first and second rotating machines 21 and 31 can be achieved. And reduce costs.
  • the transmission gear ratio of the transmission 61 is smaller than the value 1.0 Controlled by value.
  • the rotor rotational speeds VRA1 and VRB2 of A1 and B2 can be reduced with respect to the vehicle speed VP. Therefore, in the first and second rotating machines 21 and 31 due to the excess of both rotor rotational speeds VRA1 and VRB2. Failure can be prevented.
  • the A1 rotor 24 is made of a magnet, and the magnet is lower in strength than the soft magnetic body, and is thus particularly effective because the above-mentioned problems are likely to occur.
  • the transmission gear ratio of the transmission 61 is set so that the first and second magnetic field rotational speeds VMF1 and VMF2 become predetermined first and second target values, respectively. It is controlled.
  • These first and second target values are calculated by searching the map according to the vehicle speed VP when only the first and second rotating machines 21 and 31 are used as a power source, and the engine 3 and the first When the second rotating machine 21 or 31 is used as a power source, it is calculated by searching another map other than the above according to the engine speed NE and the vehicle speed VP.
  • the first and second target values can obtain high efficiencies of the first and second rotating machines 21 and 31 with respect to the vehicle speed VP (and the engine speed NE) at that time. It is set to a similar value. Further, in parallel with the control of the transmission 61, the first and second magnetic field rotational speeds VMF1 and VMF2 are controlled to the first and second target values, respectively. As described above, according to the present embodiment, high efficiency of the first and second rotating machines 21 and 31 can be obtained while the vehicle is traveling.
  • the engine power can be continuously changed by the first and second rotating machines 21 and 31 and transmitted to the drive wheels DW and DW. Therefore, the frequency of the shift operation of the transmission 61 can be lowered. Therefore, the heat loss due to the speed change operation can be suppressed, whereby the high drive efficiency of the power plant 1A can be secured. Besides, according to the present embodiment, the effect of the first embodiment can be obtained similarly.
  • the transmission 61 is a belt-type continuously variable transmission, but may be a toroidal-type continuously variable transmission or a gear-type stepped transmission.
  • the transmission 71 is a gear type stepped transmission, and has a plurality of gears whose gear ratios are different from the input shaft 72 and the output shaft (not shown). It has a clutch (none of which is shown) for connecting and disconnecting between the trains and the plurality of gear trains, the input shaft 72 and the output shaft for each gear train.
  • the transmission 71 outputs the power input to the input shaft 72 to the output shaft in a state of being shifted by one of the plurality of gear trains.
  • a total of four gear stages are set, each of which comprises 1.0) and the third speed (gear ratio ⁇ 1.0), and one gear stage for reverse, and the change is controlled by the ECU 2.
  • the gear 7b is not provided on the second rotating shaft 7, and the rotors 24 and 35 of A1 and B2 are connected to the drive wheels DW and DW as follows. It is connected. That is, the A1 rotor 24 is directly connected to the input shaft 72 of the transmission 71, and the output shaft of the transmission 71 is directly connected to the connecting shaft 6 described above.
  • a gear 6b is integrally provided on the connecting shaft 6, and the gear 6b meshes with the first gear 8b described above.
  • the A1 rotor 24 includes the drive wheels DW and DW via the transmission 71, the gear 6b, the first gear 8b, the idler shaft 8, the second gear 8c, the gear 9a, the differential gear mechanism 9, and the like.
  • Mechanically connected to The power transmitted to the A1 rotor 24 is shifted by the transmission 71 and transmitted to the drive wheels DW and DW.
  • the B2 rotor 35 is mechanically connected to the drive wheels DW and DW without the transmission 71 via the connection shaft 6, the gear 6b, the first gear 8b, and the like.
  • the transmission gear of the transmission 71 has the first speed (gear ratio> It is controlled to 1.0).
  • the torque transmitted to the A1 rotor 24 is transmitted to the drive wheels DW and DW after being increased in the transmission 71.
  • the electric power generated by the first rotating machine 21 is controlled such that the torque transmitted to the A1 rotor 24 is reduced.
  • the maximum value of the torque required for the first rotating machine 21 can be reduced, and further downsizing and cost reduction of the first rotating machine 21 can be achieved.
  • the shift position of the transmission 71 is controlled to the third speed (gear ratio ⁇ 1.0).
  • the A1 rotor rotational speed VRA1 can be reduced with respect to the vehicle speed VP, it is possible to prevent the failure of the first rotating machine 21 due to the excessive A1 rotor rotational speed VRA1. it can.
  • the A1 rotor 24 is made of a magnet, and the magnet is lower in strength than the soft magnetic body, and the above-mentioned problems are likely to occur.
  • the shift position of the transmission 71 is controlled such that the first magnetic field rotational speed VMF1 becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the first and second rotary machines 21 and 31 are used as a power source, and the engine 3 and the first and second rotary machines 21 are calculated. 31 is used as a power source, it is calculated by searching another map other than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value at which high efficiency of the first rotating machine 21 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with the control of the transmission 71, the first magnetic field rotational speed VMF1 is controlled to the above-mentioned target value. Thus, according to the present embodiment, high efficiency of the first rotating machine 21 can be obtained while the vehicle is traveling.
  • the first and second rotating machines 21 and 31 are controlled as follows. That is, during the shifting operation of the transmission 71, the connection between the A1 rotor 24 and the drive wheels DW and DW is interrupted by the interruption between the gear train in the transmission 71 and the input shaft 72 and the output shaft. Since the loads of the drive wheels DW, DW do not act on the rotor 24, power generation is not performed in the first rotating machine 21, and power is supplied to the stator 33 of the second rotating machine 31 from the battery 43.
  • the second driving equivalent torque TSE2 from the stator 33 and a part of the engine torque TENG transmitted to the B1 rotor 34 are synthesized, and the B2 rotor is produced. Since the torque is transmitted to the drive wheels DW and 35 via 35, it is possible to suppress the shift shock due to the engine torque TENG not being transmitted to the drive wheels DW and DW via the transmission 71, thus enhancing the productability. be able to. Besides, according to the present embodiment, the effect of the first embodiment can be obtained similarly.
  • the gear 7b is not provided on the second rotating shaft 7, and the first gear 8b described above is integrated with the connecting shaft 6. It meshes with the provided gear 6b.
  • the A1 rotor 24 does not intervene through the transmission 81 via the connecting shaft 6, the gear 6b, the first gear 8b, the idler shaft 8, the second gear 8c, the gear 9a, the differential gear mechanism 9, and the like.
  • the driving wheels DW and DW are connected to each other.
  • the transmission 81 is a gear-type stepped transmission having the first to third speeds, which is configured similarly to the transmission 71 of the third embodiment, and is directly connected to the B2 rotor 35.
  • the input shaft 82 and the output shaft (not shown) directly connected to the connecting shaft 6 are provided, and the power input to the input shaft 82 is changed in speed and output to the output shaft. Further, the change of the gear position of the transmission 81 is controlled by the ECU 2.
  • the B2 rotor 35 is mechanically coupled to the drive wheels DW and DW via the transmission 81, the gear 6b, the second gear 8c, and the like.
  • the power transmitted to the B2 rotor 35 is shifted by the transmission 81 and transmitted to the drive wheels DW and DW.
  • the gear position of the transmission 81 is the first speed It is controlled to (gear ratio> 1.0).
  • the torque transmitted to the B2 rotor 35 is increased in the transmission 81 and then transmitted to the drive wheels DW and DW.
  • the power supplied to the second rotating machine 31 is controlled such that the torque transmitted to the B2 rotor 35 is reduced.
  • the maximum value of the torque required for the second rotating machine 31 can be reduced, and further downsizing and cost reduction of the second rotating machine 31 can be achieved.
  • the torque from the stator 33 and a part of the engine torque TENG transmitted to the B1 rotor 34 are synthesized and transmitted to the drive wheels DW and DW via the B2 rotor 35. Since the torque larger than that of the A1 rotor 24 acts on the B2 rotor 35, it is particularly effective.
  • the shift position of the transmission 81 is controlled to the third speed (gear ratio ⁇ 1.0).
  • the B2 rotor rotational speed VRB2 can be reduced relative to the vehicle speed VP, so that the failure of the second rotating machine 31 due to the excessive increase of the B2 rotor rotational speed VRB2 can be prevented. it can.
  • the shift position of the transmission 81 is controlled such that the second magnetic field rotational speed VMF2 becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the first and second rotary machines 21 and 31 are used as a power source, and the engine 3 and the first and second rotary machines 21 are calculated. 31 is used as a power source, it is calculated by searching another map other than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the second rotating machine 31 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with the control of the transmission 81, the second magnetic field rotational speed VMF2 is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the second rotating machine 31 can be obtained while the vehicle is traveling.
  • an input shaft 92 of the transmission 91 is directly connected to the flywheel 5 and an output shaft (not shown) thereof is directly connected to the first rotation shaft 4 described above.
  • the transmission 91 is provided between the crankshaft 3 a and the rotors 25 and 34 of A 2 and B 1 to shift the engine power and transmit it to the A 2 rotor 25 and the B 1 rotor 34.
  • the number of teeth of the gear 9a of the differential gear mechanism 9 described above is larger than the number of teeth of the second gear 8c of the idler shaft 8, whereby the power transmitted to the idler shaft 8 is reduced. In the state, it is transmitted to the drive wheels DW and DW.
  • the gear position of the transmission 91 is the second speed It is controlled to (gear ratio ⁇ 1.0).
  • the engine torque TENG input to the rotors 25 and 34 of A2 and B1 decreases.
  • the electric power generated by the first rotating machine 21 and the electric power supplied to the second rotating machine 31 are generated such that the engine torque TENG transmitted to the rotors 24 and 35 of A1 and B2 decreases. Power) is controlled.
  • the engine torque TENG transmitted to the A1 and B2 rotors 24 and 35 is transmitted to the drive wheels DW and DW in a state increased by deceleration by the second gear 8c and the gear 9a.
  • the maximum value of the torque required for the first and second rotating machines 21 and 31 can be reduced, and the sizes of the first and second rotating machines 21 and 31 can be further reduced. And cost can be reduced.
  • the rotor rotational speeds VRA2 and VRB1 of A2 and B1 can be reduced as compared with the case of the second gear, so both rotor rotational speeds VRA2 and VRB1 are excessive. It is possible to prevent the failure of the first and second rotating machines 21 and 31 due to Since the B1 rotor 34 is made of a magnet, the above-mentioned problems are likely to occur, which is particularly effective.
  • the transmission gear position of transmission 91 has first and second magnetic field rotational speeds VMF1 and VMF2 corresponding to first and second rotating machines 21 and 31, respectively, according to engine speed NE and vehicle speed VP.
  • the value is changed so that high efficiency of can be obtained.
  • the first and second magnetic field rotational speeds VMF1 and VMF2 are the engine rotational speed NE, the vehicle speed VP, the gear position of the transmission 91, It is controlled to a value determined by the equations (43) and (44).
  • shift shock control In addition, in order to suppress a shift shock, during ENG traveling and during a shift operation of the transmission 91, that is, when the transmission 91 blocks between the engine 3 and the rotors 25 and 34 of A2 and B1.
  • the first and second rotating machines 21 and 31 are controlled as follows. Hereinafter, such control of the first and second rotating machines 21 and 31 is referred to as "shift shock control".
  • the first and second rotating magnetic fields respectively generated in the stators 23 and 33 are caused to rotate in the normal direction.
  • the first driving equivalent torque TSE1 from the stator 23 and the torque transmitted to the A1 rotor 24 as described later are synthesized, and this synthesized torque is transmitted to the A2 rotor 25.
  • the torque transmitted to the A2 rotor 25 is not transmitted to the crankshaft 3a due to the interruption by the transmission 91 described above, is transmitted to the B1 rotor 34, and is further combined with the second drive equivalent torque TSE2 from the stator 33. After that, it is transmitted to the B2 rotor 35. Part of the torque transmitted to the B2 rotor 35 is transmitted to the A1 rotor 24, and the remaining part is transmitted to the drive wheels DW and DW.
  • the present embodiment it is possible to suppress the shift shock due to the fact that the engine torque TENG is not transmitted to the drive wheels DW and DW during the shift operation, and to improve the commercial property. Note that this shift shock control is performed only during the shift operation of the transmission 91. Besides, according to the present embodiment, the effect of the first embodiment can be obtained similarly.
  • the transmissions 71, 81, and 91 are gear-type stepped transmissions, but may be belt-type or toroidal-type continuously variable transmissions.
  • a power plant 1E according to a sixth embodiment will be described with reference to FIG. As shown to the same figure, this power plant 1E adds the brake mechanism BL to the power plant 1 of 1st Embodiment.
  • this power plant 1E adds the brake mechanism BL to the power plant 1 of 1st Embodiment.
  • differences from the first embodiment will be mainly described.
  • the brake mechanism BL has a one-way clutch OC connected to the aforementioned first rotary shaft 4 and the case CA.
  • the one-way clutch OC connects between the first rotating shaft 4 and the case CA configured to be non-rotatable when power is applied to reversely rotate the crankshaft 3a to which the first rotating shaft 4 is connected. When power for causing normal rotation is applied, the first rotation shaft 4 and the case CA are shut off.
  • the brake mechanism BL configured by the one-way clutch OC and the case CA, the rotation of the first rotating shaft 4 is permitted only when forward rotating with the crankshaft 3a, the A2 rotor 25 and the B1 rotor 34, It is blocked when the single rotation shaft 4 reverses with the crankshaft 3a or the like.
  • the reverse rotation of the A2 rotor 25 is blocked by the brake mechanism BL with respect to the first rotating magnetic field of the stator 23 that reverses as described above, so it is apparent from the function of the first rotating machine 21 described above.
  • all the power supplied to the stator 23 is transmitted as power to the A1 rotor 24, whereby the A1 rotor 24 rotates forward.
  • the reverse rotation of the B1 rotor 34 is blocked by the brake mechanism BL with respect to the second rotating magnetic field of the stator 33 rotating normally as described above, as apparent from the function of the second rotating machine 31 described above
  • the power supplied to the stator 33 is all transmitted to the B2 rotor 35 as motive power, whereby the B2 rotor 35 rotates forward.
  • the power transmitted to the A1 and B2 rotors 24 and 35 is transmitted to the drive wheels DW and DW, and as a result, the drive wheels DW and DW perform forward rotation.
  • the first and second drive equivalent torques TSE1 and TSE2 act to reverse the rotors 25 and 34 of A2 and B1, respectively, which are prevented from reversing by the brake mechanism BL.
  • the rotors 25 and 34 of the crankshafts 3a, A2 and B1 are not only reversed but also held stationary.
  • the drive wheels DW and DW can be driven by the first and second rotating machines 21 and 31 without using engine power. Further, during this driving, the crankshaft 3a is not only reversed but also kept stationary so that the engine 3 will not be dragged.
  • the first and second pole-log ratios ⁇ and ⁇ are both set to the value 2.0, but the first and second poles When the logarithmic ratios ⁇ and ⁇ are set smaller than the value 1.0, the following effects can be obtained.
  • the engine speed NE is When the vehicle speed is higher than the vehicle speed VP (see the two-dot chain line in FIGS. 33A and 33B), the first magnetic field rotational speed VMF1 may be higher than the engine speed NE and may be excessive.
  • the second pole-log ratio ⁇ is set to a relatively large value
  • the second The magnetic field rotational speed VMF2 may be higher than the vehicle speed VP and may be excessive.
  • the second pole-log ratio ⁇ is set to be smaller than the value 1.0, the velocity alignment graph shown by broken lines in FIGS.
  • the A2 rotor 25 and the B1 rotor 34 are connected to each other, and the A1 rotor 24 and the B2 rotor 35 are connected to each other.
  • the A2 rotor 25 and the B1 rotor 34 may not be connected to each other as long as they are connected to 3a, and may not be connected to each other as long as they are connected to the drive wheels DW and DW.
  • the transmission 61 of the second embodiment is configured by two transmissions, and one of the two transmissions is driven between the A1 rotor 24 and the drive wheels DW and DW, and the other is driven by the B2 rotor 35 and It may be respectively provided between the rings DW and DW.
  • the transmission 91 of the fifth embodiment is configured of two transmissions, and one of the two transmissions is between the A2 rotor 25 and the crankshaft 3a, and the other is the B1 rotor 34 and the crankshaft 3a. May be provided respectively.
  • a brake mechanism BL may be provided to prevent reverse rotation of the crankshaft 3a.
  • the brake mechanism BL is configured by the one-way clutch OC and the case CA, it may be configured by another mechanism, such as a band brake, as long as the reverse rotation of the crankshaft 3a can be prevented.
  • a power plant 1F according to a seventh embodiment will be described with reference to FIG.
  • the power plant 1F is different from the power plant 1 according to the first embodiment in that the second rotary machine 31 is a general single pinion type first planetary gear unit PS1 and a general single rotor type rotary machine 101.
  • the second rotary machine 31 is a general single pinion type first planetary gear unit PS1 and a general single rotor type rotary machine 101.
  • the same components as in the first embodiment are indicated using the same reference numerals. The same applies to the other embodiments described later.
  • differences from the first embodiment will be mainly described.
  • the first planetary gear unit PS1 includes a first sun gear S1, a first ring gear R1 provided on the outer periphery of the first sun gear S1, and a plurality (for example, three) meshing with both gears S1 and R1.
  • a first planetary gear P1 (only two are shown), and a first carrier C1 rotatably supporting the first planetary gear P1.
  • first planetary gear ratio r1 The ratio of the number of teeth of the first sun gear S1 to the number of teeth of the first ring gear R1 (number of teeth of the first sun gear S1 / number of teeth of the first ring gear R1, hereinafter referred to as “first planetary gear ratio r1”) is 1
  • the value is set to a predetermined value slightly smaller than .0, and is set to a relatively large value that can be taken by a general planetary gear device.
  • the first sun gear S1 described above is mechanically coupled directly to the A2 rotor 25 via the first rotation shaft 4 and mechanically coupled directly to the crankshaft 3a via the first rotation shaft 4 and the flywheel 5.
  • the first carrier C1 is mechanically directly connected to the A1 rotor 24 through the connecting shaft 6, and the second rotating shaft 7, the gear 7b, the first gear 8b, the idler shaft 8, and the second gear 8c, It is mechanically coupled to the drive wheels DW and DW via the gear 9a, the differential gear mechanism 9 and the like. That is, the A1 rotor 24 and the first carrier C1 are mechanically connected to the drive wheels DW and DW.
  • the first planetary gear unit PS1 has the same known function as a general planetary gear unit due to its configuration. That is, the function of distributing the power input to the first carrier C1 to the first sun gear S1 and the first ring gear R1 when the rotational directions of the first sun gear S1, the first ring gear R1 and the first carrier C1 are the same. And the function of combining the power input to the first sun gear S1 and the first ring gear R1 and outputting the combined power to the first carrier C1. In addition, during such power distribution / synthesis, the first sun gear S1, the first ring gear R1 and the first carrier C1 rotate while maintaining a collinear relationship with respect to the rotational speed.
  • the rotating machine 101 is a three-phase brushless DC motor, and has a stator 102 composed of a plurality of coils and the like, and a rotor 103 composed of magnets and the like.
  • the rotating machine 101 also has a function of converting the power supplied to the stator 102 into motive power and outputting the power to the rotor 103 and a function of converting the power input to the rotor 103 into power and outputting the power to the stator ing.
  • the rotor 103 is provided integrally with the first ring gear R1 and is rotatable with the first ring gear R1.
  • the stator 102 is electrically connected to the battery 43 via the second PDU 42. That is, the stator 23 of the first rotating machine 21 and the stator 102 of the rotating machine 101 are electrically connected to each other via the first and second PDUs 41 and 42.
  • FIG. 59 is a conceptual diagram showing an example of a schematic configuration of a power plant 1F and a transmission state of power.
  • the first rotating machine 21 is the “first rotating machine”
  • the stator 23 is the “first stator”
  • the A1 rotor 24 is the “first rotor”
  • the A2 rotor 25 is the “second rotor”
  • the planetary gear unit PS1 is “differential”
  • the first sun gear S1 is “first element”
  • the first carrier C1 is “second element”
  • the first ring gear R1 is “third element”
  • the rotating machine 101 is “first
  • the engine 3 is represented as a “heat engine”, the drive wheels DW, DW as a “driven part”, the first PDU 41 as a “first controller”, and the second PDU 42 as a “second controller” .
  • the differential has the same function as the planetary gear. Furthermore, the first rotor and the second element of the differential are mechanically coupled to the driven portion, and the second rotor and the first element of the differential are mechanically coupled to the first output of the heat engine. Also, the third element of the differential is mechanically coupled to the second output of the second rotating machine, and the stator and the second rotating machine are electrically connected to each other via the first and second controllers. It is connected to the.
  • the power of the heat engine is transmitted to the driven portion, for example, as follows.
  • a power unit in which the second rotor and the first element are connected to the first output portion of the heat engine and the first rotor and the second element are connected to the driven portion is referred to as "first power device”.
  • a power plant in which the first rotor and the second element are connected to the first output of the heat engine and the second rotor and the first element are connected to the driven part is referred to as a "second power plant”.
  • transmission of power from the heat engine to the driven part in these first and second power plants will be described in order from the first power plant.
  • FIG. 59 as in FIG.
  • the mechanical connection is indicated by a solid line
  • the electrical connection is indicated by an alternate long and short dashed line
  • the magnetic connection is indicated by a broken line.
  • the flow of power and power is indicated by thick lines with arrows.
  • the first and second controllers control the power of the heat engine using part of the power of the heat engine to generate power, and 2 Supply to the rotating machine.
  • a part of the motive power of the heat engine is transmitted to the second rotor connected to the first output portion of the heat engine, and further, The magnetic force is distributed to the first rotor and the stator.
  • the stator a portion of the power transmitted to the second rotor is converted to electric power and distributed.
  • the power distributed to the first rotor as described above is transmitted to the driven part, while the power distributed to the stator is supplied to the second rotating machine.
  • the electric power generated by the first rotating machine as described above is supplied to the second rotating machine, the electric power is converted to a power and then transmitted to the third element. Also, the remainder of the power of the heat engine is transmitted to the first element, combined with the power transmitted to the third element as described above, and then transmitted to the driven part via the second element. As a result of the above, power having a magnitude equal to that of the heat engine is transmitted to the driven part.
  • the first power unit 1F of this embodiment as in the power unit 1 of the first embodiment, a device in which the first rotating machine is a combination of a planetary gear unit and a general one-rotor type rotating machine Because it has the same function, only one differential for the same purpose is required, unlike the conventional power unit described above, which required two planetary gear units to distribute, combine and transmit power. Therefore, the first power unit can be miniaturized accordingly. The same applies to the second power unit described above. Further, in the first power unit, unlike the conventional case described above, since the power of the heat engine is transmitted to the driven portion without recirculation as described above, the first rotating machine, the differential and the second The power passing through the rotating machine can be reduced.
  • the power of the heat engine is a second rotor, a magnetic force by magnetic lines and a first transmission path consisting of the first rotor, a second rotor, a magnetic force by magnetic lines, a stator, a first controller, a second controller, a second rotation To the driven part in a divided state via a total of three transmission paths of the second transmission path consisting of the third element and the second element and the third transmission path consisting of the first and second elements It is transmitted.
  • the power (energy) passing through the first and second controllers via the second transmission path can be reduced, so that miniaturization and cost reduction of the first and second controllers can be achieved. Thereby, further miniaturization and cost reduction of the first power plant can be achieved.
  • the first and second controllers control the rotational speed of the rotating magnetic field of the stator and the rotational speed of the second output of the second rotating machine, respectively.
  • the power of the heat engine can be steplessly shifted and transmitted to the driven part.
  • the rotating magnetic field and the first and second rotors are given by the equation (25) during energy distribution and combination between the stator and the first and second rotors. It rotates, maintaining the collinear relationship regarding the rotational speed as shown in 2.).
  • the first to third elements rotate while maintaining a collinear relationship regarding the rotational speed. Furthermore, in the connection relationship described above, when the second rotor and the first element are directly connected to the first output of the heat engine, the rotational speeds of both the second rotor and the first element are the same as those of the heat engine Equal to the rotational speed of one output. In addition, when the first rotor and the second element are directly connected to the driven part, the rotational speeds of the first rotor and the second element are both equal to the speed of the driven part. Furthermore, when the second output of the second rotating machine and the third element are directly connected to each other, the rotational speeds of the second rotating machine and the third element are equal to each other.
  • the rotational speed of the first output portion of the heat engine is referred to as “the rotational speed of the heat engine”
  • the rotational speed of the second output portion of the second rotating machine is referred to as the “rotational speed of the second rotating machine”.
  • the rotational speed of the rotating magnetic field is “magnetic field rotational speed VF”
  • the rotational speeds of the first and second rotors are “first and second rotor rotational speeds VR1, VR2”, respectively.
  • Let the rotational speeds of the elements be “first to third element rotational speeds V1 to V3”, respectively.
  • the magnetic field rotational speed VF is increased with respect to the second rotor rotational speed VR2 and the first element rotational speed V1, and the rotational speed of the second rotating machine is increased.
  • the power of the heat engine can be decelerated steplessly and transmitted to the driven part.
  • the magnetic field rotational speed VF is decreased with respect to the second rotor rotational speed VR2 and the first element rotational speed V1, and the rotational speed of the second rotating machine is increased.
  • the power of the heat engine can be steplessly accelerated and transmitted to the driven part.
  • the magnetic field rotational speed VF is The speed may be higher than the speed of the heat engine and may be excessive. Therefore, by setting the pole-to-log ratio ⁇ of the first rotating machine to a smaller value, as apparent from the comparison between the velocity alignment graph shown by a broken line in FIG. 60 and the velocity alignment graph shown by a two-dot chain line, The magnetic field rotational speed VF can be reduced, thereby preventing the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the magnetic field rotational speed VF.
  • the collinear relationship regarding the rotational speeds of the first to third elements in the differential device can be determined by the difference between the rotational speeds of the first and second elements and the rotational speeds of the second and third elements.
  • the rotational speed of the second rotating machine may be higher than the speed of the driven part and may be excessive. Therefore, by setting the above value X to a smaller value, the rotation of the second rotating machine is apparent as apparent from the comparison between the velocity alignment chart shown by the broken line in FIG. 60 and the velocity alignment chart shown by the one-dot chain line. The speed can be reduced, which can prevent the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the rotational speed of the second rotating machine.
  • torque is output to the second output portion of the second rotating machine by supplying electric power to the second rotating machine and generating electric power by the first stator (hereinafter referred to as “second rotating machine torque Can be transmitted to the driven unit in a state where the first output unit of the heat engine is stopped with the equivalent torque for power generation of the first rotating machine described above as a reaction force, thereby driving the driven unit.
  • second rotating machine torque Can be transmitted to the driven unit in a state where the first output unit of the heat engine is stopped with the equivalent torque for power generation of the first rotating machine described above as a reaction force, thereby driving the driven unit.
  • the heat engine is an internal combustion engine.
  • FIG. 61 shows the relationship between the torques of various rotating elements in this case, as well as the relationship between the rotational speeds.
  • TOUT is the driven portion transmission torque as in the first aspect
  • TDHE, Tg and TM2 are torques transmitted to the first output portion of the heat engine (hereinafter referred to as "heat engine transmission torque” ), Power generation equivalent torque and second rotating machine torque.
  • the second rotary machine torque TM2 uses the equivalent torque Tg for power generation of the first rotary machine as a reaction force to be driven and the heat engine
  • Tg the torque required of the first rotating machine
  • the power generation equivalent torque Tg is expressed by the following equation (54).
  • Tg ⁇ ⁇ X ⁇ TOUT + (X + 1) TDHE ⁇ / ( ⁇ + 1 + X) (54)
  • the equivalent torque Tg for power generation is smaller for the driven part transmission torque TOUT and the heat engine transmission torque TDHE of the same magnitude. It becomes smaller. Therefore, by setting the pole-to-log ratio ⁇ to a larger value, it is possible to achieve further downsizing and cost reduction of the first rotating machine.
  • the speed of the low speed driven part can be rapidly increased by controlling the heat engine and the first and second rotating machines as follows.
  • FIG. 62 shows the relationship between the rotational speeds of the various types of rotary elements at the start of the case where the speed of the driven part is thus rapidly increased, as well as the relationship between the torques of the various types of rotary elements.
  • TEE is the torque of the heat engine
  • Te is the equivalent torque for driving the first rotating machine described above.
  • the rotational speed of the heat engine is increased to a predetermined rotational speed at which the maximum torque can be obtained. As shown in FIG.
  • the rotational speed of the heat engine becomes higher than the speed of the driven part, and the difference between the two becomes large.
  • the second output of is reversed.
  • power is generated in the second rotating machine in order to apply a positive torque to the driven portion from the second output portion of the second rotating machine which reverses in such a manner.
  • the electric power generated by the second rotating machine is supplied to the stator of the first rotating machine, and the rotating magnetic field generated by the stator is rotated forward.
  • the torque THE of the heat engine, the equivalent torque Te for driving, and the second rotating machine torque TM2 are all transmitted to the driven portion as positive torque, and as a result, the speed of the driven portion is rapidly increased.
  • the torque THE of the heat engine and the equivalent torque Te for driving the second rotary machine torque TM2 Since the torque is transmitted to the driven part as a reaction force, the torque required of the second rotating machine is larger than in the other cases.
  • the torque required for the second rotating machine, that is, the second rotating machine torque TM2 is expressed by the following equation (55).
  • TM2 - ⁇ ⁇ THE + (1 + ⁇ ) TOUT ⁇ / (X + 1 + ⁇ ) (55)
  • the second rotary machine torque TM2 decreases with respect to the driven portion transmission torque TOUT and the heat engine torque THE of the same magnitude as the value X increases. Therefore, by setting the value X to a larger value, the second rotary machine can be further miniaturized and the cost can be reduced.
  • FIG. 63 schematically shows an example of a transmission state of power from the heat engine to the driven portion in the second power unit described above.
  • the method of description of the connection relation of the various rotation elements in the same figure, etc. is the same as FIG.
  • the power of the heat engine is transmitted to the driven portion, for example, as follows. That is, under the control of the first and second controllers, power is generated by the second rotating machine using a part of the power of the heat engine, and the generated power is supplied to the stator of the first rotating machine. At the time of power generation by this second rotating machine, as shown in FIG.
  • a part of the power of the heat engine is transmitted to the second element connected to the first output of the heat engine, and the first and third Distributed to the elements.
  • the power distributed to the first element is transmitted to the driven part, while the power distributed to the third element is transmitted to the second rotating machine and converted to electric power and then supplied to the stator .
  • the second power unit since the power of the heat engine is transmitted to the driven portion without recirculation similarly to the first power unit described above, the first rotating machine, the differential unit, and the second power unit The power passing through the two-rotating machine can be reduced. Therefore, it is possible to reduce the size and cost of the first rotating machine, the differential gear and the second rotating machine as well as the first power unit, thereby further reducing the size and cost of the second power unit. Can be achieved, and the driving efficiency of the second power unit can be enhanced. In addition, in the second power unit, the power distribution and combination in the first rotary machine and the differential unit are simply reversed between the first power unit and the second power unit.
  • the power of the heat engine is transmitted to the driven portion in a divided state via a total of three transmission paths of the first to third transmission paths described above. Therefore, as with the first power unit, it is possible to miniaturize and reduce the cost of the first and second controllers, thereby achieving further miniaturization and cost reduction of the second power unit. it can.
  • the first and second controllers control the magnetic field rotational speed VF and the second rotary machine.
  • the power of the heat engine can be continuously transmitted to the driven parts by shifting the power continuously.
  • the rotational speed of the heat engine, the speed of the driven portion, the magnetic field rotational speed VF, the first and second rotor rotational speeds VR1 and VR2, and the first to third rotational speeds are indicated, for example, as a thick solid line in FIG.
  • the rotational speed of the second rotating machine is increased with respect to the second element rotational speed V2 and the first rotor rotational speed VR1, and the magnetic field rotational speed VF is decreased.
  • the power of the heat engine can be decelerated steplessly and transmitted to the driven part.
  • the rotational speed of the second rotating machine is decreased with respect to the second element rotational speed V2 and the first rotor rotational speed VR1, and the magnetic field rotational speed VF is increased.
  • the power of the heat engine can be steplessly accelerated and transmitted to the driven part.
  • the magnetic field rotational speed VF is It may be higher than the speed of the driven part and may be excessive. Therefore, by setting the pole-log ratio ⁇ to a smaller value, as is apparent from the comparison between the velocity alignment chart shown by the broken line in FIG. 64 and the velocity alignment chart shown by the one-dot chain line, It is possible to reduce the drive efficiency by the occurrence of the loss due to the excessive increase of the magnetic field rotational speed VF.
  • the rotational speed of the heat engine is higher than the speed of the driven part (see the two-dot chain line in FIG. 64) when the value X defining the collinear relationship regarding the rotational speed in the differential gear described above is relatively large.
  • the rotational speed of the second rotating machine may be higher than the rotational speed of the heat engine and may be excessive. Therefore, by setting this value X to a smaller value, it is apparent from the comparison between the velocity alignment chart shown by a broken line in FIG. 64 and the velocity alignment chart shown by a two-dot chain line, the rotation of the second rotating machine.
  • the speed can be reduced, which can prevent the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the rotational speed of the second rotating machine.
  • the electric power is supplied to the stator of the first rotating machine, and power generation is performed by the second rotating machine to generate the equivalent torque Te for driving the first rotating machine, and the second rotating machine torque TM2.
  • the heat engine is an internal combustion engine, it is possible, like the first power plant, to start the internal combustion engine.
  • FIG. 65 shows the relationship between the torques of various rotating elements in this case, along with the relationship between the rotational speeds.
  • the driving equivalent torque Te takes the second rotary machine torque TM2 as a reaction force, and both of the driven part and the output part of the heat engine Therefore, the torque required for the second rotating machine is larger than in the other cases.
  • the torque required for the second rotating machine that is, the second rotating machine torque TM2 is expressed by the following equation (56).
  • TM2 - ⁇ ⁇ TOUT + (1 + ⁇ ) TDHE ⁇ / (X + ⁇ + 1) (56)
  • the second rotary machine torque TM2 decreases with respect to the driven portion transmission torque TOUT and the heat engine transmission torque TDHE of the same magnitude as the value X is larger. Therefore, by setting the value X to a larger value, the second rotary machine can be further miniaturized and the cost can be reduced.
  • FIG. 66 shows the relationship between the rotational speeds of the various types of rotary elements at the start of the case where the speed of the driven part is thus rapidly increased, as well as the relationship between the torques of the various types of rotary elements.
  • the rotational speed of the heat engine is increased to a predetermined rotational speed at which the maximum torque can be obtained.
  • the rotational speed of the heat engine becomes higher than the speed of the driven part, and the difference between the two becomes larger.
  • the direction of rotation of the rotating magnetic field determined by is the reverse direction. For this reason, in order to apply a positive torque from the stator of the first rotating machine that generates such a rotating magnetic field to the driven portion, power is generated in the stator. Furthermore, the electric power generated by the stator is supplied to the second rotating machine, and the second output portion is rotated forward.
  • the torque THE of the heat engine, the second rotary machine torque TM2, and the power generation equivalent torque Tg are all transmitted to the driven part as positive torques, and as a result, the speed of the driven part is rapidly increased. .
  • the speed of the driven part in the low speed state is rapidly increased as described above, it is apparent from FIG. 66 that the torque THE of the heat engine and the second rotary machine torque TM2 of the first rotary machine Since the electric power generation equivalent torque Tg is transmitted to the driven part as a reaction force, the torque required of the first rotating machine is larger than in the other cases.
  • the torque required for the first rotating machine, that is, the power generation equivalent torque Tg is expressed by the following equation (57).
  • Tg - ⁇ X ⁇ THE + (1 + X) TOUT ⁇ / ( ⁇ + 1 + X) ... (57)
  • the larger the pole pair ratio ⁇ the smaller the power generation equivalent torque Tg with respect to the driven part transmission torque TOUT having the same magnitude and the torque THE of the heat engine. Therefore, by setting the pole-to-log ratio ⁇ to a larger value, it is possible to achieve further downsizing and cost reduction of the first rotating machine.
  • the rotation angle sensor 59 is connected to the ECU 2, and the rotation angle sensor 59 detects the rotation angle position of the rotor 103 of the rotating machine 101, and sends the detected signal to the ECU 2. Output.
  • the ECU 2 calculates the rotational speed of the rotor 103 (hereinafter referred to as "rotor rotational speed") based on the detection signal. Further, the ECU 2 controls the second PDU 42 based on the detected rotational angle position of the rotor 103 to control the power supplied to the stator 102 of the rotary machine 101, the power generated by the stator 102, and the rotor rotational speed. Do.
  • the ECU 2 reads data from the memory 45 that stores various maps and the like that are required when performing the control. Further, the ECU 2 derives the temperature of the battery 43 from the signal detected by the battery temperature sensor 62 attached to the exterior of the battery 43 or its periphery.
  • FIG. 68 is a block diagram showing driving force control in a power plant 1F according to a seventh embodiment. Further, FIG. 69 is a velocity alignment chart of a power unit 1F having a 1-collinear 4-element mechanism.
  • the ECU 2 acquires a detection signal indicating the accelerator opening degree AP described above and a detection signal indicating the vehicle speed VP.
  • the ECU 2 uses the driving force map stored in the memory 45 to derive a driving force (hereinafter referred to as “required driving force”) according to the accelerator opening degree AP and the vehicle speed VP.
  • the ECU 2 calculates an output according to the required driving force and the vehicle speed VP (hereinafter referred to as "required output").
  • the required output is an output required for the vehicle to travel in accordance with the driver's accelerator pedal operation.
  • the ECU 2 acquires information on the remaining capacity (SOC: State of Charge) of the battery 43 from the detection signal representing the current / voltage value input / output to / from the battery 43 described above.
  • the ECU 2 determines the ratio of the output of the engine 3 to the required output according to the SOC of the battery 43.
  • the ECU 2 uses the ENG operation map stored in the memory 45 to derive an optimum operating point according to the output of the engine 3.
  • the ENG operation map is a map based on BSFC (Brake Specific Fuel Consumption) that indicates the fuel consumption rate at each operating point according to the relationship between the shaft rotational speed of the engine 3 and the torque and the output.
  • BSFC Brain Specific Fuel Consumption
  • the ECU 2 derives the shaft rotational speed of the engine 3 at the optimum operating point (hereinafter referred to as “required ENG shaft rotational speed”). Furthermore, the ECU 2 derives the torque of the engine 3 at the optimal operating point (hereinafter referred to as "ENG required torque").
  • the ECU 2 controls the engine 3 to output the ENG required torque.
  • the ECU 2 detects the shaft rotational speed of the engine 3.
  • the shaft rotation speed of the engine 3 detected at this time is referred to as “the actual ENG shaft rotation speed”.
  • the ECU 2 calculates the difference ⁇ rpm between the required ENG axis rotational speed and the actual ENG axis rotational speed.
  • the ECU 2 controls the output torque of the first rotating machine 21 such that the difference ⁇ rpm approaches zero.
  • the control is performed by regenerative power generation by the stator 23 of the first rotating machine 21.
  • the A2 rotor 25 of the first rotating machine 21 receives the torque T12 shown in the alignment chart of FIG. Is added.
  • electric energy (regenerative energy) generated by regenerative power generation in the stator 23 of the first rotating machine 21 is sent to the first PDU 41.
  • the regenerative energy generated by the stator 23 of the first rotating machine 21 is indicated by a dotted line A.
  • the ECU 2 controls the second PDU 42 so that a torque T22 obtained by subtracting the calculated torque T11 from the previously calculated required driving force is added to the first carrier C1 of the first planetary gear apparatus PS1.
  • torque is applied to the rotor 103 of the rotating machine 101 (MG2) and is transmitted to the first carrier C1 of the first planetary gear device PS1.
  • the alignment chart of FIG. 69 shows the case where the electrical energy is supplied to the stator 102 of the rotating machine 101, and the electrical energy at that time is shown by the dotted line B. At this time, when supplying electrical energy to the rotating machine 101, regenerative energy obtained by regenerative power generation of the first rotating machine 21 may be used.
  • the torque T11 is applied to the A1 rotor 24 of the first rotating machine 21, and the torque T22 is applied to the first carrier C1 of the first planetary gear apparatus PS1.
  • the A1 rotor 24 of the first rotating machine 21 is connected to the first carrier C1 of the first planetary gear unit PS1 via the connecting shaft 6, and the first carrier C1 of the first planetary gear unit PS1 is the second rotating shaft 7
  • the sum of the torque T11 and the torque T22 is added to the drive wheels DW and DW.
  • the ECU 2 Since the first sun gear S1 of the first planetary gear unit PS1 is connected to the shaft of the engine 3, the actual ENG shaft rotational speed of the engine 3 is affected by the torque T21. However, even if the actual ENG axis rotation speed changes, the ECU 2 controls the output torque of the first rotating machine 21 so that the difference ⁇ rpm approaches zero. Since the torque T12 changes by the control and the torque T11 generated in the A1 rotor 24 of the first rotating machine 21 also changes, the ECU 2 changes the torque applied to the rotor 103 of the rotating machine 101. At this time, the torque T21 generated by the changed torque also changes.
  • the ECU 2 controls the torque generated on the A2 rotor 25 of the first rotating machine 21 so that the engine 3 operates at the optimum operating point, and the required driving force is applied to the drive wheels DW and DW.
  • the torque generated in the rotor 103 of the rotating machine 101 is controlled so as to be transmitted.
  • the vehicle speed VP is used when deriving the required driving force and when deriving the required output, but instead of the vehicle speed VP, information on the number of revolutions of the axle may be used.
  • the power plant 1F only replaces the second rotating machine 31 with the first planetary gear apparatus PS1 and the rotating machine 101, as compared to the power plant 1 of the first embodiment, It has exactly the same function as this power unit 1. Further, in the power plant 1F, the operation in various operation modes such as the EV creep described in the first embodiment is performed in the same manner. In this case, the operation in these operation modes is performed by replacing various parameters (such as the second magnetic field rotational speed VMF2) related to the second rotating machine 31 with various parameters of the corresponding rotating machine 101.
  • various parameters such as the second magnetic field rotational speed VMF2
  • EV Creep During EV creep, power is supplied from the battery 43 to the stator 102 of the rotating machine 101, and the rotor 103 is rotated forward. Further, the power generated by the stator 23 is generated using power transmitted to the A1 rotor 24 of the first rotating machine 21 as described later, and the generated power is further supplied to the stator 102. Along with this, the torque (hereinafter referred to as "rotating machine torque") output to the rotor 103 of the rotating machine 101 acts to cause the first carrier C1 to rotate normally and acts to reverse the first sun gear S1. Do. Further, part of the torque transmitted to the first carrier C1 is transmitted to the drive wheels DW and DW via the second rotation shaft 7 and the like, whereby the drive wheels DW and DW perform forward rotation.
  • rotating machine torque part of the torque transmitted to the first carrier C1 is transmitted to the drive wheels DW and DW via the second rotation shaft 7 and the like, whereby the drive wheels DW and DW perform forward rotation.
  • the remainder of the torque transmitted to the first carrier C1 is transmitted to the A1 rotor 24 through the connecting shaft 6, and then, along with the power generation in the stator 23 of the first rotating machine 21, The electric energy is transmitted to E.23.
  • the first power-generating equivalent torque TGE1 acts to cause the A2 rotor 25 to rotate in the forward direction.
  • the torque transmitted to the A1 rotor 24 is further transmitted to the A2 rotor 25 so as to balance the first power-generating equivalent torque TGE1, and acts to cause the A2 rotor 25 to rotate in the forward direction.
  • the electric power supplied to the stator 102 and the electric power generated by the stator 23 are controlled so that the torque for reversing the first sun gear S1 and the torque for rotating the A2 rotor 25 are balanced.
  • the coupled A2 rotor 25, the first sun gear S1 and the crankshaft 3a are held stationary.
  • the A2 rotor rotational speed VRA2 and the first sun gear rotational speed VSU1 have the value 0, and the engine rotational speed NE also has the value 0.
  • the power supplied to stator 102, the power generated by stator 23, the first magnetic field rotational speed VMF1 and the rotor rotational speed are speeds as shown in the above equations (43) and (53), respectively.
  • the first carrier rotational speed VCA1 and the A1 rotor rotational speed VRA1 are controlled to be very small so that the relationship is maintained.
  • the creep operation with a very small vehicle speed VP is performed.
  • the creep operation can be performed by the first rotating machine 21 and the rotating machine 101 while the engine 3 is stopped.
  • the first magnetic field rotational speed VMF1 of the first rotational field reversed as described above at the time of EV start Control is performed so as to be 0, and control is performed so as to reduce the rotor rotational speed of the rotor 103 that has been normally rotated. Then, after the first magnetic field rotational speed VMF1 becomes the value 0, power is supplied from the battery 43 to the stator 23 of the first rotating machine 21 in addition to the stator 102 of the rotating machine 101, and is generated by the stator 23. While rotating the first rotating magnetic field forward, the first magnetic field rotational speed VMF1 is increased.
  • the electric power is supplied to the stator 102, whereby the torque of the rotating machine 101 is transmitted to the first carrier C1 via the first ring gear R1, and the first sun gear S1 will be described later.
  • the torque thus transmitted is transmitted to the first carrier C1. That is, the rotating machine torque and the torque transmitted to the first sun gear S1 are combined and transmitted to the first carrier C1. Further, a part of the torque transmitted to the first carrier C1 is transmitted to the A1 rotor 24 via the connecting shaft 6, and the rest is transmitted to the drive wheels DW and DW via the second rotation shaft 7 or the like. .
  • the first drive equivalent torque TSE1 is transmitted to the A2 rotor 25 by supplying electric power from the battery 43 to the stator 23.
  • the torque transmitted as described above to the A1 rotor 24 is transmitted to the A2 rotor 25.
  • a part of the torque transmitted to the A2 rotor 25 is transmitted to the first sun gear S1 via the first rotation shaft 4, and the rest is transmitted to the crankshaft 3a via the first rotation shaft 4 or the like.
  • the crankshaft 3a rotates forward.
  • the power supplied to both the stators 102 and 23 is controlled such that the power is sufficiently transmitted to the drive wheels DW and DW and the engine 3.
  • the vehicle speed VP is maintained at the value at that time, and the engine speed NE is increased.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug of the engine 3 according to the crank angle position, as in the first embodiment. Further, by controlling the first magnetic field rotational speed VMF1 and the rotor rotational speed, the engine rotational speed NE is controlled to a relatively small value suitable for starting the engine 3.
  • FIG. 70 shows an example of the relationship between rotational speeds and torques of various types of rotary elements at the start of ENG start during EV travel.
  • VRO and TMOT are respectively the rotor rotational speed and the rotating machine torque of the rotating machine 101.
  • the first embodiment since the rotating machine torque TMOT is transmitted to both the drive wheels DW and DW and the crankshaft 3a using the first electric power-generating equivalent torque TGE1 as a reaction force, the first embodiment Similarly, the torque required of the first rotating machine 21 is larger than in the other cases.
  • the torque required for the first rotating machine 21, that is, the first power generation equivalent torque TGE1 is expressed by the following equation (60).
  • TGE1 ⁇ ⁇ r1 ⁇ TDDW + (1 + r1) TDENG ⁇ / ( ⁇ + 1 + r1) (60)
  • the first power generation equivalent torque TGE1 decreases with respect to the drive wheel transmission torque TDDW and the engine transmission torque TDENG having the same magnitude as the first pole pair number ratio ⁇ increases.
  • the first power generation equivalent torque TGE1 is smaller than when set to the value less than 1.0. can do.
  • ENG traveling operation is performed in the battery input / output zero mode, the assist mode, and the drive charging mode according to the execution conditions described in the first embodiment.
  • the power generated by the stator 23 of the first rotating machine 21 is generated using the engine power transmitted to the A2 rotor 25, and the generated power is not charged to the battery 43.
  • the stator 102 of 101 is supplied.
  • a part of the engine torque TENG is distributed to the stator 23 and the A1 rotor 24 via the A2 rotor 25. Further, the remainder of the engine torque TENG is transmitted to the first sun gear S1 via the first rotation shaft 4.
  • the rotating machine torque TMOT and the torque transmitted as described above to the first sun gear S1 are combined and transmitted to the first carrier C1. Further, the engine torque TENG distributed to the A1 rotor 24 as described above is further transmitted to the first carrier C1 via the connecting shaft 6.
  • the A2 rotor rotational speed VRA2 and the first sun gear rotational speed VSU1, ie, the engine rotation, are maintained while maintaining the speed relationship shown in the equations (43) and (53).
  • the A1 rotor rotational speed VRA1 and the first carrier rotational speed VCA1, that is, the vehicle speed VP is continuously reduced steplessly by increasing the first magnetic field rotational speed VMF1 and decreasing the rotor rotational speed VRO with respect to the number NE. Can.
  • the first magnetic field rotational speed VMF1 is decreased with respect to the engine rotational speed NE, and the rotor rotational speed VRO is increased to increase the vehicle speed VP steplessly. can do. Furthermore, in this case, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are controlled such that the engine rotational speed NE becomes the target rotational speed.
  • First transmission path A2 rotor 25 ⁇ magnetic force by magnetic line of force ML ⁇ A1 rotor 24 ⁇ connecting shaft 6 ⁇ first carrier C1
  • Second transmission path first sun gear S1 ⁇ first planetary gear P1 ⁇ first carrier C1
  • Third transmission path A2 rotor 25 ⁇ magnetic force by magnetic line of force ML ⁇ stator 23 ⁇ first PDU 41 ⁇ second PDU 42 ⁇ rotating machine 101 ⁇ first ring gear R1 ⁇ first planetary gear P1 ⁇ first carrier C1
  • engine power is transmitted to the drive wheels DW and DW by a magnetic path and a so-called mechanical path by meshing of gears without being converted to electric power.
  • the electric power generated by the stator 23, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are controlled such that the speed relationship shown in the equations (43) and (53) is maintained. Be done.
  • the power generated by the stator 23 is generated using the engine motive power transmitted to the A2 rotor 25, and the electric power stored in the battery 43 is added to the generated electric power.
  • the stator 102 is supplied. Therefore, the rotating machine torque TMOT based on the power supplied from the stator 23 and the battery 43 to the stator 102 is transmitted to the first carrier C1. Furthermore, as in the battery input / output zero mode described above, this rotating machine torque TMOT, the engine torque TENG distributed to the A1 rotor 24 with the power generation by the stator 23, and the engine torque TENG transmitted to the first sun gear S1. And the torque obtained by combining the above is transmitted to the drive wheels DW and DW via the first carrier C1. As a result of the above, assuming that there is no transmission loss due to each gear in the assist mode, the power transmitted to the drive wheels DW and DW is the engine power and the electric power supplied from the battery 43 as in the first embodiment. Equal to the energy).
  • the electric power generated by the stator 23, the electric power supplied from the battery 43 to the stator 102, and the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are expressed by Equations (43) and (53). It is controlled to maintain the indicated speed relationship.
  • the shortage of the engine power with respect to the vehicle required power is compensated by supplying power from the battery 43 to the stator 102.
  • power is also supplied from the battery 43 to the stator 23 of the first rotary machine 21 when the shortage of engine power with respect to the vehicle required power is relatively large.
  • the stator 102 of the rotating machine 101 is supplied with electric power of a size obtained by subtracting the electric power charged to the battery 43 from the electric power generated by the stator 23 of the first rotating machine 21
  • the rotary machine torque TMOT based on is transmitted to the first carrier C1.
  • the rotating machine torque TMOT, the engine torque TENG distributed to the A1 rotor 24 along with the power generation by the stator 23, and the engine torque TENG transmitted to the first sun gear S1 The combined torque is transmitted to the drive wheels DW and DW via the first carrier C1.
  • the electric power generated by the stator 23, the electric power charged to the battery 43, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are expressed by equations (43) and (53).
  • the speed relationship is controlled to be maintained.
  • the surplus of the engine power with respect to the vehicle required power is converted to electric power in the stator 23 of the first rotating machine 21 and the battery 43 is charged.
  • FIG. 72 shows an example of the relationship between rotational speeds and torques of various types of rotary elements at the start of a sudden acceleration operation during ENG travel.
  • the engine rotational speed NE is increased to a predetermined rotational speed at which the maximum torque can be obtained.
  • the engine speed NE becomes higher than the vehicle speed VP, and the difference between the both increases, so the rotor 103 of the rotating machine 101 reverses. .
  • Power is generated in the stator 102 in order to apply positive torque to the drive wheels DW and DW from the rotor 103 that reverses in such a manner. Furthermore, the electric power generated by the stator 102 is supplied to the stator 23 of the first rotating machine 21 to rotate the first rotating magnetic field forward.
  • the rotary machine torque TMOT decreases with respect to the drive wheel transmission torque TDDW and the engine torque TENG of the same magnitude as the first planetary gear ratio r1 increases.
  • the rotating machine torque TMOT is more than that set to a small value. It can be made smaller.
  • stop ENG During stop ENG, the power is supplied from the battery 43 to the stator 23 of the first rotating machine 21 and the first rotating magnetic field generated by the stator 23 is made to forward rotate accordingly, and the rotating machine 101 Is generated by the stator 102, and the generated power is further supplied to the stator 23.
  • the first driving equivalent torque TSE1 from the stator 23 acts to cause the A2 rotor 25 to rotate in the normal direction, and the A1 rotor Act to reverse 24. Further, part of the torque transmitted to the A2 rotor 25 is transmitted to the crankshaft 3a, whereby the crankshaft 3a performs normal rotation.
  • the remaining torque transmitted to the A2 rotor 25 is transmitted to the first sun gear S1, and thereafter, along with the power generation in the stator 102 of the rotary machine 101, the first planetary gear P1, the first Electric energy is transmitted to the stator 102 through the ring gear R1 and the rotor 103.
  • the crankshaft 3a is normally rotated as described above, so the rotor 103 is reversely rotated.
  • the rotating machine torque TMOT generated along with the power generation in the stator 102 is transmitted to the first carrier C1 via the first ring gear R1, and acts to cause the first carrier C1 to rotate normally.
  • the torque transmitted to the first sun gear S1 is further transmitted to the first carrier C1 so as to balance the rotating machine torque TMOT, and acts to rotate the first carrier C1 forward.
  • the A1 rotor 24, the first carrier C1 and the drive wheels DW and DW connected to each other are held stationary.
  • the A1 rotor rotational speed VRA1 and the first carrier rotational speed VCA1 have the value 0, and the vehicle speed VP also has the value 0.
  • the speed relationship shown in equations (43) and (53) is maintained such that the power supplied to stator 23, the power generated by stator 102, first magnetic field rotational speed VMF1 and rotor rotational speed VRO And the A2 rotor rotational speed VRA2 and the first sun gear rotational speed VSU1 are controlled to be relatively small values.
  • the engine speed NE is controlled to a relatively small value suitable for starting the engine 3 while keeping the vehicle speed VP at 0 as in the first embodiment.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug of the engine 3 according to the crank angle position.
  • the stators 23 and 102 generate power. Further, the battery 43 is charged with the power generated by the two stators 23 and 102 as described above. As in the case of the battery input / output zero mode described above, a part of the engine torque TENG is transmitted to the A2 rotor 25 and the engine torque TENG transmitted to the A2 rotor 25 is associated with the power generation by the stator 23 described above , And the stator 23 and the A1 rotor 24. Further, while the vehicle speed VP is substantially 0, since the crankshaft 3a is normally rotated, the rotor 103 of the rotating machine 101 is reversely rotated.
  • the rotating machine torque TMOT generated along with the above-described power generation by the stator 102 acts to cause the first carrier C1 to rotate normally, as in the case of the ENG start during stop described above. Further, the engine torque TENG transmitted to the first sun gear S1 is further transmitted to the first carrier C1 so as to balance the rotating machine torque TMOT, and acts to rotate the first carrier C1 forward. Further, the engine torque TENG distributed to the A1 rotor 24 as described above is transmitted to the first carrier C1.
  • the first carrier C1 is synthesized by combining the engine torque TENG distributed to the A1 rotor 24, the rotating machine torque TMOT, and the engine torque TENG transmitted to the first sun gear S1. Torque is transmitted. The combined torque is transmitted to the drive wheels DW and DW to cause the drive wheels DW and DW to rotate forward. Further, the electric power generated by the stators 23 and 102, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are controlled such that the A1 rotor rotational speed VRA1 and the first carrier rotational speed VCA1, ie, the vehicle speed VP become very small. Thus, the creep operation is performed.
  • engine torque TENG distributed to A1 rotor 24 along with power generation by stator 23, and the first sun gear S1 along with power generation by stator 102.
  • the engine torque TENG transmitted to the carrier C1 is transmitted to the drive wheels DW and DW.
  • a part of the engine torque TENG can be transmitted to the drive wheels DW and DW, so creep operation can be performed without causing engine stall.
  • the rotor rotational speed VRO of the rotor 103 reversely rotated during ENG creep is controlled to be 0, and the first magnetic field rotational speed VMF1 of the first rotational magnetic field rotated forward is While raising it, increase engine power. Then, after the rotor rotational speed VRO reaches the value 0, the operation in the above-described battery input / output zero mode is performed. Thus, the vehicle speed VP is increased and the vehicle is started.
  • EV Reverse Start At the time of EV reverse start, power is supplied from the battery 43 to both the stator 102 of the rotating machine 101 and the stator 23 of the first rotating machine 21. As a result, the first rotating magnetic field generated by the stator 23 is rotated forward, and the second rotating magnetic field generated by the stator 102 is rotated forward. While the electric power is supplied to the stator 23 of the first rotating machine 21 during the EV reverse start, the first driving equivalent torque from the stator 23 acts to cause the A2 rotor 25 to rotate normally, and the A1 rotor Act to reverse 24.
  • the second driving equivalent torque TSE2 from the stator 102 acts to reverse the first carrier C1 of the first planetary gear device PS1.
  • the first sun gear S1 of the first planetary gear unit PS1 is rotated in the forward direction.
  • the vehicle speed VP increases in the negative direction, and the vehicle starts to move backward.
  • the first rotating machine 21 has the same function as a device combining the planetary gear device and a general one-rotor type rotating machine, unlike the conventional power unit described above
  • the engine power is transmitted to the drive wheels DW and DW without recirculation, unlike the conventional case described above.
  • the power passing through the rotating machine 21, the first planetary gear device PS1 and the rotating machine 101 can be reduced.
  • the first rotating machine 21 the first planetary gear unit PS1, and the rotating machine 101 can be achieved, thereby achieving further downsizing and cost reduction of the power plant 1F. it can. Furthermore, by using the first rotating machine 21, the first planetary gear unit PS1 and the rotating machine 101 having torque capacities commensurate with the reduced power as described above, the loss of power is suppressed, and the driving of the power unit 1F Efficiency can be improved.
  • engine power is obtained from the first transmission path (A2 rotor 25, magnetic force by magnetic line of force ML, A1 rotor 24, connecting shaft 6, first carrier C1) and the second transmission path (first sun gear S1, first planetary gear P1, The first carrier C1) and the third transmission path (A2 rotor 25, magnetic force by magnetic line of force ML, stator 23, first PDU 41, second PDU 42, rotating machine 101, first ring gear R1, first planetary gear P1, first carrier C1) It is transmitted to the drive wheels DW and DW in a divided state via a total of three transmission paths.
  • the power (energy) passing through the first and second PDUs 41 and 42 via the third transmission path can be reduced, and therefore, downsizing and cost reduction of the first and second PDUs 41 and 42 can be achieved.
  • further downsizing and cost reduction of the power plant 1F can be achieved.
  • the drive wheels DW and DW can be driven while controlling the engine power. Therefore, the driving efficiency of the power plant 1F can be further enhanced.
  • the first pole-log ratio ⁇ of the first rotating machine 21 is set to the value 2.0.
  • the first pole pair ratio ⁇ has a value of 1.2.
  • the first power generation equivalent torque TGE1 can be made smaller than when it is set to less than 0, and therefore, further downsizing and cost reduction of the first rotating machine 21 can be achieved.
  • the first planetary gear ratio r1 of the first planetary gear set PS1 is set to a relatively large value that can be taken by a general planetary gear set.
  • the first planetary gear ratio r1 is small.
  • the rotary machine torque TMOT can be made smaller than when it is set to the value, and therefore, the rotary machine 101 can be further miniaturized and the cost can be reduced.
  • the effect of the first embodiment can be obtained similarly.
  • the power plant 1F of this embodiment performs the same control as "control according to the battery SOC" performed by the power plant 1 of the first embodiment.
  • the second rotating machine 31 of the first embodiment is replaced with the first planetary gear device PS1 and the rotating machine 101 of one rotor type. Therefore, the second rotating machine 31 is replaced with the rotating machine 101, the stator 33 of the second rotating machine 31 is replaced with the stator 102 of the rotating machine 101, and the B2 rotor 35 is replaced with the first carrier C1 of the first planetary gear unit PS1. .
  • power plants 1G, 1H, 1I, 1J, and 1K according to eighth to twelfth embodiments will be described with reference to FIGS. 73 to 77.
  • These power units 1G to 1K are mainly different from the seventh embodiment in that they further include transmissions 111, 121, 131, 141, and 151, and the eighth to twelfth embodiments are different from the seventh embodiment.
  • the connection between the engine 3, the first rotating machine 21, the first planetary gear unit PS1, the rotating machine 101, and the drive wheels DW and DW is the same as that in the seventh embodiment.
  • the A2 rotor 25 and the first sun gear S1 are mechanically coupled to the crankshaft 3a of the engine 3, and the A1 rotor 24 and the first carrier C1 are mechanically coupled to the drive wheels DW and DW. Further, the rotor 103 of the rotating machine 101 is mechanically coupled to the first ring gear R1. Further, in FIG. 73 to FIG. 77, the same components as in the seventh embodiment are indicated using the same reference numerals. The same applies to the drawings for explaining the other embodiments described later. Hereinafter, the differences from the seventh embodiment will be mainly described in order from the power plant 1G of the eighth embodiment.
  • the transmission 111 is provided instead of the gear 7b and the first gear 8b meshing with each other.
  • the transmission 111 is a belt-type continuously variable transmission, and is provided on the input shaft connected to the second rotation shaft 7 described above, the output shaft connected to the idler shaft 8, and the input shaft and the output shaft. And a metal belt (not shown) wound around the pulleys.
  • the transmission 111 changes the effective diameter of these pulleys to output the power input to the input shaft to the output shaft in a state of being shifted. Further, the transmission ratio of the transmission 111 (the number of rotations of the input shaft / the number of rotations of the output shaft) is controlled by the ECU 2.
  • the transmission 111 is provided between the A1 rotor 24 and the first carrier C1 and the drive wheels DW and DW, and the power transmitted to the A1 rotor 24 and the first carrier C1 is It is shifted by the transmission 111 and transmitted to the drive wheels DW and DW.
  • the transmission ratio is controlled to a predetermined value on the deceleration side larger than the value 1.0.
  • the torque transmitted to the A1 rotor 24 and the first carrier C1 is transmitted to the drive wheels DW and DW after being increased in the transmission 111.
  • the electric power generated by the first rotating machine 21 and the electric power supplied to the rotating machine 101 are controlled such that the torque transmitted to the A1 rotor 24 and the first carrier C1 decreases. Be done.
  • the maximum value of the torque required for the first rotating machine 21 and the rotating machine 101 can be reduced, so the further miniaturization and cost of the first rotating machine 21 and the rotating machine 101 can be achieved. Can be reduced.
  • the maximum value of the torque transmitted to the first carrier C1 via the first sun gear S1 and the first ring gear R1 can be reduced, the further miniaturization and cost reduction of the first planetary gear device PS1 can be achieved. Can be
  • the transmission gear ratio of the transmission 111 is smaller than the value 1.0 when the A1 rotor rotational speed VRA1 becomes excessive. It is controlled to a predetermined value on the speed increasing side.
  • the A1 rotor rotational speed VRA1 can be reduced with respect to the vehicle speed VP, it is possible to prevent the failure of the first rotating machine 21 due to the excessive A1 rotor rotational speed VRA1. it can.
  • the A1 rotor 24 is made of a magnet, and the magnet is lower in strength than the soft magnetic body, and is thus particularly effective because the above-mentioned problems are likely to occur.
  • the transmission gear ratio of the transmission 111 is a value 1 It is controlled to a predetermined value on the speed increasing side smaller than 0.
  • the transmission gear ratio of the transmission 111 is controlled such that the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO become predetermined first and second target values, respectively.
  • These first and second target values are calculated by searching a map according to the vehicle speed VP when only the first rotating machine 21 and the rotating machine 101 are used as a power source, and the engine 3 and the first rotating machine are calculated.
  • calculation is performed by searching another map than the above according to the engine speed NE and the vehicle speed VP.
  • the first and second target values are such that high efficiency of the first rotating machine 21 and the rotating machine 101 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. It is set to a value. Furthermore, in parallel with such control of the transmission 111, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are controlled to the first and second target values, respectively. As described above, according to the present embodiment, high efficiency of the first rotating machine 21 and the rotating machine 101 can be obtained while the vehicle is traveling.
  • the engine power is continuously shifted by the first rotating machine 21, the first planetary gear unit PS1, and the rotating machine 101 to drive the drive wheels DW, Since it can be transmitted to the DW, the frequency of the shift operation of the transmission 111 can be reduced. Therefore, the heat loss due to the speed change operation can be suppressed, whereby the high drive efficiency of the power plant 1G can be secured.
  • the effects of the seventh embodiment can be obtained similarly.
  • the transmission 111 is a belt-type continuously variable transmission, it goes without saying that it may be a toroidal or hydraulic-type continuously variable transmission or a gear-type stepped transmission. .
  • the number of teeth of the gear 9a of the differential gear mechanism 9 described above is larger than the number of teeth of the second gear 8c of the idler shaft 8, whereby the power transmitted to the idler shaft 8 is reduced. In the state, it is transmitted to the drive wheels DW and DW.
  • the engine torque TENG transmitted to the A1 rotor 24 and the first carrier C1 is transmitted to the drive wheels DW and DW in a state increased by deceleration by the second gear 8c and the gear 9a.
  • the maximum value of the torque required of the first rotating machine 21 and the rotating machine 101 can be reduced, and the size and cost of the first rotating machine 21 and the rotating machine 101 can be further reduced. It is possible to reduce.
  • the maximum value of the torque transmitted to the first carrier C1 via the first sun gear S1 and the first ring gear R1 can be reduced, the further miniaturization and cost reduction of the first planetary gear device PS1 can be achieved. Can be
  • the A2 rotor rotational speed VRA2 can be made smaller than when the shift position is the second speed, the failure of the first rotating machine 21 due to the excessive A2 rotor rotational speed VRA2 It can be prevented.
  • the shift position of the transmission 121 is controlled to the second speed.
  • the rotor rotational speed VRO can be reduced. It is possible to prevent the failure of the rotating machine 101 due to the excessive increase of the rotational speed VRO.
  • the speed position of the transmission 121 is such that the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are respectively high efficiency of the first rotating machine 21 and the rotating machine 101 according to the engine speed NE and the vehicle speed VP. It is changed to become a value that can be obtained. Further, in parallel with the change of the gear position of the transmission 121, the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are the engine rotational speed NE, the vehicle speed VP, the gear position of the transmission 121, It is controlled to a value determined by equations (43) and (53). Thereby, according to the present embodiment, high efficiency of the first rotating machine 21 and the rotating machine 101 can be obtained while the vehicle is traveling.
  • shift shock control In addition, in order to suppress a shift shock, during ENG traveling and during the shift operation of the transmission 121, that is, when the transmission 121 disconnects between the engine 3 and the A2 rotor 25 and the first sun gear S1.
  • the first rotating machine 21 and the rotating machine 101 are controlled as follows. Hereinafter, such control of the first rotating machine 21 and the rotating machine 101 is referred to as "shift shock control”.
  • the present embodiment it is possible to suppress the shift shock due to the fact that the engine torque TENG is not transmitted to the drive wheels DW and DW during the shift operation, and to improve the commercial property. Note that this shift shock control is performed only during the shift operation of the transmission 121. In addition, according to the present embodiment, the effects of the seventh embodiment can be obtained similarly.
  • the transmission 131 is a gear type stepped transmission, and has a plurality of gears whose gear ratios are different from the input shaft 132 and the output shaft (not shown). It has a clutch (all not shown) for connecting and disconnecting between the trains and the plurality of gear trains and the input shaft 132 and the output shaft for each gear train.
  • the transmission 131 outputs the power input to the input shaft 132 to the output shaft in a state of being shifted by one of the plurality of gear trains.
  • a total of four gear stages are set, each of which comprises 1.0) and the third speed (gear ratio ⁇ 1.0), and one gear stage for reverse, and the change is controlled by the ECU 2.
  • the second rotating shaft 7 is not provided, and the A1 rotor 24 is directly connected to the input shaft 132 of the transmission 131, and the output shaft of the transmission 131 Is directly connected to the connecting shaft 6 described above.
  • a gear 6b is integrally provided on the connecting shaft 6, and the gear 6b meshes with the first gear 8b described above.
  • the A1 rotor 24 is driven via the transmission 131, the connecting shaft 6, the gear 6b, the first gear 8b, the idler shaft 8, the second gear 8c, the gear 9a, the differential gear mechanism 9, and the like. It is mechanically connected to the wheels DW, DW.
  • the power transmitted to the A1 rotor 24 is shifted by the transmission 131 and transmitted to the drive wheels DW and DW.
  • the first carrier C1 is mechanically connected to the drive wheels DW and DW without the transmission 131 via the connection shaft 6, the gear 6b, the first gear 8b, and the like.
  • the rotor 103 of the rotating machine 101 is integrally provided on the rotating shaft 103a, and the rotating shaft 103a is directly connected to the first ring gear R1 via a flange.
  • the rotor 103 is mechanically directly connected to the first ring gear R1, and is rotatable integrally with the first ring gear R1.
  • the transmission gear of the transmission 131 has the first speed (gear ratio> It is controlled to 1.0).
  • the torque transmitted to the A1 rotor 24 is transmitted to the drive wheels DW and DW after being increased in the transmission 131.
  • the electric power generated by the first rotating machine 21 is controlled such that the torque transmitted to the A1 rotor 24 is reduced.
  • the maximum value of the torque required for the first rotating machine 21 can be reduced, and further downsizing and cost reduction of the first rotating machine 21 can be achieved.
  • the shift position of the transmission 131 is controlled to the third speed (gear ratio ⁇ 1.0).
  • the A1 rotor rotational speed VRA1 can be reduced with respect to the vehicle speed VP, it is possible to prevent the failure of the first rotating machine 21 due to the excessive A1 rotor rotational speed VRA1. it can.
  • the A1 rotor 24 is made of a magnet, and the magnet is lower in strength than the soft magnetic body, and the above-mentioned problems are likely to occur.
  • the shift position of the transmission 131 is controlled such that the first magnetic field rotational speed VMF1 becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the first rotating machine 21 and the rotating machine 101 are used as a power source, and the engine 3, the first rotating machine 21 and the rotating machine 101 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value at which high efficiency of the first rotating machine 21 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with the control of the transmission 131, the first magnetic field rotational speed VMF1 is controlled to the above-described target value. Thus, according to the present embodiment, high efficiency of the first rotating machine 21 can be obtained while the vehicle is traveling.
  • the first rotating machine 21 and the rotating machine 101 are controlled as follows. That is, during the shifting operation of the transmission 131, the A1 rotor 24 is disconnected from the drive wheels DW and DW by the disconnection between the gear train in the transmission 131 and the input shaft 132 and the output shaft, thereby causing the A1 to The load of the drive wheels DW, DW does not act on the rotor 24. For this reason, power generation is not performed in the first rotating machine 21, and power is supplied to the stator 102 of the rotating machine 101 from the battery 43.
  • the rotating machine torque TMOT transmitted to the first ring gear R1 and the engine torque TENG transmitted to the first sun gear S1 are synthesized during the gear shift operation of the transmission 131, and the first carrier is generated.
  • the first carrier is generated.
  • it is transmitted to the drive wheels DW and DW via C1 it is possible to suppress a shift shock due to the fact that the engine torque TENG is not transmitted to the drive wheels DW and DW, and therefore, it is possible to improve the merchantability.
  • the engine power can be continuously transmitted to the drive wheels DW and DW by the first rotating machine 21, the first planetary gear unit PS1 and the rotating machine 101, the frequency of the shifting operation of the transmission 131 is reduced.
  • the driving efficiency of the power plant 1I can be enhanced.
  • the effects of the seventh embodiment can be obtained similarly.
  • the second rotating shaft 7 is not provided, and the first gear 8b is integral with the connecting shaft 6. It meshes with a gear 6b provided on the As a result, the A1 rotor 24 and the first carrier C1 transmit the transmission through the connecting shaft 6, the gear 6b, the first gear 8b, the idler shaft 8, the second gear 8c, the gear 9a, the differential gear mechanism 9, and the like. It is mechanically connected to the drive wheels DW and DW without passing through 141.
  • the transmission 141 is a gear-type stepped transmission having the first to third speeds, which is configured similarly to the transmission 131 of the tenth embodiment.
  • an output shaft 142 directly connected to the first ring gear R1 via the rotary shaft 103a, and the power input to the input shaft is shifted to change the output shaft 142.
  • the change of the shift position of the transmission 141 is controlled by the ECU 2.
  • the rotor 103 is mechanically coupled to the first ring gear R1 via the transmission 141, and the power of the rotor 103 is shifted by the transmission 141 and transmitted to the first ring gear R1. .
  • the gear of the transmission 141 is the first speed (1st It is controlled to gear ratio> 1.0).
  • the rotary machine torque TMOT is increased in the transmission 141 and then transmitted to the drive wheels DW and DW via the first ring gear R1 and the first carrier C1.
  • the power supplied to the rotating machine 101 is controlled such that the rotating machine torque TMOT is reduced.
  • the maximum value of the torque required of the rotating machine 101 can be reduced, and the size reduction and cost reduction of the rotating machine 101 can be achieved.
  • the shift position of the transmission 141 is set to the third speed (gear ratio ⁇ 1.0). It is controlled.
  • the rotor rotation speed VRO can be reduced relative to the first ring gear rotation speed VRI1 determined by the relationship between the vehicle speed VP and the engine rotation speed NE at that time. It is possible to prevent the failure of the rotating machine 101 due to the excessive
  • the shift position of the transmission 141 is controlled such that the rotor rotational speed VRO becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the first rotating machine 21 and the rotating machine 101 are used as a power source, and the engine 3, the first rotating machine 21 and the rotating machine 101 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the rotary machine 101 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Furthermore, in parallel with such control of the transmission 141, the rotor rotational speed VRO is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the rotating machine 101 can be obtained while the vehicle is traveling.
  • the engine power can be transmitted steplessly to the drive wheels DW and DW by the first rotating machine 21, the first planetary gear unit PS1 and the rotating machine 101, the frequency of the shifting operation of the transmission 141 is reduced.
  • the driving efficiency of the power plant 1J can be enhanced.
  • the effects of the seventh embodiment can be obtained similarly.
  • the second rotating shaft 7 is not provided, and the first gear 8b is connected. It meshes with a gear 6 b integrally provided on the shaft 6.
  • the transmission 151 is a gear type stepped transmission having the first to third shift speeds, which is configured similarly to the transmission 131 of the tenth embodiment, and is directly connected to the first carrier C1.
  • the input shaft 152 and the output shaft (not shown) directly connected to the connecting shaft 6 are provided, and the power input to the input shaft 152 is changed in speed and output to the output shaft. Further, the change of the shift position of the transmission 151 is controlled by the ECU 2.
  • the first carrier C1 is mechanically connected to the drive wheels DW and DW via the transmission 151, the connecting shaft 6, the gear 6b, the first gear 8b, etc.
  • the power transmitted to the carrier C1 is shifted by the transmission 151 and transmitted to the drive wheels DW and DW.
  • the A1 rotor 24 is mechanically connected to the drive wheels DW and DW without the transmission 151 via the connection shaft 6, the gear 6b, the first gear 8b, and the like.
  • the rotor 103 is directly connected to the first ring gear R1 via the rotation shaft 103a, and is rotatable in unison with the first ring gear R1.
  • the gear position of the transmission 151 is the first It is controlled to the speed (gear ratio> 1.0).
  • the torque transmitted to the first carrier C1 is transmitted to the drive wheels DW and DW after being increased in the transmission 151.
  • the power supplied to the rotating machine 101 is controlled such that the rotating machine torque TMOT is reduced.
  • the maximum value of the torque required of the rotating machine 101 and the maximum value of the torque transmitted to the first carrier C1 can be reduced, and the rotating machine 101 and the first planetary gear Further downsizing and cost reduction of the device PS1 can be achieved.
  • the shift position of the transmission 151 is set to the third speed (gear ratio ⁇ 1.0). It is controlled.
  • the rotor rotational speed VRO can be reduced, so that the rotor rotation can be achieved. It is possible to prevent the failure of the rotating machine 101 due to the increase of the speed VRO.
  • the shift position of the transmission 151 is controlled such that the rotor rotational speed VRO becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the first rotating machine 21 and the rotating machine 101 are used as a power source, and the engine 3, the first rotating machine 21 and the rotating machine 101 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the rotary machine 101 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with such control of the transmission 151, the rotor rotational speed VRO is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the rotating machine 101 can be obtained while the vehicle is traveling.
  • the seventh embodiment has been described in the seventh embodiment when the ENG travel is in progress and the transmission 151 is operating to shift, that is, when the first transmission C1 and the drive wheels DW and DW are disconnected by the transmission 151.
  • a part of the engine torque TENG is transmitted to the drive wheels DW and DW via the A1 rotor 24.
  • the engine power can be transmitted steplessly to the drive wheels DW and DW by the first rotating machine 21, the first planetary gear unit PS1 and the rotating machine 101, the frequency of the shifting operation of the transmission 151 is reduced.
  • the driving efficiency of the power plant 1K can be enhanced.
  • the effects of the seventh embodiment can be obtained similarly.
  • the transmissions 121 to 151 are gear-type stepped transmissions, but it goes without saying that belt-type, toroidal-type or hydraulic-type continuously variable transmissions may be used. .
  • This power unit 1L mainly includes a transmission that changes the ratio of the speed difference between the rotor rotational speed VRO and the vehicle speed VP to the speed difference between the vehicle speed VP and the engine speed NE compared to the seventh embodiment. It is different.
  • differences from the seventh embodiment will be mainly described.
  • the second rotating shaft 7 is not provided, and the first gear 8b is mounted on the gear 6b integrally provided on the connecting shaft 6.
  • the A1 rotor 24 and the first carrier C1 are engaged via the connecting shaft 6, the gear 6b, the first gear 8b, the differential gear mechanism 9 and the like without using the above-described transmission. It is mechanically connected to the wheels DW, DW. Further, the rotor 103 is rotatable integrally with the rotating shaft 103a, as in the tenth embodiment.
  • the above transmission includes the second planetary gear unit PS2, a first clutch CL1, and a second clutch CL2.
  • the second planetary gear unit PS2 is configured in the same manner as the first planetary gear unit PS1, and includes a second sun gear S2, a second ring gear R2, and a plurality of (for example, three) second gears engaged with both gears S2 and R2.
  • a second carrier C2 rotatably supporting the planetary gear P2 (only two shown) is provided.
  • the second sun gear S2 is mechanically directly connected to the first carrier C1 via the rotation shaft, and is thereby rotatable integrally with the first carrier C1.
  • the second carrier C2 is mechanically directly coupled to the first ring gear R1 via a hollow shaft or a flange, and is thereby rotatable integrally with the first ring gear R1.
  • the rotational speeds of the second sun gear S2, the second ring gear R2 and the second carrier C2 will be referred to as “second sun gear rotational speed VSU2", “second ring gear rotational speed VRI2” and “second carrier rotational speed VCA2".
  • the first clutch CL1 is, for example, a friction type multiple disc clutch, and is provided between the second carrier C2 and the rotating shaft 103a. That is, the second carrier C2 is mechanically directly coupled to the rotor 103 via the first clutch CL1. Further, the first clutch CL1 connects and disconnects between the second carrier C2 and the rotary shaft 103a, that is, between the second carrier C2 and the rotor 103, as the degree of engagement is controlled by the ECU 2.
  • the above-described second clutch CL2 is configured by a friction type multiple disc clutch, and is provided between the second ring gear R2 and the rotation shaft 103a. That is, the second ring gear R2 is mechanically directly coupled to the rotor 103 via the second clutch CL2. Further, the second clutch CL2 is connected and disconnected between the second ring gear R2 and the rotary shaft 103a, that is, between the second ring gear R2 and the rotor 103, as the degree of engagement is controlled by the ECU 2.
  • the rotor 103 of the rotating machine 101 is mechanically coupled to the first ring gear R1 via the first clutch CL1 and the second carrier C2, and the second clutch CL2, the second It is mechanically connected to the first ring gear R1 via the 2 ring gear gear R2, the second planetary gear P2 and the second carrier C2.
  • FIG. 79 (a) is a velocity collinear chart showing an example of the relationship between the first sun gear rotation speed VSU1, the first carrier rotation speed VCA1, and the first ring gear rotation speed VRI1, the second sun gear rotation speed VSU2, the second carrier rotation It is shown with a velocity alignment chart showing an example of the relationship between the velocity VCA2 and the second ring gear rotational velocity VRI2.
  • r2 is the ratio of the number of teeth of the second sun gear S2 to the number of teeth of the second ring gear R2 (number of teeth of the second sun gear S2 / number of teeth of the second ring gear R2, hereinafter "second planetary gear ratio" ).
  • the two velocity alignment charts concerning the first and second planetary gear sets PS1, PS2 in FIG. 79 (a) are represented by one velocity alignment chart as shown in FIG. 79 (b).
  • FIG. 79 (b) As shown in the figure, by connecting various rotating elements of the first and second planetary gear units PS1 and PS2 as described above, four rotating elements whose rotational speeds are collinear with each other are formed. .
  • FIG. 80 (a) is a velocity collinear chart showing an example of the relationship between the rotational speeds of the four rotating elements described above, in the relationship between the rotor rotational speeds VRA1 and VRA2 of the first magnetic field rotational speeds VMF1, A1 and A2. It has shown with the velocity alignment chart which shows an example. As described above, since the first carrier C1 and the A1 rotor 24 are directly connected to each other, the second carrier rotation speed VCA2 and the A1 rotor rotation speed VRA1 are equal to each other. Further, since the first sun gear S1 and the A2 rotor 25 are directly connected to each other, the first sun gear rotational speed VSU1 and the A2 rotor rotational speed VRA2 are equal to each other. Therefore, the two velocity alignment charts of FIG. 80 (a) are shown as one velocity alignment chart as shown in FIG. 80 (b).
  • the crankshaft 3a, the A2 rotor 25 and the first sun gear S1 are directly connected to each other, the engine rotational speed NE, the A2 rotor rotational speed VRA2 and the first sun gear rotational speed VSU1 are equal to each other.
  • the drive wheels DW and DW, the A1 rotor 24, the first carrier C1 and the second sun gear S2 are connected to one another, the vehicle speed VP and the A1 rotor rotation are assumed if there is no gear change by the differential gear mechanism 9.
  • the speed VRA1, the first carrier rotation speed VCA1, and the second sun gear rotation speed VSU2 are equal to one another.
  • the rotor 103 is connected to the second carrier C2 and the second ring gear R2 via the first and second clutches CL1 and CL2, respectively, the first clutch CL1 is connected, and the second clutch CL2 is connected. Is interrupted (hereinafter, such a clutch engagement / disengagement state is referred to as "first transmission mode"), the rotor rotational speed VRO and the second carrier rotational speed VCA2 are equal to each other. Furthermore, when the first clutch CL1 is disconnected and the second clutch CL2 is connected (hereinafter, such a connected / disconnected state of the clutch is referred to as “second shift mode”), the rotor rotational speed VRO and The second ring gear rotational speeds VRI2 are equal to one another.
  • the first magnetic field rotational speed VMF1, the engine rotational speed NE, the vehicle speed VP, and the rotor rotational speed VRO become collinear as shown in, for example, FIG. 81 (a) during the first shift mode.
  • the second speed change mode for example, a collinear relationship as shown in FIG. 81 (b) is obtained.
  • the distance between the vertical line representing the vehicle speed VP and the vertical line representing the rotor rotational speed VRO in the velocity nomograph is the first shift described above. Since the mode is smaller than the second transmission mode, the ratio of the rotational difference DN2 between the rotor rotational speed VRO and the vehicle speed VP to the rotational difference DN1 between the vehicle speed VP and the engine rotational speed NE (hereinafter referred to as "rotational ratio DN2 / DN1”) is smaller in the first shift mode.
  • the rotor rotational speed VRO when the rotor rotational speed VRO becomes excessive, such as during high-speed operation where the vehicle speed VP is higher than the engine rotational speed NE or when the vehicle speed VP is high during EV traveling described above
  • the first shift mode is used.
  • the rotor rotation speed VRO can be made smaller than in the case where the second transmission mode is used. It is possible to prevent the failure of the rotating machine 101 due to the excessive VRO.
  • the first and second shift modes are used at the start of a sudden acceleration operation during ENG traveling, that is, when the torque required of the rotating machine 101 becomes large, the rotational speeds of various rotating elements and The relationship between the torques is represented by FIG. 82 (a) and FIG. 82 (b), respectively.
  • the torque required of the rotating machine 101 that is, the rotating machine torque TMOT is expressed by the above equation (61).
  • the rotating machine torque TMOT is expressed by the following equation (62).
  • TMOT - ⁇ TENG + (1 + ⁇ ) TDD W ⁇ / (R1 ⁇ r2 + r1 + 1 + ⁇ ) (62)
  • the rotating machine torque TMOT is smaller in the second shift mode than the drive wheel transmission torque TDDW and the engine torque TENG having the same magnitude. .
  • the second shift mode is used during a sudden acceleration operation during ENG traveling.
  • the rotating machine 101 since the second shift mode is used as described above and the electric power generated by the rotating machine 101 is controlled based on the above-mentioned equation (62), the rotating machine 101 is required.
  • the maximum value of the torque can be reduced, which can further reduce the size and cost of the rotating machine 101.
  • the vehicle speed VP and the engine rotation during the operation of the engine 3 according to the vehicle speed VP during the stop of the engine 3 among the first and second shift modes.
  • a transmission mode is selected, which allows higher efficiency of the rotating machine 101.
  • the rotor rotational speed VRO can be controlled to an appropriate height, so that high efficiency of the rotating machine 101 can be obtained.
  • switching between the first and second shift modes is performed when the second carrier rotational speed VCA2 and the second ring gear rotational speed VRI2 are equal to each other.
  • the switching of the first and second shift modes can be smoothly performed while maintaining the rotation of the drive wheels DW and DW and the engine 3, and good drivability is ensured. be able to.
  • the seventh embodiment is described.
  • part of the engine torque TENG can be transmitted to the drive wheels DW and DW via the rotors 25 and 24 of A2 and A1. Therefore, since it is possible to suppress a shift shock such as a rapid decrease in torque, it is possible to improve the commercial property.
  • the effects of the seventh embodiment can be obtained similarly.
  • the second sun gear S2 is coupled to the first carrier C1, and the second ring gear R2 is coupled to the rotor 103 via the second clutch CL2.
  • the coupling relationship between them is reversed. That is, the second ring gear R2 may be connected to the first carrier C1, and the second sun gear S2 may be connected to the rotor 103 via the second clutch CL2.
  • 1st and 2nd clutch CL1 and CL2 are comprised with the friction type multiple disc clutch, you may comprise with an electromagnetic clutch etc., for example.
  • FIGS. 83 (a) and 83 (b) show an example of the relationship between the rotational speeds of various types of rotary elements in the power unit 1L in (a) the first shift mode and (b) the second shift mode. It is a velocity alignment chart.
  • the rotating machine 21 is “first rotating machine”
  • the rotating machine 101 is “second rotating machine”
  • the second sun gear S2 is "one gear” or "first gear”.
  • the second ring gear R2 is "the other gear” or “the second gear”
  • the second carrier C2 is the “carrier”
  • the second output portion is the “rotation shaft 103a”
  • the first clutch is the "first clutch CL1”
  • the second clutch is represented as “first clutch CL2”
  • the engine 3 is represented as “heat engine”
  • the drive wheels DW and DW are represented as “driven parts”.
  • the rotational speed of one gear of the second planetary gear unit PS2 is "first gear rotational speed VG1”
  • the rotational speed of the other gear of the second planetary gear unit PS2 is “second gear rotational speed VG2”.
  • the rotational speed of the carrier of the second planetary gear unit PS2 is referred to as "carrier rotational speed VC”.
  • the rotary element is directly connected in various ways, and the second output of the second rotary machine is connected to the carrier by connection of the first clutch, and the second output is connected by disconnection of the second clutch.
  • the rotational speed of the heat engine and the driven speed of the heat engine are reduced when the motor and the other gear are disconnected (hereinafter, such a connected / disconnected state of the first and second clutches is referred to as "first transmission mode").
  • the relationship such as the speed of the part is shown, for example, as shown in FIG. 83 (a).
  • the distance from the vertical line representing the first gear rotational speed VG1 to the vertical line representing the carrier rotational speed VC is Y
  • the vertical line representing the carrier rotational speed VC is the second gear
  • Z be the distance to the vertical line representing the rotational speed VG2.
  • the second shift mode is more than the second shift mode. Since the rotational speed of the rotating machine can be reduced, it is possible to prevent the failure of the second rotating machine due to an excessive increase in the rotational speed of the second rotating machine.
  • the torque TM2 of the second rotating machine is the second for the driven portion transmission torque TOUT of the same magnitude and the torque THE of the heat engine.
  • the shift mode is smaller. Therefore, for example, when the torque required for the second rotating machine is increased as described above, the second rotating machine torque TM2 can be reduced by using the second shift mode, and hence, Further downsizing and cost reduction of the second rotating machine can be achieved.
  • the rotational speed of the second rotating machine can be controlled to an appropriate size, thereby , High efficiency of the second rotating machine can be obtained. Furthermore, by switching between the first and second shift modes when the carrier rotational speed VC and the second gear rotational speed VG2 are equal to each other as shown in FIG. 85, the rotation of the driven part or the heat engine is maintained. While, it can be done smoothly and good drivability can be secured.
  • the first rotor to the driven part without the aid of a gear-type stepped transmission, so that, at the time of the transition between the first and second transmission modes, Even if the second rotary machine and the driven part are shut off due to both the first and second clutches being shut off, as is clear from FIG. , And can be transmitted to the driven part via the second and first rotors. Therefore, at the time of transition between the first and second shift modes, it is possible to suppress the shift shock, so that the product property can be enhanced.
  • a power plant 1M according to a fourteenth embodiment will be described with reference to FIG.
  • This power unit 1M is obtained by adding the brake mechanism BL described in the sixth embodiment to the power unit 1F of the seventh embodiment.
  • differences from the seventh embodiment will be mainly described.
  • the rotation of the first rotary shaft 4 is allowed only by the brake mechanism BL configured of the one-way clutch OC and the case CA, only in the case of normal rotation with the crankshaft 3a, the A2 rotor 25 and the first sun gear S1. And is prevented in the case of reverse rotation with the crankshaft 3a or the like.
  • the above-described EV creep operation and operation by EV start are performed as follows. That is, power is supplied to the stator 23 of the first rotating machine 21 and the stator 102 of the rotating machine 101, and the first rotating magnetic field generated by the stator 23 is reversed accordingly, and the rotor 103 is rotated forward together with the first ring gear R1.
  • the first magnetic field rotational speed VMF1 and the rotor rotational speed VRO are controlled such that (1 + r1)) VMF1
  • the power supplied to the stators 23 and 102 is controlled such that torque is sufficiently transmitted to the drive wheels DW and DW.
  • all the power supplied to the stator 23 is transmitted as power to the A1 rotor 24, whereby the A1 rotor 24 rotates forward.
  • all the power from the rotating machine 101 is the first ring gear R1 and the first planetary gear P1.
  • the power transmitted to the A1 rotor 24 and the first carrier C1 is transmitted to the drive wheels DW and DW, and as a result, the drive wheels DW and DW perform forward rotation.
  • the A2 rotor 25 and the first sun gear S1 which are prevented from being reversely rotated by the brake mechanism BL, are respectively controlled from the stator 23 and the rotor 103 by the control of the first rotating machine 21 and the rotating machine 101 described above.
  • a torque acts to reverse the torque.
  • the crankshaft 3a, the A2 rotor 25 and the first sun gear S1 are not only reversed but also held stationary.
  • the drive wheels DW and DW can be driven by the first rotating machine 21 and the rotating machine 101 without using engine power. Further, during this driving, the crankshaft 3a is not only reversed but also kept stationary so that the engine 3 will not be dragged. In addition, the effect by 7th Embodiment can be acquired similarly.
  • the first pole-log ratio ⁇ of the first rotating machine 21 is set to the value 2.0 as in the first embodiment.
  • the drive efficiency is lowered due to the occurrence of the loss due to the excess of the first magnetic field rotational speed VMF1 Can be prevented.
  • the first planetary gear ratio r1 of the first planetary gear unit PS1 is set to a relatively large value, but setting the value to a smaller value provides the following effect. can get.
  • the rotor rotational speed VRO is The vehicle speed may be higher than the vehicle speed VP and may be excessive.
  • the first planetary gear ratio r1 is set to a relatively large value, when the vehicle speed VP is higher than the engine rotational speed NE (see the alternate long and short dash line in FIG. 71), the rotor rotational speed VRO is The vehicle speed may be higher than the vehicle speed VP and may be excessive.
  • the first planetary gear ratio r1 by setting the first planetary gear ratio r1 to a smaller value, as is apparent from the comparison between the velocity alignment chart shown by a broken line in FIG. 71 and the velocity alignment chart shown by a one-dot chain line, The rotational speed VRO can be reduced, and therefore, the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the rotor rotational speed VRO can be prevented.
  • the A2 rotor 25 and the first sun gear S1 are directly connected to each other, and the A1 rotor 24 and the first carrier C1 are directly connected to each other.
  • the A2 rotor 25 and the first sun gear S1 are Is not required to be directly connected to each other as long as it is connected to the crankshaft 3a, and the A1 rotor 24 and the first carrier C1 are not connected to each other as long as they are connected to the drive wheels DW and DW.
  • the transmissions 111 and 121 according to the eighth and ninth embodiments may be two transmissions, respectively, and may be provided as follows.
  • one of the two transmissions constituting the transmission 111 may be provided between the A1 rotor 24 and the drive wheels DW and DW, and the other may be provided between the first carrier C1 and the drive wheels DW and DW.
  • one of the two transmissions constituting the transmission 121 may be provided between the A2 rotor 25 and the crankshaft 3a, and the other may be provided between the first sun gear S1 and the crankshaft 3a.
  • the first sun gear S1 and the first ring gear R1 are connected to the engine 3 and the rotating machine 101, respectively, but the connection relationship between them is reversed, that is, the first ring gear R1 and the first sun gear S1 may be coupled to the engine 3 and the rotating machine 101, respectively.
  • the rotating machine torque TMOT is expressed by the following equation (65) during a rapid acceleration operation during ENG traveling in which the torque required of the rotating machine 101 becomes particularly large.
  • r1 ' is a ratio of the number of teeth of the first ring gear R1 to the number of teeth of the first sun gear S1 (number of teeth of the first ring gear / number of teeth of the first sun gear S1) Greater than .0.
  • the fact that the first planetary gear ratio r1 is the number of teeth of the first sun gear S1 / the number of teeth of the first ring gear R1 as described above, and is smaller than 1.0, and the above equation (61)
  • the rotary machine torque TMOT can be made smaller, and therefore, the rotary machine 101 can be further miniaturized and the cost can be reduced.
  • a power plant 1N according to a fifteenth embodiment will be described with reference to FIG.
  • the power plant 1N is provided with the first planetary gear unit PS1 and the rotary machine 101 described in the seventh embodiment in place of the first rotary machine 21 in comparison with the power plant 1 of the first embodiment. Only the point is different.
  • differences from the first embodiment will be mainly described.
  • the first carrier C1 of the first planetary gear unit PS1 and the B1 rotor 34 of the second rotating machine 31 are mechanically connected directly to each other via the first rotation shaft 4, and the first rotation It is mechanically directly connected to the crankshaft 3 a via the shaft 4 and the flywheel 5.
  • the B2 rotor 35 of the second rotating machine 31 is mechanically directly connected to the first sun gear S1 of the first planetary gear unit PS1 via the connecting shaft 6, and the second rotating shaft 7, the gear 7b, and the It is mechanically connected to the drive wheels DW and DW via the 1 gear 8b, the idler shaft 8, the second gear 8c, the gear 9a, the differential gear mechanism 9 and the like.
  • the first sun gears S1 and B2 rotors 35 are mechanically connected to the drive wheels DW and DW.
  • the stator 102 is electrically connected to the battery 43 via the first PDU 41. That is, the stator 102 of the rotating machine 101 and the stator 33 of the second rotating machine 31 are electrically connected to each other via the first and second PDUs 41 and 42.
  • the rotational angle position of the rotor 103 of the rotating machine 101 is detected by the aforementioned rotational angle sensor 59 as in the seventh embodiment. Further, the ECU 2 calculates the rotor rotational speed VRO based on the detected rotational angle position of the rotor 103, and controls the first PDU 41 to control the power supplied to the stator 102 of the rotating machine 101 or the stator 102. It controls the power to be generated and the rotor rotational speed VRO.
  • the power plant 1N only replaces the first rotating machine 21 with the first planetary gear apparatus PS1 and the rotating machine 101, as compared with the power plant 1 of the first embodiment. It has exactly the same function as this power unit 1. Further, in the power unit 1N, operations in various operation modes such as EV creep described in the first embodiment are performed in the same manner. In this case, the operation in these operation modes is performed by replacing various parameters (such as the first magnetic field rotational speed VMF1) related to the first rotating machine 21 with various parameters of the corresponding rotating machine 101.
  • various parameters such as the first magnetic field rotational speed VMF1
  • the second driving equivalent torque TSE2 from the stator 33 acts to cause the B2 rotor 35 to rotate in the normal direction, and acts to reverse the B1 rotor 34.
  • a part of the torque transmitted to the B2 rotor 35 is transmitted to the drive wheels DW and DW via the second rotation shaft 7 and the like, whereby the drive wheels DW and DW perform forward rotation.
  • the remainder of the torque transmitted to B2 rotor 35 is transmitted to first sun gear S1 via connecting shaft 6, and thereafter, along with the power generation in stator 102 of rotating machine 101, the first planetary gear Electrical energy is transmitted to the stator 102 through P 1, the first ring gear R 1 and the rotor 103.
  • the rotating machine torque TMOT generated along with the power generation in the stator 102 is transmitted to the first carrier C1 via the first ring gear R1 and the first planetary gear P1, 1) Act to rotate the carrier C1 forward.
  • the torque transmitted to the first sun gear S1 is further transmitted to the first carrier C1 via the first planetary gear P1 so as to balance the rotating machine torque TMOT, and causes the first carrier C1 to rotate in the forward direction.
  • the electric power supplied to the stator 33 and the electric power generated by the stator 102 are controlled so that the torque for reversing the B1 rotor 34 and the torque for rotating the first carrier C1 balance each other.
  • the connected B1 rotor 34, the first carrier C1 and the crankshaft 3a are held stationary.
  • the B1 rotor rotational speed VRB1 and the first carrier rotational speed VCA1 have the value 0, and the engine rotational speed NE also has the value 0.
  • the power supplied to stator 33, the power generated by stator 102, the second magnetic field rotational speed VMF2 and the rotor rotational speed VRO are as shown in the above formulas (44) and (53), respectively.
  • the speed relationship is maintained, and the B2 rotor rotational speed VRB2 and the first sun gear rotational speed VSU1 are controlled to be very small.
  • the creep operation with a very small vehicle speed VP is performed.
  • the creep operation can be performed by the rotating machine 101 and the second rotating machine 31 in a state where the engine 3 is stopped.
  • the rotor rotational speed VRO of the rotor 103 which was reverse as described above during EV start, becomes the value 0 while maintaining the vehicle speed VP at the value at that time.
  • the second magnetic field rotational speed VMF2 of the second rotating magnetic field which has been normally rotated, is controlled to decrease.
  • power is supplied from the battery 43 to the stator 102 of the rotating machine 101 to rotate the rotor 103 forward. , Increase the rotor rotational speed VRO.
  • the second driving equivalent torque TSE2 and the torque transmitted to the B1 rotor 34 as described later are combined.
  • B2 rotor 35 part of the torque transmitted to the B2 rotor 35 is transmitted to the first sun gear S1 via the connecting shaft 6, and the rest is transmitted to the drive wheels DW and DW via the second rotating shaft 7 or the like. .
  • the vehicle speed VP is maintained at the value at that time, and the engine speed NE is increased.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug of the engine 3 according to the crank angle position, as in the first embodiment. Further, by controlling the rotor rotational speed VRO and the second magnetic field rotational speed VMF 2, the engine speed NE is controlled to a relatively small value suitable for starting the engine 3.
  • FIG. 88 shows an example of the relationship between rotational speeds and torques of various types of rotary elements at the start of ENG start during EV travel.
  • the first carrier rotational speed VCA1, B1 rotor rotational speed VRB1 and engine rotational speed NE are equal to each other, and the first sun gear rotational speed VSU1 and B2 rotor rotational speed VRB2 are mutually Equally, the first ring gear rotational speed VRI1 and the rotor rotational speed VRO are equal to each other.
  • the vehicle speed VP, the first sun gear rotational speed VSU1 and the B2 rotor rotational speed VRB2 are equal to one another.
  • the relationship between the rotational speeds VCA1, VRB1, NE, VSU1, VRB2, VP, VRI1, and VRO, and the second magnetic field rotational speed VMF2 is shown in FIG. As indicated.
  • the second driving equivalent torque TSE2 is transmitted to both the drive wheels DW and DW and the crankshaft 3a using the rotating machine torque TMOT as a reaction force.
  • the required torque will be greater than otherwise.
  • the torque required for the rotating machine 101 that is, the rotating machine torque TMOT is expressed by the following equation (66).
  • the rotary machine torque TMOT decreases with respect to the drive wheel transmission torque TDDW and the engine transmission torque TDENG of the same magnitude as the first planetary gear ratio r1 increases.
  • the first planetary gear ratio r1 is set to a relatively large value among values that can be taken by a general planetary gear device, downsizing of the rotating machine 101 and cost reduction can be achieved. .
  • ENG traveling operation is performed in the battery input / output zero mode, the assist mode, and the drive charging mode according to the execution conditions described in the first embodiment.
  • the second motive power machine 31 generates electric power by the stator 102 of the rotary machine 101 using engine power transmitted to the rotor 103 and does not charge the battery 43 with the generated electric power.
  • Supply to the stator 33 of the In this case a part of the engine torque TENG is transmitted to the rotor 103 through the first carrier C1, the first planetary gear P1 and the first ring gear R1 by the power generation by the stator 102, and thus the first sun gear.
  • a part of engine torque TENG is also transmitted to S1 via the first carrier C1 and the first planetary gear P1. That is, a part of engine torque TENG is distributed to first sun gear S1 and first ring gear R1.
  • the remainder of the engine torque TENG is transmitted to the B1 rotor 34 via the first rotation shaft 4.
  • the second drive equivalent torque TSE2 and the torque transmitted to the B1 rotor 34 as described above are synthesized and transmitted to the B2 rotor 35, as in the ENG start-up during the EV traveling described above.
  • the engine torque TENG distributed to the first sun gear S1 as described above is further transmitted to the B2 rotor 35 via the connecting shaft 6.
  • the B2 rotor 35 has a combined torque that combines the engine torque TENG distributed to the first sun gear S1, the second driving equivalent torque TSE2, and the engine torque TENG transmitted to the B1 rotor 34. It is transmitted. Further, this combined torque is transmitted to the drive wheels DW and DW via the second rotation shaft 7 and the like. As a result of the above, in the battery input / output zero mode, assuming that there is no transmission loss due to each gear, power of the same magnitude as the engine power is transmitted to the drive wheels DW and DW as in the first embodiment. .
  • the first carrier rotational speed VCA1 and the B1 rotor rotational speed VRB1 that is, the engine rotation, while maintaining the speed relationship shown in the equations (53) and (44).
  • the first sun gear rotation speed VSU1 and the B2 rotor rotation speed VRB2 that is, the vehicle speed VP is continuously reduced steplessly by raising the rotor rotation speed VRO and decreasing the second magnetic field rotation speed VMF2 with respect to the number NE. Can.
  • the vehicle speed VP is increased steplessly by decreasing the rotor rotational speed VRO with respect to the engine rotational speed NE and increasing the second magnetic field rotational speed VMF2. can do. Further, in this case, the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are controlled such that the engine rotational speed NE becomes the target rotational speed.
  • the engine power is temporarily divided, and the following first to third transmission paths are The torque is transmitted to the B2 rotor 35 and is transmitted to the drive wheels DW and DW in a combined state.
