ATE504078T1 - Verfahren zur herstellung von cmos-transistoren mit verspanntem halbleiter mit gitterfehlangepassten regionen - Google Patents
Verfahren zur herstellung von cmos-transistoren mit verspanntem halbleiter mit gitterfehlangepassten regionenInfo
- Publication number
- ATE504078T1 ATE504078T1 AT04780054T AT04780054T ATE504078T1 AT E504078 T1 ATE504078 T1 AT E504078T1 AT 04780054 T AT04780054 T AT 04780054T AT 04780054 T AT04780054 T AT 04780054T AT E504078 T1 ATE504078 T1 AT E504078T1
- Authority
- AT
- Austria
- Prior art keywords
- grid
- cmos transistors
- mismatched regions
- semiconductor cmos
- stressed semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title abstract 5
- 239000000463 material Substances 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66628—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66636—Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7848—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/604,607 US6891192B2 (en) | 2003-08-04 | 2003-08-04 | Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions |
PCT/US2004/025152 WO2005017964A2 (en) | 2003-08-04 | 2004-08-04 | Structure and method of making strained semiconductor cmos transistors having lattice-mismatched source and drain regions |
Publications (1)
Publication Number | Publication Date |
---|---|
ATE504078T1 true ATE504078T1 (de) | 2011-04-15 |
Family
ID=34115654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT04780054T ATE504078T1 (de) | 2003-08-04 | 2004-08-04 | Verfahren zur herstellung von cmos-transistoren mit verspanntem halbleiter mit gitterfehlangepassten regionen |
Country Status (10)
Country | Link |
---|---|
US (3) | US6891192B2 (de) |
EP (1) | EP1654770B1 (de) |
JP (1) | JP4808618B2 (de) |
KR (1) | KR100791441B1 (de) |
CN (1) | CN100428497C (de) |
AT (1) | ATE504078T1 (de) |
DE (1) | DE602004032035D1 (de) |
IL (1) | IL173422A (de) |
TW (1) | TWI284961B (de) |
WO (1) | WO2005017964A2 (de) |
Families Citing this family (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002537796A (ja) * | 1999-03-02 | 2002-11-12 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | ヒトグリコシル化酵素 |
KR100498475B1 (ko) * | 2003-01-07 | 2005-07-01 | 삼성전자주식회사 | 모스 전계 효과 트랜지스터 구조 및 그 제조 방법 |
US6900502B2 (en) | 2003-04-03 | 2005-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel on insulator device |
US6882025B2 (en) * | 2003-04-25 | 2005-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel transistor and methods of manufacture |
US6867433B2 (en) * | 2003-04-30 | 2005-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors |
US20050012087A1 (en) * | 2003-07-15 | 2005-01-20 | Yi-Ming Sheu | Self-aligned MOSFET having an oxide region below the channel |
US7078742B2 (en) * | 2003-07-25 | 2006-07-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel semiconductor structure and method of fabricating the same |
US6940705B2 (en) * | 2003-07-25 | 2005-09-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Capacitor with enhanced performance and method of manufacture |
US6936881B2 (en) * | 2003-07-25 | 2005-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Capacitor that includes high permittivity capacitor dielectric |
US7101742B2 (en) * | 2003-08-12 | 2006-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel complementary field-effect transistors and methods of manufacture |
US20050035369A1 (en) * | 2003-08-15 | 2005-02-17 | Chun-Chieh Lin | Structure and method of forming integrated circuits utilizing strained channel transistors |
US20050035410A1 (en) * | 2003-08-15 | 2005-02-17 | Yee-Chia Yeo | Semiconductor diode with reduced leakage |
US7112495B2 (en) * | 2003-08-15 | 2006-09-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method of a strained channel transistor and a second semiconductor component in an integrated circuit |
US7071052B2 (en) * | 2003-08-18 | 2006-07-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Resistor with reduced leakage |
CN101359598B (zh) * | 2003-09-04 | 2010-06-09 | 台湾积体电路制造股份有限公司 | 应变沟道半导体结构的制造方法 |
US6906360B2 (en) * | 2003-09-10 | 2005-06-14 | International Business Machines Corporation | Structure and method of making strained channel CMOS transistors having lattice-mismatched epitaxial extension and source and drain regions |
