WO2024079575A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2024079575A1
WO2024079575A1 PCT/IB2023/059989 IB2023059989W WO2024079575A1 WO 2024079575 A1 WO2024079575 A1 WO 2024079575A1 IB 2023059989 W IB2023059989 W IB 2023059989W WO 2024079575 A1 WO2024079575 A1 WO 2024079575A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
element layer
conductor
insulator
memory cell
Prior art date
Application number
PCT/IB2023/059989
Other languages
English (en)
French (fr)
Inventor
古谷一馬
八窪裕人
豊高耕平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024079575A1 publication Critical patent/WO2024079575A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/04Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • One aspect of the present invention relates to a semiconductor device, etc.
  • one aspect of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification relates to an object, a method, or a manufacturing method.
  • one aspect of the present invention relates to a process, a machine, a manufacture, or a composition of matter. Therefore, more specifically, examples of the technical field of one aspect of the present invention disclosed in this specification include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices (memory devices), and driving methods or manufacturing methods thereof.
  • Non-Patent Documents 1 and 2 there has been active research and development into a configuration in which multiple dies (e.g., silicon dies) each equipped with circuits with different functions, such as SRAM (Static Random Access Memory) cells or DRAM (Dynamic Random Access Memory) cells, are stacked three-dimensionally (e.g., Non-Patent Documents 1 and 2).
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • OS transistors transistors that use oxide semiconductors in their channel formation regions
  • a layer having OS transistors can be stacked on a die (element layer) that has transistors that use silicon in their channel formation regions (hereinafter, Si transistors).
  • Si transistors transistors that use silicon in their channel formation regions
  • Patent Document 1 discloses a configuration in which an element layer having multiple OS transistors is stacked three-dimensionally on an element layer having Si transistors.
  • the structure of providing an element layer having multiple OS transistors on an element layer having Si transistors is effective in achieving high integration of circuits, such as improving memory density.
  • the wiring that electrically connects the circuit in the upper element layer and the circuit in the lower element layer becomes long.
  • the wiring provided between the bit line driver circuit provided in the element layer having Si transistors and the memory cell provided in the element layer having OS transistors in the upper layer will become long.
  • the parasitic capacitance and parasitic resistance of the wiring for writing or reading data between the bit line driver circuit and the memory cell will increase, and there is a risk that the operating speed will decrease or the reliability of the data will be impaired.
  • An object of one embodiment of the present invention is to provide a new semiconductor device or the like.
  • an object of one embodiment of the present invention is to provide a semiconductor device or the like having a new structure and excellent low power consumption.
  • an object of one embodiment of the present invention is to provide a semiconductor device or the like having a new structure and improved operating speed.
  • an object of one embodiment of the present invention is to provide a semiconductor device or the like having a new structure and excellent data reliability.
  • problems of one embodiment of the present invention are not limited to the problems mentioned above.
  • the problems listed above do not preclude the existence of other problems.
  • the other problems are problems not mentioned in this section, which will be described below. Problems not mentioned in this section can be derived by a person skilled in the art from the description in the specification or drawings, etc., and can be appropriately extracted from these descriptions. Note that one embodiment of the present invention solves at least one of the problems listed above and/or other problems.
  • One aspect of the present invention is a semiconductor device having a first element layer having a bit line driver circuit, a second element layer having a first switch circuit, a first memory cell, and a first wiring provided between the first switch circuit and the first memory cell, and a third element layer having a second switch circuit, a second memory cell, and a second wiring provided between the second switch circuit and the second memory cell, the second element layer being provided on top of the first element layer, the third element layer being provided on top of the second element layer, the second element layer and the third element layer being provided with a third wiring electrically connected to the bit line driver circuit, the bit line driver circuit being electrically connected to the first switch circuit and the second switch circuit via the third wiring, the first switch circuit having a function of bringing the first wiring and the third wiring into a non-conductive state during a data write operation or a data read operation of the second memory cell, and the second switch circuit having a function of bringing the second wiring and the third wiring into a non-conductive state during a data write operation or a data read
  • the second element layer and the third element layer are preferably semiconductor devices in which transistors are provided in which the semiconductor layer having a channel formation region is an oxide semiconductor.
  • the oxide semiconductor is preferably a semiconductor device containing In, Ga, and Zn.
  • the first element layer is preferably a semiconductor device in which a transistor is provided in which the semiconductor layer having a channel formation region is made of silicon.
  • the semiconductor device is preferably such that the first switch circuit has a function of precharging the potential of the first wiring, and the second switch circuit has a function of precharging the potential of the second wiring.
  • the first element layer preferably has an arithmetic circuit having a function of performing arithmetic processing based on data read out to the bit line driving circuit, and the arithmetic circuit is provided in a region overlapping a region in which the first memory cell of the second element layer and the second memory cell of the third element layer are provided.