  • First transmission path first carrier C1 ⁇ first planetary gear P1 ⁇ first sun gear S1 ⁇ connecting shaft 6 ⁇ B2 rotor 35
  • Second transmission path B1 rotor 34 ⁇ magnetic force by magnetic line of force ⁇ B2 rotor 35
  • Third transmission path first carrier C1 ⁇ first planetary gear P1 ⁇ first ring gear R1 ⁇ rotor 103 ⁇ stator 102 ⁇ first PDU 41 ⁇ second PDU 42 ⁇ stator 33 ⁇ magnetic force due to magnetic field lines ⁇ B2 rotor 35
  • engine power is transmitted to the drive wheels DW and DW by a magnetic path or a mechanical path without being converted to electric power.
  • the engine power is transmitted to the drive wheels DW and DW by the electrical path.
  • stator 102 the power generated by stator 102, rotor rotational speed VRO and second magnetic field rotational speed VMF2 are controlled such that the speed relationship shown in equations (53) and (44) is maintained. Ru.
  • the assist mode power is generated by the stator 102 of the rotary machine 101, and the power charged in the battery 43 is supplied to the stator 33 of the second rotary machine 31 in addition to the generated power. Therefore, the second driving equivalent torque TSE2 based on the power supplied from the stator 102 and the battery 43 to the stator 33 is transmitted to the B2 rotor 35. Furthermore, similarly to the above-described battery input / output zero mode, the second drive equivalent torque TSE2, the engine torque TENG distributed to the first sun gear S1 along with the power generation by the stator 102, and the B1 rotor 34 are transmitted. The torque obtained by combining the engine torque TENG is transmitted to the drive wheels DW and DW via the B2 rotor 35. As a result of the above, assuming that there is no transmission loss due to each gear in the assist mode, the power transmitted to the drive wheels DW and DW is the engine power and the electric power supplied from the battery 43 as in the first embodiment. Equal to the energy).
  • the electric power generated by the stator 102, the electric power supplied from the battery 43 to the stator 33, and the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are expressed by the above equations (53) and (44). It is controlled to maintain the speed relationship shown in FIG.
  • the shortage of the engine power with respect to the vehicle required power is compensated by supplying power from the battery 43 to the stator 33 of the second rotating machine 31.
  • power is also supplied from the battery 43 to the stator 102 of the rotating machine 101 when the shortage of engine power with respect to the vehicle required power is relatively large.
  • the stator 33 of the second rotating machine 31 is supplied with electric power of a size obtained by subtracting the electric power charged to the battery 43 from the electric power generated by the stator 102 of the rotating machine 101
  • the second drive equivalent torque TSE2 based on the above is transmitted to the B2 rotor 35.
  • the second driving equivalent torque TSE2 similarly to the battery input / output zero mode, the second driving equivalent torque TSE2, the engine torque TENG distributed to the first sun gear S1 with the power generation by the stator 102, and the engine torque transmitted to the B1 rotor 34
  • the torque combined with TENG is transmitted to the drive wheels DW and DW via the B2 rotor 35.
  • the power generated by the stator 102, the power charged to the battery 43, the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are expressed by the equations (53) and (44).
  • the speed relationship is controlled to be maintained.
  • the surplus of the engine power with respect to the vehicle required power is converted to electric power in the stator 102 of the rotary machine 101 and the battery 43 is charged.
  • the driving wheels DW and DW from the engine 3 Transmission of power to can be done by magnetic path only.
  • a torque of r1 / (1 + r1) times the engine torque TENG is transmitted to the drive wheels DW and DW.
  • FIG. 90 shows an example of the relationship between rotational speeds and torques of various types of rotary elements at the start of a sudden acceleration operation during ENG travel.
  • the engine rotational speed NE is increased to a predetermined rotational speed at which the maximum torque can be obtained.
  • the engine rotational speed NE becomes higher than the vehicle speed VP, and the difference between the two becomes larger.
  • the direction of rotation is the reverse direction.
  • stator 33 In order to apply a positive torque to the drive wheels DW and DW from the stator 33 that generates such a second rotating magnetic field, the stator 33 generates power. Furthermore, the electric power generated by the stator 33 is supplied to the stator 102 of the rotating machine 101 to cause the rotor 103 to rotate normally.
  • the rotary machine torque TMOT decreases with respect to the drive wheel transmission torque TDDW and the engine torque TENG of the same magnitude as the second pole pair logarithmic ratio ⁇ increases.
  • the second pole pair ratio ⁇ is set to the value 2.0, the second rotary machine 31 can be miniaturized and the cost can be reduced as in the first embodiment.
  • Deceleration regeneration During deceleration regeneration, when the ratio of the torque of the drive wheels DW, DW transmitted to the engine 3 to the torque of the drive wheels DW, DW (torque due to inertia) is small, part of the power of the drive wheels DW, DW
  • the power is generated by the two stators 102 and 33 using the above, and the generated power is charged to the battery 43.
  • the stator 33 With the power generation by the stator 33, a combined torque obtained by combining all of the torque of the drive wheels DW and DW and the torque distributed to the first sun gear S1 as described later is transmitted to the B2 rotor 35. Further, the combined torque transmitted to the B2 rotor 35 is distributed to the stator 33 and the B1 rotor 34.
  • the rest of the torque transmitted to the first carrier C1 is transmitted to the B1 rotor 34, and thereafter, along with the power generation in the stator 33 of the second rotating machine 31, electric energy is transmitted to the stator 33 It is transmitted as Also, in this case, as described in the first embodiment, the second rotating magnetic field is reversed. For this reason, the second power-generating equivalent torque TGE2 generated along with the power generation in the stator 33 acts to cause the B2 rotor 35 to rotate in the forward direction. Further, the torque transmitted to the B1 rotor 34 is further transmitted to the B2 rotor 35 so as to balance the second power-generating equivalent torque TGE2, and acts to cause the B2 rotor 35 to rotate in the forward direction.
  • the first sun gears S1 and B2 rotor 35 and the drive wheels DW and DW connected to each other are held stationary.
  • the first sun gear rotational speed VSU1 and the B2 rotor rotational speed VRB2 have the value 0, and the vehicle speed VP also has the value 0.
  • the speed relationship shown in equations (53) and (44) is maintained such that the power supplied to stator 102, the power generated by stator 33, rotor rotational speed VRO and second magnetic field rotational speed VMF2 And the first carrier rotational speed VCA1 and the B1 rotor rotational speed VRB1 are controlled to be relatively small values.
  • the engine speed NE is controlled to a relatively small value suitable for starting the engine 3 while keeping the vehicle speed VP at 0 as in the first embodiment.
  • the engine 3 is started by controlling the ignition operation of the fuel injection valve and the spark plug of the engine 3 according to the crank angle position.
  • ENG creep During ENG creep, the stators 102 and 33 generate power. Also, the battery 43 is charged with the power generated by the two stators 102 and 33 as described above. As in the case of the battery input / output zero mode described above, a part of the engine torque TENG is transmitted to the first carrier C1 and the engine torque transmitted to the first carrier C1 along with the power generation in the stator 102 described above. TENG is distributed to stator 102 and first sun gear S1. Further, as in the first embodiment, the second rotating magnetic field generated as a result of the above-described power generation by the stator 33 is reversed.
  • the second electric power-generating equivalent torque TGE2 generated along with the electric power generation by the stator 33 acts to cause the B2 rotor 35 to rotate in the forward direction.
  • the engine torque TENG transmitted to the B1 rotor 34 is further transmitted to the B2 rotor 35 so as to balance the second power-generating equivalent torque TGE2, and causes the B2 rotor 35 to rotate in the forward direction.
  • the engine torque TENG distributed to the first sun gear S1 as described above is transmitted to the B2 rotor 35.
  • the B2 rotor 35 combines the engine torque TENG distributed to the first sun gear S1, the second power generation equivalent torque TGE2, and the engine torque TENG transmitted to the B1 rotor 34. Combined torque is transmitted. The combined torque is transmitted to the drive wheels DW and DW to cause the drive wheels DW and DW to rotate forward. Further, the electric power generated by the stators 102 and 33, the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are controlled such that the first sun gear rotational speed VSU1 and B2 rotor rotational speed VRB2, that is, the vehicle speed VP becomes very small. Thus, the creep operation is performed.
  • engine torque TENG distributed to first sun gear S1 with power generation by stator 102 and B2 rotor via B1 rotor 34 with power generation by stator 33.
  • the engine torque TENG transmitted to 35 is transmitted to the drive wheels DW and DW.
  • a part of the engine torque TENG can be transmitted to the drive wheels DW and DW, so creep operation can be performed without causing engine stall.
  • the second rotating machine 31 since the second rotating machine 31 has the same function as a device combining the planetary gear device and a general one-rotor type rotating machine, unlike the conventional power unit described above There is no need for two planetary gear sets for distributing, combining and transmitting power, and only one first planetary gear set PS1 is sufficient. Therefore, the power plant 1N can be miniaturized accordingly. Further, in the power unit 1N, as described in the description of the operation in the battery input / output zero mode, the engine power is transmitted to the drive wheels DW and DW without recirculation, unlike the conventional case described above. The power passing through the planetary gear set PS1, the rotating machine 101 and the second rotating machine 31 can be reduced.
  • the rotating machine 101 and the second rotating machine 31 can be achieved, thereby achieving further downsizing and cost reduction of the power plant 1N. it can. Furthermore, by using the first planetary gear unit PS1, the rotating machine 101 and the second rotating machine 31 having the torque capacity corresponding to the reduced power as described above, the loss of the power is suppressed, and the driving of the power unit 1N Efficiency can be improved.
  • engine power is obtained from the first transmission path (the first carrier C1, the first planetary gear P1, the first sun gear S1, the connecting shaft 6, the B2 rotor 35) and the second transmission path (B1 rotor 34, magnetic force by magnetic lines of force, B2
  • the total of the rotor 35) and the third transmission path (the first carrier C1, the first planetary gear P1, the first ring gear R1, the rotor 103, the stator 102, the first PDU 41, the second PDU 42, the stator 33, the magnetic force due to magnetic lines, the B2 rotor 35)
  • the three divided transmission paths are transmitted to the drive wheels DW and DW via the three transmission paths.
  • the power (energy) passing through the first and second PDUs 41 and 42 via the third transmission path can be reduced, and therefore, downsizing and cost reduction of the first and second PDUs 41 and 42 can be achieved.
  • further miniaturization and cost reduction of the power plant 1N can be achieved.
  • the first planetary gear ratio r1 of the first planetary gear device PS1 is set to a relatively large value among values that can be taken by a general planetary gear device.
  • the first planetary gear ratio r1 is set to a small value
  • the rotary machine torque TMOT can be made smaller than in the case, and therefore, the rotary machine 101 can be further miniaturized and the cost can be reduced.
  • the second pole-log ratio ⁇ of the second rotating machine 31 is set to the value 2.0.
  • the second pole logarithm ratio ⁇ is a value
  • the rotary machine torque TMOT can be made smaller than when set to less than 1.0, and therefore, the second rotary machine 31 can be further miniaturized and the cost can be reduced.
  • the effect of the first embodiment can be obtained similarly.
  • the power plant 1N of the present embodiment performs the same control as "control according to the battery SOC" performed by the power plant 1 of the first embodiment.
  • the first rotating machine 21 of the first embodiment is replaced with the first planetary gear device PS1 and the rotating machine 101 of one rotor type. Therefore, the first rotating machine 21 is replaced with the rotating machine 101, the stator 23 of the first rotating machine 21 is replaced with the stator 102 of the rotating machine 101, and the A2 rotor 25 is replaced with the first carrier C1 of the first planetary gear unit PS1. .
  • FIG. 10 to 1R are mainly different from the fifteenth embodiment in that they further include transmissions 161, 171, 181, and 191, and any of the sixteenth to nineteenth embodiments. Also, the connection between the engine 3, the rotating machine 101, the first planetary gear unit PS1, the second rotating machine 31, and the drive wheels DW and DW is the same as that in the fifteenth embodiment.
  • the first carriers C1 and B1 rotor 34 are mechanically coupled to the crankshaft 3a of the engine 3, and the first sun gears S1 and B2 rotor 35 are mechanically coupled to the drive wheels DW and DW. Further, the rotor 103 of the rotating machine 101 is mechanically coupled to the first ring gear R1. Further, in FIG. 91 to FIG. 94, the same components as in the fifteenth embodiment are indicated using the same reference numerals. The same applies to the drawings for explaining the other embodiments described later. The differences from the fifteenth embodiment will be mainly described in order from the power plant 1O according to the sixteenth embodiment.
  • the transmission 161 is provided instead of the gear 7b and the first gear 8b which mesh with each other.
  • the transmission 161 is a belt-type continuously variable transmission, and has an input shaft connected to the second rotation shaft 7 and an output connected to the idler shaft 8. It has a shaft, pulleys respectively provided on the input shaft and the output shaft, and a metal belt (not shown) wound around these pulleys.
  • the transmission 161 outputs the power input to the input shaft to the output shaft in a shifted state by changing the effective diameters of these pulleys. Further, the transmission ratio of the transmission 161 (rotation speed of input shaft / rotation speed of output shaft) is controlled by the ECU 2.
  • the transmission 161 is provided between the first sun gears S1 and B2 rotor 35 and the drive wheels DW and DW, and the power transmitted to the first sun gears S1 and B2 rotor 35 is The gear is changed by the transmission 161 and transmitted to the drive wheels DW and DW.
  • the gear ratio of the transmission 161 Is controlled to a predetermined value on the deceleration side larger than the value 1.0.
  • the torque transmitted to the first sun gear S1 and the B2 rotor 35 is transmitted to the drive wheels DW and DW after being increased in the transmission 161.
  • the electric power generated by the rotary machine 101 and the electric power supplied to the second rotary machine 31 are controlled such that the torque transmitted to the first sun gear S1 and the B2 rotor 35 becomes smaller. Be done.
  • the maximum value of the torque required for the rotating machine 101 and the second rotating machine 31 can be reduced, the size reduction and cost of the rotating machine 101 and the second rotating machine 31 can be further reduced. It is possible to reduce. Further, the torque distributed to the first sun gear S1 and the first ring gear R1 through the first carrier C1 can be reduced by the control of the transmission 161 and the rotating machine 101 described above, and the torque is transmitted to the first carrier C1. Since the maximum value of the torque can be reduced, further downsizing and cost reduction of the first planetary gear device PS1 can be achieved.
  • the transmission gear ratio of the transmission 161 is controlled to a predetermined value on the acceleration side smaller than 1.0.
  • the B2 rotor rotational speed VRB2 can be reduced relative to the vehicle speed VP, so that the failure of the second rotating machine 31 due to the excessive increase of the B2 rotor rotational speed VRB2 can be prevented. it can.
  • the gear ratio of the transmission 161 has a value 1. It is controlled to a predetermined value on the deceleration side larger than zero.
  • the transmission gear ratio of transmission 161 is controlled such that rotor rotational speed VRO and second magnetic field rotational speed VMF2 become predetermined first and second target values, respectively. Be done.
  • These first and second target values are calculated by searching the map according to the vehicle speed VP when only the rotating machine 101 and the second rotating machine 31 are used as a power source, and the engine 3, the rotating machine 101 and When using the 2nd rotary machine 31 as a motive power source, it is calculated by searching another map besides the above according to engine revolving speed NE and vehicle speed VP.
  • the first and second target values are such that high efficiency of the rotating machine 101 and the second rotating machine 31 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. It is set to a value. Further, in parallel with the control of the transmission 161, the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are controlled to the first and second target values, respectively. As described above, according to the present embodiment, high efficiency of the rotating machine 101 and the second rotating machine 31 can be obtained while the vehicle is traveling.
  • the engine power is continuously changed by the rotating machine 101, the first planetary gear device PS1, and the second rotating machine 31 to drive the drive wheels DW, Since it can be transmitted to the DW, the frequency of the shift operation of the transmission 161 can be reduced. Therefore, the heat loss due to the speed change operation can be suppressed, whereby high driving efficiency of the power unit 1O can be secured.
  • the effects of the fifteenth embodiment can be obtained similarly.
  • the transmission 161 is a belt-type continuously variable transmission, it is a matter of course that it may be a toroidal or hydraulic continuously variable transmission or a gear-type stepped transmission.
  • the input shaft 172 of the transmission 171 is directly connected to the crankshaft 3 a via the flywheel 5, and the output shaft (not shown) is directly connected to the first rotary shaft 4.
  • the transmission 171 is provided between the crankshaft 3a and the first carrier C1 and the B1 rotor 34, and shifts the engine power and transmits it to the first carrier C1 and the B1 rotor 34.
  • the number of teeth of the gear 9a of the differential gear mechanism 9 described above is larger than the number of teeth of the second gear 8c of the idler shaft 8, whereby transmission to the idler shaft 8 is performed.
  • the motive power thus generated is transmitted to the drive wheels DW and DW in a decelerated state.
  • the engine torque TENG transmitted to the first sun gear S1 and the B2 rotor 35 is transmitted to the drive wheels DW and DW in a state increased by deceleration by the second gear 8c and the gear 9a.
  • the maximum value of the torque required for the rotating machine 101 and the second rotating machine 31 can be reduced, and the size and cost of the rotating machine 101 and the second rotating machine 31 can be further reduced. It is possible to reduce.
  • the maximum value of the torque distributed to the first sun gear S1 and the first ring gear R1 via the first carrier C1 can be reduced, the further miniaturization and cost reduction of the first planetary gear device PS1 can be achieved. Can be
  • the B1 rotor rotational speed VRB1 can be made smaller than when the shift position is the second speed, so the failure of the second rotating machine 31 due to the excessive B1 rotor rotational speed VRB1 It can be prevented.
  • the B1 rotor 34 is made of a magnet, which is particularly effective because the above-mentioned problems are likely to occur.
  • the gear position of the transmission 171 is controlled to the first speed.
  • the first carrier rotational speed VCA1 is smaller than that of the second gear, so that according to the present embodiment, as is apparent from FIG. 89, the rotor rotational speed VRO can be reduced. Therefore, the failure of the rotating machine 101 due to the excessive increase of the rotor rotational speed VRO can be prevented.
  • the speed of the transmission 171 is such that the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are respectively high efficiency of the rotating machine 101 and the second rotating machine 31 according to the engine speed NE and the vehicle speed VP. It is changed to become a value that can be obtained.
  • the rotor rotational speed VRO and the second magnetic field rotational speed VMF are the engine rotational speed NE, the vehicle speed VP, the gear position of the transmission 171, It is controlled to a value determined by equation (44) and equation (53).
  • shift shock control in order to suppress a shift shock, during ENG traveling and during the shift operation of the transmission 171, that is, when the transmission 171 disconnects between the engine 3 and the first carrier C1 and the B1 rotor 34.
  • the rotary machine 101 and the second rotary machine 31 are controlled as follows.
  • such control of the rotating machine 101 and the second rotating machine 31 is referred to as "shift shock control" as in the ninth embodiment.
  • the present embodiment it is possible to suppress the shift shock due to the fact that the engine torque TENG is not transmitted to the drive wheels DW and DW during the shift operation, and to improve the commercial property. Note that this shift shock control is performed only during the shift operation of the transmission 171. In addition, according to the present embodiment, the effects of the fifteenth embodiment can be obtained similarly.
  • the second rotating shaft 7 is not provided, and the first gear 8b is a gear 6b integrally provided on the connecting shaft 6.
  • the first sun gear S1 and B2 rotor 35 transmit the transmission through the connecting shaft 6, gear 6b, first gear 8b, idler shaft 8, second gear 8c, gear 9a, differential gear mechanism 9, etc. It is mechanically connected to the drive wheels DW and DW without passing through 181.
  • the transmission 181 is a gear type stepped transmission having the first to third speeds, which is configured in the same manner as the transmission 131 of the tenth embodiment, and has a flange at the first ring gear R1. And an output shaft 183 directly connected to the rotor 103 via a flange. The power input to the input shaft 182 is changed in speed, and is output to the output shaft 183. Further, the change of the gear position of the transmission 181 is controlled by the ECU 2. As described above, the first ring gear R1 is mechanically connected to the rotor 103 via the transmission 181, and the power transmitted to the first ring gear R1 is shifted by the transmission 181 and is transmitted to the rotor 103. It is transmitted.
  • the shift position of the transmission 181 is the third speed (gear ratio ⁇ 1.1. It is controlled to 0).
  • the torque transmitted to the first ring gear R1 is transmitted to the rotor 103 after being reduced in the transmission 181.
  • the electric power generated by the rotating machine 101 is controlled such that the torque transmitted to the rotor 103 is reduced.
  • the shift position of the transmission 181 is controlled to the third speed (gear ratio ⁇ 1.0).
  • the torque of the rotating machine 101 is increased at the time of ENG start during stop by control of the transmission 181 described above. It is transmitted to the crankshaft 3a via the first ring gear R1, the first planetary gear P1 and the first carrier C1. Accordingly, the power supplied to the rotating machine 101 is controlled such that the rotating machine torque TMOT of the rotating machine 101 is reduced. As described above, according to the present embodiment, it is possible to further reduce the size and cost of the rotating machine 101.
  • the size itself of the power transmitted from the first ring gear R1 to the rotor 103 does not change; Since the torque transmitted to the drive wheels DW and DW via the B2 rotor 35 can be controlled to an arbitrary magnitude when the power generated by the motor is transmitted to the B2 rotor 35 as power via the stator 33, the drive wheels DW, A sufficient torque can be transmitted to the DW.
  • the gear position of the transmission 181 is It is controlled to the speed (gear ratio> 1.0).
  • the rotor rotational speed VRO can be reduced relative to the first ring gear rotational speed VRI1 determined by the relationship between the engine rotational speed NE and the vehicle speed VP at that time, so that the rotating machine 101 by the excessive rotor rotational speed VRO. It is possible to prevent the failure of the
  • the shift position of the transmission 181 is controlled such that the rotor rotational speed VRO becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the rotary machine 101 and the second rotary machine 31 are used as a power source, and the engine 3, the rotary machine 101 and the second rotary machine 31 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the rotary machine 101 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with such control of the transmission 181, the rotor rotational speed VRO is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the rotating machine 101 can be obtained while the vehicle is traveling.
  • the second drive equivalent torque TSE2 from the stator 33 and the engine torque TENG transmitted to the B1 rotor 34 are synthesized during the shift operation of the transmission 181, and the B2 rotor 35 is interposed. Since the torque is transmitted to the drive wheels DW and DW, it is possible to suppress a shift shock due to the engine torque TENG not being transmitted to the drive wheels DW and DW, and therefore, to improve the productability.
  • the engine motive power can be continuously shifted by the rotating machine 101, the first planetary gear unit PS1, and the second rotating machine 31 and transmitted to the drive wheels DW and DW.
  • the frequency of the shift operation can be reduced, and hence the drive efficiency of the power plant 1Q can be increased.
  • the effects of the fifteenth embodiment can be obtained similarly.
  • the second rotating shaft 7 is not provided, and the first gear 8b is a gear 6b integrally provided on the connecting shaft 6.
  • the transmission 191 is a gear type stepped transmission having the first to third shift speeds, which is configured similarly to the transmission 131 of the seventh embodiment, and is directly connected to the first sun gear S1.
  • the input shaft 192 and the output shaft (not shown) directly connected to the connecting shaft 6 are provided to shift the power input to the input shaft 192 and output it to the output shaft. Further, the change of the gear position of the transmission 191 is controlled by the ECU 2.
  • the first sun gear S1 is mechanically connected to the drive wheels DW and DW via the transmission 191, the connecting shaft 6, the gear 6b, the first gear 8b, etc.
  • the power transmitted to the sun gear S1 is shifted by the transmission 191 and transmitted to the drive wheels DW and DW.
  • the B2 rotor 35 is mechanically connected to the drive wheels DW and DW without the transmission 191 via the connection shaft 6, the gear 6b, the first gear 8b, and the like.
  • the transmission gear 191 has the first gear (gear ratio> It is controlled to 1.0).
  • the torque transmitted to the first sun gear S1 is transmitted to the drive wheels DW and DW after being increased in the transmission 191.
  • the power generated by the rotating machine 101 is controlled such that the torque distributed to the first sun gear S1 and the first ring gear R1 is reduced.
  • the torque distributed to the first sun gear S1 and the first ring gear R1 via the first carrier C1 can be reduced, so that the first planetary gear unit PS1 can be further miniaturized and Cost reduction can be achieved.
  • the torque transmitted from the first ring gear R1 to the rotor 103 can be reduced, the size reduction and cost reduction of the rotating machine 101 can be achieved.
  • the shift position of the transmission 191 is controlled to the first speed.
  • the rotor rotational speed VRO can be reduced, so that the rotor rotation It is possible to prevent the failure of the rotating machine 101 due to the increase of the speed VRO.
  • the shift position of the transmission 191 is controlled such that the rotor rotational speed VRO becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the rotary machine 101 and the second rotary machine 31 are used as a power source, and the engine 3, the rotary machine 101 and the second rotary machine 31 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the rotary machine 101 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Furthermore, in parallel with such control of the transmission 191, the rotor rotational speed VRO is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the rotating machine 101 can be obtained while the vehicle is traveling.
  • the second drive equivalent torque TSE2 and the engine torque TENG transmitted to the B1 rotor 34 are synthesized during the shift operation of the transmission 191, and the drive wheel DW is transmitted via the B2 rotor 35. , And DW, so it is possible to suppress a shift shock due to the fact that the engine torque TENG is not transmitted to the drive wheels DW and DW, and therefore, it is possible to improve the productability.
  • the engine power can be transmitted steplessly to the drive wheels DW and DW by the rotating machine 101, the first planetary gear unit PS1 and the second rotating machine 31, the frequency of the speed change operation of the transmission 191 can be reduced.
  • the driving efficiency of the power plant 1R can be enhanced.
  • the effects of the fifteenth embodiment can be obtained similarly.
  • the transmissions 171 to 191 are gear type stepped transmissions, but it is needless to say that belt type, toroidal type, hydraulic type continuously variable transmissions may be used. .
  • This power unit 1S mainly includes a transmission that changes the ratio of the speed difference between the rotor rotational speed VRO and the vehicle speed VP to the speed difference between the vehicle speed VP and the engine speed NE as compared with the fifteenth embodiment. It is different. The differences from the fifteenth embodiment will be mainly described below.
  • the second rotating shaft 7 is not provided, and the first gear 8b is mounted on the gear 6b integrally provided on the connecting shaft 6.
  • the first sun gear S1 and the B2 rotor 35 are mechanically connected to the drive wheels DW and DW via the connecting shaft 6, the gear 6b, the first gear 8b, the differential gear mechanism 9 and the like. It is done.
  • the transmission has the second planetary gear unit PS2 and the first and second clutches CL1 and CL2.
  • the second sun gear S2 is integrally provided on the first rotation shaft 4, and is mechanically coupled directly to the first carrier C1, the crankshaft 3a and the B1 rotor 34.
  • the second carrier C2 is mechanically directly coupled to the first ring gear R1 via a flange or a hollow shaft, and is thereby rotatable integrally with the first ring gear R1.
  • the first clutch CL1 is provided between the second carrier C2 and the rotor 103. That is, the second carrier C2 is mechanically directly coupled to the rotor 103 via the first clutch CL1.
  • the first clutch CL1 connects and disconnects the second carrier C2 and the rotor 103 as the degree of engagement is controlled by the ECU 2.
  • the second clutch CL2 is provided between the second ring gear R2 and the rotor 103. That is, the second ring gear R2 is mechanically directly coupled to the rotor 103 via the second clutch CL2. Further, the second clutch CL2 connects and disconnects the second ring gear R2 and the rotor 103 as the degree of engagement is controlled by the ECU 2.
  • the rotor 103 of the rotating machine 101 is mechanically coupled to the first ring gear R1 via the first clutch CL1 and the second carrier C2, and the second clutch CL2, the second ring gear R2, the It is mechanically connected to the first ring gear R1 via the 2 planetary gear P2 and the second carrier C2.
  • FIG. 96 (a) is a velocity collinear chart showing an example of the relationship between the first sun gear rotational speed VSU1, the first carrier rotational speed VCA1, and the first ring gear rotational speed VRI1, the second sun gear rotational speed VSU2, and the second carrier rotation. It is shown with a velocity alignment chart showing an example of the relationship between the velocity VCA2 and the second ring gear rotational velocity VRI2.
  • the first carrier rotational speed VCA1 and the second sun gear rotational speed VSU2 are equal to each other, and the first ring gear R1 and the second carrier C2 are directly connected to each other.
  • the two velocity alignment charts related to the first and second planetary gear units PS1, PS2 in FIG. 96 (a) are shown as one velocity alignment chart as shown in FIG. 96 (b).
  • FIG. 96 (b) As shown in the figure, by connecting various rotating elements of the first and second planetary gear units PS1 and PS2 as described above, four rotating elements whose rotational speeds are collinear with each other are formed. .
  • FIG. 97 (a) is a velocity collinear chart showing an example of the relationship between the rotational speeds of the four rotating elements described above, the relationship between the rotor rotational speeds VRB1 and VRB2 of the second magnetic field rotational speeds VMF2, B1 and B2. It has shown with the velocity alignment chart which shows an example. As described above, since the first carriers C1 and B1 rotors 34 are directly connected to each other, the first carrier rotation speeds VCA1 and B1 rotor rotation speeds VRB1 are equal to each other. Further, since the first sun gear S1 and the B2 rotor 35 are directly connected to each other, the first sun gear rotational speed VSU1 and the B2 rotor rotational speed VRB2 are equal to each other. Therefore, the two velocity alignment charts of FIG. 97 (a) are shown as one velocity alignment chart as shown in FIG. 97 (b).
  • crankshaft 3a, first carrier C1, B1 rotor 34 and second sun gear S2 are directly connected to each other, engine rotational speed NE, first carrier rotational speed VCA1, B1 rotor rotational speed VRB1 and second sun gear rotational speed VSU2 are equal to one another.
  • the drive wheels DW and DW, the first sun gear S1 and the B2 rotor 35 are connected to each other, the vehicle speed VP and the first sun gear rotational speed VSU1 and B2 are assumed if there is no gear shift by the differential gear mechanism 9 or the like.
  • the rotor rotational speeds VRB2 are equal to one another.
  • the rotor 103 is directly connected to the second carrier C2 and the second ring gear R2 via the first and second clutches CL1 and CL2, respectively, the first clutch CL1 is connected and the second clutch CL2 is connected. Is interrupted (hereinafter, such a clutch engagement / disengagement state is referred to as "first transmission mode"), the rotor rotational speed VRO and the second carrier rotational speed VCA2 are equal to each other. Furthermore, when the first clutch CL1 is disconnected and the second clutch CL2 is connected (hereinafter, such a connected / disconnected state of the clutch is referred to as “second shift mode”), the rotor rotational speed VRO and The second ring gear rotational speeds VRI2 are equal to one another.
  • the rotor rotational speed VRO, the engine rotational speed NE, the vehicle speed VP, and the second magnetic field rotational speed VMF2 become collinear as shown in FIG. 98A, for example, during the first shift mode.
  • the second speed change mode for example, a collinear relationship as shown in FIG. 98 (b) is obtained.
  • the distance between the vertical line representing the vehicle speed VP and the vertical line representing the rotor rotational speed VRO in the velocity nomograph is the first shift described above. Since the mode is smaller than the second transmission mode, the ratio of the rotational difference DN2 between the rotor rotational speed VRO and the vehicle speed VP to the rotational difference DN1 between the engine rotational speed NE and the vehicle speed VP (hereinafter referred to as "rotational ratio DN2 / DN1”) is smaller in the first shift mode.
  • the first speed change is performed when the rotor rotational speed VRO determined by the relationship between the engine speed NE and the vehicle speed VP becomes excessive, such as during rapid acceleration when the engine speed NE is higher than the vehicle speed VP.
  • the mode is used.
  • the rotor rotation speed VRO can be made smaller than in the case where the second transmission mode is used. It is possible to prevent the failure of the rotating machine 101 due to the excessive VRO.
  • TMOT - ⁇ ⁇ TDDW + (1 + ⁇ ) TDENG ⁇ / (R1 ⁇ r2 + r1 + 1 + ⁇ ) (68)
  • the rotating machine torque TMOT is the same as that of the second shift mode for the drive wheel transmission torque TDDW and the engine transmission torque TDENG of the same magnitude. small. Therefore, at the time of ENG start during EV travel, the second shift mode is used.
  • the second shift mode is used as described above, and the power generated by the rotating machine 101 is controlled based on the equation (68). Therefore, the maximum value of the torque required of the rotating machine 101 can be reduced, and thus, further downsizing and cost reduction of the rotating machine 101 can be achieved.
  • the vehicle speed VP and the engine rotation during the operation of the engine 3 according to the vehicle speed VP during the stop of the engine 3 among the first and second shift modes.
  • a transmission mode is selected, which allows higher efficiency of the rotating machine 101.
  • the rotor rotational speed VRO can be controlled to an appropriate height while the vehicle is traveling, high efficiency of the rotating machine 101 can be obtained.
  • switching between the first and second shift modes is performed when the second carrier rotational speed VCA2 and the second ring gear rotational speed VRI2 are equal to each other, as in the thirteenth embodiment.
  • the switching of the first and second shift modes can be smoothly performed while maintaining the rotation of the drive wheels DW and DW and the engine 3, and good drivability is ensured. be able to.
  • the second drive equivalent torque Since TSE2 and the engine torque TENG transmitted to the B1 rotor 34 are combined and transmitted to the drive wheels DW and DW via the B2 rotor 35, the shift is caused by the engine torque TENG not being transmitted to the drive wheels DW and DW
  • the shock can be suppressed, and therefore, the marketability can be enhanced.
  • the effects of the fifteenth embodiment can be obtained similarly.
  • the second sun gear S2 is connected to the first carrier C1, and the second ring gear R2 is connected to the rotor 103 via the second clutch CL2, but the connection relationship between them is reversed. That is, the second ring gear R2 may be connected to the first carrier C1, and the second sun gear S2 may be connected to the rotor 103 via the second clutch CL2.
  • 1st and 2nd clutch CL1 and CL2 are comprised with the friction type multiple disc clutch, you may comprise with an electromagnetic clutch etc., for example.
  • FIGS. 100 (a) and 100 (b) show an example of the relationship between the rotational speeds of various types of rotary elements in the power unit 1S, (a) in the first shift mode and (b) in the second shift mode. It is a velocity alignment chart.
  • the rotating machine 101 is "first rotating machine”
  • the rotating machine 31 is “second rotating machine”
  • the second sun gear S2 is "one gear” or "first gear”.
  • the second ring gear R2 "the other gear” or “the second gear”, the second carrier C2 the “carrier”, the second output portion "the first rotary shaft 4", the first clutch "the first clutch CL1
  • the second clutch is represented as “first clutch CL2”, the engine 3 as “heat engine”, and the drive wheels DW, DW as “driven parts”.
  • the rotational speed of one gear of the second planetary gear unit PS2 is the first gear rotational speed VG1
  • the rotational speed of the other gear of the second planetary gear unit PS2 is the second gear rotational speed VG2
  • the second The rotational speed of the carrier of the planetary gear unit PS2 is taken as a carrier rotational speed VC.
  • connection relationship In the connection relationship described above, various rotating elements are directly connected, and the second output of the second rotating machine is connected to the carrier by connection of the first clutch, and the second output is connected by disconnection of the second clutch.
  • the relationship between the rotational speed of the heat engine and the speed of the driven part is shown, for example, as shown in FIG.
  • first transmission mode such connection / disconnection states of the first and second clutches will be referred to as "first transmission mode”.
  • first transmission mode when the second output of the second rotating machine is disconnected from the carrier by the disconnection of the first clutch, and the second output is connected to the other gear by the connection of the second clutch, the heat engine
  • FIG. 100 (b) such a connection / disconnection state of the first and second clutches is referred to as a "second shift mode”.
  • the distance from the vertical line representing the magnetic field rotational speed VF to the vertical line representing the second rotor rotational speed VR2 and the second rotor rotational speed VR2 The ratio of the vertical line representing the distance to the vertical line representing the first rotor rotational speed VR1 is 1: (1 / ⁇ ).
  • the distance from the vertical line representing the first gear rotational speed VG1 to the vertical line representing the carrier rotational speed VC is Y
  • the vertical line representing the carrier rotational speed VC is the second gear
  • Z be the distance to the vertical line representing the rotational speed VG2.
  • the drive equivalent torque Te the heat engine transmission torque TDHE
  • the object to be heat-treated The relationship between the drive transmission torque TOUT and the second rotary machine torque TM2 is shown, for example, as shown in FIG. 101 (a). Further, the torque required for the second rotating machine, that is, the second rotating machine torque TM2 is expressed by, for example, the following equation (69).
  • TM2 ⁇ ⁇ TOUT + [(1 / ⁇ ) +1] TDHE ⁇ / [Y + (1 / ⁇ ) +1] (69)
  • the relationship between the driving equivalent torque Te, the heat engine transmission torque TDHE, the driven portion transmission torque TOUT, and the second rotary machine torque TM2 is, for example, as shown in FIG. Indicated. Further, the second rotary machine torque TM2 is represented by, for example, the following equation (70).
  • TM2 ⁇ ⁇ TOUT + [(1 / ⁇ ) +1] TDHE ⁇ / [Z + Y + (1 / ⁇ ) +1] (70)
  • the second rotary machine torque TM2 is the second shift mode with respect to the heat engine transmission torque TDHE and the driven part transmission torque TOUT of the same magnitude. Is smaller. Therefore, for example, when the torque required for the second rotating machine is increased as described above, the second rotating machine torque TM2 can be reduced by using the second shift mode, and hence, Further downsizing and cost reduction of the second rotating machine can be achieved.
  • the rotational speed of the second rotating machine can be controlled to an appropriate size, thereby , High efficiency of the second rotating machine can be obtained. Furthermore, switching between the first and second shift modes described above is performed when the carrier rotational speed VC and the second gear rotational speed VG2 are equal to each other, so that the rotation of the driven parts and the heat engine can be maintained smoothly. It can be done to ensure good drivability.
  • the torque THE of the heat engine transmitted to the second element is transmitted to the third element along with the power generation by the second rotating machine.
  • the acting load torque is transmitted to the driven part via the first element as a reaction force. Therefore, at the time of transition between the first and second shift modes, if both the first and second clutches are disconnected, the third element and the second rotating machine are disconnected, As a result, the load torque from the second rotating machine does not act on the third element, and as a result, the torque THE of the heat engine transmitted via the second and first elements becomes extremely small.
  • the power plant 1T is mainly different from the fifteenth embodiment in that the power plant 1T further includes a transmission 201.
  • the differences from the fifteenth embodiment will be mainly described below.
  • the second rotating shaft 7 is not provided, and the first gear 8b is integrally provided on the connecting shaft 6.
  • the first sun gear S1 is mechanically connected to the drive wheels DW and DW via the connecting shaft 6, the gear 6b, the first gear 8b, the differential gear mechanism 9 and the like without the transmission 201 described above. Is linked to
  • the transmission 201 is a gear-type stepped transmission having the first to third speeds, which is configured similarly to the transmission 131 of the tenth embodiment, and is directly connected to the B2 rotor 35.
  • the input shaft 202 and the output shaft (not shown) directly connected to the connecting shaft 6 are provided, and the power input to the input shaft 202 is changed in speed, and is output to the output shaft. Further, the change of the gear position of the transmission 201 is controlled by the ECU 2.
  • the B2 rotor 35 is connected to the drive wheels DW and DW via the transmission 201, the connecting shaft 6, the gear 6b, the first gear 8b, etc., and is transmitted to the B2 rotor 35.
  • the power is shifted by the transmission 201 and transmitted to the drive wheels DW and DW.
  • the transmission gear stage 201 is the first gear It is controlled to (gear ratio> 1.0).
  • the B2 rotor transmission torque TRB2 transmitted to the B2 rotor 35 is increased in the transmission 201 and then transmitted to the drive wheels DW and DW.
  • the power supplied to the stator 33 of the second rotating machine 31 is controlled such that the B2 rotor transmission torque TRB2 becomes smaller.
  • the maximum value of the torque required for the second rotating machine 31 can be reduced, and further downsizing and cost reduction of the second rotating machine 31 can be achieved.
  • the shift position of the transmission 201 is controlled to the third speed (gear ratio ⁇ 1.0).
  • the B2 rotor rotational speed VRB2 can be reduced relative to the vehicle speed VP, so that the failure of the second rotating machine 31 due to the excessive increase of the B2 rotor rotational speed VRB2 can be prevented. it can.
  • the shift position of the transmission 201 is controlled such that the second magnetic field rotational speed VMF2 becomes a predetermined target value.
  • This target value is calculated by searching the map according to the vehicle speed VP when only the rotary machine 101 and the second rotary machine 31 are used as a power source, and the engine 3, the rotary machine 101 and the second rotary machine 31 are powered. When used as a source, it is calculated by searching another map than the above according to the engine speed NE and the vehicle speed VP. Further, in these maps, the target value is set to a value such that high efficiency of the second rotating machine 31 can be obtained with respect to the vehicle speed VP (and the engine speed NE) at that time. Further, in parallel with the control of the transmission 201, the second magnetic field rotational speed VMF2 is controlled to the above-mentioned target value. Thereby, according to the present embodiment, high efficiency of the second rotating machine 31 can be obtained while the vehicle is traveling.
  • the engine motive power can be steplessly shifted and transmitted to the drive wheels DW and DW by the rotating machine 101, the first planetary gear unit PS1 and the second rotating machine 31.
  • the frequency of the shift operation can be reduced, and hence the driving efficiency of the power plant 1T can be increased.
  • the effects of the fifteenth embodiment can be obtained similarly.
  • the transmission 201 is a gear-type stepped transmission, but may be a belt-type, toroidal-type, or hydraulic-type continuously variable transmission.
  • the rotation of the first rotary shaft 4 is permitted only by the brake mechanism BL when rotating forward with the crankshaft 3a, the first carrier C1, and the B1 rotor 34, and reverse rotation with the crankshaft 3a etc. If you do, you will be blocked.
  • the operation by the above-described EV creep and EV start is performed as follows. That is, power is supplied to the stator 102 of the rotating machine 101 to reversely rotate the rotor 103 together with the first ring gear R1, and power is supplied to the stator 33 of the second rotating machine 31. Rotate the rotating magnetic field forward. Further, the rotor rotational speed VRO and the second magnetic field rotational speed VMF2 are controlled such that ( ⁇ + 1) ⁇ VRO
  • r1 ⁇ VMF2
  • the reverse rotation of the first carrier C1 is blocked by the brake mechanism BL with respect to the first ring gear R1 rotating in reverse with the rotor 103 as described above, so that all the motive power of the rotating machine 101 is the first ring gear R1.
  • the first sun gear S1 is transmitted to the first sun gear S1 via the first planetary gear P1, and acts to rotate the first sun gear S1 forward.
  • the reverse rotation of the B1 rotor 34 is prevented by the brake mechanism BL with respect to the second rotating magnetic field of the stator 33 rotating normally as described above, all the power supplied to the stator 33 is transmitted to the B2 rotor 35. It is transmitted as motive power and acts to cause the B2 rotor 35 to rotate normally.
  • the power transmitted to the first sun gear S1 and the B2 rotor 35 is transmitted to the drive wheels DW and DW, and causes the drive wheels DW and DW to rotate in the forward direction.
  • the first carrier C1 and the B1 rotor 34 which are prevented from being reversely rotated by the brake mechanism BL, are controlled from the rotor 103 and the stator 33 by the control of the rotating machine 101 and the second rotating machine 31 described above.
  • the torque acts to reverse.
  • the crankshaft 3a and the first carrier C1 and the B1 rotor 34 are not only reversed but also held stationary.
  • the drive wheels DW and DW can be driven by the rotating machine 101 and the second rotating machine 31 without using engine power. Further, during this driving, the crankshaft 3a is not only reversed but also kept stationary so that the engine 3 will not be dragged. The other effects of the fifteenth embodiment can be similarly obtained.
  • the second pole-log ratio ⁇ of the second rotating machine 31 is set to the value 2.0, as in the first embodiment.
  • the drive efficiency is lowered due to the occurrence of the loss due to the excessive second magnetic field rotational speed VMF2.
  • the first planetary gear ratio r1 of the first planetary gear unit PS1 is set to a relatively large value, but setting the value to a smaller value achieves the following effect can get.
  • the first planetary gear ratio r1 when the first planetary gear ratio r1 is set to a relatively large value, when the engine speed NE is higher than the vehicle speed VP (see the two-dot chain line in FIG. 89) The speed VRO may be higher than the engine speed NE and may be excessive.
  • the first planetary gear ratio r1 by setting the first planetary gear ratio r1 to a smaller value, as is apparent from the comparison between the velocity alignment diagram shown by a broken line in FIG. 89 and the velocity alignment diagram shown by a two-dot chain line, The rotational speed VRO can be reduced, and therefore, the reduction of the driving efficiency due to the occurrence of the loss due to the increase of the rotor rotational speed VRO can be prevented.
  • the first carrier C1 and the B1 rotor 34 are directly connected to each other, and the first sun gear S1 and the B2 rotor 35 are directly connected to each other.
  • the first sun gear S1 and the B2 rotor 35 may not be directly connected to each other as long as they are connected to the crankshaft 3a, and the first sun gear S1 and the B2 rotor 35 may not be connected to each other as long as they are connected to the drive wheels DW and DW.
  • the transmissions 161 and 171 according to the sixteenth and seventeenth embodiments may be provided as two transmissions as described below.
  • one of the two transmissions constituting the transmission 161 may be provided between the first sun gear S1 and the drive wheels DW and DW, and the other may be provided between the B2 rotor 35 and the drive wheels DW and DW. Further, one of the two transmissions constituting the transmission 171 may be provided between the first carrier C1 and the crankshaft 3a, and the other may be provided between the B1 rotor 34 and the crankshaft 3a.
  • the first sun gear S1 and the first ring gear R1 are connected to the drive wheels DW and DW and the rotating machine 101, respectively, but their connection relationship is reversed, that is, The first ring gear R1 and the first sun gear S1 may be connected to the drive wheels DW and DW and the rotating machine 101, respectively.
  • the rotating machine torque TMOT is expressed by the following equation (71) at the time of ENG start during EV traveling where the torque required of the rotating machine 101 becomes particularly large.
  • TMOT ⁇ ⁇ ⁇ TDDW + (1 + ⁇ ) TDENG ⁇ / (r1 ′ + 1 + ⁇ ) (71)
  • r1 is the ratio of the number of teeth of the first ring gear to the number of teeth of the first sun gear S1 (the number of teeth of the first ring gear / the number of teeth of the first sun gear S1) as described above , Greater than 1.0.
  • first planetary gear ratio r1 is the number of teeth of the first sun gear S1 / the number of teeth of the first ring gear as described above, and is smaller than the value 1.0, and the equation (66) and the equation
  • the rotary machine torque TMOT can be made smaller, and therefore, the rotary machine 101 can be further miniaturized and the cost can be reduced.
  • the first planetary gear unit PS1 is used as a differential device, but any other appropriate device may be used as long as it has the following function. That is, it has three elements and combines the function of distributing the power input to one of the three elements to the other two elements and the power input to these other two elements It may be a device which has a function of outputting to one of the above-mentioned elements and which rotates while maintaining the linear speed relationship during the distribution and combination of the power.
  • a device having a plurality of rollers for transmitting power by friction between the surfaces and having the same function as the planetary gear set may be used.
  • an apparatus configured by a combination of a plurality of magnets and a soft magnetic material as disclosed in Japanese Patent Application Laid-Open No. 2008-39045 may be used.
  • a double pinion type planetary gear device may be used as the differential device. The above applies to the second planetary gear unit PS2 as well.
  • the rotary machine 101 is a DC motor, but it is an apparatus having a function of converting supplied electric power into power and a function of converting input power into electric power.
  • Other devices may be used, for example an AC motor.
  • a brake mechanism BL may be provided to prevent reverse rotation of the crankshaft 3a.
  • the brake mechanism BL is configured by the one-way clutch OC and the case CA, it may be configured by another mechanism, such as a band brake, as long as the reverse rotation of the crankshaft 3a can be prevented.
  • the ECU 2 and the first and second PDUs 41 and 42 may be those capable of controlling the power generation / supply power of the stators 23, 33 and 102.
  • the ECU 2 and the first and second PDUs 41 and 42 may be those capable of controlling the power generation / supply power of the stators 23, 33 and 102.
  • it may be configured by an electric circuit or the like on which a microcomputer is mounted.
  • the battery 43 may be, for example, a capacitor.
  • the battery 43 may be omitted depending on the necessity.
  • first stator magnetic poles eight first magnetic poles, and six cores 25a are set. That is, the embodiment is an example in which the ratio of the number of first stator magnetic poles, the number of first magnetic poles, and the number of first soft magnetic members is 1: 2: 1.5, but the ratio of these numbers is As long as 1: m: (1 + m) / 2 (m ⁇ 1.0) is satisfied, any number can be adopted as the number of the first stator magnetic pole, the first magnetic pole and the core 25a. The same applies to the second rotating machine 31 as well. Furthermore, in the embodiment, the cores 25a, 35a are made of steel plates, but may be made of another soft magnetic material.
  • stator 23 and the A1 rotor 24 are respectively disposed on the outer side and the inner side in the radial direction, but may be arranged on the inner side and the outer side in the radial direction, respectively.
  • the rotors 24 and 25 of the stators 23, A1 and A2 are arranged in the radial direction, and the first rotating machine 21 is configured as a so-called radial type.
  • the rotors 24 and 25 may be arranged in the axial direction, and the first rotating machine 21 may be configured as a so-called axial type. The above applies to the second rotating machine 31 as well.
  • one magnetic pole is comprised by the magnetic pole of the single permanent magnet 24a in embodiment
  • the magnetic pole of several permanent magnets For example, by forming one magnetic pole by arranging the two permanent magnets in an inverted V shape such that the magnetic poles of the two permanent magnets approach each other on the stator 23 side, the directivity of the magnetic lines of force ML described above Can be enhanced.
  • an electromagnet or a stator capable of generating a moving magnetic field may be used.
  • the U-phase to W-phase coils 23c to 23e are wound by distributed winding in the slots 23b, but not limited to this, concentrated winding may be performed.
  • the coils 23c to 23e are formed of U-phase to W-phase three-phase coils, but the number of phases of the coils is not limited to this as long as the first rotating magnetic field can be generated.
  • any number other than those shown in the embodiment may be adopted as the number of slots 23b.
  • the slots 23b, the permanent magnets 24a, and the cores 25a are arranged at equal intervals, but may be arranged at unequal intervals. The above applies to the second rotating machine 31 as well.
  • the engine 3 as the heat engine is a gasoline engine, but may be another engine such as a diesel engine or an external combustion engine.
  • the present embodiment is an example in which the power plant is applied to a vehicle, the present invention is not limited to this, and can be applied to, for example, a ship or an aircraft.
  • the power plant 1 As shown in FIGS. 104 and 105, the power plant 1 according to the twenty-third embodiment drives the left and right front wheels 4, 4 of the hybrid vehicle (hereinafter referred to as "vehicle").
  • vehicle the hybrid vehicle
  • the first rotating machine 10 and the second rotating machine 20 are provided.
  • the engine 3 is connected to the first rotating machine 10, and the first rotating machine 10 and the second rotating machine 20 are the gear mechanism 6, the differential gear mechanism 7 and the left and right drive shafts 8, 8. Are connected to the left and right front wheels 4, 4. Thereby, as described later, the power of the engine 3 and the power of the first rotating machine 10 and the second rotating machine 20 are transmitted to the front wheels 4. Further, the vehicle 2 is provided with left and right rear wheels 5, 5 which are idle wheels.
  • the engine 3 corresponds to a heat engine
  • the front wheel 4 corresponds to a driven part.
  • the engine 3 is a multi-cylinder internal combustion engine fueled by gasoline, and its operating state is controlled by an ENG-ECU 29 described later. Further, the two rotating machines 10 and 20 and the gear mechanism 6 are both accommodated in a drive system housing (not shown) fixed to the cylinder block of the engine 3.
  • the gear mechanism 6 includes first and second gear shafts 6a and 6b parallel to an output shaft 13 of the first rotating machine 10 described later, four gears provided on the output shaft 13 and two gear shafts 6a and 6b. 6c to 6f.
  • the gear 6c is concentrically fixed to the right end of the output shaft 13, and is always in mesh with the gear 6d.
  • the gear 6d is concentrically and rotatably fitted to the first gear shaft 6a, and in addition to the gear 6c, is always meshed with a gear 6e concentrically fixed to the right end of the second gear shaft 6b. .
  • the gear 6 f is concentrically fixed to the left end portion of the second gear shaft 6 b and always meshes with the gear 7 a of the differential gear mechanism 7. With the above configuration, the rotation of the output shaft 13 is transmitted to the differential gear mechanism 7 via the gear mechanism 6.
  • FIG. 106 schematically shows the cross-sectional configuration of the first rotating machine 10 and the second rotating machine 20
  • FIG. 107 is a circle broken along the circumferential direction at the position of line AA in FIG. 106. It is the figure which showed the cyclic
  • the first rotating machine 10 will be described. As shown in FIG. 106, the first rotating machine 10 is concentric with the case 11 fixed to the drive system housing described above, the input shaft 12 whose left end is directly connected to the crankshaft of the engine 3, and the input shaft 12 A first rotor 14 housed in the case 11 and rotating integrally with the output shaft 13, and a second rotor 15 housed in the case 11 and rotating integrally with the input shaft 12. And a stator 16 fixed to the inner peripheral surface of the peripheral wall 11 c of the case 11. The first rotor 14, the second rotor 15 and the stator 16 are arranged concentrically with each other from the inner side to the outer side in the radial direction.
  • the case 11 includes left and right side walls 11a and 11b, and a cylindrical peripheral wall 11c fixed to the outer peripheral end of the side walls 11a and 11b.
  • Bearings 11d and 11e are attached to central portions of the left and right side walls 11a and 11b, respectively, and the input shaft 12 and the output shaft 13 are rotatably supported by the bearings 11d and 11e, respectively. Further, the axial movement of the two shafts 12 and 13 is restricted by a thrust bearing (not shown) or the like.
  • the first rotor 14 includes a rotary disc portion 14b concentrically fixed to the left end of the output shaft 13, and a cylindrical ring portion 14c fixed to the outer end of the rotary disc portion 14b.
  • the ring portion 14c is formed of a soft magnetic material, and on the outer peripheral surface thereof, a permanent magnet array is provided along the circumferential direction so as to face the iron core 16a of the stator 16.
  • This permanent magnet array is composed of eight permanent magnets 14a (magnetic poles) as shown in FIG.
  • Each two adjacent permanent magnets 14a have different polarities from each other and are arranged at equal intervals, and the length in the axial direction of each permanent magnet 14a is set to a predetermined length.
  • the N pole and the S pole of the permanent magnet 14a are denoted as (N) and (S), respectively, and the understanding is simplified. For this reason, illustration of things other than the main configuration (for example, the case 11 etc.) is omitted.
  • the stator 16 generates a rotating magnetic field, and has an iron core 16a and U-phase, V-phase and W-phase coils 16c, 16d, 16e (see FIG. 107) wound around the iron core 16a.
  • the iron core 16a has a cylindrical shape in which a plurality of steel plates are stacked, and is fixed to the case 11, and its axial length is set to the same length as that of the permanent magnet 14a.
  • twelve slots 16b are formed on the inner peripheral surface of the iron core 16a, and these slots 16b extend in the axial direction, and the circumferential direction of the first main shaft 4 (hereinafter simply referred to as "circumferential direction") ) At equal intervals.
  • the iron core 16a and the U-phase to W-phase coils 16c to 16e correspond to an armature and an armature row.
  • U-phase to W-phase coils 16c to 16e are wound by distributed winding (wave winding) in slot 16b, and 1ST • PDU 31 and a bidirectional buck-boost converter (hereinafter referred to as “VCU”) described later. It is electrically connected to a battery 33 described later via 34.
  • VCU bidirectional buck-boost converter
  • stator 16 when power is supplied from battery 33 and current flows to U-phase to W-phase coils 16c to 16e, or when power generation is performed as described later, At the end on the first rotor 14 side, four magnetic poles are generated at equal intervals in the circumferential direction (see FIGS. 111 (a) to (c)), and the rotating magnetic field by these poles is moved in the circumferential direction.
  • the magnetic poles generated on the iron core 16a are referred to as "stator magnetic poles”.
  • the polarities of two stator poles adjacent in the circumferential direction are different from each other.
  • the N pole and the S pole of the stator magnetic pole are denoted as (N) and (S), respectively, similarly to the N pole and the S pole of the permanent magnet 14a. .
  • the second rotor 15 includes a rotary disk 15b fixed to the right end of the input shaft 12, a support 15c extending from the outer end of the rotary disk 15b toward the second rotary machine 20, and the support
  • a soft magnetic core row is fixed to 15 c and disposed between the permanent magnet row of the first rotor 14 and the iron core 16 a of the stator 16.
  • the soft magnetic core row is composed of six soft magnetic cores 15 a made of a soft magnetic material (for example, a laminate of steel plates).
  • These soft magnetic cores 15a are arranged at equal intervals along the circumferential direction, and provided so as to have a predetermined distance from the permanent magnet 14a and the iron core 16a.
  • the axial length of the soft magnetic core 15 a is set to the same length as the permanent magnet 14 a and the iron core 16 a of the stator 16.
  • the stator 16 is referred to as a "stator”
  • the first rotor 14 is referred to as a "first rotor”
  • the second rotor 15 is referred to as a "second rotor”.
  • the torque equivalent to the electric angular velocity of the rotating magnetic field generated by the power supply to the stator and the supplied electric power is the driving equivalent torque Te
  • the driving equivalent torque Te is the driving equivalent torque Te
  • the torque T1 transmitted to the first rotor The relationship between the torque T2 transmitted to the second rotor, the electrical angular velocity of the first and second rotors, and the electrical angular velocity of the rotating magnetic field will be described below.
  • the first rotating machine 10 when configured to satisfy the following conditions (f1) and (f2), an equivalent circuit corresponding to such a first rotating machine 10 is as shown in FIG.
  • a pair of N pole and S pole is referred to as “pole pair”, and the number of pole pairs is referred to as “pole-log number”.
  • the stator has a three-phase coil of U-phase, V-phase and W-phase.
  • Two stator magnetic poles that is, the number of pole poles of the stator magnetic poles is 1, and four poles, that is, the number of pole poles of the magnetic poles is 2, and the soft magnetic material is a total of the first to third soft magnetic materials Must be three.
  • the magnetic flux ⁇ k1 of the magnetic pole passing through the first soft magnetic body is expressed by the following equation (72).
  • ⁇ f indicates the maximum value of the magnetic flux of the magnetic pole
  • ⁇ 1 and ⁇ 2 indicate the rotational angular position of the magnetic pole relative to the U-phase coil and the rotational angular position of the first soft magnetic body, respectively.
  • the ratio of the number of pole pairs of the magnetic poles to the number of pole pairs of the stator poles is 2, the magnetic flux of the magnetic poles rotates (changes) at a period twice that of the rotating magnetic field.
  • the value 2 is multiplied by ( ⁇ 2 ⁇ 1).
  • the magnetic flux ⁇ u1 of the magnetic pole passing through the U-phase coil via the first soft magnetic body corresponds to the value obtained by multiplying the magnetic flux ⁇ k1 expressed by the equation (72) by cos ⁇ 2, the following equation (73) can get.
  • the magnetic flux ⁇ u2 of the magnetic pole passing through the U-phase coil via the second soft magnetic material corresponds to the value obtained by multiplying the magnetic flux ⁇ k2 expressed by the equation (74) by cos ( ⁇ 2 + 2 ⁇ / 3), (75) is obtained.
  • Equation (76) is obtained as a calculation equation of the magnetic flux ⁇ u3 of the magnetic pole passing through the U-phase coil via the third soft magnetic material.
  • the magnetic flux ⁇ u of the magnetic pole passing through the U-phase coil through the three soft magnetic bodies is represented by the above equations (73), (75) and (76).
  • the sum of the magnetic fluxes ⁇ u1 to ⁇ u3 is expressed by the following equation (77).
  • a, b and c respectively indicate the number of pole pairs of the magnetic pole, the number of soft magnetic bodies and the number of pole pairs of the stator pole.
  • equation (78) can be transformed based on the formula of the sum and product of trigonometric functions to obtain the following equation (79).
  • equation (81) the integral term in the second term on the right side is rearranged using a formula of sum of series and an Euler's formula under the condition of a ⁇ c ⁇ 0 to obtain the following equation (82). That is, the second term of the right side of equation (81) has the value 0.
  • equation (83) can be obtained by arranging the integral term in the third term on the right side using the formula of the sum of series and the formula of Euler under the condition of a ⁇ c ⁇ 0. . That is, the third term of the right side of equation (81) also has the value 0.
  • ⁇ e2 is a value obtained by multiplying the rotation angle position ⁇ 2 of the soft magnetic body with respect to the U-phase coil by the pole count c of the stator magnetic poles, and therefore represents the electrical angle position of the soft magnetic body with respect to the U-phase coil.
  • ⁇ e1 is a value obtained by multiplying the rotational angle position ⁇ 1 of the magnetic pole with respect to the U-phase coil by the number of pole pairs c of the stator magnetic pole, it represents the electrical angular position of the magnetic pole with respect to the U-phase coil.
  • the magnetic flux ⁇ v of the magnetic pole passing through the V-phase coil via the soft magnetic material is such that the electrical angle position of the V-phase coil is advanced by the electrical angle 2 ⁇ / 3 with respect to the U-phase coil. Is represented by
  • the magnetic flux ⁇ w of the magnetic pole passing through the W-phase coil via the soft magnetic material is lower in the following equation (88) because the electrical angle position of the W-phase coil is delayed by the electrical angle 2 ⁇ / 3 with respect to the U-phase coil. Is represented by
  • ⁇ e1 represents a time differential value of ⁇ e1, that is, a value obtained by converting the angular velocity of the first rotor with respect to the stator into an electrical angular velocity (hereinafter referred to as “first rotor electrical angular velocity”)
  • ⁇ e2 is a time derivative of ⁇ e2 A value, that is, a value obtained by converting the angular velocity of the second rotor with respect to the stator into an electrical angular velocity (hereinafter, referred to as "second rotor electrical angular velocity”) is represented.
  • the magnetic flux of the magnetic pole passing directly through the U-phase to W-phase coil without passing through the soft magnetic material is extremely small, and the influence thereof can be ignored.
  • the time derivative values d ⁇ u / dt to d ⁇ w / dt of the magnetic fluxes ⁇ u to ⁇ w of the magnetic poles passing through the U-phase to W-phase coils through the magnetic material respectively, cause the magnetic poles and the soft magnetic material to rotate relative to the stator row. Accordingly, counter electromotive voltages (induced electromotive voltages) generated in U-phase to W-phase coils are respectively represented.
  • I represents the amplitude (maximum value) of the current flowing through the U-phase to W-phase coils.
  • the first and second rotor transmission torques T1 and T2 are expressed by the following equations (100) and (101), respectively.
  • the relationship between the three torques Te, T1 and T2 represented by the above equation (103) and the relationship between the three electric angular velocities ⁇ mf, ⁇ e1 and ⁇ e2 represented by the equation (96) described above are planetary gear devices
  • the relationship between torque and rotational speed in the sun gear, ring gear and carrier of Furthermore, as described above, on the condition that b a + c and a ⁇ c ⁇ 0 are satisfied, the relationship between the electrical angular velocity of equation (96) and the relationship between torques of equation (103) are satisfied.
  • the relationship between the electrical angular velocity shown in the equation (96) and the relationship between the torque shown in the equation (103) is established, whereby the first rotating machine 10 can be used as a sun gear, a ring gear and a carrier (hereinafter referred to as “planet gear It can be operated with the same operating characteristics as the three elements of the device.
  • the first rotating machine 10 can be miniaturized and manufactured accordingly. Cost can be reduced. As a result, the power plant itself can be miniaturized, and the manufacturing cost can be reduced. Further, as apparent from the above equations (96) and (103), the relationship between the three electric angular velocities ⁇ mf, ⁇ e1 and ⁇ e2 can be freely set depending on the setting of the pole-log ratio ⁇ , ie, the pole number ratio m. While being able to do, the relationship of three torque Te, T1, and T2 can also be set up freely.
  • the relationship between the three electric angular velocities ⁇ mf, ⁇ e1, and ⁇ e2 can be expressed, for example, as shown in FIG.
  • the figure is a so-called velocity alignment chart.
  • a vertical line intersecting a horizontal line passing the value 0 on the vertical axis is for representing the rotational speed of each parameter.
  • the distance between the white circle and the horizontal line represented corresponds to the rotational speed of each parameter.
  • the distance between the vertical line representing the magnetic field electrical angular velocity ⁇ mf in the velocity alignment chart and the vertical line representing the second rotor electrical angular velocity ⁇ e2 is Since the ratio becomes smaller, the ratio ( ⁇ 2 / ⁇ 1) of the difference ⁇ 2 between the second rotor electrical angular velocity ⁇ e2 and the magnetic field electrical angular velocity ⁇ mf to the difference ⁇ 1 between the first rotor electrical angular velocity ⁇ e1 and the second rotor electrical angular velocity ⁇ e2 becomes smaller .
  • ⁇ F represents the maximum value of the magnetic flux of the magnet pole.
  • ⁇ ER 1 is a first rotor electrical angle, and the rotational angle position of a specific permanent magnet 14 a of the first rotor 14 with respect to a specific U phase coil 16 c (hereinafter referred to as “reference coil”) is converted to an electrical angle position It is a value. That is, the first rotor electrical angle ⁇ ER1 is a value obtained by multiplying the rotation angle position of this specific permanent magnet 14a by the number of pole pairs (value 2) of the stator magnetic poles.
  • ⁇ ER 2 is a second rotor electrical angle, which is a value obtained by converting the rotational angle position of a specific soft magnetic core 15 a of the second rotor 15 with respect to the above-mentioned reference coil into an electrical angle position. That is, the second rotor electrical angle ⁇ ER2 is a value obtained by multiplying the rotation angle position of this specific soft magnetic core 15a by the number of pole pairs (value 2) of the stator magnetic pole.
  • ⁇ ER1 in the above equations (104) to (106) is a first rotor electrical angular velocity, which is a time differential value of ⁇ ER1, that is, a value obtained by converting the angular velocity of the first rotor 14 relative to the stator 16 into an electrical angular velocity.
  • ⁇ ER2 is a second rotor electrical angular velocity, which is a value obtained by converting a time differential value of ⁇ ER2, that is, an angular velocity of the second rotor 15 with respect to the stator 16 into an electrical angular velocity.
  • the current flowing through the U-phase coil 16c (hereinafter referred to as “the The U-phase current Iu), the current flowing through the V-phase coil 16 d (hereinafter referred to as “V-phase current”) Iv, and the current flowing through the W-phase coil 16 e (hereinafter referred to as “W-phase current”) Iw respectively (107) to (109).
  • I represents the amplitude (maximum value) of the current flowing through the U-phase to W-phase coils 16c to 16e.
  • the vector of the rotating magnetic field of the stator 16 relative to the reference coil is apparent as is apparent from the equations (95) and (96).
  • the electric angular position (hereinafter referred to as “magnetic field electric angular position") .theta.MFR is expressed by the following equation (110), and the electric angular velocity (hereinafter referred to as “magnetic field electric angular velocity”) .omega. It is represented by).
  • the relationship among the magnetic field electrical angular velocity ⁇ MFR, the first rotor electrical angular velocity ⁇ ER1, and the second rotor electrical angular velocity ⁇ ER2 is as shown in, for example, FIG.
  • first torque the driving equivalent torque TSE and the torque transmitted to the first rotor 14
  • second rotor transmission torque the driving equivalent torque TSE and the torque transmitted to the first rotor 14
  • FIGS. 111 (a) to (c) to FIGS. 113 (a) and (b) the operation when power is supplied to the stator 16 while the first rotor 14 is held non-rotatable will be described. Do. In FIGS. 111 (a) to (c) to 113 (a) and (b), hatching is applied to only a specific stator magnetic pole and a specific soft magnetic core 15a for easy understanding. It has been subjected.
  • the center of the soft magnetic core 15a at the left end in the figure and the center of the permanent magnet 14a at the left end in the figure coincide with each other in the circumferential direction.
  • the rotating magnetic field is shown in FIG. It is generated to rotate leftward.
  • the positions of the stator poles of the same polarity are made to coincide in the circumferential direction with the centers of the respective permanent magnets 14a whose centers coincide with the soft magnetic core 15a,
  • the polarity is set to be different from the polarity of the magnet magnetic pole of the permanent magnet 14a.
  • the magnetic field lines ML connect the stator magnetic pole, the soft magnetic core 15a and the magnet magnetic pole whose circumferential positions coincide with each other, and connect these stator magnetic poles, soft magnetic core 15a and It is generated so as to connect the stator magnetic poles on both sides in the circumferential direction of each of the magnet magnetic poles, the soft magnetic core 15a, and the magnet magnetic poles. Further, in this state, since the magnetic force lines ML are linear, no magnetic force acts on the soft magnetic core 15a to rotate it in the circumferential direction.
  • the magnetic lines of force ML are bent.
  • the magnetic force acts on the soft magnetic core 15a so that In this case, in the soft magnetic core 15a where the magnetic force acts, the magnetic field lines ML are convex in the direction opposite to the rotational direction of the rotational magnetic field (hereinafter referred to as "magnetic field rotational direction") with respect to the straight line connecting the stator magnetic pole and the magnet magnetic pole.
  • magnetic field rotational direction the direction opposite to the rotational direction of the rotational magnetic field
  • the soft magnetic core 15a is driven in the magnetic field rotation direction and rotates toward the position shown in FIG. 111 (c), and the second rotor 15 provided with the soft magnetic core 15a is also in the magnetic field rotation direction. Rotate.
  • the broken lines in FIGS. 111 (b) and 111 (c) indicate that the magnetic flux amount of the magnetic lines of force ML is extremely small and the magnetic connection between the stator magnetic pole, the soft magnetic core 15a, and the magnet magnetic pole is weak. The same applies to the other drawings described later.
  • FIGS. 115 (a) to (c) to 117 (a) and (b) the operation when power is supplied to the stator 16 with the second rotor 15 held non-rotatably Will be explained.
  • FIGS. 115 (a) to (c) to 117 (a) and (b) hatching is applied to a specific stator magnetic pole and permanent magnet 14a for easy understanding.
  • the center of the soft magnetic core 15a at the left end in the figure and the center of the permanent magnet 14a at the left end in the figure are And the center of the soft magnetic core 15a three right next to the soft magnetic core 15a and the center of the permanent magnet 14a four right next to the permanent magnet 14a from the soft magnetic core 15a in the circumferential direction.
  • the rotating magnetic field is generated so as to rotate in the left direction in the figure in a state in which they coincide with each other.
  • the positions of the stator poles of the same polarity are made to coincide in the circumferential direction with the centers of the respective permanent magnets 14a whose centers coincide with the soft magnetic core 15a,
  • the polarity is set to be different from the polarity of the magnet magnetic pole of the permanent magnet 14a.
  • the magnetic field lines ML connect the stator magnetic pole, the soft magnetic core 15a and the magnet magnetic pole whose circumferential positions coincide with each other.
  • the stator magnetic pole, the soft magnetic core 15a, and the magnet magnetic pole are generated so as to connect the stator magnetic poles on both sides in the circumferential direction of the respective magnetic poles, the soft magnetic core 15a, and the magnetic magnetic pole.
  • the magnetic force lines ML are linear, no magnetic force acts on the soft magnetic core 15a to rotate it in the circumferential direction.
  • the magnetic lines of force ML are bent.
  • the magnetic force acts on the permanent magnet 14a so that
  • the permanent magnet 14a is at a position advanced in the magnetic field rotation direction than the extension of the stator magnetic pole and the soft magnetic core 15a mutually connected by the magnetic field line ML
  • the magnetic force caused by the magnetic field line ML is the extension It acts to position the permanent magnet 14a on the line. That is, it acts so as to drive the permanent magnet 14a in the direction opposite to the magnetic field rotation direction.
  • the permanent magnet 14a is driven in the direction opposite to the magnetic field rotation direction and rotates toward the position shown in FIG. 115 (c), and the first rotor 14 provided with the permanent magnet 14a is also reverse to the magnetic field rotation direction. Rotate in the direction.
  • the permanent magnet 14a is positioned at a position where the permanent magnet 14a has advanced in the direction of the magnetic field rotation than the extension of the stator magnetic pole and the soft magnetic core 15a which are curved with each other.
  • the magnetic force acts on the permanent magnet 14a so that the permanent magnet 14a and the first rotor 14 rotate in the direction opposite to the magnetic field rotation direction are repeated.
  • the power supplied to the stator 16 is motive power by the action of the magnetic force caused by the magnetic lines of force ML as described above.
  • the power is output from the first rotor 14.
  • the magnetic lines of force ML connecting the magnet magnetic pole, the soft magnetic core 15a, and the stator magnetic pole described above.
  • the power supplied to the stator is converted into motive power by the action of the magnetic force due to the magnetic force lines ML, and the motive power is output from the first rotor 14 or the second rotor 15.
  • the relationship expressed by the above-mentioned equation (111) is established between the magnetic field electrical angular velocity ⁇ MFR and the first and second rotor electrical angular velocities ⁇ ER1 and ⁇ ER2, and the driving equivalent torque TSE, the first and second The relationship shown in the above-mentioned equation (112) is established between the rotor transmission torques TR1 and TR2.
  • the relationship between these three torques TSE, TR1 and TR2 and the relationship between the electrical angular velocity ⁇ MFR, ⁇ ER1 and ⁇ ER2 are the same as the relationship between the torque and the rotational speed in the three elements of the planetary gear system.
  • the first rotor 14 and / or the second rotor 15 can be made to the stator 16 When rotated, power is generated in the stator 16 and a rotating magnetic field is generated. At that time, a magnetic line of magnetic force ML connecting the magnet magnetic pole, the soft magnetic body and the stator magnetic pole is generated, and the relationship between the electrical angular velocity shown in equation (111) and the torque shown in equation (112) Relationship is established.
  • the relationship between the three torques and the relationship between the three electrical angular velocities is the same as the relationship between the torque and the rotational speed in the three elements of the planetary gear device.
  • the first rotating machine 10 can be operated with the same operating characteristics as the planetary gear set.
  • the second rotating machine 20 is constituted by a DC brushless motor, and as shown in FIG. 106, the case 21 fixed to the drive system housing described above and the case 21 are accommodated in the case 21 and concentric with the output shaft 13
  • the rotor 22 is fixed, and the stator 23 is fixed to the inner peripheral surface of the peripheral wall 21 c of the case 21.
  • the case 21 includes left and right side walls 21a and 21b, and a cylindrical peripheral wall 21c fixed to the outer peripheral end of the side walls 21a and 21b.
  • Bearings 21d and 21e are attached to inner end portions of the left and right side walls 21a and 21b, respectively, and the output shaft 13 is rotatably supported by the bearings 21d and 21e.
  • the rotor 22 includes a rotary table 22a coaxially fixed to the output shaft 13, and a cylindrical ring 22b fixed to the outer end of the rotary table 22a.
  • the ring portion 22b is made of a soft magnetic material, and on the outer peripheral surface thereof, permanent magnet arrays are provided along the circumferential direction.
  • the permanent magnet array is composed of a predetermined number of permanent magnets 22c, and these permanent magnets 22c are arranged at an interval of the same predetermined angle, and each two adjacent magnets are arranged with different polarities.
  • the stator 23 has a plurality of stators 23 a provided along the circumferential direction on the inner peripheral surface of the peripheral wall 21 c of the case 21. These stators 23a generate a rotating magnetic field, are arranged at an interval of the same predetermined angle from each other, and are electrically connected to the battery 33 via a 2ND ⁇ PDU 32 and a VCU 34 described later.
  • the power unit 1 includes an ENG-ECU 29 for mainly controlling the engine 3 and a MOT-ECU 30 for mainly controlling the first rotating machine 10 and the second rotating machine 20. Is equipped.
  • Each of these ECUs 29 and 30 is configured by a microcomputer (none of which is shown) including a RAM, a ROM, a CPU, an I / O interface, and the like.
  • Various sensors such as a crank angle sensor, a drive shaft rotational speed sensor, an accelerator opening degree sensor, and a vehicle speed sensor are connected to the ENG-ECU 29. Based on detection signals of these various sensors, the ENG-ECU 29 operates the engine rotational speed NE, the rotational speed of the drive shaft 8 (hereinafter referred to as "drive shaft rotational speed") ND, and the accelerator opening degree AP (an accelerator pedal not shown) The operation of the engine 3 is controlled by calculating the amount), the vehicle speed VP and the like and driving the fuel injection valve, the spark plug and the like according to these parameters. Furthermore, the ENG-ECU 29 is electrically connected to the MOT-ECU 30, and transmits and receives various data such as the engine rotational speed NE and the drive shaft rotational speed ND with the MOT-ECU 30.
  • a 1ST-PDU 31, a 2ND-PDU 32, a first rotation angle sensor 35 and a second rotation angle sensor 36 are connected to the MOT-ECU 30.
  • the 1ST • PDU 31 is configured by an electric circuit including an inverter and the like, and is connected to the first rotating machine 10 and the battery 33.
  • the 2ND • PDU 32 is configured by an electric circuit including an inverter and the like as in the 1ST • PDU 31 and is connected to the second rotating machine 20 and the battery 33. Both the 1ST • PDU 31 and the 2ND • PDU 32 are connected to the battery 33 via the VCU 34.
  • the first rotation angle sensor 35 detects the rotation angle of the first rotor 14 with respect to the stator 16 and outputs a detection signal representing that to the MOT-ECU 30.
  • the second rotation angle sensor 36 detects the rotation angle of the second rotor 15 with respect to the stator 16 and outputs a detection signal representing that to the MOT-ECU 30.
  • the MOT-ECU 30 controls the operating states of the two rotating machines 10 and 20 as described below according to the detection signals of these sensors and the various data from the ENG-ECU 29 described above.
  • the ENG-ECU 29 and the MOT-ECU 30 read data from a memory that stores various maps and the like necessary for performing the control.
  • the ENG-ECU 29 or the MOT-ECU 30 derives the temperature of the battery 33 from a signal detected by a battery temperature sensor attached to the exterior body of the battery 33 or the periphery thereof.
  • FIG. 118 is a block diagram showing driving force control in a power unit 1 according to a twenty-third embodiment.
  • FIG. 119 is a velocity collinear diagram of the power unit 1 having a mechanism of one collinear three elements.
  • the ENG • ECU 29 acquires a detection signal indicating the accelerator opening degree AP described above and a detection signal indicating the vehicle speed VP.
  • the ENG-ECU 29 uses the driving force map stored in the memory 45 to derives a driving force (hereinafter referred to as "required driving force") according to the accelerator opening AP and the vehicle speed VP.
  • the ENG • ECU 29 calculates an output according to the required driving force and the vehicle speed VP (hereinafter referred to as “required output”).
  • the required output is an output required for the vehicle to travel in accordance with the driver's accelerator pedal operation.
  • the ENG-ECU 29 acquires information on the remaining capacity (SOC: State of Charge) of the battery 33 from the detection signal representing the current / voltage value input / output to / from the battery 33.
  • the ENG-ECU 29 determines the ratio of the output of the engine 3 to the required output according to the SOC of the battery 33.
  • the ENG-ECU 29 uses the ENG operation map stored in the memory 45 to derive an optimum operating point according to the output of the engine 3.
  • the ENG operation map is a map based on BSFC (Brake Specific Fuel Consumption) that indicates the fuel consumption rate at each operating point according to the relationship between the shaft rotational speed of the engine 3 and the torque and the output.
  • BSFC Brain Specific Fuel Consumption
  • the ENG-ECU 29 derives the shaft rotational speed of the engine 3 at the optimum operating point (hereinafter referred to as “required ENG shaft rotational speed”). Furthermore, the ENG-ECU 29 derives the torque of the engine 3 at the optimal operating point (hereinafter referred to as "ENG required torque").
  • the ENG-ECU 29 controls the engine 3 to output the ENG required torque.
  • the ENG-ECU 29 detects the shaft rotational speed of the engine 3.
  • the shaft rotation speed of the engine 3 detected at this time is referred to as “the actual ENG shaft rotation speed”.
  • the ENG ⁇ ECU 29 calculates a difference ⁇ rpm between the required ENG shaft rotational speed and the actual ENG shaft rotational speed.
  • the MOT-ECU 30 controls the output torque of the first rotating machine 10 so that the difference ⁇ rpm approaches zero.
  • the control is performed by regenerative power generation by the stator 16 of the first rotating machine 10, and as a result, the second rotor 15 of the first rotating machine 10 (MG1) receives the torque shown in the alignment chart of FIG. T12 is added.
  • the electric energy (regenerative energy) generated by the regenerative power generation in the stator 16 of the first rotating machine 10 is sent to the 1ST PDU 31.
  • the regenerative energy generated by the stator 16 of the first rotating machine 10 is indicated by a dotted line A.
  • the MOT-ECU 30 controls the 2ND-PDU 32 so that the torque obtained by subtracting the calculated torque T11 from the previously calculated required driving force is applied to the rotor 22 of the second rotating machine 20.
  • torque T22 is applied to the rotor 22 of the second rotating machine 20 (MG2).
  • MG2 rotor 22 of the second rotating machine 20
  • the torque T11 is applied to the first rotor 14 of the first rotating machine 21 and the torque T22 is applied to the rotor 22 of the second rotating machine 20. Since the first rotor 14 of the first rotating machine 10 and the rotor 22 of the second rotating machine 20 are connected to the output shaft 13, the sum of torque T11 and torque T22 is applied to the front wheels 4, 4 of the vehicle.
  • the ENG-ECU 29 and the MOT-ECU 30 control the torque generated in the second rotor 15 of the first rotating machine 10 so that the engine 3 operates at the optimum operating point, and the front wheels of the vehicle
  • the torque generated on the rotor 22 of the second rotating machine 20 is controlled so that the required driving force is transmitted to the fourth and fourth motors 4 and 5.
  • the vehicle speed VP is used when deriving the required driving force and when deriving the required output, but instead of the vehicle speed VP, information on the number of revolutions of the axle may be used.
  • the vehicle is stopped and the engine is stopped
  • the rotational resistance of the first rotor 14 is extremely larger than that of the second rotor 15. Due to this, the second rotor 15 rotates in the rotational direction of the rotating magnetic field while the first rotor 14 is stopped. It will be driven. As a result, with the rotation of the rotating magnetic field, the second rotor 15 is driven, whereby the engine 3 can be started.
  • start control is executed. First, since the output shaft 13, ie, the first rotor 14 is in the rotation stop state while the vehicle is stopped, all the power generated by the engine 3 is transmitted to the stator 16 of the first rotating machine 10 via magnetic lines. By generating a rotating magnetic field on this, an induced electromotive force (that is, a back electromotive voltage) is generated.
  • the MOT-ECU 30 regenerates the induced electromotive force generated in the stator 16 by controlling the supply current to the stator 16, and all the regenerated electric power is transmitted to the second rotating machine 20 via the 1ST-PDU 31 and the 2ND-PDU 32. Supply to As a result, the output shaft 13 is driven by the rotor 22 of the second rotating machine 20 and the front wheels 4 and 4 are driven, whereby the vehicle 2 is started. After the vehicle 2 starts moving, the MOT-ECU 30 controls the regenerative power of the first rotating machine 10 to gradually decrease as the vehicle speed increases, and at the same time controls the regenerative power to be supplied to the second rotating machine 20 .
  • shift control is executed.
  • the power of engine 3 according to the operating state of engine 3 (for example, engine speed NE and accelerator opening AP) and / or the traveling state of vehicle 2 (for example, vehicle speed VP)
  • the first rotary machine 10 is controlled to change the ratio of the power transmitted to the front wheels 4 through the first rotor 14 and the power regenerated as electric power by the first rotary machine 10, and this regeneration is performed.
  • the second rotating machine 20 is controlled.
  • the first rotating machine 10 since the first rotating machine 10 can be operated with the same operation characteristics as the planetary gear device, the first rotating machine 10 is controlled as described above, and the first rotating machine
  • the second rotating machine 20 When the second rotating machine 20 is controlled by supplying the regenerative power at 10 to the second rotating machine 20, if the electrical loss is neglected, through the first rotating machine 10 and the second rotating machine 20, While transmitting all the power of the engine 3 to the front wheel 4, the ratio between the rotational speed of the second rotor 15 and the rotational speed of the output shaft 13, in other words, the ratio between the engine rotational speed NE and the drive shaft rotational speed ND, is arbitrarily changed can do. That is, by controlling the two rotating machines 10 and 20, a function as an automatic transmission can be realized.
  • the power regeneration in the first rotating machine 10 is stopped.
  • the rotational speed of the rotating magnetic field of the stator 16 is controlled to the value 0 by supplying a lock current to the stator 16 or performing short-circuit control on the first rotating machine 10 or the like.
  • all the power of the engine 3 can be transmitted to the front wheel 4 via magnetism within the magnetically transmittable range, so the regenerative power in the first rotating machine 10 can be reduced by 2ND ⁇ PDU 32. Power transmission efficiency can be improved as compared with the case where control is performed so as to supply the second rotating machine 20 via the same.
  • the remaining charge SOC of the battery 33 is less than or equal to a predetermined value SOC_REF (for example, 50%) while the engine is running and running (including during deceleration fuel cut), the first rotating machine 10 and / or The regenerative electric power in the two-rotating machine 20 is controlled, and charge control to the battery 33 is executed. As a result, in the battery 33, a sufficient remaining charge amount SOC can be secured.
  • SOC_REF for example, 50%
  • assist control is performed when a predetermined assist condition is satisfied during engine operation (for example, when starting on a slope, traveling uphill, or accelerating) Is executed.
  • the power of the first rotating machine 10 and / or the second rotating machine 20 and the power of the engine 3 are supplied by supplying the power in the battery 33 to the first rotating machine 10 and / or the second rotating machine 20.
  • the first rotating machine 10 and / or the second rotating machine 20 are controlled such that power is transmitted to the front wheel 4.
  • the assist traveling or the assist start can be performed using the first rotating machine 10 and / or the second rotating machine 20 as a power source.
  • a predetermined rotating machine start condition is satisfied (for example, the charge remaining amount SOC of the battery 33 is predetermined
  • the rotary machine start control is executed when the accelerator opening AP is equal to or greater than a predetermined value). Specifically, with the engine 3 stopped, the power of the battery 33 is simultaneously supplied to the first rotating machine 10 and the second rotating machine 20, and the two rotating machines 10 and 20 are simultaneously driven.
  • the output shaft 13 starts to rotate at the same time as the second rotary machine 20 starts to rotate, but in the first rotary machine 10, the rotational resistance on the second rotor 15 side connected to the stopped engine 3 Is considerably larger than the first rotor 14 side.
  • the stator 16 to generate a rotating magnetic field
  • the first rotor 14 can be driven, and the power of the first rotating machine 10 and the second rotating machine 20 can start the vehicle 2.
  • the rotational resistance of the engine 3 is insufficient, the engine 3 may be locked or a device for increasing the rotational resistance may be provided.
  • the vehicle 2 can be driven by using the engine 3, the first rotating machine 10 and the second rotating machine 20 as a power source.
  • the first rotary machine 10 may be configured to include only one soft magnetic material row, the first rotary machine 10 can be miniaturized accordingly and the manufacturing cost can be reduced.
  • the power plant 1 itself can be miniaturized, the manufacturing cost can be reduced, and the degree of freedom in design can be enhanced.
  • three electric angular velocities ⁇ MFR, ⁇ ER1, ⁇ ER2 are determined depending on how to set the pole-log ratio ⁇ , that is, the pole number ratio m in the first rotating machine 10.
  • the relationship among the three torques TSE, TR1, and TR2 can be freely set. As a result, the freedom of design can be further enhanced.
  • the pole pair ratio ⁇ of the first rotating machine 10 is set to an arbitrary value other than the value 1 and the drive wheel is directly connected to the output shaft 13.
  • the electrical angular velocity of the input shaft 12, that is, the second rotor 15 is ⁇ ENG
  • the electrical angular velocity of the rotating magnetic field of the stator 16 is ⁇ MG 1
  • the relationship is as shown in FIG. 120, for example, and the following equation (114) is established.
  • the torque input from the engine 3 to the input shaft 12 is the engine torque TENG
  • the torque equivalent to the regenerative electric power of the stator 16 and the electric angular velocity ⁇ MG1 of the rotating magnetic field is the first rotating machine torque TMG1.
  • the torque equivalent to the supplied electric power and the electric angular velocity ⁇ MG2 is the second rotating machine torque TMG2
  • the torque as the reaction force that the drive wheel receives from the road surface due to the transfer torque to the drive wheel is the drive torque TOUT.
  • the relationship between these torques is as shown in FIG. In the following equations (115) and (116), the upward torque in FIG. 120 is represented by a positive value.
  • the variation ⁇ TMG1 of the first rotating machine torque TMG1 when the pole pair ratio ⁇ is changed from the first predetermined value ⁇ 1 to the second predetermined value ⁇ 2 is the following equation (121 It is represented by).
  • the change amount ⁇ TMG2 of the second rotating machine torque TMG2 when the pole pair ratio ⁇ is changed from the first predetermined value ⁇ 1 to the second predetermined value ⁇ 2 is the following equation (122) It is represented by).
  • the pole-log ratio ⁇ is a first predetermined value ⁇ 1.
  • the absolute value of the 1st and 2nd rotary machine torque TMG1 and TMG2 will decrease by changing into 2nd predetermined value alpha 2 from the above. That is, it can be understood that the first rotary machine 10 and the second rotary machine 20 can be miniaturized by setting the pole-log ratio ⁇ to a larger value.
  • the regenerative power of the first rotating machine 10 is supplied to the second rotating machine 20 as it is, so (123) is established.
  • the output ratio RW is 124).
  • the twenty-third embodiment is an example in which the power plant 1 is applied to the vehicle 2 provided with the front wheel 4 as a driven part
  • the present invention is not limited thereto, and can be applied to various industrial devices such as ships and aircraft. It is.
  • a portion generating a propulsive force such as a screw corresponds to a driven portion
  • the propulsive force of a propeller or a rotor is used.
  • the resulting part corresponds to the driven part.
  • the twenty-third embodiment is an example using the engine 3 which is an internal combustion engine fueled with gasoline as the heat engine
  • the invention is not limited thereto, and it may be an apparatus for continuously converting heat energy into mechanical energy Just do it.
  • the heat engine an internal combustion engine fueled by light oil or natural gas or an external combustion engine such as a Stirling engine may be used.
  • the number of stator magnetic poles is “4”, the number of magnetic poles is “8”, and the number of soft magnetic cores 15a as soft magnetic bodies is “6”.
  • the number of stator magnetic poles, the number of magnetic poles, and the number of soft magnetic members in the first rotating machine according to the present invention are not limited to these values, but the number of stator magnetic poles, the number of magnetic poles, and soft magnetism
  • the ratio of the number of stator magnetic poles to the number of magnetic poles and the number of soft magnetic members that is, the element number ratio is 1: m: (1 + m) It may be set to be / 2.
  • the pole number m is not limited thereto, and may be a positive number other than the value 1.
  • the twenty-third embodiment is an example in which the magnetic poles of the permanent magnets 14a are used as the magnetic poles of the first rotor 14.
  • the first rotor 14 is provided with a stator row, and the magnetic poles generated in the stator rows are the magnetic poles of permanent magnets. It may be used in place of
  • the twenty-third embodiment is an example using the MOT-ECU 30, 1ST-PDU 31 and 2ND-PDU 32 as control means for controlling the operation of the first rotating machine 10 and the second rotating machine 20, but the first rotation
  • the control means for controlling the machine 10 and the second rotating machine 20 is not limited to this, as long as the operation of these rotating machines 10 and 20 can be controlled.
  • an electric circuit or the like equipped with a microcomputer may be used as control means for controlling the two rotating machines 10 and 20.
  • the twenty-third embodiment is an example in which the first rotating machine 10 and the second rotating machine 20 are arranged on the output shaft 13 in the axial direction, but the arrangement of the first rotating machine 10 and the second rotating machine 20 is It is not limited to this.
  • both may be arranged side by side in the radial direction so that the first rotating machine 10 is positioned outside the second rotating machine 20. In this way, the axial size of the two rotating machines 10 and 20 can be reduced, and the design freedom of the power plant 1 can be increased.
  • the first rotor 14 of the first rotating machine 10 and the rotor 22 of the second rotating machine 20 may be disposed on separate axes.
  • hatching of the cross section is omitted for easy understanding.
  • the rotor 22 is provided not on the output shaft 13 described above but on the first gear shaft 6a. In this way, in the arrangement of the two rotating machines 10 and 20, the design freedom of the power plant 1 can be increased.
  • a transmission 50 may be provided instead of the gear mechanism 6.
  • the transmission 50 changes the reduction ratio between the output shaft 13 and the front wheel 4 stepwise or steplessly, and the shift operation is controlled by the MOT-ECU 30.
  • the transmission 50 includes a stepped automatic transmission with a torque converter, a belt-type continuously variable transmission, a toroidal-type continuously variable transmission and an automatic MT (clutch connection / disconnection operation by an actuator, Any one of stepped automatic transmissions or the like for performing a gear shift operation may be used as appropriate.
  • the transmission 51 may be provided in the middle of the input shaft 12 extending between the engine 3 and the second rotor 15.
  • the transmission 51 changes the speed increasing ratio between the engine 3 and the second rotor 15 stepwise or steplessly, and the speed change operation is controlled by the MOT-ECU 30.
  • any one of a geared automatic transmission with a torque converter, a belt type continuously variable transmission, a toroidal type continuously variable transmission, an automatic MT, etc. may be used as appropriate.
  • the speed increase ratio for the low rotation / high load region of the transmission 51 and the final speed reduction ratio of the final reduction gear are both set large.
  • the torque to be transmitted to the final reduction gear via the first rotating machine 10 and the second rotating machine 20 can be set small, whereby the first rotating machine 10 and the second rotating machine 20 can be miniaturized. it can.
  • the rotational speed of the first rotating machine 10 and the second rotating machine 20 can be reduced by setting the speed increase ratio for the high vehicle speed / high load area in the transmission 51 small (or 1: 1). it can.
  • the field rotation number can be reduced, so that energy loss can be reduced, transmission efficiency can be improved, and life can be extended.
  • the second rotating machine 20 its operating efficiency can be improved, and its life can be extended.
  • the position of the gear mechanism 6 is changed between the first rotor 14 and the rotor 22 of the output shaft 13 and the gear of the output shaft 13
  • a transmission 52 may be provided between the mechanism 6 and the rotor 22.
  • the transmission 52 changes the reduction ratio between the rotor 22 and the gear 6 c stepwise or steplessly, and the shift operation is controlled by the MOT-ECU 30.
  • the transmission 52 as with the transmission 50 described above, any one of a stepped automatic transmission with a torque converter, a belt-type continuously variable transmission, a toroidal-type continuously variable transmission, an automatic MT, etc. may be suitably used. Used.
  • the torque to be transmitted from the second rotating machine 20 to the front wheel 4 can be set small.
  • the second rotating machine 20 can be miniaturized.
  • the rotational speed of the second rotating machine 20 can be reduced by setting the reduction ratio for the high vehicle speed and high load area small in the transmission 52, thereby improving the operating efficiency as described above. As well as being able to extend the life.
  • the power is supplied from the battery 33 to the first rotating machine 10 and / or the second rotating machine 20, and the first rotating machine 10 and The power generated by the second rotating machine 20 is charged to the battery 33. Further, as described above, the ENG-ECU 29 and the MOT-ECU 30 calculate the state of charge of the battery 33 based on a detection signal from a current / voltage sensor (not shown).
  • the battery 33 is configured by a secondary battery such as a nickel hydrogen battery or a lithium ion battery.
  • a secondary battery such as a nickel hydrogen battery or a lithium ion battery.
  • SOC State of Charge
  • the ENG-ECU 29 and the MOT-ECU 30 perform control according to the SOC of the battery 33 (hereinafter referred to as "battery SOC").
  • FIG. 127 is a diagram showing the range of the battery SOC in which charge and discharge are repeated. As shown in FIG. 127, the ENG-ECU 29 and the MOT-ECU 30 control the operation of the engine 3 and the first and second rotating machines 10 and 20 so that the battery SOC falls within the range from the lower limit SOC to the upper limit SOC. Do.
  • FIGS. 128 (a) and 128 (b) are (a) velocity alignment charts when the battery SOC is less than the first threshold when the operation mode of the operation device 1 is "engine running", and (b) The speed alignment chart when battery SOC is more than a 1st threshold value is shown. As shown in FIG.
  • the first magnetic field rotational speed VMF1 of the first rotating magnetic field in the stator 16 of the first rotating machine 10 is as shown in FIG. It is controlled to be lower than the first magnetic field rotational speed VMF1 shown in FIG.
  • the regenerative energy generated by the first rotating machine 10 in the case shown in FIG. 128 (b) is lower than the regenerative energy in the case shown in FIG. 128 (a).
  • the ENG-ECU 29 operates the engine 3 so that it operates with the shaft rotation speed lower than the required ENG shaft rotation speed and without changing the output torque.
  • the charge amount to the battery 33 is reduced. Therefore, when the battery SOC is equal to or greater than the first threshold value close to the upper limit SOC, the ENG • ECU 29 performs the control to prevent overcharging of the battery 33.
  • the output of the engine 3 is reduced.
  • the torque from the second rotating machine 20 is applied, the output torque transmitted to the drive wheels 4 and 4 does not change.
  • the torque required of the engine 3 by the ENG • ECU 29 at the time of the control described above may be less than the ENG required torque described with reference to FIG.
  • the ENG-ECU 29 controls the engine 3 to output a torque according to the shaft rotational speed at the time of the above control.
  • the torque at the optimum operating point when the shaft rotation speed of the engine 3 is low is approximately proportional to the shaft rotation speed, so the torque at this time is smaller than the ENG required torque. With such control, the output of the engine 3 is further reduced, but the engine 3 can be operated at the optimum operating point.
  • the engine 3 is controlled to operate at a shaft rotation number lower than the required ENG shaft rotation number of the engine 3.
  • the regenerative energy per unit time generated in the stator 16 of the first rotating machine 10 with respect to the torque required for the engine 3 exceeds the specified value, it is lower than the ENG required torque described with reference to FIG.
  • the engine 3 may be controlled to output a torque.
  • the shaft rotational speed of the engine 3 may be equal to or less than the required ENG shaft rotational speed described with reference to FIG.
  • 129 (a) and 129 (b) are (a) a speed alignment chart when the battery SOC is higher than the second threshold when the operation mode of the operating device 1 is "EV travel", and (b) the battery The velocity alignment chart when SOC is below a 2nd threshold value is shown. As shown in FIG. 129 (b), when the engine 3 is driven, regenerative energy is generated in the first rotating machine 10.
  • the operation mode of the operation device 1 is “EV travel”
  • the amount of discharge of the battery 33 is reduced by controlling the engine 3 to operate. Therefore, when the battery SOC is equal to or less than the second threshold value close to the lower limit SOC, the ENG • ECU 29 performs the control to prevent the overdischarge of the battery 33.
  • the second threshold is variable.
  • the energy required for the first rotating machine 10 to start the engine 3 varies depending on the vehicle speed VP, and the higher the vehicle speed VP, the greater the energy required. Therefore, the ENG • ECU 29 sets a second threshold value corresponding to the vehicle speed VP. That is, the ENG • ECU 29 sets the second threshold value higher as the vehicle speed VP is higher.
  • FIGS. 130 (a) and 130 (b) are (a) velocity alignment charts when the battery SOC is less than the first threshold when the operation mode of the operation device 1 is “ENG backward start”, and (b) The speed alignment chart when battery SOC is more than a 1st threshold value is shown. As shown in FIG.
  • the first magnetic field rotational speed VMF1 of the first rotating magnetic field in the stator 16 of the first rotating machine 10 is as shown in FIG. It is controlled to be lower than the first magnetic field rotational speed VMF1 shown in FIG. As a result, the regenerative energy generated in the first rotating machine 10 is reduced.
  • the ECU 2 controls the engine 3 to operate at the shaft rotation speed lower than the required ENG shaft rotation speed and without changing the output torque.
  • the charge amount to the battery 33 is reduced. Therefore, when the battery SOC is equal to or greater than the first threshold value close to the upper limit SOC, the ENG • ECU 29 performs the control to prevent overcharging of the battery 33.
  • the output of the engine 3 is reduced. However, since the output torque of the engine 3 does not change, the output torque transmitted to the drive wheels 4 and 4 does not change.
  • the torque required of the engine 3 by the ENG • ECU 29 at the time of the control described above may be less than the ENG required torque described with reference to FIG.
  • the ENG-ECU 29 controls the engine 3 to output a torque according to the shaft rotational speed at the time of the above control.
  • the torque at the optimum operating point when the shaft rotation speed of the engine 3 is low is approximately proportional to the shaft rotation speed, so the torque at this time is smaller than the ENG required torque. With such control, the output of the engine 3 is further reduced, but the engine 3 can be operated at the optimum operating point.
  • the engine 3 is controlled to operate at a shaft rotation number lower than the required ENG shaft rotation number of the engine 3.
  • the energy per unit time generated by the stator 16 of the first rotating machine 10 with respect to the torque required for the engine 3 exceeds the specified value, a torque lower than the ENG required torque described with reference to FIG.
  • the engine 3 may be controlled to output the At this time, the shaft rotational speed of the engine 3 may be equal to or less than the required ENG shaft rotational speed described with reference to FIG.
  • a power plant 1A according to a twenty-fourth embodiment will be described with reference to FIG.
  • the power plant 1A is different from the power plant 1 of the twenty-third embodiment in that the second rotary machine 20 is used as a power source for driving the rear wheel, and other points are different.
  • the power plant 1 according to the twenty-third embodiment is configured in substantially the same manner, and therefore, different points from the power plant 1 according to the twenty-third embodiment will be mainly described below. I omit explanation.
  • the gear 6d on the first gear shaft 6a is always in mesh with the gear 7a of the differential gear mechanism 7, whereby the rotation of the output shaft 13 is achieved by the gears 6c and 6d and the differential gear mechanism 7. Is transmitted to the front wheels 4, 4.
  • the second rotating machine 20 is connected to the left and right rear wheels 5, 5 via the differential gear mechanism 25 and the left and right drive shafts 26, 26, etc.
  • the second rotating machine 20 The power of the rotating machine 20 is transmitted to the rear wheels 5 and 5 (second driven parts).
  • the rotor 22 of the second rotating machine 20 is concentrically fixed to the left end of the gear shaft 24, and the gear 24 a is concentrically fixed to the gear shaft 24 at the right end of the gear shaft 24.
  • the gear 24 a is in constant mesh with the gear 25 a of the differential gear mechanism 25.
  • the same function and effect as the power unit 1 of the twenty-third embodiment can be obtained.
  • the electric power regenerated by the first rotating machine 10 is supplied to the second rotating machine 20, whereby the vehicle can be started in the all-wheel drive state.
  • the startability on the low ⁇ road can be improved.
  • traveling can be performed in the all-wheel drive state, so traveling stability on a low ⁇ road can be improved.
  • the transmission 53 is provided in the middle of the input shaft 12 extending between the engine 3 and the second rotor 15, and the transmission 54 is a gear. It may be provided between the gear 24 a of the shaft 24 and the rotor 22.
  • the transmission 53 changes the speed increase ratio between the engine 3 and the second rotor 15 stepwise or steplessly, and the shift operation is controlled by the MOT-ECU 30.
  • the transmission 54 changes the reduction ratio between the second rotary machine 20 and the rear wheel 5 stepwise or steplessly, and the transmission operation is controlled by the MOT-ECU 30.
  • the transmissions 53 and 54 like the transmission 50 described above, any one of a geared automatic transmission with a torque converter, a belt type continuously variable transmission, a toroidal type continuously variable transmission, an automatic MT, etc. It is used suitably.
  • the speed increase ratio for the low rotation / high load region of the transmission 53 and the final speed reduction ratio of the final reduction gear are both set large.
  • the torque to be transmitted to the final reduction gear via the single rotation machine 10 can be set small, whereby the first rotation machine 10 can be miniaturized.
  • the rotational speed of the first rotating machine 10 can be reduced by setting the speed increase ratio for the high vehicle speed / high load area in the transmission 53 small (or 1: 1).
  • the field rotation number can be reduced, so that energy loss can be reduced, transmission efficiency can be improved, and life can be extended.
  • the generated torque of the second rotating machine 20 can be set small, whereby the second rotating machine 20 can be set. It can be miniaturized.
  • the rotational speed of the second rotating machine 20 can be reduced by setting the reduction ratio for the high vehicle speed and high load region in the transmission 54 small.
  • the two transmissions 53 and 54 are provided in the power plant 1A, one of the transmissions 53 and 54 may be omitted.
  • the power plant 1 B differs from the power plant 1 of the twenty-third embodiment in that the second rotary machine 20 and 2ND ⁇ PDU 32 etc. are omitted and an electromagnetic brake 55 is added. Since the other structure is substantially the same as that of the power plant 1 according to the twenty-third embodiment, the following description will mainly focus on the differences from the power plant 1 according to the twenty-third embodiment. The explanation is omitted.
  • the gear 6d on the first gear shaft 6a is always meshed with the gear 7a of the differential gear mechanism 7 similarly to the power unit 1A of the twenty-fourth embodiment described above, and thereby the output shaft 13 Is transmitted to the front wheels 4, 4 via the gears 6c, 6d and the differential gear mechanism 7.
  • the electromagnetic brake 55 (stopping device) is provided between the first rotating machine 10 of the input shaft 12 and the engine 3 and is electrically connected to the MOT-ECU 30.
  • the electromagnetic brake 55 is switched ON / OFF by the MOT-ECU 30, and allows rotation of the input shaft 12 in the OFF state, and stops rotation of the input shaft 12 in the ON state.
  • the electromagnetic brake 55 is controlled to be in the ON state only at the time of rotary machine start control described later, and is held in the OFF state in various controls other than the rotary machine start control.
  • This engine start control is to start the engine 3 by the power of the first rotating machine 10 when the predetermined engine start condition described above is satisfied when the engine is stopped and the vehicle is at rest. Specifically, when the predetermined starting condition is satisfied, the power of the battery 33 is supplied to the first rotating machine 10 via the VCU 34 and the 1ST • PDU 31. Thereby, as described above, the second rotor 15 is driven while the first rotor 14 is stopped, and as a result, the engine 3 is started.
  • the start control is executed.
  • the start control when a predetermined start condition is satisfied, first, the power of the engine 3 is regenerated (ie, generated) as electric power in the first rotating machine 10. Then, after the start of the power regeneration, the first rotating machine 10 is controlled such that the regenerated power decreases.
  • the vehicle 2 can be started by the power of the engine 3 while avoiding the engine stall.
  • distribution control of engine power is performed during traveling while the engine is operating.
  • the first rotor of the motive power of engine 3 according to the operating state of engine 3 (engine speed NE and accelerator opening AP, etc.) and / or the traveling state of vehicle 2 (vehicle speed VP, etc.)
  • the first rotating machine 10 is controlled to change the ratio of the power transmitted to the front wheels 4 through 14 and the power regenerated as electric power by the first rotating machine 10.
  • the vehicle 2 can be caused to travel while appropriately controlling the regenerative power according to the driving state of the engine 3 and / or the traveling state of the vehicle 2.
  • the first rotating machine 10 is controlled such that the rotational speed of the rotating magnetic field of the stator 16 becomes zero.
  • the motive power of the engine 3 can be all magnetically transmitted to the front wheel 4 through the second rotor 15 and the first rotor 14 as long as it is within the magnetically transmittable range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 ハイブリッド車両は、第1ロータと、第1ステータと、第2ロータとを有し、第1ステータの電機子列に発生する磁極の数と、第1ロータ及び第2ロータの一方が駆動軸に接続された第1回転機と、出力軸がその他方と接続した原動機と、第2回転機と、蓄電器とを備えた動力装置によって駆動する。ハイブリッド車両は、蓄電器の充電状態を検出する状態検出部と、動力装置の制御を行う制御部とを備え、制御部は、当該ハイブリッド車両の発進のために原動機を駆動する際、蓄電器の残容量に基づいて原動機の出力を制御する。したがって、小型化およびコストの削減を達成することができるとともに、駆動効率を高めることができる。