US7303949B2 (en) | 2003-10-20 | 2007-12-04 | International Business Machines Corporation | High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture |
US7037770B2 (en) * | 2003-10-20 | 2006-05-02 | International Business Machines Corporation | Method of manufacturing strained dislocation-free channels for CMOS |
US7057216B2 (en) * | 2003-10-31 | 2006-06-06 | International Business Machines Corporation | High mobility heterojunction complementary field effect transistors and methods thereof |
US7888201B2 (en) | 2003-11-04 | 2011-02-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator SRAM configured using partially-depleted and fully-depleted transistors |
US7129126B2 (en) * | 2003-11-05 | 2006-10-31 | International Business Machines Corporation | Method and structure for forming strained Si for CMOS devices |
US7064027B2 (en) * | 2003-11-13 | 2006-06-20 | International Business Machines Corporation | Method and structure to use an etch resistant liner on transistor gate structure to achieve high device performance |
US7247534B2 (en) * | 2003-11-19 | 2007-07-24 | International Business Machines Corporation | Silicon device on Si:C-OI and SGOI and method of manufacture |
US7018891B2 (en) * | 2003-12-16 | 2006-03-28 | International Business Machines Corporation | Ultra-thin Si channel CMOS with improved series resistance |
JP4375619B2 (ja) * | 2004-05-26 | 2009-12-02 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置の製造方法 |
US7223994B2 (en) * | 2004-06-03 | 2007-05-29 | International Business Machines Corporation | Strained Si on multiple materials for bulk or SOI substrates |
US7122435B2 (en) * | 2004-08-02 | 2006-10-17 | Texas Instruments Incorporated | Methods, systems and structures for forming improved transistors |
US7169659B2 (en) * | 2004-08-31 | 2007-01-30 | Texas Instruments Incorporated | Method to selectively recess ETCH regions on a wafer surface using capoly as a mask |
US7135724B2 (en) * | 2004-09-29 | 2006-11-14 | International Business Machines Corporation | Structure and method for making strained channel field effect transistor using sacrificial spacer |
US7064025B1 (en) * | 2004-12-02 | 2006-06-20 | International Business Machines Corporation | Method for forming self-aligned dual salicide in CMOS technologies |
KR100632654B1 (ko) * | 2004-12-28 | 2006-10-12 | 주식회사 하이닉스반도체 | 플래시 메모리 소자의 제조 방법 |
US7176481B2 (en) * | 2005-01-12 | 2007-02-13 | International Business Machines Corporation | In situ doped embedded sige extension and source/drain for enhanced PFET performance |
US7271043B2 (en) | 2005-01-18 | 2007-09-18 | International Business Machines Corporation | Method for manufacturing strained silicon directly-on-insulator substrate with hybrid crystalline orientation and different stress levels |
US7238580B2 (en) * | 2005-01-26 | 2007-07-03 | Freescale Semiconductor, Inc. | Semiconductor fabrication process employing stress inducing source drain structures with graded impurity concentration |
KR100703967B1 (ko) | 2005-02-28 | 2007-04-05 | 삼성전자주식회사 | 씨모스 트랜지스터 및 그 제조 방법 |
JP4426988B2 (ja) | 2005-03-09 | 2010-03-03 | 富士通マイクロエレクトロニクス株式会社 | pチャネルMOSトランジスタの製造方法 |
JP4561419B2 (ja) * | 2005-03-16 | 2010-10-13 | ソニー株式会社 | 半導体装置の製造方法 |
US7205202B2 (en) * | 2005-04-21 | 2007-04-17 | Freescale Semiconductor, Inc. | Semiconductor device and method for regional stress control |
US7446350B2 (en) * | 2005-05-10 | 2008-11-04 | International Business Machine Corporation | Embedded silicon germanium using a double buried oxide silicon-on-insulator wafer |
US7858458B2 (en) * | 2005-06-14 | 2010-12-28 | Micron Technology, Inc. | CMOS fabrication |
CN100463143C (zh) * | 2005-07-07 | 2009-02-18 | 中芯国际集成电路制造(上海)有限公司 | 具有氧化物间隔层的应变源漏cmos的集成方法 |
JP4664760B2 (ja) * | 2005-07-12 | 2011-04-06 | 株式会社東芝 | 半導体装置およびその製造方法 |
CN100394583C (zh) * | 2005-08-25 | 2008-06-11 | 中芯国际集成电路制造(上海)有限公司 | 应变cmos的集成制作方法 |
CN100452354C (zh) * | 2005-08-25 | 2009-01-14 | 中芯国际集成电路制造(上海)有限公司 | 多层膜作为硬掩模和抗反射层的应变源漏cmos的制作方法 |
DE102005041225B3 (de) * | 2005-08-31 | 2007-04-26 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung vertiefter verformter Drain/Source-Gebiete in NMOS- und PMOS-Transistoren |