  • the semiconductor device preferably has a portion in which the first wiring and the second wiring are arranged in the same direction as the direction perpendicular to the substrate surface on which the first element layer is arranged.
  • One aspect of the present invention has a first element layer having a word line driving circuit and a bit line driving circuit, a second element layer having a first switch circuit, a first layer selection circuit, a first memory cell, a first wiring provided between the first switch circuit and the first memory cell, and a second wiring provided between the first layer selection circuit and the first memory cell, and a third element layer having a second switch circuit, a second layer selection circuit, a second memory cell, a third wiring provided between the second switch circuit and the second memory cell, and a fourth wiring provided between the second layer selection circuit and the second memory cell, the second element layer being overlaid on the first element layer, and the third element layer being overlaid on the second element layer, the second element layer and the third element layer being provided with a fifth wiring electrically connected to the bit line driving circuit, and a sixth wiring electrically connected to the word line drive circuit, the bit line drive circuit is electrically connected to the first switch circuit and the second switch circuit via the fifth wiring, the word line drive circuit is electrically connected to the first layer selection
  • the second element layer and the third element layer are preferably semiconductor devices in which transistors are provided in which the semiconductor layer having a channel formation region is an oxide semiconductor.
  • the oxide semiconductor is preferably a semiconductor device containing In, Ga, and Zn.
  • the first element layer is preferably a semiconductor device in which a transistor is provided in which the semiconductor layer having a channel formation region is made of silicon.
  • the semiconductor device is preferably such that the first switch circuit has a function of precharging the potential of the first wiring, and the second switch circuit has a function of precharging the potential of the third wiring.
  • the first element layer preferably has an arithmetic circuit having a function of performing arithmetic processing based on data read out to the bit line driving circuit, and the arithmetic circuit is provided in a region overlapping a region in which the first memory cell of the second element layer and the second memory cell of the third element layer are provided.
  • the semiconductor device is preferably one in which the first wiring and the third wiring have portions that are arranged in the same direction as the direction perpendicular to the substrate surface on which the first element layer is provided.
  • One aspect of the present invention can provide a novel semiconductor device, etc.
  • one aspect of the present invention can provide a semiconductor device, etc. with a novel structure that is excellent in reducing power consumption.
  • one aspect of the present invention can provide a semiconductor device, etc. with a novel structure that has improved operating speed.
  • one aspect of the present invention can provide a semiconductor device, etc. with a novel structure that is excellent in data reliability.
  • FIGS. 5A and 6B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 7 is a diagram illustrating an example of the configuration of a semiconductor device.
  • 8A and 8B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 9A and 9B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 10 is a timing chart illustrating an example of the operation of the semiconductor device.
  • FIG. 11 is a diagram illustrating an example of the configuration of a semiconductor device.
  • FIG. 12 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 13 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 14 is a timing chart illustrating an example of the operation of the semiconductor device.
  • 15A and 15B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 16 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 17 is a diagram illustrating a configuration example of a semiconductor device.
  • FIGS. 18A and 18B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 19 is a diagram illustrating a configuration example of a semiconductor device.
  • 20A to 20C are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 21 is a diagram illustrating a configuration example of a semiconductor device.
  • 22A to 22D are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 23 is a diagram illustrating a configuration example of a semiconductor device.
  • Fig. 24A is a diagram illustrating a configuration example of a semiconductor device
  • Fig. 24B is a diagram illustrating an equivalent circuit of the semiconductor device.
  • 25A and 25B are diagrams illustrating an example of an electronic component.
  • FIGS. 26A and 26B are diagrams showing an example of electronic equipment
  • FIGS. 26C to 26E are diagrams showing an example of a mainframe computer
  • FIG. 27 is a diagram showing an example of space equipment
  • FIG. 28 is a diagram illustrating an example of a storage system that can be applied to a data center.
  • the off-state current refers to the drain current when a transistor is in an off state (also referred to as a non-conducting state or a cut-off state).
  • the off-state refers to a state in which the voltage Vgs between the gate and the source of an n-channel transistor is lower than the threshold voltage Vth (higher than Vth for a p-channel transistor).
  • metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like. For example, when a metal oxide is used in the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. In other words, when a transistor is referred to as an OS transistor, it can be rephrased as a transistor having a metal oxide or an oxide semiconductor.
  • the semiconductor device described in one aspect of the present invention functions as a system on chip (SoC) that tightly couples a memory cell array provided across multiple element layers, a driver circuit for driving the memory cell array, and the like.
  • SoC system on chip
  • FIGS. 1A and 1B are a schematic diagram and a block diagram illustrating an example of the configuration of a semiconductor device according to one embodiment of the present invention.