Description

ハイブリッド車両
 本発明は、被駆動部を駆動するための動力装置によって駆動するハイブリッド車両に関する。
 従来のこの種の動力装置として、例えば特許文献1に開示されたものが知られている。この動力装置は、車両の左右の駆動輪を駆動するためのものであり、動力源である内燃機関と、内燃機関および駆動輪に連結された変速装置とを備えている。この変速装置は、一般的なシングルピニオンタイプで構成された第1および第2の遊星歯車装置と、1つのロータおよびステータをそれぞれ備える第1および第2の回転機を有している。
 図141に示すように、第1遊星歯車装置の第1リングギヤ、第1キャリアおよび第1サンギヤは、内燃機関、第2遊星歯車装置の第2キャリア、および第1回転機にそれぞれ機械的に連結されている。第2遊星歯車装置の第2サンギヤ、第2キャリアおよび第2リングギヤは、第2回転機、駆動輪、および第1回転機にそれぞれ機械的に連結されている。また、第1および第2の回転機は、制御器を介して互いに電気的に接続されている。なお、図141では、要素間の連結に関し、機械的な連結を実線で、電気的な接続を一点鎖線で、それぞれ示している。また、動力および電力の流れを矢印付きの太い実線で示している。
 以上の構成の従来の動力装置では、車両の走行中、内燃機関の動力が、例えば次のようにして駆動輪に伝達される。すなわち、図141に示すように、内燃機関の動力は、第1リングギヤに伝達された後、第1サンギヤに後述するように伝達された動力と合成され、この合成動力は、第1キャリアを介して第2キャリアに伝達される。また、この場合、第2回転機で発電が行われるとともに、発電した電力が制御器を介して第1回転機に供給される。この発電に伴い、第2キャリアに伝達された合成動力の一部が、第2サンギヤおよび第2リングギヤに分配され、合成動力の残りが駆動輪に伝達される。第2サンギヤに分配された動力は、第2回転機に伝達され、第2リングギヤに分配された動力は、第1回転機を介して第1サンギヤに伝達される。さらに、第1サンギヤには、上述した電力の供給に伴って発生した第1回転機の動力が伝達される。
米国特許第6478705号明細書
 この従来の動力装置では、その構成上、第1および第2の回転機に加え、動力を分配・合成するための少なくとも2つの遊星歯車装置が必要不可欠であるため、その分、動力装置の大型化を招いてしまう。また、上記のように、従来の動力装置では、第1キャリア→第2キャリア→第2リングギヤ→第1回転機→第1サンギヤ→第1キャリアから成る経路と、第1キャリア→第2キャリア→第2サンギヤ→第2回転機→第1回転機→第1サンギヤ→第1キャリアから成る経路において、動力が再循環する。この動力の再循環により、第1リングギヤおよび第1サンギヤからの非常に大きな合成動力が、第1キャリアを通過し、そのまま第2キャリアを通過するので、この大きな合成動力に耐えられるようにするために、第1および第2の遊星歯車装置を大型化せざるを得ず、動力装置のさらなる大型化およびコストの増大を招いてしまう。さらに、そのような動力装置の大型化および動力装置を通過する動力の増大に伴って、動力装置において発生する損失も増大し、動力装置の駆動効率が低くなってしまう。
 本発明は、小型化およびコストの削減を達成することができるとともに、駆動効率を高めることができる動力装置によって駆動するハイブリッド車両を提供することを目的とする。
 上記課題を解決して係る目的を達成するために、請求項1に記載の発明のハイブリッド車両は、隣り合う2つの磁極が互いに異なる極性を有する磁極列が周方向に設けられた第1ロータ(例えば、実施の形態でのA1ロータ24,第1ロータ14)と、前記第1ロータと径方向に対向するよう配置され、前記周方向に並んだ複数の電機子に発生する磁極の変化により前記周方向に移動する回転磁界が発生する電機子列を有する第1ステータ(例えば、実施の形態でのステータ23,ステータ16)と、前記第1ロータと前記第1ステータの間に配置され、互いに間隔を空けて前記周方向に並んだ複数の軟磁性体を有する第2ロータ(例えば、実施の形態でのA2ロータ25,第2ロータ15)と、を有し、前記第1ステータの前記電機子列に発生する磁極の数と、前記第1ロータの前記磁極列の磁極の数と、前記第2ロータの前記軟磁性体の数との比が、1:m:(1+m)/2(但し、m≠1)に設定され、前記第1ロータ及び前記第2ロータの一方が駆動軸に接続された第1回転機(例えば、実施の形態での第1回転機21,第1回転機10)と、出力軸が前記第1ロータ及び前記第2ロータの他方と接続した原動機(例えば、実施の形態でのエンジン3)と、前記駆動軸との間での動力の入出力と、前記第1回転機との間での電力の授受とが可能に構成された第2回転機(例えば、実施の形態での第2回転機31,第1遊星歯車装置PS1および回転機101,第2回転機20)と、前記第1回転機及び前記第2回転機との間で電力を授受可能な蓄電器(例えば、実施の形態でのバッテリ43,バッテリ33)と、を備えた動力装置によって駆動するハイブリッド車両であって、前記蓄電器の充電状態を検出する状態検出部(例えば、実施の形態での電流電圧センサ56)と、前記動力装置の制御を行う制御部(例えば、実施の形態でのECU2)と、を備え、前記制御部は、当該ハイブリッド車両の発進のために前記原動機を駆動する際、前記蓄電器の残容量に基づいて、前記原動機の出力を制御することを特徴としている。
 さらに、請求項2に記載の発明のハイブリッド車両では、前記制御部は、前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、前記蓄電器の残容量が前記上限値よりも低い第1しきい値以上の状態で、当該ハイブリッド車両の前方発進のために前記原動機を駆動する場合は、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度を制御して、前記原動機の回転数を低く制限することにより前記原動機の出力を下げることを特徴としている。
 さらに、請求項3に記載の発明のハイブリッド車両では、前記制御部は、前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、前記蓄電器の残容量が前記下限値よりも高い第2しきい値以下の状態で、当該ハイブリッド車両の後方発進のために前記原動機を駆動する場合は、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度を制御して、前記原動機の回転数を低く制限することにより前記原動機の出力を下げることを特徴としている。
 さらに、請求項4に記載の発明のハイブリッド車両では、前記制御部は、前記原動機の出力トルクを維持するよう前記原動機を制御することを特徴としている。
 さらに、請求項5に記載の発明のハイブリッド車両では、前記制御部は、前記原動機に要求されたトルクに対する前記第1回転機の前記第1ステータに発生する単位時間当たりの回生エネルギが規定値を超える場合、前記原動機の出力トルクを低く制限するよう前記原動機を制御することを特徴としている。
 さらに、請求項6に記載の発明のハイブリッド車両では、前記制御部は、前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、当該ハイブリッド車両が前記第1回転機からの駆動力による走行時に、前記蓄電器の残容量が前記下限値よりも高い第2しきい値以下であれば、前記原動機を駆動して、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度が低減するよう制御することを特徴としている。
 さらに、請求項7に記載の発明のハイブリッド車両では、前記第2回転機は、回転子(例えば、実施の形態でのロータ103)及び電機子(例えば、実施の形態でのステータ102)を有する電動機(例えば、実施の形態での回転機101)と、共線関係を保って動作する第1回転要素(例えば、実施の形態での第1サンギヤS1)、第2回転要素(例えば、実施の形態での第1キャリアC1)、及び前記回転子に接続された第3回転要素(例えば、実施の形態での第1リングギヤR1)を有し、前記第2回転要素に入力されたエネルギを前記第1回転要素及び前記第3回転要素に分配する機能と、前記第1回転要素及び前記第3回転要素に入力された各エネルギを合成して前記第2回転要素に出力する機能と、を有する回転機構(例えば、実施の形態での第1遊星歯車装置PS1)と、を有し、前記第1ロータ及び前記第2回転要素と、前記第2ロータ及び前記第1回転要素とのうちの一方が前記原動機の前記出力軸に接続され、他方が前記駆動軸に接続されたことを特徴としている。
 さらに、請求項8に記載の発明のハイブリッド車両では、前記第2回転機は、隣り合う2つの磁極が互いに異なる極性を有する磁極列が周方向に設けられた第3ロータ(例えば、実施の形態でのB1ロータ34)と、前記第3ロータと径方向に対向するよう配置され、前記周方向に並んだ複数の電機子に発生する磁極の変化により前記周方向に移動する回転磁界が発生する電機子列を有する第2ステータ(例えば、実施の形態でのステータ33)と、前記第3ロータと前記第2ステータの間に配置され、互いに間隔を空けて前記周方向に並んだ複数の軟磁性体を有する第4ロータ(例えば、実施の形態でのB2ロータ35)と、を有し、前記第2ステータの前記電機子列に発生する磁極の数と、前記第3ロータの前記磁極列の磁極の数と、前記第4ロータの前記軟磁性体の数との比が、1:m:(1+m)/2(但し、m≠1)に設定され、前記駆動軸に前記第1ロータが接続され、前記原動機の前記出力軸に前記第2ロータが接続されている場合、前記第4ロータが前記駆動軸に接続され、前記第3ロータが前記原動機の前記出力軸に接続され、前記駆動軸に前記第2ロータが接続され、前記原動機の前記出力軸に前記第1ロータが接続されている場合、前記第3ロータが前記駆動軸に接続され、前記第4ロータが前記原動機の前記出力軸に接続されたことを特徴としている。
 請求項1に記載の発明のハイブリッド車両によれば、蓄電器の過充放電を防止できる。
 請求項2に記載の発明のハイブリッド車両によれば、蓄電器の過充電を防止できる。
 請求項3または6に記載の発明のハイブリッド車両によれば、蓄電器の過放電を防止できる。
 請求項4~5に記載の発明のハイブリッド車両によれば、蓄電器の過充放電を防止できる。
 請求項7~8に記載の発明のハイブリッド車両によれば、小型化およびコストの削減を達成することができるとともに、駆動効率を高めることができる。
第1実施形態による動力装置を概略的に示す図である。 図1に示すエンジンなどを制御する制御装置を示すブロック図である。 図1に示す第1回転機の拡大断面図である。 図1に示す第1回転機のステータ、A1およびA2のロータを周方向に展開し、概略的に示す図である。 第1回転機の等価回路を示す図である。 図1に示す第1回転機における第1磁界電気角速度、A1およびA2のロータ電気角速度の間の関係の一例を示す速度共線図である。 (a)~(c)は図1に示す第1回転機のA1ロータを回転不能に保持した状態で、ステータに電力を供給した場合における動作を説明するための図である。 (a)~(d)は図7(a)~(c)の続きの動作を説明するための図である。 (a)、(b)は図8(a)~(d)の続きの動作を説明するための図である。 図7(a)~(c)に示す状態から、第1ステータ磁極が電気角2πだけ回転したときにおける第1ステータ磁極やコアの位置関係を説明するための図である。 (a)~(c)は図1に示す第1回転機のA2ロータを回転不能に保持した状態で、ステータに電力を供給した場合における動作を説明するための図である。 (a)~(d)は図11(a)~(c)の続きの動作を説明するための図である。 (a)、(b)は図12(a)~(d)の続きの動作を説明するための図である。 第1回転機のA1ロータを回転不能に保持した場合におけるU相~W相の逆起電圧の推移の一例を示す図である。 第1回転機のA1ロータを回転不能に保持した場合における第1駆動用等価トルク、A1およびA2のロータ伝達トルクの推移の一例を示す図である。 第1回転機のA2ロータを回転不能に保持した場合におけるU相~W相の逆起電圧の推移の一例を示す図である。 第1回転機のA2ロータを回転不能に保持した場合における第1駆動用等価トルク、A1およびA2のロータ伝達トルクの推移の一例を示す図である。 図1に示す第2回転機の拡大断面図である。 2つの回転機を備えた動力装置の動作の一例を説明するための図である。 図19に示した動力装置の変速動作を説明するための図である。 図19に示した動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、第1および第2の回転機による被駆動部の駆動中に熱機関を始動する場合について示す図である。 図19に示した動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、被駆動部の速度を急速に上昇させる場合について示す図である。 図1の動力装置1における駆動力制御を示すブロック線図である。 1共線4要素の仕組みを有する動力装置1における速度共線図である。 図1の動力装置におけるトルクの伝達状況を、EVクリープ中について示す図である。 (a)は図1に示す動力装置のEVクリープ中における第1および第2の回転機21,31の各速度共線図であり、(b)は2つの速度共線図を合成した速度共線図である。 図1の動力装置におけるトルクの伝達状況を、EV発進中について示す図である。 (a)は図1に示す動力装置のEV発進時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、EV走行中ENG始動時について示す図である。 図1に示す動力装置のEV走行中ENG始動時における第1および第2の回転機21,31の各速度共線図である。 図30に示した2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、バッテリ入出力ゼロモードのENG走行中について示す図である。 (a)は図1に示す動力装置のバッテリ入出力ゼロモードのENG走行中における第1および第2の回転機21,31の各速度共線図であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、アシストモードのENG走行中について示す図である。 図1に示す動力装置におけるトルクの伝達状況を、駆動時充電モードのENG走行中について示す図である。 (a)は図1に示す動力装置のENG走行中の急加速運転の開始時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、減速回生中について示す図である。 (a)は図1に示す動力装置の減速回生中における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、停車中ENG始動時について示す図である。 (a)は図1に示す動力装置の停車中ENG始動時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、ENGクリープ中について示す図である。 (a)は図1に示す動力装置のENGクリープ中における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、ENG発進時について示す図である。 (a)は図1に示す動力装置のENG発進時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、EV後退発進時について示す図である。 (a)は図1に示す動力装置のEV後退発進時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 図1に示す動力装置におけるトルクの伝達状況を、ENG後退発進時について示す図である。 (a)は図1に示す動力装置のENG後退発進時における第1および第2の回転機21,31の各速度共線図の一例であり、(b)は2つの速度共線図を合成した速度共線図である。 充放電が繰り返されるバッテリSOCの範囲を示す図である。 (a)、(b)は動作装置1の動作モードが「ENG発進」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。 (a)、(b)は動作装置1の動作モードが「EV走行」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。 (a)、(b)は動作装置1の動作モードが「ENG後退発進」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。 第2実施形態による動力装置を概略的に示す図である。 第3実施形態による動力装置を概略的に示す図である。 第4実施形態による動力装置を概略的に示す図である。 第5実施形態による動力装置を概略的に示す図である。 第6実施形態による動力装置を概略的に示す図である。 第7実施形態による動力装置を概略的に示す図である。 回転機と差動装置を備えた第1動力装置の動作の一例を説明するための図である。 図59に示した第1動力装置の変速動作を説明するための図である。 図59に示した第1動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、第1および第2の回転機による被駆動部の駆動中に熱機関を始動する場合について示す図である。 図59に示した第1動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、被駆動部の速度を急速に上昇させる場合について示す図である。 回転機と差動装置を備えた第2動力装置の動作の他の例を説明するための図である。 図63に示した第2動力装置の変速動作を説明するための図である。 図63に示した第2動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、第1および第2の回転機による被駆動部の駆動中に熱機関を始動する場合について示す図である。 図63に示した第2動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、被駆動部の速度を急速に上昇させる場合について示す図である。 図58に示すエンジンなどを制御する制御装置を示すブロック図である。 図58の動力装置1Fにおける駆動力制御を示すブロック線図である。 1共線4要素の仕組みを有する動力装置1Fにおける速度共線図である。 図58に示す動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、EV走行中ENG始動の開始時について示す図である。 図58に示す動力装置における第1回転機や回転機による変速動作を説明するための図である。 図58に示す動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、ENG走行中の急加速運転の開始時について示す図である。 第8実施形態による動力装置を概略的に示す図である。 第9実施形態による動力装置を概略的に示す図である。 第10実施形態による動力装置を概略的に示す図である。 第11実施形態による動力装置を概略的に示す図である。 第12実施形態による動力装置を概略的に示す図である。 第13実施形態による動力装置を概略的に示す図である。 (a)第1サンギヤ回転速度、第1キャリア回転速度および第1リングギヤ回転速度の関係の一例を示す速度共線図を、第2サンギヤ回転速度、第2キャリア回転速度および第2リングギヤ回転速度の関係の一例を示す速度共線図とともに示す図、(b)図78に示す動力装置における第1および第2の遊星歯車装置の連結によって構成される4つの回転要素の回転速度の関係の一例を示す速度共線図である。 (a)図78に示す動力装置における第1および第2の遊星歯車装置の連結によって構成される4つの回転要素の回転速度の関係の一例を示す速度共線図を、第1磁界回転速度、A1およびA2のロータ回転速度の関係の一例を示す速度共線図とともに示す図、(b)図78に示す動力装置における第2回転機、第1および第2の遊星歯車装置の連結によって構成される5つの回転要素の回転速度の関係の一例を示す速度共線図である。 (a)、(b)は図78に示す動力装置における各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。 (a)、(b)は図78に示す動力装置において、ENG走行中の急加速運転の開始時における各種の回転要素の回転速度およびトルクの関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す図である。 (a)、(b)は動力装置における各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。 (a)、(b)は動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、被駆動部の速度を急速に上昇させる場合で、かつ、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す図である。 動力装置における第1および第2の変速モードの切換を説明するための図である。 第14実施形態における動力装置を概略的に示す図である。 第15実施形態における動力装置を概略的に示す図である。 図87に示す動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、EV走行中ENG始動の開始時について示す図である。 図87に示す動力装置における回転機や第2回転機による変速動作を説明するための図である。 図87に示す動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、ENG走行中の急加速運転の開始時について示す図である。 第16実施形態における動力装置を概略的に示す図である。 第17実施形態における動力装置を概略的に示す図である。 第18実施形態における動力装置を概略的に示す図である。 第19実施形態における動力装置を概略的に示す図である。 第20実施形態における動力装置を概略的に示す図である。 (a)第1サンギヤ回転速度、第1キャリア回転速度および第1リングギヤ回転速度の関係の一例を示す速度共線図を、第2サンギヤ回転速度、第2キャリア回転速度および第2リングギヤ回転速度の関係の一例を示す速度共線図とともに示す図、(b)図95に示す動力装置における第1および第2の遊星歯車装置の連結によって構成される4つの回転要素の回転速度の関係の一例を示す速度共線図である。 (a)図95に示す動力装置における第1および第2の遊星歯車装置の連結によって構成される4つの回転要素の回転速度の関係の一例を示す速度共線図を、第2磁界回転速度、B1およびB2のロータ回転速度の関係の一例を示す速度共線図とともに示す図、(b)図95に示す動力装置における第2回転機、第1および第2の遊星歯車装置の連結によって構成される5つの回転要素の回転速度の関係の一例を示す速度共線図である。 (a)、(b)は図95に示す動力装置における各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。 (a)、(b)は図95に示す動力装置において、EV走行中ENG始動の開始時における各種の回転要素の回転速度およびトルクの関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す図である。 (a)、(b)は動力装置における各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。 (a)、(b)は動力装置における各種の回転要素の回転速度およびトルクの関係の一例を、第1および第2の回転機による被駆動部の駆動中に熱機関を始動する場合で、かつ、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す図である。 第21実施形態による動力装置を概略的に示す図である。 第22実施形態による動力装置を概略的に示す図である。 第23実施形態に係る動力装置およびこれを適用したハイブリッド車両の概略構成を示す図である。 第23実施形態の動力装置の概略構成を示す図である。 第1回転機および第2回転機の概略構成を模式的に示す断面図である。 図106のA-A線の位置で周方向に沿って破断した円環状の断面を直線状に模式的に示した図である。 第1回転機10に相当する等価回路を示す図である。 第1回転機10における磁界電気角速度ωmfと、第1ロータ電気角速度ωe1と、第2ロータ電気角速度ωe2との関係の一例を示す速度共線図である。 磁界電気角速度ωMFRと第1ロータ電気角速度ωER1と第2ロータ電気角速度ωER2との関係の一例を示す速度共線図である。 (a)~(c)は第1回転機の第1ロータを回転不能に保持した状態で、ステータに電力を供給した場合における動作を説明するための図である。 (a)~(d)は図111(a)~(c)の続きの動作を説明するための図である。 (a)、(b)は図112(a)~(d)の続きの動作を説明するための図である。 図110に示す状態から、ステータ磁極が電気角2πだけ回転したときにおけるステータ磁極や軟磁性体コアの位置関係を説明するための図である。 (a)~(c)は第1回転機の第2ロータを回転不能に保持した状態で、ステータに電力を供給した場合における動作を説明するための図である。 (a)~(d)は図115(a)~(c)の続きの動作を説明するための図である。 (a)、(b)は図116(a)~(d)の続きの動作を説明するための図である。 図104の動力装置1における駆動力制御を示すブロック線図である。 1共線3要素の仕組みを有する動力装置1における速度共線図である。 第23実施形態の動力装置の第1回転機における極対数比αを任意の値としたときの3つの電気角速度および3つのトルクの関係の一例を示す速度共線図である。 第23実施形態の動力装置の第1回転機における極対数比αを値1、値1.5、値2に設定したときの出力比RWと減速比Rの関係を示す図である。 第1回転機および第2回転機の配置の変形例を示す図である。 第1回転機および第2回転機の配置の他の変形例を示す図である。 第23実施形態の動力装置に変速装置を設けた場合の一例を示す図である。 第23実施形態の動力装置に変速装置を設けた場合の他の一例を示す図である。 第23実施形態の動力装置に変速装置を設けた場合のさらに他の一例を示す図である。 充放電が繰り返されるバッテリSOCの範囲を示す図である。 (a)、(b)は動作装置1の動作モードが「エンジン運転中」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。 (a)、(b)は動作装置1の動作モードが「EV走行」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。 (a)、(b)は動作装置1の動作モードが「ENG後退発進」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。 第24実施形態に係る動力装置の概略構成を示す図である。 第24実施形態の動力装置に変速装置を設けた場合の一例を示す図である。 第25実施形態に係る動力装置の概略構成を示す図である。 第26実施形態に係る動力装置の概略構成を示す図である。 第26実施形態の動力装置の第1回転機における極対数比αを任意の値としたときの3つの電気角速度および3つのトルクの関係の一例を示す速度共線図である。 第26実施形態の動力装置の第1回転機における極対数比αを値1、値1.5、値2に設定したときの出力比RW’と減速比Rの関係を示す図である。 第26実施形態の動力装置にクラッチを設けた場合の一例を示す図である。 第26実施形態の動力装置に変速装置を設けた場合の一例を示す図である。 第26実施形態の動力装置に変速装置を設けた場合の他の一例を示す図である。 第27実施形態に係る動力装置の概略構成を示す図である。 従来の動力装置の動作の一例を説明するための図である。
<1共線4要素>
 以下、図面を参照しながら、本発明に係る1共線4要素の仕組みを有する動力装置の実施形態について説明する。なお、図面中の断面を示す部分については、ハッチングを適宜、省略するものとする。
(第1実施形態)
 図1および図2は、第1実施形態による動力装置1を概略的に示している。この動力装置1は、車両(図示せず)の左右の駆動輪DW,DW(被駆動部)を駆動するためのものであり、図1に示すように、動力源である内燃機関3(熱機関)、第1回転機21および第2回転機31と、駆動輪DW,DWに駆動軸10,10を介して連結された差動ギヤ機構9と、第1パワードライブユニット(以下「第1PDU」という)41および第2パワードライブユニット(以下「第2PDU」という)42と、双方向型昇降圧コンバータ(以下「VCU」という)44とを備えている。また、動力装置1は、図2に示すように、内燃機関3や第1および第2の回転機21,31の動作を制御するためのECU2を備えている。第1および第2の回転機21,31は、後述するように無段変速装置としても機能する。
 内燃機関(以下「エンジン」という)3は、例えばガソリンエンジンであり、このエンジン3のクランク軸3aには、軸受け4aにより回転自在に支持された第1回転軸4が、フライホイール5を介して直結されている。また、第1回転軸4に対して、連結軸6および第2回転軸7が同心状に、アイドラ軸8が平行に、それぞれ配置されている。これらの連結軸6、第2回転軸7およびアイドラ軸8は、軸受け6a、7aおよび8a,8aにそれぞれ回転自在に支持されている。
 連結軸6は、中空に形成されており、その内側に上記の第1回転軸4が回転自在に嵌合している。アイドラ軸8には、第1ギヤ8bおよび第2ギヤ8cが一体に設けられており、前者8bは第2回転軸7と一体のギヤ7bに、後者8cは差動ギヤ機構9のギヤ9aに、それぞれ噛み合っている。以上の構成により、第2回転軸7は、アイドラ軸8や差動ギヤ機構9を介して、駆動輪DW,DWに連結されている。以下、第1回転軸4、連結軸6および第2回転軸7の周方向、軸線方向および径方向をそれぞれ、単に「周方向」、「軸線方向」および「径方向」という。
<第1回転機21> 図1および図3に示すように、第1回転機21は、ステータ23と、ステータ23に対向するように設けられたA1ロータ24と、両者23,24の間に設けられたA2ロータ25を有している。これらのステータ23、A2ロータ25およびA1ロータ24は、径方向に外側からこの順で並んでおり、同心状に配置されている。図3では、第1回転軸4などの一部の要素を、図示の便宜上、スケルトン図的に描いている。
 上記のステータ23は、第1回転磁界を発生させるものであり、図3および図4に示すように、鉄芯23aと、この鉄芯23aに設けられたU相、V相およびW相のコイル23c,23d,23eを有している。なお、図3では、便宜上、U相コイル23cのみを示している。鉄芯23aは、複数の鋼板を積層した円筒状のものであり、軸線方向に延びており、移動不能のケースCAに固定されている。また、鉄芯23aの内周面には、12個のスロット23bが形成されており、これらのスロット23bは、軸線方向に延びるとともに、周方向に等間隔で並んでいる。上記のU相~W相のコイル23c~23eは、スロット23bに分布巻き(波巻き)で巻回されるとともに、前述した第1PDU41およびVCU44を介して、バッテリ43に接続されている。第1PDU41は、インバータなどからなる電気回路で構成されており、第2PDU42およびECU2に接続されている(図1参照)。
 以上の構成のステータ23では、バッテリ43から電力が供給され、U相~W相のコイル23c~23eに電流が流れたときに、または、後述するように発電が行われたときに、鉄芯23aのA1ロータ24側の端部に、4個の磁極が周方向に等間隔で発生する(図7(a)~(c)参照)とともに、これらの磁極による第1回転磁界が周方向に移動する。以下、鉄芯23aに発生する磁極を「第1ステータ磁極」という。また、周方向に隣り合う各2つの第1ステータ磁極の極性は、互いに異なっている。なお、図7(a)~(c)や後述する他の図面では、第1ステータ磁極を、鉄芯23aやU相~W相のコイル23c~23eの上に、(N)および(S)で表記している。
 図4に示すように、A1ロータ24は、8個の永久磁石24aから成る第1磁極列を有している。これらの永久磁石24aは、周方向に等間隔で並んでおり、この第1磁極列は、ステータ23の鉄芯23aに対向している。各永久磁石24aは、軸線方向に延びており、その軸線方向の長さが、ステータ23の鉄芯23aのそれと同じに設定されている。
 また、永久磁石24aは、リング状の固定部24bの外周面に取り付けられている。この固定部24bは、軟磁性体、例えば鉄または複数の鋼板を積層したもので構成されており、その内周面が、ドーナツ板状のフランジの外周面に取り付けられている。このフランジは、前述した連結軸6に一体に設けられている。以上により、永久磁石24aを含むA1ロータ24は、連結軸6と一体に回転自在になっている。さらに、上記のように軟磁性体で構成された固定部24bの外周面に永久磁石24aが取り付けられているので、各永久磁石24aには、ステータ23側の端部に、(N)または(S)の1つの磁極が現れる。なお、図4や後述する他の図面では、永久磁石24aの磁極を(N)および(S)で表記している。また、周方向に隣り合う各2つの永久磁石24aの極性は、互いに異なっている。
 A2ロータ25は、6個のコア25aから成る第1軟磁性体列を有している。これらのコア25aは、周方向に等間隔で並んでおり、この第1軟磁性体列は、ステータ23の鉄芯23aとA1ロータ24の第1磁極列との間に、それぞれ所定の間隔を隔てて配置されている。各コア25aは、軟磁性体、例えば複数の鋼板を積層したものであり、軸線方向に延びている。また、コア25aの軸線方向の長さは、永久磁石24aと同様、ステータ23の鉄芯23aのそれと同じに設定されている。さらに、コア25aは、円板状のフランジ25bの外端部に、軸線方向に若干延びる筒状の連結部25cを介して取り付けられている。このフランジ25bは、前述した第1回転軸4に一体に設けられている。これにより、コア25aを含むA2ロータ25は、第1回転軸4と一体に回転自在になっている。なお、図4や図7(a)~(c)では、便宜上、連結部25cおよびフランジ25bを省略している。
 以下、第1回転機21の原理について説明する。なお、当該説明では、ステータ23を「第1ステータ」、A1ロータ24を「第1ロータ」、A2ロータ25を「第2ロータ」と表す。また、第1ステータに供給された電力および第1回転磁界の電気角速度ωmfと等価のトルクを「第1駆動用等価トルクTe1」という。まず、この第1駆動用等価トルクTe1と、第1および第2のロータに伝達されるトルク(以下、それぞれ「第1ロータ伝達トルクT1」「第2ロータ伝達トルクT2」という)の関係と、第1回転磁界、第1および第2のロータの電気角速度の間の関係について説明する。
 第1回転機21を次の条件(A)および(B)の下に構成した場合には、第1回転機21に相当する等価回路は図5のように示される。
 (A)第1ステータがU相、V相およびW相の3相コイルを有する
 (B)第1ステータ磁極が2個、第1磁極が4個、すなわち、第1ステータ磁極のN極およびS極を1組とする極対数が値1、第1磁極のN極およびS極を1組とする極対数が値2であり、第1軟磁性体が第1コア、第2コアおよび第3コアから成る3つの軟磁性体で構成されている
 なお、このように、本明細書で用いる「極対」は、N極およびS極の1組をいう。
 この場合、第1軟磁性体のうちの第1コアを通過する第1磁極の磁束Ψk1は、次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、ψfは第1磁極の磁束の最大値、θ1およびθ2は、U相コイルに対する第1磁極の回転角度位置および第1コアの回転角度位置である。また、この場合、第1ステータ磁極の極対数に対する第1磁極の極対数の比が値2.0であるため、第1磁極の磁束が第1回転磁界に対して2倍の周期で回転(変化)するので、上記の式(1)では、そのことを表すために、(θ2-θ1)に値2.0が乗算されている。
 したがって、第1コアを介してU相コイルを通過する第1磁極の磁束Ψu1は、式(1)にcosθ2を乗算することで得られた次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 同様に、第1軟磁性体のうちの第2コアを通過する第1磁極の磁束Ψk2は、次式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 第1ステータに対する第2コアの回転角度位置が、第1コアに対して2π/3だけ進んでいるため、上記の式(3)では、そのことを表すために、θ2に2π/3が加算されている。
 したがって、第2コアを介してU相コイルを通過する第1磁極の磁束Ψu2は、式(3)にcos(θ2+2π/3)を乗算することで得られた次式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 同様に、第1軟磁性体のうちの第3コアを介してU相コイルを通過する第1磁極の磁束Ψu3は、次式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 図5に示すような第1回転機では、第1軟磁性体を介してU相コイルを通過する第1磁極の磁束Ψuは、上記の式(2)、(4)および(5)で表される磁束Ψu1~Ψu3を足し合わせたものになるので、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 また、この式(6)を一般化すると、第1軟磁性体を介してU相コイルを通過する第1磁極の磁束Ψuは、次式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、a、bおよびcはそれぞれ、第1磁極の極対数、第1軟磁性体の数および第1ステータ磁極の極対数である。また、この式(7)を、三角関数の和と積の公式に基づいて変形すると、次式(8)が得られる。
Figure JPOXMLDOC01-appb-M000008
 この式(8)において、b=a+cとするとともに、cos(θ+2π)=cosθに基づいて整理すると、次式(9)が得られる。
Figure JPOXMLDOC01-appb-M000009
 この式(9)を三角関数の加法定理に基づいて整理すると、次式(10)が得られる。
Figure JPOXMLDOC01-appb-M000010
 この式(10)の右辺の第2項は、a-c≠0を条件として、級数の総和やオイラーの公式に基づいて整理すると、次式(11)から明らかなように値0になる。
Figure JPOXMLDOC01-appb-M000011
 また、上記の式(10)の右辺の第3項も、a-c≠0を条件として、級数の総和やオイラーの公式に基づいて整理すると、次式(12)から明らかなように値0になる。
Figure JPOXMLDOC01-appb-M000012
 以上により、a-c≠0のときには、第1軟磁性体を介してU相コイルを通過する第1磁極の磁束Ψuは、次式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 また、この式(13)において、a/c=αとすると、次式(14)が得られる。
Figure JPOXMLDOC01-appb-M000014
 さらに、この式(14)において、c・θ2=θe2とするとともに、c・θ1=θe1とすると、次式(15)が得られる。
Figure JPOXMLDOC01-appb-M000015
 ここで、θe2は、U相コイルに対する第1コアの回転角度位置θ2に第1ステータ磁極の極対数cを乗算していることから明らかなように、U相コイルに対する第1コアの電気角度位置を表す。また、θe1は、U相コイルに対する第1磁極の回転角度位置θ1に第1ステータ磁極の極対数cを乗算していることから明らかなように、U相コイルに対する第1磁極の電気角度位置を表す。
 同様に、第1軟磁性体を介してV相コイルを通過する第1磁極の磁束Ψvは、V相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ進んでいることから、次式(16)で表される。また、第1軟磁性体を介してW相コイルを通過する第1磁極の磁束Ψwは、W相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ遅れていることから、次式(17)で表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 また、上記の式(15)~(17)でそれぞれ表される磁束Ψu~Ψwを時間微分すると、次式(18)~(20)がそれぞれ得られる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 ここで、ωe1は、θe1の時間微分値、すなわち、第1ステータに対する第1ロータの角速度を電気角速度に換算した値(以下「第1ロータ電気角速度」という)であり、ωe2は、θe2の時間微分値、すなわち、第1ステータに対する第2ロータの角速度を電気角速度に換算した値(以下「第2ロータ電気角速度」という)である。
 さらに、第1軟磁性体を介さずにU相~W相のコイルを直接、通過する第1磁極の磁束は、極めて小さく、その影響は無視できる。このため、第1軟磁性体を介してU相~W相のコイルをそれぞれ通過する第1磁極の磁束Ψu~Ψwの時間微分値dΨu/dt~dΨw/dt(式(18)~(20))は、第1ステータ列に対して第1磁極や第1軟磁性体が回転するのに伴ってU相~W相のコイルに発生する逆起電圧(誘導起電圧)をそれぞれ表す。
 このことから、U相、V相およびW相のコイルをそれぞれ流れる電流Iu、IvおよびIwは、次式(21)、(22)および(23)で表される。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 ここで、Iは、U相~W相のコイルを流れる電流の振幅(最大値)である。
 また、これらの式(21)~(23)より、U相コイルに対する第1回転磁界のベクトルの電気角度位置θmfは、次式(24)で表されるとともに、U相コイルに対する第1回転磁界の電気角速度(以下「磁界電気角速度」という)ωmfは、次式(25)で表される。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 さらに、U相~W相のコイルに電流Iu~Iwがそれぞれ流れることで第1および第2のロータに出力される機械的出力(動力)Wは、リラクタンス分を除くと、次式(26)で表される。
Figure JPOXMLDOC01-appb-M000026
 この式(26)に上記の式(18)~(23)を代入し、整理すると、次式(27)が得られる。
Figure JPOXMLDOC01-appb-M000027
 さらに、この機械的出力Wと、前述した第1および第2のロータ伝達トルクT1,T2と、第1および第2のロータ電気角速度ωe1,ωe2との関係は、次式(28)で表される。
Figure JPOXMLDOC01-appb-M000028
 これらの式(27)および(28)から明らかなように、第1および第2のロータ伝達トルクT1,T2は、次式(29)および(30)でそれぞれ表される。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 また、第1ステータ列に供給された電力と機械的出力Wが互いに等しい(ただし、損失は無視)ことと、前記式(25)および(27)から、前述した第1駆動用等価トルクTe1は、次式(31)で表される。
Figure JPOXMLDOC01-appb-M000031
 さらに、これらの式(29)~(31)より、次式(32)が得られる。
Figure JPOXMLDOC01-appb-M000032
 この式(32)で表されるトルクの関係、および式(25)で表される電気角速度の関係は、遊星歯車装置のサンギヤとリングギヤとキャリアにおけるトルクおよび回転速度の関係とまったく同じである。
 さらに、前述したように、b=a+cおよびa-c≠0を条件として、式(25)の電気角速度の関係および式(32)のトルクの関係が成立する。この条件b=a+cは、第1磁極の数をp、第1ステータ磁極の数をqとすると、b=(p+q)/2、すなわち、b/q=(1+p/q)/2で表される。ここで、p/q=mとすると、b/q=(1+m)/2が得られることから明らかなように、上記のb=a+cという条件が成立していることは、第1ステータ磁極の数と第1磁極の数と第1軟磁性体の数との比が、1:m:(1+m)/2であることを表す。また、上記のa-c≠0という条件が成立していることは、m≠1.0であることを表す。本実施形態の第1回転機21では、第1ステータ磁極の数と第1磁極の数と第1軟磁性体の数との比が、1:m:(1+m)/2(m≠1.0)に設定されているので、式(25)に示す電気角速度の関係と式(32)に示すトルクの関係が成立し、第1回転機21が適正に作動することが分かる。
 また、式(25)および(32)から明らかなように、α=a/c、すなわち、第1ステータ磁極の極対数に対する第1磁極の極対数の比(以下「第1極対数比」という)を設定することによって、磁界電気角速度ωmf、第1および第2のロータ電気角速度ωe1,ωe2の間の関係と、第1駆動用等価トルクTe1、第1および第2のロータ伝達トルクT1,T2の間の関係を自由に設定でき、したがって、第1回転機の設計の自由度を高めることができる。この効果は、複数の第1ステータのコイルの相数が前述した値3以外の場合にも同様に得られる。
 以上のように、第1回転機21では、第1ステータへの電力供給により第1回転磁界を発生させると、前述した第1磁極と第1軟磁性体と第1ステータ磁極を結ぶような磁力線が発生し、この磁力線による磁力の作用によって、第1ステータに供給された電力は動力に変換され、その動力が、第1ロータや第2ロータから出力されるとともに、上述したような電気角速度やトルクの関係が成立する。このため、第1ステータに電力を供給していない状態で、第1および第2のロータの少なくとも一方に動力を入力することにより、この少なくとも一方のロータを第1ステータに対して回転させると、第1ステータにおいて、発電が行われるとともに、第1回転磁界が発生し、この場合にも、第1磁極と第1軟磁性体と第1ステータ磁極を結ぶような磁力線が発生するとともに、この磁力線による磁力の作用によって、上述した式(25)に示す電気角速度の関係と式(32)に示すトルクの関係が成立する。
 すなわち、発電した電力および磁界電気角速度ωmfと等価のトルクを「第1発電用等価トルク」とすると、この第1発電用等価トルクと、第1および第2のロータ伝達トルクT1,T2の間にも、式(32)に示すような関係が成立する。以上から明らかなように、本実施形態の第1回転機21は、遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有する。
 次に、以上の構成の第1回転機21の動作について説明する。前述したように、第1回転機21では、第1ステータ磁極が4個、永久磁石24aの磁極(以下「第1磁極」という)が8個、コア25aが6個である。すなわち、第1ステータ磁極の数と第1磁極の数とコア25aの数との比は、1:2.0:(1+2.0)/2に設定されており、第1ステータ磁極の極対数に対する第1磁極の極対数の比(以下「第1極対数比α」という)は、値2.0に設定されている。このことと、前述した式(18)~(20)から明らかなように、ステータ23に対してA1ロータ24やA2ロータ25が回転するのに伴ってU相~W相のコイル23c~23eにそれぞれ発生する逆起電圧(以下、それぞれ「U相逆起電圧Vcu」「V相逆起電圧Vcv」「W相逆起電圧Vcw」という)は、次式(33)、(34)および(35)で表される。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 ここで、ψFは、第1磁極の磁束の最大値である。また、θER1は、A1ロータ電気角であり、特定のU相コイル23c(以下「第1基準コイル」という)に対するA1ロータ24の特定の永久磁石24aの回転角度位置を、電気角度位置に換算した値である。すなわち、A1ロータ電気角θER1は、この特定の永久磁石24aの回転角度位置(以下「A1ロータ回転角θA1」という)に、第1ステータ磁極の極対数、すなわち値2を乗算した値である。さらに、θER2は、A2ロータ電気角であり、上記の第1基準コイルに対するA2ロータ25の特定のコア25aの回転角度位置を、電気角度位置に換算した値である。すなわち、A2ロータ電気角θER2は、この特定のコア25aの回転角度位置(以下「A2ロータ回転角θA2」という)に、第1ステータ磁極の極対数(値2)を乗算した値である。
 また、上記の式(33)~(35)におけるωER1は、θER1の時間微分値、すなわち、ステータ23に対するA1ロータ24の角速度を電気角速度に換算した値(以下「A1ロータ電気角速度」という)である。さらに、ωER2は、θER2の時間微分値、すなわち、ステータ23に対するA2ロータ25の角速度を電気角速度に換算した値(以下「A2ロータ電気角速度」という)である。
 また、前述した第1極対数比α(=2.0)と前記式(21)~(23)から明らかなように、U相、V相およびW相のコイル23c,23d,23eをそれぞれ流れる電流(以下、それぞれ「U相電流Iu」「V相電流Iv」「W相電流Iw」という)は、次式(36)、(37)および(38)で表される。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
 ここで、Iは、U相~W相のコイル23c~23eを流れる電流の振幅(最大値)である。さらに、第1極対数比α(=2.0)と前記式(24)および(25)から明らかなように、第1基準コイルに対するステータ23の第1回転磁界のベクトルの電気角度位置(以下「第1磁界電気角度位置θMFR」という)は、次式(39)で表され、ステータ23に対する第1回転磁界の電気角速度(以下「第1磁界電気角速度ωMFR」という)は、次式(40)で表される。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
 このため、第1磁界電気角速度ωMFRとA1ロータ電気角速度ωER1とA2ロータ電気角速度ωER2の関係をいわゆる共線図で表すと、例えば図6のように示される。
 また、ステータ23に供給された電力および第1磁界電気角速度ωMFRと等価のトルクを第1駆動用等価トルクTSE1とすると、この第1駆動用等価トルクTSE1と、A1ロータ24に伝達されたトルク(以下「A1ロータ伝達トルク」という)TRA1と、A2ロータ25に伝達されたトルク(以下「A2ロータ伝達トルク」という)TRA2との関係は、第1極対数比α(=2.0)と前記式(32)から明らかなように、次式(41)で表される。
Figure JPOXMLDOC01-appb-M000041
 上記の式(40)および(41)でそれぞれ表される電気角速度およびトルクの関係は、サンギヤおよびリングギヤのギヤ比が1:2である遊星歯車装置のサンギヤ、リングギヤおよびキャリアにおける回転速度およびトルクの関係とまったく同じである。
 次に、ステータ23に供給された電力が、具体的にどのようにして動力に変換され、A1ロータ24やA2ロータ25から出力されるかについて説明する。まず、図7(a)~(c)~図9(a)、(b)を参照しながら、A1ロータ24を回転不能に保持した状態でステータ23に電力を供給した場合について説明する。なお、図7(a)~(c)~図9(a)、(b)では、便宜上、複数の構成要素の符号を省略している。このことは、後述する他の図面においても同様である。また、理解の容易化のために、図7(a)~(c)~図9(a)、(b)に示される同じ1つの第1ステータ磁極およびコア25aに、ハッチングを付している。
 まず、図7(a)に示すように、ある1つのコア25aの中心と、ある1つの永久磁石24aの中心が、周方向に互いに一致するとともに、そのコア25aから3つ目のコア25aの中心と、その永久磁石24aから4つ目の永久磁石24aの中心が、周方向に互いに一致した状態から、第1回転磁界を、同図の左方に回転するように発生させる。その発生の開始時においては、互いに同じ極性を有する1つおきの第1ステータ磁極の位置を、中心がコア25aと一致している各永久磁石24aの中心と周方向に一致させるとともに、この第1ステータ磁極の極性をこの永久磁石24aの第1磁極の極性と異ならせる。
 前述したようにステータ23による第1回転磁界がA1ロータ24との間に発生することと、コア25aを有するA2ロータ25がステータ23とA1ロータ24の間に配置されていることから、第1ステータ磁極および第1磁極により、各コア25aは磁化される。このことと、隣り合う各コア25aの間に間隔が空いていることから、第1ステータ磁極とコア25aと第1磁極を結ぶような磁力線MLが発生する。なお、図7(a)~(c)~図9(a)、(b)では、便宜上、鉄芯23aや固定部24bにおける磁力線MLを省略している。このことは、後述する他の図面においても同様である。
 図7(a)に示す状態では、磁力線MLは、周方向の位置が互いに一致している第1ステータ磁極、コア25aおよび第1磁極を結び、かつ、これらの第1ステータ磁極、コア25aおよび第1磁極のそれぞれの周方向の各両側に隣り合う第1ステータ磁極、コア25aおよび第1磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、コア25aには、周方向に回転させるような磁力は作用しない。
 そして、第1回転磁界の回転に伴って第1ステータ磁極が図7(a)に示す位置から図7(b)に示す位置に変化すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、コア25aに磁力が作用する。この場合、磁力線MLで互いに結ばれた第1ステータ磁極および第1磁極を結ぶ直線に対して、磁力線MLが、このコア25aにおいて第1回転磁界の回転方向(以下「磁界回転方向」という)と逆方向に凸に曲がった状態になるため、上記の磁力は、コア25aを磁界回転方向に駆動するように作用する。このような磁力線MLによる磁力の作用により、コア25aは、磁界回転方向に駆動され、図7(c)に示す位置に回転し、コア25aが設けられたA2ロータ25も、磁界回転方向に回転する。なお、図7(b)および(c)における破線は、磁力線MLの磁束量が極めて小さく、第1ステータ磁極とコア25aと第1磁極の間の磁気的なつながりが弱いことを表している。このことは、後述する他の図面においても同様である。
 また、第1回転磁界がさらに回転するのに伴い、上述した一連の動作、すなわち、「磁力線MLがコア25aにおいて磁界回転方向と逆方向に凸に曲がる→磁力線MLが直線状になるようにコア25aに磁力が作用する→コア25aおよびA2ロータ25が、磁界回転方向に回転する」という動作が、図8(a)~(d)、図9(a)および(b)に示すように、繰り返し行われる。以上のように、A1ロータ24を回転不能に保持した状態で、ステータ23に電力を供給した場合には、上述したような磁力線MLによる磁力の作用によって、ステータ23に供給された電力は動力に変換され、その動力がA2ロータ25から出力される。
 また、図10は、図7(a)の状態から第1ステータ磁極が電気角2πだけ回転した状態を示しており、図10と図7(a)の比較から明らかなように、コア25aは、第1ステータ磁極に対して1/3の回転角度だけ、同方向に回転していることが分かる。この結果は、前記式(40)において、ωER1=0とすることによって、ωER2=ωMFR/3が得られることと合致する。
 次に、図11(a)~(c)~図13(a)、(b)を参照しながら、A2ロータ25を回転不能に保持した状態で、ステータ23に電力を供給した場合の動作について説明する。なお、図11(a)~(c)~図13(a)、(b)では、理解の容易化のために、同じ1つの第1ステータ磁極および永久磁石24aに、ハッチングを付している。まず、図11(a)に示すように、前述した図7(a)の場合と同様、ある1つのコア25aの中心と、ある1つの永久磁石24aの中心が、周方向に互いに一致するとともに、そのコア25aから3つ目のコア25aの中心と、その永久磁石24aから4つ目の永久磁石24aの中心が、周方向に互いに一致した状態から、第1回転磁界を、同図の左方に回転するように発生させる。その発生の開始時においては、互いに同じ極性を有する1つおきの第1ステータ磁極の位置を、中心がコア25aと一致している各永久磁石24aの中心と周方向に一致させるとともに、この第1ステータ磁極の極性をこの永久磁石24aの第1磁極の極性と異ならせる。
 図11(a)に示す状態では、図7(a)の場合と同様、磁力線MLは、周方向の位置が互いに一致している第1ステータ磁極、コア25aおよび第1磁極を結び、かつ、これらの第1ステータ磁極、コア25aおよび第1磁極のそれぞれの周方向の各両側に隣り合う第1ステータ磁極、コア25aおよび第1磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、永久磁石24aには、周方向に回転させるような磁力は作用しない。
 そして、第1回転磁界の回転に伴って第1ステータ磁極が図11(a)に示す位置から図11(b)に示す位置に回転すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、永久磁石24aに磁力が作用する。この場合、この永久磁石24aが、磁力線MLで互いに結ばれた第1ステータ磁極およびコア25aの延長線上よりも磁界回転方向に進んだ位置にあるため、上記の磁力は、この延長線上に永久磁石24aを位置させるように、すなわち、永久磁石24aを磁界回転方向と逆方向に駆動するように作用する。このような磁力線MLによる磁力の作用により、永久磁石24aは、磁界回転方向と逆方向に駆動され、図11(c)に示す位置に回転し、永久磁石24aが設けられたA1ロータ24も、磁界回転方向と逆方向に回転する。
 また、第1回転磁界がさらに回転するのに伴い、上述した一連の動作、すなわち、「磁力線MLが曲がり、磁力線MLで互いに結ばれた第1ステータ磁極およびコア25aの延長線上よりも、永久磁石24aが磁界回転方向に進んだ位置に位置する→磁力線MLが直線状になるように永久磁石24aに磁力が作用する→永久磁石24aおよびA1ロータ24が、磁界回転方向と逆方向に回転する」という動作が、図12(a)~(d)、図13(a)および(b)に示すように、繰り返し行われる。以上のように、A2ロータ25を回転不能に保持した状態で、ステータ23に電力を供給した場合には、上述したような磁力線MLによる磁力の作用によって、ステータ23に供給された電力は動力に変換され、その動力がA1ロータ24から出力される。
 また、図13(b)は、図11(a)の状態から第1ステータ磁極が電気角2πだけ回転した状態を示しており、図13(b)と図11(a)の比較から明らかなように、永久磁石24aは、第1ステータ磁極に対して1/2の回転角度だけ、逆方向に回転していることが分かる。この結果は、前記式(40)において、ωER2=0とすることによって、-ωER1=ωMFR/2が得られることと合致する。
 また、図14および図15は、第1ステータ磁極、コア25aおよび永久磁石24aの数を、値16、値18および値20にそれぞれ設定し、A1ロータ24を回転不能に保持するとともに、ステータ23への電力の供給によりA2ロータ25から動力を出力した場合におけるシミュレーション結果を示している。図14は、A2ロータ電気角θER2が値0~2πまで変化する間におけるU相~W相の逆起電圧Vcu~Vcwの推移の一例を示している。
 この場合、A1ロータ24が回転不能に保持されていることと、第1ステータ磁極および第1磁極の極対数がそれぞれ値8および値10であることと、前記式(25)から、第1磁界電気角速度ωMFR、A1およびA2のロータ電気角速度ωER1,ωER2の間の関係は、ωMFR=2.25・ωER2で表される。図14に示すように、A2ロータ電気角θER2が値0~2πまで変化する間に、U相~W相の逆起電圧Vcu~Vcwは、ほぼ2.25周期分、発生している。また、図14は、A2ロータ25から見たU相~W相の逆起電圧Vcu~Vcwの変化状態を示しており、同図に示すように、これらの逆起電圧は、A2ロータ電気角θER2を横軸として、W相逆起電圧Vcw、V相逆起電圧VcvおよびU相逆起電圧Vcuの順に並んでおり、このことは、A2ロータ25が磁界回転方向に回転していることを表す。以上のような図14に示すシミュレーション結果は、上述した式(25)に基づくωMFR=2.25・ωER2の関係と合致する。
 さらに、図15は、第1駆動用等価トルクTSE1、A1およびA2のロータ伝達トルクTRA1,TRA2の推移の一例を示している。この場合、第1ステータ磁極および第1磁極の極対数がそれぞれ値8および値10であることと、前記式(32)から、第1駆動用等価トルクTSE1、A1およびA2のロータ伝達トルクTRA1,TRA2の間の関係は、TSE1=TRA1/1.25=-TRA2/2.25で表される。図15に示すように、第1駆動用等価トルクTSE1は、ほぼ-TREFに、A1ロータ伝達トルクTRA1は、ほぼ1.25・(-TREF)に、A2ロータ伝達トルクTRA2は、ほぼ2.25・TREFになっている。このTREFは所定のトルク値(例えば200Nm)である。このような図15に示すシミュレーション結果は、上述した式(32)に基づくTSE1=TRA1/1.25=-TRA2/2.25の関係と合致する。
 また、図16および図17は、第1ステータ磁極、コア25aおよび永久磁石24aの数を図14および図15の場合と同様に設定し、A1ロータ24に代えてA2ロータ25を回転不能に保持するとともに、ステータ23への電力の供給によりA1ロータ24から動力を出力した場合におけるシミュレーション結果を示している。図16は、A1ロータ電気角θER1が値0~2πまで変化する間におけるU相~W相の逆起電圧Vcu~Vcwの推移の一例を示している。
 この場合、A2ロータ25が回転不能に保持されていることと、第1ステータ磁極および第1磁極の極対数がそれぞれ値8および値10であることと、前記式(25)から、磁界電気角速度ωMFR、A1およびA2のロータ電気角速度ωER1,ωER2の間の関係は、ωMFR=-1.25・ωER1で表される。図16に示すように、A1ロータ電気角θER1が値0~2πまで変化する間に、U相~W相の逆起電圧Vcu~Vcwは、ほぼ1.25周期分、発生している。また、図16は、A1ロータ24から見たU相~W相の逆起電圧Vcu~Vcwの変化状態を示しており、同図に示すように、これらの逆起電圧は、A1ロータ電気角θER1を横軸として、U相逆起電圧Vcu、V相逆起電圧VcvおよびW相逆起電圧Vcwの順に並んでおり、このことは、A1ロータ24が磁界回転方向と逆方向に回転していることを表す。以上のような図16に示すシミュレーション結果は、上述した式(25)に基づくωMFR=-1.25・ωER1の関係と合致する。
 さらに、図17は、第1駆動用等価トルクTSE1、A1およびA2のロータ伝達トルクTRA1,TRA2の推移の一例を示している。この場合にも、図15の場合と同様、式(32)から、第1駆動用等価トルクTSE1、A1およびA2のロータ伝達トルクTRA1,TRA2の間の関係は、TSE1=TRA1/1.25=-TRA2/2.25で表される。図17に示すように、第1駆動用等価トルクTSE1は、ほぼTREFに、A1ロータ伝達トルクTRA1は、ほぼ1.25・TREFに、A2ロータ伝達トルクTRA2は、ほぼ-2.25・TREFになっている。このような図17に示すシミュレーション結果は、上述した式(32)に基づくTSE1=TRA1/1.25=-TRA2/2.25の関係と合致する。
 以上のように、第1回転機21では、ステータ23への電力供給により第1回転磁界を発生させると、前述した第1磁極とコア25aと第1ステータ磁極を結ぶような磁力線MLが発生し、この磁力線MLによる磁力の作用によって、ステータ23に供給された電力は動力に変換され、その動力が、A1ロータ24やA2ロータ25から出力される。この場合、磁界電気角速度ωMFR、A1およびA2のロータ電気角速度ωER1,ωER2の間に、前記式(40)に示す関係が成立するとともに、第1駆動用等価トルクTSE1、A1およびA2のロータ伝達トルクTRA1,TRA2の間に、前記式(41)に示す関係が成立する。
 このため、ステータ23に電力を供給していない状態で、A1およびA2のロータ34,35の少なくとも一方に動力を入力することにより、この少なくとも一方をステータ23に対して回転させると、ステータ23において、発電が行われるとともに、第1回転磁界が発生し、この場合にも、第1磁極とコア25aと第1ステータ磁極を結ぶような磁力線MLが発生するとともに、この磁力線MLによる磁力の作用によって、式(40)に示す電気角速度の関係と式(41)に示すようなトルクの関係が成立する。
 すなわち、発電した電力および第1磁界電気角速度ωMFRと等価のトルクを第1発電用等価トルクTGE1とすると、この第1発電用等価トルクTGE1、A1およびA2のロータ伝達トルクTRA1,TRA2の間に、次式(42)に示す関係が成立する。
         TGE1=TRA1/α=-TRA2/(α+1)
             =TRA1/2=-TRA2/3      ……(42)
 また、ステータ23への電力供給中および発電中、第1回転磁界の回転速度(以下「第1磁界回転速度VMF1」という)と、A1およびA2のロータ24,25の回転速度(以下、それぞれ「A1ロータ回転速度VRA1」「A2ロータ回転速度VRA2」という)の間に、次式(43)が成立する。
         VMF1=(α+1)VRA2-α・VRA1
             =3・VRA2-2・VRA1       ……(43)
 以上から明らかなように、第1回転機21は、遊星歯車装置と一般的な1ロータタイプの回転機とを組み合わせた装置と同じ機能を有する。
<第2回転機31>
 第2回転機31は、第1回転機21と同様に構成されており、以下、その構成と動作について簡単に説明する。図1および図18に示すように、第2回転機31は、ステータ33と、ステータ33に対向するように設けられたB1ロータ34と、両者33,34の間に設けられたB2ロータ35を有している。これらのステータ33、B2ロータ35およびB1ロータ34は、径方向に、外側からこの順で並んでおり、同心状に配置されている。図18では、図3と同様、第1回転軸4などの一部の要素を、図示の便宜上、スケルトン図的に描いている。
 上記のステータ33は、第2回転磁界を発生させるものであり、図18に示すように、鉄芯33aと、この鉄芯33aに設けられたU相、V相およびW相のコイル33bを有している。鉄芯33aは、複数の鋼板を積層した円筒状のものであり、軸線方向に延びており、ケースCAに固定されている。また、鉄芯33aの内周面には、12個のスロット(図示せず)が形成されており、これらのスロットは、周方向に等間隔で並んでいる。上記のU相~W相のコイル33bは、スロットに分布巻き(波巻き)で巻回されるとともに、前述した第2PDU42およびVCU44を介して、バッテリ43に接続されている。第2PDU42は、第1PDU41と同様、インバータなどからなる電気回路で構成されており、第1PDU41およびECU2に接続されている(図1参照)。
 以上の構成のステータ33では、バッテリ43から電力が供給され、U相~W相のコイル33bに電流が流れたときに、または、後述するように発電が行われたときに、鉄芯33aのB1ロータ34側の端部に、4個の磁極が周方向に等間隔で発生するとともに、これらの磁極による第2回転磁界が周方向に移動する。以下、鉄芯33aに発生する磁極を「第2ステータ磁極」という。また、周方向に隣り合う各2つの第2ステータ磁極の極性は、互いに異なっている。
 B1ロータ34は、8個の永久磁石34a(2つのみ図示)から成る第2磁極列を有している。これらの永久磁石34aは、周方向に等間隔で並んでおり、この第2磁極列は、ステータ33の鉄芯33aに対向している。各永久磁石34aは、軸線方向に延びており、その軸線方向の長さが、ステータ33の鉄芯33aのそれと同じに設定されている。
 また、永久磁石34aは、リング状の固定部34bの外周面に取り付けられている。この固定部34bは、軟磁性体、例えば鉄または複数の鋼板を積層したもので構成されており、その内周面が、円板状のフランジ34cの外周面に取り付けられている。このフランジ34cは、前述した第1回転軸4に一体に設けられている。以上により、永久磁石34aを含むB1ロータ34は、第1回転軸4と一体に回転自在になっている。さらに、上記のように軟磁性体で構成された固定部34bの外周面に永久磁石34aが取り付けられているので、各永久磁石34aには、ステータ33側の端部に、(N)または(S)の1つの磁極が現れる。また、周方向に隣り合う各2つの永久磁石34aの極性は、互いに異なっている。
 B2ロータ35は、6個のコア35a(2つのみ図示)から成る第2軟磁性体列を有している。これらのコア35aは、周方向に等間隔で並んでおり、この第2軟磁性体列は、ステータ33の鉄芯33aとB1ロータ34の磁極列との間に、それぞれ所定の間隔を隔てて配置されている。各コア35aは、軟磁性体、例えば複数の鋼板を積層したものであり、軸線方向に延びている。また、コア35aの軸線方向の長さは、永久磁石34aと同様、ステータ33の鉄芯33aのそれと同じに設定されている。さらに、コア35aは、円板状のフランジ35bおよび35cの外端部に、軸線方向に若干延びる筒状の連結部35dおよび35eをそれぞれ介して取り付けられている。これらのフランジ35bおよび35cは、前述した連結軸6および第2回転軸7に一体に設けられている。これにより、コア35aを含むB2ロータ35は、連結軸6および第2回転軸7と一体に回転自在になっている。
 このように、第2回転機31は、第1回転機21と同様に構成されているので、遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有する。すなわち、ステータ33への電力供給中および発電中、第2回転磁界の電気角速度、B1ロータ34およびB2ロータ35の電気角速度の間に、式(25)に示すような関係が成立する。また、ステータ33に供給された電力および第2回転磁界の電気角速度と等価のトルクを「第2駆動用等価トルク」とすると、この第2駆動用等価トルクと、B1ロータ34およびB2ロータ35に伝達されるトルクの間に、式(32)に示すようなトルクの関係が成立する。さらに、ステータ33で発電した電力および第2回転磁界の電気角速度と等価のトルクを「第2発電用等価トルク」とすると、この第2発電用等価トルクと、B1ロータ34およびB2ロータ35に伝達されるトルクの間に、式(32)に示すようなトルクの関係が成立する。
 次に、以上の構成の第2回転機31の動作について説明する。前述したように、第2回転機31では、第2ステータ磁極が4個、永久磁石34aの磁極(以下「第2磁極」という)が8個、コア35aが6個である。すなわち、第2ステータ磁極の数と第2磁極の数とコア35aの数との比は、第1回転機21の第1ステータ磁極の数と第1磁極の数とコア25aの数との比と同様、1:2.0:(1+2.0)/2に設定されている。また、第2ステータ磁極の極対数に対する第2磁極の極対数の比(以下「第2極対数比β」という)は、第1極対数比αと同様、値2.0に設定されている。以上のように、第2回転機31は、第1回転機21と同様に構成されているので、第1回転機21と同じ機能を有している。
 すなわち、ステータ33に供給された電力を動力に変換し、B1ロータ34やB2ロータ35から出力するとともに、B1ロータ34やB2ロータ35に入力された動力を電力に変換し、ステータ33から出力する。また、そのような電力および動力の入出力中、第2回転磁界、B1およびB2ロータ34,35が、式(40)に示すような回転速度に関する共線関係を保ちながら回転する。すなわち、この場合、第2回転磁界の回転速度(以下「第2磁界回転速度VMF2」という)と、B1およびB2のロータ34,35の回転速度(以下、それぞれ「B1ロータ回転速度VRB1」「B2ロータ回転速度VRB2」という)の間には、次式(44)が成立する。
         VMF2=(β+1)VRB2-β・VRB1
             =3・VRB2-2・VRB1       ……(44)
 また、ステータ33に供給された電力および第2回転磁界と等価のトルクを「第2駆動用等価トルクTSE2」とすると、第2駆動用等価トルクTSE2と、B1およびB2のロータ34,35に伝達されたトルク(以下、それぞれ「B1ロータ伝達トルクTRB1」、「B2ロータ伝達トルクTRB2」という)との間には、次式(45)が成立する。
         TSE2=TRB1/β=-TRB2/(β+1)
             =TRB1/2=-TRB2/3      ……(45)
 さらに、ステータ33で発電した電力および第2回転磁界と等価のトルクを「第2発電用等価トルクTGE2」とすると、第2発電用等価トルクTGE2と、B1およびB2のロータ伝達トルクTRB1,TRB2との間には、次式(46)が成立する。
         TGE2=TRB1/β=-TRB2/(1+β)
             =TRB1/2=-TRB2/3      ……(46)
 以上のように、第2回転機31は、第1回転機21と同様、遊星歯車装置と一般的な1ロータタイプの回転機とを組み合わせた装置と同じ機能を有する。
<ECU2>
 ECU2は、バッテリ43の出力電圧又はバッテリ43への充電電圧を昇圧又は降圧するVCU44を制御する。ECU2によるVCU44の制御によって、VCU44の変圧比等が変更される。また、ECU2は、第1PDU41を制御することによって、第1回転機21のステータ23に供給される電力と、電力の供給に伴ってステータ23で発生する第1回転磁界の第1磁界回転速度VMF1を制御する。さらに、ECU2は、第1PDU41を制御することによって、ステータ23で発電する電力と、発電に伴ってステータ23で発生する第1回転磁界の第1磁界回転速度VMF1を制御する。
 また、ECU2は、第2PDU42を制御することによって、第2回転機31のステータ33に供給される電力と、電力の供給に伴ってステータ33で発生する第2回転磁界の第2磁界回転速度VMF2を制御する。さらに、ECU2は、第2PDU42を制御することによって、ステータ33で発電する電力と、発電に伴ってステータ33で発生する第2回転磁界の第2磁界回転速度VMF2を制御する。
 以上のように、動力装置1では、エンジン3のクランク軸3a、第1回転機21のA2ロータ25、および第2回転機31のB1ロータ34は、第1回転軸4を介して互いに機械的に連結されている。また、第1回転機21のA1ロータ24および第2回転機31のB2ロータ35は、連結軸6を介して互いに機械的に連結されており、B2ロータ35および駆動輪DW,DWは、第2回転軸7などを介して互いに機械的に連結されている。すなわち、A1ロータ24およびB2ロータ35は、駆動輪DW,DWに機械的に連結されている。さらに、第1回転機21のステータ23および第2回転機31のステータ33が、第1および第2のPDU41,42を介して互いに電気的に接続されている。また、バッテリ43が、VCU44並びに第1および第2のPDU41,42をそれぞれ介して、ステータ23および33に電気的に接続されている。
 図19は、動力装置1の概略構成および動力の伝達状況の一例を示す概念図である。なお、図19では、第1回転機21が「第1回転機」、ステータ23が「第1ステータ」、A1ロータ24が「第1ロータ」、A2ロータ25が「第2ロータ」、第2回転機31が「第2回転機」、ステータ33が「第1ステータ」、B1ロータ34が「第3ロータ」、B2ロータ35が「第4ロータ」、エンジン3が「熱機関」、駆動輪DW,DWが「被駆動部」、第1PDU41が「第1制御器」、第2PDU42が「第2制御器」とそれぞれ表されている。図19に示すように、第1回転機の第2ロータおよび第2回転機の第3ロータが、熱機関の出力部に機械的に連結され、第1回転機の第1ロータおよび第2回転機の第4ロータが、被駆動部に機械的に連結されている。また、第1回転機の第1ステータに、第1ステータの発電・供給電力を制御する第1制御器が電気的に接続されるとともに、第2回転機の第2ステータに、第2ステータの発電・供給電力を制御する第2制御器が電気的に接続されており、これらの第1および第2の制御器を介して、第1および第2のステータが互いに電気的に接続されている。なお、図19では、要素間の連結については、機械的な連結を実線で、電気的な接続を一点鎖線で、磁気的な連結を破線で、それぞれ示している。また、動力および電力の流れを矢印付きの太い線で示している。
 以上の構成により、動力装置1では、熱機関の動力が、例えば次のようにして被駆動部に伝達される。すなわち、熱機関の動力を被駆動部に伝達する場合、第1および第2の制御器による制御によって、熱機関の動力の一部を用いて第1回転機の第1ステータで発電を行うとともに、発電した電力を第2回転機の第2ステータに供給する。この第1回転機での発電時、図19に示すように、熱機関の動力の一部が、熱機関の出力部に連結された第2ロータに伝達され、さらに、前述した磁力線による磁力によって第1ステータに電力として伝達されるのに伴い、磁力線による磁力によって第1ロータにも熱機関の動力の一部が伝達される。すなわち、第2ロータに伝達された熱機関の動力が、第1ステータおよび第1ロータに分配される。さらに、第1ロータに分配された動力は被駆動部に伝達される一方、第1ステータに分配された電力は第2ステータに供給される。
 また、上記のように第1ステータで発電した電力が第2ステータに供給されると、この電力は、動力に変換され、磁力線による磁力によって、第4ロータに伝達される。それに伴い、熱機関の動力の残りが、第3ロータに伝達され、さらに、磁力線による磁力によって、第4ロータに伝達される。さらに、第4ロータに伝達された動力は、被駆動部に伝達される。以上の結果、被駆動部に、熱機関の動力と等しい大きさの動力が伝達される。
 以上のように、本実施形態の動力装置1では、第1および第2の回転機が遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有するので、前述した従来の動力装置と異なり、動力を分配・合成して伝達するための遊星歯車装置は不要であり、したがって、その分、動力装置を小型化することができる。また、前述した従来の場合と異なり、熱機関の動力が上述したように再循環せずに被駆動部に伝達されるので、第1および第2の回転機を通過する動力を低減できる。したがって、第1および第2の回転機の小型化およびコストの削減を図ることができ、それにより、動力装置のさらなる小型化とコストの削減を達成することができる。さらに、上記のように低減された動力に見合ったトルク容量を有する第1および第2の回転機を用いることによって、動力の損失を抑制し、動力装置の駆動効率を高めることができる。
 また、熱機関の動力は、第2ロータ、磁力線による磁力および第1ロータから成る第1伝達経路と、第2ロータ、磁力線による磁力、第1ステータ、第1制御器、第2制御器、第2ステータ、磁力線による磁力、および第4ロータから成る第2伝達経路と、第3ロータ、磁力線による磁力および第4ロータから成る第3伝達経路の計3つの伝達経路を介して、分割された状態で被駆動部に伝達される。これにより、第2伝達経路を介して第1および第2の制御器を通過する電力(エネルギ)を低減できるので、第1および第2の制御器の小型化およびコストの削減を図ることができ、それにより、動力装置のさらなる小型化およびコストの削減を達成することができる。また、第3伝達経路では、熱機関の動力を一旦、電力に変換した後、再び動力に戻し、いわゆる電気パスによって被駆動部に伝達するのに対し、第1および第2の伝達経路では、動力を電力に変換せずに、磁力線による磁力により非接触で、いわゆる磁気パスによって動力を被駆動部に伝達するので、第3伝達経路よりも伝達効率が高い。
 さらに、以上のような被駆動部への動力の伝達の際、第1および第2の制御器により、第1および第2の回転磁界の回転速度をそれぞれ制御することによって、熱機関の動力を被駆動部に無段階に変速して伝達することができる。以下、この点について説明する。第1回転機では、前述した機能から明らかなように、第1ステータ、第1および第2のロータの間でのエネルギの分配・合成中、第1回転磁界、第1および第2のロータは、式(25)に示すような回転速度に関する共線関係を保ちながら回転する。また、第2回転機では、前述した機能から明らかなように、第2ステータ、第3および第4のロータの間でのエネルギの分配・合成中、第2回転磁界、第3および第4のロータは、式(25)に示すような回転速度に関する共線関係を保ちながら回転する。
 さらに、前述した連結関係において、第2および第3のロータがいずれも、熱機関の出力部にギヤなどの変速機構を介さずに直結されている場合には、第2および第3のロータの回転速度はいずれも、熱機関の出力部の回転速度(以下「熱機関の回転数」という)と等しい。また、第1および第4のロータがいずれも、被駆動部に直結されている場合には、第1および第4のロータの回転速度はいずれも、被駆動部の速度と等しい。
 ここで、第1~第4のロータの回転速度をそれぞれ、「第1~第4のロータ回転速度VR1,VR2,VR3,VR4」とし、第1および第2の回転磁界の回転速度をそれぞれ、「第1および第2の磁界回転速度VMF1,VMF2」とする。上述した各種の回転要素の回転速度の関係から、これらの回転速度VR1~VR4、VMF1、およびVMF2の関係は、例えば図20の太い実線のように示される。
 なお、図20では、実際には、値0を示す横線に交わる縦線は、各種の回転要素の回転速度を表すためのものであり、この縦線上に表される白丸と横線との隔たりが、各種の回転要素の回転速度に相当するが、便宜上、この縦線の一端に、各種の回転要素の回転速度を表す符号を表示している。また、正転方向および逆転方向を、「+」および「-」でそれぞれ表示している。さらに、図20において、βは、第2回転機の第2ステータ磁極の極対数に対する第2磁極の極対数の比(以下「第2極対数比」という)である。以上のことは、後述する他の速度共線図についても同様に当てはまる。
 このため、図20に二点鎖線で示すように、例えば、第2および第3のロータ回転速度VR2,VR3に対して、第1磁界回転速度VMF1を上昇させるとともに、第2磁界回転速度VMF2を低下させることによって、熱機関の動力を無段階に減速して被駆動部に伝達することができる。逆に、同図に一点鎖線で示すように、第2および第3のロータ回転速度VR2,VR3に対して、第1磁界回転速度VMF1を低下させるとともに、第2磁界回転速度VMF2を上昇させることによって、熱機関の動力を無段階に増速して被駆動部に伝達することができる。
 また、第1回転機の第1極対数比αが比較的大きい場合において、熱機関の回転数が被駆動部の速度よりも高いとき(図20の二点鎖線参照)には、第1磁界回転速度VMF1は、熱機関の回転数よりも高くなり、過大になる場合がある。したがって、第1極対数比αをより小さな値に設定することによって、図20に破線で示す速度共線図と二点鎖線で示す速度共線図との比較から明らかなように、第1磁界回転速度VMF1を小さくすることができ、それにより、第1磁界回転速度VMF1の過大化による損失の発生により駆動効率が低下するのを、防止することができる。さらに、第2回転機の第2極対数比βが比較的大きい場合において、被駆動部の速度が熱機関の回転数よりも高いとき(図20の一点鎖線参照)には、第2磁界回転速度VMF2は、被駆動部の速度よりも高くなり、過大になる場合がある。したがって、第2極対数比βをより小さな値に設定することによって、図20に破線で示す速度共線図と一点鎖線で示す速度共線図との比較から明らかなように、第2磁界回転速度VMF2を小さくすることができ、それにより、第2磁界回転速度VMF2の過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 また、動力装置では、例えば、第2回転機の第2ステータに電力を供給するとともに、第1回転機の第1ステータで発電することによって、前述した第2回転機の第2駆動用等価トルクを、第1回転機の第1発電用等価トルクを反力とし、熱機関の出力部を停止した状態で被駆動部に伝達でき、それにより、被駆動部を駆動することができる。さらに、そのような被駆動部の駆動中、熱機関が内燃機関である場合に、内燃機関を始動することが可能である。図21は、この場合における各種の回転要素のトルクの関係を、回転速度の関係とともに示している。同図において、TDHEは、熱機関の出力部に伝達されるトルク(以下「熱機関伝達トルク」という)であり、TOUTは、被駆動部に伝達されるトルク(以下「被駆動部伝達トルク」という)である。また、Tg1は第1発電用等価トルクであり、Te2は第2駆動用等価トルクである。
 上記のように熱機関を始動する場合には、図21から明らかなように、第2駆動用等価トルクTe2が、第1発電用等価トルクTg1を反力として、被駆動部および熱機関の出力部の双方に伝達されるため、第1回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第1回転機に要求されるトルクすなわち第1発電用等価トルクTg1は、次式(47)で表される。
  Tg1=-{β・TOUT+(β+1)TDHE}/(α+1+β) ……(47)
 この式(47)から明らかなように、第1極対数比αが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関伝達トルクTDHEに対して、第1発電用等価トルクTg1は小さくなる。したがって、第1極対数比αをより大きな値に設定することによって、第1回転機のさらなる小型化およびコストの削減を図ることができる。
 さらに、動力装置では、例えば、次のようにして熱機関、第1および第2の回転機を制御することによって、低速状態の被駆動部の速度を急速に上昇させることができる。図22は、このように被駆動部の速度を急速に上昇させる場合の開始時における各種の回転要素の回転速度の関係を、各種の回転要素のトルクの関係とともに示している。同図において、THEは熱機関のトルクであり、Tg2は前述した第2発電用等価トルクである。この場合、熱機関の回転数を、その最大トルクが得られるような所定の回転数に高める。図22に示すように、被駆動部の速度がすぐには上昇しないため、熱機関の回転数が被駆動部の速度よりも高くなるとともに、両者の差が大きくなることから、両者の関係によって定まる第2回転磁界の回転方向は、逆転方向になる。そのような第2回転磁界を発生させる第2ステータから正のトルクを被駆動部に作用させるために、第2ステータにおいて発電を行う。さらに、第2ステータで発電した電力を第1ステータに供給するとともに、第1回転磁界を正転させる。
 以上により、熱機関のトルクTHE、第1駆動用等価トルクTe1および第2発電用等価トルクTg2はいずれも、正のトルクとして被駆動部に伝達され、その結果、被駆動部の速度が急速に上昇する。また、上記のように低速状態の被駆動部の速度を急速に上昇させる場合には、図22から明らかなように、熱機関のトルクTHEおよび第1駆動用等価トルクTe1が第2発電用等価トルクTg2を反力として被駆動部に伝達されるため、第2回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第2回転機に要求されるトルクすなわち第2発電用等価トルクTg2は、次式(48)で表される。
  Tg2=-{α・THE+(1+α)TOUT}/(β+α+1)  ……(48)
 この式(48)から明らかなように、第2極対数比βが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関のトルクTHEに対して、第2発電用等価トルクTg2が小さくなる。したがって、第2極対数比βをより大きな値に設定することによって、第2回転機のさらなる小型化およびコストの削減を図ることができる。
 図2に示すように、ECU2には、クランク角センサ51から、クランク軸3aのクランク角度位置を表す検出信号が出力される。ECU2は、このクランク角度位置に基づいてエンジン回転数NEを算出する。さらに、ECU2には、第1回転角センサ52および第2回転角センサ53が接続されており、これらの第1および第2の回転角センサ52,53は、前述したA1およびA2のロータ回転角θA1,θA2をそれぞれ検出し、それらの検出信号はECU2に出力される。ECU2は、検出されたA1およびA2のロータ回転角θA1,θA2に基づいて、A1およびA2のロータ回転速度VRA1,VRA2をそれぞれ算出する。
 また、ECU2には、第3回転角センサ54および第4回転角センサ55が接続されている。第3回転角センサ54は、第2回転機31の特定のU相コイル33b(以下「第2基準コイル」という)に対するB1ロータ34の特定の永久磁石34aの回転角度位置(以下「B1ロータ回転角θB1」という)を検出し、その検出信号をECU2に出力する。ECU2は、検出されたB1ロータ回転角θB1に基づいて、B1ロータ回転速度VRB1を算出する。上記の第4回転角センサ55は、第2基準コイルに対するB2ロータ35の特定のコア35aの回転角度位置(以下「B2ロータ回転角θB2」という)を検出し、その検出信号をECU2に出力する。ECU2は、検出されたB2ロータ回転角θB2に基づいて、B2ロータ回転速度VRB2を算出する。
 さらに、ECU2には、電流電圧センサ56から、バッテリ43に入出力される電流・電圧値を表す検出信号が出力される。ECU2は、この検出信号に基づいて、バッテリ43の充電状態を算出する。また、ECU2には、アクセル開度センサ57から車両のアクセルペダル(図示せず)の踏み込み量であるアクセル開度APを表す検出信号が、車速センサ58から車速VPを表す検出信号が、出力される。なお、この車速VPは、駆動輪DW,DWの回転速度である。
 ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されており、上述した各種のセンサ51~58からの検出信号に応じて、エンジン3、第1および第2の回転機21,31の動作を制御する。なお、ECU2は、当該制御を行う際に必要となる各種マップ等を記憶するメモリ45からデータを読み込む。また、ECU2は、バッテリ43の外装体又はその周辺に取り付けられたバッテリ温度センサ62が検出した信号から、バッテリ43の温度を導出する。
<駆動力制御>
 以下、上記説明した1共線4要素の仕組みを有する動力装置1においてECU2が行う駆動力制御について、図23及び図24を参照して説明する。図23は、第1実施形態の動力装置1における駆動力制御を示すブロック線図である。また、図24は、1共線4要素の仕組みを有する動力装置1における速度共線図である。
 図23に示すように、ECU2は、上記説明したアクセル開度APを表す検出信号と、車速VPを表す検出信号とを取得する。次に、ECU2は、メモリ45に格納されている駆動力マップを用いて、アクセル開度APと車速VPに応じた駆動力(以下「要求駆動力」という。)を導出する。次に、ECU2は、要求駆動力と車速VPに応じた出力(以下「要求出力」という。)を算出する。なお、当該要求出力は、車両がドライバのアクセルペダル操作に応じた走行を行うために要する出力である。
 次に、ECU2は、上記説明したバッテリ43に入出力される電流・電圧値を表す検出信号から、バッテリ43の残容量(SOC:State of Charge)の情報を取得する。次に、ECU2は、バッテリ43のSOCに応じた、要求出力に占めるエンジン3の出力する割合を決定する。次に、ECU2は、メモリ45に格納されているENG動作マップを用いて、エンジン3の出力に応じた最適な動作点を導出する。なお、ENG動作マップは、エンジン3の軸回転数とトルクと出力の関係に応じた各動作点の燃料消費率を示すBSFC(Brake Specific Fuel Consumption)に基づくマップである。次に、ECU2は、最適動作点でのエンジン3の軸回転数(以下「要求ENG軸回転数」という。)を導出する。さらに、ECU2は、最適動作点でのエンジン3のトルク(以下「ENG要求トルク」という。)を導出する。
 次に、ECU2は、ENG要求トルクを出力するようエンジン3を制御する。次に、ECU2は、エンジン3の軸回転数を検出する。このとき検出されたエンジン3の軸回転数を「実ENG軸回転数」という。次に、ECU2は、要求ENG軸回転数と実ENG軸回転数の差分Δrpmを算出する。ECU2は、差分Δrpmが0に近づくよう、第1回転機21の出力トルクを制御する。当該制御は、第1回転機21のステータ23で回生発電することで行われ、その結果、第1回転機21(MG1)のA2ロータ25には、図24の共線図に示したトルクT12が加わる。
 第1回転機21のA2ロータ25にトルクT12が加わることによって、第1回転機21(MG1)のA1ロータ24にトルクT11が生じる。トルクT11は、以下の式(49)によって算出される。
 T11=α/(1+α)×T12 …(49)
 また、第1回転機21のステータ23での回生発電によって生じた電気エネルギ(回生エネルギ)は第1PDU41に送られる。図24の共線図では、第1回転機21のステータ23で発生した回生エネルギを点線Aで示す。
 次に、ECU2は、前に導出した要求駆動力から、上記算出されたトルクT11を差し引いたトルクが第2回転機31のB2ロータ35に加わるよう、第2PDU42を制御する。その結果、第2回転機31(MG2)のB2ロータ35にトルクT22が加わる。なお、図24の共線図は、第2回転機31のステータ33に電気エネルギを供給する場合を示し、そのときの電気エネルギを点線Bで示した。このとき、第2回転機31に電気エネルギを供給する際には、第1回転機21の回生発電で得られた回生エネルギを用いても良い。