JP2007073801A (ja) * | 2005-09-08 | 2007-03-22 | Seiko Epson Corp | 半導体装置 |
US8003470B2 (en) | 2005-09-13 | 2011-08-23 | Infineon Technologies Ag | Strained semiconductor device and method of making the same |
CN101563783A (zh) * | 2005-09-23 | 2009-10-21 | Nxp股份有限公司 | 具有改善的性能的存储器件以及制造这种存储器件的方法 |
CN100442476C (zh) | 2005-09-29 | 2008-12-10 | 中芯国际集成电路制造(上海)有限公司 | 用于cmos技术的应变感应迁移率增强纳米器件及工艺 |
US7947546B2 (en) | 2005-10-31 | 2011-05-24 | Chartered Semiconductor Manufacturing, Ltd. | Implant damage control by in-situ C doping during SiGe epitaxy for device applications |
CN1959959B (zh) * | 2005-10-31 | 2010-04-21 | 中芯国际集成电路制造(上海)有限公司 | 使用应变硅用于集成pmos和nmos晶体管的单掩模设计方法和结构 |
US20070099360A1 (en) * | 2005-11-03 | 2007-05-03 | International Business Machines Corporation | Integrated circuits having strained channel field effect transistors and methods of making |
US7420202B2 (en) | 2005-11-08 | 2008-09-02 | Freescale Semiconductor, Inc. | Electronic device including a transistor structure having an active region adjacent to a stressor layer and a process for forming the electronic device |
US7566609B2 (en) * | 2005-11-29 | 2009-07-28 | International Business Machines Corporation | Method of manufacturing a semiconductor structure |
US8407634B1 (en) | 2005-12-01 | 2013-03-26 | Synopsys Inc. | Analysis of stress impact on transistor performance |
DE602005017806D1 (de) * | 2005-12-23 | 2009-12-31 | Imec | Methode für ein selektives epitaktisches Wachstum von Source/Drain Gebieten |
US7518193B2 (en) | 2006-01-10 | 2009-04-14 | International Business Machines Corporation | SRAM array and analog FET with dual-strain layers comprising relaxed regions |
JP2007220808A (ja) * | 2006-02-15 | 2007-08-30 | Toshiba Corp | 半導体装置及びその製造方法 |
US8017472B2 (en) * | 2006-02-17 | 2011-09-13 | Infineon Technologies Ag | CMOS devices having stress-altering material lining the isolation trenches and methods of manufacturing thereof |
US7691698B2 (en) * | 2006-02-21 | 2010-04-06 | International Business Machines Corporation | Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain |
US7696019B2 (en) * | 2006-03-09 | 2010-04-13 | Infineon Technologies Ag | Semiconductor devices and methods of manufacturing thereof |
JP5119604B2 (ja) * | 2006-03-16 | 2013-01-16 | ソニー株式会社 | 半導体装置の製造方法 |
US20070238236A1 (en) * | 2006-03-28 | 2007-10-11 | Cook Ted Jr | Structure and fabrication method of a selectively deposited capping layer on an epitaxially grown source drain |
US20070238267A1 (en) * | 2006-03-28 | 2007-10-11 | International Business Machines Corporation | Epitaxy of Silicon-Carbon Substitutional Solid Solutions by Ultra-Fast Annealing of Amorphous Material |
US7402477B2 (en) * | 2006-03-30 | 2008-07-22 | Freescale Semiconductor, Inc. | Method of making a multiple crystal orientation semiconductor device |
DE102006015077B4 (de) | 2006-03-31 | 2010-12-23 | Advanced Micro Devices, Inc., Sunnyvale | Transistor mit abgesenkten Drain- und Source-Gebieten und Verfahren zur Herstellung desselben |
DE102006015090B4 (de) * | 2006-03-31 | 2008-03-13 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung unterschiedlicher eingebetteter Verformungsschichten in Transistoren |
JP5130648B2 (ja) * | 2006-04-27 | 2013-01-30 | ソニー株式会社 | 半導体装置の製造方法および半導体装置 |
US20080023752A1 (en) * | 2006-07-28 | 2008-01-31 | International Business Machines Corporation | BORON DOPED SiGe HALO FOR NFET TO CONTROL SHORT CHANNEL EFFECT |
JP5076388B2 (ja) | 2006-07-28 | 2012-11-21 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
US8754446B2 (en) * | 2006-08-30 | 2014-06-17 | International Business Machines Corporation | Semiconductor structure having undercut-gate-oxide gate stack enclosed by protective barrier material |
US20080079084A1 (en) * | 2006-09-28 | 2008-04-03 | Micron Technology, Inc. | Enhanced mobility MOSFET devices |
US7550351B2 (en) * | 2006-10-05 | 2009-06-23 | International Business Machines Corporation | Structure and method for creation of a transistor |
US20080124874A1 (en) * | 2006-11-03 | 2008-05-29 | Samsung Electronics Co., Ltd. | Methods of Forming Field Effect Transistors Having Silicon-Germanium Source and Drain Regions |