 このように、第1回転機21のA1ロータ24にはトルクT11が加わり、第2回転機31のB2ロータ35にはトルクT22が加わる。第1回転機21のA1ロータ24は連結軸6と連結しており、第2回転機31のB2ロータ35は第2回転軸7と連結しているため、駆動輪DW,DWにはトルクT11とトルクT22の総和が加わる。
 但し、第2回転機31のB2ロータ35にトルクT22が加わることによって、第2回転機31(MG2)のB1ロータ34にはトルクT21が生じる。トルクT21は、以下の式(50)によって表される。
 T21=β/(1+β)×T22 …(50)
 第2回転機31のB1ロータ34はエンジン3の軸に連結されているため、エンジン3の実ENG軸回転数はトルクT21によって影響を受ける。しかし、実ENG軸回転数が変化しても、ECU2は、差分Δrpmが0に近づくよう、第1回転機21の出力トルクを制御する。当該制御によってトルクT12が変化し、第1回転機21のA1ロータ24に生じるトルクT11も変化するため、ECU2は、第2回転機31のB2ロータ35に加えるトルクT22を変更する。このとき、変更されたトルクT22によって生じるトルクT21も変化する。このように、第2回転機31のB1ロータ34及びB2ロータ35、並びに、第1回転機21のA1ロータ24及びA2ロータ25のそれぞれにかかるトルクが循環して(T12→T11→T22→T21)、各トルクが収束していく。
 以上説明したように、ECU2は、エンジン3が最適な動作点で作動するよう、第1回転機21のA2ロータ25に発生するトルクを制御し、かつ、駆動輪DW,DWに要求駆動力が伝達されるよう、第2回転機31のB2ロータ35に発生するトルクを制御している。
 上記説明では、要求駆動力を導出する際および要求出力を導出する際に車速VPを用いているが、車速VPの代わりに、車軸の回転数の情報を用いても良い。
<各動作モードにおける動力装置1の動作>
 次に、ECU2による制御によって行われる動力装置1の動作について説明する。この動力装置1の動作モードには、EVクリープ、EV発進、EV走行中ENG始動、ENG走行、減速回生、停車中ENG始動、ENGクリープ、ENG発進、EV後退発進およびENG後退発進が含まれる。以下、これらの動作モードについて、図25などのトルクの伝達状況を示す図や、図26(a)、(b)などの各種の回転要素の回転速度の関係を示す速度共線図を参照しながら、EVクリープから順に説明する。この動作モードの説明の前に、これらの速度共線図について説明する。
 前述した連結関係から明らかなように、エンジン回転数NE、A2ロータ回転速度VRA2およびB1ロータ回転速度VRB1は、互いに等しい。また、A1ロータ回転速度VRA1およびB2ロータ回転速度VRB2は、互いに等しく、差動ギヤ機構9などによる変速がないものとすれば、車速VPは、A1ロータ回転速度VRA1およびB2ロータ回転速度VRB2と等しい。以上のことと、前記式(43)および(54)から、エンジン回転数NE、車速VP、第1磁界回転速度VMF1、A1ロータ回転速度VRA1、A2ロータ回転速度VRA2、第2磁界回転速度VMF2、B1ロータ回転速度VRB1、およびB2ロータ回転速度VRB2の間の関係は、図26(a)、(b)などの速度共線図によって示される。なお、これらの速度共線図において、第1および第2の極対数比α,βはいずれも、前述したように値2.0である。また、以下の動作モードの説明では、動力装置1のすべての回転要素について、エンジン3のクランク軸3aの正転方向と同方向に回転することを「正転」といい、逆転方向と同方向に回転することを「逆転」という。
 ・EVクリープ
 このEVクリープは、エンジン3を停止した状態で、第1および第2の回転機21,31を用いて、車両のクリープ運転を行う動作モードである。具体的には、第2回転機31のステータ33に、バッテリ43から電力を供給するとともに、それに伴ってステータ33で発生する第2回転磁界を正転させる。また、第1回転機21のA1ロータ24に後述するように伝達される動力を用いて、第1回転機21のステータ23で発電を行うとともに、発電した電力を、ステータ33にさらに供給する。
 図25は、上記のEVクリープ中におけるトルクの伝達状況を示している。また、図26(a)は、このEVクリープ中における第1および第2の回転機21,31の各速度共線図の一例を、図26(b)は、図26(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。また、図25および後述するトルクの伝達状況を示す他の図では、矢印付きの太い破線又は実線はトルクの流れを示している。さらに、塗りつぶされた矢印は正転方向に、中抜きの矢印は逆転方向に、それぞれ作用するトルクを示している。また、ステータ23,33では、実際には、トルクは電気エネルギの形態で伝達されるが、図25および後述するトルクの伝達状況を示す他の図では、便宜上、ステータ23,33におけるエネルギの入出力を、トルクの流れの中に、ハッチングを付して示すものとする。さらに、図26(a)、(b)および後述する他の速度共線図では、正転方向を「+」で、逆転方向を「-」でそれぞれ表すものとする。
 図25に示すように、EVクリープ中、第2回転機31のステータ33に電力が供給されるのに伴い、ステータ33からの第2駆動用等価トルクTSE2は、B2ロータ35を正転させるように作用するとともに、矢印Aで示すように、B1ロータ34を逆転させるように作用する。また、B2ロータ35に伝達されたトルクの一部は、第2回転軸7や差動ギヤ機構9などを介して駆動輪DW,DWに伝達され、それにより、駆動輪DW,DWが正転する。
 さらに、EVクリープ中、B2ロータ35に伝達されたトルクの残りは、連結軸6を介してA1ロータ24に伝達された後、第1回転機21のステータ23での発電に伴って、ステータ23に電気エネルギとして伝達される。また、図26(a)、(b)に示すように、ステータ23での発電に伴って発生する第1回転磁界が逆転する。このため、図25に矢印Bで示すように、このステータ23での発電に伴って発生した第1発電用等価トルクTGE1は、A2ロータ25を正転させるように作用する。また、この第1発電用等価トルクTGE1に釣り合うように、A1ロータ24に伝達されたトルクが、A2ロータ25にさらに伝達され(矢印Cで図示)、A2ロータ25を正転させるように作用する。
 この場合、上述した矢印Aで示すB1ロータ34を逆転させるトルクと、矢印Bおよび矢印Cで示すA2ロータ25を正転させるトルクとが釣り合うように、ステータ33に供給される電力とステータ23で発電する電力を制御することによって、互いに連結されたA2ロータ25、B1ロータ34およびクランク軸3aが、静止状態に保持される。その結果、図26(a)、(b)に示すように、EVクリープ中、A2およびB1のロータ回転速度VRA2,VRB1は、値0になり、エンジン回転数NEも値0になる。
 また、EVクリープ中、第2回転機31のステータ33に供給される電力と、第1回転機21のステータ23で発電する電力と、第1および第2の磁界回転速度VMF1,VMF2はそれぞれ、前記式(43)および(44)に示す回転速度の関係が維持されるように、かつA1およびB2のロータ回転速度VRA1,VRB2が非常に小さくなるように制御される(図26(a)、(b)参照)。以上により、車速VPが非常に小さなクリープ運転が行われる。以上のように、エンジン3を停止した状態で、第1および第2の回転機21,31の駆動力によってクリープ運転を行うことができる。
 ・EV発進
 このEV発進は、上述したEVクリープ中から、エンジン3を停止した状態で、第1および第2の回転機21,31を用いて、車両を発進させ、走行させる動作モードである。EV発進時、第2回転機31のステータ33に供給される電力および第1回転機21のステータ23で発電する電力をいずれも増大させる。さらに、式(43)および(44)に示す回転速度の関係を維持し、かつA2およびB1のロータ回転速度VRA2,VRB1すなわちエンジン回転数NEを値0に保持しながら、EVクリープ中に逆転していた第1回転磁界の第1磁界回転速度VMF1と、正転していた第2回転磁界の第2磁界回転速度VMF2をそれぞれ、それまでと同じ回転方向に上昇させる。以上により、図28(a)、(b)に太い実線で示すように、A1およびB2のロータ回転速度VRA1,VRB2、すなわち車速VPが、同図に破線で示すEVクリープ状態から上昇し、車両が発進する。なお、EV発進中におけるトルクの伝達状況は、図27に示すように、図25に示したEVクリープ中におけるトルクの伝達状況と同じである。
 ・EV走行中ENG始動
 このEV走行中ENG始動は、上述したEV発進による車両の走行中に、エンジン3を始動する動作モードである。EV走行中ENG始動時、A1およびB2のロータ回転速度VRA1,VRB2、すなわち車速VPをそのときの値に保持しながら、EV発進時に上述したように逆転していた第1回転磁界の第1磁界回転速度VMF1を、値0になるように制御するとともに、正転していた第2回転磁界の第2磁界回転速度VMF2を、低下させるように制御する。そして、第1磁界回転速度VMF1が値0になった後には、第2回転機31のステータ33に加え、第1回転機21のステータ23にも、バッテリ43から電力を供給し、ステータ23で発生する第1回転磁界を正転させるとともに、第1磁界回転速度VMF1を上昇させる。
 図29は、EV走行中ENG始動時、上記のように両ステータ23,33に電力を供給した状態でのトルクの伝達状況を示している。前述した第2回転機31の機能から、図29に示すように、上記のように電力がステータ33に供給されることによって、第2駆動用等価トルクTSE2がB2ロータ35に伝達されるのに伴い、B1ロータ34に後述するように伝達されたトルクが、B2ロータ35に伝達される。すなわち、第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたB1ロータ伝達トルクTRB1が合成され、B2ロータ35に伝達される。また、B2ロータ35に伝達されたトルクの一部は、連結軸6を介してA1ロータ24に伝達され、残りは、第2回転軸7などを介して駆動輪DW,DWに伝達される。
 さらに、EV走行中ENG始動時、前述した第1回転機21の機能から、図29に示すように、バッテリ43から電力がステータ23に供給されることによって、第1駆動用等価トルクTSE1がA2ロータ25に伝達されるのに伴い、A1ロータ24に上記のように伝達されたトルクが、A2ロータ25に伝達される。すなわち、第1駆動用等価トルクTSE1と、A1ロータ24に伝達されたA1ロータ伝達トルクTRA1が合成され、A2ロータ25に伝達される。また、A2ロータ25に伝達されたトルクの一部は、第1回転軸4を介してB1ロータ34に伝達され、残りは、第1回転軸4およびフライホイール5を介してクランク軸3aに伝達され、それにより、クランク軸3aが正転する。さらに、この場合、両ステータ23,33に供給される電力は、駆動輪DW,DWおよびエンジン3に動力が十分に伝達されるように制御される。
 以上により、図30に太い実線で示すように、EV走行中ENG始動時、車速VPがそのときの値に保持されるとともに、A2およびB1のロータ回転速度VRA2,VRB1が破線で示す値0の状態から上昇し、A2およびB1のロータ25,34に連結されたクランク軸3aの回転速度、すなわちエンジン回転数NEも上昇する。その状態で、検出されたクランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグ(いずれも図示せず)の点火動作を制御することによって、エンジン3が始動される。また、この場合、第1および第2の磁界回転速度VMF1,VMF2を制御することによって、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。
 図31は、図30に示した2つの速度共線図を合成した速度共線図を示している。同図において、TDENGは、エンジン3のクランク軸3aに伝達されるトルク(以下「エンジン伝達トルク」という)であり、TDDWは、駆動輪DW,DWに伝達されるトルク(以下「駆動輪伝達トルク」という)である。この場合、図31から明らかなように、第2駆動用等価トルクTSE2が、第1発電用等価トルクTGE1を反力として、駆動輪DW,DWおよびクランク軸3aの双方に伝達されるため、第1回転機21に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第1回転機21に要求されるトルクすなわち第1発電用等価トルクTGE1は、次式(51)で表される。
 TGE1=-{β・TDDW+(β+1)TDENG}/(α+1+β)……(51)
 この式(51)から明らかなように、第1極対数比αが大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジン伝達トルクTDENGに対して、第1発電用等価トルクTGE1は小さくなる。本実施形態では、第1極対数比αが値2.0に設定されいるので、値1.0未満に設定した場合よりも第1発電用等価トルクTGE1を小さくすることができる。
 ・ENG走行
 このENG走行は、エンジン3の動力を用いて、車両を走行させる運転モードである。ENG走行中、エンジン3における燃焼によってクランク軸3aに出力される動力(以下「エンジン動力」という)を、基本的には、要求トルクを発生できる範囲で、最良の燃費(以下「最良燃費」という)が得られるように制御する。この要求トルクは、車両に要求されるトルクであり、例えば、検出された車速VPおよびアクセル開度APに応じ、マップ(図示せず)を検索することによって算出される。また、ENG走行中、A2ロータ25に伝達されるエンジン動力を用いて、第1回転機21のステータ23で発電を行うとともに、発電した電力を、バッテリ43に充電せずに、第2回転機31のステータ33に供給する。以下、この運転モードを「バッテリ入出力ゼロモード」という。図32は、このバッテリ入出力ゼロモードにおけるトルクの伝達状況を示している。
 前述した第1回転機21の機能から、図32に示すように、バッテリ入出力ゼロモード中、エンジン3における燃焼によってクランク軸3aに出力されるトルク(以下「エンジントルク」という)の一部が、A2ロータ25を介して、ステータ23に第1発電用等価トルクTGE1として伝達されるのに伴い、A1ロータ24にも、A2ロータ25を介して、エンジントルクの一部が伝達される。すなわち、A2ロータ25に、エンジントルクの一部が伝達されるとともに、このA2ロータ25に伝達されたエンジントルクが、ステータ23およびA1ロータ24に分配される。また、エンジントルクの残りは、第1回転軸4を介してB1ロータ34に伝達される。
 また、前述したEV走行中ENG始動時と同様、第2駆動用等価トルクTSE2とB1ロータ伝達トルクTRB1は、合成され、B2ロータ35にB2ロータ伝達トルクTRB2として伝達される。このため、バッテリ入出力ゼロモード中、上記のように第1回転機21のステータ23で発電した電力が、第2回転機31のステータ33に供給されることによって、第2駆動用等価トルクTSE2がB2ロータ35に伝達されるのに伴い、B1ロータ34に上記のように伝達されたエンジントルクが、B2ロータ35に伝達される。また、B2ロータ35には、A1ロータ24に上記のように分配されたエンジントルクが、連結軸6を介してさらに伝達される。
 以上のように、B2ロータ35には、A1ロータ24に分配されたエンジントルクと、第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクとを合成した合成トルクが伝達される。また、この合成トルクは、第2回転軸7などを介して駆動輪DW,DWに伝達される。以上の結果、バッテリ入出力ゼロモード中、各ギヤによる伝達ロスなどがないとすれば、駆動輪DW,DWには、エンジン動力と等しい大きさの動力が伝達される。
 さらに、バッテリ入出力ゼロモード中には、第1および第2の磁界回転速度VMF1,VMF2を制御することによって、エンジン動力が、無段階に変速され、駆動輪DW,DWに伝達される。すなわち、第1および第2の回転機21,31は、無段変速装置として機能する。
 具体的には、図33(a)、(b)に二点鎖線で示すように、式(43)および(44)に示す速度関係を維持しながら、A2およびB1のロータ回転速度VRA2,VRB1すなわちエンジン回転数NEに対して、第1磁界回転速度VMF1を上昇させるとともに、第2磁界回転速度VMF2を低下させることによって、A1およびB2のロータ回転速度VRA1,VRB2すなわち車速VPを、無段階に減速することができる。逆に、図33(a)、(b)に一点鎖線で示すように、A2およびB1のロータ回転速度VRA2,VRB1に対して、第1磁界回転速度VMF1を低下させるとともに、第2磁界回転速度VMF2を上昇させることによって、車速VPを無段階に増速することができる。
 また、この場合、エンジン回転数NEが目標回転数になるように、第1および第2の磁界回転速度VMF1,VMF2を制御する。この目標回転数は、例えば、車速VPおよび算出された要求トルクに応じ、マップ(図示せず)を検索することによって算出される。このマップでは、目標回転数は、そのときの車速VPおよび要求トルクに対して、エンジン3の最良燃費が得られるような値に設定されている。
 以上のように、バッテリ入出力ゼロモード中、第1および第2の回転機21,31において、エンジン動力は、一旦、分割され、次の第1~第3の伝達経路を介してB2ロータ35に伝達されるとともに、合成された状態で、駆動輪DW,DWに伝達される。
 第1伝達経路:A2ロータ25→磁力線MLによる磁力→A1ロータ24→連結軸6→B2ロータ35
 第2伝達経路:B1ロータ34→磁力線MLによる磁力→B2ロータ35
 第3伝達経路:A2ロータ25→磁力線MLによる磁力→ステータ23→第1PDU41→第2PDU42→ステータ33→磁力線MLによる磁力→B2ロータ35
 これらの第1および第2の伝達経路では、エンジン動力が、電力に変換されることなく、磁力線MLによる磁力によって、いわゆる磁気パスによって駆動輪DW,DWに伝達される。また、上記の第3伝達経路では、エンジン動力が、電力に一旦、変換され、動力に再度、戻され、いわゆる電気パスによって駆動輪DW,DWに伝達される。
 また、バッテリ入出力ゼロモード中、ステータ23で発電する電力と、第1および第2の磁界回転速度VMF1,VMF2は、式(43)および(44)に示す速度関係が維持されるように制御される。
 一方、ENG走行中、算出された要求トルクおよび充電状態に基づく次の条件(a)および(b)がいずれも成立しているときには、エンジン3を第2回転機31でアシストする。以下、この運転モードを「アシストモード」という。
 (a)要求トルク>第1所定値
 (b)充電状態>下限値
 ここで、第1所定値は、例えば、車速VPに応じ、マップ(図示せず)を検索することによって算出される。このマップでは、第1所定値は、そのときの車速VPに対して、エンジン3の最良燃費が得られるようなトルク値に設定されている。上記の下限値は、バッテリ43が過放電にならないような値に設定されている。このように、アシストモードによる運転は、そのときの車速VPおよび要求トルクで表される車両を駆動するのに必要な動力(以下「車両要求動力」という)が、最良燃費が得られるエンジン動力よりも大きいときに、かつバッテリ43に電力が十分に残っているときに行われる。
 具体的には、上述したバッテリ入出力ゼロモードと同様、A2ロータ25に伝達されるエンジン動力を用いて、ステータ23で発電を行う。また、この場合、バッテリ入出力ゼロモードと異なり、図34に示すように、この発電した電力に加え、バッテリ43に充電されている電力を、ステータ33に供給する。このため、B2ロータ35には、ステータ23およびバッテリ43から供給された電力に基づく第2駆動用等価トルクTSE2が伝達される。さらに、バッテリ入出力ゼロモードと同様、この第2駆動用等価トルクTSE2と、発電に伴ってA1ロータ24に分配されたエンジントルクと、B1ロータ34に伝達されたエンジントルクとを合成したトルクが、B2ロータ35を介して、駆動輪DW,DWに伝達される。以上の結果、アシストモード中、各ギヤによる伝達ロスなどがないとすれば、駆動輪DW,DWに伝達される動力は、エンジン動力とバッテリ43から供給された電力(エネルギ)との和に等しくなる。
 また、アシストモード中には、ステータ23で発電する電力と、バッテリ43からステータ33に供給される電力と、第1および第2の磁界回転速度VMF1,VMF2は、式(43)および(44)に示す速度関係が維持されるように制御される。その結果、車両要求動力に対するエンジン動力の不足分が、バッテリ43からステータ33に電力を供給することによって補われる。なお、上述した例は、車両要求動力に対するエンジン動力の不足分が比較的小さい場合の例であるが、比較的大きい場合には、第2回転機31のステータ33に加え、第1回転機21のステータ23にも、バッテリ43から電力が供給される。
 一方、ENG走行中、次の条件(c)および(d)がいずれも成立しているときには、上述したようにエンジン動力を用いて第1回転機21のステータ23で発電した電力の一部を、バッテリ43に充電し、残りを第2回転機31のステータ33に供給する。以下、この運転モードを「駆動時充電モード」という。
 (c)要求トルク<第2所定値
 (d)充電状態<上限値
 ここで、第2所定値は、例えば、車速VPに応じ、マップ(図示せず)を検索することによって算出される。このマップでは、第2所定値は、そのときの車速VPに対して、最良燃費が得られるようなトルク値よりも小さな値に設定されている。上限値は、バッテリ43が過充電にならないような値に設定されている。このように、駆動時充電モードによる運転は、車両要求動力が、最良燃費が得られるエンジン動力よりも小さいときに、かつ充電状態が比較的小さいときに行われる。
 図35に示すように、この駆動時充電モード中、前述したバッテリ入出力ゼロモードと異なり、第2回転機31のステータ33には、第1回転機21のステータ23で発電した電力からバッテリ43に充電される電力を差し引いた大きさの電力が供給され、この電力に基づく第2駆動用等価トルクTSE2が、B2ロータ35に伝達される。また、バッテリ入出力ゼロモードと同様、この第2駆動用等価トルクTSE2と、発電に伴ってA1ロータ24に分配されたエンジントルクと、B1ロータ34に伝達されたエンジントルクとを合成したトルクが、B2ロータ35を介して、駆動輪DW,DWに伝達される。以上の結果、駆動時充電モード中、各ギヤによる伝達ロスなどがないとすれば、駆動輪DW,DWに伝達される動力は、エンジン動力からバッテリ43に充電された電力(エネルギ)を差し引いた大きさになる。
 また、駆動時充電モード中には、ステータ23で発電する電力と、バッテリ43に充電される電力と、第1および第2の磁界回転速度VMF1,VMF2は、式(43)および(44)に示す速度関係が維持されるように制御される。その結果、車両要求動力に対するエンジン動力の余剰分が、第1回転機21のステータ23において電力に変換され、バッテリ43に充電される。
 また、ENG走行中、第1回転機21のステータ23で発電を行わずに、バッテリ43から第2回転機31のステータ33に電力を供給するとともに、この電力を、第2駆動用等価トルクTSE2がエンジントルクの1/2になるように制御した場合には、前記式(45)から明らかなように、エンジントルクのすべてと第2駆動用等価トルクTSE2が、B2ロータ35において合成された後、駆動輪DW,DWに伝達される。すなわち、この場合には、エンジン動力のすべてを、前述した電気パスによって伝達せずに、磁気パスのみによって駆動輪DW,DWに伝達することができる。また、この場合、駆動輪DW,DWには、エンジントルクの3/2倍の大きさのトルクが伝達される。
 さらに、第1回転機21のステータ23で発電する電力を、第1発電用等価トルクTGE1がエンジントルクの1/3になるように制御した場合には、エンジン3から駆動輪DW,DWへの動力の伝達を、磁気パスのみによって行うことができる。この場合、駆動輪DW,DWには、エンジントルクの2/3倍の大きさのトルクが伝達される。
 また、ENG走行中、低速状態の車速VPを急速に上昇させる場合(以下、このような運転を「ENG走行中の急加速運転」という)、エンジン3、第1および第2の回転機21,31は次のようにして制御される。図36(a)は、このENG走行中の急加速運転の開始時における第1および第2の回転機21,31の各速度共線図の一例を、図36(b)は、図36(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。同図において、TENGはエンジン3トルクである。この場合、エンジン回転数NEを、その最大トルクが得られるような所定の回転数に高める。図36(a)、(b)に示すように、車速VPがすぐには上昇しないため、エンジン回転数NEが車速VPよりも高くなるとともに、両者の差が大きくなることから、両者の関係によって定まる第2回転磁界の回転方向は、逆転方向になる。このため、そのような第2回転磁界を発生させる第2回転機31のステータ33から正のトルクを駆動輪DW,DWに作用させるために、ステータ33において発電を行う。さらに、ステータ33で発電した電力を第1回転機21のステータ23に供給するとともに、第1回転磁界を正転させる。
 以上により、エンジントルクTENG、第1駆動用等価トルクTSE1および第2発電用等価トルクTGE2はいずれも、正のトルクとして駆動輪DW,DWに伝達され、その結果、車速VPが急速に上昇する。また、ENG走行中の急加速運転の開始時には、図36(a)、(b)から明らかなように、エンジントルクTENGおよび第1駆動用等価トルクTSE1が第2発電用等価トルクTGE2を反力として駆動輪DW,DWに伝達されるため、第2回転機31に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第2回転機31に要求されるトルクすなわち第2発電用等価トルクTGE2は、次式(52)で表される。
 TGE2=-{α・TENG+(1+α)TDDW}/(β+1+α) ……(52)
 この式(52)から明らかなように、第2極対数比βが大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジントルクTENGに対して、第2発電用等価トルクTGE2が小さくなる。本実施形態では、第2極対数比βが値2.0に設定されているので、値1.0未満に設定した場合よりも第2駆動用等価トルクTSE2を小さくすることができる。
 ・減速回生
 この減速回生は、車両の減速走行中、すなわち車両が惰性で走行しているときに、駆動輪DW,DWの慣性エネルギを用いて、第1回転機21や第2回転機31において発電を行うとともに、発電した電力をバッテリ43に充電する動作モードである。減速回生中、駆動輪DW,DWのトルク(慣性によるトルク)に対する、エンジン3に伝達される駆動輪DW,DWのトルクの割合が小さいときには、駆動輪DW,DWの動力の一部を用いて両ステータ23,33で発電を行うとともに、発電した電力をバッテリ43に充電する。具体的には、この発電は、第1回転機21のステータ23では、A2ロータ25に後述するように伝達される動力を用いて行われ、第2回転機31のステータ33では、B2ロータ35に後述するように伝達される動力を用いて行われる。
 図37は、上記の減速回生中におけるトルクの伝達状況を示している。また、図38(a)は、この減速回生中における第1および第2の回転機21,31の各速度共線図の一例を、図38(b)は、図38(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。同図に示すように、ステータ33での発電に伴い、B2ロータ35には、駆動輪DW,DWのトルクの全部と、A1ロータ24に後述するように分配されたトルクとを合成した合成トルクが伝達される。また、前述した第2回転機31の機能から、B2ロータ35に伝達された上記の合成トルクは、ステータ33およびB1ロータ34に分配される。
 さらに、B1ロータ34に分配されたトルクの一部は、エンジン3に伝達され、残りは、前述したバッテリ入出力ゼロモードの場合と同様、ステータ23での発電に伴い、A2ロータ25に伝達された後、ステータ23およびA1ロータ24に分配される。また、A1ロータ24に分配されたトルクは、B2ロータ35に伝達される。以上の結果、減速回生中、各ギヤによる伝達ロスなどがないとすれば、エンジン3に伝達される動力と、バッテリ43に充電される電力(エネルギ)との和は、駆動輪DW,DWの動力と等しくなる。
 ・停車中ENG始動
 この停車中ENG始動は、車両の停止中に、エンジン3を始動する動作モードである。停車中ENG始動時、第1回転機21のステータ23に、バッテリ43から電力を供給し、それに伴ってステータ23で発生する第1回転磁界を正転させるとともに、B1ロータ34に後述するように伝達される動力を用いて、ステータ33で発電を行い、発電した電力をステータ23にさらに供給する。
 図39は、上記の停車中ENG始動時におけるトルクの伝達状況を示している。また、図40(a)は、この停車中ENG始動時における第1および第2の回転機21,31の各速度共線図の一例を、図40(b)は、図40(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。図39に示すように、停車中ENG始動時、ステータ23に電力が供給されるのに伴い、ステータ23からの第1駆動用等価トルクTSE1は、A2ロータ25を正転させるように作用するとともに、矢印Dで示すように、A1ロータ24を逆転させるように作用する。また、A2ロータ25に伝達されたトルクの一部は、クランク軸3aに伝達され、それにより、クランク軸3aが正転する。
 さらに、停車中ENG始動時、A2ロータ25に伝達されたトルクの残りは、B1ロータ34に伝達された後、第2回転機31のステータ33での発電に伴って、ステータ33に電気エネルギとして伝達される。また、図40(a)、(b)に太い実線で示すように、ステータ33での発電に伴って発生する第2回転磁界が逆転する。このため、図39に矢印Eで示すように、このステータ33での発電に伴って発生した第2発電用等価トルクTGE2は、B2ロータ35を正転させるように作用する。また、この第2発電用等価トルクTGE2に釣り合うように、B1ロータ34に伝達されたトルクが、B2ロータ35にさらに伝達され(矢印Fで図示)、B2ロータ35を正転させるように作用する。
 この場合、上述した矢印Dで示すA1ロータ24を逆転させるトルクと、矢印EおよびFで示すB2ロータ35を正転させるトルクとが釣り合うように、第1回転機21のステータ23に供給される電力と第2回転機31のステータ33で発電する電力を制御することによって、互いに連結されたA1ロータ24、B2ロータ35および駆動輪DW,DWが、静止状態に保持される。その結果、図40(a)、(b)に示すように、A1およびB2のロータ回転速度VRA1,VRB2は、値0になり、車速VPも値0になる。
 また、この場合、ステータ23に供給される電力とステータ33で発電する電力と第1および第2の磁界回転速度VMF1,VMF2は、前記式(43)および(44)に示す速度関係が維持されるように、かつA2およびB1のロータ回転速度VRA2,VRB1が比較的小さな値になるように制御される(図40(a)、(b)参照)。以上により、停車中ENG始動時、車速VPを値0に保持しながら、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。また、その状態で、クランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグの点火動作を制御することによって、エンジン3が始動される。
 ・ENGクリープ
 このENGクリープは、エンジン動力を用いて、車両のクリープ運転を行う動作モードである。ENGクリープ中、A2ロータ25に伝達されるエンジン動力を用いて、ステータ23で発電を行うとともに、B1ロータ34に伝達されるエンジン動力を用いて、ステータ33で発電を行う。また、このように両ステータ23,33で発電した電力を、バッテリ43に充電する。
 図41は、上記のENGクリープ中におけるトルクの伝達状況を示している。また、図42(a)は、このENGクリープ中における第1および第2の回転機21,31の各速度共線図の一例を、図42(b)は、図42(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。図41に示すように、このENGクリープ中には、前述したバッテリ入出力ゼロモードの場合と同様、上記のステータ23での発電に伴って、A2ロータ25にエンジントルクTENGの一部が伝達されるとともに、A2ロータ25に伝達されたエンジントルクTENGが、ステータ23およびA1ロータ24に分配される。また、図42(a)、(b)に示すように、ステータ33での発電に伴って発生する第2回転磁界が逆転する。このため、図41に示すように、車速VPがほぼ値0であるのに対し、クランク軸3aが正転しているため、この発電に伴って発生した第2発電用等価トルクTGE2は、上述した停車中ENG始動の場合と同様、B2ロータ35を正転させるように作用する。また、この第2発電用等価トルクTGE2に釣り合うように、B1ロータ34に伝達されたエンジントルクTENGが、B2ロータ35にさらに伝達され、B2ロータ35を正転させるように作用する。さらに、B2ロータ35には、上記のようにA1ロータ24に分配されたエンジントルクTENGが伝達される。
 以上のように、ENGクリープ中、B2ロータ35には、A1ロータ24に分配されたエンジントルクTENGと、第2発電用等価トルクTGE2と、B1ロータ34に伝達されたエンジントルクTENGとを合成した合成トルクが伝達される。また、この合成トルクは、駆動輪DW,DWに伝達され、駆動輪DW,DWを正転させる。さらに、ステータ23,33において発電する電力、ならびに第1および第2の磁界回転速度VMF1,VMF2は、A1およびB2のロータ回転速度VRA1,VRB2すなわち車速VPが非常に小さくなるように制御され(図42(a)、(b)参照)、それにより、クリープ運転が行われる。
 また、このENGクリープ中には、上述したように、ステータ23での発電に伴ってA1ロータ24に分配されたエンジントルクTENGと、ステータ33での発電に伴ってB1ロータ34を介してB2ロータ35に伝達されたエンジントルクTENGが、駆動輪DW,DWに伝達される。すなわち、エンジントルクTENGの一部を駆動輪DW,DWに伝達できるので、駆動輪DW,DWから大きな反力がエンジン3に作用するのを防止でき、したがって、エンジンストールを生じることなく、クリープ運転を行うことができる。なお、以上のENGクリープによる運転は、主として、充電状態が小さいときや車両の登坂時などに行われる。
 ・ENG発進
 このENG発進は、エンジン動力を用いて車両を発進させる動作モードである。図43は、このENG発進時におけるトルクの伝達状況を示している。ENG発進時、ENGクリープ中に逆転していた第2回転磁界の第2磁界回転速度VMF2を、値0になるように制御し、正転していた第1回転磁界の第1磁界回転速度VMF1を上昇させるとともに、エンジン動力を増大させる。そして、第2磁界回転速度VMF2が値0になった後には、前述したバッテリ入出力ゼロモードによる運転を行う。以上により、図44(a)、(b)に太い実線で示すように、A1およびB2のロータ回転速度VRA1,VRB2すなわち車速VPが、同図に破線で示すENGクリープ状態から上昇し、車両が発進する。
 ・EV後退発進
 このEV後退発進は、エンジン3を停止した状態で、第1および第2の回転機21,31を用いて、車両を後退発進させ、走行させる動作モードである。図45は、EV後退発進中におけるトルクの伝達状況を示している。また、図46(a)は、このEV後退発進中における第1および第2の回転機21,31の各速度共線図の一例を、図46(b)は、図46(a)に示した2つの速度共線図を合成した速度共線図を、それぞれ示している。
 EV後退発進時、第2回転機31のステータ33および第1回転機21のステータ23の双方に、バッテリ43から電力を供給する。その結果、ステータ23で発生する第1回転磁界を正転させ、ステータ33で発生する第2回転磁界を正転させる。図46(a)、(b)に示すように、EV後退発進中、第1回転機21のステータ23に電力が供給されるのに伴い、ステータ23からの第1駆動用等価トルクは、A2ロータ25を正転させるように作用するとともに、A1ロータ24を逆転させるように作用する。また、第2回転機31のステータ33に電力が供給されるのに伴い、ステータ33からの第2駆動用等価トルクTSE2は、B2ロータ35を逆転させるように作用するとともに、B1ロータ24を正転させるように作用する。以上により、図46(a)、(b)に太い実線で示すように、A1およびB2のロータ回転速度VRA1,VRB2、すなわち車速VPが、同図に破線で示す停止状態から負の方向に上昇し、車両が後退発進する。
 ・ENG後退発進
 このENG後退発進は、エンジン動力を用いて車両を後退発進させる動作モードである。図47は、このENG後退発進中におけるトルクの伝達状況を示している。ENG後退発進時、ENGクリープ中に逆転していた第2回転磁界の第2磁界回転速度VMF2がさらに負の方向に上昇するよう制御し、かつ、正転していた第1回転磁界の第1磁界回転速度VMF1を上昇させるとともに、エンジン動力を増大させる。以上により、図48(a)、(b)に太い実線で示すように、車速VPが同図に破線で示すENGクリープ状態から負の方向に上昇し、車両が後退発進する。
 以上のように、本実施形態によれば、第1および第2の回転機21,31が遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有するので、前述した従来の動力装置と異なり、動力を分配・合成して伝達するための遊星歯車装置は不要であり、したがって、その分、動力装置1を小型化することができる。また、前述した従来の場合と異なり、図32を用いて説明したように、エンジン動力が再循環せずに駆動輪DW,DWに伝達されるので、第1および第2の回転機21,31を通過する動力を低減できる。したがって、第1および第2の回転機21,31の小型化およびコストの削減を図ることができ、それにより、動力装置1のさらなる小型化とコストの削減を達成することができる。さらに、上記のように低減された動力に見合ったトルク容量を有する第1および第2の回転機21,31を用いることによって、動力の損失を抑制し、動力装置1の駆動効率を高めることができる。
 また、エンジン動力は、前述した第1伝達経路(A2ロータ25、磁力線MLによる磁力、A1ロータ24、連結軸6、B2ロータ35)と、第2伝達経路(B1ロータ34、磁力線MLによる磁力、B2ロータ35)と、第3伝達経路(A2ロータ25、磁力線MLによる磁力、ステータ23、第1PDU41、第2PDU42、ステータ33、磁力線MLによる磁力、B2ロータ35)の計3つの経路を介して、分割された状態で駆動輪DW,DWに伝達される。これにより、第3伝達経路を介して第1および第2のPDU41,42を通過する電力(エネルギ)を低減できるので、第1および第2のPDU41,42の小型化およびコストの削減を図ることができ、それにより、動力装置1のさらなる小型化およびコストの削減を達成することができる。さらに、第3伝達経路では、エンジン動力を電気パスによって駆動輪DW,DWに伝達するのに対し、第1および第2の伝達経路では、磁気パスによって動力を駆動輪DW,DWに伝達するので、第3伝達経路よりも伝達効率が高い。
 また、図33(a)、(b)を用いて説明したように、第1および第2の磁界回転速度VMF1,VMF2を制御することによって、エンジン動力が無段階に変速され、駆動輪DW,DWに伝達される。さらに、この場合、エンジン回転数NEが、最良燃費が得られるように設定された目標回転数になるように、第1および第2の磁界回転速度VMF1,VMF2を制御するので、最良燃費が得られるようにエンジン動力を制御しながら、駆動輪DW,DWを駆動することができる。したがって、動力装置1の駆動効率をより一層、高めることができる。
 また、第1回転機21の第1極対数比αが値2.0に設定されているので、第1回転機21に要求されるトルクが特に大きくなるEV走行中ENG始動時、前記式(51)を用いて説明したように、第1極対数比αを値1.0未満に設定した場合よりも第1発電用等価トルクTGE1を小さくすることができ、したがって、第1回転機21のさらなる小型化およびコストの削減を図ることができる。さらに、第2回転機31の第2極対数比βが値2.0に設定されているので、第2回転機31に要求されるトルクが特に大きくなるENG走行中の急加速運転の開始時、前記式(52)を用いて説明したように、第2極対数比βを値1.0未満に設定した場合よりも第2駆動用等価トルクTSE2を小さくすることができ、したがって、第2回転機31のさらなる小型化およびコストの削減を図ることができる。
 また、駆動時充電モードによる運転が、最良燃費が得られるエンジン動力に対して車両要求動力が小さいときに行われ、この駆動時充電モード中、エンジン動力を最良燃費が得られるように制御するとともに、車両要求動力に対するエンジン動力の余剰分が電力として、バッテリ43に充電される。また、アシストモードによる運転が、最良燃費が得られるエンジン動力に対して車両要求動力が大きいときに行われ、このアシストモード中、エンジン動力を最良燃費が得られるように制御するとともに、車両要求動力に対するエンジン動力の不足分が、バッテリ43からの電力の供給によって補われる。したがって、駆動輪DW,DWの負荷の大きさにかかわらず、動力装置1の駆動効率をさらに高めることができる。
<バッテリSOCに応じた制御>
 上記説明したように、本実施形態の動力装置1の動作モードに応じて、バッテリ43から第1回転機21および/または第2回転機31に電力が供給され、また、第1回転機21および/または第2回転機31で発電された電力がバッテリ43に充電される。また、上記説明したように、ECU2は、電流電圧センサ56からの検出信号に基づいてバッテリ43の充電状態を算出する。
 バッテリ43は、ニッケル水素電池またはリチウムイオン電池等の2次電池によって構成されている。2次電池の性能を十分に活用するためには、その残容量(SOC:State of Charge)を常に監視し、過充電および過放電を防止する必要がある。したがって、本実施形態のECU2は、バッテリ43のSOC(以下「バッテリSOC」という)に応じた制御を行う。図49は、充放電が繰り返されるバッテリSOCの範囲を示す図である。図49に示すように、ECU2は、バッテリSOCが下限SOCから上限SOCまでの範囲内に収まるよう、エンジン3、第1および第2の回転機21,31の動作を制御する。
<ENG発進時の過充電防止制御>
 動作装置1の動作モードが「ENG発進」のとき、図43に示したように、第1回転機21のステータ23では回生発電が行われる。また、図44(a)、(b)に破線で示したように、動作装置1がENG発進の動作を行った直後、第2回転機31のステータ33における第2回転磁界の回転方向は逆転方向であり、ステータ33からは正のトルクがB2ロータ35に作用されるため、ステータ33でも回生発電が行われる。このとき、バッテリ43は、第1回転機21および第2回転機31の双方からの回生エネルギによって充電される。
 また、動作装置1がENG発進の動作を継続し、図44(a)、(b)に太い実線で示したように、第2回転機31のステータ33における第2回転磁界の回転方向が正転方向になると、ステータ33は力行運転状態となるため、電気エネルギを消費する。このとき、第2回転機31に供給される電気エネルギは、第1回転機21の回生発電で得られた回生エネルギが用いられる。なお、第1回転機21で得られる回生エネルギが第2回転機31で消費される電気エネルギよりも大きいとき、バッテリ43は、余った回生エネルギによって充電される。
 このように、動作装置1の動作モードが「ENG発進」のとき、バッテリ43は回生エネルギによって充電される。しかし、バッテリSOCが上限SOCに近い状態でバッテリ43が充電されると、バッテリSOCが上限SOCを超えてしまうおそれがある。したがって、ECU2は、バッテリSOCが図49に示した上限SOCよりも低い第1しきい値以上のとき、以下説明する制御を行う。
 動作装置1の動作モードが「ENG発進」であって、バッテリSOCが第1しきい値以上のとき、ECU2は、図23を参照して説明したエンジン3の要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルク(トルクT12)を変えずに作動するようエンジン3を制御する。図50(a)、(b)は、動作装置1の動作モードが「ENG発進」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。図50(b)に示すように、エンジン3の軸回転数が低く制限されると、第1回転機21のステータ23における第1回転磁界の第1磁界回転速度VMF1は、図50(a)に示した第1磁界回転速度VMF1よりも低くなるよう制御される。その結果、図50(b)に示した場合の第1回転機21で発生する回生エネルギは、図50(a)に示した場合の回生エネルギよりも低くなる。なお、第2回転機31のステータ33における第2回転磁界の回転方向が逆転方向のとき、図50(b)に示した場合の第2回転機31で発生する回生エネルギは、図50(a)に示した場合の回生エネルギよりも低くなる。さらに、第2回転機31のステータ33における第2回転磁界の回転方向が正転方向のとき、図50(b)に示した場合の第2回転機31で消費されるエネルギは、図50(a)に示した場合の消費エネルギよりも高くなる。
 このように、動作装置1の動作モードが「ENG発進」のとき、要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルクを変えずに作動するようECU2がエンジン3を制御することによって、バッテリ43への充電量が低下する。したがって、バッテリSOCが上限SOCに近い第1しきい値以上のとき、ECU2が当該制御を行うことによって、バッテリ43の過充電を防止できる。但し、当該制御の結果、エンジン3の出力は低下する。しかし、図50(b)に示したように第2回転機31からのトルクが加わるため、駆動輪DW,DWに伝達される出力トルクは変わらない。
 なお、上記説明した制御時にECU2がエンジン3に要求するトルクは、図23を参照して説明したENG要求トルク未満であっても良い。最適動作点で作動するようエンジン3を制御する場合、ECU2は、上記制御時の軸回転数に応じたトルクを出力するようエンジン3を制御する。エンジン3の軸回転数が低い状態での最適動作点におけるトルクは軸回転数に略比例するため、このときのトルクはENG要求トルクよりも小さい。このような制御を行うとエンジン3の出力はさらに低下するが、エンジン3を最適動作点で作動できる。
 また、上記制御では、エンジン3の要求ENG軸回転数よりも低い軸回転数で作動するようエンジン3を制御している。しかし、エンジン3に要求されたトルクに対する第1回転機21のステータ23に発生する単位時間当たりの回生エネルギが規定値を超える場合には、図23を参照して説明したENG要求トルクよりも低いトルクを出力するようエンジン3を制御しても良い。なお、このとき、エンジン3の軸回転数は、図23を参照して説明した要求ENG軸回転数と同一であっても、それ以下であっても良い。
<EV走行時の過放電防止制御>
 動作装置1の動作モードが「EV走行」のとき、図27に示したように、第2回転機31のステータ33は力行運転状態であり、第1回転機21のステータ23では回生発電が行われる。第1回転機21の回生発電で得られた回生エネルギはステータ33に送られるが、足りない電力はバッテリ43から供給される。
 このように、動作装置1の動作モードが「EV走行」のとき、バッテリ43は放電する。しかし、バッテリSOCが下限SOCに近い状態でバッテリ43が放電されると、バッテリSOCが下限SOCを下回るおそれがある。したがって、ECU2は、バッテリSOCが図49に示した下限SOCよりも高い第2しきい値以下のとき、以下説明する制御を行う。
 動作装置1の動作モードが「EV走行」であって、バッテリSOCが第2しきい以下のとき、ECU2は、最適動作点でエンジン3を作動するよう制御する。図51(a)、(b)は、動作装置1の動作モードが「EV走行」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。図51(b)に示すように、エンジン3を駆動すると、第2回転機31のステータ33における第2回転磁界の第2磁界回転速度VMF2は、図51(a)に示した第2磁界回転速度VMF2よりも低くなるよう制御される。その結果、第2回転機31で消費されるエネルギは低下する。なお、当該制御時のエンジン3の軸回転数は、第1回転機21のステータ23における第1回転磁界の第1磁界回転速度VMF1が0に制御されるまでの回転数を上限とする。
 このように、動作装置1の動作モードが「EV走行」のとき、エンジン3を作動するよう制御することによって、バッテリ43の放電量が低下する。したがって、バッテリSOCが下限SOCに近い第2しきい値以下のとき、ECU2が当該制御を行うことによって、バッテリ43の過放電を防止できる。
 なお、第2しきい値は可変である。第1回転機21がエンジン3を始動する際に必要とされるエネルギは車速VPによって異なり、車速VPが高いときほど必要とされるエネルギは大きい。したがって、ECU2は、車速VPに応じた第2しきい値を設定する。すなわち、ECU2は、車速VPが高いときほど第2しきい値を高く設定する。
<ENG後退発進時の過放電防止制御>
 動作装置1の動作モードが「ENG後退発進」のとき、図47に示したように、第2回転機31のステータ33は力行運転状態であり、第1回転機21のステータ23では回生発電が行われる。第1回転機21の回生発電で得られた回生エネルギはステータ33に送られるが、足りない電力はバッテリ43から供給される。
 このように、動作装置1の動作モードが「ENG後退発進」のとき、バッテリ43は放電する。しかし、バッテリSOCが下限SOCに近い状態でバッテリ43が放電されると、バッテリSOCが下限SOCを下回るおそれがある。したがって、ECU2は、バッテリSOCが図49に示した下限SOCよりも高い第2しきい値以下のとき、以下説明する制御を行う。
 動作装置1の動作モードが「ENG後退発進」であって、バッテリSOCが第2しきい以下のとき、ECU2は、図23を参照して説明したエンジン3の要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルク(トルクT12)を変えずに作動するようエンジン3を制御する。図52(a)、(b)は、動作装置1の動作モードが「ENG後退発進」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。図52(b)に示すように、エンジン3の軸回転数が低く制限されると、第2回転機31のステータ33における第2回転磁界の第2磁界回転速度VMF2の絶対値は、図52(a)に示した第2磁界回転速度VMF2の絶対値よりも低くなるよう制御される。その結果、第2回転機31で消費されるエネルギは低下する。
 このように、動作装置1の動作モードが「ENG後退発進」のとき、要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルクを変えずに作動するようECU2がエンジン3を制御することによって、バッテリ43の放電量が低下する。したがって、バッテリSOCが下限SOCに近い第2しきい値以下のとき、ECU2が当該制御を行うことによって、バッテリ43の過放電を防止できる。但し、当該制御の結果、エンジン3の出力は低下する。しかし、エンジン3の出力トルクは変わらないため、駆動輪DW,DWに伝達される出力トルクは変わらない。
 なお、上記説明した制御時にECU2がエンジン3に要求するトルクは、図23を参照して説明したENG要求トルク未満であっても良い。最適動作点で作動するようエンジン3を制御する場合、ECU2は、上記制御時の軸回転数に応じたトルクを出力するようエンジン3を制御する。エンジン3の軸回転数が低い状態での最適動作点におけるトルクは軸回転数に略比例するため、このときのトルクはENG要求トルクよりも小さい。このような制御を行うとエンジン3の出力はさらに低下するが、エンジン3を最適動作点で作動できる。
 また、上記制御では、エンジン3の要求ENG軸回転数よりも低い軸回転数で作動するようエンジン3を制御している。しかし、エンジン3に要求されたトルクに対する第2回転機31のステータ33で消費される単位時間当たりのエネルギが規定値を超える場合には、図23を参照して説明したENG要求トルクよりも低いトルクを出力するようエンジン3を制御しても良い。なお、このとき、エンジン3の軸回転数は、図23を参照して説明した要求ENG軸回転数と同一であっても、それ以下であっても良い。
(第2~第5の実施形態)
 次に、図53~図56を参照しながら、第2~第5の実施形態による動力装置1A,1B,1C,1Dについて説明する。これらの動力装置1A~1Dはそれぞれ、第1実施形態と比較して、変速装置61,71,81,91をさらに備える点が主に異なっており、第2~第5の実施形態のいずれにおいても、エンジン3と第1および第2の回転機21,31と駆動輪DW,DWの間の連結関係は、第1実施形態と同様である。すなわち、A2およびB1のロータ25,34がエンジン3のクランク軸3aに機械的に連結されるとともに、A1およびB2のロータ24,35が駆動輪DW,DWに機械的に連結されている。また、図53~図56において、第1実施形態と同じ構成要素については、同じ符号を用いて示している。このことは、後述する他の実施形態を説明するための図においても同様に当てはまる。以下、第2実施形態の動力装置1Aから順に、第1実施形態と異なる点を中心に説明する。
(第2実施形態)
 図53に示すように、この動力装置1Aでは、変速装置61は、前述した互いに噛み合うギヤ7bおよび第1ギヤ8bに代えて設けられている。この変速装置61は、ベルト式の無段変速装置であり、前述した第2回転軸7に連結された入力軸と、アイドラ軸8に連結された出力軸と、入力軸および出力軸にそれぞれ設けられたプーリと、これらのプーリに巻きかけられた金属ベルト(いずれも図示せず)を有している。変速装置61は、これらのプーリの有効径を変更することによって、この入力軸に入力された動力を、変速した状態で出力軸に出力する。また、変速装置61の変速比(入力軸の回転数/出力軸の回転数)はECU2によって制御される。
 上記のように、変速装置61は、A1およびB2のロータ24,35と駆動輪DW,DWとの間に設けられており、A1およびB2のロータ24,35に伝達された動力は、変速装置61によって変速され、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Aでは、前述したEV発進時やENG発進時など、A1およびB2のロータ24,35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置61の変速比は値1.0よりも大きな減速側の所定値に制御される。これにより、A1およびB2のロータ24,35に伝達されたトルクは、変速装置61において増大された後、駆動輪DW,DWに伝達される。それに応じて、A1およびB2のロータ24,35に伝達されるトルクが小さくなるように、第1回転機21で発電される電力および第2回転機31に供給される電力(発電される電力)が制御される。したがって、本実施形態によれば、第1および第2の回転機21,31に要求されるトルクの最大値を小さくすることができ、第1および第2の回転機21,31のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPが極めて高い高車速運転中など、A1およびB2のロータ回転速度VRA1,VRB2が過大になるようなときには、変速装置61の変速比は値1.0よりも小さな増速側の所定値に制御される。これにより、車速VPに対して、A1およびB2のロータ回転速度VRA1,VRB2を低下させることができるので、両ロータ回転速度VRA1,VRB2の過大化による第1および第2の回転機21,31の故障を防止することができる。前述したようにA1ロータ24は磁石で構成されており、磁石は軟磁性体よりも強度が低く、上記のような不具合が発生しやすいため、特に有効である。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置61の変速比は、第1および第2の磁界回転速度VMF1,VMF2がそれぞれ所定の第1および第2の目標値になるように制御される。これらの第1および第2の目標値は、第1および第2の回転機21,31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1および第2の回転機21,31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、第1および第2の目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第1および第2の回転機21,31の高い効率が得られるような値に設定されている。さらに、このような変速装置61の制御と並行して、第1および第2の磁界回転速度VMF1,VMF2が、第1および第2の目標値にそれぞれ制御される。以上により、本実施形態によれば、車両の走行中、第1および第2の回転機21,31の高い効率を得ることができる。
 また、図33(a)、(b)を用いて説明したように、第1および第2の回転機21,31によって、エンジン動力を無段階に変速して、駆動輪DW,DWに伝達できるので、変速装置61の変速動作の頻度を低くすることができる。したがって、この変速動作による熱損失を抑制することができ、それにより、動力装置1Aの高い駆動効率を確保することができる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
 なお、本実施形態では、変速装置61は、ベルト式の無段変速装置であるが、トロイダル式の無段変速装置やギヤ式の有段変速装置でもよい。
(第3実施形態)
 図54に示す第3実施形態の動力装置1Bでは、変速装置71は、ギヤ式の有段変速装置であり、入力軸72および出力軸(図示せず)と、ギヤ比が互いに異なる複数のギヤ列と、これらの複数のギヤ列と入力軸72および出力軸との間をギヤ列ごとに接続・遮断するクラッチ(いずれも図示せず)を有している。変速装置71は、この入力軸72に入力された動力を、これらの複数のギヤ列の1つによって変速した状態で、出力軸に出力する。また、変速装置71では、これらの複数のギヤ列によって、前進用の第1速(変速比=入力軸72の回転数/出力軸の回転数>1.0)、第2速(変速比=1.0)および第3速(変速比<1.0)と、後進用の1つの変速段から成る計4つの変速段が設定され、その変更はECU2によって制御される。
 また、動力装置1Bでは、第1実施形態と異なり、第2回転軸7にギヤ7bが設けられておらず、A1およびB2のロータ24,35は、次のようにして駆動輪DW,DWに連結されている。すなわち、A1ロータ24は、変速装置71の入力軸72に直結されており、変速装置71の出力軸は、前述した連結軸6に直結されている。連結軸6には、ギヤ6bが一体に設けられており、このギヤ6bは、前述した第1ギヤ8bに噛み合っている。
 以上のように、A1ロータ24は、変速装置71、ギヤ6b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、および差動ギヤ機構9などを介して、駆動輪DW,DWに機械的に連結されている。また、A1ロータ24に伝達された動力は、変速装置71によって変速され、駆動輪DW,DWに伝達される。さらに、B2ロータ35は、連結軸6、ギヤ6b、および第1ギヤ8bなどを介して、変速装置71を介さずに、駆動輪DW,DWに機械的に連結されている。
 以上の構成の動力装置1Bでは、ENG発進時など、A1ロータ24から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置71の変速段は、第1速(変速比>1.0)に制御される。これにより、A1ロータ24に伝達されたトルクは、変速装置71において増大された後、駆動輪DW,DWに伝達される。それに応じて、A1ロータ24に伝達されるトルクが小さくなるように、第1回転機21で発電される電力が制御される。これにより、本実施形態によれば、第1回転機21に要求されるトルクの最大値を小さくすることができ、第1回転機21のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPが極めて高い高車速運転中など、A1ロータ回転速度VRA1が過大になるようなときには、変速装置71の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、車速VPに対して、A1ロータ回転速度VRA1を低下させることができるので、A1ロータ回転速度VRA1の過大化による第1回転機21の故障を防止することができる。A1ロータ24は磁石で構成されており、磁石は軟磁性体よりも強度が低く、上記のような不具合が発生しやすいため、特に有効である。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置71の変速段は、第1磁界回転速度VMF1が所定の目標値になるように制御される。この目標値は、第1および第2の回転機21,31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1および第2の回転機21,31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第1回転機21の高い効率が得られるような値に設定されている。さらに、このような変速装置71の制御と並行して、第1磁界回転速度VMF1が上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、第1回転機21の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置71の変速動作中、すなわち、変速装置71の入力軸72および出力軸が変速前のギヤ列と遮断された後、変速先のギヤ列に接続されるまでの間は、第1および第2の回転機21,31が次のようにして制御される。すなわち、変速装置71の変速動作中、変速装置71におけるギヤ列と、入力軸72および出力軸との間の遮断により、A1ロータ24と駆動輪DW,DWの間が遮断されることによって、A1ロータ24に駆動輪DW,DWの負荷が作用しなくなるため、第1回転機21では発電が行われず、第2回転機31のステータ33に、バッテリ43から電力が供給される。
 これにより、本実施形態によれば、変速装置71の変速動作中、ステータ33からの第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクTENGの一部が合成され、B2ロータ35を介して駆動輪DW,DWに伝達されるので、エンジントルクTENGが変速装置71を介して駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
(第4実施形態)
 図55に示す第4実施形態の動力装置1Cでは、第1実施形態と異なり、第2回転軸7にギヤ7bが設けられておらず、前述した第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。これにより、A1ロータ24は、連結軸6、ギヤ6b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、および、差動ギヤ機構9などを介して、変速装置81を介さずに、駆動輪DW,DWに連結されている。
 また、変速装置81は、第3実施形態の変速装置71と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、B2ロータ35に直結された入力軸82と、連結軸6に直結された出力軸(図示せず)を有しており、入力軸82に入力された動力を変速し、出力軸に出力する。さらに、変速装置81の変速段の変更は、ECU2によって制御される。
 上記の構成により、B2ロータ35は、変速装置81、ギヤ6b、および第2ギヤ8cなどを介して、駆動輪DW,DWに機械的に連結されている。また、B2ロータ35に伝達された動力は、変速装置81によって変速され、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Cでは、EV発進時やENG発進時など、B2ロータ35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置81の変速段は、第1速(変速比>1.0)に制御される。これにより、B2ロータ35に伝達されたトルクは、変速装置81において増大された後、駆動輪DW,DWに伝達される。それに応じて、B2ロータ35に伝達されるトルクが小さくなるように、第2回転機31に供給される電力が制御される。これにより、本実施形態によれば、第2回転機31に要求されるトルクの最大値を小さくすることができ、第2回転機31のさらなる小型化およびコストの削減を図ることができる。前述したように、ENG発進時には、ステータ33からのトルクと、B1ロータ34に伝達されたエンジントルクTENGの一部が合成され、B2ロータ35を介して駆動輪DW,DWに伝達されることから、B2ロータ35にはA1ロータ24よりも大きなトルクが作用するので、特に有効である。
 また、車速VPが極めて高い高車速運転中など、B2ロータ回転速度VRB2が過大になるようなときには、変速装置81の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、車速VPに対して、B2ロータ回転速度VRB2を低下させることができるので、B2ロータ回転速度VRB2の過大化による第2回転機31の故障を防止することができる。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置81の変速段は、第2磁界回転速度VMF2が所定の目標値になるように制御される。この目標値は、第1および第2の回転機21,31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1および第2の回転機21,31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第2回転機31の高い効率が得られるような値に設定されている。さらに、このような変速装置81の制御と並行して、第2磁界回転速度VMF2が上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、第2回転機31の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置81の変速動作中(入力軸82および出力軸が、変速前のギヤ列と遮断された後、変速先のギヤ列に接続されるまでの間)、すなわち、変速装置81によりB2ロータ35と駆動輪DW,DWの間が遮断されているときに、図32を用いて説明したトルクの伝達状況などから明らかなように、エンジントルクTENGの一部がA1ロータ24を介して駆動輪DW,DWに伝達される。これにより、本実施形態によれば、変速装置81の変速動作中、エンジントルクTENGが変速装置81を介して駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
(第5実施形態)
 図56に示す第5実施形態による動力装置1Dでは、変速装置91は、遊星歯車装置などで構成されたギヤ式の有段変速装置であり、入力軸92および出力軸(図示せず)を有しており、変速段として、第1速(変速比=入力軸92の回転数/出力軸の回転数=1.0)と第2速(変速比<1.0)から成る計2つの変速段が設定されている。これらの変速段の変更はECU2によって行われる。
 また、変速装置91の入力軸92はフライホイール5に直結されるとともに、その出力軸(図示せず)が前述した第1回転軸4に直結されている。このように、変速装置91は、クランク軸3aと、A2およびB1のロータ25,34との間に設けられており、エンジン動力を変速して、A2ロータ25およびB1ロータ34に伝達する。さらに、前述した差動ギヤ機構9のギヤ9aの歯数は、アイドラ軸8の第2ギヤ8cの歯数よりも大きくなっており、それにより、アイドラ軸8に伝達された動力は減速された状態で、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Dでは、ENG発進時など、A1およびB2のロータ24,35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置91の変速段は第2速(変速比<1.0)に制御される。これにより、A2およびB1のロータ25,34に入力されるエンジントルクTENGは小さくなる。それに応じて、A1およびB2のロータ24,35に伝達されるエンジントルクTENGが小さくなるように、第1回転機21で発電される電力および第2回転機31に供給される電力(発電される電力)が制御される。また、A1およびB2のロータ24,35に伝達されたエンジントルクTENGは、第2ギヤ8cおよびギヤ9aによる減速によって増大された状態で、駆動輪DW,DWに伝達される。以上により、本実施形態によれば、第1および第2の回転機21,31に要求されるトルクの最大値を小さくすることができ、第1および第2の回転機21,31のさらなる小型化およびコストの削減を図ることができる。
 また、エンジン回転数NEが極めて高いときには、変速装置91の変速段は第1速(変速比=1.0)に制御される。これにより、本実施形態によれば、変速段が第2速の場合と比較して、A2およびB1のロータ回転速度VRA2,VRB1を低下させることができるので、両ロータ回転速度VRA2,VRB1の過大化による第1および第2の回転機21,31の故障を防止することができる。B1ロータ34は磁石で構成されていることから、上記のような不具合が発生しやすいので、特に有効である。
 さらに、ENG走行中、変速装置91の変速段は、エンジン回転数NEおよび車速VPに応じて、第1および第2の磁界回転速度VMF1,VMF2がそれぞれ第1および第2の回転機21,31の高い効率を得られるような値になるように変更される。また、このような変速装置91の変速段の変更と並行して、第1および第2の磁界回転速度VMF1,VMF2が、そのときのエンジン回転数NE、車速VP、変速装置91の変速段、前記式(43)および(44)によって定まる値に制御される。これにより、本実施形態によれば、車両の走行中、第1および第2の回転機21,31の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置91の変速動作中、すなわち、変速装置91によってエンジン3とA2およびB1のロータ25,34との間が遮断されているときには、変速ショックを抑えるために、次のようにして第1および第2の回転機21,31を制御する。以下、このような第1および第2の回転機21,31の制御を「変速ショック制御」という。
 すなわち、ステータ23,33に電力を供給するとともに、それに伴ってステータ23,33でそれぞれ発生する第1および第2の回転磁界をいずれも正転させる。これにより、ステータ23からの第1駆動用等価トルクTSE1と、A1ロータ24に後述するように伝達されるトルクが合成され、この合成トルクはA2ロータ25に伝達される。A2ロータ25に伝達されたトルクは、上述した変速装置91による遮断によって、クランク軸3aには伝達されず、B1ロータ34に伝達され、さらに、ステータ33からの第2駆動用等価トルクTSE2と合成された後、B2ロータ35に伝達される。B2ロータ35に伝達されたトルクの一部は、A1ロータ24に伝達され、残りは駆動輪DW,DWに伝達される。
 したがって、本実施形態によれば、変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、商品性を高めることができる。なお、この変速ショック制御は、変速装置91の変速動作中に限って行われる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
 なお、第3~第5の実施形態では、変速装置71,81,91は、ギヤ式の有段変速装置であるが、ベルト式やトロイダル式の無段変速装置でもよい。
(第6実施形態)
 次に、図57を参照しながら、第6実施形態による動力装置1Eについて説明する。同図に示すように、この動力装置1Eは、第1実施形態の動力装置1にブレーキ機構BLを加えたものである。以下、第1実施形態と異なる点を中心に説明する。
 このブレーキ機構BLは、前述した第1回転軸4およびケースCAに接続されたワンウェイクラッチOCを有している。このワンウェイクラッチOCは、第1回転軸4が連結されたクランク軸3aに逆転させるような動力が作用したときには、第1回転軸4と回転不能に構成されたケースCAとの間を接続するとともに、正転させるような動力が作用したときには、第1回転軸4とケースCAの間を遮断するように構成されている。
 すなわち、ワンウェイクラッチOCおよびケースCAで構成されたブレーキ機構BLによって、第1回転軸4の回転は、クランク軸3a、A2ロータ25、およびB1ロータ34とともに正転する場合にのみ、許容され、第1回転軸4がクランク軸3aなどとともに逆転する場合に阻止される。
 以上の構成の動力装置1Eでは、前述したEVクリープおよびEV発進による運転が次のようにして行われる。すなわち、ステータ23,33に電力を供給し、それに伴ってステータ23で発生する第1回転磁界を逆転させるとともに、ステータ33で発生する第2回転磁界を正転させる。また、第1および第2の磁界回転速度VMF1,VMF2を、(β+1)・|VMF1|=α・|VMF2|が成立するように制御する。さらに、第1および第2の回転機21,31に供給される電力は、駆動輪DW,DWにトルクが十分に伝達されるように制御される。
 上記のように逆転するステータ23の第1回転磁界に対して、上述したようにブレーキ機構BLによりA2ロータ25の逆転が阻止されているので、前述した第1回転機21の機能から明らかなように、ステータ23に供給された電力がすべて、A1ロータ24に動力として伝達され、それにより、A1ロータ24は正転する。また、上記のように正転するステータ33の第2回転磁界に対して、ブレーキ機構BLによりB1ロータ34の逆転が阻止されているので、前述した第2回転機31の機能から明らかなように、ステータ33に供給された電力がすべて、B2ロータ35に動力として伝達され、それにより、B2ロータ35は正転する。さらに、A1およびB2のロータ24,35に伝達された動力は、駆動輪DW,DWに伝達され、その結果、駆動輪DW,DWは正転する。
 さらに、この場合、ブレーキ機構BLにより逆転するのが阻止されているA2およびB1のロータ25,34に対して、第1および第2の駆動用等価トルクTSE1,TSE2はそれぞれ逆転させるように作用し、それにより、クランク軸3a、A2およびB1のロータ25,34は、逆転しないだけでなく、静止状態に保持される。
 以上のように、本実施形態によれば、エンジン動力を用いることなく、第1および第2の回転機21,31によって駆動輪DW,DWを駆動することができる。また、この駆動中、クランク軸3aは逆転しないだけでなく、静止状態に保持されるので、エンジン3を引きずることがない。
 なお、これまでに述べた第1~第6の実施形態では、第1および第2の極対数比α、βをいずれも値2.0に設定しているが、第1および第2の極対数比α、βを値1.0よりも小さく設定した場合には、次の効果が得られる。前述した図33(a)、(b)に示す各種の回転要素の回転速度の関係から明らかなように、第1極対数比αを比較的大きな値に設定した場合において、エンジン回転数NEが車速VPよりも高いとき(図33(a)、(b)の二点鎖線参照)には、第1磁界回転速度VMF1は、エンジン回転数NEよりも高くなり、過大になる場合がある。これに対し、第1極対数比αを値1.0よりも小さく設定することによって、図33(a)、(b)に破線で示す速度共線図と二点鎖線で示す速度共線図との比較から明らかなように、第1磁界回転速度VMF1を小さくすることができ、したがって、第1磁界回転速度VMF1の過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 また、第2極対数比βを比較的大きな値に設定した場合において、車速VPがエンジン回転数NEよりも高いとき(図33(a)、(b)の一点鎖線参照)には、第2磁界回転速度VMF2は、車速VPよりも高くなり、過大になる場合がある。これに対し、第2極対数比βを値1.0よりも小さく設定することによって、図33(a)、(b)に破線で示す速度共線図と一点鎖線で示す速度共線図との比較から明らかなように、第2磁界回転速度VMF2を小さくすることができ、したがって、第2磁界回転速度VMF2の過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 さらに、第1~第6の実施形態では、A2ロータ25およびB1ロータ34を互いに連結し、A1ロータ24およびB2ロータ35を互いに連結しているが、A2ロータ25およびB1ロータ34は、クランク軸3aに連結されていれば、互いに連結されていなくてもよく、また、A1ロータ24およびB2ロータ35は、駆動輪DW,DWに連結されていれば、互いに連結されていなくてもよい。この場合、第2実施形態の変速装置61を2つの変速装置で構成するとともに、これらの2つの変速装置の一方をA1ロータ24と駆動輪DW,DWの間に、他方をB2ロータ35と駆動輪DW,DWの間に、それぞれ設けてもよい。同様に、第5実施形態の変速装置91を2つの変速装置で構成するとともに、これらの2つの変速装置の一方をA2ロータ25とクランク軸3aの間に、他方をB1ロータ34とクランク軸3aの間に、それぞれ設けてもよい。
 また、第1~第5の実施形態において、クランク軸3aの逆転を阻止するためのブレーキ機構BLを設けてもよいことはもちろんである。また、このブレーキ機構BLを、ワンウェイクラッチOCおよびケースCAで構成しているが、クランク軸3aの逆転を阻止できるのであれば、他の機構、例えばバンドブレーキなどで構成してもよい。
(第7実施形態)
 次に、図58を参照しながら、第7実施形態による動力装置1Fについて説明する。この動力装置1Fは、第1実施形態の動力装置1と比較して、第2回転機31を、一般的なシングルピニオンタイプの第1遊星歯車装置PS1と一般的な1ロータタイプの回転機101に置き換えた点のみが異なっている。なお、同図において、第1実施形態と同じ構成要素については、同じ符号を用いて示している。このことは、後述する他の実施形態についても同様である。以下、第1実施形態と異なる点を中心に説明する。
 図58に示すように、第1遊星歯車装置PS1は、第1サンギヤS1と、この第1サンギヤS1の外周に設けられた第1リングギヤR1と、両ギヤS1,R1に噛み合う複数(例えば3つ)の第1プラネタリギヤP1(2つのみ図示)と、第1プラネタリギヤP1を回転自在に支持する第1キャリアC1とを有している。第1サンギヤS1の歯数と第1リングギヤR1の歯数との比(第1サンギヤS1の歯数/第1リングギヤR1の歯数、以下「第1遊星ギヤ比r1」という)は、値1.0よりも若干、小さな所定値に設定されており、一般的な遊星歯車装置が取りうる値のなかで比較的大きな値に設定されている。
 上記の第1サンギヤS1は、第1回転軸4を介してA2ロータ25に機械的に直結されるとともに、第1回転軸4およびフライホイール5を介して、クランク軸3aに機械的に直結されている。また、第1キャリアC1は、連結軸6を介してA1ロータ24に機械的に直結されるとともに、第2回転軸7や、ギヤ7b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、差動ギヤ機構9などを介して、駆動輪DW,DWに機械的に連結されている。すなわち、A1ロータ24および第1キャリアC1は、駆動輪DW,DWに機械的に連結されている。
 また、第1遊星歯車装置PS1は、その構成により、一般的な遊星歯車装置と同じ周知の機能を有している。すなわち、第1サンギヤS1、第1リングギヤR1および第1キャリアC1の回転方向が互いに同じであるときに、第1キャリアC1に入力された動力を第1サンギヤS1および第1リングギヤR1に分配する機能と、第1サンギヤS1および第1リングギヤR1に入力された動力を合成し、第1キャリアC1に出力する機能とを有している。また、このような動力の分配・合成中、第1サンギヤS1、第1リングギヤR1および第1キャリアC1は、回転速度に関する共線関係を保ちながら回転する。この場合、第1サンギヤS1、第1リングギヤR1および第1キャリアC1の間の回転速度の関係は、次式(53)で表される。
       VRI1=(r1+1)VCA1-r1・VSU1    ……(53)
 ここで、VRI1は、第1リングギヤR1の回転速度(以下「第1リングギヤ回転速度」という)であり、VCA1は、第1キャリアC1の回転速度(以下「第1キャリア回転速度」という)であり、VSU1は、第1サンギヤS1の回転速度(以下「第1サンギヤ回転速度」という)である。
 回転機101は、3相ブラシレスDCモータであり、複数のコイルなどで構成されたステータ102と、磁石などで構成されたロータ103を有している。また、回転機101は、ステータ102に供給された電力を動力に変換し、ロータ103に出力する機能と、ロータ103に入力された動力を電力に変換し、ステータ102に出力する機能を有している。ロータ103は、第1リングギヤR1に一体に設けられており、第1リングギヤR1とともに回転自在になっている。ステータ102は、第2PDU42を介して、バッテリ43に電気的に接続されている。すなわち、第1回転機21のステータ23と回転機101のステータ102は、第1および第2のPDU41,42を介して互いに電気的に接続されている。
 図59は、動力装置1Fの概略構成および動力の伝達状況の一例を示す概念図である。なお、図59では、第1回転機21が「第1回転機」、ステータ23が「第1ステータ」、A1ロータ24が「第1ロータ」、A2ロータ25が「第2ロータ」、第1遊星歯車装置PS1が「差動装置」、第1サンギヤS1が「第1要素」、第1キャリアC1が「第2要素」、第1リングギヤR1が「第3要素」、回転機101が「第2回転機」、エンジン3が「熱機関」、駆動輪DW,DWが「被駆動部」、第1PDU41が「第1制御器」、第2PDU42が「第2制御器」とそれぞれ表されている。差動装置は、遊星歯車装置と同じ機能を有している。さらに、第1ロータおよび差動装置の第2要素が被駆動部に、第2ロータおよび差動装置の第1要素が熱機関の第1出力部にそれぞれ機械的に連結されている。また、差動装置の第3要素が第2回転機の第2出力部に機械的に連結されるとともに、ステータおよび第2回転機が、第1および第2の制御器を介して互いに電気的に接続されている。
 以上の構成により、動力装置では、熱機関の動力が、例えば次のようにして被駆動部に伝達される。以下、第2ロータおよび第1要素が熱機関の第1出力部に連結されるとともに、第1ロータおよび第2要素が被駆動部に連結されている動力装置を「第1動力装置」といい、第1ロータおよび第2要素が熱機関の第1出力部に連結されるとともに、第2ロータおよび第1要素が被駆動部に連結されている動力装置を「第2動力装置」という。また、これらの第1および第2の動力装置における熱機関から被駆動部への動力の伝達について、第1動力装置から順に説明する。なお、図59では、図19と同様、要素間の連結については、機械的な連結を実線で、電気的な接続を一点鎖線で、磁気的な連結を破線で、それぞれ示している。また、動力および電力の流れを矢印付きの太い線で示している。
 熱機関の動力を被駆動部に伝達する場合、第1および第2の制御器による制御によって、熱機関の動力の一部を用いて第1回転機で発電を行うとともに、発電した電力を第2回転機に供給する。この第1回転機での発電時、図59に示すように、熱機関の動力の一部が、熱機関の第1出力部に連結された第2ロータに伝達され、さらに、前述した磁力線による磁力によって、第1ロータおよびステータに分配される。この場合、ステータには、第2ロータに伝達された動力の一部が電力に変換され、分配される。また、第1ロータに上記のように分配された動力は被駆動部に伝達される一方、ステータに分配された電力は第2回転機に供給される。さらに、上記のように第1回転機で発電した電力が第2回転機に供給されると、この電力は動力に変換された後、第3要素に伝達される。また、熱機関の動力の残りは、第1要素に伝達され、第3要素に上記のように伝達された動力と合成された後、第2要素を介して被駆動部に伝達される。以上の結果、被駆動部に、熱機関の動力と等しい大きさの動力が伝達される。
 以上のように、本実施形態の第1動力装置1Fでは、第1実施形態の動力装置1と同様、第1回転機が遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有するので、動力を分配・合成して伝達するために2つの遊星歯車装置を必要としていた前述した従来の動力装置と異なり、同じ目的のための差動装置が1つのみで足りる。したがって、その分、第1動力装置を小型化することができる。このことは、上述した第2動力装置についても同様である。また、第1動力装置では、前述した従来の場合と異なり、熱機関の動力が上述したように再循環せずに被駆動部に伝達されるので、第1回転機、差動装置および第2回転機を通過する動力を低減できる。したがって、第1回転機、差動装置および第2回転機の小型化およびコストの削減を図ることができ、それにより、第1動力装置のさらなる小型化とコストの削減を達成することができる。さらに、上記のように低減された動力に見合ったトルク容量を有する第1回転機、差動装置および第2回転機を用いることによって、動力の損失を抑制し、第1動力装置の駆動効率を高めることができる。
 また、熱機関の動力は、第2ロータ、磁力線による磁力および第1ロータから成る第1伝達経路と、第2ロータ、磁力線による磁力、ステータ、第1制御器、第2制御器、第2回転機、第3要素、および第2要素から成る第2伝達経路と、第1および第2の要素から成る第3伝達経路の計3つの伝達経路を介して、分割された状態で被駆動部に伝達される。これにより、第2伝達経路を介して第1および第2の制御器を通過する電力(エネルギ)を低減できるので、第1および第2の制御器の小型化およびコストの削減を図ることができ、それにより、第1動力装置のさらなる小型化およびコストの削減を達成することができる。
 さらに、以上のような被駆動部への動力の伝達の際、第1および第2の制御器により、ステータの回転磁界の回転速度と第2回転機の第2出力部の回転速度をそれぞれ制御することによって、熱機関の動力を無段階に変速して被駆動部に伝達することができる。以下、この点について説明する。第1回転機では、前述した機能から明らかなように、ステータ、第1および第2のロータの間でのエネルギの分配・合成中、回転磁界、第1および第2のロータは、式(25)に示すような回転速度に関する共線関係を保ちながら回転する。また、差動装置では、第1~第3の要素の間でのエネルギの分配・合成中、第1~第3の要素は、回転速度に関する共線関係を保ちながら回転する。さらに、前述した連結関係において、第2ロータおよび第1要素が熱機関の第1出力部に直結されている場合には、第2ロータおよび第1要素の回転速度はいずれも、熱機関の第1出力部の回転速度と等しい。また、第1ロータおよび第2要素が被駆動部に直結されている場合には、第1ロータおよび第2要素の回転速度はいずれも、被駆動部の速度と等しい。さらに、第2回転機の第2出力部および第3要素が互いに直結されている場合には、第2回転機および第3要素の回転速度は互いに等しい。
 ここで、熱機関の第1出力部の回転速度を「熱機関の回転数」とし、第2回転機の第2出力部の回転速度を「第2回転機の回転速度」とする。また、回転磁界の回転速度を「磁界回転速度VF」とし、第1および第2のロータの回転速度をそれぞれ「第1および第2のロータ回転速度VR1,VR2」とし、第1~第3の要素の回転速度をそれぞれ「第1~第3の要素回転速度V1~V3」とする。上述した各種の回転要素の回転速度の関係から、熱機関の回転数と、被駆動部の速度と、磁界回転速度VFと、第1および第2のロータ回転速度VR1,VR2と、第1~第3の要素回転速度V1~V3と、第2回転機の回転速度の関係は、例えば図60の太い実線のように示される。
 このため、図60に二点鎖線で示すように、例えば、第2ロータ回転速度VR2および第1要素回転速度V1に対して、磁界回転速度VFを上昇させるとともに、第2回転機の回転速度を低下させることによって、熱機関の動力を無段階に減速して被駆動部に伝達することができる。逆に、図60に一点鎖線で示すように、第2ロータ回転速度VR2および第1要素回転速度V1に対して、磁界回転速度VFを低下させるとともに、第2回転機の回転速度を上昇させることによって、熱機関の動力を無段階に増速して被駆動部に伝達することができる。
 また、第1回転機の極対数比αが比較的大きい場合において、熱機関の回転数が被駆動部の速度よりも高いとき(図60の二点鎖線参照)には、磁界回転速度VFは、熱機関の回転数よりも高くなり、過大になる場合がある。したがって、第1回転機の極対数比αをより小さな値に設定することによって、図60に破線で示す速度共線図と二点鎖線で示す速度共線図との比較から明らかなように、磁界回転速度VFを小さくすることができ、それにより、磁界回転速度VFの過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 さらに、差動装置における第1~第3の要素の回転速度に関する共線関係を、第1要素と第2要素の回転速度の差と第2要素と第3要素の回転速度の差が値1.0:値X(X>0)になるように設定するとともに、値Xを比較的大きめに設定した場合において、被駆動部の速度が熱機関の回転数よりも高いとき(図60の一点鎖線参照)には、第2回転機の回転速度は、被駆動部の速度よりも高くなり、過大になる場合がある。したがって、上記の値Xをより小さな値に設定することによって、図60に破線で示す速度共線図と一点鎖線で示す速度共線図との比較から明らかなように、第2回転機の回転速度を小さくすることができ、それにより、第2回転機の回転速度の過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 また、第1動力装置では、第2回転機に電力を供給するとともに、第1ステータで発電することによって、第2回転機の第2出力部に出力されるトルク(以下「第2回転機トルク」という)を、前述した第1回転機の発電用等価トルクを反力とし、熱機関の第1出力部を停止した状態で被駆動部に伝達でき、それにより、被駆動部を駆動することができる。さらに、そのような被駆動部の駆動中、熱機関が内燃機関である場合に、内燃機関を始動することが可能である。図61は、この場合における各種の回転要素のトルクの関係を、回転速度の関係とともに示している。同図において、TOUTは、請求項1と同様、被駆動部伝達トルクであり、TDHE、TgおよびTM2はそれぞれ、熱機関の第1出力部に伝達されるトルク(以下「熱機関伝達トルク」という)、発電用等価トルクおよび第2回転機トルクである。
 上記のように熱機関を始動する場合には、図61から明らかなように、第2回転機トルクTM2が、第1回転機の発電用等価トルクTgを反力として、被駆動部および熱機関の第1出力部の双方に伝達されるため、第1回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第1回転機に要求されるトルクすなわち発電用等価トルクTgは、次式(54)で表される。
  Tg=-{X・TOUT+(X+1)TDHE}/(α+1+X)  ……(54)
 この式(54)から明らかなように、第1回転機の極対数比αが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関伝達トルクTDHEに対して、発電用等価トルクTgが小さくなる。したがって、極対数比αをより大きな値に設定することによって、第1回転機のさらなる小型化およびコストの削減を図ることができる。
 さらに、第1動力装置では、次のようにして熱機関、第1および第2の回転機を制御することによって、低速状態の被駆動部の速度を急速に上昇させることができる。図62は、このように被駆動部の速度を急速に上昇させる場合の開始時における各種の回転要素の回転速度の関係を、各種の回転要素のトルクの関係とともに示している。同図において、THEは、請求項1と同様、熱機関のトルクであり、Teは、前述した第1回転機の駆動用等価トルクである。この場合、熱機関の回転数を、その最大トルクが得られるような所定の回転数に高める。図62に示すように、被駆動部の速度がすぐには上昇しないため、熱機関の回転数が被駆動部の速度よりも高くなるとともに、両者の差が大きくなることから、第2回転機の第2出力部は逆転する。また、そのように逆転する第2回転機の第2出力部から正のトルクを被駆動部に作用させるために、第2回転機において発電を行う。さらに、第2回転機で発電した電力を第1回転機のステータに供給するとともに、このステータで発生する回転磁界を正転させる。