US7550796B2 (en) | 2006-12-06 | 2009-06-23 | Electronics And Telecommunications Research Institute | Germanium semiconductor device and method of manufacturing the same |
US20080142879A1 (en) * | 2006-12-14 | 2008-06-19 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing differential spacers |
JP2008153515A (ja) * | 2006-12-19 | 2008-07-03 | Fujitsu Ltd | Mosトランジスタ、そのmosトランジスタの製造方法、そのmosトランジスタを利用したcmos型半導体装置、及び、そのcmos型半導体装置を利用した半導体装置 |
US8569858B2 (en) * | 2006-12-20 | 2013-10-29 | Freescale Semiconductor, Inc. | Semiconductor device including an active region and two layers having different stress characteristics |
US8217423B2 (en) * | 2007-01-04 | 2012-07-10 | International Business Machines Corporation | Structure and method for mobility enhanced MOSFETs with unalloyed silicide |
US8558278B2 (en) * | 2007-01-16 | 2013-10-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained transistor with optimized drive current and method of forming |
CN101226899A (zh) * | 2007-01-19 | 2008-07-23 | 中芯国际集成电路制造(上海)有限公司 | 在硅凹陷中后续外延生长应变硅mos晶片管的方法和结构 |
US7843011B2 (en) * | 2007-01-31 | 2010-11-30 | Freescale Semiconductor, Inc. | Electronic device including insulating layers having different strains |
JP5217180B2 (ja) | 2007-02-20 | 2013-06-19 | 富士通セミコンダクター株式会社 | 静電放電保護装置の製造方法 |
DE102007009915B4 (de) * | 2007-02-28 | 2020-07-30 | Globalfoundries Inc. | Halbleiterbauelement mit verformter Halbleiterlegierung mit einem Konzentrationsprofil und Verfahren zu dessen Herstellung |
US8344447B2 (en) * | 2007-04-05 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicon layer for stopping dislocation propagation |
US7825477B2 (en) * | 2007-04-23 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device with localized stressor |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
JP2009032962A (ja) * | 2007-07-27 | 2009-02-12 | Panasonic Corp | 半導体装置及びその製造方法 |
JP2009043916A (ja) | 2007-08-08 | 2009-02-26 | Toshiba Corp | 半導体装置及びその製造方法 |
CN101364545B (zh) * | 2007-08-10 | 2010-12-22 | 中芯国际集成电路制造(上海)有限公司 | 应变硅晶体管的锗硅和多晶硅栅极结构 |
US20090053883A1 (en) * | 2007-08-24 | 2009-02-26 | Texas Instruments Incorporated | Method of setting a work function of a fully silicided semiconductor device, and related device |
US7895548B2 (en) * | 2007-10-26 | 2011-02-22 | Synopsys, Inc. | Filler cells for design optimization in a place-and-route system |
US9472423B2 (en) * | 2007-10-30 | 2016-10-18 | Synopsys, Inc. | Method for suppressing lattice defects in a semiconductor substrate |
JP5107680B2 (ja) * | 2007-11-16 | 2012-12-26 | パナソニック株式会社 | 半導体装置 |
US8058123B2 (en) | 2007-11-29 | 2011-11-15 | Globalfoundries Singapore Pte. Ltd. | Integrated circuit and method of fabrication thereof |
US20090152590A1 (en) * | 2007-12-13 | 2009-06-18 | International Business Machines Corporation | Method and structure for semiconductor devices with silicon-germanium deposits |
KR100949804B1 (ko) * | 2007-12-14 | 2010-03-30 | 한국전자통신연구원 | 자기장 감지소자 |
JP2009152391A (ja) * | 2007-12-20 | 2009-07-09 | Fujitsu Microelectronics Ltd | 半導体装置の製造方法及び半導体装置 |
US7678634B2 (en) * | 2008-01-28 | 2010-03-16 | International Business Machines Corporation | Local stress engineering for CMOS devices |
US7943961B2 (en) * | 2008-03-13 | 2011-05-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain bars in stressed layers of MOS devices |
US8624295B2 (en) * | 2008-03-20 | 2014-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | SRAM devices utilizing strained-channel transistors and methods of manufacture |
US8125037B2 (en) | 2008-08-12 | 2012-02-28 | International Business Machines Corporation | Field effect transistor with channel region edge and center portions having different band structures for suppressed corner leakage |
US7838353B2 (en) | 2008-08-12 | 2010-11-23 | International Business Machines Corporation | Field effect transistor with suppressed corner leakage through channel material band-edge modulation, design structure and method |
US7808051B2 (en) * | 2008-09-29 | 2010-10-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Standard cell without OD space effect in Y-direction |
CN101409294B (zh) * | 2008-11-28 | 2010-06-02 | 西安电子科技大学 | 三维量子阱cmos集成器件及其制作方法 |
JP5278022B2 (ja) * | 2009-02-17 | 2013-09-04 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