 以上により、熱機関のトルクTHE、駆動用等価トルクTeおよび第2回転機トルクTM2はいずれも、正のトルクとして、被駆動部に伝達され、その結果、被駆動部の速度が急速に上昇する。また、上記のように低速状態の被駆動部の速度を急速に上昇させる場合には、図62から明らかなように、熱機関のトルクTHEおよび駆動用等価トルクTeが第2回転機トルクTM2を反力として被駆動部に伝達されるため、第2回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第2回転機に要求されるトルクすなわち第2回転機トルクTM2は、次式(55)で表される。
  TM2=-{α・THE+(1+α)TOUT}/(X+1+α)  ……(55)
 この式(55)から明らかなように、値Xが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関のトルクTHEに対して、第2回転機トルクTM2が小さくなる。したがって、値Xをより大きな値に設定することによって、第2回転機のさらなる小型化およびコストの削減を図ることができる。
 また、図63は、前述した第2動力装置における熱機関から被駆動部への動力の伝達状況の一例を概略的に示している。なお、同図における各種の回転要素の連結関係などの表記の方法は、図59と同じである。この第2動力装置では、熱機関の動力は、例えば次のようにして被駆動部に伝達される。すなわち、第1および第2の制御器による制御によって、熱機関の動力の一部を用いて第2回転機で発電を行うとともに、発電した電力を第1回転機のステータに供給する。この第2回転機での発電時、図63に示すように、熱機関の動力の一部が、熱機関の第1出力部に連結された第2要素に伝達され、第1および第3の要素に分配される。第1要素に分配された動力は被駆動部に伝達される一方、第3要素に分配された動力は、第2回転機に伝達されるとともに、電力に変換された後、ステータに供給される。
 さらに、上記のように第2回転機で発電した電力がステータに供給されると、この電力は、動力に変換され、磁力線による磁力によって、第2ロータに伝達される。それに伴い、熱機関の動力の残りが、第1ロータに伝達され、さらに、磁力線による磁力によって、第2ロータに伝達される。また、第2ロータに伝達された動力は、被駆動部に伝達される。以上の結果、被駆動部に、熱機関の動力と等しい大きさの動力が伝達される。
 以上のように、第2動力装置においても、前述した第1動力装置と同様、熱機関の動力が再循環せずに被駆動部に伝達されるので、第1回転機、差動装置および第2回転機を通過する動力を低減できる。したがって、第1動力装置と同様、第1回転機、差動装置および第2回転機の小型化およびコストの削減を図ることができ、それにより、第2動力装置のさらなる小型化とコストの削減を達成することができるとともに、第2動力装置の駆動効率を高めることができる。また、第1動力装置と第2動力装置の間では、第1回転機および差動装置における動力の分配・合成が逆の関係になっているだけで、第2動力装置においても、図63に示すように、熱機関の動力は、前述した第1~第3の伝達経路の計3つの伝達経路を介して、分割された状態で被駆動部に伝達される。したがって、第1動力装置と同様、第1および第2の制御器の小型化およびコストの削減を図ることができ、それにより、第2動力装置のさらなる小型化およびコストの削減を達成することができる。
 さらに、第2動力装置においても、第1動力装置と同様、上述したような被駆動部への動力の伝達の際、第1および第2の制御器で磁界回転速度VFおよび第2回転機の回転速度をそれぞれ制御することによって、熱機関の動力を無段階に変速して被駆動部に伝達することができる。具体的には、第2動力装置では、熱機関の回転数と、被駆動部の速度と、磁界回転速度VFと、第1および第2のロータ回転速度VR1,VR2と、第1~第3の要素回転速度V1~V3と、第2回転機の回転速度の関係は、例えば図64の太い実線のように示される。同図に二点鎖線で示すように、例えば、第2要素回転速度V2および第1ロータ回転速度VR1に対して、第2回転機の回転速度を上昇させるとともに、磁界回転速度VFを低下させることによって、熱機関の動力を無段階に減速して被駆動部に伝達することができる。逆に、図64に一点鎖線で示すように、第2要素回転速度V2および第1ロータ回転速度VR1に対して、第2回転機の回転速度を低下させるとともに、磁界回転速度VFを上昇させることによって、熱機関の動力を無段階に増速して被駆動部に伝達することができる。
 また、第1回転機の極対数比αが比較的大きい場合において、被駆動部の速度が熱機関の回転数よりも高いとき(図64の一点鎖線参照)には、磁界回転速度VFは、被駆動部の速度よりも高くなり、過大になる場合がある。したがって、極対数比αをより小さな値に設定することによって、図64に破線で示す速度共線図と一点差線で示す速度共線図との比較から明らかなように、磁界回転速度VFを小さくすることができ、それにより、磁界回転速度VFの過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 さらに、前述した差動装置における回転速度に関する共線関係を定める値Xが比較的大きい場合において、熱機関の回転数が被駆動部の速度よりも高いとき(図64の二点鎖線参照)には、第2回転機の回転速度は、熱機関の回転数よりも高くなり、過大になる場合がある。したがって、この値Xをより小さな値に設定することによって、図64に破線で示す速度共線図と二点差線で示す速度共線図との比較から明らかなように、第2回転機の回転速度を小さくすることができ、それにより、第2回転機の回転速度の過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 また、第2動力装置では、第1回転機のステータに電力を供給するとともに、第2回転機で発電を行うことによって、第1回転機の駆動用等価トルクTeを、第2回転機トルクTM2を反力とし、熱機関の第1出力部を停止した状態で被駆動部に伝達でき、それにより、被駆動部を駆動することができる。さらに、そのような被駆動部の駆動中、熱機関が内燃機関である場合に、第1動力装置と同様、内燃機関を始動することが可能である。図65は、この場合における各種の回転要素のトルクの関係を、回転速度の関係とともに示している。
 上記のように熱機関を始動する場合には、図65から明らかなように、駆動用等価トルクTeが、第2回転機トルクTM2を反力として、被駆動部および熱機関の出力部の双方に伝達されるため、第2回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第2回転機に要求されるトルクすなわち第2回転機トルクTM2は、次式(56)で表される。
  TM2=-{α・TOUT+(1+α)TDHE}/(X+α+1) ……(56)
 この式(56)から明らかなように、値Xが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関伝達トルクTDHEに対して、第2回転機トルクTM2が小さくなる。したがって、値Xをより大きな値に設定することによって、第2回転機のさらなる小型化およびコストの削減を図ることができる。
 さらに、第2動力装置では、次のようにして熱機関、第1および第2の回転機を制御することによって、第1動力装置と同様、低速状態の被駆動部の速度を急速に上昇させることができる。図66は、このように被駆動部の速度を急速に上昇させる場合の開始時における各種の回転要素の回転速度の関係を、各種の回転要素のトルクの関係とともに示している。この場合、熱機関の回転数を、その最大トルクが得られるような所定の回転速度に高める。図66に示すように、被駆動部の速度がすぐには上昇しないため、熱機関の回転数が被駆動部の速度よりも高くなるとともに、両者の差が大きくなることから、この両者の関係によって定まる回転磁界の回転方向は逆転方向になる。このため、そのような回転磁界を発生させる第1回転機のステータから正のトルクを被駆動部に作用させるために、ステータにおいて発電を行う。さらに、ステータで発電した電力を第2回転機に供給するとともに、その第2出力部を正転させる。
 以上により、熱機関のトルクTHE、第2回転機トルクTM2および発電用等価トルクTgはいずれも、正のトルクとして、被駆動部に伝達され、その結果、被駆動部の速度が急速に上昇する。また、上記のように低速状態の被駆動部の速度を急速に上昇させる場合には、図66から明らかなように、熱機関のトルクTHEおよび第2回転機トルクTM2が、第1回転機の発電用等価トルクTgを反力として被駆動部に伝達されるため、第1回転機に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第1回転機に要求されるトルクすなわち発電用等価トルクTgは、次式(57)で表される。
  Tg=-{X・THE+(1+X)TOUT}/(α+1+X)   ……(57)
 この式(57)から明らかなように、極対数比αが大きいほど、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関のトルクTHEに対して、発電用等価トルクTgが小さくなる。したがって、極対数比αをより大きな値に設定することによって、第1回転機のさらなる小型化およびコストの削減を図ることができる。
 また、図67に示すように、ECU2には、回転角センサ59が接続されており、この回転角センサ59は、回転機101のロータ103の回転角度位置を検出し、その検出信号をECU2に出力する。ECU2は、この検出信号に基づいて、ロータ103の回転速度(以下「ロータ回転速度」という)を算出する。また、ECU2は、検出されたロータ103の回転角度位置に基づき、第2PDU42を制御することによって、回転機101のステータ102に供給される電力や、ステータ102で発電する電力、ロータ回転速度を制御する。なお、ECU2は、当該制御を行う際に必要となる各種マップ等を記憶するメモリ45からデータを読み込む。また、ECU2は、バッテリ43の外装体又はその周辺に取り付けられたバッテリ温度センサ62が検出した信号から、バッテリ43の温度を導出する。
 以下、上記説明した1共線4要素の仕組みを有する動力装置1FにおいてECU2が行う駆動力制御について、図68及び図69を参照して説明する。図68は、第7実施形態の動力装置1Fにおける駆動力制御を示すブロック線図である。また、図69は、1共線4要素の仕組みを有する動力装置1Fにおける速度共線図である。
 図68に示すように、ECU2は、上記説明したアクセル開度APを表す検出信号と、車速VPを表す検出信号とを取得する。次に、ECU2は、メモリ45に格納されている駆動力マップを用いて、アクセル開度APと車速VPに応じた駆動力(以下「要求駆動力」という。)を導出する。次に、ECU2は、要求駆動力と車速VPに応じた出力(以下「要求出力」という。)を算出する。なお、当該要求出力は、車両がドライバのアクセルペダル操作に応じた走行を行うために要する出力である。
 次に、ECU2は、上記説明したバッテリ43に入出力される電流・電圧値を表す検出信号から、バッテリ43の残容量(SOC:State of Charge)の情報を取得する。次に、ECU2は、バッテリ43のSOCに応じた、要求出力に占めるエンジン3の出力する割合を決定する。次に、ECU2は、メモリ45に格納されているENG動作マップを用いて、エンジン3の出力に応じた最適な動作点を導出する。なお、ENG動作マップは、エンジン3の軸回転数とトルクと出力の関係に応じた各動作点の燃料消費率を示すBSFC(Brake Specific Fuel Consumption)に基づくマップである。次に、ECU2は、最適動作点でのエンジン3の軸回転数(以下「要求ENG軸回転数」という。)を導出する。さらに、ECU2は、最適動作点でのエンジン3のトルク(以下「ENG要求トルク」という。)を導出する。
 次に、ECU2は、ENG要求トルクを出力するようエンジン3を制御する。次に、ECU2は、エンジン3の軸回転数を検出する。このとき検出されたエンジン3の軸回転数を「実ENG軸回転数」という。次に、ECU2は、要求ENG軸回転数と実ENG軸回転数の差分Δrpmを算出する。ECU2は、差分Δrpmが0に近づくよう、第1回転機21の出力トルクを制御する。当該制御は、第1回転機21のステータ23で回生発電することで行われ、その結果、第1回転機21(MG1)のA2ロータ25には、図69の共線図に示したトルクT12が加わる。
 第1回転機21のA2ロータ25にトルクT12が加わることによって、第1回転機21(MG1)のA1ロータ24にトルクT11が生じる。トルクT11は、以下の式(58)によって算出される。
 T11=α/(1+α)×T12 …(58)
 また、第1回転機21のステータ23での回生発電によって生じた電気エネルギ(回生エネルギ)は第1PDU41に送られる。図69の共線図では、第1回転機21のステータ23で発生した回生エネルギを点線Aで示す。
 次に、ECU2は、前に導出した要求駆動力から、上記算出されたトルクT11を差し引いたトルクT22が第1遊星歯車装置PS1の第1キャリアC1に加わるよう、第2PDU42を制御する。その結果、回転機101(MG2)のロータ103にトルクが加わり、第1遊星歯車装置PS1の第1キャリアC1に伝達される。なお、図69の共線図は、回転機101のステータ102に電気エネルギを供給する場合を示し、そのときの電気エネルギを点線Bで示した。このとき、回転機101に電気エネルギを供給する際には、第1回転機21の回生発電で得られた回生エネルギを用いても良い。
 このように、第1回転機21のA1ロータ24にはトルクT11が加わり、第1遊星歯車装置PS1の第1キャリアC1にはトルクT22が加わる。第1回転機21のA1ロータ24は連結軸6を介して第1遊星歯車装置PS1の第1キャリアC1と連結しており、第1遊星歯車装置PS1の第1キャリアC1は第2回転軸7と連結しているため、駆動輪DW,DWにはトルクT11とトルクT22の総和が加わる。
 但し、第1遊星歯車装置PS1の第1キャリアC1にトルクT22が加わることによって、第1遊星歯車装置PS1の第1サンギヤS1にはトルクT21が生じる。トルクT21は、以下の式(59)によって表される。
 T21=β/(1+β)×T22 …(59)
 第1遊星歯車装置PS1の第1サンギヤS1はエンジン3の軸に連結されているため、エンジン3の実ENG軸回転数はトルクT21によって影響を受ける。しかし、実ENG軸回転数が変化しても、ECU2は、差分Δrpmが0に近づくよう、第1回転機21の出力トルクを制御する。当該制御によってトルクT12が変化し、第1回転機21のA1ロータ24に生じるトルクT11も変化するため、ECU2は、回転機101のロータ103に加えるトルクを変更する。このとき、変更されたトルクによって生じるトルクT21も変化する。このように、第1回転機21のA1ロータ24及びA2ロータ25、並びに、第1遊星歯車装置PS1の第1サンギヤS1および第1キャリアC1のそれぞれにかかるトルクが循環して(T12→T11→T22→T21)、各トルクが収束していく。
 以上説明したように、ECU2は、エンジン3が最適な動作点で作動するよう、第1回転機21のA2ロータ25に発生するトルクを制御し、かつ、駆動輪DW,DWに要求駆動力が伝達されるよう、回転機101のロータ103に発生するトルクを制御している。
 上記説明では、要求駆動力を導出する際および要求出力を導出する際に車速VPを用いているが、車速VPの代わりに、車軸の回転数の情報を用いても良い。
 以上のように、本実施形態による動力装置1Fは、第1実施形態の動力装置1と比較して、第2回転機31を第1遊星歯車装置PS1および回転機101に置き換えただけであり、この動力装置1とまったく同じ機能を有している。また、動力装置1Fでは、第1実施形態で述べたEVクリープなどの各種の動作モードによる運転が、同様にして行われる。この場合、これらの動作モードによる運転は、第2回転機31に関する各種のパラメータ(第2磁界回転速度VMF2など)を、対応する回転機101の各種のパラメータに置き換えて行われる。以下、これらの動作モードについて、第1実施形態と異なる点を中心として簡単に説明する。
 ・EVクリープ
 EVクリープ中には、回転機101のステータ102に、バッテリ43から電力を供給するとともに、ロータ103を正転させる。また、第1回転機21のA1ロータ24に後述するように伝達される動力を用いて、ステータ23で発電を行うとともに、発電した電力を、ステータ102にさらに供給する。これに伴い、回転機101のロータ103に出力されたトルク(以下「回転機トルク」という)は、第1キャリアC1を正転させるように作用するとともに、第1サンギヤS1を逆転させるように作用する。また、第1キャリアC1に伝達されたトルクの一部は、第2回転軸7などを介して駆動輪DW,DWに伝達され、それにより、駆動輪DW,DWが正転する。
 さらに、EVクリープ中、第1キャリアC1に伝達されたトルクの残りは、連結軸6を介してA1ロータ24に伝達された後、第1回転機21のステータ23での発電に伴って、ステータ23に電気エネルギとして伝達される。また、第1実施形態で述べたように、この発電に伴って発生する第1回転磁界が逆転するため、第1発電用等価トルクTGE1が、A2ロータ25を正転させるように作用する。また、この第1発電用等価トルクTGE1に釣り合うように、A1ロータ24に伝達されたトルクが、A2ロータ25にさらに伝達され、A2ロータ25を正転させるように作用する。
 この場合、上述した第1サンギヤS1を逆転させるトルクと、A2ロータ25を正転させるトルクとが釣り合うように、ステータ102に供給される電力とステータ23で発電する電力を制御することによって、互いに連結されたA2ロータ25、第1サンギヤS1およびクランク軸3aが、静止状態に保持される。その結果、EVクリープ中、A2ロータ回転速度VRA2および第1サンギヤ回転速度VSU1は、値0になり、エンジン回転数NEも値0になる。
 また、EVクリープ中、ステータ102に供給される電力と、ステータ23で発電する電力と、第1磁界回転速度VMF1およびロータ回転速度はそれぞれ、前記式(43)および(53)に示すような速度関係が維持されるように、かつ第1キャリア回転速度VCA1およびA1ロータ回転速度VRA1が非常に小さくなるように制御される。以上により、車速VPが非常に小さなクリープ運転が行われる。以上のように、エンジン3を停止した状態で、第1回転機21および回転機101によってクリープ運転を行うことができる。
 ・EV発進
 EV発進時には、回転機101のステータ102に供給される電力および第1回転機21のステータ23で発電する電力をいずれも増大させる。さらに、式(43)および(53)に示すような回転速度の関係を維持し、エンジン回転数NEを値0に保持しながら、EVクリープ中に逆転していた第1回転磁界の第1磁界回転速度VMF1と、正転していたロータ103のロータ回転速度をそれぞれ、それまでと同じ回転方向に上昇させる。以上により、車速VPが上昇し、車両が発進する。
 ・EV走行中ENG始動
 EV走行中ENG始動時には、車速VPをそのときの値に保持しながら、EV発進時に上述したように逆転していた第1回転磁界の第1磁界回転速度VMF1を、値0になるように制御するとともに、正転していたロータ103のロータ回転速度を、低下させるように制御する。そして、第1磁界回転速度VMF1が値0になった後には、回転機101のステータ102に加え、第1回転機21のステータ23にも、バッテリ43から電力を供給し、ステータ23で発生する第1回転磁界を正転させるとともに、第1磁界回転速度VMF1を上昇させる。
 上記のように電力がステータ102に供給されることによって、回転機101の回転機トルクが第1リングギヤR1を介して、第1キャリアC1に伝達されるのに伴い、第1サンギヤS1に後述するように伝達されたトルクが、第1キャリアC1に伝達される。すなわち、回転機トルクと、第1サンギヤS1に伝達されたトルクが合成され、第1キャリアC1に伝達される。また、第1キャリアC1に伝達されたトルクの一部は、連結軸6を介してA1ロータ24に伝達され、残りは、第2回転軸7などを介して駆動輪DW,DWに伝達される。
 さらに、EV走行中ENG始動時、第1実施形態で述べたように、バッテリ43からステータ23に電力が供給されることによって、第1駆動用等価トルクTSE1がA2ロータ25に伝達されるのに伴い、A1ロータ24に上記のように伝達されたトルクが、A2ロータ25に伝達される。また、A2ロータ25に伝達されたトルクの一部は、第1回転軸4を介して第1サンギヤS1に伝達され、残りは、第1回転軸4などを介してクランク軸3aに伝達され、それにより、クランク軸3aが正転する。さらに、この場合、両ステータ102、23に供給される電力は、駆動輪DW,DWおよびエンジン3に動力が十分に伝達されるように制御される。
 以上により、EV走行中ENG始動時、車速VPがそのときの値に保持されるとともに、エンジン回転数NEが上昇する。その状態で、第1実施形態と同様、クランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグの点火動作を制御することによって、エンジン3が始動される。また、第1磁界回転速度VMF1およびロータ回転速度を制御することによって、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。
 図70は、EV走行中ENG始動の開始時における各種の回転要素の回転速度およびトルクの関係の一例を示している。同図において、VROおよびTMOTはそれぞれ、回転機101のロータ回転速度および回転機トルクである。この場合、図70から明らかなように、回転機トルクTMOTが、第1発電用等価トルクTGE1を反力として、駆動輪DW,DWおよびクランク軸3aの双方に伝達されるため、第1実施形態と同様、第1回転機21に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第1実施形態と同様、第1回転機21に要求されるトルクすなわち第1発電用等価トルクTGE1は、次式(60)で表される。
  TGE1=-{r1・TDDW+(1+r1)TDENG}/(α+1+r1)……(60)
 この式(60)から明らかなように、第1極対数比αが大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジン伝達トルクTDENGに対して、第1発電用等価トルクTGE1は小さくなる。本実施形態では、第1実施形態と同様、第1極対数比αが値2.0に設定されているので、値1.0未満に設定した場合よりも第1発電用等価トルクTGE1を小さくすることができる。
 ・ENG走行
 ENG走行中には、第1実施形態で述べた実行条件に応じて、バッテリ入出力ゼロモードや、アシストモード、駆動時充電モードによる運転が行われる。このバッテリ入出力ゼロモード中、A2ロータ25に伝達されるエンジン動力を用いて、第1回転機21のステータ23で発電を行うとともに、発電した電力を、バッテリ43に充電せずに、回転機101のステータ102に供給する。この場合、第1実施形態と同様、エンジントルクTENGの一部が、A2ロータ25を介して、ステータ23およびA1ロータ24に分配される。また、エンジントルクTENGの残りは、第1回転軸4を介して第1サンギヤS1に伝達される。さらに、上述したEV走行中ENG始動時と同様、回転機トルクTMOTと、第1サンギヤS1に上記のように伝達されたトルクは、合成され、第1キャリアC1に伝達される。また、第1キャリアC1には、A1ロータ24に上記のように分配されたエンジントルクTENGが、連結軸6を介してさらに伝達される。
 以上のように、第1キャリアC1には、A1ロータ24に分配されたエンジントルクTENGと、回転機トルクTMOTと、第1サンギヤS1に伝達されたエンジントルクTENGとを合成した合成トルクが伝達される。また、この合成トルクは、第2回転軸7などを介して駆動輪DW,DWに伝達される。以上の結果、バッテリ入出力ゼロモード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWには、エンジン動力と等しい大きさの動力が伝達される。
 さらに、バッテリ入出力ゼロモード中には、第1磁界回転速度VMF1およびロータ回転速度VROを制御することによって、エンジン動力が、無段階に変速され、駆動輪DW,DWに伝達される。すなわち、第1回転機21、第1遊星歯車装置PS1および回転機101は、無段変速装置として機能する。
 具体的には、図71に二点鎖線で示すように、前記式(43)および(53)に示す速度関係を維持しながら、A2ロータ回転速度VRA2および第1サンギヤ回転速度VSU1、すなわちエンジン回転数NEに対して、第1磁界回転速度VMF1を上昇させるとともに、ロータ回転速度VROを低下させることによって、A1ロータ回転速度VRA1および第1キャリア回転速度VCA1、すなわち車速VPを無段階に減速することができる。逆に、図71に一点鎖線で示すように、エンジン回転数NEに対して、第1磁界回転速度VMF1を低下させるとともに、ロータ回転速度VROを上昇させることによって、車速VPを無段階に増速することができる。さらに、この場合、エンジン回転数NEが目標回転数になるように、第1磁界回転速度VMF1およびロータ回転速度VROを制御する。
 以上のように、バッテリ入出力ゼロモード中、第1回転機21、第1遊星歯車装置PS1および回転機101において、エンジン動力は、一旦、分割され、次の第1~第3の伝達経路を介して第1キャリアC1に伝達されるとともに、合成された状態で、駆動輪DW,DWに伝達される。
 第1伝達経路:A2ロータ25→磁力線MLによる磁力→A1ロータ24→連結軸6→第1キャリアC1
 第2伝達経路:第1サンギヤS1→第1プラネタリギヤP1→第1キャリアC1
 第3伝達経路:A2ロータ25→磁力線MLによる磁力→ステータ23→第1PDU41→第2PDU42→回転機101→第1リングギヤR1→第1プラネタリギヤP1→第1キャリアC1
 これらの第1および第2の伝達経路では、エンジン動力が、電力に変換されることなく、磁気パスや、歯車の噛み合いによる、いわゆる機械パスによって、駆動輪DW,DWに伝達される。
 また、バッテリ入出力ゼロモード中、ステータ23で発電する電力と、第1磁界回転速度VMF1およびロータ回転速度VROは、前記式(43)および(53)に示す速度関係が維持されるように制御される。
 また、アシストモード中には、A2ロータ25に伝達されるエンジン動力を用いて、ステータ23で発電を行うとともに、この発電した電力に加え、バッテリ43に充電されている電力を、回転機101のステータ102に供給する。このため、第1キャリアC1には、ステータ23およびバッテリ43からステータ102に供給された電力に基づく回転機トルクTMOTが伝達される。さらに、上述したバッテリ入出力ゼロモードと同様、この回転機トルクTMOTと、ステータ23での発電に伴ってA1ロータ24に分配されたエンジントルクTENGと、第1サンギヤS1に伝達されたエンジントルクTENGとを合成したトルクが、第1キャリアC1を介して、駆動輪DW,DWに伝達される。以上の結果、アシストモード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWに伝達される動力は、エンジン動力とバッテリ43から供給された電力(エネルギ)との和に等しくなる。
 さらに、アシストモード中には、ステータ23で発電する電力と、バッテリ43からステータ102に供給される電力と、第1磁界回転速度VMF1およびロータ回転速度VROは、式(43)および(53)に示す速度関係が維持されるように制御される。その結果、第1実施形態と同様、車両要求動力に対するエンジン動力の不足分が、バッテリ43からステータ102に電力を供給することによって補われる。なお、車両要求動力に対するエンジン動力の不足分が比較的大きい場合には、回転機101のステータ102に加え、第1回転機21のステータ23にも、バッテリ43から電力が供給される。
 また、駆動時充電モード中、回転機101のステータ102には、第1回転機21のステータ23で発電した電力からバッテリ43に充電される電力を差し引いた大きさの電力が供給され、この電力に基づく回転機トルクTMOTが、第1キャリアC1に伝達される。さらに、バッテリ入出力ゼロモードと同様、この回転機トルクTMOTと、ステータ23での発電に伴ってA1ロータ24に分配されたエンジントルクTENGと、第1サンギヤS1に伝達されたエンジントルクTENGとを合成したトルクが、第1キャリアC1を介して、駆動輪DW,DWに伝達される。以上の結果、駆動時充電モード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWに伝達される動力は、エンジン動力からバッテリ43に充電された電力(エネルギ)を差し引いた大きさになる。
 さらに、駆動時充電モード中には、ステータ23で発電する電力と、バッテリ43に充電される電力と、第1磁界回転速度VMF1およびロータ回転速度VROは、式(43)および(53)に示す速度関係が維持されるように制御される。その結果、第1実施形態と同様、車両要求動力に対するエンジン動力の余剰分が、第1回転機21のステータ23において電力に変換され、バッテリ43に充電される。
 また、ENG走行中、第1回転機21のステータ23で発電を行わずに、バッテリ43から回転機101のステータ102に電力を供給するとともに、この電力を、回転機トルクTMOTがエンジントルクTENGの1/r1倍の大きさになるように制御した場合には、エンジントルクTENGのすべてと回転機トルクTMOTが、第1キャリアC1において合成された後、駆動輪DW,DWに伝達される。すなわち、この場合には、エンジン動力を、前述した電気パスによって伝達せずに、機械パスのみによって駆動輪DW,DWに伝達することができる。また、この場合、駆動輪DW,DWには、エンジントルクTENGの(r1+1)/r1倍の大きさのトルクが伝達される。
 さらに、第1実施形態で述べたENG走行中の急加速運転時、エンジン3、第1回転機21および回転機101は次のようにして制御される。図72は、ENG走行中の急加速運転の開始時における各種の回転要素の回転速度およびトルクの関係の一例を示している。この場合、エンジン回転数NEを、第1実施形態と同様、その最大トルクが得られるような所定の回転数に高める。また、図72に示すように、車速VPがすぐには上昇しないため、エンジン回転数NEが車速VPよりも高くなるとともに、両者の差が大きくなることから、回転機101のロータ103は逆転する。そのように逆転するロータ103から正のトルクを駆動輪DW,DWに作用させるために、ステータ102において発電を行う。さらに、ステータ102で発電した電力を第1回転機21のステータ23に供給し、第1回転磁界を正転させる。
 以上により、エンジントルクTENG、第1駆動用等価トルクTSE1および回転機トルクTMOTはいずれも、正のトルクとして駆動輪DW,DWに伝達され、その結果、車速VPが急速に上昇する。また、ENG走行中の急加速運転の開始時には、図72から明らかなように、エンジントルクTENGおよび第1駆動用等価トルクTSE1が回転機トルクTMOTを反力として駆動輪DW,DWに伝達されるため、回転機101に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、回転機101に要求されるトルクすなわち回転機トルクTMOTは、次式(61)で表される。
 TMOT=-{α・TENG+(1+α)TDDW}/(r1+1+α)……(61)
 この式(61)から明らかなように、第1遊星ギヤ比r1が大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジントルクTENGに対して、回転機トルクTMOTが小さくなる。本実施形態では、第1遊星ギヤ比r1が一般的な遊星歯車装置が取りうる値のなかで比較的大きな値に設定されているので、小さな値に設定した場合よりも、回転機トルクTMOTを小さくすることができる。
 ・減速回生
 減速回生中、駆動輪DW,DWのトルク(慣性によるトルク)に対する、エンジン3に伝達される駆動輪DW,DWのトルクの割合が小さいときには、駆動輪DW,DWの動力の一部を用いて両ステータ23,102で発電を行うとともに、発電した電力をバッテリ43に充電する。ステータ102での発電に伴い、第1キャリアC1には、駆動輪DW,DWのトルクの全部と、A1ロータ24に後述するように分配されたトルクとを合成した合成トルクが伝達される。また、第1キャリアC1に伝達された上記の合成トルクは、第1サンギヤS1および第1リングギヤR1に分配され、第1リングギヤR1に分配されたトルクは、ロータ103に伝達される。
 さらに、第サンギヤS1に分配されたトルクの一部は、エンジン3に伝達され、残りは、前述したバッテリ入出力ゼロモードの場合と同様、ステータ23での発電に伴い、A2ロータ25に伝達された後、ステータ23およびA1ロータ24に分配される。また、A1ロータ24に分配されたトルクは、第1キャリアC1に伝達される。以上の結果、減速回生中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、エンジン3に伝達される動力と、バッテリ43に充電される電力(エネルギ)との和は、駆動輪DW,DWの動力と等しくなる。
 ・停車中ENG始動
 停車中ENG始動時、第1回転機21のステータ23に、バッテリ43から電力を供給し、それに伴ってステータ23で発生する第1回転磁界を正転させるとともに、回転機101のステータ102で発電を行い、発電した電力をステータ23にさらに供給する。第1実施形態で述べたように、ステータ23に電力が供給されるのに伴い、ステータ23からの第1駆動用等価トルクTSE1は、A2ロータ25を正転させるように作用するとともに、A1ロータ24を逆転させるように作用する。また、A2ロータ25に伝達されたトルクの一部は、クランク軸3aに伝達され、それにより、クランク軸3aが正転する。
 また、停車中ENG始動時、A2ロータ25に伝達されたトルクの残りは、第1サンギヤS1に伝達された後、回転機101のステータ102での発電に伴って、第1プラネタリギヤP1、第1リングギヤR1およびロータ103を介して、ステータ102に電気エネルギとして伝達される。また、車速VPが値0であるのに対し、クランク軸3aが上記のように正転するため、ロータ103が逆転する。このため、このステータ102での発電に伴って発生した回転機トルクTMOTは、第1リングギヤR1を介して第1キャリアC1に伝達され、第1キャリアC1を正転させるように作用する。また、この回転機トルクTMOTに釣り合うように、第1サンギヤS1に伝達されたトルクが、第1キャリアC1にさらに伝達され、第1キャリアC1を正転させるように作用する。
 この場合、上述したA1ロータ24を逆転させるトルクと、第1キャリアC1を正転させるトルクとが釣り合うように、第1回転機21のステータ23に供給される電力と回転機101のステータ102で発電する電力を制御することによって、互いに連結されたA1ロータ24、第1キャリアC1および駆動輪DW,DWが、静止状態に保持される。その結果、A1ロータ回転速度VRA1および第1キャリア回転速度VCA1は、値0になり、車速VPも値0になる。
 また、この場合、ステータ23に供給される電力とステータ102で発電する電力と第1磁界回転速度VMF1およびロータ回転速度VROは、式(43)および(53)に示す速度関係が維持されるように、かつA2ロータ回転速度VRA2および第1サンギヤ回転速度VSU1が比較的小さな値になるように制御される。以上により、停車中ENG始動時、第1実施形態と同様、車速VPを値0に保持しながら、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。また、その状態で、クランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグの点火動作を制御することによって、エンジン3が始動される。
 ・ENGクリープ
 ENGクリープ中には、ステータ23および102で発電を行う。また、このように両ステータ23,102で発電した電力を、バッテリ43に充電する。前述したバッテリ入出力ゼロモードの場合と同様、上記のステータ23での発電に伴って、A2ロータ25にエンジントルクTENGの一部が伝達されるとともに、A2ロータ25に伝達されたエンジントルクTENGが、ステータ23およびA1ロータ24に分配される。また、車速VPがほぼ値0であるのに対し、クランク軸3aが正転しているため、回転機101のロータ103が逆転する。このため、上記のステータ102での発電に伴って発生した回転機トルクTMOTは、上述した停車中ENG始動の場合と同様、第1キャリアC1を正転させるように作用する。また、回転機トルクTMOTに釣り合うように、第1サンギヤS1に伝達されたエンジントルクTENGが、第1キャリアC1にさらに伝達され、第1キャリアC1を正転させるように作用する。さらに、第1キャリアC1には、A1ロータ24に上記のように分配されたエンジントルクTENGが伝達される。
 以上のように、ENGクリープ中、第1キャリアC1には、A1ロータ24に分配されたエンジントルクTENGと、回転機トルクTMOTと、第1サンギヤS1に伝達されたエンジントルクTENGとを合成した合成トルクが伝達される。この合成トルクは、駆動輪DW,DWに伝達され、駆動輪DW,DWを正転させる。また、ステータ23,102で発電する電力、第1磁界回転速度VMF1およびロータ回転速度VROは、A1ロータ回転速度VRA1および第1キャリア回転速度VCA1すなわち車速VPが非常に小さくなるように制御され、それにより、クリープ運転が行われる。
 また、ENGクリープ中には、上述したように、ステータ23での発電に伴ってA1ロータ24に分配されたエンジントルクTENGと、ステータ102での発電に伴って第1サンギヤS1を介して第1キャリアC1に伝達されたエンジントルクTENGが、駆動輪DW,DWに伝達される。これにより、第1実施形態と同様、エンジントルクTENGの一部を駆動輪DW,DWに伝達できるので、エンジンストールを生じることなく、クリープ運転を行うことができる。
 ・ENG発進
 ENG発進時、ENGクリープ中に逆転していたロータ103のロータ回転速度VROを、値0になるように制御し、正転していた第1回転磁界の第1磁界回転速度VMF1を上昇させるとともに、エンジン動力を増大させる。そして、ロータ回転速度VROが値0になった後には、前述したバッテリ入出力ゼロモードによる運転を行う。以上により、車速VPが上昇し、車両が発進する。
 ・EV後退発進
 EV後退発進時、回転機101のステータ102および第1回転機21のステータ23の双方に、バッテリ43から電力を供給する。その結果、ステータ23で発生する第1回転磁界を正転させ、ステータ102で発生する第2回転磁界を正転させる。EV後退発進中、第1回転機21のステータ23に電力が供給されるのに伴い、ステータ23からの第1駆動用等価トルクは、A2ロータ25を正転させるように作用するとともに、A1ロータ24を逆転させるように作用する。また、回転機101のステータ102に電力が供給されるのに伴い、ステータ102からの第2駆動用等価トルクTSE2は、第1遊星歯車装置PS1の第1キャリアC1を逆転させるように作用するとともに、第1遊星歯車装置PS1の第1サンギヤS1を正転させるように作用する。以上により、車速VPが負の方向に上昇し、車両が後退発進する。
 ・ENG後退発進
 ENG後退発進時、ENGクリープ中に逆転していた第2回転磁界の第2磁界回転速度VMF2がさらに負の方向に上昇するよう制御し、かつ、正転していた第1回転磁界の第1磁界回転速度VMF1を上昇させるとともに、エンジン動力を増大させる。以上により、車速VPが負の方向に上昇し、車両が後退発進する。
 以上のように、本実施形態によれば、第1回転機21が遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有するので、前述した従来の動力装置と異なり、動力を分配・合成して伝達するための2つの遊星歯車装置を必要とせず、第1遊星歯車装置PS1が1つのみで足りる。したがって、その分、動力装置1Fを小型化することができる。また、動力装置1Fでは、バッテリ入出力ゼロモードの動作説明で述べたように、前述した従来の場合と異なり、エンジン動力が再循環せずに駆動輪DW,DWに伝達されるので、第1回転機21、第1遊星歯車装置PS1および回転機101を通過する動力を低減できる。したがって、第1回転機21、第1遊星歯車装置PS1および回転機101の小型化およびコストの削減を図ることができ、それにより、動力装置1Fのさらなる小型化とコストの削減を達成することができる。さらに、上記のように低減された動力に見合ったトルク容量を有する第1回転機21、第1遊星歯車装置PS1および回転機101を用いることによって、動力の損失を抑制し、動力装置1Fの駆動効率を高めることができる。
 また、エンジン動力は、第1伝達経路(A2ロータ25、磁力線MLによる磁力、A1ロータ24、連結軸6、第1キャリアC1)と、第2伝達経路(第1サンギヤS1、第1プラネタリギヤP1、第1キャリアC1)と、第3伝達経路(A2ロータ25、磁力線MLによる磁力、ステータ23、第1PDU41、第2PDU42、回転機101、第1リングギヤR1、第1プラネタリギヤP1、第1キャリアC1)の計3つの伝達経路を介して、分割された状態で駆動輪DW,DWに伝達される。これにより、第3伝達経路を介して第1および第2のPDU41,42を通過する電力(エネルギ)を低減できるので、第1および第2のPDU41,42の小型化およびコストの削減を図ることができ、それにより、動力装置1Fのさらなる小型化およびコストの削減を達成することができる。
 さらに、図71を用いて説明したように、第1磁界回転速度VMF1およびロータ回転速度VROを制御することによって、エンジン動力が無段階に変速され、駆動輪DW,DWに伝達される。また、この場合、エンジン回転数NEが、最良燃費が得られるように設定された目標回転数になるように、第1磁界回転速度VMF1およびロータ回転速度VROを制御するので、最良燃費が得られるようにエンジン動力を制御しながら、駆動輪DW,DWを駆動することができる。したがって、動力装置1Fの駆動効率をより一層、高めることができる。
 また、第1実施形態と同様、第1回転機21の第1極対数比αが値2.0に設定されている。これにより、第1回転機21に要求されるトルクが特に大きくなるEV走行中ENG始動時、図70および前記式(60)を用いて説明したように、第1極対数比αを値1.0未満に設定した場合よりも第1発電用等価トルクTGE1を小さくすることができ、したがって、第1回転機21のさらなる小型化およびコストの削減を図ることができる。さらに、第1遊星歯車装置PS1の第1遊星ギヤ比r1が、一般的な遊星歯車装置が取りうる値のなかで比較的大きな値に設定されている。これにより、回転機101に要求されるトルクが特に大きくなるENG走行中の急加速運転の開始時、図72および前記式(61)を用いて説明したように、第1遊星ギヤ比r1を小さな値に設定した場合よりも、回転機トルクTMOTを小さくすることができ、したがって、回転機101のさらなる小型化およびコストの削減を図ることができる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
 なお、本実施形態の動力装置1Fは、第1実施形態の動力装置1が行う「バッテリSOCに応じた制御」と同様の制御を行う。但し、本実施形態では、第1実施形態の第2回転機31が、第1遊星歯車装置PS1と1ロータタイプの回転機101に置き換えられている。このため、第2回転機31を回転機101と読み替え、第2回転機31のステータ33を回転機101のステータ102と読み替え、B2ロータ35を第1遊星歯車装置PS1の第1キャリアC1と読み替える。
(第8~第12の実施形態)
 次に、図73~図77を参照しながら、第8~第12の実施形態による動力装置1G,1H,1I,1J,1Kについて説明する。これらの動力装置1G~1Kはそれぞれ、第7実施形態と比較して、変速装置111,121,131,141,151をさらに備える点が主に異なっており、第8~第12の実施形態のいずれにおいても、エンジン3、第1回転機21、第1遊星歯車装置PS1、回転機101、および駆動輪DW,DWの間の連結関係は、第7実施形態と同様である。すなわち、A2ロータ25および第1サンギヤS1がエンジン3のクランク軸3aに機械的に連結されるとともに、A1ロータ24および第1キャリアC1が駆動輪DW,DWに機械的に連結されている。また、回転機101のロータ103が、第1リングギヤR1に機械的に連結されている。さらに、図73~図77において、第7実施形態と同じ構成要素については、同じ符号を用いて示している。このことは、後述する他の実施形態を説明するための図においても同様に当てはまる。以下、第8実施形態の動力装置1Gから順に、第7実施形態と異なる点を中心に説明する。
(第8実施形態)
 図73に示すように、この動力装置1Gでは、変速装置111は、前述した互いに噛み合うギヤ7bおよび第1ギヤ8bに代えて設けられている。この変速装置111は、ベルト式の無段変速装置であり、前述した第2回転軸7に連結された入力軸と、アイドラ軸8に連結された出力軸と、入力軸および出力軸にそれぞれ設けられたプーリと、これらのプーリに巻きかけられた金属ベルト(いずれも図示せず)を有している。変速装置111は、これらのプーリの有効径を変更することによって、入力軸に入力された動力を変速した状態で出力軸に出力する。また、変速装置111の変速比(入力軸の回転数/出力軸の回転数)はECU2によって制御される。
 上記のように、変速装置111は、A1ロータ24および第1キャリアC1と駆動輪DW,DWとの間に設けられており、また、A1ロータ24および第1キャリアC1に伝達された動力は、変速装置111によって変速され、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Gでは、前述したEV発進時やENG発進時など、A1ロータ24および第1キャリアC1から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置111の変速比は値1.0よりも大きな減速側の所定値に制御される。これにより、A1ロータ24および第1キャリアC1に伝達されたトルクは、変速装置111において増大された後、駆動輪DW,DWに伝達される。それに応じて、A1ロータ24および第1キャリアC1に伝達されるトルクが小さくなるように、第1回転機21で発電される電力および回転機101に供給される電力(発電される電力)が制御される。これにより、本実施形態によれば、第1回転機21および回転機101に要求されるトルクの最大値を小さくすることができるので、第1回転機21および回転機101のさらなる小型化およびコストの削減を図ることができる。それに加え、第1サンギヤS1および第1リングギヤR1を介して第1キャリアC1に伝達されるトルクの最大値を小さくすることができるので、第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。
 また、EV走行やENG走行を含む車両の走行中において、車速VPが極めて高い場合など、A1ロータ回転速度VRA1が過大になるようなときには、変速装置111の変速比は値1.0よりも小さな増速側の所定値に制御される。これにより、本実施形態によれば、車速VPに対して、A1ロータ回転速度VRA1を低下させることができるので、A1ロータ回転速度VRA1の過大化による第1回転機21の故障を防止することができる。前述したようにA1ロータ24は磁石で構成されており、磁石は軟磁性体よりも強度が低く、上記のような不具合が発生しやすいため、特に有効である。
 また、車速VPがエンジン回転数NEよりも高い高車速運転中など、車速VPとエンジン回転数NEの関係によって定まるロータ回転速度VROが過大になるようなときには、変速装置111の変速比は値1.0よりも小さな増速側の所定値に制御される。これにより、本実施形態によれば、車速VPに対して、第1キャリア回転速度VCA1を低下させることによって、前述した図71から明らかなように、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 さらに、車両の走行中、変速装置111の変速比は、第1磁界回転速度VMF1およびロータ回転速度VROがそれぞれ所定の第1および第2の目標値になるように制御される。これらの第1および第2の目標値は、第1回転機21および回転機101のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1回転機21および回転機101を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、第1および第2の目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第1回転機21および回転機101の高い効率が得られるような値に設定されている。さらに、このような変速装置111の制御と並行して、第1磁界回転速度VMF1およびロータ回転速度VROが、第1および第2の目標値にそれぞれ制御される。以上により、本実施形態によれば、車両の走行中、第1回転機21および回転機101の高い効率を得ることができる。
 また、本実施形態においても、図71を用いて説明したように、第1回転機21、第1遊星歯車装置PS1および回転機101によって、エンジン動力を無段階に変速して、駆動輪DW,DWに伝達できるので、変速装置111の変速動作の頻度を低くすることができる。したがって、この変速動作による熱損失を抑制することができ、それにより、動力装置1Gの高い駆動効率を確保することができる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
 なお、本実施形態では、変速装置111は、ベルト式の無段変速装置であるが、トロイダル式または油圧式の無段変速装置や、ギヤ式の有段変速装置でもよいことは、もちろんである。
(第9実施形態)
 図74に示す第9実施形態の動力装置1Hでは、変速装置121は、遊星歯車装置などで構成されたギヤ式の有段変速装置であり、入力軸122および出力軸(図示せず)を有しており、変速段として、第1速(変速比=入力軸122の回転数/出力軸の回転数=1.0)と第2速(変速比<1.0)から成る計2つの変速段が設定されている。これらの変速段の変更はECU2によって行われる。また、変速装置121の入力軸122は、フライホイール5を介してクランク軸3aに直結されるとともに、変速装置121の出力軸(図示せず)は、前述した第1回転軸4に直結されている。このように、変速装置121は、クランク軸3aと、A2ロータ25および第1サンギヤS1との間に設けられており、エンジン動力を変速して、A2ロータ25および第1サンギヤS1に伝達する。
 さらに、前述した差動ギヤ機構9のギヤ9aの歯数は、アイドラ軸8の第2ギヤ8cの歯数よりも大きくなっており、それにより、アイドラ軸8に伝達された動力は減速された状態で、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Hでは、ENG発進時など、A1ロータ24および第1キャリアC1から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置121の変速段は第2速(変速比<1.0)に制御される。これにより、A2ロータ25および第1サンギヤS1に入力されるエンジントルクTENGは小さくなる。それに応じて、A1ロータ24および第1キャリアC1に伝達されるエンジントルクTENGが小さくなるように、第1回転機21で発電される電力および回転機101に供給される電力(発電される電力)が制御される。また、A1ロータ24および第1キャリアC1に伝達されたエンジントルクTENGは、第2ギヤ8cおよびギヤ9aによる減速によって増大された状態で、駆動輪DW,DWに伝達される。以上により、本実施形態によれば、第1回転機21および回転機101に要求されるトルクの最大値を小さくすることができ、第1回転機21および回転機101のさらなる小型化およびコストの削減を図ることができる。それに加え、第1サンギヤS1および第1リングギヤR1を介して第1キャリアC1に伝達されるトルクの最大値を小さくすることができるので、第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。
 また、エンジン回転数NEが極めて高いときには、変速装置121の変速段は第1速(変速比=1.0)に制御される。これにより、本実施形態によれば、変速段が第2速の場合よりもA2ロータ回転速度VRA2を小さくすることができるので、A2ロータ回転速度VRA2の過大化による第1回転機21の故障を防止することができる。
 さらに、車速VPがエンジン回転数NEよりも高い高車速運転中など、ロータ回転速度VROが過大になるようなときには、変速装置121の変速段は第2速に制御される。これにより、本実施形態によれば、エンジン回転数NEに対して第2サンギヤ回転速度VSU2を上昇させることにより、図71から明らかなように、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、ENG走行中、変速装置121の変速段は、エンジン回転数NEおよび車速VPに応じて、第1磁界回転速度VMF1およびロータ回転速度VROがそれぞれ第1回転機21および回転機101の高い効率を得られるような値になるように変更される。さらに、このような変速装置121の変速段の変更と並行して、第1磁界回転速度VMF1およびロータ回転速度VROが、そのときのエンジン回転数NE、車速VP、変速装置121の変速段、前記式(43)および(53)によって定まる値に制御される。これにより、本実施形態によれば、車両の走行中、第1回転機21および回転機101の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置121の変速動作中、すなわち、変速装置121によってエンジン3とA2ロータ25および第1サンギヤS1との間が遮断されているときには、変速ショックを抑えるために、次のようにして第1回転機21および回転機101を制御する。以下、このような第1回転機21および回転機101の制御を「変速ショック制御」という。
 すなわち、第1回転機21のステータ23に電力を供給し、それに伴ってステータ23で発生する第1回転磁界を正転させるとともに、回転機101のステータ102に電力を供給し、ロータ103を正転させる。これにより、第1駆動用等価トルクTSE1と、A1ロータ24に後述するように伝達されるトルクが合成され、この合成トルクはA2ロータ25に伝達される。A2ロータ25に伝達されたトルクは、上述した変速装置121による遮断によって、クランク軸3aには伝達されず、第1サンギヤS1に伝達され、さらに、第1リングギヤR1に伝達された回転機トルクTMOTと合成された後、第1キャリアC1に伝達される。第1キャリアC1に伝達されたトルクの一部は、A1ロータ24に伝達され、残りは駆動輪DW,DWに伝達される。
 したがって、本実施形態によれば、変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、商品性を高めることができる。なお、この変速ショック制御は、変速装置121の変速動作中に限って行われる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
(第10実施形態)
 図75に示す第10実施形態の動力装置1Iでは、変速装置131は、ギヤ式の有段変速装置であり、入力軸132および出力軸(図示せず)と、ギヤ比が互いに異なる複数のギヤ列と、これらの複数のギヤ列と入力軸132および出力軸との間をギヤ列ごとに接続・遮断するクラッチ(いずれも図示せず)を有している。変速装置131は、入力軸132に入力された動力を、これらの複数のギヤ列の1つによって変速した状態で、出力軸に出力する。また、変速装置131では、これらの複数のギヤ列によって、前進用の第1速(変速比=入力軸132の回転数/出力軸の回転数>1.0)、第2速(変速比=1.0)および第3速(変速比<1.0)と、後進用の1つの変速段から成る計4つの変速段が設定され、その変更はECU2によって制御される。
 また、動力装置1Iでは、第7実施形態と異なり、第2回転軸7が設けられておらず、A1ロータ24は、変速装置131の入力軸132に直結されており、変速装置131の出力軸は、前述した連結軸6に直結されている。連結軸6には、ギヤ6bが一体に設けられており、このギヤ6bは、前述した第1ギヤ8bに噛み合っている。
 以上のように、A1ロータ24は、変速装置131、連結軸6、ギヤ6b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、および差動ギヤ機構9などを介して、駆動輪DW,DWに機械的に連結されている。また、A1ロータ24に伝達された動力は、変速装置131によって変速され、駆動輪DW,DWに伝達される。さらに、第1キャリアC1は、連結軸6、ギヤ6bおよび第1ギヤ8bなどを介して、変速装置131を介さずに、駆動輪DW,DWに機械的に連結されている。
 また、回転機101のロータ103は、回転軸103aに一体に設けられており、この回転軸103aは、フランジを介して第1リングギヤR1に直結されている。これにより、ロータ103は、第1リングギヤR1に機械的に直結されており、第1リングギヤR1と一体に回転自在になっている。
 以上の構成の動力装置1Iでは、ENG発進時など、A1ロータ24から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置131の変速段は、第1速(変速比>1.0)に制御される。これにより、A1ロータ24に伝達されたトルクは、変速装置131において増大された後、駆動輪DW,DWに伝達される。それに応じて、A1ロータ24に伝達されるトルクが小さくなるように、第1回転機21で発電される電力が制御される。これにより、本実施形態によれば、第1回転機21に要求されるトルクの最大値を小さくすることができ、第1回転機21のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPが極めて高い高車速運転中など、A1ロータ回転速度VRA1が過大になるようなときには、変速装置131の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、車速VPに対して、A1ロータ回転速度VRA1を低下させることができるので、A1ロータ回転速度VRA1の過大化による第1回転機21の故障を防止することができる。A1ロータ24は磁石で構成されており、磁石は軟磁性体よりも強度が低く、上記のような不具合が発生しやすいため、特に有効である。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置131の変速段は、第1磁界回転速度VMF1が所定の目標値になるように制御される。この目標値は、第1回転機21および回転機101のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1回転機21および回転機101を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第1回転機21の高い効率が得られるような値に設定されている。さらに、このような変速装置131の制御と並行して、第1磁界回転速度VMF1が上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、第1回転機21の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置131の変速動作中、すなわち、変速装置131の入力軸132および出力軸が変速前のギヤ列と遮断された後、変速先のギヤ列に接続されるまでの間は、第1回転機21および回転機101が次のようにして制御される。すなわち、変速装置131の変速動作中、変速装置131におけるギヤ列と、入力軸132および出力軸との間の遮断により、A1ロータ24と駆動輪DW,DWの間が遮断されることによって、A1ロータ24に駆動輪DW,DWの負荷が作用しなくなる。このため、第1回転機21では発電が行われず、回転機101のステータ102に、バッテリ43から電力が供給される。
 これにより、本実施形態によれば、変速装置131の変速動作中、第1リングギヤR1に伝達された回転機トルクTMOTと、第1サンギヤS1に伝達されたエンジントルクTENGが合成され、第1キャリアC1を介して駆動輪DW,DWに伝達されるので、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。
 また、第1回転機21、第1遊星歯車装置PS1および回転機101によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置131の変速動作の頻度を低くすることができ、したがって、動力装置1Iの駆動効率を高めることができる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
(第11実施形態) 図76に示す第11実施形態の動力装置1Jでは、第10実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。これにより、A1ロータ24および第1キャリアC1は、連結軸6や、ギヤ6b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、差動ギヤ機構9などを介して、変速装置141を介さずに、駆動輪DW,DWに機械的に連結されている。
 また、変速装置141は、第10実施形態の変速装置131と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、回転機101のロータ103に回転軸103aを介して直結された入力軸(図示せず)と、第1リングギヤR1に直結された出力軸142を有しており、入力軸に入力された動力を変速し、出力軸142に出力する。さらに、変速装置141の変速段の変更は、ECU2によって制御される。このように、ロータ103は、変速装置141を介して第1リングギヤR1に機械的に連結されており、また、ロータ103の動力は、変速装置141によって変速され、第1リングギヤR1に伝達される。
 以上の構成の動力装置1Jでは、EV発進時やENG発進時など、ロータ103から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置141の変速段は、第1速(変速比>1.0)に制御される。これにより、回転機トルクTMOTは、変速装置141において増大された後、第1リングギヤR1および第1キャリアC1を介して、駆動輪DW,DWに伝達される。それに応じて、回転機トルクTMOTが小さくなるように、回転機101に供給される電力(発電される電力)が制御される。これにより、本実施形態によれば、回転機101に要求されるトルクの最大値を小さくすることができ、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPがエンジン回転数NEよりも高い高車速運転中など、ロータ回転速度VROが過大になるようなときには、変速装置141の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、そのときの車速VPとエンジン回転数NEの関係によって定まる第1リングギヤ回転速度VRI1に対して、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置141の変速段は、ロータ回転速度VROが所定の目標値になるように制御される。この目標値は、第1回転機21および回転機101のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1回転機21および回転機101を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、回転機101の高い効率が得られるような値に設定されている。さらに、このような変速装置141の制御と並行して、ロータ回転速度VROが上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、回転機101の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置141の変速動作中、すなわち、変速装置141によりロータ103と駆動輪DW,DWの間が遮断されているときに、第7実施形態で述べたように、エンジントルクTENGの一部がA1ロータ24を介して駆動輪DW,DWに伝達される。したがって、本実施形態によれば、変速装置141の変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができるので、商品性を高めることができる。
 また、第1回転機21、第1遊星歯車装置PS1および回転機101によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置141の変速動作の頻度を低くすることができ、したがって、動力装置1Jの駆動効率を高めることができる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
(第12実施形態) 図77に示す第12実施形態の動力装置1Kでは、第10および第11の実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。また、変速装置151は、第10実施形態の変速装置131と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、第1キャリアC1に直結された入力軸152と、連結軸6に直結された出力軸(図示せず)を有しており、入力軸152に入力された動力を変速し、出力軸に出力する。さらに、変速装置151の変速段の変更は、ECU2によって制御される。
 上記のように、第1キャリアC1は、変速装置151や、連結軸6、ギヤ6b、第1ギヤ8bなどを介して、駆動輪DW,DWに機械的に連結されており、また、第1キャリアC1に伝達された動力は、変速装置151によって変速され、駆動輪DW,DWに伝達される。さらに、A1ロータ24は、連結軸6や、ギヤ6b、第1ギヤ8bなどを介して、変速装置151を介さずに、駆動輪DW,DWに機械的に連結されている。また、ロータ103は、第10実施形態と同様、回転軸103aを介して第1リングギヤR1に直結されており、第1リングギヤR1と一体に回転自在になっている。
 以上の構成の動力装置1Kでは、EV発進時やENG発進時など、第1キャリアC1から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置151の変速段は、第1速(変速比>1.0)に制御される。これにより、第1キャリアC1に伝達されたトルクは、変速装置151において増大された後、駆動輪DW,DWに伝達される。それに応じて、回転機トルクTMOTが小さくなるように、回転機101に供給される電力(発電される電力)が制御される。これにより、本実施形態によれば、回転機101に要求されるトルクの最大値と、第1キャリアC1に伝達されるトルクの最大値を小さくすることができ、回転機101および第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPがエンジン回転数NEよりも高い高車速運転中など、ロータ回転速度VROが過大になるようなときには、変速装置151の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、車速VPに対して、第1キャリア回転速度VCA1を低下させることによって、図71から明らかなように、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置151の変速段は、ロータ回転速度VROが所定の目標値になるように制御される。この目標値は、第1回転機21および回転機101のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、第1回転機21および回転機101を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、回転機101の高い効率が得られるような値に設定されている。さらに、このような変速装置151の制御と並行して、ロータ回転速度VROが上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、回転機101の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置151の変速動作中、すなわち、変速装置151により第1キャリアC1と駆動輪DW,DWの間が遮断されているときに、第7実施形態で述べたように、エンジントルクTENGの一部がA1ロータ24を介して駆動輪DW,DWに伝達される。これにより、本実施形態によれば、第11実施形態と同様、変速装置151の変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。
 さらに、第1回転機21、第1遊星歯車装置PS1および回転機101によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置151の変速動作の頻度を低くすることができ、したがって、動力装置1Kの駆動効率を高めることができる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
 なお、第9~第12の実施形態では、変速装置121~151は、ギヤ式の有段変速装置であるが、ベルト式やトロイダル式、油圧式の無段変速装置でもよいことはもちろんである。
(第13実施形態)
 次に、図78を参照しながら、第13実施形態による動力装置1Lについて説明する。この動力装置1Lは、第7実施形態と比較して、ロータ回転速度VROおよび車速VPの速度差と車速VPおよびエンジン回転数NEの速度差との比を変更する変速装置をさらに備える点が主に異なっている。以下、第7実施形態と異なる点を中心に説明する。
 図78に示すように、この動力装置1Lでは、第11実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っており、それにより、A1ロータ24および第1キャリアC1は、連結軸6や、ギヤ6b、第1ギヤ8b、差動ギヤ機構9などを介して、上記の変速装置を介さずに、駆動輪DW,DWに機械的に連結されている。また、ロータ103は、第10実施形態と同様、回転軸103aと一体に回転自在になっている。
 上記の変速装置は、第2遊星歯車装置PS2、第1クラッチCL1および第2クラッチCL2を備えている。第2遊星歯車装置PS2は、第1遊星歯車装置PS1と同様に構成されており、第2サンギヤS2、第2リングギヤR2、ならびに、両ギヤS2,R2に噛み合う複数(例えば3つ)の第2プラネタリギヤP2(2つのみ図示)を回転自在に支持する第2キャリアC2を有している。第2サンギヤS2は、回転軸を介して第1キャリアC1に機械的に直結されており、それにより、第1キャリアC1と一体に回転自在になっている。また、第2キャリアC2は、中空の軸やフランジを介して、第1リングギヤR1に機械的に直結されており、それにより、第1リングギヤR1と一体に回転自在になっている。以下、第2サンギヤS2、第2リングギヤR2および第2キャリアC2の回転速度をそれぞれ、「第2サンギヤ回転速度VSU2」「第2リングギヤ回転速度VRI2」および「第2キャリア回転速度VCA2」という。
 上記の第1クラッチCL1は、例えば摩擦式多板クラッチで構成されており、第2キャリアC2と回転軸103aの間に設けられている。すなわち、第2キャリアC2は、第1クラッチCL1を介してロータ103に機械的に直結されている。また、第1クラッチCL1は、その締結度合がECU2により制御されることによって、第2キャリアC2と回転軸103aの間、すなわち、第2キャリアC2とロータ103の間を接続・遮断する。
 上記の第2クラッチCL2は、第1クラッチCL1と同様、摩擦式多板クラッチで構成されており、第2リングギヤR2と回転軸103aの間に設けられている。すなわち、第2リングギヤR2は、第2クラッチCL2を介してロータ103に機械的に直結されている。また、第2クラッチCL2は、その締結度合がECU2により制御されることによって、第2リングギヤR2と回転軸103aの間、すなわち、第2リングギヤR2とロータ103の間を接続・遮断する。
 以上のように、動力装置1Lでは、回転機101のロータ103は、第1クラッチCL1および第2キャリアC2を介して、第1リングギヤR1に機械的に連結されるとともに、第2クラッチCL2、第2リングギヤギヤR2、第2プラネタリギヤP2、および第2キャリアC2を介して、第1リングギヤR1に機械的に連結されている。
 図79(a)は、第1サンギヤ回転速度VSU1、第1キャリア回転速度VCA1および第1リングギヤ回転速度VRI1の関係の一例を示す速度共線図を、第2サンギヤ回転速度VSU2、第2キャリア回転速度VCA2および第2リングギヤ回転速度VRI2の関係の一例を示す速度共線図とともに示している。同図において、r2は、第2サンギヤS2の歯数と第2リングギヤR2の歯数との比(第2サンギヤS2の歯数/第2リングギヤR2の歯数、以下「第2遊星ギヤ比」という)である。
 前述したように、第1キャリアC1および第2サンギヤS2が互いに直結されているので、第1キャリア回転速度VCA1および第2サンギヤ回転速度VSU2は互いに等しく、第1リングギヤR1および第2キャリアC2が互いに直結されているので、第1リングギヤ回転速度VRI1および第2キャリア回転速度VCA2は互いに等しい。したがって、図79(a)の第1および第2の遊星歯車装置PS1,PS2に関する2つの速度共線図は、図79(b)のような1つの速度共線図で表される。同図に示すように、以上のような第1および第2の遊星歯車装置PS1,PS2の各種の回転要素の連結によって、互いに回転速度が共線の関係にある4つの回転要素が構成される。
 また、図80(a)は、上記の4つの回転要素の回転速度の関係の一例を示す速度共線図を、第1磁界回転速度VMF1、A1およびA2のロータ回転速度VRA1,VRA2の関係の一例を示す速度共線図とともに示している。前述したように第1キャリアC1およびA1ロータ24が互いに直結されているので、第2キャリア回転速度VCA2およびA1ロータ回転速度VRA1は、互いに等しい。また、第1サンギヤS1およびA2ロータ25が互いに直結されているので、第1サンギヤ回転速度VSU1およびA2ロータ回転速度VRA2は、互いに等しい。したがって、図80(a)の2つの速度共線図は、図80(b)のような1つの速度共線図で示される。
 また、クランク軸3a、A2ロータ25および第1サンギヤS1が互いに直結されているので、エンジン回転数NE、A2ロータ回転速度VRA2および第1サンギヤ回転速度VSU1は、互いに等しい。さらに、駆動輪DW,DW、A1ロータ24、第1キャリアC1および第2サンギヤS2が互いに連結されているので、差動ギヤ機構9による変速などがないものとすれば、車速VP、A1ロータ回転速度VRA1、第1キャリア回転速度VCA1および第2サンギヤ回転速度VSU2は、互いに等しい。
 また、ロータ103が、第1および第2のクラッチCL1,CL2をそれぞれ介して、第2キャリアC2および第2リングギヤR2に連結されているので、第1クラッチCL1を接続するとともに、第2クラッチCL2を遮断しているとき(以下、このようなクラッチの接続・遮断状態を「第1変速モード」という)には、ロータ回転速度VROおよび第2キャリア回転速度VCA2は、互いに等しい。さらに、第1クラッチCL1を遮断するとともに、第2クラッチCL2を接続しているとき(以下、このようなクラッチの接続・遮断状態を「第2変速モード」という)には、ロータ回転速度VROおよび第2リングギヤ回転速度VRI2は、互いに等しい。
 以上により、第1磁界回転速度VMF1、エンジン回転数NE、車速VP、およびロータ回転速度VROは、第1変速モード中には、例えば図81(a)に示すような共線の関係になり、第2変速モード中には、例えば図81(b)に示すような共線の関係になる。
 これらの図81(a)および図81(b)に示すように、速度共線図における車速VPを表す縦線とロータ回転速度VROを表す縦線との間の距離が、上述した第1変速モードの方が第2変速モードよりも小さいため、ロータ回転速度VROおよび車速VPの回転差DN2と車速VPおよびエンジン回転数NEの回転差DN1との比(以下「回転比DN2/DN1」という)は、第1変速モードの方が小さい。
 以上の構成の動力装置1Lでは、車速VPがエンジン回転数NEよりも高い高車速運転中や、前述したEV走行中で車速VPが高いときなど、ロータ回転速度VROが過大になるようなときには、第1変速モードが用いられる。これにより、本実施形態によれば、上述した回転比DN2/DN1の関係から明らかなように、第2変速モードを用いた場合よりもロータ回転速度VROを小さくすることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、ENG走行中の急加速運転の開始時、すなわち、回転機101に要求されるトルクが大きくなる場合において、第1および第2の変速モードを用いたときには、各種の回転要素の回転速度とトルクの関係は、図82(a)および図82(b)でそれぞれ表され
る。この場合、第1変速モードを用いたときには、回転機101に要求されるトルク、すなわち回転機トルクTMOTは、前記式(61)で表される。一方、第2変速モードを用いたときには、回転機トルクTMOTは、次式(62)で表される。
       TMOT=-{α・TENG+(1+α)TDDW}
            /(r1・r2+r1+1+α)       ……(62)
 これらの式(61)と式(62)の比較から明らかなように、回転機トルクTMOTは、同じ大きさの駆動輪伝達トルクTDDWおよびエンジントルクTENGに対して、第2変速モードの方が小さい。このため、ENG走行中の急加速運転時には、第2変速モードが用いられる。
 本実施形態によれば、第2変速モードを上述したようにして用いるとともに、上述した式(62)に基づいて、回転機101で発電される電力を制御するので、回転機101に要求されるトルクの最大値を小さくすることができ、ひいては、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、EV走行やENG走行を含む車両の走行中、第1および第2の変速モードのうち、エンジン3の停止中には車速VPに応じて、エンジン3の運転中には車速VPおよびエンジン回転数NEに応じて、回転機101のより高い効率が得られる変速モードが選択される。これにより、本実施形態によれば、ロータ回転速度VROを適度な高さに制御できるので、回転機101の高い効率を得ることができる。
 さらに、第1および第2の変速モードの切換は、第2キャリア回転速度VCA2および第2リングギヤ回転速度VRI2が互いに等しいときに行われる。これにより、本実施形態によれば、第1および第2の変速モードの切換を、駆動輪DW,DWやエンジン3の回転を保ちながら、円滑に行うことができ、良好なドライバビリティを確保することができる。
 また、ENG走行中で、かつ、第1および第2の変速モードの間での移行時、第1および第2のクラッチCL1,CL2の双方が遮断された場合でも、第7実施形態で述べたように、エンジントルクTENGの一部を、A2およびA1のロータ25,24を介して、駆動輪DW,DWに伝達できる。したがって、トルクの急減などの変速ショックを抑えることができるので、商品性を高めることができる。その他、本実施形態によれば、第7実施形態による効果を同様に得ることができる。
 なお、本実施形態では、第2サンギヤS2を第1キャリアC1に連結するとともに、第2リングギヤR2を、第2クラッチCL2を介してロータ103に連結しているが、これらの連結関係を逆に、すなわち、第2リングギヤR2を第1キャリアC1に連結するとともに、第2サンギヤS2を、第2クラッチCL2を介してロータ103に連結してもよい。また、本実施形態では、第1および第2のクラッチCL1,CL2を、摩擦式多板クラッチで構成しているが、例えば電磁クラッチなどで構成してもよい。
 図83(a)、(b)は、動力装置1Lにおける各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。なお、図83(a)、(b)では、回転機21が「第1回転機」、回転機101が「第2回転機」、第2サンギヤS2が「一方のギヤ」または「第1ギヤ」、第2リングギヤR2が「他方のギヤ」または「第2ギヤ」、第2キャリアC2が「キャリア」、第2出力部が「回転軸103a」、第1クラッチが「第1クラッチCL1」、第2クラッチが「第1クラッチCL2」、エンジン3が「熱機関」、駆動輪DW,DWが「被駆動部」とそれぞれ表されている。ここで、第2の遊星歯車装置PS2の一方のギヤの回転速度を「第1ギヤ回転速度VG1」、第2の遊星歯車装置PS2の他方のギヤの回転速度を「第2ギヤ回転速度VG2」、第2の遊星歯車装置PS2のキャリアの回転速度を「キャリア回転速度VC」とする。上述した連結関係において、各種に回転要素が直結されており、かつ、第1クラッチの接続により第2回転機の第2出力部をキャリアに連結するとともに、第2クラッチの遮断により第2出力部と他方のギヤの間を遮断しているとき(以下、このような第1および第2のクラッチの接続・遮断状態を「第1変速モード」という)には、熱機関の回転数や被駆動部の速度などの関係は、例えば図83(a)のように示される。また、第1クラッチの遮断により第2回転機の第2出力部とキャリアの間を遮断するとともに、第2クラッチの接続により第2出力部を他方のギヤに連結しているとき(以下、このような第1および第2のクラッチの接続・遮断状態を「第2変速モード」という)には、熱機関の回転数や被駆動部の速度などの関係は、例えば図83(b)のように示される。
 なお、前述したように、本実施形態の第1回転機が第1実施形態の第1回転機21と同じ機能を有しているので、前記式(25)から明らかなように、磁界回転速度VFと第1ロータ回転速度VR1と第2ロータ回転速度VR2の関係は、VF=(α+1)VR2-α・VR1で表される。このため、図83(a)、(b)に示す速度共線図において、磁界回転速度VFを表す縦線から第2ロータ回転速度VR2を表す縦線までの距離と、第2ロータ回転速度VR2を表す縦線から第1ロータ回転速度VR1を表す縦線までの距離との比は、1:(1/α)である。また、図83(a)、(b)において、第1ギヤ回転速度VG1を表す縦線からキャリア回転速度VCを表す縦線までの距離をY、キャリア回転速度VCを表す縦線から第2ギヤ回転速度VG2を表す縦線までの距離をZとする。
 これらの図83(a)と図83(b)の比較から明らかなように、速度共線図における被駆動部の速度を表す縦線と第2回転機の回転速度を表す縦線との間の距離が、第1変速モードの方が第2変速モードよりも小さいため、第2回転機の第2出力部および被駆動部の速度差D2と被駆動部および熱機関の速度差D1との比(D2/D1)は、第1変速モードの方が小さい。また、被駆動部の速度が熱機関の回転数よりも高いときには、第2回転機の回転速度が被駆動部の速度よりも高くなり、過大になる場合がある。このため、例えば、このような場合に、第1変速モードを用いることによって、上述した速度差D1とD2との比の関係から明らかなように、第2変速モードを用いた場合よりも第2回転機の回転速度を小さくすることができるので、第2回転機の回転速度の過大化による第2回転機の故障を防止することができる。
 さらに、図62を用いて説明したように第2回転機に要求されるトルクが大きくなるような場合において、第1変速モードを用いたときには、駆動用等価トルクTe、熱機関トルクTHE、被駆動部伝達トルクTOUT、および第2回転機トルクTM2の関係は、例えば図84(a)のように示される。また、第2回転機に要求されるトルク、すなわち第2回転機トルクTM2は、例えば次式(63)で表される。
 TM2=-{THE+[(1/α)+1]TOUT}/[Y+(1/α)+1]   
                                  ……(63)
 一方、第2変速モードを用いたときには、駆動用等価トルクTe、熱機関トルクTHE、被駆動部伝達トルクTOUT、および第2回転機トルクTM2の関係は、例えば図84(b)のように示される。また、第2回転機のトルクTM2は、例えば次式(64)で表される。
 TM2=-{THE+[(1/α)+1]TOUT}/[Z+Y+(1/α)+1] 
                                  ……(64)
 上記の式(63)と式(64)の比較から明らかなように、第2回転機のトルクTM2は、同じ大きさの被駆動部伝達トルクTOUTおよび熱機関のトルクTHEに対して、第2変速モードの方が小さい。このため、例えば、上述したように第2回転機に要求されるトルクが大きくなるような場合に、第2変速モードを用いることによって、第2回転機トルクTM2を小さくすることができ、ひいては、第2回転機のさらなる小型化およびコストの削減を図ることができる。
 また、例えば、熱機関の回転数および被駆動部の速度に応じ、第1または第2の変速モードを選択することによって、第2回転機の回転速度を適度な大きさに制御でき、それにより、第2回転機の高い効率を得ることができる。さらに、第1および第2の変速モードの切換を、キャリア回転速度VCおよび第2ギヤ回転速度VG2が図85に示すように互いに等しいときに行うことによって、被駆動部や熱機関の回転を保ちながら、円滑に行うことができ、良好なドライバビリティを確保することができる。
 また、例えば、第1ロータを、ギヤ式の有段変速装置を介さずに被駆動部に連結することが可能であり、それにより、第1および第2の変速モードの間での移行時、第1および第2のクラッチの双方が遮断状態にあることにより第2回転機と被駆動部の間が遮断されていても、図59から明らかなように、熱機関のトルクTHEの一部を、第2および第1のロータを介して被駆動部に伝達できる。したがって、第1および第2の変速モードの間での移行時、変速ショックを抑えることができるので、商品性を高めることができる。
(第14実施形態)
 次に、図86を参照しながら、第14実施形態による動力装置1Mについて説明する。この動力装置1Mは、第7実施形態の動力装置1Fに第6実施形態で述べたブレーキ機構BLを加えたものである。以下、第7実施形態と異なる点を中心に説明する。
 動力装置1Mでは、ワンウェイクラッチOCおよびケースCAで構成されたブレーキ機構BLによって、第1回転軸4の回転は、クランク軸3a、A2ロータ25および第1サンギヤS1とともに正転する場合にのみ、許容され、クランク軸3aなどとともに逆転する場合に阻止される。
 以上の構成の動力装置1Mでは、前述したEVクリープ運転およびEV発進による運転が次のようにして行われる。すなわち、第1回転機21のステータ23および回転機101のステータ102に電力を供給し、それに伴ってステータ23で発生する第1回転磁界を逆転させるとともに、ロータ103を第1リングギヤR1とともに正転させる。また、第1磁界回転速度VMF1およびロータ回転速度VROを、(1+r1)・|VMF1|=α・|VRO|が成立するように制御する。さらに、ステータ23および102に供給される電力は、駆動輪DW,DWにトルクが十分に伝達されるように制御される。
 前述した第6実施形態と同様、ステータ23に供給された電力はすべて、A1ロータ24に動力として伝達され、それにより、A1ロータ24は正転する。また、上記のように正転するロータ103に対して、ブレーキ機構BLにより第1サンギヤS1の逆転が阻止されているので、回転機101からの動力はすべて、第1リングギヤR1および第1プラネタリギヤP1を介して、第1キャリアC1に伝達され、それにより、第1キャリアC1は正転する。さらに、A1ロータ24および第1キャリアC1に伝達された動力は、駆動輪DW,DWに伝達され、その結果、駆動輪DW,DWは正転する。
 また、この場合、ブレーキ機構BLにより逆転するのが阻止されているA2ロータ25および第1サンギヤS1にはそれぞれ、上述した第1回転機21および回転機101の制御によって、ステータ23およびロータ103から逆転させるようなトルクが作用する。これにより、クランク軸3a、A2ロータ25および第1サンギヤS1は、逆転しないだけでなく、静止状態に保持される。
 以上のように、本実施形態によれば、エンジン動力を用いることなく、第1回転機21および回転機101によって駆動輪DW,DWを駆動することができる。また、この駆動中、クランク軸3aは逆転しないだけでなく、静止状態に保持されるので、エンジン3を引きずることがない。その他、第7実施形態による効果を同様に得ることができる。
 なお、これまでに述べた第7~第14の実施形態では、第1実施形態と同様、第1回転機21の第1極対数比αを値2.0に設定しているが、値1.0よりも小さく設定することによって、前述した図33(a)、(b)および図71から明らかなように、第1磁界回転速度VMF1の過大化による損失の発生により駆動効率が低下するのを、防止することができる。また、第7~第14の実施形態では、第1遊星歯車装置PS1の第1遊星ギヤ比r1を比較的大きな値に設定しているが、より小さな値に設定することによって、次の効果が得られる。
 図71から明らかなように、第1遊星ギヤ比r1を比較的大きな値に設定した場合において、車速VPがエンジン回転数NEよりも高い(図71の一点鎖線参照)ときには、ロータ回転速度VROが、車速VPよりも高くなり、過大になる場合がある。これに対し、第1遊星ギヤ比r1をより小さな値に設定することによって、図71に破線で示す速度共線図と一点差線で示す速度共線図との比較から明らかなように、ロータ回転速度VROを小さくすることができ、したがって、ロータ回転速度VROの過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 さらに、第7~第14の実施形態では、A2ロータ25および第1サンギヤS1を互いに直結するとともに、A1ロータ24および第1キャリアC1を互いに直結しているが、A2ロータ25および第1サンギヤS1は、クランク軸3aに連結されていれば、互いに直結されていなくてもよく、また、A1ロータ24および第1キャリアC1は、駆動輪DW,DWに連結されていれば、互いに直結されていなくてもよい。この場合、第8および第9の実施形態の変速装置111,121をそれぞれ、2つの変速装置で構成するとともに、次のようにして設けてもよい。すなわち、変速装置111を構成する2つの変速装置の一方をA1ロータ24と駆動輪DW,DWの間に、他方を第1キャリアC1と駆動輪DW,DWの間に、それぞれ設けてもよい。また、変速装置121を構成する2つの変速装置の一方をA2ロータ25とクランク軸3aの間に、他方を第1サンギヤS1とクランク軸3aの間に、それぞれ設けてもよい。
 また、第7~第14の実施形態では、第1サンギヤS1および第1リングギヤR1を、エンジン3および回転機101にそれぞれ連結しているが、これらの連結関係を逆に、すなわち、第1リングギヤR1および第1サンギヤS1を、エンジン3および回転機101にそれぞれ連結してもよい。この場合には、回転機101に要求されるトルクが特に大きくなるENG走行中の急加速運転時、回転機トルクTMOTは、次式(65)で表される。
  TMOT=-{α・TENG+(1+α)TDDW}/(r1’+1+α)
                                  ……(65)
 この式(65)において、r1’は、第1リングギヤR1の歯数と第1サンギヤS1の歯数との比(第1リングギヤの歯数/第1サンギヤS1の歯数)であり、値1.0よりも大きい。このことと、第1遊星ギヤ比r1が、前述したように第1サンギヤS1の歯数/第1リングギヤR1の歯数であり、値1.0よりも小さいことと、前記式(61)と式(65)から明らかなように、回転機トルクTMOTをより小さくすることができ、したがって、回転機101のさらなる小型化およびコストの削減を図ることができる。
(第15実施形態) 次に、図87を参照しながら、第15実施形態による動力装置1Nについて説明する。この動力装置1Nは、第1実施形態の動力装置1と比較して、第1回転機21に代えて、第7実施形態で述べた第1遊星歯車装置PS1および回転機101が設けられている点のみが異なっている。以下、第1実施形態と異なる点を中心に説明する。
 図87に示すように、第1遊星歯車装置PS1の第1キャリアC1および第2回転機31のB1ロータ34は、第1回転軸4を介して互いに機械的に直結されるとともに、第1回転軸4およびフライホイール5を介して、クランク軸3aに機械的に直結されている。また、第2回転機31のB2ロータ35は、連結軸6を介して第1遊星歯車装置PS1の第1サンギヤS1に機械的に直結されるとともに、第2回転軸7や、ギヤ7b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、差動ギヤ機構9などを介して、駆動輪DW,DWに機械的に連結されている。すなわち、第1サンギヤS1およびB2ロータ35は、駆動輪DW,DWに機械的に連結されている。また、ステータ102は、第1PDU41を介して、バッテリ43に電気的に接続されている。すなわち、回転機101のステータ102と第2回転機31のステータ33は、第1および第2のPDU41,42を介して、互いに電気的に接続されている。