DE102009015715B4 (de) * | 2009-03-31 | 2011-03-17 | Globalfoundries Dresden Module One Llc & Co. Kg | Verfahren zur Herstellung eines Transistorbauelements mit Bewahren der Integrität eines Gatestapel mit großem ε durch einen Versatzabstandshalter, der zum Bestimmen eines Abstands einer verformungsinduzierenden Halbleiterlegierung verwendet wird, und Transistorbauelement |
US7951657B2 (en) | 2009-05-21 | 2011-05-31 | International Business Machines Corporation | Method of forming a planar field effect transistor with embedded and faceted source/drain stressors on a silicon-on-insulator (S0I) wafer, a planar field effect transistor structure and a design structure for the planar field effect transistor |
CN101964327B (zh) * | 2009-07-23 | 2013-12-11 | 联华电子股份有限公司 | 金属氧化物半导体晶体管结构及其制作方法 |
CN102024761A (zh) * | 2009-09-18 | 2011-04-20 | 中芯国际集成电路制造(上海)有限公司 | 用于形成半导体集成电路器件的方法 |
US8022488B2 (en) * | 2009-09-24 | 2011-09-20 | International Business Machines Corporation | High-performance FETs with embedded stressors |
KR20110036312A (ko) * | 2009-10-01 | 2011-04-07 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
US8415718B2 (en) | 2009-10-30 | 2013-04-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming epi film in substrate trench |
US8436404B2 (en) | 2009-12-30 | 2013-05-07 | Intel Corporation | Self-aligned contacts |
US8278164B2 (en) | 2010-02-04 | 2012-10-02 | International Business Machines Corporation | Semiconductor structures and methods of manufacturing the same |
US8361867B2 (en) * | 2010-03-19 | 2013-01-29 | Acorn Technologies, Inc. | Biaxial strained field effect transistor devices |
US8492234B2 (en) | 2010-06-29 | 2013-07-23 | International Business Machines Corporation | Field effect transistor device |
CN101866859B (zh) | 2010-07-07 | 2012-07-04 | 北京大学 | 一种沟道应力引入方法及采用该方法制备的场效应晶体管 |
US8021950B1 (en) | 2010-10-26 | 2011-09-20 | International Business Machines Corporation | Semiconductor wafer processing method that allows device regions to be selectively annealed following back end of the line (BEOL) metal wiring layer formation |
US8778767B2 (en) | 2010-11-18 | 2014-07-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits and fabrication methods thereof |
US8796788B2 (en) | 2011-01-19 | 2014-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices with strained source/drain structures |
US8466502B2 (en) | 2011-03-24 | 2013-06-18 | United Microelectronics Corp. | Metal-gate CMOS device |
US8445363B2 (en) | 2011-04-21 | 2013-05-21 | United Microelectronics Corp. | Method of fabricating an epitaxial layer |
US8324059B2 (en) | 2011-04-25 | 2012-12-04 | United Microelectronics Corp. | Method of fabricating a semiconductor structure |
US8426284B2 (en) | 2011-05-11 | 2013-04-23 | United Microelectronics Corp. | Manufacturing method for semiconductor structure |
US8481391B2 (en) | 2011-05-18 | 2013-07-09 | United Microelectronics Corp. | Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure |
US8431460B2 (en) | 2011-05-27 | 2013-04-30 | United Microelectronics Corp. | Method for fabricating semiconductor device |
US8716750B2 (en) | 2011-07-25 | 2014-05-06 | United Microelectronics Corp. | Semiconductor device having epitaxial structures |
US8575043B2 (en) | 2011-07-26 | 2013-11-05 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
US8647941B2 (en) | 2011-08-17 | 2014-02-11 | United Microelectronics Corp. | Method of forming semiconductor device |
US8674433B2 (en) | 2011-08-24 | 2014-03-18 | United Microelectronics Corp. | Semiconductor process |
US8623713B2 (en) | 2011-09-15 | 2014-01-07 | International Business Machines Corporation | Trench isolation structure |
US8476169B2 (en) | 2011-10-17 | 2013-07-02 | United Microelectronics Corp. | Method of making strained silicon channel semiconductor structure |
US8691659B2 (en) | 2011-10-26 | 2014-04-08 | United Microelectronics Corp. | Method for forming void-free dielectric layer |
US8754448B2 (en) | 2011-11-01 | 2014-06-17 | United Microelectronics Corp. | Semiconductor device having epitaxial layer |
US9246004B2 (en) | 2011-11-15 | 2016-01-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained structures of semiconductor devices |