 また、回転機101のロータ103の回転角度位置は、第7実施形態と同様、前述した回転角センサ59によって検出される。また、ECU2は、検出されたロータ103の回転角度位置に基づき、ロータ回転速度VROを算出するとともに、第1PDU41を制御することによって、回転機101のステータ102に供給される電力や、ステータ102で発電する電力、ロータ回転速度VROを制御する。
 以上のように、本実施形態による動力装置1Nは、第1実施形態の動力装置1と比較して、第1回転機21を第1遊星歯車装置PS1および回転機101に置き換えただけであり、この動力装置1とまったく同じ機能を有している。また、動力装置1Nでは、第1実施形態で述べたEVクリープなどの各種の動作モードによる運転が、同様にして行われる。この場合、これらの動作モードによる運転は、第1回転機21に関する各種のパラメータ(第1磁界回転速度VMF1など)を、対応する回転機101の各種のパラメータに置き換えて行われる。以下、これらの動作モードについて、第1実施形態と異なる点を中心として簡単に説明する。
 ・EVクリープ
 EVクリープ中には、第1実施形態と同様、第2回転機31のステータ33に、バッテリ43から電力を供給するとともに、第2回転磁界を正転させる。また、回転機101のロータ103に後述するように伝達される動力を用いて、ステータ102で発電を行うとともに、発電した電力をステータ23に供給する。これに伴い、第1実施形態で述べたように、ステータ33からの第2駆動用等価トルクTSE2は、B2ロータ35を正転させるように作用するとともに、B1ロータ34を逆転させるように作用する。また、B2ロータ35に伝達されたトルクの一部は、第2回転軸7などを介して駆動輪DW,DWに伝達され、それにより、駆動輪DW,DWが正転する。
 さらに、EVクリープ中、B2ロータ35に伝達されたトルクの残りは、連結軸6を介して第1サンギヤS1に伝達された後、回転機101のステータ102での発電に伴って、第1プラネタリギヤP1、第1リングギヤR1およびロータ103を介して、ステータ102に電気エネルギとして伝達される。また、この場合、ロータ103が逆転するため、ステータ102での発電に伴って発生した回転機トルクTMOTは、第1リングギヤR1および第1プラネタリギヤP1を介して、第1キャリアC1に伝達され、第1キャリアC1を正転させるように作用する。また、この回転機トルクTMOTに釣り合うように、第1サンギヤS1に伝達されたトルクが、第1プラネタリギヤP1を介して第1キャリアC1にさらに伝達され、第1キャリアC1を正転させるように作用する。
 この場合、上述したB1ロータ34を逆転させるトルクと、第1キャリアC1を正転させるトルクとが釣り合うように、ステータ33に供給される電力とステータ102で発電する電力を制御することによって、互いに連結されたB1ロータ34、第1キャリアC1およびクランク軸3aが、静止状態に保持される。その結果、EVクリープ中、B1ロータ回転速度VRB1および第1キャリア回転速度VCA1は、値0になり、エンジン回転数NEも値0になる。
 また、EVクリープ中、ステータ33に供給される電力と、ステータ102で発電する電力と、第2磁界回転速度VMF2およびロータ回転速度VROはそれぞれ、前記式(44)および(53)に示すような速度関係が維持されるように、かつB2ロータ回転速度VRB2および第1サンギヤ回転速度VSU1が非常に小さくなるように制御される。以上により、車速VPが非常に小さなクリープ運転が行われる。以上のように、エンジン3を停止した状態で、回転機101および第2回転機31によって、クリープ運転を行うことができる。
 ・EV発進
 EV発進時には、第2回転機31のステータ33に供給される電力および回転機101のステータ102で発電する電力をいずれも増大させる。さらに、式(44)および(53)に示すような回転速度の関係を維持し、エンジン回転数NEを値0に保持しながら、EVクリープ中に逆転していたロータ103のロータ回転速度VROと、正転していた第2回転磁界の第2磁界回転速度VMF2をそれぞれ、それまでと同じ回転方向に上昇させる。以上により、車速VPが上昇し、車両が発進する。
 ・EV走行中ENG始動
 EV走行中ENG始動時には、車速VPをそのときの値に保持しながら、EV発進時に上述したように逆転していたロータ103のロータ回転速度VROを、値0になるように制御するとともに、正転していた第2回転磁界の第2磁界回転速度VMF2を、低下させるように制御する。そして、ロータ回転速度VROが値0になった後には、第2回転機31のステータ33に加え、回転機101のステータ102にも、バッテリ43から電力を供給し、ロータ103を正転させるとともに、ロータ回転速度VROを上昇させる。
 上記のように電力がステータ33に供給されるのに伴い、第1実施形態で述べたように、第2駆動用等価トルクTSE2と、B1ロータ34に後述するように伝達されたトルクが合成され、B2ロータ35に伝達される。また、B2ロータ35に伝達されたトルクの一部は、連結軸6を介して第1サンギヤS1に伝達され、残りは、第2回転軸7などを介して駆動輪DW,DWに伝達される。
 また、EV走行中ENG始動時、バッテリ43からステータ102に電力が供給されることによって、回転機トルクTMOTが、第1リングギヤR1および第1プラネタリギヤP1を介して、第1キャリアC1に伝達されるのに伴い、第1サンギヤS1に上記のように伝達されたトルクが、第1プラネタリギヤP1を介して第1キャリアC1に伝達される。また、第1キャリアC1に伝達されたトルクの一部は、第1回転軸4を介してB1ロータ34に伝達され、残りは、第1回転軸4などを介してクランク軸3aに伝達され、それにより、クランク軸3aが正転する。さらに、この場合、両ステータ33,102に供給される電力は、駆動輪DW,DWおよびエンジン3に動力が十分に伝達されるように制御される。
 以上により、EV走行中ENG始動時、車速VPがそのときの値に保持されるとともに、エンジン回転数NEが上昇する。その状態で、第1実施形態と同様、クランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグの点火動作を制御することによって、エンジン3が始動される。また、ロータ回転速度VROおよび第2磁界回転速度VMF2を制御することによって、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。
 図88は、EV走行中ENG始動の開始時における各種の回転要素の回転速度およびトルクの関係の一例を示している。前述した各種の回転要素の連結関係から明らかなように、第1キャリア回転速度VCA1、B1ロータ回転速度VRB1およびエンジン回転数NEは互いに等しく、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2は互いに等しく、第1リングギヤ回転速度VRI1およびロータ回転速度VROは互いに等しい。また、差動ギヤ機構9などによる変速がないとすれば、車速VP、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2は互いに等しい。このことと、式(44)および(53)から、これらの回転速度VCA1、VRB1、NE、VSU1、VRB2、VP、VRI1、およびVROと、第2磁界回転速度VMF2の関係は、例えば図88のように示される。
 この場合、図88から明らかなように、第2駆動用等価トルクTSE2が、回転機トルクTMOTを反力として、駆動輪DW,DWおよびクランク軸3aの双方に伝達されるため、回転機101に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、回転機101に要求されるトルクすなわち回転機トルクTMOTは、次式(66)で表される。
   TMOT=-{β・TDDW+(1+β)TDENG}/(r1+1+β)
                                  ……(66)
 この式(66)から明らかなように、第1遊星ギヤ比r1が大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジン伝達トルクTDENGに対して、回転機トルクTMOTが小さくなる。前述したように第1遊星ギヤ比r1が一般的な遊星歯車装置が取りうる値のなかで比較的大きな値に設定されているので、回転機101の小型化およびコストの削減を図ることができる。
 ・ENG走行
 ENG走行中には、第1実施形態で述べた実行条件に応じて、バッテリ入出力ゼロモードや、アシストモード、駆動時充電モードによる運転が行われる。このバッテリ入出力ゼロモード中、ロータ103に伝達されるエンジン動力を用いて、回転機101のステータ102で発電を行うとともに、発電した電力を、バッテリ43に充電せずに、第2回転機31のステータ33に供給する。この場合、このステータ102での発電によって、エンジントルクTENGの一部が、第1キャリアC1、第1プラネタリギヤP1および第1リングギヤR1を介して、ロータ103に伝達されるのに伴い、第1サンギヤS1にも、第1キャリアC1および第1プラネタリギヤP1を介して、エンジントルクTENGの一部が伝達される。すなわち、第1サンギヤS1および第1リングギヤR1に、エンジントルクTENGの一部が分配される。
 また、エンジントルクTENGの残りは、第1回転軸4を介してB1ロータ34に伝達される。さらに、上述したEV走行中ENG始動時と同様、第2駆動用等価トルクTSE2と、B1ロータ34に上記のように伝達されたトルクは、合成され、B2ロータ35に伝達される。また、B2ロータ35には、第1サンギヤS1に上記のように分配されたエンジントルクTENGが、連結軸6を介してさらに伝達される。
 以上のように、B2ロータ35には、第1サンギヤS1に分配されたエンジントルクTENGと、第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクTENGとを合成した合成トルクが伝達される。また、この合成トルクは、第2回転軸7などを介して駆動輪DW,DWに伝達される。以上の結果、バッテリ入出力ゼロモード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWには、エンジン動力と等しい大きさの動力が伝達される。
 さらに、バッテリ入出力ゼロモード中には、ロータ回転速度VROおよび第2磁界回転速度VMF2を制御することによって、エンジン動力が、無段階に変速され、駆動輪DW,DWに伝達される。すなわち、第1遊星歯車装置PS1、回転機101および第2回転機31は、無段変速装置として機能する。
 具体的には、図89に二点鎖線で示すように、前記式(53)および(44)に示す速度関係を維持しながら、第1キャリア回転速度VCA1およびB1ロータ回転速度VRB1、すなわちエンジン回転数NEに対して、ロータ回転速度VROを上昇させるとともに、第2磁界回転速度VMF2を低下させることによって、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2、すなわち車速VPを無段階に減速することができる。逆に、図89に一点鎖線で示すように、エンジン回転数NEに対して、ロータ回転速度VROを低下させるとともに、第2磁界回転速度VMF2を上昇させることによって、車速VPを無段階に増速することができる。さらに、この場合、エンジン回転数NEが目標回転数になるように、ロータ回転速度VROおよび第2磁界回転速度VMF2を制御する。
 以上のように、バッテリ入出力ゼロモード中、第1遊星歯車装置PS1、回転機101および第2回転機31において、エンジン動力は、一旦、分割され、次の第1~第3の伝達経路を介してB2ロータ35に伝達されるとともに、合成された状態で、駆動輪DW,DWに伝達される。
 第1伝達経路:第1キャリアC1→第1プラネタリギヤP1→第1サンギヤS1→連結軸6→B2ロータ35
 第2伝達経路:B1ロータ34→磁力線による磁力→B2ロータ35
 第3伝達経路:第1キャリアC1→第1プラネタリギヤP1→第1リングギヤR1→ロータ103→ステータ102→第1PDU41→第2PDU42→ステータ33→磁力線による磁力→B2ロータ35
 これらの第1および第2の伝達経路では、エンジン動力が、電力に変換されることなく、磁気パスや機械パスによって、駆動輪DW,DWに伝達される。また、第3伝達経路では、エンジン動力が、電気パスによって駆動輪DW,DWに伝達される。
 また、バッテリ入出力ゼロモード中、ステータ102で発電する電力と、ロータ回転速度VROおよび第2磁界回転速度VMF2は、式(53)および(44)に示す速度関係が維持されるように制御される。
 また、アシストモード中には、回転機101のステータ102で発電を行うとともに、この発電した電力に加え、バッテリ43に充電されている電力を、第2回転機31のステータ33に供給する。このため、B2ロータ35には、ステータ102およびバッテリ43からステータ33に供給された電力に基づく第2駆動用等価トルクTSE2が伝達される。さらに、上述したバッテリ入出力ゼロモードと同様、この第2駆動用等価トルクTSE2と、ステータ102での発電に伴って第1サンギヤS1に分配されたエンジントルクTENGと、B1ロータ34に伝達されたエンジントルクTENGとを合成したトルクが、B2ロータ35を介して、駆動輪DW,DWに伝達される。以上の結果、アシストモード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWに伝達される動力は、エンジン動力とバッテリ43から供給された電力(エネルギ)との和に等しくなる。
 さらに、アシストモード中には、ステータ102で発電する電力と、バッテリ43からステータ33に供給される電力と、ロータ回転速度VROおよび第2磁界回転速度VMF2は、前記式(53)および(44)に示す速度関係が維持されるように制御される。その結果、第1実施形態と同様、車両要求動力に対するエンジン動力の不足分が、バッテリ43から第2回転機31のステータ33に電力を供給することによって補われる。なお、車両要求動力に対するエンジン動力の不足分が比較的大きい場合には、第2回転機31のステータ33に加え、回転機101のステータ102にも、バッテリ43から電力が供給される。
 また、駆動時充電モード中、第2回転機31のステータ33には、回転機101のステータ102で発電した電力からバッテリ43に充電される電力を差し引いた大きさの電力が供給され、この電力に基づく第2駆動用等価トルクTSE2が、B2ロータ35に伝達される。さらに、バッテリ入出力ゼロモードと同様、この第2駆動用等価トルクTSE2と、ステータ102での発電に伴って第1サンギヤS1に分配されたエンジントルクTENGと、B1ロータ34に伝達されたエンジントルクTENGとを合成したトルクが、B2ロータ35を介して、駆動輪DW,DWに伝達される。以上の結果、駆動時充電モード中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、駆動輪DW,DWに伝達される動力は、エンジン動力からバッテリ43に充電された電力(エネルギ)を差し引いた大きさになる。
 さらに、駆動時充電モード中には、ステータ102で発電する電力と、バッテリ43に充電される電力と、ロータ回転速度VROおよび第2磁界回転速度VMF2は、式(53)および(44)に示す速度関係が維持されるように制御される。その結果、第1実施形態と同様、車両要求動力に対するエンジン動力の余剰分が、回転機101のステータ102において電力に変換され、バッテリ43に充電される。
 また、ENG走行中、回転機101のステータ102で発電する電力を、回転機トルクTMOTがエンジントルクTENGの1/(1+r1)になるように制御した場合には、エンジン3から駆動輪DW,DWへの動力の伝達を、磁気パスのみによって行うことができる。この場合、駆動輪DW,DWには、エンジントルクTENGのr1/(1+r1)倍の大きさのトルクが伝達される。
 さらに、第1実施形態で述べたENG走行中の急加速運転時、エンジン3、回転機101および第2回転機31は次のようにして制御される。図90は、ENG走行中の急加速運転の開始時における各種の回転要素の回転速度およびトルクの関係の一例を示している。この場合、エンジン回転数NEを、第1実施形態と同様、その最大トルクが得られるような所定の回転数に高める。また、図90に示すように、車速VPがすぐには上昇しないため、エンジン回転数NEが車速VPよりも高くなるとともに、両者の差が大きくなることから、両者の関係によって定まる第2回転磁界の回転方向は逆転方向になる。そのような第2回転磁界を発生させるステータ33から正のトルクを駆動輪DW,DWに作用させるために、ステータ33において発電を行う。さらに、ステータ33で発電した電力を回転機101のステータ102に供給し、ロータ103を正転させる。
 以上により、エンジントルクTENG、回転機トルクTMOTおよび第2発電用等価トルクTGE2はいずれも、正のトルクとして駆動輪DW,DWに伝達され、その結果、車速VPが急速に上昇する。また、ENG走行中の急加速運転の開始時には、図90から明らかなように、エンジントルクTENGおよび回転機トルクTMOTが第2発電用等価トルクTGE2を反力として駆動輪DW,DWに伝達されるため、第2回転機31に要求されるトルクは、それ以外の場合よりも大きくなる。この場合、第2回転機31に要求されるトルクすなわち第2発電用等価トルクTGE2は、次式(67)で表される。
  TGE2=-{r1・TENG+(1+r1)TDDW}/(β+1+r1) ……(67)
 この式(67)から明らかなように、第2極対数比βが大きいほど、同じ大きさの駆動輪伝達トルクTDDWおよびエンジントルクTENGに対して、回転機トルクTMOTが小さくなる。本実施形態では、第2極対数比βが値2.0に設定されているので、第1実施形態と同様、第2回転機31の小型化およびコストの削減を図ることができる。
 ・減速回生
 減速回生中、駆動輪DW,DWのトルク(慣性によるトルク)に対する、エンジン3に伝達される駆動輪DW,DWのトルクの割合が小さいときには、駆動輪DW,DWの動力の一部を用いて両ステータ102,33で発電を行うとともに、発電した電力をバッテリ43に充電する。ステータ33での発電に伴い、B2ロータ35には、駆動輪DW,DWのトルクの全部と、第1サンギヤS1に後述するように分配されたトルクとを合成した合成トルクが伝達される。また、B2ロータ35に伝達された上記の合成トルクは、ステータ33およびB1ロータ34に分配される。
 さらに、B1ロータ34に分配されたトルクの一部は、エンジン3に伝達され、残りは、前述したバッテリ入出力ゼロモードの場合と同様、ステータ102での発電に伴い、第1キャリアC1に伝達された後、ステータ102および第1サンギヤS1に分配される。また、第1サンギヤS1に分配されたトルクは、B2ロータ35に伝達される。以上の結果、減速回生中、各ギヤによる伝達ロスなどがないとすれば、第1実施形態と同様、エンジン3に伝達される動力と、バッテリ43に充電される電力(エネルギ)との和は、駆動輪DW,DWの動力と等しくなる。
 ・停車中ENG始動
 停車中ENG始動時、回転機101のステータ102に、バッテリ43から電力を供給し、ロータ103を正転させるとともに、第2回転機31のステータ33で発電を行い、発電した電力をステータ102にさらに供給する。ステータ102への電力の供給に伴って第1リングギヤR1に伝達された回転機トルクTMOTは、第1プラネタリギヤP1を介して、第1キャリアC1および第1サンギヤS1に伝達され、第1キャリアC1を正転させるように作用するとともに、第1サンギヤS1を逆転させるように作用する。また、第1キャリアC1に伝達されたトルクの一部は、クランク軸3aに伝達され、それにより、クランク軸3aが正転する。
 また、停車中ENG始動時、第1キャリアC1に伝達されたトルクの残りは、B1ロータ34に伝達された後、第2回転機31のステータ33での発電に伴って、ステータ33に電気エネルギとして伝達される。また、この場合、第1実施形態で述べたように、第2回転磁界が逆転する。このため、このステータ33での発電に伴って発生した第2発電用等価トルクTGE2は、B2ロータ35を正転させるように作用する。また、この第2発電用等価トルクTGE2に釣り合うように、B1ロータ34に伝達されたトルクが、B2ロータ35にさらに伝達され、B2ロータ35を正転させるように作用する。
 この場合、上述した第1サンギヤS1を逆転させるトルクと、B2ロータ35を正転させるトルクとが釣り合うように、回転機101のステータ102に供給される電力と第2回転機31のステータ33で発電する電力を制御することによって、互いに連結された第1サンギヤS1、B2ロータ35および駆動輪DW,DWが、静止状態に保持される。その結果、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2は、値0になり、車速VPも値0になる。
 また、この場合、ステータ102に供給される電力とステータ33で発電する電力とロータ回転速度VROおよび第2磁界回転速度VMF2は、式(53)および(44)に示す速度関係が維持されるように、かつ第1キャリア回転速度VCA1およびB1ロータ回転速度VRB1が比較的小さな値になるように制御される。以上により、停車中ENG始動時、第1実施形態と同様、車速VPを値0に保持しながら、エンジン回転数NEが、エンジン3の始動に適した比較的小さな値に制御される。また、その状態で、クランク角度位置に応じ、エンジン3の燃料噴射弁や点火プラグの点火動作を制御することによって、エンジン3が始動される。
 ・ENGクリープ
 ENGクリープ中には、ステータ102および33で発電を行う。また、このように両ステータ102,33で発電した電力を、バッテリ43に充電する。前述したバッテリ入出力ゼロモードの場合と同様、上記のステータ102での発電に伴って、第1キャリアC1にエンジントルクTENGの一部が伝達されるとともに、第1キャリアC1に伝達されたエンジントルクTENGが、ステータ102および第1サンギヤS1に分配される。また、第1実施形態と同様、上述したステータ33での発電に伴って発生する第2回転磁界が逆転する。このため、上記のステータ33での発電に伴って発生した第2発電用等価トルクTGE2は、B2ロータ35を正転させるように作用する。また、第2発電用等価トルクTGE2に釣り合うように、B1ロータ34に伝達されたエンジントルクTENGが、B2ロータ35にさらに伝達され、B2ロータ35を正転させるように作用する。さらに、B2ロータ35には、第1サンギヤS1に上記のように分配されたエンジントルクTENGが伝達される。
 以上のように、ENGクリープ中、B2ロータ35には、第1サンギヤS1に分配されたエンジントルクTENGと、第2発電用等価トルクTGE2と、B1ロータ34に伝達されたエンジントルクTENGとを合成した合成トルクが伝達される。この合成トルクは、駆動輪DW,DWに伝達され、駆動輪DW,DWを正転させる。また、ステータ102,33で発電する電力、ロータ回転速度VROおよび第2磁界回転速度VMF2は、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2すなわち車速VPが非常に小さくなるように制御され、それにより、クリープ運転が行われる。
 また、ENGクリープ中には、上述したように、ステータ102での発電に伴って第1サンギヤS1に分配されたエンジントルクTENGと、ステータ33での発電に伴ってB1ロータ34を介してB2ロータ35に伝達されたエンジントルクTENGが、駆動輪DW,DWに伝達される。これにより、第1実施形態と同様、エンジントルクTENGの一部を駆動輪DW,DWに伝達できるので、エンジンストールを生じることなく、クリープ運転を行うことができる。
 ・ENG発進
 ENG発進時、ENGクリープ中に逆転していた第2回転磁界の第2磁界回転速度VMF2を、値0になるように制御し、正転していたロータ103のロータ回転速度VROを上昇させるとともに、エンジン動力を増大させる。そして、第2磁界回転速度VMF2が値0になった後には、前述したバッテリ入出力ゼロモードによる運転を行う。以上により、車速VPが上昇し、車両が発進する。
 以上のように、本実施形態によれば、第2回転機31が遊星歯車装置と一般的な1ロータタイプの回転機を組み合わせた装置と同じ機能を有するので、前述した従来の動力装置と異なり、動力を分配・合成して伝達するための2つの遊星歯車装置を必要とせず、第1遊星歯車装置PS1が1つのみで足りる。したがって、その分、動力装置1Nを小型化することができる。また、動力装置1Nでは、バッテリ入出力ゼロモードの動作説明で述べたように、前述した従来の場合と異なり、エンジン動力が再循環せずに駆動輪DW,DWに伝達されるので、第1遊星歯車装置PS1、回転機101および第2回転機31を通過する動力を低減できる。したがって、第1遊星歯車装置PS1、回転機101および第2回転機31の小型化およびコストの削減を図ることができ、それにより、動力装置1Nのさらなる小型化とコストの削減を達成することができる。さらに、上記のように低減された動力に見合ったトルク容量を有する第1遊星歯車装置PS1、回転機101および第2回転機31を用いることによって、動力の損失を抑制し、動力装置1Nの駆動効率を高めることができる。
 また、エンジン動力は、第1伝達経路(第1キャリアC1、第1プラネタリギヤP1、第1サンギヤS1、連結軸6、B2ロータ35)と、第2伝達経路(B1ロータ34、磁力線による磁力、B2ロータ35)と、第3伝達経路(第1キャリアC1、第1プラネタリギヤP1、第1リングギヤR1、ロータ103、ステータ102、第1PDU41、第2PDU42、ステータ33、磁力線による磁力、B2ロータ35)の計3つの伝達経路を介して、分割された状態で駆動輪DW,DWに伝達される。これにより、第3伝達経路を介して第1および第2のPDU41,42を通過する電力(エネルギ)を低減できるので、第1および第2のPDU41,42の小型化およびコストの削減を図ることができ、それにより、動力装置1Nのさらなる小型化およびコストの削減を達成することができる。
 さらに、図89を用いて説明したように、ロータ回転速度VROおよび第2磁界回転速度VMF2を制御することによって、エンジン動力が無段階に変速され、駆動輪DW,DWに伝達される。また、この場合、エンジン回転数NEが、最良燃費が得られるように設定された目標回転数になるように、ロータ回転速度VROおよび第2磁界回転速度VMF2を制御するので、最良燃費が得られるようにエンジン動力を制御しながら、駆動輪DW,DWを駆動することができる。したがって、動力装置1Nの駆動効率をより一層、高めることができる。
 また、第1遊星歯車装置PS1の第1遊星ギヤ比r1が、一般的な遊星歯車装置が取りうる値のなかで比較的大きな値に設定されている。これにより、回転機101に要求されるトルクが特に大きくなるEV走行中ENG始動時、図88および前記式(66)を用いて説明したように、第1遊星ギヤ比r1を小さな値に設定した場合よりも、回転機トルクTMOTを小さくすることができ、したがって、回転機101のさらなる小型化およびコストの削減を図ることができる。さらに、第2回転機31の第2極対数比βが値2.0に設定されている。これにより、第2回転機31に要求されるトルクが特に大きくなるENG走行中の急加速運転時、図90および前記式(67)を用いて説明したように、第2極対数比βを値1.0未満に設定した場合よりも、回転機トルクTMOTを小さくすることができ、したがって、第2回転機31のさらなる小型化およびコストの削減を図ることができる。その他、本実施形態によれば、第1実施形態による効果を同様に得ることができる。
 なお、本実施形態の動力装置1Nは、第1実施形態の動力装置1が行う「バッテリSOCに応じた制御」と同様の制御を行う。但し、本実施形態では、第1実施形態の第1回転機21が、第1遊星歯車装置PS1と1ロータタイプの回転機101に置き換えられている。このため、第1回転機21を回転機101と読み替え、第1回転機21のステータ23を回転機101のステータ102と読み替え、A2ロータ25を第1遊星歯車装置PS1の第1キャリアC1と読み替える。
(第16~第19の実施形態)
 次に、図91~図94を参照しながら、第16~第19の実施形態による動力装置1O,1P,1Q,1Rについて説明する。これらの動力装置1O~1Rはそれぞれ、第15実施形態と比較して、変速装置161,171,181,191をさらに備える点が主に異なっており、第16~第19の実施形態のいずれにおいても、エンジン3、回転機101、第1遊星歯車装置PS1、第2回転機31および駆動輪DW,DWの間の連結関係は、第15実施形態と同様である。すなわち、第1キャリアC1およびB1ロータ34がエンジン3のクランク軸3aに機械的に連結されるとともに、第1サンギヤS1およびB2ロータ35が駆動輪DW,DWに機械的に連結されている。また、回転機101のロータ103が、第1リングギヤR1に機械的に連結されている。さらに、図91~図94において、第15実施形態と同じ構成要素については、同じ符号を用いて示している。このことは、後述する他の実施形態を説明するための図においても同様に当てはまる。以下、第16実施形態の動力装置1Oから順に、第15実施形態と異なる点を中心に説明する。
(第16実施形態)
 図91に示すように、この動力装置1Oでは、変速装置161は、前述した互いに噛み合うギヤ7bおよび第1ギヤ8bに代えて設けられている。この変速装置161は、第8実施形態の変速装置111と同様、ベルト式の無段変速装置であり、前述した第2回転軸7に連結された入力軸と、アイドラ軸8に連結された出力軸と、入力軸および出力軸にそれぞれ設けられたプーリと、これらのプーリに巻きかけられた金属ベルト(いずれも図示せず)を有している。変速装置161は、これらのプーリの有効径を変更することによって、入力軸に入力された動力を変速した状態で出力軸に出力する。また、変速装置161の変速比(入力軸の回転数/出力軸の回転数)はECU2によって制御される。
 上記のように、変速装置161は、第1サンギヤS1およびB2ロータ35と駆動輪DW,DWとの間に設けられており、また、第1サンギヤS1およびB2ロータ35に伝達された動力は、変速装置161によって変速され、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Oでは、EV発進時やENG発進時など、第1サンギヤS1およびB2ロータ35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置161の変速比は値1.0よりも大きな減速側の所定値に制御される。これにより、第1サンギヤS1およびB2ロータ35に伝達されたトルクは、変速装置161において増大された後、駆動輪DW,DWに伝達される。それに応じて、第1サンギヤS1およびB2ロータ35に伝達されるトルクが小さくなるように、回転機101で発電される電力および第2回転機31に供給される電力(発電される電力)が制御される。したがって、本実施形態によれば、回転機101および第2回転機31に要求されるトルクの最大値を小さくすることができるので、回転機101および第2回転機31のさらなる小型化およびコストの削減を図ることができる。また、上述した変速装置161および回転機101の制御によって、第1キャリアC1を介して第1サンギヤS1および第1リングギヤR1に分配されるトルクを小さくすることができ、第1キャリアC1に伝達されるトルクの最大値を小さくすることができるので、第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。
 さらに、車速VPが極めて高い高車速運転中など、B2ロータ回転速度VRB2が過大になるようなときには、変速装置161の変速比は値1.0よりも小さな増速側の所定値に制御される。これにより、本実施形態によれば、車速VPに対して、B2ロータ回転速度VRB2を低下させることができるので、B2ロータ回転速度VRB2の過大化による第2回転機31の故障を防止することができる。
 また、エンジン回転数NEが車速VPよりも高い急加速時など、エンジン回転数NEと車速VPの関係によって定まるロータ回転速度VROが過大になるようなときには、変速装置161の変速比は値1.0よりも大きな減速側の所定値に制御される。これにより、本実施形態によれば、車速VPに対して、第1サンギヤ回転速度VSU1を上昇させることによって、前述した図89から明らかなように、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置161の変速比は、ロータ回転速度VROおよび第2磁界回転速度VMF2がそれぞれ所定の第1および第2の目標値になるように制御される。これらの第1および第2の目標値は、回転機101および第2回転機31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、回転機101および第2回転機31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、第1および第2の目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、回転機101および第2回転機31の高い効率が得られるような値に設定されている。さらに、このような変速装置161の制御と並行して、ロータ回転速度VROおよび第2磁界回転速度VMF2が、第1および第2の目標値にそれぞれ制御される。以上により、本実施形態によれば、車両の走行中、回転機101および第2回転機31の高い効率を得ることができる。
 また、本実施形態においても、図89を用いて説明したように、回転機101、第1遊星歯車装置PS1および第2回転機31によって、エンジン動力を無段階に変速して、駆動輪DW,DWに伝達できるので、変速装置161の変速動作の頻度を低くすることができる。したがって、この変速動作による熱損失を抑制することができ、それにより、動力装置1Oの高い駆動効率を確保することができる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
 なお、本実施形態では、変速装置161は、ベルト式の無段変速装置であるが、トロイダル式または油圧式の無段変速装置やギヤ式の有段変速装置でもよいことは、もちろんである。
(第17実施形態)
 図92に示す第17実施形態の動力装置1Pでは、変速装置171は、前述した第9実施形態の変速装置121と同様、遊星歯車装置などで構成されたギヤ式の有段変速装置であり、入力軸172および出力軸(図示せず)を有しており、変速段として、第1速(変速比=入力軸172の回転数/出力軸の回転数=1.0)と第2速(変速比<1.0)から成る計2つの変速段が設定されている。これらの変速段の変更はECU2によって行われる。また、変速装置171の入力軸172はフライホイール5を介してクランク軸3aに直結されるとともに、その出力軸(図示せず)が第1回転軸4に直結されている。このように、変速装置171は、クランク軸3aと、第1キャリアC1およびB1ロータ34との間に設けられており、エンジン動力を変速して、第1キャリアC1およびB1ロータ34に伝達する。
 さらに、第9実施形態と同様、前述した差動ギヤ機構9のギヤ9aの歯数は、アイドラ軸8の第2ギヤ8cの歯数よりも大きくなっており、それにより、アイドラ軸8に伝達された動力は減速された状態で、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Pでは、ENG発進時など、第1サンギヤS1およびB2ロータ35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置171の変速段は第2速(変速比<1.0)に制御される。これにより、第1キャリアC1およびB1ロータ34に入力されるエンジントルクTENGは小さくなる。それに応じて、第1サンギヤS1およびB2ロータ35に伝達されるエンジントルクTENGが小さくなるように、回転機101で発電される電力および第2回転機31に供給される電力(発電される電力)が制御される。また、第1サンギヤS1およびB2ロータ35に伝達されたエンジントルクTENGは、第2ギヤ8cおよびギヤ9aによる減速によって増大された状態で、駆動輪DW,DWに伝達される。以上により、本実施形態によれば、回転機101および第2回転機31に要求されるトルクの最大値を小さくすることができ、回転機101および第2回転機31のさらなる小型化およびコストの削減を図ることができる。それに加え、第1キャリアC1を介して第1サンギヤS1および第1リングギヤR1に分配されるトルクの最大値を小さくすることができるので、第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。
 また、エンジン回転数NEが極めて高いときには、変速装置171の変速段は第1速(変速比=1.0)に制御される。これにより、本実施形態によれば、変速段が第2速の場合よりもB1ロータ回転速度VRB1を小さくすることができるので、B1ロータ回転速度VRB1の過大化による第2回転機31の故障を防止することができる。B1ロータ34は磁石で構成されており、上記のような不具合が発生しやすいため、特に有効である。
 さらに、エンジン回転数NEが車速VPよりも高い急加速時など、ロータ回転速度VROが過大になるようなときには、変速装置171の変速段は第1速に制御される。これにより、変速段が第2速の場合よりも第1キャリア回転速度VCA1が小さくなるので、本実施形態によれば、図89から明らかなように、ロータ回転速度VROを低下させることができ、したがって、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、ENG走行中、変速装置171の変速段は、エンジン回転数NEおよび車速VPに応じて、ロータ回転速度VROおよび第2磁界回転速度VMF2がそれぞれ回転機101および第2回転機31の高い効率を得られるような値になるように変更される。さらに、このような変速装置171の変速段の変更と並行して、ロータ回転速度VROおよび第2磁界回転速度VMF2が、そのときのエンジン回転数NE、車速VP、変速装置171の変速段、前記式(44)、および式(53)によって定まる値に制御される。これにより、本実施形態によれば、車両の走行中、回転機101および第2回転機31の高い効率を得ることができる。
 さらに、ENG走行中で、かつ、変速装置171の変速動作中、すなわち、変速装置171によってエンジン3と第1キャリアC1およびB1ロータ34との間が遮断されているときには、変速ショックを抑えるために、次のようにして回転機101および第2回転機31を制御する。以下、このような回転機101および第2回転機31の制御を、第9実施形態と同様、「変速ショック制御」という。
 すなわち、回転機101のステータ102に電力を供給し、ロータ103を正転させるとともに、第2回転機31のステータ33に電力を供給し、それに伴って発生する第2回転磁界を正転させる。これにより、第1リングギヤR1に伝達された回転機トルクTMOTと、第1サンギヤS1に後述するように伝達されたトルクが合成された後、第1キャリアC1に伝達される。第1キャリアC1に伝達されたトルクは、上述した変速装置171による遮断によって、クランク軸3aには伝達されず、B1ロータ34に伝達され、さらに、第4ステータ232からの第2駆動用等価トルクTSE2と合成された後、B2ロータ35に伝達される。B2ロータ35に伝達されたトルクの一部は、第1サンギヤS1に伝達され、残りは駆動輪DW,DWに伝達される。
 したがって、本実施形態によれば、変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、商品性を高めることができる。なお、この変速ショック制御は、変速装置171の変速動作中に限って行われる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
(第18実施形態)
 図93に示す第18実施形態の動力装置1Qでは、第15実施形態と異なり、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。これにより、第1サンギヤS1およびB2ロータ35は、連結軸6や、ギヤ6b、第1ギヤ8b、アイドラ軸8、第2ギヤ8c、ギヤ9a、差動ギヤ機構9などを介して、変速装置181を介さずに、駆動輪DW,DWに機械的に連結されている。
 また、変速装置181は、第10実施形態の変速装置131と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、第1リングギヤR1にフランジを介して直結された入力軸182と、ロータ103にフランジを介して直結された出力軸183を有しており、入力軸182に入力された動力を変速し、出力軸183に出力する。さらに、変速装置181の変速段の変更は、ECU2によって制御される。このように、第1リングギヤR1は、変速装置181を介してロータ103に機械的に連結されており、また、第1リングギヤR1に伝達された動力は、変速装置181によって変速され、ロータ103に伝達される。
 以上の構成の動力装置1Qでは、EV発進時や、ENG発進時など、ロータ103に極めて大きなトルクが伝達されるようなときには、変速装置181の変速段は、第3速(変速比<1.0)に制御される。これにより、第1リングギヤR1に伝達されたトルクは、変速装置181において低減された後、ロータ103に伝達される。それに応じて、ロータ103に伝達されるトルクが小さくなるように、回転機101で発電される電力が制御される。また、前述した停車中ENG始動時、変速装置181の変速段は、第3速(変速比<1.0)に制御される。この場合、入力軸182および出力軸183が第1リングギヤR1およびロータ103にそれぞれ連結されているので、上述した変速装置181の制御により、停車中ENG始動時、回転機101のトルクが増大され、第1リングギヤR1、第1プラネタリギヤP1および第1キャリアC1を介して、クランク軸3aに伝達される。それに応じて、回転機101の回転機トルクTMOTが小さくなるように、回転機101に供給される電力が制御される。以上により、本実施形態によれば、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、EV発進時などにおいて、変速装置181の変速段を上述したようにして制御しても、第1リングギヤR1からロータ103に伝達される動力の大きさ自体は変わらないことと、回転機101で発電した電力をステータ33を介してB2ロータ35に動力として伝達する際、B2ロータ35を介して駆動輪DW,DWに伝達されるトルクを任意の大きさに制御できることから、駆動輪DW,DWに十分な大きさのトルクを伝達することができる。
 さらに、エンジン回転数NEが車速VPよりも高い急加速時など、エンジン回転数NEと車速VPの関係によって定まるロータ回転速度VROが過大になるようなときには、変速装置181の変速段は、第1速(変速比>1.0)に制御される。これにより、そのときのエンジン回転数NEと車速VPの関係によって定まる第1リングギヤ回転速度VRI1に対して、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、EV走行やENG走行を含む車両の走行中、変速装置181の変速段は、ロータ回転速度VROが所定の目標値になるように制御される。この目標値は、回転機101および第2回転機31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、回転機101および第2回転機31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、回転機101の高い効率が得られるような値に設定されている。さらに、このような変速装置181の制御と並行して、ロータ回転速度VROが上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、回転機101の高い効率を得ることができる。
 また、ENG走行中で、かつ、変速装置181の変速動作中には、変速装置181におけるギヤ列と、入力軸182および出力軸183との間の遮断により、ロータ103と第1リングギヤR1の間が遮断されることによって、ロータ103にエンジントルクTENGが作用しなくなる。このため、回転機101では発電が行われず、第2回転機31のステータ33に、バッテリ43から電力が供給される。
 これにより、本実施形態によれば、変速装置181の変速動作中、ステータ33からの第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクTENGが合成され、B2ロータ35を介して駆動輪DW,DWに伝達されるので、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。
 また、第15実施形態と同様、回転機101、第1遊星歯車装置PS1および第2回転機31によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置181の変速動作の頻度を低くすることができ、したがって、動力装置1Qの駆動効率を高めることができる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
(第19実施形態)
 図94に示す第19実施形態の動力装置1Rでは、第18実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。また、変速装置191は、第7実施形態の変速装置131と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、第1サンギヤS1に直結された入力軸192と、連結軸6に直結された出力軸(図示せず)を有しており、入力軸192に入力された動力を変速し、出力軸に出力する。さらに、変速装置191の変速段の変更は、ECU2によって制御される。
 上記のように、第1サンギヤS1は、変速装置191や、連結軸6、ギヤ6b、第1ギヤ8bなどを介して、駆動輪DW,DWに機械的に連結されており、また、第1サンギヤS1に伝達された動力は、変速装置191によって変速され、駆動輪DW,DWに伝達される。さらに、B2ロータ35は、連結軸6や、ギヤ6b、第1ギヤ8bなどを介して、変速装置191を介さずに、駆動輪DW,DWに機械的に連結されている。
 以上の構成の動力装置1Rでは、ENG発進時など、第1サンギヤS1から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置191の変速段が第1速(変速比>1.0)に制御される。これにより、第1サンギヤS1に伝達されたトルクは、変速装置191において増大された後、駆動輪DW,DWに伝達される。それに応じて、第1サンギヤS1および第1リングギヤR1に分配されるトルクが小さくなるように、回転機101で発電される電力が制御される。これにより、本実施形態によれば、第1キャリアC1を介して第1サンギヤS1および第1リングギヤR1に分配されるトルクを小さくすることができるので、第1遊星歯車装置PS1のさらなる小型化およびコストの削減を図ることができる。それに加え、第1リングギヤR1からロータ103に伝達されるトルクを小さくすることができるので、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、エンジン回転数NEが車速VPよりも高い急加速時など、ロータ回転速度VROが過大になるようなときには、変速装置191の変速段は、第1速に制御される。これにより、本実施形態によれば、車速VPに対して、第1サンギヤ回転速度VSU1を上昇させることによって、図89から明らかなように、ロータ回転速度VROを低下させることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、EV走行やENG走行を含む車両の走行中、変速装置191の変速段は、ロータ回転速度VROが所定の目標値になるように制御される。この目標値は、回転機101および第2回転機31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、回転機101および第2回転機31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、回転機101の高い効率が得られるような値に設定されている。さらに、このような変速装置191の制御と並行して、ロータ回転速度VROが上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、回転機101の高い効率を得ることができる。
 さらに、ENG走行中で、かつ、変速装置191の変速動作中には、変速装置191におけるギヤ列と、入力軸192および出力軸との間の遮断により、第1サンギヤS1と駆動輪DW,DWの間が遮断されることによって、第1サンギヤS1に駆動輪DW,DWの負荷が作用しなくなる。このため、変速装置191の変速動作中には、回転機101では発電が行われず、第2回転機31のステータ33に、バッテリ43から電力が供給される。
 これにより、本実施形態によれば、変速装置191の変速動作中、第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクTENGが合成され、B2ロータ35を介して駆動輪DW,DWに伝達されるので、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。
 また、回転機101、第1遊星歯車装置PS1および第2回転機31によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置191の変速動作の頻度を低くすることができ、したがって、動力装置1Rの駆動効率を高めることができる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
 なお、第17~第19の実施形態では、変速装置171~191は、ギヤ式の有段変速装置であるが、ベルト式やトロイダル式、油圧式の無段変速装置でもよいことはもちろんである。
(第20実施形態)
 次に、図95を参照しながら、第20実施形態による動力装置1Sについて説明する。この動力装置1Sは、第15実施形態と比較して、ロータ回転速度VROおよび車速VPの速度差と車速VPおよびエンジン回転数NEの速度差との比を変更する変速装置をさらに備える点が主に異なっている。以下、第15実施形態と異なる点を中心に説明する。
 図95に示すように、この動力装置1Sでは、第18実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っており、それにより、第1サンギヤS1およびB2ロータ35は、連結軸6や、ギヤ6b、第1ギヤ8b、差動ギヤ機構9などを介して、駆動輪DW,DWに機械的に連結されている。
 上記の変速装置は、第13実施形態で述べた変速装置と同様、第2遊星歯車装置PS2、第1および第2のクラッチCL1,CL2を備えている。第2サンギヤS2は、第1回転軸4に一体に設けられており、それにより、第1キャリアC1、クランク軸3aおよびB1ロータ34に機械的に直結されている。また、第2キャリアC2は、フランジや中空の軸を介して、第1リングギヤR1に機械的に直結されており、それにより、第1リングギヤR1と一体に回転自在になっている。
 第1クラッチCL1は、第2キャリアC2とロータ103の間に設けられている。すなわち、第2キャリアC2は、第1クラッチCL1を介してロータ103に機械的に直結されている。また、第1クラッチCL1は、その締結度合がECU2により制御されることによって、第2キャリアC2とロータ103の間を接続・遮断する。第2クラッチCL2は、第2リングギヤR2とロータ103の間に設けられている。すなわち、第2リングギヤR2は、第2クラッチCL2を介してロータ103に機械的に直結されている。また、第2クラッチCL2は、その締結度合がECU2により制御されることによって、第2リングギヤR2とロータ103の間を接続・遮断する。
 以上のように、回転機101のロータ103は、第1クラッチCL1および第2キャリアC2を介して、第1リングギヤR1に機械的に連結されるとともに、第2クラッチCL2、第2リングギヤR2、第2プラネタリギヤP2、および第2キャリアC2を介して、第1リングギヤR1に機械的に連結されている。
 図96(a)は、第1サンギヤ回転速度VSU1、第1キャリア回転速度VCA1および第1リングギヤ回転速度VRI1の関係の一例を示す速度共線図を、第2サンギヤ回転速度VSU2、第2キャリア回転速度VCA2および第2リングギヤ回転速度VRI2の関係の一例を示す速度共線図とともに示している。上述したように第1キャリアC1および第2サンギヤS2が互いに直結されているので、第1キャリア回転速度VCA1および第2サンギヤ回転速度VSU2は互いに等しく、第1リングギヤR1および第2キャリアC2が互いに直結されているので、第1リングギヤ回転速度VRI1および第2キャリア回転速度VCA2は互いに等しい。したがって、図96(a)の第1および第2の遊星歯車装置PS1,PS2に関する2つの速度共線図は、図96(b)のような1つの速度共線図で示される。同図に示すように、以上のような第1および第2の遊星歯車装置PS1,PS2の各種の回転要素の連結によって、互いに回転速度が共線の関係にある4つの回転要素が構成される。
 また、図97(a)は、上記の4つの回転要素の回転速度の関係の一例を示す速度共線図を、第2磁界回転速度VMF2、B1およびB2のロータ回転速度VRB1,VRB2の関係の一例を示す速度共線図とともに示している。前述したように第1キャリアC1およびB1ロータ34が互いに直結されているので、第1キャリア回転速度VCA1およびB1ロータ回転速度VRB1は、互いに等しい。また、第1サンギヤS1およびB2ロータ35が互いに直結されているので、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2は、互いに等しい。したがって、図97(a)の2つの速度共線図は、図97(b)のような1つの速度共線図で示される。
 また、クランク軸3a、第1キャリアC1、B1ロータ34および第2サンギヤS2が互いに直結されているので、エンジン回転数NE、第1キャリア回転速度VCA1、B1ロータ回転速度VRB1および第2サンギヤ回転速度VSU2は、互いに等しい。さらに、駆動輪DW,DW、第1サンギヤS1およびB2ロータ35が互いに連結されているので、差動ギヤ機構9による変速などがないものとすれば、車速VP、第1サンギヤ回転速度VSU1およびB2ロータ回転速度VRB2は、互いに等しい。
 また、ロータ103が、第1および第2のクラッチCL1,CL2をそれぞれ介して、第2キャリアC2および第2リングギヤR2に直結されているので、第1クラッチCL1を接続するとともに、第2クラッチCL2を遮断しているとき(以下、このようなクラッチの接続・遮断状態を「第1変速モード」という)には、ロータ回転速度VROおよび第2キャリア回転速度VCA2は、互いに等しい。さらに、第1クラッチCL1を遮断するとともに、第2クラッチCL2を接続しているとき(以下、このようなクラッチの接続・遮断状態を「第2変速モード」という)には、ロータ回転速度VROおよび第2リングギヤ回転速度VRI2は、互いに等しい。
 以上により、ロータ回転速度VRO、エンジン回転数NE、車速VP、および第2磁界回転速度VMF2は、第1変速モード中には、例えば図98(a)に示すような共線の関係になり、第2変速モード中には、例えば図98(b)に示すような共線の関係になる。
 これらの図98(a)および図98(b)に示すように、速度共線図における車速VPを表す縦線とロータ回転速度VROを表す縦線との間の距離が、上述した第1変速モードの方が第2変速モードよりも小さいため、ロータ回転速度VROおよび車速VPの回転差DN2とエンジン回転数NEおよび車速VPの回転差DN1との比(以下「回転比DN2/DN1」という)は、第1変速モードの方が小さい。
 以上の構成の動力装置1Sでは、エンジン回転数NEが車速VPよりも高い急加速時など、エンジン回転数NEと車速VPの関係によって定まるロータ回転速度VROが過大になるようなときには、第1変速モードが用いられる。これにより、本実施形態によれば、上述した回転比DN2/DN1の関係から明らかなように、第2変速モードを用いた場合よりもロータ回転速度VROを小さくすることができるので、ロータ回転速度VROの過大化による回転機101の故障を防止することができる。
 また、EV走行中ENG始動時、すなわち、回転機101に要求されるトルクが大きくなる場合において、第1および第2の変速モードを用いたときには、各種の回転要素の回転速度とトルクの関係は、図99(a)および図99(b)でそれぞれ表される。この場合、第1変速モードを用いたときには、回転機101に要求されるトルク、すなわち回転機トルクTMOTは、前記式(66)で表される。一方、第2変速モードを用いたときには、回転機トルクTMOTは、次式(68)で表される。
       TMOT=-{β・TDDW+(1+β)TDENG}
            /(r1・r2+r1+1+β)       ……(68)
 これらの式(66)と式(68)の比較から明らかなように、回転機トルクTMOTは、同じ大きさの駆動輪伝達トルクTDDWおよびエンジン伝達トルクTDENGに対して、第2変速モードの方が小さい。このため、EV走行中ENG始動時には、第2変速モードが用いられる。
 本実施形態によれば、第2変速モードを上述したようにして用いるとともに、式(68)に基づいて、回転機101で発電される電力が制御される。したがって、回転機101に要求されるトルクの最大値を小さくすることができ、ひいては、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、EV走行やENG走行を含む車両の走行中、第1および第2の変速モードのうち、エンジン3の停止中には車速VPに応じて、エンジン3の運転中には車速VPおよびエンジン回転数NEに応じて、回転機101のより高い効率が得られる変速モードが選択される。これにより、本実施形態によれば、車両の走行中、ロータ回転速度VROを適度な高さに制御できるので、回転機101の高い効率を得ることができる。
 さらに、第1および第2の変速モードの切換は、第13実施形態と同様、第2キャリア回転速度VCA2および第2リングギヤ回転速度VRI2が互いに等しいときに行われる。これにより、本実施形態によれば、第1および第2の変速モードの切換を、駆動輪DW,DWやエンジン3の回転を保ちながら、円滑に行うことができ、良好なドライバビリティを確保することができる。
 また、ENG走行中で、かつ、第1および第2の変速モードの間での移行時、第1および第2のクラッチCL1,CL2の双方が遮断された後、両クラッチCL1,CL2の一方が接続されるまでの間は、ロータ103とクランク軸3aの間が遮断されることによって、ロータ103にエンジントルクTENGが作用しなくなるため、回転機101のステータ102において発電が行われず、第2回転機31の第2ステータ33に、バッテリ43から電力が供給される。
 これにより、本実施形態によれば、第1および第2の変速モードの間での移行時、第1および第2のクラッチCL1,CL2の双方が遮断された場合でも、第2駆動用等価トルクTSE2と、B1ロータ34に伝達されたエンジントルクTENGが合成され、B2ロータ35を介して駆動輪DW,DWに伝達されるので、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
 また、本実施形態では、第2サンギヤS2を第1キャリアC1に連結するとともに、第2リングギヤR2を、第2クラッチCL2を介してロータ103に連結しているが、これらの連結関係を逆に、すなわち、第2リングギヤR2を第1キャリアC1に連結するとともに、第2サンギヤS2を、第2クラッチCL2を介してロータ103に連結してもよい。また、本実施形態では、第1および第2のクラッチCL1,CL2を、摩擦式多板クラッチで構成しているが、例えば電磁クラッチなどで構成してもよい。
 図100(a)、(b)は、動力装置1Sにおける各種の回転要素の回転速度の関係の一例を、(a)第1変速モード中について、(b)第2変速モード中について、それぞれ示す速度共線図である。なお、図100(a)、(b)では、回転機101が「第1回転機」、回転機31が「第2回転機」、第2サンギヤS2が「一方のギヤ」または「第1ギヤ」、第2リングギヤR2が「他方のギヤ」または「第2ギヤ」、第2キャリアC2が「キャリア」、第2出力部が「第1回転軸4」、第1クラッチが「第1クラッチCL1」、第2クラッチが「第1クラッチCL2」、エンジン3が「熱機関」、駆動輪DW,DWが「被駆動部」とそれぞれ表されている。ここで、第2の遊星歯車装置PS2の一方のギヤの回転速度を第1ギヤ回転速度VG1、第2の遊星歯車装置PS2の他方のギヤの回転速度を第2ギヤ回転速度VG2、第2の遊星歯車装置PS2のキャリアの回転速度をキャリア回転速度VCとする。上述した連結関係において、各種の回転要素が直結されており、かつ、第1クラッチの接続により第2回転機の第2出力部をキャリアに連結するとともに、第2クラッチの遮断により第2出力部と他方のギヤの間を遮断しているときには、熱機関の回転数や被駆動部の速度などの関係は、例えば図100(a)のように示される。以下、このような第1および第2のクラッチの接続・遮断状態を、「第1変速モード」という。また、第1クラッチの遮断により第2回転機の第2出力部とキャリアの間を遮断するとともに、第2クラッチの接続により第2出力部を他方のギヤに連結しているときには、熱機関の回転数や被駆動部の速度などの関係は、例えば図100(b)のように示される。以下、このような第1および第2のクラッチの接続・遮断状態を、「第2変速モード」という。
 なお、図100(a)、(b)に示す速度共線図において、磁界回転速度VFを表す縦線から第2ロータ回転速度VR2を表す縦線までの距離と、第2ロータ回転速度VR2を表す縦線から第1ロータ回転速度VR1を表す縦線までの距離との比は、1:(1/α)である。さらに、図100(a)、(b)において、第1ギヤ回転速度VG1を表す縦線からキャリア回転速度VCを表す縦線までの距離をY、キャリア回転速度VCを表す縦線から第2ギヤ回転速度VG2を表す縦線までの距離をZとする。
 これらの図100(a)と図100(b)の比較から明らかなように、速度共線図における被駆動部の速度を表す縦線と第2回転機の回転速度を表す縦線との間の距離が、第1変速モードの方が第2変速モードよりも小さいため、第2回転機の第2出力部および被駆動部の速度差D2と熱機関および被駆動部の速度差D1との比(D2/D1)は、第1変速モードの方が小さい。また、熱機関の回転数が被駆動部の速度よりも高いときには、第2回転機の回転速度が、被駆動部の速度よりも高くなり、過大になる場合がある。このため、例えば、このような場合に、第1変速モードを用いることによって、上述した速度差D2とD1との比の関係から明らかなように、第2変速モードを用いた場合よりも第2回転機の回転速度を小さくすることができるので、第2回転機の回転速度の過大化による第2回転機の故障を防止することができる。
 さらに、図65を用いて説明したように第2回転機に要求されるトルクが大きくなるような場合において、第1変速モードを用いたときには、駆動用等価トルクTe、熱機関伝達トルクTDHE、被駆動部伝達トルクTOUT、および第2回転機トルクTM2の関係は、例えば図101(a)のように示される。また、第2回転機に要求されるトルク、すなわち第2回転機トルクTM2は、例えば次式(69)で表される。
 TM2=-{TOUT+[(1/α)+1]TDHE}/[Y+(1/α)+1]……(69)
 一方、第2変速モードを用いたときには、駆動用等価トルクTe、熱機関伝達トルクTDHE、被駆動部伝達トルクTOUT、および第2回転機トルクTM2の関係は、例えば図101(b)のように示される。また、第2回転機トルクTM2は、例えば次式(70)で表される。
 TM2=-{TOUT+[(1/α)+1]TDHE}/[Z+Y+(1/α)+1]……(70)
 上記の式(69)と(70)の比較から明らかなように、第2回転機トルクTM2は、同じ大きさの熱機関伝達トルクTDHEおよび被駆動部伝達トルクTOUTに対して、第2変速モードの方が小さい。このため、例えば、上述したように第2回転機に要求されるトルクが大きくなるような場合に、第2変速モードを用いることによって、第2回転機トルクTM2を小さくすることができ、ひいては、第2回転機のさらなる小型化およびコストの削減を図ることができる。
 また、例えば、熱機関の回転数および被駆動部の速度に応じ、第1または第2の変速モードを選択することによって、第2回転機の回転速度を適度な大きさに制御でき、それにより、第2回転機の高い効率を得ることができる。さらに、以上の第1および第2の変速モードの切換を、キャリア回転速度VCおよび第2ギヤ回転速度VG2が互いに等しいときに行うことによって、被駆動部や熱機関の回転を保ちながら、円滑に行うことができ、良好なドライバビリティを確保することができる。
 また、図63を用いて説明した被駆動部への熱機関の動力の伝達中、第2要素に伝達された熱機関のトルクTHEは、第2回転機での発電に伴って第3要素に作用する負荷トルクを反力として、第1要素を介して被駆動部に伝達される。このため、第1および第2の変速モードの間での移行時、第1および第2のクラッチの双方が遮断された場合には、第3要素と第2回転機の間が遮断され、それにより、第2回転機からの負荷トルクが第3要素に作用しなくなり、その結果、第2および第1の要素を介して伝達される熱機関のトルクTHEが極めて小さくなってしまう。本発明によれば、例えば、第2ロータを、そのような有段変速装置を介さずに被駆動部に連結することが可能であり、それにより、第1および第2のクラッチの双方が遮断された場合でも、図63から明らかなように、熱機関のトルクTHEの一部を、第1および第2のロータを介して被駆動部に伝達できるので、トルクの急減などの変速ショックを抑えることができ、したがって、商品性を高めることができる。
(第21実施形態) 次に、図102を参照しながら、第21実施形態による動力装置1Tについて説明する。この動力装置1Tは、第15実施形態と比較して、変速装置201をさらに備える点が主に異なっている。以下、第15実施形態と異なる点を中心に説明する。
 図102に示すように、この動力装置1Tでは、第18~第20の実施形態と同様、第2回転軸7は設けられておらず、第1ギヤ8bは、連結軸6に一体に設けられたギヤ6bに噛み合っている。これにより、第1サンギヤS1は、連結軸6や、ギヤ6b、第1ギヤ8b、差動ギヤ機構9などを介して、上記の変速装置201を介さずに、駆動輪DW,DWに機械的に連結されている。
 また、変速装置201は、第10実施形態の変速装置131と同様に構成された、第1速~第3速の変速段を有するギヤ式の有段変速装置であり、B2ロータ35に直結された入力軸202と、連結軸6に直結された出力軸(図示せず)を有しており、入力軸202に入力された動力を変速し、出力軸に出力する。さらに、変速装置201の変速段の変更は、ECU2によって制御される。
 上記のように、B2ロータ35は、変速装置201や、連結軸6、ギヤ6b、第1ギヤ8bなどを介して、駆動輪DW,DWに連結されており、また、B2ロータ35に伝達された動力は、変速装置201によって変速され、駆動輪DW,DWに伝達される。
 以上の構成の動力装置1Tでは、EV発進時やENG発進時など、B2ロータ35から駆動輪DW,DWに極めて大きなトルクが伝達されるようなときには、変速装置201の変速段は、第1速(変速比>1.0)に制御される。これにより、B2ロータ35に伝達されたB2ロータ伝達トルクTRB2は、変速装置201において増大された後、駆動輪DW,DWに伝達される。それに応じて、B2ロータ伝達トルクTRB2が小さくなるように、第2回転機31のステータ33に供給される電力が制御される。これにより、本実施形態によれば、第2回転機31に要求されるトルクの最大値を小さくすることができ、第2回転機31のさらなる小型化およびコストの削減を図ることができる。
 また、車速VPが極めて高い高車速運転中など、B2ロータ回転速度VRB2が過大になるようなときには、変速装置201の変速段は、第3速(変速比<1.0)に制御される。これにより、本実施形態によれば、車速VPに対して、B2ロータ回転速度VRB2を低下させることができるので、B2ロータ回転速度VRB2の過大化による第2回転機31の故障を防止することができる。
 さらに、EV走行やENG走行を含む車両の走行中、変速装置201の変速段は、第2磁界回転速度VMF2が所定の目標値になるように制御される。この目標値は、回転機101および第2回転機31のみを動力源として用いるときには、車速VPに応じてマップを検索することにより算出され、エンジン3、回転機101および第2回転機31を動力源として用いるときには、エンジン回転数NEおよび車速VPに応じて上記とは別のマップを検索することにより算出される。また、これらのマップでは、目標値は、そのときの車速VP(およびエンジン回転数NE)に対して、第2回転機31の高い効率が得られるような値に設定されている。さらに、このような変速装置201の制御と並行して、第2磁界回転速度VMF2が上記の目標値に制御される。これにより、本実施形態によれば、車両の走行中、第2回転機31の高い効率を得ることができる。
 また、ENG走行中において、変速装置201の変速動作中(入力軸202および出力軸が、変速前のギヤ列と遮断された後、変速先のギヤ列に接続されるまでの間)、すなわち、変速装置201によりB2ロータ35と駆動輪DW,DWの間が遮断されているときに、第15実施形態で述べたように、エンジントルクTENGの一部が第1サンギヤS1を介して駆動輪DW,DWに伝達される。これにより、本実施形態によれば、変速装置201の変速動作中、エンジントルクTENGが駆動輪DW,DWに伝達されなくなることによる変速ショックを抑えることができ、したがって、商品性を高めることができる。
 さらに、第15実施形態と同様、回転機101、第1遊星歯車装置PS1および第2回転機31によって、エンジン動力を無段階に変速して駆動輪DW,DWに伝達できるので、変速装置201の変速動作の頻度を低くすることができ、したがって、動力装置1Tの駆動効率を高めることができる。その他、本実施形態によれば、第15実施形態による効果を同様に得ることができる。
 なお、本実施形態では、変速装置201は、ギヤ式の有段変速装置であるが、ベルト式やトロイダル式、油圧式の無段変速装置でもよい。
(第22実施形態)
 次に、図103を参照しながら、第22実施形態による動力装置1Uについて説明する。同図に示すように、この動力装置1Uは、第15実施形態の動力装置1Nに、第6実施形態で述べたブレーキ機構BLを加えたものである。以下、第15実施形態と異なる点を中心に説明する。
 動力装置1Uでは、このブレーキ機構BLによって、第1回転軸4の回転は、クランク軸3a、第1キャリアC1、およびB1ロータ34とともに正転する場合にのみ、許容され、クランク軸3aなどとともに逆転する場合に阻止される。
 また、動力装置1Uでは、前述したEVクリープおよびEV発進による運転が次のようにして行われる。すなわち、回転機101のステータ102に電力を供給し、ロータ103を第1リングギヤR1とともに逆転させるとともに、第2回転機31のステータ33に電力を供給し、それに伴ってステータ33で発生する第2回転磁界を正転させる。また、ロータ回転速度VROおよび第2磁界回転速度VMF2を、(β+1)・|VRO|=r1・|VMF2|が成立するように制御する。さらに、ステータ102,33に供給される電力は、駆動輪DW,DWにトルクが十分に伝達されるように制御される。
 上記のようにロータ103とともに逆転する第1リングギヤR1に対して、上述したようにブレーキ機構BLにより第1キャリアC1の逆転が阻止されているので、回転機101の動力はすべて、第1リングギヤR1および第1プラネタリギヤP1を介して、第1サンギヤS1に伝達され、第1サンギヤS1を正転させるように作用する。また、上記のように正転するステータ33の第2回転磁界に対して、ブレーキ機構BLによりB1ロータ34の逆転が阻止されているので、ステータ33に供給された電力がすべて、B2ロータ35に動力として伝達され、B2ロータ35を正転させるように作用する。さらに、第1サンギヤS1およびB2ロータ35に伝達された動力は、駆動輪DW,DWに伝達され、駆動輪DW,DWを正転させる。
 また、この場合、ブレーキ機構BLにより逆転するのが阻止されている第1キャリアC1およびB1ロータ34にはそれぞれ、上述した回転機101および第2回転機31の制御によって、ロータ103およびステータ33から逆転させるようにトルクが作用する。これにより、クランク軸3a、第1キャリアC1およびB1ロータ34は、逆転しないだけでなく、静止状態に保持される。
 以上のように、本実施形態によれば、エンジン動力を用いることなく、回転機101および第2回転機31によって駆動輪DW,DWを駆動することができる。また、この駆動中、クランク軸3aは逆転しないだけでなく、静止状態に保持されるので、エンジン3を引きずることがない。その他、第15実施形態による効果を同様に得ることができる。
 なお、これまでに述べた第15~第22の実施形態では、第1実施形態と同様、第2回転機31の第2極対数比βを値2.0に設定しているが、値1.0よりも小さく設定することによって、前述した図33(a)、(b)および図89から明らかなように、第2磁界回転速度VMF2の過大化による損失の発生により駆動効率が低下するのを、防止することができる。また、第15~第22の実施形態では、第1遊星歯車装置PS1の第1遊星ギヤ比r1を比較的大きな値に設定しているが、より小さな値に設定することによって、次の効果が得られる。
 前述した図89から明らかなように、第1遊星ギヤ比r1を比較的大きな値に設定した場合において、エンジン回転数NEが車速VPよりも高い(図89の二点鎖線参照)ときには、ロータ回転速度VROが、エンジン回転数NEよりも高くなり、過大になる場合が
ある。これに対し、第1遊星ギヤ比r1をより小さな値に設定することによって、図89に破線で示す速度共線図と二点差線で示す速度共線図との比較から明らかなように、ロータ回転速度VROを小さくすることができ、したがって、ロータ回転速度VROの過大化による損失の発生により駆動効率が低下するのを、防止することができる。
 さらに、第15~第22の実施形態では、第1キャリアC1およびB1ロータ34を互いに直結するとともに、第1サンギヤS1およびB2ロータ35を互いに直結しているが、第1キャリアC1およびB1ロータ34は、クランク軸3aに連結されていれば、互いに直結されていなくてもよく、また、第1サンギヤS1およびB2ロータ35は、駆動輪DW,DWに連結されていれば、互いに直結されていなくてもよい。この場合、第16および第17の実施形態の変速装置161,171をそれぞれ、2つの変速装置で構成するとともに、次のようにして設けてもよい。すなわち、変速装置161を構成する2つの変速装置の一方を第1サンギヤS1と駆動輪DW,DWの間に、他方をB2ロータ35と駆動輪DW,DWの間に、それぞれ設けてもよい。また、変速装置171を構成する2つの変速装置の一方を第1キャリアC1とクランク軸3aの間に、他方をB1ロータ34とクランク軸3aの間に、それぞれ設けてもよい。
 また、第15~第22の実施形態では、第1サンギヤS1および第1リングギヤR1を、駆動輪DW,DWおよび回転機101にそれぞれ連結しているが、これらの連結関係を逆に、すなわち、第1リングギヤR1および第1サンギヤS1を、駆動輪DW,DWおよび回転機101にそれぞれ連結してもよい。この場合には、回転機101に要求されるトルクが特に大きくなるEV走行中ENG始動時、回転機トルクTMOTは、次式(71)で表される。
   TMOT=-{β・TDDW+(1+β)TDENG}/(r1’+1+β)……(71)
 この式(71)において、r1’は、前述したように第1リングギヤの歯数と第1サンギヤS1の歯数との比(第1リングギヤの歯数/第1サンギヤS1の歯数)であり、値1.0よりも大きい。このことと、第1遊星ギヤ比r1が、前述したように第1サンギヤS1の歯数/第1リングギヤの歯数であり、値1.0よりも小さいことと、前記式(66)と式(71)から明らかなように、回転機トルクTMOTをより小さくすることができ、したがって、回転機101のさらなる小型化およびコストの削減を図ることができる。
 また、第7~第22の実施形態では、差動装置として第1遊星歯車装置PS1を用いているが、以下の機能を有するものであれば、他の適当な装置を用いてもよい。すなわち、3つの要素を有し、3つの要素のうちの1つの要素に入力された動力を他の2つの要素に分配する機能と、これらの他の2つの要素に入力された動力を合成した後、上記の1つの要素に出力する機能を有し、この動力の分配・合成中、3つの要素がリニアな速度関係を保ちながら回転する装置であればよい。例えば、遊星歯車装置のギヤに代えて、表面間の摩擦によって動力を伝達する複数のローラを有し、遊星歯車装置と同等の機能を有するような装置を用いてもよい。さらに、詳細な説明は省略するが、日本国特開2008-39045号公報に開示されるような複数の磁石や軟磁性体の組み合わせで構成された装置を用いてもよい。また、差動装置として、ダブルピニオンタイプの遊星歯車装置を用いてもよい。以上のことは、第2遊星歯車装置PS2についても同様に当てはまる。
 さらに、第7~第22の実施形態では、回転機101はDCモータであるが、供給された電力を動力に変換する機能と、入力された動力を電力に変換する機能を有する装置であれば他の装置、例えば、ACモータでもよい。また、第7~第13の実施形態および第15~第21の実施形態において、クランク軸3aの逆転を阻止するためのブレーキ機構BLを設けてもよいことはもちろんである。また、このブレーキ機構BLを、ワンウェイクラッチOCおよびケースCAで構成しているが、クランク軸3aの逆転を阻止できるのであれば、他の機構、例えばバンドブレーキなどで構成してもよい。
 なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、ECU2、第1および第2のPDU41,42は、ステータ23、33、102の発電・供給電力を制御可能なものであればよい。例えば、マイクロコンピュータを搭載した電気回路などで構成してもよい。また、バッテリ43は、例えばキャパシタでもよい。さらに、要否に応じて、バッテリ43を省略してもよい。
 また、実施形態では、第1ステータ磁極が4個、第1磁極が8個、コア25aが6個に設定されている。すなわち、実施形態は、第1ステータ磁極の数と第1磁極の数と第1軟磁性体の数との比が、1:2:1.5の例であるが、これらの数の比が1:m:(1+m)/2(m≠1.0)を満たすものであれば、第1ステータ磁極、第1磁極およびコア25aの数として、任意の数を採用可能である。このことは、第2回転機31についても同様に当てはまる。さらに、実施形態では、コア25a、35aを鋼板で構成しているが、他の軟磁性体で構成してもよい。
 また、実施形態では、ステータ23およびA1ロータ24を、径方向の外側および内側にそれぞれ配置しているが、これとは逆に、径方向の内側および外側にそれぞれ配置してもよい。さらに、実施形態では、ステータ23、A1およびA2のロータ24、25を径方向に並ぶように配置し、いわゆるラジアルタイプとして第1回転機21を構成しているが、ステータ23、A1およびA2のロータ24、25を軸線方向に並ぶように配置し、いわゆるアキシャルタイプとして第1回転機21を構成してもよい。以上のことは、第2回転機31についても同様に当てはまる。
 また、実施形態では、1つの磁極を、単一の永久磁石24aの磁極で構成しているが、複数の永久磁石の磁極で構成してもよい。例えば、2つの永久磁石の磁極がステータ23側で近づき合うように、これらの2つの永久磁石を逆V字状に並べることにより、1つの磁極を構成することによって、前述した磁力線MLの指向性を高めることができる。さらに、実施形態における永久磁石24aに代えて、電磁石や移動磁界を発生可能なステータを用いてもよい。また、実施形態では、U相~W相のコイル23c~23eをスロット23bに分布巻きで巻回しているが、これに限らず、集中巻きでもよい。さらに、実施形態では、コイル23c~23eを、U相~W相の3相コイルで構成しているが、第1回転磁界を発生できれば、このコイルの相数はこれに限らず、任意である。また、スロット23bの数として、実施形態で示した以外の任意の数を採用してもよいことはもちろんである。さらに、実施形態では、スロット23bや、永久磁石24a、コア25aを等間隔に配置しているが、不等間隔に配置してもよい。以上のことは、第2回転機31についても同様に当てはまる。
 また、実施形態では、熱機関としてのエンジン3は、ガソリンエンジンであるが、例えば、ディーゼルエンジンや外燃機関など、その他の機関でもよい。さらに、本実施形態は、動力装置を車両に適用した例であるが、これに限らず、例えば船舶や航空機などに適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
<1共線3要素>
 以下、図面を参照しながら、本発明に係る1共線3要素の仕組みを有する動力装置について説明する。なお、以下の説明では、図104~図106の左側および右側をそれぞれ「左」および「右」という。
(第23実施形態)
 図104および図105に示すように、第23実施形態の動力装置1は、ハイブリッド車両(以下「車両」という)2の左右の前輪4,4を駆動するものであり、動力源として、エンジン3、第1回転機10および第2回転機20を備えている。
 この車両2では、エンジン3が第1回転機10に連結されているとともに、第1回転機10および第2回転機20が、ギヤ機構6、差動ギヤ機構7および左右の駆動軸8,8を介して、左右の前輪4,4に連結されている。それにより、後述するように、エンジン3の動力や、第1回転機10および第2回転機20の動力が前輪4,4に伝達される。また、車両2は、遊動輪である左右の後輪5,5を備えている。なお、本実施形態では、エンジン3が熱機関に、前輪4が被駆動部にそれぞれ相当する。
 エンジン3は、ガソリンを燃料とする多気筒内燃機関であり、後述するENG・ECU29によって、その運転状態が制御される。また、2つの回転機10,20およびギヤ機構6はいずれも、エンジン3のシリンダブロックに固定された駆動系ハウジング(いずれも図示せず)内に収容されている。
 ギヤ機構6は、第1回転機10の後述する出力軸13に平行な第1および第2ギヤ軸6a,6bと、出力軸13および2つのギヤ軸6a,6b上に設けられた4つのギヤ6c~6fなどで構成されている。このギヤ6cは、出力軸13の右端部に同心に固定されており、ギヤ6dと常に噛み合っている。このギヤ6dは、第1ギヤ軸6aに同心かつ回転自在に嵌合しており、上記ギヤ6cに加えて、第2ギヤ軸6bの右端部に同心に固定されたギヤ6eと常に噛み合っている。
 また、ギヤ6fは、第2ギヤ軸6bの左端部に同心に固定され、差動ギヤ機構7のギヤ7aと常に噛み合っている。以上の構成により、出力軸13の回転は、ギヤ機構6を介して差動ギヤ機構7に伝達される。
 次に、図106および図107を参照しながら、第1回転機10および第2回転機20について説明する。図106は、第1回転機10および第2回転機20の断面構成を模式的に示したものであり、図107は、図106のA-A線の位置で周方向に沿って破断した円環状の断面を直線状に模式的に示した図である。なお、両図においては、理解の容易化のために断面部分のハッチングが省略されており、この点は後述する図111(a)~(c)などにおいても同様である。
<第1回転機10>
 まず、第1回転機10について説明する。図106に示すように、第1回転機10は、前述した駆動系ハウジングに固定されたケース11と、左端部がエンジン3のクランクシャフトに直結された入力軸12と、この入力軸12と同心の出力軸13(回転軸)と、ケース11内に収容され、出力軸13と一体に回転する第1ロータ14と、ケース11内に収容され、入力軸12と一体に回転する第2ロータ15と、ケース11の周壁11cの内周面に固定されたステータ16などを備えている。これらの第1ロータ14、第2ロータ15およびステータ16は、径方向の内側から外側に向かって、互いに同心に配置されている。
 ケース11は、左右の側壁11a,11bと、これらの側壁11a,11bの外周端部に固定された円筒状の周壁11cなどで構成されている。左右の側壁11a,11bの中心部には、軸受11d,11eがそれぞれ取り付けられており、入力軸12および出力軸13はそれぞれ、これらの軸受11d,11eによって回転自在に支持されている。さらに、2つの軸12,13は、図示しないスラスト軸受などによって、その軸線方向の移動が規制されている。
 第1ロータ14は、出力軸13の左端部に同心に固定された回転盤部14bと、この回転盤部14bの外端部に固定された円筒状のリング部14cなどを備えている。このリング部14cは、軟磁性体で構成され、その外周面には、永久磁石列が周方向に沿ってステータ16の鉄芯16aに対向するように設けられている。この永久磁石列は、図107に示すように、8個の永久磁石14a(磁極)で構成されている。
 これらの永久磁石14aは、隣り合う各2つが互いに異なる極性を有し、等間隔で配置されているとともに、各永久磁石14aの軸線方向の長さは、所定長さに設定されている。なお、図107および後述する図111(a)~(c)などでは、永久磁石14aのN極およびS極がそれぞれ、(N)および(S)と表記されているとともに、理解の容易化のために、主要な構成以外のもの(例えばケース11など)の図示が省略されている。
 一方、ステータ16は、回転磁界を発生させるものであり、鉄芯16aと、この鉄芯16aに巻き付けられたU相、V相およびW相のコイル16c,16d,16e(図107参照)を有している。この鉄芯16aは、複数の鋼板を積層した円筒状のものであり、ケース11に固定されているとともに、軸線方向の長さが、永久磁石14aと同じ長さに設定されている。
 また、鉄芯16aの内周面には、12個のスロット16bが形成されており、これらのスロット16bは、軸線方向に延びるとともに、第1主軸4の周方向(以下、単に「周方向」という)に等間隔で並んでいる。なお、本実施形態では、鉄芯16aおよびU相~W相コイル16c~16eが電機子および電機子列に相当する。
 さらに、U相~W相のコイル16c~16eは、スロット16bに分布巻き(波巻き)で巻回されているとともに、後述する1ST・PDU31および双方向型昇降圧コンバータ(以下「VCU」という)34を介して、後述するバッテリ33に電気的に接続されている。
 以上の構成により、ステータ16では、バッテリ33から電力が供給され、U相~W相コイル16c~16eに電流が流れたとき、または後述するように発電が行われたときに、鉄芯16aの第1ロータ14側の端部に、4個の磁極が周方向に等間隔で発生する(図111(a)~(c)参照)とともに、これらの磁極による回転磁界が周方向に移動する。以下、鉄芯16aに発生する磁極を「ステータ磁極」という。この場合、周方向に隣り合う各2つのステータ磁極の極性は、互いに異なるものとなる。なお、後述する図111(a)~(c)などでは、ステータ磁極のN極およびS極もそれぞれ、永久磁石14aのN極およびS極と同様に、(N)および(S)と表記する。
 一方、第2ロータ15は、入力軸12の右端部に固定された回転盤部15bと、この回転盤部15bの外端部から第2回転機20側に延びる支持部15cと、この支持部15cに固定され、第1ロータ14の永久磁石列とステータ16の鉄芯16aとの間に配置された軟磁性体コア列を有している。この軟磁性体コア列は、軟磁性体(例えば鋼板の積層体)製の、6個の軟磁性体コア15aで構成されている。
 これらの軟磁性体コア15aは、周方向に沿って等間隔で配置され、永久磁石14aおよび鉄芯16aに対して所定の間隔を存するように設けられている。また、軟磁性体コア15aの軸線方向の長さは、永久磁石14aおよびステータ16の鉄芯16aと同じ長さに設定されている。
 以下、第1回転機10の原理について説明する。なお、当該説明では、ステータ16を「ステータ」、第1ロータ14を「第1ロータ」、第2ロータ15を「第2ロータ」と表す。また、ステータへの電力供給によって発生した回転磁界の電気角速度および供給電力と等価なトルクを駆動用等価トルクTeとした場合、この駆動用等価トルクTeと、第1ロータに伝達されるトルクT1と、第2ロータに伝達されるトルクT2との関係、第1および第2ロータの電気角速度と回転磁界の電気角速度と関係は、以下に述べるようになる。
 まず、第1回転機10を下記の条件(f1),(f2)が成立するように構成した場合、そのような第1回転機10に相当する等価回路は図108に示すものとなる。なお、本明細書では、一対のN極およびS極を「極対」といい、極対の数を「極対数」という。
(f1)ステータがU相、V相およびW相の3相コイルを有すること。
(f2)ステータ磁極が2個すなわちステータ磁極の極対数が値1であり、磁極が4個すなわち磁極の極対数が値2であるとともに、軟磁性体が第1~第3軟磁性体の計3個であること。
 このような第1回転機10の場合、第1軟磁性体を通過する磁極の磁束Ψk1は、下式(72)で表される。
Figure JPOXMLDOC01-appb-M000042
 この式(72)において、ψfは磁極の磁束の最大値を示しており、θ1およびθ2はそれぞれ、U相コイルに対する磁極の回転角度位置および第1軟磁性体の回転角度位置を示している。また、磁極の極対数とステータ磁極の極対数との比が値2である関係上、磁極の磁束は回転磁界に対して2倍の周期で回転(変化)するので、そのことを表すために、上式(72)では、値2が(θ2-θ1)に乗算されている。
 ここで、第1軟磁性体を介してU相コイルを通過する磁極の磁束Ψu1は、式(72)で表される磁束Ψk1にcosθ2を乗算した値に相当するので、下式(73)が得られる。
Figure JPOXMLDOC01-appb-M000043
 上記と同様に、第2軟磁性体を通過する磁極の磁束Ψk2は、下式(74)で表される。
Figure JPOXMLDOC01-appb-M000044
 この場合、ステータに対する第2軟磁性体の回転角度位置は、第1軟磁性体に対して2π/3だけ進んでいるので、上式(74)では、そのことを表すために、θ2に2π/3が加算されている。
 また、第2軟磁性体を介してU相コイルを通過する磁極の磁束Ψu2は、式(74)で表される磁束Ψk2にcos(θ2+2π/3)を乗算した値に相当するので、下式(75)が得られる。
Figure JPOXMLDOC01-appb-M000045
 以上と同様の手法により、第3軟磁性体を介してU相コイルを通過する磁極の磁束Ψu3の算出式として、下式(76)が得られる。
Figure JPOXMLDOC01-appb-M000046
 図108に示すような第1回転機10の場合、3つの軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、以上の式(73),(75),(76)で表される磁束Ψu1~Ψu3の和となるので、下式(77)で表される。
Figure JPOXMLDOC01-appb-M000047
 また、この式(77)を一般化すると、軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、下式(78)で表される。
Figure JPOXMLDOC01-appb-M000048
 この式(78)において、a、bおよびcはそれぞれ、磁極の極対数、軟磁性体の数およびステータ磁極の極対数を示している。
 さらに、上式(78)を、三角関数の和と積の公式に基づいて変形すると、下式(79)が得られる。
Figure JPOXMLDOC01-appb-M000049
 この式(79)において、b=a+cとするとともに、cos(θ+2π)=cosθの関係を用いて整理すると、下式(80)が得られる。
Figure JPOXMLDOC01-appb-M000050
 この式(80)を三角関数の加法定理を用いて整理すると、下式(81)が得られる。
Figure JPOXMLDOC01-appb-M000051
 この式(81)において、右辺の第2項における積分項を、a-c≠0を条件として級数の総和の公式およびオイラーの公式を用いて整理すると、下式(82)が得られる。すなわち、式(81)の右辺の第2項は値0となる。
Figure JPOXMLDOC01-appb-M000052
 また、上式(81)において、右辺の第3項における積分項を、a-c≠0を条件として級数の総和の公式およびオイラーの公式を用いて整理すると、下式(83)が得られる。すなわち、式(81)の右辺の第3項も値0となる。
Figure JPOXMLDOC01-appb-M000053
 以上により、a-c≠0の場合、軟磁性体を介してU相コイルを通過する磁極の磁束Ψuは、下式(84)で表される。
Figure JPOXMLDOC01-appb-M000054
 ここで、磁極の極対数aとステータ磁極の極対数cとの比を「極対数比α」とした場合、α=a/cとなるので、これを式(84)に代入すると、下式(85)が得られる。
Figure JPOXMLDOC01-appb-M000055
 さらに、この式(85)において、c・θ2=θe2とするとともに、c・θ1=θe1とすると、下式(86)が得られる。
Figure JPOXMLDOC01-appb-M000056
 ここで、θe2は、U相コイルに対する軟磁性体の回転角度位置θ2にステータ磁極の極対数cを乗算した値であるので、U相コイルに対する軟磁性体の電気角度位置を表す。また、θe1は、U相コイルに対する磁極の回転角度位置θ1にステータ磁極の極対数cを乗算した値であるので、U相コイルに対する磁極の電気角度位置を表す。
 また、軟磁性体を介してV相コイルを通過する磁極の磁束Ψvは、V相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ進んでいるので、下式(87)で表される。
Figure JPOXMLDOC01-appb-M000057
 さらに、軟磁性体を介してW相コイルを通過する磁極の磁束Ψwは、W相コイルの電気角度位置がU相コイルに対して電気角2π/3だけ遅れているので、下式(88)で表される。
Figure JPOXMLDOC01-appb-M000058
 次いで、以上の式(86)~(88)を時間微分すると、下式(89)~(91)がそれぞれ得られる。
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000061
 ここで、ωe1は、θe1の時間微分値、すなわちステータに対する第1ロータの角速度を電気角速度に換算した値(以下「第1ロータ電気角速度」という)を表しており、ωe2は、θe2の時間微分値、すなわちステータに対する第2ロータの角速度を電気角速度に換算した値(以下「第2ロータ電気角速度」という)を表している。
 この場合、軟磁性体を介さずにU相~W相のコイルを直接、通過する磁極の磁束は、極めて小さく、その影響は無視できるので、式(89)~(91)に示される、軟磁性体を介してU相~W相のコイルをそれぞれ通過する磁極の磁束Ψu~Ψwの時間微分値dΨu/dt~dΨw/dtは、磁極や軟磁性体がステータ列に対して回転するのに伴ってU相~W相のコイルに発生する逆起電圧(誘導起電圧)をそれぞれ表すものになる。
 したがって、U相、V相およびW相のコイルをそれぞれ流れる電流Iu,Iv,Iwは、下式(92),(93),(94)で表される。
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000064
 ここで、Iは、U相~W相のコイルを流れる電流の振幅(最大値)を表している。
 また、以上の式(92)~(94)より、U相コイルに対する回転磁界のベクトルの電気角度位置θmfは、下式(95)で表されるとともに、U相コイルに対する回転磁界の電気角速度(以下「磁界電気角速度」という)ωmfは、下式(96)で表される。
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000066
 さらに、U相~W相のコイルに電流Iu~Iwがそれぞれ流れることで第1および第2ロータに出力される機械的出力(動力)Wは、リラクタンス分を除くと、下式(97)で表される。
Figure JPOXMLDOC01-appb-M000067
 この式(97)に前述した式(89)~(94)を代入し、整理すると、下式(98)が得られる。
Figure JPOXMLDOC01-appb-M000068
 一方、機械的出力Wと、前述した第1および第2ロータ伝達トルクT1,T2と、第1および第2ロータ電気角速度ωe1,ωe2との関係は、下式(99)で表される。
Figure JPOXMLDOC01-appb-M000069
 以上の式(98),(99)を参照すると明らかなように、第1および第2ロータ伝達トルクT1,T2はそれぞれ、下式(100)および(101)で表される。
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000071
 また、ステータ列に供給された電力と機械的出力Wは、損失を無視すれば互いに等しいことになるので、前述した式(96)と式(98)の関係から、前述した駆動用等価トルクTeは、下式(102)で表される。
Figure JPOXMLDOC01-appb-M000072
 さらに、以上の式(100)~(102)より、下式(103)が得られる。
Figure JPOXMLDOC01-appb-M000073
 この場合、上式(103)で表される3つのトルクTe,T1,T2の関係、および前述した式(96)で表される3つの電気角速度ωmf,ωe1,ωe2の関係は、遊星歯車装置のサンギヤとリングギヤとキャリアにおけるトルクおよび回転速度の関係と同一である。さらに、前述したように、b=a+cおよびa-c≠0が成立することを条件として、式(96)の電気角速度の関係および式(103)のトルクの関係が成立する。ここで、磁極の数をp、ステータ磁極の数をqとすると、p=2a,q=2cが成立するので、条件式b=a+cは、b=(p+q)/2、すなわちb/q=(1+p/q)/2と書き換えられる。さらに、極数比mをm=p/qと定義すると、b/q=(1+m)/2が得られる。
 以上により、b=a+cという条件式が成立していることは、ステータ磁極の数と磁極の数と軟磁性体の数との比q:p:bが、1:m:(1+m)/2であることに相当する。また、上記のa-c≠0という条件が成立していることは、q≠pすなわち極数比mが値1以外の正数であることを表す。したがって、第1回転機10によれば、ステータ磁極の数と磁極の数と軟磁性体の数との比が、1:m:(1+m)/2(ただしm≠1)に設定されているので、式(96)に示す電気角速度の関係と式(103)に示すトルクの関係が成立し、それにより、第1回転機10を、遊星歯車装置のサンギヤとリングギヤとキャリア(以下「遊星歯車装置の三要素」という)と同様の動作特性で運転できることになる。この場合、極対数比αは、α=a/c=(p/2)/(q/2)=p/qであるので、α=mが成立する。
 以上のように、本実施形態の動力装置1によれば、第1回転機10において1つの軟磁性体列のみを設けるだけでよいので、その分、第1回転機10を小型化できるとともに製造コストを低減できる。その結果、動力装置自体を小型化でき、製造コストを低減できる。また、前述した式(96),(103)を参照すると明らかなように、極対数比αすなわち極数比mの設定の仕方によって、3つの電気角速度ωmf,ωe1,ωe2の関係を自由に設定できるとともに、3つのトルクTe,T1,T2の関係も自由に設定できる。この点は、電力供給による回転磁界の発生中のみならず、発電による回転磁界の発生中にも同様に当てはまる。これに加えて、式(103)から明らかなように、極対数比αが大きいほど、第1および第2ロータ伝達トルクT1,T2に対して、駆動用等価トルクTeがより小さくなる。このことは、発電中にも同様に当てはまる。したがって、極対数比αをより大きな値に設定することによって、ステータの小型化を図ることができ、ひいては動力装置1をより小型化することができる。以上の理由により、第1回転機10すなわち動力装置1の設計の自由度を高めることができる。
 また、式(96)に基づき、3つの電気角速度ωmf,ωe1,ωe2の関係は、例えば図109のように表すことができる。同図は、いわゆる速度共線図であり、この速度共線図において、縦軸の値0を通る横線と交わる縦線は、各パラメータの回転速度を表すためのものであり、この縦線上に表される白丸と横線との間隔が、各パラメータの回転速度に相当する。
 この図109を参照すると明らかなように、極対数比αが小さいほど、速度共線図における磁界電気角速度ωmfを表す縦線と、第2ロータ電気角速度ωe2を表す縦線との間の距離が小さくなるので、第1ロータ電気角速度ωe1と第2ロータ電気角速度ωe2との差Δω1に対する、第2ロータ電気角速度ωe2と磁界電気角速度ωmfとの差Δω2の比(Δω2/Δω1)は、より小さくなる。したがって、極対数比αをより小さな値に設定することによって、第2ロータ電気角速度ωe2が第1ロータ電気角速度ωe1を上回るような場合において、磁界電気角速度ωmfの過大化による損失の発生により駆動効率や発電効率が低下するのを防止できる。なお、以上の作用効果は、第1回転機10において、複数のステータのコイルの相数が前述した値3以外の場合にも同様に得ることができる。
 次に、以上のように構成された第1回転機10の動作について説明する。前述したように、本実施形態の第1回転機10の場合、ステータ磁極が4個、永久磁石14aの磁極(以下「磁石磁極」という)が8個、軟磁性体コア15aが6個となっているので、ステータ磁極の数と磁石磁極の数と軟磁性体コア15aの数との比(以下「要素数比」という)は、4:8:6=1:2:1.5=1:2:(1+2)/2に設定されている。この要素数比は前述した極数比m(=極対数比α)を値2に設定したときのものに相当するので、前述した式(89)~(91)から明らかなように、第1ロータ14および第2ロータ15がステータ16に対して回転した際、それに伴ってU相コイル16cに発生する逆起電圧(以下「U相逆起電圧」という)Vcuと、V相コイル16dに発生する逆起電圧(以下「V相逆起電圧」という)Vcvと、W相コイル16eに発生する逆起電圧(以下「W相逆起電圧」という)Vcwはそれぞれ、下式(104)~(106)で表される。
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
Figure JPOXMLDOC01-appb-M000076
 ここで、ψFは、磁石磁極の磁束の最大値を表している。また、θER1は、第1ロータ電気角であり、特定のU相コイル16c(以下「基準コイル」という)に対する第1ロータ14の特定の永久磁石14aの回転角度位置を、電気角度位置に換算した値である。すなわち、第1ロータ電気角θER1は、この特定の永久磁石14aの回転角度位置に、ステータ磁極の極対数(値2)を乗算した値である。さらに、θER2は、第2ロータ電気角であり、上記の基準コイルに対する第2ロータ15の特定の軟磁性体コア15aの回転角度位置を、電気角度位置に換算した値である。すなわち、第2ロータ電気角θER2は、この特定の軟磁性体コア15aの回転角度位置に、ステータ磁極の極対数(値2)を乗算した値である。
 また、上式(104)~(106)におけるωER1は、第1ロータ電気角速度であり、θER1の時間微分値、すなわちステータ16に対する第1ロータ14の角速度を電気角速度に換算した値である。さらに、ωER2は、第2ロータ電気角速度であり、θER2の時間微分値、すなわちステータ16に対する第2ロータ15の角速度を電気角速度に換算した値である。
 また、第1回転機10の場合、要素数比が前述したように設定されているので、前述した式(92)~(94)から明らかなように、U相コイル16cを流れる電流(以下「U相電流」という)Iuと、V相コイル16dを流れる電流(以下「V相電流」という)Ivと、W相コイル16eを流れる電流(以下「W相電流」という)Iwはそれぞれ、下式(107)~(109)で表される。
Figure JPOXMLDOC01-appb-M000077
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
 これらの式(107)~(109)において、Iは、U相~W相コイル16c~16eを流れる電流の振幅(最大値)を表している。
 さらに、第1回転機10の場合、要素数比が前述したように設定されているので、前述した式(95)および(96)から明らかなように、基準コイルに対するステータ16の回転磁界のベクトルの電気角度位置(以下「磁界電気角度位置」という)θMFRは、下式(110)で表され、ステータ16に対する回転磁界の電気角速度(以下「磁界電気角速度」という)ωMFRは、下式(111)で表される。
Figure JPOXMLDOC01-appb-M000080
Figure JPOXMLDOC01-appb-M000081
 以上により、第1回転機10の場合、磁界電気角速度ωMFRと第1ロータ電気角速度ωER1と第2ロータ電気角速度ωER2との関係は、例えば図110に示すようになる。
 また、ステータ16に供給された電力および磁界電気角速度ωMFRと等価のトルクを駆動用等価トルクTSEとした場合、この駆動用等価トルクTSEと、第1ロータ14に伝達されるトルク(以下「第1ロータ伝達トルク」という)TR1と、第2ロータ15に伝達されるトルク(以下「第2ロータ伝達トルク」という)TR2との関係は、前述した要素数比および前述した式(103)から明らかなように、下式(112)で表される。
Figure JPOXMLDOC01-appb-M000082
 以上のように、式(111)で表される3つの電気角速度ωMFR,ωER1,ωER2の関係と、式(112)で表される3つのトルクTSE,TR1,TR2の関係は、サンギヤおよびリングギヤのギヤ比が1:2である遊星歯車装置のサンギヤ、リングギヤおよびキャリア(以下「遊星歯車装置の三要素」という)における回転速度およびトルクの関係と同一である。
 次に、第1回転機10において、ステータ16に供給された電力が動力に変換され、第1ロータ14および第2ロータ15から出力される場合の動作について説明する。まず、図111(a)~(c)~図113(a)、(b)を参照しながら、第1ロータ14を回転不能に保持した状態でステータ16に電力を供給した場合の動作について説明する。なお、図111(a)~(c)~図113(a)、(b)では、理解の容易化のために、特定のステータ磁極と特定の軟磁性体コア15aに対してのみ、ハッチングが施されている。
 まず、図111(a)に示すように、図中の左端の軟磁性体コア15aの中心と、図中の左端の永久磁石14aの中心が、周方向に互いに一致するとともに、その軟磁性体コア15aから3つ右隣の軟磁性体コア15aの中心と、その永久磁石14aから4つ右隣の永久磁石14aの中心が、周方向に互いに一致した状態から、回転磁界を、図中の左方向に回転するように発生させる。その発生の開始時においては、互いに同じ極性のステータ磁極の位置を、中心が軟磁性体コア15aと一致している各永久磁石14aの中心と周方向に一致させるとともに、このステータ磁極の極性をこの永久磁石14aの磁石磁極の極性と異なるように設定する。
 この状態で、ステータ16による回転磁界が第1ロータ14との間に発生すると、軟磁性体コア15aを有する第2ロータ15が、ステータ16と第1ロータ14の間に配置されているので、ステータ磁極および磁石磁極によって、各軟磁性体コア15aが磁化され、それに伴い、軟磁性体コア15aが間隔を存して設けられていることで、ステータ磁極と軟磁性体コア15aと磁石磁極を結ぶような磁力線MLが発生する。
 図111(a)に示す状態では、磁力線MLは、周方向の位置が互いに一致しているステータ磁極、軟磁性体コア15aおよび磁石磁極を結ぶとともに、これらのステータ磁極、軟磁性体コア15aおよび磁石磁極のそれぞれの周方向の両隣のステータ磁極、軟磁性体コア15aおよび磁石磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、軟磁性体コア15aに対して、これを周方向に回転させるような磁力は作用しない。
 そして、回転磁界の回転に伴ってステータ磁極が図111(a)に示す位置から図111(b)に示す位置まで回転すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、磁力が軟磁性体コア15aに作用する。この場合、磁力が作用する軟磁性体コア15aにおいて、磁力線MLは、ステータ磁極および磁石磁極を結ぶ直線に対して、回転磁界の回転方向(以下「磁界回転方向」という)と逆方向に凸に曲がった状態になるので、磁力線MLに起因する磁力は、軟磁性体コア15aを磁界回転方向に駆動するように作用する。それにより、軟磁性体コア15aは、磁界回転方向に駆動され、図111(c)に示す位置に向かって回転し、軟磁性体コア15aが設けられた第2ロータ15も、磁界回転方向に回転する。なお、図111(b)および(c)における破線は、磁力線MLの磁束量が極めて小さく、ステータ磁極と軟磁性体コア15aと磁石磁極の間の磁気的なつながりが弱いことを表している。このことは、後述する他の図面においても同様である。
 また、回転磁界がさらに回転するのに伴い、上述した一連の動作、すなわち、「磁力線MLが軟磁性体コア15aにおいて磁界回転方向と逆方向に凸に曲がる→磁力線MLが直線状になるように軟磁性体コア15aに磁力が作用する→軟磁性体コア15aおよび第2ロータ15が、磁界回転方向に回転する」という動作が、図112(a)~(d)および図113(a),(b)に示すように繰り返される。以上のように、第1ロータ14を回転不能に保持した状態で、ステータ16に電力を供給した場合には、上述したような磁力線MLに起因する磁力の作用によって、ステータ16に供給された電力は動力に変換され、その動力が第2ロータ15から出力される。
 また、図114は、図111(a)に示す状態からステータ磁極が電気角2πだけ回転した状態を示しており、両図を比較すると明らかなように、軟磁性体コア15aは、ステータ磁極に対して1/3の回転角度だけ、同方向に回転していることが判る。この結果は、前述した式(111)において、ωER1=0としたときに、ωER2=ωMFR/3が成立することと合致する。
 次に、図115(a)~(c)~図117(a)、(b)を参照しながら、第2ロータ15を回転不能に保持した状態で、電力をステータ16に供給した場合の動作について説明する。なお、図115(a)~(c)~図117(a)、(b)では、理解の容易化のために、特定のステータ磁極および永久磁石14aに対して、ハッチングが施されている。
 まず、図115(a)に示すように、前述した図111(a)の場合と同様に、図中の左端の軟磁性体コア15aの中心と図中の左端の永久磁石14aの中心とが、周方向に互いに一致するとともに、その軟磁性体コア15aから3つ右隣の軟磁性体コア15aの中心とその永久磁石14aから4つ右隣の永久磁石14aの中心とが、周方向に互いに一致している状態において、回転磁界を図中の左方向に回転するように発生させる。その発生の開始時においては、互いに同じ極性のステータ磁極の位置を、中心が軟磁性体コア15aと一致している各永久磁石14aの中心と周方向に一致させるとともに、このステータ磁極の極性をこの永久磁石14aの磁石磁極の極性と異なるように設定する。
 図115(a)に示す状態では、図111(a)の場合と同様に、磁力線MLは、周方向の位置が互いに一致しているステータ磁極、軟磁性体コア15aおよび磁石磁極を結ぶとともに、これらのステータ磁極、軟磁性体コア15aおよび磁石磁極のそれぞれの周方向の両隣のステータ磁極、軟磁性体コア15aおよび磁石磁極を結ぶように発生する。また、この状態では、磁力線MLが直線状であることにより、軟磁性体コア15aに対して、これを周方向に回転させるような磁力は作用しない。
 そして、回転磁界の回転に伴ってステータ磁極が図115(a)に示す位置から図115(b)に示す位置まで回転すると、磁力線MLが曲がった状態になり、それに伴い、磁力線MLが直線状になるように、磁力が永久磁石14aに作用する。この場合、この永久磁石14aが、磁力線MLで互いに結ばれたステータ磁極および軟磁性体コア15aの延長線上よりも磁界回転方向に進んだ位置にあるため、磁力線MLに起因する磁力は、この延長線上に永久磁石14aを位置させるように作用する。すなわち、永久磁石14aを磁界回転方向と逆方向に駆動するように作用する。それにより、永久磁石14aは、磁界回転方向と逆方向に駆動され、図115(c)に示す位置に向かって回転し、永久磁石14aが設けられた第1ロータ14も、磁界回転方向と逆方向に回転する。
 また、回転磁界がさらに回転するのに伴い、上述した一連の動作が図116(a)~(d)および図117(a),(b)に示すように繰り返される。すなわち、「磁力線MLが曲がり、磁力線MLで互いに結ばれたステータ磁極および軟磁性体コア15aの延長線上よりも、永久磁石14aが磁界回転方向に進んだ位置に位置する→磁力線MLが直線状になるように永久磁石14aに磁力が作用する→永久磁石14aおよび第1ロータ14が、磁界回転方向と逆方向に回転する」という動作が、繰り返される。以上のように、第2ロータ15を回転不能に保持した状態で、電力をステータ16に供給した場合、上述したような磁力線MLに起因する磁力の作用によって、ステータ16に供給された電力は動力に変換され、その動力が第1ロータ14から出力される。
 また、図117(b)は、図115(a)に示す状態からステータ磁極が電気角2πだけ回転した状態を示しており、両図を比較すると明らかなように、永久磁石14aは、ステータ磁極に対して1/2の回転角度だけ、逆方向に回転していることが判る。この結果は、前述した式(111)において、ωER2=0としたときに、-ωER1=ωMFR/2が成立することと合致する。
 以上のように、本実施形態の第1回転機10では、ステータ16への電力供給により回転磁界を発生させると、前述した磁石磁極と軟磁性体コア15aとステータ磁極とを結ぶような磁力線MLが発生し、この磁力線MLによる磁力の作用によって、ステータに供給された電力は動力に変換され、その動力が、第1ロータ14や第2ロータ15から出力される。この場合、磁界電気角速度ωMFR、第1および第2のロータ電気角速度ωER1,ωER2の間に、前述した式(111)に示す関係が成立するとともに、駆動用等価トルクTSE、第1および第2のロータ伝達トルクTR1,TR2の間に、前述した式(112)に示す関係が成立する。これらの3つのトルクTSE,TR1,TR2の関係および電気角速度ωMFR,ωER1,ωER2の関係は、遊星歯車装置の三要素におけるトルクおよび回転速度の関係と同一である。
 そのため、ステータ16に電力を供給していない状態で、第1ロータ14および/または第2ロータ15に動力を入力することによって、第1ロータ14および/または第2ロータ15をステータ16に対して回転させると、ステータ16において、発電が行われるとともに、回転磁界が発生する。その際、磁石磁極と軟磁性体とステータ磁極を結ぶような磁力線MLが発生するとともに、この磁力線MLによる磁力の作用によって、式(111)に示す電気角速度の関係と式(112)に示すトルクの関係が成立する。すなわち、発電した電力および磁界電気角速度ωMFRと等価のトルクを発電用等価トルクTGEとすると、この発電用等価トルクTGE、第1および第2のロータ伝達トルクTR1,TR2の間にも、式(112)の「TSE」を「TGE」に置き換えた関係が成立する。
 以上のように、本実施形態の第1回転機10の場合、3つのトルクの関係および3つの電気角速度の関係が、遊星歯車装置の三要素におけるトルクおよび回転速度の関係と同一になるので、第1回転機10を遊星歯車装置と同じ動作特性で運転することができる。
<第2回転機20>
 次に、第2回転機20について説明する。この第2回転機20は、DCブラシレスモータで構成されており、図106に示すように、前述した駆動系ハウジングに固定されたケース21と、ケース21内に収容され、出力軸13に同心に固定されたロータ22と、ケース21の周壁21cの内周面に固定されたステータ23などを備えている。
 ケース21は、左右の側壁21a,21bと、これらの側壁21a,21bの外周端部に固定された円筒状の周壁21cなどで構成されている。左右の側壁21a,21bの内端部には、軸受21d,21eがそれぞれ取り付けられており、出力軸13は、これらの軸受21d,21eによって回転自在に支持されている。
 ロータ22は、出力軸13に同心に固定された回転盤部22aと、この回転盤部22aの外端部に固定された円筒状のリング部22bなどを備えている。このリング部22bは、軟磁性体で構成され、その外周面には、永久磁石列が周方向に沿って設けられている。この永久磁石列は、所定個数の永久磁石22cで構成されており、これらの永久磁石22cは、互いに同じ所定角度の間隔でかつ隣り合う各2つが互いに異なる極性で配置されている。
 ステータ23は、ケース21の周壁21cの内周面に周方向に沿って設けられた複数のステータ23aを有している。これらのステータ23aは、回転磁界を発生するものであり、互いに同じ所定角度の間隔で配置され、後述する2ND・PDU32およびVCU34を介して、バッテリ33に電気的に接続されている。
<ECU>
 一方、動力装置1は、図105に示すように、エンジン3を主に制御するためのENG・ECU29と、第1回転機10および第2回転機20を主に制御するためのMOT・ECU30などを備えている。これらのECU29,30はいずれも、RAM、ROM、CPUおよびI/Oインターフェースなどからなるマイクロコンピュータ(いずれも図示せず)で構成されている。
 ENG・ECU29には、クランク角センサ、駆動軸回転数センサ、アクセル開度センサおよび車速センサなどの各種のセンサ(いずれも図示せず)が接続されている。ENG・ECU29は、これらの各種のセンサの検出信号に基づき、エンジン回転数NE、駆動軸8の回転数(以下「駆動軸回転数」という)ND、アクセル開度AP(図示しないアクセルペダルの操作量)および車速VPなどを算出するとともに、これらのパラメータに応じて、燃料噴射弁や点火プラグなどを駆動することにより、エンジン3の運転を制御する。さらに、ENG・ECU29は、MOT・ECU30に電気的に接続されており、MOT・ECU30との間で、エンジン回転数NEおよび駆動軸回転数NDなどの各種データを送受信する。
 一方、MOT・ECU30には、1ST・PDU31、2ND・PDU32、第1回転角センサ35および第2回転角センサ36が接続されている。1ST・PDU31は、インバータなどを含む電気回路で構成され、第1回転機10およびバッテリ33に接続されている。また、2ND・PDU32は、1ST・PDU31と同様にインバータなどを含む電気回路で構成され、第2回転機20およびバッテリ33に接続されている。なお、1ST・PDU31および2ND・PDU32とも、VCU34を介してバッテリ33に接続されている。
 さらに、第1回転角センサ35は、ステータ16に対する第1ロータ14の回転角度を検出して、それを表す検出信号をMOT・ECU30に出力する。また、第2回転角センサ36は、ステータ16に対する第2ロータ15の回転角度を検出して、それを表す検出信号をMOT・ECU30に出力する。MOT・ECU30は、これらのセンサの検出信号や前述したENG・ECU29からの各種データなどに応じて、以下に述べるように、2つの回転機10,20の運転状態を制御する。なお、ENG・ECU29およびMOT・ECU30は、当該制御を行う際に必要となる各種マップ等を記憶するメモリからデータを読み込む。また、ENG・ECU29またはMOT・ECU30は、バッテリ33の外装体又はその周辺に取り付けられたバッテリ温度センサが検出した信号から、バッテリ33の温度を導出する。
<駆動力制御>
 以下、上記説明した1共線3要素の仕組みを有する動力装置1においてENG・ECU29およびMOT・ECU30が行う駆動力制御について、図118及び図119を参照して説明する。図118は、第23実施形態の動力装置1における駆動力制御を示すブロック線図である。また、図119は、1共線3要素の仕組みを有する動力装置1における速度共線図である。
 図118に示すように、ENG・ECU29は、上記説明したアクセル開度APを表す検出信号と、車速VPを表す検出信号とを取得する。次に、ENG・ECU29は、メモリ45に格納されている駆動力マップを用いて、アクセル開度APと車速VPに応じた駆動力(以下「要求駆動力」という。)を導出する。次に、ENG・ECU29は、要求駆動力と車速VPに応じた出力(以下「要求出力」という。)を算出する。なお、当該要求出力は、車両がドライバのアクセルペダル操作に応じた走行を行うために要する出力である。
 次に、ENG・ECU29は、バッテリ33に入出力される電流・電圧値を表す検出信号から、バッテリ33の残容量(SOC:State of Charge)の情報を取得する。次に、ENG・ECU29は、バッテリ33のSOCに応じた、要求出力に占めるエンジン3の出力する割合を決定する。次に、ENG・ECU29は、メモリ45に格納されているENG動作マップを用いて、エンジン3の出力に応じた最適な動作点を導出する。なお、ENG動作マップは、エンジン3の軸回転数とトルクと出力の関係に応じた各動作点の燃料消費率を示すBSFC(Brake Specific Fuel Consumption)に基づくマップである。次に、ENG・ECU29は、最適動作点でのエンジン3の軸回転数(以下「要求ENG軸回転数」という。)を導出する。さらに、ENG・ECU29は、最適動作点でのエンジン3のトルク(以下「ENG要求トルク」という。)を導出する。
 次に、ENG・ECU29は、ENG要求トルクを出力するようエンジン3を制御する。次に、ENG・ECU29は、エンジン3の軸回転数を検出する。このとき検出されたエンジン3の軸回転数を「実ENG軸回転数」という。次に、ENG・ECU29は、要求ENG軸回転数と実ENG軸回転数の差分Δrpmを算出する。MOT・ECU30は、差分Δrpmが0に近づくよう、第1回転機10の出力トルクを制御する。当該制御は、第1回転機10のステータ16で回生発電することで行われ、その結果、第1回転機10(MG1)の第2ロータ15には、図119の共線図に示したトルクT12が加わる。
 第1回転機10の第2ロータ15にトルクT12が加わることによって、第1回転機10(MG1)の第1ロータ14にトルクT11が生じる。トルクT11は、以下の式(113)によって算出される。
 T11=α/(1+α)×T12 …(113)
 また、第1回転機10のステータ16での回生発電によって生じた電気エネルギ(回生エネルギ)は1ST・PDU31に送られる。図119の共線図では、第1回転機10のステータ16で発生した回生エネルギを点線Aで示す。
 次に、MOT・ECU30は、前に導出した要求駆動力から、上記算出されたトルクT11を差し引いたトルクが第2回転機20のロータ22に加わるよう、2ND・PDU32を制御する。その結果、第2回転機20(MG2)のロータ22にトルクT22が加わる。このとき、第2回転機20に電気エネルギを供給する際には、第1回転機10の回生発電で得られた回生エネルギを用いても良い。
 このように、第1回転機21の第1ロータ14にはトルクT11が加わり、第2回転機20のロータ22にはトルクT22が加わる。第1回転機10の第1ロータ14および第2回転機20のロータ22は出力軸13と連結しているため、車両の前輪4,4にはトルクT11とトルクT22の総和が加わる。
 以上説明したように、ENG・ECU29およびMOT・ECU30は、エンジン3が最適な動作点で作動するよう、第1回転機10の第2ロータ15に発生するトルクを制御し、かつ、車両の前輪4,4に要求駆動力が伝達されるよう、第2回転機20のロータ22に発生するトルクを制御している。
 上記説明では、要求駆動力を導出する際および要求出力を導出する際に車速VPを用いているが、車速VPの代わりに、車軸の回転数の情報を用いても良い。
 次に、車両運転中の、MOT・ECU30による第1回転機10および第2回転機20の制御手法について説明する。
 ・エンジン停止中で停車中
 まず、停車中のエンジン始動制御について説明する。この制御では、MOT・ECU30は、エンジン停止中で停車中の場合において、所定のエンジン始動条件が成立したとき(例えば、図示しないイグニッション・スイッチがOFF状態からON状態に切り換わったとき)に、バッテリ33の電力を、VCU34および1ST・PDU31を介して第1回転機10に供給し、回転磁界をステータ16に発生させる。この場合、第1回転機10では、第1ロータ14が前輪4に機械的に連結され、第2ロータ15がエンジン3のクランクシャフトに機械的に連結されているので、停車中でエンジン停止状態の場合、第1ロータ14の方が第2ロータ15よりも回転抵抗が極めて大きい状態となり、それに起因して、第1ロータ14が停止したままで、第2ロータ15が回転磁界の回転方向に駆動されることになる。その結果、回転磁界の回転に伴って、第2ロータ15が駆動され、それにより、エンジン3を始動することができる。
 ・エンジン運転中で停車中
 また、エンジン運転中で停車中の場合において、所定の発進条件が成立したとき(例えば、図示しないブレーキペダルが操作されておらず、アクセル開度APが所定値以上のとき)には、発進制御が実行される。まず、停車中は、出力軸13すなわち第1ロータ14が回転停止状態となっているので、エンジン3が発生する動力はすべて、磁力線を介して、第1回転機10のステータ16に伝達され、これに回転磁界を発生させることで、誘導起電力(すなわち逆起電圧)が発生する。MOT・ECU30は、ステータ16への供給電流を制御することにより、ステータ16で発生した誘導起電力を回生し、その回生電力をすべて、1ST・PDU31および2ND・PDU32を介して第2回転機20に供給する。その結果、第2回転機20のロータ22によって、出力軸13が駆動され、前輪4,4が駆動されることで、車両2が発進する。車両2の発進後、MOT・ECU30は、車速の上昇に伴い、第1回転機10における回生電力が漸減するように制御すると同時に、その回生電力を第2回転機20に供給するように制御する。
 ・エンジン運転中で走行中
 さらに、エンジン運転中で走行中のときには、変速制御が実行される。この変速制御では、エンジン3の運転状態(例えば、エンジン回転数NEおよびアクセル開度APなど)および/または車両2の走行状態(例えば車速VPなど)に応じて、エンジン3の動力のうちの、第1ロータ14を介して前輪4に伝達される動力と、第1回転機10で電力として回生される動力との割合を変更するように、第1回転機10が制御されるとともに、この回生電力を第2回転機20に供給することにより、第2回転機20が制御される。この場合、前述したように、第1回転機10は、遊星歯車装置と同様の動作特性で運転可能なものであるので、上記のように第1回転機10を制御するとともに、第1回転機10での回生電力を第2回転機20に供給することによって、第2回転機20を制御すると、電気的な損失を無視すれば、第1回転機10および第2回転機20を介して、エンジン3の動力をすべて前輪4に伝達しながら、第2ロータ15の回転数と出力軸13の回転数との比、言い換えればエンジン回転数NEと駆動軸回転数NDとの比を任意に変更することができる。すなわち、2つの回転機10,20を制御することで、自動変速装置としての機能を実現することができる。
 また、この変速制御中、所定の動力伝達条件が成立したとき(例えば、エンジン回転数NEおよびアクセル開度APが所定領域にあるとき)には、第1回転機10での電力回生を中止し、ロック電流をステータ16に供給するかまたは第1回転機10における相間短絡制御を実行することなどにより、ステータ16の回転磁界の回転速度を値0に制御する。このように制御した場合には、磁気伝達可能な範囲内であれば、エンジン3の動力をすべて磁気を介して前輪4に伝達できるので、第1回転機10における回生電力を、2ND・PDU32を介して第2回転機20に供給するように制御する場合と比べて、動力伝達効率を向上させることができる。
 一方、エンジン運転中で走行中(減速フューエルカット運転中も含む)の場合において、バッテリ33の充電残量SOCが所定値SOC_REF(例えば50%)以下のときには、第1回転機10および/または第2回転機20における回生電力を制御し、バッテリ33への充電制御を実行する。それにより、バッテリ33において十分な充電残量SOCを確保することができる。
 ・エンジン運転中でアシスト条件成立
 また、エンジン運転中で所定のアシスト条件が成立したとき(例えば、坂道発進のとき、登坂走行中であるとき、または加速走行中であるとき)には、アシスト制御が実行される。具体的には、バッテリ33内の電力を第1回転機10および/または第2回転機20に供給することによって、第1回転機10および/または第2回転機20の動力と、エンジン3の動力とが前輪4に伝達されるように、第1回転機10および/または第2回転機20が制御される。それにより、エンジン3に加えて、第1回転機10および/または第2回転機20を動力源として、アシスト走行またはアシスト発進することができる。
 ・エンジン停止中で回転機発進条件成立
 さらに、エンジン3が停止中でかつ車両2が停止中の場合において、所定の回転機発進条件が成立したとき(例えば、バッテリ33の充電残量SOCが所定値SOC_REFを上回っており、ブレーキペダルが操作されていない状態で、アクセル開度APが所定値以上のとき)には、回転機発進制御が実行される。具体的には、エンジン3を停止したままで、バッテリ33の電力が第1回転機10および第2回転機20に同時に供給され、2つの回転機10,20が同時に駆動される。その際、第2回転機20が回転し始めるのと同時に、出力軸13が回転し始めるが、第1回転機10において、停止しているエンジン3に連結された第2ロータ15側の回転抵抗が第1ロータ14側よりもかなり大きくなる。その結果、ステータ16に回転磁界を発生させることにより、第1ロータ14を駆動することができ、第1回転機10および第2回転機20の動力によって、車両2を発進させることができる。なお、エンジン3の回転抵抗が不足する場合には、エンジン3をロックするか、回転抵抗を増大させる装置を設けてもよい。
 以上のように、本実施形態の動力装置1によれば、エンジン3、第1回転機10および第2回転機20を動力源として、車両2を駆動することができる。また、第1回転機10を1つの軟磁性体列のみを備えるように構成すればよいので、その分、第1回転機10を小型化できるとともに製造コストを低減できる。その結果、動力装置1自体を小型化でき、製造コストを低減できるとともに、設計の自由度を高めることができる。また、前述した式(111),(112)を参照すると明らかなように、第1回転機10における極対数比αすなわち極数比mの設定の仕方によって、3つの電気角速度ωMFR,ωER1,ωER2の関係を自由に設定できるとともに、3つのトルクTSE,TR1,TR2の関係も自由に設定できる。その結果、設計の自由度をさらに高めることができる。
 次に、第23実施形態の動力装置1において、第1回転機10の極対数比α(=極数比m)を変更したときのトルク変化などについて説明する。具体的には、エンジン運転中での車両走行中、エンジン3の動力の一部を第1回転機10によって電力回生し、この回生電力を第2回転機20に供給することで、第2回転機20を力行制御している場合を例にとって説明する。
 まず、動力装置1において、第1回転機10の極対数比αが値1以外の任意の値に設定され、駆動輪が出力軸13に直結されていると仮定する。この場合、入力軸12すなわち第2ロータ15の電気角速度をωENGとし、ステータ16の回転磁界の電気角速度をωMG1とし、出力軸13すなわち第1ロータ14の電気角速度ωOUTとすると、これらの電気角速度の関係は、例えば図120に示すようになるとともに、下式(114)が成立する。
Figure JPOXMLDOC01-appb-M000083
 さらに、エンジン3から入力軸12に入力されるトルクをエンジントルクTENGとし、ステータ16の回生電力および回転磁界の電気角速度ωMG1に等価なトルクを第1回転機トルクTMG1とし、第2回転機20への供給電力および電気角速度ωMG2に等価なトルクを第2回転機トルクTMG2とし、駆動輪への伝達トルクに起因して駆動輪が路面から受ける反力としてのトルクを駆動トルクTOUTとすると、下式(115),(116)が成立するとともに、これらのトルクの関係は図120に示すようになる。なお、下式(115),(116)においては、図120の上向きのトルクを正値で表している。
Figure JPOXMLDOC01-appb-M000084
Figure JPOXMLDOC01-appb-M000085
 ここで、第1所定値α1および第2所定値α2を、α1<α2が成立するような極対数比αの所定値とした場合、α=α1のときの第1および第2回転機トルクTMG1(α1),TMG2(α1)はそれぞれ、下式(117),(118)で表される。
Figure JPOXMLDOC01-appb-M000086
Figure JPOXMLDOC01-appb-M000087
 また、α=α2のときの第1および第2回転機トルクTMG1(α2),TMG2(α2)はそれぞれ、下式(119),(120)で表される。
Figure JPOXMLDOC01-appb-M000088
Figure JPOXMLDOC01-appb-M000089
 以上の式(117),(119)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、第1回転機トルクTMG1の変化量ΔTMG1は、下式(121)で表される。
Figure JPOXMLDOC01-appb-M000090
 また、式(118),(120)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、第2回転機トルクTMG2の変化量ΔTMG2は、下式(122)で表される。
Figure JPOXMLDOC01-appb-M000091
 ここで、TENG>0,TMG1<0,TMG2>0,α1<α2であるので、以上の式(121),(122)を参照すると明らかなように、極対数比αを第1所定値α1から第2所定値α2に変更することで、第1および第2回転機トルクTMG1,TMG2の絶対値が減少することになる。すなわち、極対数比αをより大きな値に設定することで、第1回転機10および第2回転機20を小型化できることが判る。
 また、2つの回転機10,20とバッテリ33との間で電力が入出力されていないとすれば、第1回転機10の回生電力はそのまま第2回転機20に供給されるので、下式(123)が成立する。
Figure JPOXMLDOC01-appb-M000092
 ここで、第1回転機10から第2回転機20に供給される電力を伝達電力WMGとし、エンジン出力WENGに対する伝達電力WMGの比を出力比RWとすると、この出力比RWは、下式(124)により算出される。
Figure JPOXMLDOC01-appb-M000093
 前述した式(114),(115)の関係を上式(124)に適用すると、下式(125)が得られる。
Figure JPOXMLDOC01-appb-M000094
 ここで、減速比Rを下式(126)に示すように定義し、これを上式(125)に適用すると、下式(127)が得られる。
Figure JPOXMLDOC01-appb-M000096
 上式(127)より、極対数比αを第1所定値α1および第2所定値α2に設定したときの出力比RW(α1),RW(α2)はそれぞれ、下式(128),(129)で算出される。
Figure JPOXMLDOC01-appb-M000097
Figure JPOXMLDOC01-appb-M000098
 以上の式(128),(129)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、出力比の変化量ΔRWは、下式(130)で表される。
Figure JPOXMLDOC01-appb-M000099
 ここで、α1<α2であるので、上式(130)を参照すると明らかなように、極対数比αを第1所定値α1から第2所定値α2に変更することで、出力比RWを低減でき、伝達電力WMGを低減できることが判る。また、前述した式(127)において、極対数比αを値1、値1.5、値2に設定したときの出力比RWと減速比Rの関係は、図121に示すようになる。この図121を参照すると明らかなように、極対数比αをより大きな値に設定することで、減速比Rのほぼ全域において、伝達電力WMGを低減できることが判る。一般に、効率の観点からは、動力を機械伝達または磁気伝達したときの方が、電力を回転機によって動力に変換したときと比べて優れているので、上記のように、伝達電力WMGを低減することによって、伝達効率を向上できることになる。すなわち、本実施形態の動力装置の場合、極対数比α(=極数比m)をより大きく設定することによって、伝達効率を向上させることができる。
 なお、第23実施形態は、動力装置1を被駆動部としての前輪4を備える車両2に適用した例であるが、これに限らず、例えば、船舶および航空機などの様々な産業機器に適用可能である。ここで、動力装置1を船舶に適用した場合には、スクリューなどの推進力を生じる部分が被駆動部に相当し、動力装置を航空機に適用した場合には、プロペラやロータなどの推進力を生じる部分が被駆動部に相当する。
 また、第23実施形態は、熱機関として、ガソリンを燃料とする内燃機関であるエンジン3を用いた例であるが、これに限らず、熱エネルギを継続的に機械的エネルギに変える装置であればよい。例えば、熱機関として、軽油または天然ガスを燃料とする内燃機関やスターリングエンジンなどの外燃機関を用いてもよい。
 さらに、第23実施形態は、第1回転機10において、ステータ磁極の数を「4」に、磁極の数を「8」に、軟磁性体としての軟磁性体コア15aの数を「6」にそれぞれ設定した例であるが、本発明の第1回転機におけるステータ磁極の数、磁極の数および軟磁性体の数はこれらの値に限らず、ステータ磁極の数と磁極の数と軟磁性体の数が、極数比mを値1以外の正数とした場合において、ステータ磁極の数と磁極の数と軟磁性体の数との比すなわち要素数比が1:m:(1+m)/2となるように、設定されていればよい。また、第23実施形態の第1回転機10は、要素数比においてm=2に設定した例であるが、極数比mはこれに限らず、値1以外の正数であればよい。
 また、第23実施形態は、第1ロータ14の磁極として永久磁石14aの磁極を用いた例であるが、第1ロータ14にステータ列を設け、このステータ列に発生する磁極を永久磁石の磁極に代えて用いてもよい。
 一方、第23実施形態は、第1回転機10および第2回転機20の運転を制御する制御手段として、MOT・ECU30、1ST・PDU31および2ND・PDU32を用いた例であるが、第1回転機10および第2回転機20を制御する制御手段はこれに限らず、これらの回転機10,20の運転を制御できるものであればよい。例えば、2つの回転機10,20を制御する制御手段として、マイクロコンピュータを搭載した電気回路などを用いてもよい。
 また、第23実施形態は、第1回転機10および第2回転機20を出力軸13上に軸線方向に並べて配置した例であるが、第1回転機10および第2回転機20の配置はこれに限らない。例えば、図122に示すように、第2回転機20の外側に第1回転機10が位置するように、両者を径方向に並べて配置してもよい。このようにすれば、2つの回転機10,20の軸線方向のサイズを小型化することができ、動力装置1の設計の自由度を高めることができる。
 さらに、図123に示すように、第1回転機10の第1ロータ14と第2回転機20のロータ22を別個の軸上に配置してもよい。なお、同図においては、理解の容易化のために断面部分のハッチングが省略されている。同図に示すように、この第2回転機20では、ロータ22が前述した出力軸13上ではなく、第1ギヤ軸6a上に設けられている。このようにすれば、2つの回転機10,20の配置において、動力装置1の設計の自由度を高めることができる。
 一方、第23実施形態の動力装置1において、図124に示すように、ギヤ機構6に代えて、変速装置(図では「T/M」と表す)50を設けてもよい。この変速装置50は、出力軸13と前輪4との間の減速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置50としては、具体的には、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MT(アクチュエータによって、クラッチの接続・遮断動作および変速動作を実行する有段自動変速装置)などのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置50における低回転・高負荷域用の減速比を大きく設定することによって、第1回転機10および第2回転機20を介して変速装置50に伝達すべきトルクを小さく設定することができ、それにより、第1回転機10および第2回転機20を小型化することができる。一方、変速装置50における高車速・高負荷域用の減速比を小さく設定することによって、第1回転機10および第2回転機20の回転数を低下させることができる。それにより、第1回転機10の場合、その界磁回転数を低減できることで、エネルギ損失を低減でき、伝達効率を向上させることができるとともに、寿命を延ばすことができる。また、第2回転機20の場合、その運転効率を向上させることができるとともに、寿命を延ばすことができる。
 また、第23実施形態の動力装置1において、図125に示すように、変速装置51を、エンジン3と第2ロータ15の間に延びる入力軸12の途中に設けてもよい。この変速装置51は、エンジン3と第2ロータ15との間の増速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置51としては、上記変速装置50と同様に、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MTなどのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置51における低回転・高負荷域用の増速比および終減速装置(すなわち差動ギヤ機構7)の終減速比をいずれも大きく設定することによって、第1回転機10および第2回転機20を介して終減速装置側に伝達すべきトルクを小さく設定することができ、それにより、第1回転機10および第2回転機20を小型化することができる。一方、変速装置51における高車速・高負荷域用の増速比を小さく(または1:1に)設定することによって、第1回転機10および第2回転機20の回転数を低下させることができる。それにより、前述したように、第1回転機10の場合、その界磁回転数を低減できることで、エネルギ損失を低減でき、伝達効率を向上させることができるとともに、寿命を延ばすことができる。また、第2回転機20の場合、その運転効率を向上させることができるとともに、寿命を延ばすことができる。
 さらに、第23実施形態の動力装置1において、図126に示すように、ギヤ機構6の位置を、出力軸13の第1ロータ14とロータ22との間に変更するとともに、出力軸13のギヤ機構6とロータ22の間に、変速装置52を設けてもよい。この変速装置52は、ロータ22とギヤ6cとの間の減速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置52としては、前述した変速装置50と同様に、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MTなどのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置52における低回転・高負荷域用の減速比を大きく設定することによって、第2回転機20から前輪4に伝達すべきトルクを小さく設定することができ、それにより、第2回転機20を小型化することができる。一方、変速装置52における高車速・高負荷域用の減速比を小さく設定することによって、第2回転機20の回転数を低下させることができ、それにより、前述したように、運転効率を向上させることができるとともに、寿命を延ばすことができる。
<バッテリSOCに応じた制御>
 上記説明したように、本実施形態の動力装置1の動作モードに応じて、バッテリ33から第1回転機10および/または第2回転機20に電力が供給され、また、第1回転機10および/または第2回転機20で発電された電力がバッテリ33に充電される。また、上記説明したように、ENG・ECU29およびMOT・ECU30は、図示しない電流電圧センサからの検出信号に基づいてバッテリ33の充電状態を算出する。
 バッテリ33は、ニッケル水素電池またはリチウムイオン電池等の2次電池によって構成されている。2次電池の性能を十分に活用するためには、その残容量(SOC:State of Charge)を常に監視し、過充電および過放電を防止する必要がある。したがって、本実施形態のENG・ECU29およびMOT・ECU30は、バッテリ33のSOC(以下「バッテリSOC」という)に応じた制御を行う。図127は、充放電が繰り返されるバッテリSOCの範囲を示す図である。図127に示すように、ENG・ECU29およびMOT・ECU30は、バッテリSOCが下限SOCから上限SOCまでの範囲内に収まるよう、エンジン3、第1および第2の回転機10,20の動作を制御する。
<ENG発進時の過充電防止制御>
 動作装置1の動作モードが「エンジン運転中」のとき、第1回転機10のステータ16では回生発電が行われる。このとき発生した回生エネルギはバッテリ33に送られ充電される。しかし、バッテリSOCが上限SOCに近い状態でバッテリ33が充電されると、バッテリSOCが上限SOCを超えてしまうおそれがある。したがって、ENG・ECU29およびMOT・ECU30は、バッテリSOCが図127に示した上限SOCよりも低い第1しきい値以上のとき、以下説明する制御を行う。
 動作装置1の動作モードが「エンジン運転中」であって、バッテリSOCが第1しきい値以上のとき、ENG・ECU29は、図118を参照して説明したエンジン3の要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルク(トルクT12)を変えずに作動するようエンジン3を制御する。図128(a)、(b)は、動作装置1の動作モードが「エンジン運転中」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。図128(b)に示すように、エンジン3の軸回転数が低く制限されると、第1回転機10のステータ16における第1回転磁界の第1磁界回転速度VMF1は、図128(a)に示した第1磁界回転速度VMF1よりも低くなるよう制御される。その結果、図128(b)に示した場合の第1回転機10で発生する回生エネルギは、図128(a)に示した場合の回生エネルギよりも低くなる。
 このように、動作装置1の動作モードが「エンジン動作中」のとき、要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルクを変えずに作動するようENG・ECU29がエンジン3を制御することによって、バッテリ33への充電量が低下する。したがって、バッテリSOCが上限SOCに近い第1しきい値以上のとき、ENG・ECU29が当該制御を行うことによって、バッテリ33の過充電を防止できる。但し、当該制御の結果、エンジン3の出力は低下する。しかし、第2回転機20からのトルクが加わるため、駆動輪4,4に伝達される出力トルクは変わらない。
 なお、上記説明した制御時にENG・ECU29がエンジン3に要求するトルクは、図118を参照して説明したENG要求トルク未満であっても良い。最適動作点で作動するようエンジン3を制御する場合、ENG・ECU29は、上記制御時の軸回転数に応じたトルクを出力するようエンジン3を制御する。エンジン3の軸回転数が低い状態での最適動作点におけるトルクは軸回転数に略比例するため、このときのトルクはENG要求トルクよりも小さい。このような制御を行うとエンジン3の出力はさらに低下するが、エンジン3を最適動作点で作動できる。
 また、上記制御では、エンジン3の要求ENG軸回転数よりも低い軸回転数で作動するようエンジン3を制御している。しかし、エンジン3に要求されたトルクに対する第1回転機10のステータ16に発生する単位時間当たりの回生エネルギが規定値を超える場合には、図118を参照して説明したENG要求トルクよりも低いトルクを出力するようエンジン3を制御しても良い。なお、このとき、エンジン3の軸回転数は、図118を参照して説明した要求ENG軸回転数と同一であっても、それ以下であっても良い。
<EV走行時の過放電防止制御>
 動作装置1の動作モードが「EV走行」のとき、第2回転機20のステータ23は力行運転状態である。したがって、動作装置1の動作モードが「EV走行」のとき、バッテリ33は放電する。しかし、バッテリSOCが下限SOCに近い状態でバッテリ33が放電されると、バッテリSOCが下限SOCを下回るおそれがある。したがって、ENG・ECU29は、バッテリSOCが図127に示した下限SOCよりも高い第2しきい値以下のとき、以下説明する制御を行う。
 動作装置1の動作モードが「EV走行」であって、バッテリSOCが第2しきい以下のとき、ENG・ECU29は、最適動作点でエンジン3を作動するよう制御する。図129(a)、(b)は、動作装置1の動作モードが「EV走行」時の、(a)バッテリSOCが第2しきい値より高いときの速度共線図と、(b)バッテリSOCが第2しきい値以下のときの速度共線図とを示す。図129(b)に示すように、エンジン3を駆動すると、第1回転機10で回生エネルギが発生する。
 このように、動作装置1の動作モードが「EV走行」のとき、エンジン3を作動するよう制御することによって、バッテリ33の放電量が低下する。したがって、バッテリSOCが下限SOCに近い第2しきい値以下のとき、ENG・ECU29が当該制御を行うことによって、バッテリ33の過放電を防止できる。
 なお、第2しきい値は可変である。第1回転機10がエンジン3を始動する際に必要とされるエネルギは車速VPによって異なり、車速VPが高いときほど必要とされるエネルギは大きい。したがって、ENG・ECU29は、車速VPに応じた第2しきい値を設定する。すなわち、ENG・ECU29は、車速VPが高いときほど第2しきい値を高く設定する。
<ENG後退発進時の過充電防止制御>
 動作装置1の動作モードが「ENG後退発進」のとき、第1回転機10のステータ16では回生発電が行われる。このとき発生した回生エネルギはバッテリ33に送られ充電される。しかし、バッテリSOCが上限SOCに近い状態でバッテリ33が充電されると、バッテリSOCが上限SOCを越えてしまうおそれがある。したがって、ENG・ECU29およびMOT・ECU30は、バッテリSOCが図127に示した上限SOCよりも低い第1しきい値以下のとき、以下説明する制御を行う。
 動作装置1の動作モードが「ENG後退発進」であって、バッテリSOCが第1しきい以上のとき、ENG・ECU29は、図118を参照して説明したエンジン3の要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルク(トルクT12)を変えずに作動するようエンジン3を制御する。図130(a)、(b)は、動作装置1の動作モードが「ENG後退発進」時の、(a)バッテリSOCが第1しきい値未満のときの速度共線図と、(b)バッテリSOCが第1しきい値以上のときの速度共線図とを示す。図130(b)に示すように、エンジン3の軸回転数が低く制限されると、第1回転機10のステータ16における第1回転磁界の第1磁界回転速度VMF1は、図130(a)に示した第1磁界回転速度VMF1よりも低くなるよう制御される。その結果、第1回転機10では発生する回生エネルギは低下する。
 このように、動作装置1の動作モードが「ENG後退発進」のとき、要求ENG軸回転数よりも低い軸回転数で、かつ、出力トルクを変えずに作動するようECU2がエンジン3を制御することによって、バッテリ33への充電量が低下する。したがって、バッテリSOCが上限SOCに近い第1しきい値以上のとき、ENG・ECU29が当該制御を行うことによって、バッテリ33の過充電を防止できる。但し、当該制御の結果、エンジン3の出力は低下する。しかし、エンジン3の出力トルクは変わらないため、駆動輪4,4に伝達される出力トルクは変わらない。
 なお、上記説明した制御時にENG・ECU29がエンジン3に要求するトルクは、図118を参照して説明したENG要求トルク未満であっても良い。最適動作点で作動するようエンジン3を制御する場合、ENG・ECU29は、上記制御時の軸回転数に応じたトルクを出力するようエンジン3を制御する。エンジン3の軸回転数が低い状態での最適動作点におけるトルクは軸回転数に略比例するため、このときのトルクはENG要求トルクよりも小さい。このような制御を行うとエンジン3の出力はさらに低下するが、エンジン3を最適動作点で作動できる。
 また、上記制御では、エンジン3の要求ENG軸回転数よりも低い軸回転数で作動するようエンジン3を制御している。しかし、エンジン3に要求されたトルクに対する第1回転機10のステータ16で発生する単位時間当たりのエネルギが規定値を超える場合には、図118を参照して説明したENG要求トルクよりも低いトルクを出力するようエンジン3を制御しても良い。なお、このとき、エンジン3の軸回転数は、図118を参照して説明した要求ENG軸回転数と同一であっても、それ以下であっても良い。
(第24実施形態)
 次に、図131を参照しながら、第24実施形態に係る動力装置1Aについて説明する。同図に示すように、この動力装置1Aは、第23実施形態の動力装置1と比べると、第2回転機20を後輪駆動用の動力源として用いた点が異なっており、それ以外は第23実施形態の動力装置1とほぼ同様に構成されているので、以下、第23実施形態の動力装置1と異なる点を中心に説明するとともに、同じ構成に関しては同一の符号を付し、その説明を省略する。
 この動力装置1Aでは、第1ギヤ軸6a上のギヤ6dが差動ギヤ機構7のギヤ7aと常に噛み合っており、それにより、出力軸13の回転は、ギヤ6c,6dおよび差動ギヤ機構7を介して、前輪4,4に伝達される。
 また、第2回転機20は、差動ギヤ機構25および左右の駆動軸26,26などを介して、左右の後輪5,5に連結されており、これにより、後述するように、第2回転機20の動力が後輪5,5(第2被駆動部)に伝達される。
 第2回転機20のロータ22は、ギヤ軸24の左端部に同心に固定されており、このギヤ軸24の右端部には、ギヤ24aがギヤ軸24に同心に固定されている。このギヤ24aは、差動ギヤ機構25のギヤ25aと常に噛み合っている。以上の構成により、第2回転機20の動力は、ギヤ24aおよび差動ギヤ機構25を介して、後輪5,5に伝達される。
 以上のように構成された本実施形態の動力装置1Aによれば、第23実施形態の動力装置1と同様の作用効果を得ることができる。これに加えて、車両2の発進時、第1回転機10で回生された電力を第2回転機20に供給することにより、全輪駆動状態で発進することができ、その結果、雪道などの低μ路での発進性を向上させることができる。また、走行中も、全輪駆動状態で走行可能となるので、低μ路での走行安定性を向上させることができる。
 また、第24実施形態の動力装置1Aにおいて、図132に示すように、変速装置53を、エンジン3と第2ロータ15の間に延びる入力軸12の途中に設けるとともに、変速装置54を、ギヤ軸24のギヤ24aとロータ22との間に設けてもよい。この変速装置53は、エンジン3と第2ロータ15との間の増速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。さらに、変速装置54は、第2回転機20と後輪5との間の減速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置53,54としては、前述した変速装置50と同様に、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MTなどのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置53における低回転・高負荷域用の増速比および終減速装置(すなわち差動ギヤ機構7)の終減速比をいずれも大きく設定することにより、第1回転機10を介して終減速装置側に伝達すべきトルクを小さく設定することができ、それにより、第1回転機10を小型化することができる。一方、変速装置53における高車速・高負荷域用の増速比を小さく(または1:1に)設定することにより、第1回転機10の回転数を低下させることができる。それにより、前述したように、第1回転機10において、その界磁回転数を低減できることで、エネルギ損失を低減でき、伝達効率を向上させることができるとともに、寿命を延ばすことができる。
 さらに、例えば、変速装置54における低回転・高負荷域用の減速比を大きく設定することにより、第2回転機20の発生トルクを小さく設定することができ、それにより、第2回転機20を小型化することができる。一方、変速装置54における高車速・高負荷域用の減速比を小さく設定することにより、第2回転機20の回転数を低下させることができる。それにより、第2回転機20において、その運転効率を向上させることができるとともに、寿命を延ばすことができる。
 なお、図132に示す例では、2つの変速装置53,54を動力装置1Aに設けたが、これらの変速装置53,54の一方を省略してもよい。
(第25実施形態)
 次に、図133を参照しながら、第25実施形態に係る動力装置1Bについて説明する。同図に示すように、この動力装置1Bは、第23実施形態の動力装置1と比べると、第2回転機20および2ND・PDU32などを省略するとともに、電磁ブレーキ55を付加した点が異なっており、それ以外は第23実施形態の動力装置1とほぼ同様に構成されているので、以下、第23実施形態の動力装置1と異なる点を中心に説明するとともに、同じ構成に関しては同一の符号を付し、その説明を省略する。
 この動力装置1Bでは、前述した第24実施形態の動力装置1Aと同様に、第1ギヤ軸6a上のギヤ6dが差動ギヤ機構7のギヤ7aと常に噛み合っており、それにより、出力軸13の回転は、ギヤ6c,6dおよび差動ギヤ機構7を介して、前輪4,4に伝達される。
 また、電磁ブレーキ55(制止装置)は、入力軸12の第1回転機10とエンジン3の間に設けられており、MOT・ECU30に電気的に接続されている。この電磁ブレーキ55は、MOT・ECU30によってON/OFF状態が切り換えられるとともに、OFF状態のときには、入力軸12の回転を許容し、ON状態のときには、入力軸12の回転を制止する。
 次に、車両運転中の、MOT・ECU30による第1回転機10および電磁ブレーキ55の制御について説明する。なお、電磁ブレーキ55は、後述する回転機発進制御のときにのみON状態に制御されるとともに、この回転機発進制御以外の各種の制御においては、OFF状態に保持される。
 まず、エンジン始動制御について説明する。このエンジン始動制御は、エンジン停止中で停車中の場合において、前述した所定のエンジン始動条件が成立したときに、第1回転機10の動力によってエンジン3を始動するものである。具体的には、所定の始動条件が成立すると、バッテリ33の電力が、VCU34および1ST・PDU31を介して第1回転機10に供給される。それにより、前述したように、第1ロータ14が停止したままで、第2ロータ15が駆動され、その結果、エンジン3が始動される。
 また、エンジン運転中で停車中の場合において、前述した所定の発進条件が成立したときには、発進制御が実行される。この発進制御では、所定の発進条件が成立すると、まず、第1回転機10において、エンジン3の動力を電力として回生する(すなわち発電する)。そして、電力回生の開始後、その回生電力が減少するように、第1回転機10が制御される。それにより、エンジンストールを回避しながら、エンジン3の動力によって、車両2を発進させることができる。
 さらに、エンジン運転中で走行中には、エンジン動力の分配制御が実行される。この分配制御では、エンジン3の運転状態(エンジン回転数NEおよびアクセル開度APなど)および/または車両2の走行状態(車速VPなど)に応じて、エンジン3の動力のうちの、第1ロータ14を介して前輪4に伝達される動力と、第1回転機10で電力として回生される動力との割合を変更するように、第1回転機10が制御される。それにより、エンジン3の運転状態および/または車両2の走行状態に応じて、回生電力を適切に制御しながら、車両2を走行させることができる。
 また、この分配制御中、前述した所定の動力伝達条件が成立したときには、ステータ16の回転磁界の回転速度が値0となるように、第1回転機10が制御される。それにより、エンジン3の動力を、磁気伝達可能な範囲内であれば、第2ロータ15および第1ロータ14を介して前輪4にすべて磁気伝達することができる。
 一方、エンジン運転中で走行中(減速フューエルカット運転中も含む)、エンジン3の動力が電力回生されている場合において、バッテリ33の充電残量SOCが前述した所定値SOC_REF以下のときには、回生電力がバッテリ33に供給され、バッテリ33の充電制御が実行される。なお、前述した発進制御中に電力回生が実行されたときにも、バッテリ33の充電残量SOCが所定値SOC_REF以下であれば、バッテリ33の充電制御が実行される。それにより、バッテリ33において十分な充電残量SOCを確保することができる。
 また、エンジン運転中で走行中の場合において、前述した所定のアシスト条件が成立したときには、アシスト制御が実行される。具体的には、バッテリ33内の電力が第1回転機10に供給され、エンジン3および第1回転機10の動力によって前輪4を駆動するように、第1回転機10が制御される。それにより、エンジン3に加えて、第1回転機10を動力源として、アシスト走行することができる。
 さらに、エンジン停止中でかつ停車中の場合において、前述した所定の回転機発進条件が成立したときには、電磁ブレーキ55がONされ、第2ロータ15の回転が制止されるとともに、バッテリ33の電力を第1回転機10に供給することにより、第1回転機10が力行制御される。それにより、エンジン3を停止したままで、第1回転機10によって前輪4を駆動し、車両2を発進させることができる。その結果、燃費を向上させることができる。
(第26実施形態)
 次に、図134を参照しながら、第26実施形態に係る動力装置1Cについて説明する。同図に示すように、この動力装置1Cは、第23実施形態の動力装置1と比べると、第1回転機10および第2回転機20の配置が異なっており、それ以外は第23実施形態の動力装置1とほぼ同様に構成されているので、以下、第23実施形態の動力装置1と異なる点を中心に説明するとともに、同じ構成に関しては同一の符号を付し、その説明を省略する。
 この動力装置1Cでは、第2回転機20がエンジン3と第1回転機10の間に配置され、そのロータ22は、入力軸12(回転軸)の所定部位に同心に固定されている。さらに、第1回転機10では、第1ロータ14がロータ22よりも下流側の入力軸12の右端部に同心に固定され、第2ロータ15が出力軸13の左端部に同心に固定されている。それにより、第1回転機10の運転時、第2ロータ15が回転しているときには、その動力が前輪4,4に伝達される。
 次に、車両運転中の、MOT・ECU30による第1回転機10および第2回転機20の双方を制御する場合の制御手法について説明する。
・エンジン停止中で停車中
 まず、停車中のエンジン始動制御について説明する。この制御では、エンジン停止中で停車中の場合において、前述した所定の始動条件が成立したときには、前述したバッテリ33の電力が第1回転機10および/または第2回転機20に供給され、第1回転機10および/または第2回転機20の動力が入力軸12を介してエンジン3に伝達されるように、第1回転機10および/または第2回転機20が力行制御される。それにより、第1回転機10および/または第2回転機20の動力によって、エンジン3を始動することができる。
・エンジン運転中で停車中
 また、エンジン運転中で停車中の場合において、前述した所定の発進条件が成立したときには、発進制御が実行される。具体的には、停車中、エンジン3の動力は、入力軸12に伝達され、第1回転機10の第1ロータ14が駆動される。その状態で、第1回転機10を制御することにより、第1回転機10で電力回生を実行するとともに、その回生電力を第2回転機20に供給すると、第2回転機20のロータ22によって、第1ロータ14が駆動され、エネルギ循環が発生する。この状態で、第1回転機10での回生電力を減少側に制御すると、第1回転機10の第2ロータ15が回転し、出力軸13が駆動され、前輪4,4が駆動されることで、車両2が発進する。車両2の発進以降、第1回転機10での回生電力をさらに減少側に制御するとともに、第1回転機10のステータ16の磁界回転方向が逆転から正転に移行した後は、第2回転機20を回生制御しかつ第1回転機10を力行制御することにより、車速が上昇する。
・エンジン運転中で走行中
 さらに、エンジン運転中で走行中のときには、変速制御が実行される。この変速制御では、エンジン3の運転状態(エンジン回転数NEおよびアクセル開度APなど)および/または車両2の走行状態(車速VPなど)に応じて、エンジン3の動力のうちの、入力軸12を介して第1ロータ14に伝達される動力と、第2回転機20で電力として回生される動力との割合を変更するように、第2回転機20が制御されるとともに、この回生電力を第1回転機10に供給することにより、第1回転機10が制御される。この場合、前述したように、第1回転機10が、遊星歯車装置と同様の動作特性を示すように運転可能であるので、上記のように第2回転機20を制御するとともに、第2回転機20での回生電力を第1回転機10に供給することによって、第1回転機10を制御すると、電気的な損失を無視すれば、第1回転機10および第2回転機20を介して、エンジン3の動力をすべて前輪4に伝達しながら、入力軸12の回転数と出力軸13の回転数との比、言い換えればエンジン回転数NEと駆動軸回転数NDとの比を任意に変更することができる。すなわち、2つの回転機10,20を制御することで、自動変速装置としての機能を実現することができる。
 また、この変速制御中、前述した所定の動力伝達条件が成立したときには、第1回転機10での電力回生を中止し、ロック電流をステータ16に供給するかまたは第1回転機10における相間短絡制御を実行することなどにより、ステータ16の回転磁界の回転速度を値0に制御する。このように制御した場合、磁気伝達可能な範囲内であれば、エンジン3の動力をすべて磁気を介して前輪4に伝達できるので、第1回転機10における回生電力を、2ND・PDU32を介して第2回転機20に供給するように制御する場合と比べて、動力伝達効率を向上させることができる。
 一方、エンジン運転中で走行中(減速フューエルカット運転中も含む)の場合において、バッテリ33の充電残量SOCが前述した所定値SOC_REF以下のときには、第1回転機10および/または第2回転機20における回生電力を制御し、バッテリ33への充電制御を実行する。それにより、バッテリ33において十分な充電残量SOCを確保することができる。なお、前述した発進制御や変速制御の実行中において、バッテリ33の充電残量SOCが所定値SOC_REF以下のときに、バッテリ33への充電制御を実行してもよい。
・エンジン運転中でアシスト条件成立
 また、エンジン運転中で前述した所定のアシスト条件が成立したときには、アシスト制御が実行される。具体的には、バッテリ33内の電力を第1回転機10および/または第2回転機20に供給することによって、第1回転機10および/または第2回転機20の動力と、エンジン3の動力とが前輪4に伝達されるように、第1回転機10および/または第2回転機20が制御される。それにより、エンジン3に加えて、第1回転機10および/または第2回転機20を動力源として、アシスト走行またはアシスト発進することができる。
・エンジン停止中で回転機発進条件成立
 さらに、エンジン停止中でかつ停車中の場合において、前述した所定の回転機発進条件が成立したときには、回転機発進制御が実行される。具体的には、エンジン3を停止したままで、バッテリ33の電力をVCU34および2ND・PDU32を介して第2回転機20に供給し、第2回転機20(制止装置)を、ロータ22が回転停止状態に保持されるように制御することで、第1ロータ14の回転を制止するとともに、バッテリ33の電力をVCU34および1ST・PDU31を介して第1回転機10に供給し、第1回転機10の力行制御を実行する。その結果、第1回転機10の電力が磁気を介して出力軸13側に動力として伝達され、それにより、車両2を発進させることができる。
 次に、車両2の運転中において、MOT・ECU30による第2回転機20の制御を停止し、MOT・ECU30によって第1回転機10のみを制御する場合の制御手法について説明する。
・エンジン運転中で停車中
 まず、エンジン運転中で停車中の場合において、前述した所定の発進条件が成立したときには、発進制御が実行される。この発進制御では、上記所定の発進条件が成立すると、まず、第1回転機10において、エンジン3の動力を電力として回生し、電力回生の開始後、その回生電力が減少するように、第1回転機10が制御される。それにより、エンジンストールを回避しながら、エンジン3の動力によって、車両2を発進させることができる。
・エンジン運転中で走行中
 さらに、エンジン運転中で走行中には、エンジン動力の分配制御が実行される。この分配制御では、エンジン3の運転状態(エンジン回転数NEおよびアクセル開度APなど)および/または車両2の走行状態(車速VPなど)に応じて、エンジン3の動力のうちの、第2ロータ15を介して前輪4に伝達される動力と、第1回転機10で電力として回生される動力との割合を変更するように、第1回転機10が制御される。それにより、エンジン3の運転状態および/または車両2の走行状態に応じて、回生電力を適切に制御しながら、車両2を走行させることができる。
 また、この分配制御中、前述した所定の動力伝達条件が成立したときには、ステータ16の回転磁界の回転速度が値0となるように、第1回転機10が制御される。それにより、エンジン3の動力を、磁気伝達可能な範囲内であれば、第1ロータ14および第2ロータ15を介して前輪4にすべて磁気伝達することができる。
 一方、エンジン運転中で走行中(減速フューエルカット運転中も含む)、エンジン3の動力が電力回生されている場合において、バッテリ33の充電残量SOCが所定値SOC_REF以下のときには、回生電力がバッテリ33に供給され、バッテリ33の充電制御が実行される。なお、前述した発進制御中に電力回生が実行されたときにも、バッテリ33の充電残量SOCが所定値SOC_REF以下であれば、バッテリ33の充電制御が実行される。それにより、バッテリ33において十分な充電残量SOCを確保することができる。
・エンジン運転中・走行中でアシスト条件成立
 また、エンジン運転中で走行中の場合において、前述した所定のアシスト条件が成立したときには、アシスト制御が実行される。具体的には、バッテリ33内の電力が第1回転機10に供給され、エンジン3および第1回転機10の動力によって前輪4を駆動するように、第1回転機10が制御される。それにより、エンジン3に加えて、第1回転機10を動力源として、アシスト走行することができる。以上のように、第1回転機10のみを制御することによって、車両2を運転することができる。
 以上のように、本実施形態の動力装置1Cによれば、エンジン3、第1回転機10および第2回転機20を動力源として、車両2を駆動することができる。また、第1回転機10を1つの軟磁性体列のみを備えるように構成すればよいので、その分、第1回転機10を小型化できるとともに製造コストを低減できる。その結果、動力装置1C自体を小型化でき、製造コストを低減できるとともに、設計の自由度を高めることができる。さらに、前述したように、第1回転機10の極対数比αすなわち極数比mの設定の仕方によって、第1回転機10における3つの電気角速度および3つのトルクの関係も自由に設定でき、それにより、設計の自由度をさらに高めることができる。
 次に、第26実施形態の動力装置1Cにおいて、第1回転機10の極対数比α(=極数比m)を変更したときのトルク変化などについて説明する。具体的には、エンジン運転中での車両走行中、エンジン3の動力の一部を第2回転機20によって電力回生し、この回生電力を第1回転機10に供給することで、第1回転機10を力行制御している場合を例にとって説明する。
 まず、動力装置1Cにおいて、第1回転機10の極対数比αが値1以外の任意の値に設定され、駆動輪が出力軸13に直結されていると仮定する。この場合、入力軸12すなわち第1ロータ14の電気角速度をωENGとし、ステータ16の回転磁界の電気角速度をωMG1とし、出力軸13すなわち第2ロータ15の電気角速度をωOUTとすると、これらの電気角速度の関係は、例えば図135に示すようになるとともに、下式(131)が成立する。
Figure JPOXMLDOC01-appb-M000100
 さらに、エンジン3から入力軸12に入力されるトルクをエンジントルクTENGとし、第1回転機10への供給電力および電気角速度ωMG1に等価なトルクを第1回転機トルクTMG1とし、第2回転機20の回生電力および電気角速度ωMG2に等価なトルクを第2回転機トルクTMG2とし、駆動輪への伝達トルクに起因して駆動輪が路面から受ける反力としてのトルクを駆動トルクTOUTとすると、下式(132),(133)が成立するとともに、これらのトルクの関係は図135に示すようになる。なお、下式(132),(133)においては、図135の上向きのトルクを正値で表している。
Figure JPOXMLDOC01-appb-M000101
Figure JPOXMLDOC01-appb-M000102
 ここで、極対数比αを前述した第1所定値α1に設定したときの第1および第2回転機トルクTMG1(α1),TMG2(α1)はそれぞれ、下式(134),(135)で表される。
Figure JPOXMLDOC01-appb-M000103
Figure JPOXMLDOC01-appb-M000104
 さらに、極対数比αを前述した第2所定値α2に設定したときの第1および第2回転機トルクTMG1(α2),TMG2(α2)はそれぞれ、下式(136),(137)で表される。
Figure JPOXMLDOC01-appb-M000105
Figure JPOXMLDOC01-appb-M000106
 以上の式(134),(136)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、第1回転機トルクTMG1の変化量ΔTMG1は、下式(138)で表される。
Figure JPOXMLDOC01-appb-M000107
 また、式(135),(137)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、第2回転機トルクTMG2の変化量ΔTMG2は、下式(139)で表される。
Figure JPOXMLDOC01-appb-M000108
 ここで、TOUT<0,TMG1>0,TMG2<0,α1<α2であるので、以上の式(138),(139)を参照すると明らかなように、極対数比αを第1所定値α1から第2所定値α2に変更することで、第1および第2回転機トルクTMG1,TMG2の絶対値が減少することになる。すなわち、極対数比αをより大きな値に設定することで、第1回転機10および第2回転機20を小型化できることが判る。
 また、2つの回転機10,20とバッテリ33との間で電力が入出力されていないとすれば、第2回転機20の回生電力はそのまま第1回転機10に供給されるので、下式(140)が成立する。
Figure JPOXMLDOC01-appb-M000109
 さらに、機械的損失および電気的損失を無視すれば、下式(141)が成立する。
Figure JPOXMLDOC01-appb-M000110
 ここで、第2回転機20から第1回転機10に供給される電力を伝達電力WMG’とし、エンジン出力WENGに対する伝達電力WMG’の比を出力比RW’とすると、この出力比RW’は、下式(142)により算出される。
Figure JPOXMLDOC01-appb-M000111
 前述した式(131),(132)の関係を上式(142)に適用すると、下式(143)が得られる。
Figure JPOXMLDOC01-appb-M000112
 ここで、減速比Rを下式(144)に示すように定義し、これを上式(143)に適用すると、下式(145)が得られる。
Figure JPOXMLDOC01-appb-M000113
Figure JPOXMLDOC01-appb-M000114
 上式(145)より、極対数比αを第1所定値α1および第2所定値α2に設定したときの出力比RW(α1)’,RW(α2)’はそれぞれ、下式(146),(147)で算出される。
Figure JPOXMLDOC01-appb-M000115
Figure JPOXMLDOC01-appb-M000116
 以上の式(146),(147)より、極対数比αを第1所定値α1から第2所定値α2に変更した場合の、出力比の変化量ΔRW’は、下式(148)で表される。
Figure JPOXMLDOC01-appb-M000117
 ここで、α1<α2であるので、上式(148)を参照すると明らかなように、極対数比αを第1所定値α1から第2所定値α2に変更することで、出力比RW’を低減でき、伝達電力WMG’を低減できることが判る。また、前述した式(145)において、極対数比αを値1、値1.5、値2に設定したときの出力比RW’と減速比Rの関係は、図136に示すようになる。この図136を参照すると明らかなように、極対数比αをより大きな値に設定することで、減速比Rのほぼ全域において、伝達電力WMG’を低減できることが判る。一般に、効率の観点からは、動力を機械伝達または磁気伝達したときの方が、電力を回転機によって動力に変換したときと比べて優れているので、上記のように、伝達電力WMG’を低減することによって、伝達効率を向上できることになる。すなわち、動力装置1Cの場合、極対数比α(=極数比m)をより大きく設定することによって、伝達効率を向上させることができる。
 なお、第26実施形態は、エンジン3を停止した状態で車両2を発進する際、第2回転機20を制止状態に制御し、第1回転機10を力行制御した例であるが、これに代えて、図137に示すように、動力装置1Cにおいて、エンジン3と第2回転機20との間にクラッチ56を設けてもよい。このように構成した場合、エンジン3を停止した状態で車両2を発進する際、MOT・ECU30によって、クラッチ56を遮断状態に保持するとともに、その状態で、2つの回転機10,20の少なくとも一方が力行制御される。それにより、2つの回転機10,20の少なくとも一方の動力によって、エンジン3を停止したままで、車両2を発進させることができる。この場合、クラッチ56としては、電磁クラッチや、油圧アクチュエータによって駆動される油圧式クラッチなどの動力を伝達・遮断する機構であって、MOT・ECU30によって制御可能なものであればよい。
 一方、第26実施形態の動力装置1Cにおいて、図138に示すように、ギヤ機構6に代えて、変速装置57を設けてもよい。この変速装置57は、出力軸13と前輪4との間の減速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置57としては、前述した変速装置50と同様に、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MTなどのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置57における低回転・高負荷域用の減速比を大きく設定することによって、第1回転機10および第2回転機20を介して変速装置57に伝達すべきトルクを小さく設定することができ、それにより、第1回転機10および第2回転機20を小型化することができる。一方、変速装置57における高車速・高負荷域用の減速比を小さく設定することによって、第1回転機10および第2回転機20の回転数を低下させることができる。それにより、第1回転機10の場合、その界磁回転数を低減できることで、エネルギ損失を低減でき、伝達効率を向上させることができるとともに、寿命を延ばすことができる。また、第2回転機20の場合、その運転効率を向上させることができるとともに、寿命を延ばすことができる。
 また、第26実施形態の動力装置1Cにおいて、図139に示すように、変速装置58を、エンジン3とロータ22の間に延びる入力軸12の途中に設けてもよい。この変速装置58は、エンジン3とロータ22との間の増速比を段階的または無段階に変更するものであり、MOT・ECU30によって変速動作が制御される。なお、変速装置58としては、前述した変速装置50と同様に、トルクコンバータ付きの有段自動変速装置、ベルト式無段変速装置、トロイダル式無段変速装置および自動MTなどのいずれかが適宜、用いられる。
 このように構成した場合、例えば、変速装置58における低回転・高負荷域用の増速比および終減速装置(すなわち差動ギヤ機構7)の終減速比をいずれも大きく設定することによって、第1回転機10および第2回転機20を介して終減速装置側に伝達すべきトルクを小さく設定することができ、それにより、第1回転機10および第2回転機20を小型化することができる。一方、変速装置58における高車速・高負荷域用の増速比を小さく(または1:1に)設定することによって、第1回転機10および第2回転機20の回転数を低下させることができる。それにより、前述したように、第1回転機10の場合、その界磁回転数を低減できることで、エネルギ損失を低減でき、伝達効率を向上させることができるとともに、寿命を延ばすことができる。また、第2回転機20の場合、その運転効率を向上させることができるとともに、寿命を延ばすことができる。
(第27実施形態)
 次に、図140を参照しながら、第27実施形態に係る動力装置1Dについて説明する。この動力装置1Dは、上記第26実施形態の動力装置1Cにおける第2回転機20の位置を、前述した第24実施形態の動力装置1Aと同様に、エンジン3と第1回転機10の間の位置から後輪5側に変更するとともに、この第2回転機20によって後輪5を駆動するように構成したものである。この動力装置1Dによれば、前述した第24実施形態の動力装置1Aと同様に、車両2の発進時、全輪駆動状態で発進することができ、それにより、雪道などの低μ路での発進性を向上させることができる。また、走行中も、全輪駆動状態で走行可能となるので、低μ路での走行安定性を向上させることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年10月13日出願の日本特許出願(特願2009-236716)に基づくものであり、その内容はここに参照として取り込まれる。
  1 動力装置
 1A 動力装置
 1B 動力装置
 1C 動力装置
 1D 動力装置
 1E 動力装置
 1F 動力装置
 1G 動力装置
 1H 動力装置
 1I 動力装置
 1J 動力装置
 1K 動力装置
 1L 動力装置
 1M 動力装置
 1N 動力装置
 1O 動力装置
 1P 動力装置
 1Q 動力装置
 1R 動力装置
 1S 動力装置
 1T 動力装置
 1U 動力装置
 DW 駆動輪(被駆動部)
  2 ECU(第1制御器、第2制御器)
 3a クランク軸(出力部、第1出力部)
  3 エンジン(熱機関)
 21 第1回転機 23 ステータ(第1ステータ)
23a 鉄芯(第1ステータ、ステータ)
23c U相コイル(第1ステータ、ステータ)
23d V相コイル(第1ステータ、ステータ)
23e W相コイル(第1ステータ、ステータ)
 24 A1ロータ(第1ロータ)
24a 永久磁石(第1磁極、磁極)
 25 A2ロータ(第2ロータ)
25a コア(第1軟磁性体、軟磁性体)
 31 第2回転機(第1回転機)
 33 ステータ(第2ステータ)
33a 鉄芯(第2ステータ、ステータ)
33b U相コイル(第2ステータ、ステータ)
33b V相コイル(第2ステータ、ステータ)
33b W相コイル(第2ステータ、ステータ)
 34 B1ロータ(第3ロータ、第1ロータ)
34a 永久磁石(第2磁極、磁極)
 35 B2ロータ(第4ロータ、第2ロータ)
35a コア(第2軟磁性体、軟磁性体)
 41 第1PDU(第1制御器、第2制御器)
 42 第2PDU(第2制御器、第1制御器)
 43 バッテリ(蓄電装置)
 61 変速装置
 71 変速装置
 81 変速装置
 91 変速装置
101 回転機(第2回転機)
103 ロータ(第2出力部)
111 変速装置
121 変速装置
131 変速装置
141 変速装置
151 変速装置
161 変速装置
171 変速装置
181 変速装置
191 変速装置
201 変速装置
PS1 第1遊星歯車装置(差動装置)
 S1 第1サンギヤ(第1要素、第3要素)
 R1 第1リングギヤ(第3要素、第1要素)
 C1 第1キャリア(第2要素)
 BL ブレーキ機構
PS2 第2遊星歯車装置(遊星歯車装置)
 S2 第2サンギヤ(サンギヤ)
 R2 第2リングギヤ(リングギヤ)
 P2 第2プラネタリギヤ(プラネタリギヤ)
 C2 第2キャリア(キャリア)
CL1 第1クラッチ
CL2 第2クラッチ
    1 動力装置
1A~1D 動力装置
    3 エンジン(熱機関)
    4 前輪(被駆動部)
    5 後輪(第2被駆動部)
   10 第1回転機
   12 入力軸(回転軸)
   13 出力軸(回転軸)
   14 第1ロータ
  14a 永久磁石(磁極)
   15 第2ロータ
  15a 軟磁性体コア(軟磁性体)
   16 ステータ
  16a 鉄芯(ステータ、ステータ列)
  16c U相コイル(ステータ、ステータ列)
  16d V相コイル(ステータ、ステータ列)
  16e W相コイル(ステータ、ステータ列)
   20 第2回転機(制止装置)
50~54 変速装置
   55 電磁ブレーキ(制止装置)
   56 クラッチ
57,58 変速装置