US8647953B2 (en) | 2011-11-17 | 2014-02-11 | United Microelectronics Corp. | Method for fabricating first and second epitaxial cap layers |
US8709930B2 (en) | 2011-11-25 | 2014-04-29 | United Microelectronics Corp. | Semiconductor process |
US9012277B2 (en) * | 2012-01-09 | 2015-04-21 | Globalfoundries Inc. | In situ doping and diffusionless annealing of embedded stressor regions in PMOS and NMOS devices |
US9263342B2 (en) * | 2012-03-02 | 2016-02-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having a strained region |
US9136348B2 (en) | 2012-03-12 | 2015-09-15 | United Microelectronics Corp. | Semiconductor structure and fabrication method thereof |
US9202914B2 (en) | 2012-03-14 | 2015-12-01 | United Microelectronics Corporation | Semiconductor device and method for fabricating the same |
US8664069B2 (en) | 2012-04-05 | 2014-03-04 | United Microelectronics Corp. | Semiconductor structure and process thereof |
CN103367129B (zh) * | 2012-04-10 | 2016-03-23 | 中芯国际集成电路制造(上海)有限公司 | 具有硅锗掺杂区的半导体器件的制作方法 |
US8866230B2 (en) | 2012-04-26 | 2014-10-21 | United Microelectronics Corp. | Semiconductor devices |
US8835243B2 (en) | 2012-05-04 | 2014-09-16 | United Microelectronics Corp. | Semiconductor process |
US8872228B2 (en) * | 2012-05-11 | 2014-10-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained-channel semiconductor device fabrication |
US8951876B2 (en) | 2012-06-20 | 2015-02-10 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
US8796695B2 (en) | 2012-06-22 | 2014-08-05 | United Microelectronics Corp. | Multi-gate field-effect transistor and process thereof |
US8691644B2 (en) * | 2012-07-05 | 2014-04-08 | Texas Instruments Incorporated | Method of forming a CMOS device with a stressed-channel NMOS transistor and a strained-channel PMOS transistor |
US9817928B2 (en) | 2012-08-31 | 2017-11-14 | Synopsys, Inc. | Latch-up suppression and substrate noise coupling reduction through a substrate back-tie for 3D integrated circuits |
US9190346B2 (en) | 2012-08-31 | 2015-11-17 | Synopsys, Inc. | Latch-up suppression and substrate noise coupling reduction through a substrate back-tie for 3D integrated circuits |
US8710632B2 (en) | 2012-09-07 | 2014-04-29 | United Microelectronics Corp. | Compound semiconductor epitaxial structure and method for fabricating the same |
US8815656B2 (en) | 2012-09-19 | 2014-08-26 | International Business Machines Corporation | Semiconductor device and method with greater epitaxial growth on 110 crystal plane |
CN103730421A (zh) * | 2012-10-16 | 2014-04-16 | 中芯国际集成电路制造(上海)有限公司 | Cmos的形成方法 |
CN103779213A (zh) * | 2012-10-18 | 2014-05-07 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制造方法 |
US8847324B2 (en) | 2012-12-17 | 2014-09-30 | Synopsys, Inc. | Increasing ION /IOFF ratio in FinFETs and nano-wires |
US9379018B2 (en) | 2012-12-17 | 2016-06-28 | Synopsys, Inc. | Increasing Ion/Ioff ratio in FinFETs and nano-wires |
CN103871967A (zh) * | 2012-12-18 | 2014-06-18 | 中芯国际集成电路制造(上海)有限公司 | Cmos晶体管的形成方法 |
US8900958B2 (en) | 2012-12-19 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial formation mechanisms of source and drain regions |
US8768271B1 (en) * | 2012-12-19 | 2014-07-01 | Intel Corporation | Group III-N transistors on nanoscale template structures |
US8853039B2 (en) | 2013-01-17 | 2014-10-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction for formation of epitaxial layer in source and drain regions |
US9117925B2 (en) | 2013-01-31 | 2015-08-25 | United Microelectronics Corp. | Epitaxial process |
FR3002688A1 (fr) * | 2013-02-27 | 2014-08-29 | Commissariat Energie Atomique | Procede de fabrication d'un dispositif microelectronique |
US8753902B1 (en) | 2013-03-13 | 2014-06-17 | United Microelectronics Corp. | Method of controlling etching process for forming epitaxial structure |
US9034705B2 (en) | 2013-03-26 | 2015-05-19 | United Microelectronics Corp. | Method of forming semiconductor device |
US10438856B2 (en) | 2013-04-03 | 2019-10-08 | Stmicroelectronics, Inc. | Methods and devices for enhancing mobility of charge carriers |
US9064893B2 (en) | 2013-05-13 | 2015-06-23 | United Microelectronics Corp. | Gradient dopant of strained substrate manufacturing method of semiconductor device |