Claims (8)

  1.  隣り合う2つの磁極が互いに異なる極性を有する磁極列が周方向に設けられた第1ロータと、
     前記第1ロータと径方向に対向するよう配置され、前記周方向に並んだ複数の電機子に発生する磁極の変化により前記周方向に移動する回転磁界が発生する電機子列を有する第1ステータと、
     前記第1ロータと前記第1ステータの間に配置され、互いに間隔を空けて前記周方向に並んだ複数の軟磁性体を有する第2ロータと、を有し、
     前記第1ステータの前記電機子列に発生する磁極の数と、前記第1ロータの前記磁極列の磁極の数と、前記第2ロータの前記軟磁性体の数との比が、1:m:(1+m)/2(但し、m≠1)に設定され、前記第1ロータ及び前記第2ロータの一方が駆動軸に接続された第1回転機と、
     出力軸が前記第1ロータ及び前記第2ロータの他方と接続した原動機と、
     前記駆動軸との間での動力の入出力と、前記第1回転機との間での電力の授受とが可能に構成された第2回転機と、
     前記第1回転機及び前記第2回転機との間で電力を授受可能な蓄電器と、を備えた動力装置によって駆動するハイブリッド車両であって、
     前記蓄電器の充電状態を検出する状態検出部と、
     前記動力装置の制御を行う制御部と、を備え、
     前記制御部は、当該ハイブリッド車両の発進のために前記原動機を駆動する際、前記蓄電器の残容量に基づいて、前記原動機の出力を制御することを特徴とするハイブリッド車両。
  2.  請求項1に記載のハイブリッド車両であって、
     前記制御部は、
     前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、
     前記蓄電器の残容量が前記上限値よりも低い第1しきい値以上の状態で、当該ハイブリッド車両の前方発進のために前記原動機を駆動する場合は、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度を制御して、前記原動機の回転数を低く制限することにより前記原動機の出力を下げることを特徴とするハイブリッド車両。
  3.  請求項1に記載のハイブリッド車両であって、
     前記制御部は、
     前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、
     前記蓄電器の残容量が前記下限値よりも高い第2しきい値以下の状態で、当該ハイブリッド車両の後方発進のために前記原動機を駆動する場合は、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度を制御して、前記原動機の回転数を低く制限することにより前記原動機の出力を下げることを特徴とするハイブリッド車両。
  4.  請求項2又は3に記載のハイブリッド車両であって、
     前記制御部は、前記原動機の出力トルクを維持するよう前記原動機を制御することを特徴とするハイブリッド車両。
  5.  請求項2又は3に記載のハイブリッド車両であって、
     前記制御部は、前記原動機に要求されたトルクに対する前記第1回転機の前記第1ステータに発生する単位時間当たりの回生エネルギが規定値を超える場合、前記原動機の出力トルクを低く制限するよう前記原動機を制御することを特徴とするハイブリッド車両。
  6.  請求項1に記載のハイブリッド車両であって、
     前記制御部は、
     前記蓄電器の残容量が下限値から上限値までの範囲内に収まるよう前記動力装置を制御し、
     当該ハイブリッド車両が前記第1回転機からの駆動力による走行時に、前記蓄電器の残容量が前記下限値よりも高い第2しきい値以下であれば、前記原動機を駆動して、前記第1回転機の前記第1ステータに発生する前記回転磁界の磁界回転速度が低減するよう制御することを特徴とするハイブリッド車両。
  7.  請求項1~6のいずれか一項に記載のハイブリッド車両であって、
     前記第2回転機は、
     回転子及び電機子を有する電動機と、
     共線関係を保って動作する第1回転要素、第2回転要素、及び前記回転子に接続された第3回転要素を有し、前記第2回転要素に入力されたエネルギを前記第1回転要素及び前記第3回転要素に分配する機能と、前記第1回転要素及び前記第3回転要素に入力された各エネルギを合成して前記第2回転要素に出力する機能と、を有する回転機構と、を有し、
     前記第1ロータ及び前記第2回転要素と、前記第2ロータ及び前記第1回転要素とのうちの一方が前記原動機の前記出力軸に接続され、他方が前記駆動軸に接続されたことを特徴とするハイブリッド車両。
  8.  請求項1~6のいずれか一項に記載のハイブリッド車両であって、
     前記第2回転機は、
     隣り合う2つの磁極が互いに異なる極性を有する磁極列が周方向に設けられた第3ロータと、
     前記第3ロータと径方向に対向するよう配置され、前記周方向に並んだ複数の電機子に発生する磁極の変化により前記周方向に移動する回転磁界が発生する電機子列を有する第2ステータと、
     前記第3ロータと前記第2ステータの間に配置され、互いに間隔を空けて前記周方向に並んだ複数の軟磁性体を有する第4ロータと、を有し、
     前記第2ステータの前記電機子列に発生する磁極の数と、前記第3ロータの前記磁極列の磁極の数と、前記第4ロータの前記軟磁性体の数との比が、1:m:(1+m)/2(但し、m≠1)に設定され、
     前記駆動軸に前記第1ロータが接続され、前記原動機の前記出力軸に前記第2ロータが接続されている場合、前記第4ロータが前記駆動軸に接続され、前記第3ロータが前記原動機の前記出力軸に接続され、
     前記駆動軸に前記第2ロータが接続され、前記原動機の前記出力軸に前記第1ロータが接続されている場合、前記第3ロータが前記駆動軸に接続され、前記第4ロータが前記原動機の前記出力軸に接続されたことを特徴とするハイブリッド車両。
PCT/JP2010/062475 2009-10-13 2010-07-23 ハイブリッド車両 WO2011045964A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/501,383 US8666579B2 (en) 2009-10-13 2010-07-23 Hybrid vehicle
JP2011536064A JP5362840B2 (ja) 2009-10-13 2010-07-23 ハイブリッド車両
DE112010004022T DE112010004022T5 (de) 2009-10-13 2010-07-23 Hybridfahrzeug
CN201080043607.8A CN102574452A (zh) 2009-10-13 2010-07-23 混合动力车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009236716 2009-10-13
JP2009-236716 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011045964A1 true WO2011045964A1 (ja) 2011-04-21

Family

ID=43876019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062475 WO2011045964A1 (ja) 2009-10-13 2010-07-23 ハイブリッド車両

Country Status (5)

Country Link
US (1) US8666579B2 (ja)
JP (1) JP5362840B2 (ja)
CN (1) CN102574452A (ja)
DE (1) DE112010004022T5 (ja)
WO (1) WO2011045964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674731B (zh) * 2018-10-25 2019-10-11 金士盾科技股份有限公司 馬達構造
CN113140859A (zh) * 2021-04-17 2021-07-20 深圳市驰普科达科技有限公司 一种可减少待机时电力损耗的电池组管理装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759589B2 (ja) * 2008-04-24 2011-08-31 本田技研工業株式会社 動力装置
JP2012210903A (ja) * 2011-03-31 2012-11-01 Toyota Central R&D Labs Inc 動力伝達装置
SE1350768A1 (sv) * 2012-06-27 2013-12-28 Scania Cv Ab Förfarande för framförande av ett fordon
CN103009992A (zh) * 2012-12-19 2013-04-03 湖南大学 基于新型磁力无级变速器和双转子电机的混合动力系统
CN103879304B (zh) * 2012-12-19 2016-09-28 上海汽车集团股份有限公司 控制汽车发电机运行的方法和汽车电子控制器
KR101481282B1 (ko) * 2013-06-28 2015-01-09 현대자동차주식회사 하이브리드차량의 주행모드 제어방법
US20160167500A1 (en) * 2013-08-01 2016-06-16 Simone Casali Electric engine arrangement
US9680348B2 (en) * 2013-10-22 2017-06-13 Ultra Motion LLC Actuator position sensing
EP3086989A4 (en) 2013-12-23 2017-10-18 Scania CV AB A method of supplying electrical appliances of a vehicle
DE112014005377T5 (de) 2013-12-23 2016-08-25 Scania Cv Ab Antriebssystem für ein Fahrzeug
US10266172B2 (en) 2013-12-23 2019-04-23 Scania Cv Ab Propulsion system for a vehicle
WO2015099592A1 (en) 2013-12-23 2015-07-02 Scania Cv Ab Method for control of a propulsion system of a vehicle, a propulsion system, a computer program product and a vehicle
KR101794897B1 (ko) 2013-12-23 2017-11-07 스카니아 씨브이 악티에볼라그 차량용 추진 시스템
SE538187C2 (sv) 2014-03-20 2016-03-29 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538736C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera det drivande momentet från en hos hybriddrivlinan anordnad förbränningsmotor
SE538737C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539002C2 (sv) 2014-03-20 2017-03-14 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE537897C2 (sv) * 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramprodukt innefattande programkod
SE539030C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539660C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE540692C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE539661C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor hos en hybriddrivlina, fordon med en sådan förbränningsmotor, datorprogram för att starta en sådan förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE537896C2 (sv) 2014-03-20 2015-11-17 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramprodukt innefattande programkod
SE538735C2 (sv) 2014-03-20 2016-11-08 Scania Cv Ab Förfarande för att styra en hybriddrivlina för att optimera bränsleförbrukningen
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
SE539032C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
JP6492671B2 (ja) * 2015-01-13 2019-04-03 シンフォニアテクノロジー株式会社 動力伝達装置
JP6413827B2 (ja) * 2015-02-19 2018-10-31 スズキ株式会社 異常診断装置
DE102015214886B4 (de) * 2015-08-04 2017-06-01 Borgward Trademark Holdings Gmbh Hybridelektrofahrzeug, Verfahren und Vorrichtung zur Steuerung der Betriebsart desselben
US10494117B2 (en) * 2017-08-14 2019-12-03 Marinus Bernard Bosma Parallel hybrid-electric aircraft engine
CN106655680B (zh) * 2017-02-25 2023-09-05 兰州交通大学 一种可调磁旋转电机
JP6546967B2 (ja) * 2017-07-10 2019-07-17 本田技研工業株式会社 動力装置
DE102017216707A1 (de) * 2017-09-21 2019-03-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer elektrisch kommutierten Maschine
US11043884B2 (en) 2018-08-28 2021-06-22 Pratt & Whitney Canada Corp. Multi-rotor electric machine
US10857870B2 (en) * 2018-12-11 2020-12-08 Ford Global Technologies, Llc Hybrid vehicle
US11332029B2 (en) * 2020-01-31 2022-05-17 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
US11167644B2 (en) 2020-01-31 2021-11-09 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11462920B2 (en) 2020-01-31 2022-10-04 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081893A1 (ja) * 2006-12-28 2008-07-10 Honda Motor Co., Ltd. 動力装置
JP2009073472A (ja) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc 動力伝達装置
JP2009227195A (ja) * 2008-03-25 2009-10-08 Honda Motor Co Ltd 動力装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290627B1 (en) 1992-04-13 2007-11-06 Conrad Oliver Gardner Extended range motor vehicle having ambient pollutant processing
US5917248A (en) 1995-01-31 1999-06-29 Denso Corporation System and method for driving electric vehicle
US6232733B1 (en) 1998-07-28 2001-05-15 Denso Corporation Engine-motor hybrid vehicle control apparatus and method having power transmission device operation compensation function
US6205379B1 (en) 1998-09-04 2001-03-20 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle wherein one and the other of front and rear wheels are respectively driven by engine and electric motor
US6563246B1 (en) 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle
JP3719136B2 (ja) 2000-01-17 2005-11-24 日産自動車株式会社 回転電機および駆動システム
JP3531622B2 (ja) * 2001-04-18 2004-05-31 トヨタ自動車株式会社 動力出力装置
US7086977B2 (en) * 2001-05-03 2006-08-08 Ford Global Technologies, Llc Transmission arrangements for hybrid electric vehicles
US7163480B2 (en) 2001-05-03 2007-01-16 Ford Global Technologies, Llc Powertrain for a hybrid vehicle with all-wheel drive capability and method for controlling wheel slip
US6478705B1 (en) 2001-07-19 2002-11-12 General Motors Corporation Hybrid electric powertrain including a two-mode electrically variable transmission
JP3711955B2 (ja) 2002-04-01 2005-11-02 日産自動車株式会社 回転電機の制御装置
FR2854847B1 (fr) 2003-05-16 2007-03-23 Peugeot Citroen Automobiles Sa Groupe motopropulseur d'un vehicule automobile
JP4013905B2 (ja) 2003-05-21 2007-11-28 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
JP3993564B2 (ja) 2004-01-13 2007-10-17 三菱重工業株式会社 シリーズハイブリッド電気自動車
JP4254693B2 (ja) 2004-11-08 2009-04-15 トヨタ自動車株式会社 駆動装置およびこれを搭載する自動車
US7109686B2 (en) 2004-11-15 2006-09-19 Ise Corporation System and method for precharging and discharging a high power ultracapacitor pack
JP4665569B2 (ja) 2004-11-30 2011-04-06 トヨタ自動車株式会社 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
KR100631572B1 (ko) * 2005-06-16 2006-10-09 엘지전자 주식회사 역회전 방지장치를 구비한 전동기
JP4285458B2 (ja) 2005-08-08 2009-06-24 トヨタ自動車株式会社 車両の電源装置およびその制御方法
JP4539528B2 (ja) * 2005-10-20 2010-09-08 株式会社豊田中央研究所 回転電機及びそれを備えるハイブリッド駆動装置
JP4539531B2 (ja) 2005-10-26 2010-09-08 トヨタ自動車株式会社 車両の駆動装置
JP4622872B2 (ja) 2006-01-26 2011-02-02 トヨタ自動車株式会社 車両の電源装置、車両および車両の電源装置の制御方法
WO2007141948A1 (ja) 2006-06-06 2007-12-13 Honda Motor Co., Ltd. モータおよびモータ制御装置
JP4745158B2 (ja) 2006-07-24 2011-08-10 本田技研工業株式会社 電動機の制御装置
JP4709711B2 (ja) 2006-08-04 2011-06-22 本田技研工業株式会社 磁気式動力伝達装置
JP2008043135A (ja) 2006-08-09 2008-02-21 Honda Motor Co Ltd 車両用モータの制御装置
JP4310361B2 (ja) * 2006-12-27 2009-08-05 本田技研工業株式会社 動力装置
JP5282360B2 (ja) 2007-02-16 2013-09-04 富士電機株式会社 回転電機駆動用電源装置
JP4586832B2 (ja) 2007-08-10 2010-11-24 トヨタ自動車株式会社 電動車両
JP5053901B2 (ja) 2008-03-27 2012-10-24 株式会社竹中土木 地盤改良工法試験の供試体の作製方法
JP4505521B2 (ja) * 2008-07-09 2010-07-21 本田技研工業株式会社 動力装置
DE112010005325B4 (de) * 2010-03-01 2021-05-06 Denso Corporation Elektrisch betriebenes Fahrzeug und Verfahren zur Steuerung desselben

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081893A1 (ja) * 2006-12-28 2008-07-10 Honda Motor Co., Ltd. 動力装置
JP2009073472A (ja) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc 動力伝達装置
JP2009227195A (ja) * 2008-03-25 2009-10-08 Honda Motor Co Ltd 動力装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674731B (zh) * 2018-10-25 2019-10-11 金士盾科技股份有限公司 馬達構造
CN113140859A (zh) * 2021-04-17 2021-07-20 深圳市驰普科达科技有限公司 一种可减少待机时电力损耗的电池组管理装置
CN113140859B (zh) * 2021-04-17 2022-08-23 深圳市驰普科达科技有限公司 一种可减少待机时电力损耗的电池组管理装置

Also Published As

Publication number Publication date
CN102574452A (zh) 2012-07-11
JP5362840B2 (ja) 2013-12-11
US8666579B2 (en) 2014-03-04
US20120197475A1 (en) 2012-08-02
DE112010004022T5 (de) 2012-12-27
JPWO2011045964A1 (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5362840B2 (ja) ハイブリッド車両
WO2011045965A1 (ja) ハイブリッド車両
JP4505521B2 (ja) 動力装置
JP5354818B2 (ja) ハイブリッド車両
JP4310361B2 (ja) 動力装置
JP4310362B2 (ja) 動力装置
JP4759589B2 (ja) 動力装置
JP4818368B2 (ja) ハイブリッド車両
JP4505524B2 (ja) 動力装置
JP5309220B2 (ja) 移動装置
US20110183801A1 (en) Hybrid drive device
JP5170781B2 (ja) ハイブリッド車両
JP5153587B2 (ja) 動力装置
JP5075218B2 (ja) 動力装置
JP5075219B2 (ja) 動力装置
JP4948617B2 (ja) 動力装置
JP4948618B2 (ja) 動力装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043607.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13501383

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010004022

Country of ref document: DE

Ref document number: 1120100040222

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823232

Country of ref document: EP

Kind code of ref document: A1