US9076652B2 (en) | 2013-05-27 | 2015-07-07 | United Microelectronics Corp. | Semiconductor process for modifying shape of recess |
US8853060B1 (en) | 2013-05-27 | 2014-10-07 | United Microelectronics Corp. | Epitaxial process |
US9293534B2 (en) | 2014-03-21 | 2016-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of dislocations in source and drain regions of FinFET devices |
US8765546B1 (en) | 2013-06-24 | 2014-07-01 | United Microelectronics Corp. | Method for fabricating fin-shaped field-effect transistor |
US8895396B1 (en) | 2013-07-11 | 2014-11-25 | United Microelectronics Corp. | Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures |
US8981487B2 (en) | 2013-07-31 | 2015-03-17 | United Microelectronics Corp. | Fin-shaped field-effect transistor (FinFET) |
WO2015047267A1 (en) | 2013-09-26 | 2015-04-02 | Intel Corporation | Methods of forming dislocation enhanced strain in nmos structures |
US20150118832A1 (en) * | 2013-10-24 | 2015-04-30 | Applied Materials, Inc. | Methods for patterning a hardmask layer for an ion implantation process |
US9214514B2 (en) * | 2013-11-14 | 2015-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Mechanisms for forming semiconductor device having stable dislocation profile |
US9947772B2 (en) | 2014-03-31 | 2018-04-17 | Stmicroelectronics, Inc. | SOI FinFET transistor with strained channel |
CN105304567A (zh) * | 2014-07-31 | 2016-02-03 | 上海华力微电子有限公司 | 用于形成嵌入式锗硅的方法 |
US11637014B2 (en) * | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
CN113594094B (zh) * | 2021-07-08 | 2023-10-24 | 长鑫存储技术有限公司 | 存储器及其制备方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155571A (en) * | 1990-08-06 | 1992-10-13 | The Regents Of The University Of California | Complementary field effect transistors having strained superlattice structure |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
US6159815A (en) * | 1996-09-27 | 2000-12-12 | Siemens Aktiengesellschaft | Method of producing a MOS transistor |
DE59707274D1 (de) * | 1996-09-27 | 2002-06-20 | Infineon Technologies Ag | Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung |
JPH11163343A (ja) * | 1997-11-28 | 1999-06-18 | Nec Corp | 半導体装置およびその製造方法 |
JP4258034B2 (ja) * | 1998-05-27 | 2009-04-30 | ソニー株式会社 | 半導体装置及び半導体装置の製造方法 |
US6228722B1 (en) * | 1999-04-16 | 2001-05-08 | United Microelectronics Corp. | Method for fabricating self-aligned metal silcide |
KR100336040B1 (ko) * | 1999-04-23 | 2002-05-08 | 윤종용 | 할로 구조를 지닌 전계 효과 트랜지스터 및 제조 방법 |
JP2001024194A (ja) * | 1999-05-06 | 2001-01-26 | Toshiba Corp | 半導体装置の製造方法及び半導体装置 |
JP3876401B2 (ja) * | 1999-08-09 | 2007-01-31 | 富士通株式会社 | 半導体装置の製造方法 |
US7312485B2 (en) * | 2000-11-29 | 2007-12-25 | Intel Corporation | CMOS fabrication process utilizing special transistor orientation |
US6495402B1 (en) * | 2001-02-06 | 2002-12-17 | Advanced Micro Devices, Inc. | Semiconductor-on-insulator (SOI) device having source/drain silicon-germanium regions and method of manufacture |
KR100396895B1 (ko) * | 2001-08-02 | 2003-09-02 | 삼성전자주식회사 | L자형 스페이서를 채용한 반도체 소자의 제조 방법 |
US6621131B2 (en) * | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
JP2003152177A (ja) * | 2001-11-19 | 2003-05-23 | Matsushita Electric Ind Co Ltd | 半導体装置およびその製造方法 |
US6806151B2 (en) * | 2001-12-14 | 2004-10-19 | Texas Instruments Incorporated | Methods and apparatus for inducing stress in a semiconductor device |
JP2004031753A (ja) * | 2002-06-27 | 2004-01-29 | Renesas Technology Corp | 半導体装置の製造方法 |
US6998683B2 (en) * | 2002-10-03 | 2006-02-14 | Micron Technology, Inc. | TFT-based common gate CMOS inverters, and computer systems utilizing novel CMOS inverters |
US6703648B1 (en) * | 2002-10-29 | 2004-03-09 | Advanced Micro Devices, Inc. | Strained silicon PMOS having silicon germanium source/drain extensions and method for its fabrication |
US6921913B2 (en) * | 2003-03-04 | 2005-07-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel transistor structure with lattice-mismatched zone |
US20040262683A1 (en) * | 2003-06-27 | 2004-12-30 | Bohr Mark T. | PMOS transistor strain optimization with raised junction regions |
-
2003
- 2003-08-04 US US10/604,607 patent/US6891192B2/en not_active Expired - Lifetime
-
2004
- 2004-07-20 TW TW093121639A patent/TWI284961B/zh not_active IP Right Cessation
- 2004-08-04 JP JP2006522694A patent/JP4808618B2/ja not_active Expired - Lifetime
- 2004-08-04 WO PCT/US2004/025152 patent/WO2005017964A2/en active Application Filing
- 2004-08-04 CN CNB2004800219013A patent/CN100428497C/zh not_active Expired - Lifetime
- 2004-08-04 EP EP04780054A patent/EP1654770B1/de not_active Expired - Lifetime
- 2004-08-04 DE DE602004032035T patent/DE602004032035D1/de not_active Expired - Lifetime
- 2004-08-04 AT AT04780054T patent/ATE504078T1/de not_active IP Right Cessation
- 2004-08-04 KR KR1020067000237A patent/KR100791441B1/ko active IP Right Grant
-
2005
- 2005-03-16 US US11/081,271 patent/US7291528B2/en not_active Expired - Fee Related
-
2006
- 2006-01-30 IL IL173422A patent/IL173422A/en active IP Right Grant
-
2007
- 2007-06-18 US US11/820,303 patent/US7396714B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7396714B2 (en) | 2008-07-08 |
DE602004032035D1 (de) | 2011-05-12 |
US20070249114A1 (en) | 2007-10-25 |
CN1830092A (zh) | 2006-09-06 |
IL173422A (en) | 2011-12-29 |
KR100791441B1 (ko) | 2008-01-04 |
US20050158931A1 (en) | 2005-07-21 |
JP2007501526A (ja) | 2007-01-25 |
US7291528B2 (en) | 2007-11-06 |
JP4808618B2 (ja) | 2011-11-02 |
WO2005017964A3 (en) | 2005-06-02 |
TWI284961B (en) | 2007-08-01 |
IL173422A0 (en) | 2006-06-11 |
EP1654770B1 (de) | 2011-03-30 |
WO2005017964A2 (en) | 2005-02-24 |
EP1654770A4 (de) | 2008-07-16 |
EP1654770A2 (de) | 2006-05-10 |
US20050029601A1 (en) | 2005-02-10 |
TW200511504A (en) | 2005-03-16 |
US6891192B2 (en) | 2005-05-10 |
CN100428497C (zh) | 2008-10-22 |
KR20060034686A (ko) | 2006-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE504078T1 (de) | Verfahren zur herstellung von cmos-transistoren mit verspanntem halbleiter mit gitterfehlangepassten regionen | |
DE602004025135D1 (de) | Ellungsverfahren | |
GB2442689A (en) | Methods for fabricating a stressed MOS device | |
WO2005027192A3 (en) | Structure and method of making strained channel cmos transistors having lattice-mismatched epitaxial extension and source and drain regions | |
TW200605322A (en) | Semiconductor device based on Si-Ge with high stress liner for enhanced channel carrier mobility | |
TW200603294A (en) | Method of making transistor with strained source/drain | |
SG133479A1 (en) | Formation of raised source/drain structures in nfet with embedded sige in pfet | |
SG148153A1 (en) | Method to remove spacer after salicidation to enhance contact etch stop liner stress on mos | |
ATE521089T1 (de) | N-kanal-mosfet mit doppelstressoren und verfahren zu ihrer herstellung | |
TW200618120A (en) | A microelectronic device and method of fabricating the same | |
TW200631175A (en) | Semiconductor device | |
TW200616152A (en) | Forming abrupt source drain metal gate transistors | |
WO2010078054A3 (en) | Tunnel field effect transistor and method of manufacturing same | |
GB2442690A (en) | Methods for fabricating a stressed MOS device | |
WO2006066265A3 (en) | Drain extended pmos transistors and methods for making the same | |
TW200729500A (en) | Asymmetric semiconductor device and fabrication method | |
SG139657A1 (en) | Structure and method to implement dual stressor layers with improved silicide control | |
GB2457411A (en) | Stress enhanced transistor and methods for its fabrication | |
SG169367A1 (en) | Method of forming field effect transistors and methods of forming integrated circuity comprising a transistor gate array and circuity peripheral to the gate array | |
GB2434036A (en) | A semiconductor device including semiconductor regions having differently strained channel regions and a method of manufacturing the same | |
GB2456712A (en) | Method of forming a semiconductor structure comprising a field effect transistor having a stressed channel region | |
ATE447765T1 (de) | Verfahren zur halbleiterherstellung mit integration einer wegwerf-abstandsschicht in die erhöhte source-/drain-verarbeitung | |
WO2009018556A3 (en) | Method of enhancing drive current in a transistor | |
WO2005112104A3 (en) | Cmos transistor using high stress liner layer | |
WO2008128007A8 (en) | Low noise jfet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RER | Ceased as to paragraph 5 lit. 3 law introducing patent treaties |