  • an X direction, a Y direction, and a Z direction are defined to explain the arrangement of each element constituting the semiconductor device.
  • the X direction, the Y direction, and the Z direction are perpendicular or approximately perpendicular to each other.
  • the elements constituting the semiconductor device 10 are shown separated from each other in order to make the arrangement of the elements easier to understand. It is preferable that the elements provided on the same layer are formed in the same process, but this is not limited to this. For example, the elements may be formed in separate processes and integrated using a bonding technique or the like.
  • the semiconductor device 10 shown in Figures 1A and 1B has a configuration in which another element layer (element layer 40) is stacked on an element layer 50.
  • the semiconductor device 10 has a configuration in which four element layers 40 (element layers 40[1] to 40[4] are shown as examples) are stacked on the element layer 50.
  • the first element layer 40 is denoted as element layer 40[1], the second element layer 40 as element layer 40[2], and the third element layer 40 as element layer 40[3].
  • the kth (k is an integer of 2 or more) element layer 40 is denoted as element layer 40[k].
  • element layer 40 when describing matters related to the multiple element layers 40 as a whole, or when describing matters common to each of the multiple element layers 40, the term "element layer 40" may be used. The same applies to configurations that are denoted by reference symbols to describe multiple configurations.
  • the element layers 40[1] to 40[4] include OS transistors.
  • the element layers 40[1] to 40[4] including OS transistors can be stacked over a substrate such as the element layer 50.
  • examples of metal oxides that can be used in the OS transistor include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide preferably contains two or more elements selected from indium, element M, and zinc.
  • the element M is one or more elements selected from gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M is preferably one or more elements selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • it is preferable to use an oxide containing indium (In), aluminum (Al), and zinc (Zn) also referred to as IAZO
  • it is preferable to use an oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) also referred to as IAGZO
  • it is preferable to use an oxide containing indium (In), gallium (Ga), zinc (Zn), and tin (Sn) also referred to as IGZTO.
  • the metal oxide used in the OS transistor may have two or more metal oxide layers with different compositions.
  • a laminate structure of any one selected from indium oxide, indium gallium oxide, and IGZO and any one selected from IAZO, IAGZO, and ITZO may be used.
  • the metal oxide used in the OS transistor is preferably crystalline.
  • crystalline oxide semiconductors include CAAC (c-axis-aligned crystalline)-OS and nc (nanocrystalline)-OS.
  • the element layer 40 has a memory cell unit 41 (memory cell units 41[1] to 41[4]) provided for each layer.
  • Each memory cell unit 41 has a plurality of memory cells 42.
  • the plurality of memory cell units 41 provided in each element layer 40 constitute a memory cell array 43.
  • the memory cell array 43 having the memory cells 42 preferably has, for example, a NOSRAM circuit configuration.
  • the memory cells 42 are memory cells having a NOSRAM circuit configuration.
  • NOSRAM registered trademark
  • RAM Nonvolatile Oxide Semiconductor Random Access Memory
  • NOSRAM refers to a memory in which the memory cells are two-transistor type (2T) or three-transistor type (3T) gain cells, and the transistors are OS transistors.
  • the OS transistor that can be provided in the element layer 40 has an extremely small off-current, that is, a current that flows between the source and drain in an off state.
  • NOSRAM can be used as a non-volatile memory by using its extremely small off-current characteristic to hold a charge according to data in the memory cell.
  • NOSRAM can read held data without destroying it (non-destructive read), and is therefore suitable for arithmetic processing in which only data read operations are repeated in large quantities. Since NOSRAM can increase its data capacity by stacking it, it can be used as a large-scale cache memory, main memory, or storage memory to improve the performance of semiconductor devices.
  • the element layer 40 has wiring WBL (wirings WBL[1] to WBL[4]) for writing data to the memory cells 42, and wiring RBL (wirings RBL[1] to RBL[4]) for reading data.
  • WBL wirings WBL[1] to WBL[4]
  • RBL wirings RBL[1] to RBL[4]
  • FIG. 1B the wiring WBL and wiring RBL provided in each element layer 40[1] are represented as wiring WBL[1] and wiring RBL[1].
  • wirings WBL[2] to WBL[4] and wirings RBL[2] to RBL[4] are illustrated as wirings provided in element layers 40[2] to 40[4].
  • the wiring WBL is connected to the memory cell 42.
  • the wiring WBL functions as a bit line for writing data to the memory cell 42.
  • the wiring RBL is connected to the memory cell 42.
  • the wiring RBL functions as a bit line for reading data from the memory cell 42.
  • the element layer 40 has a switch circuit SW (switch circuits SW[1] to SW[4]).
  • the switch circuit SW provided in the element layer 40[1] is shown as switch circuit SW[1].
  • the switch circuits SW[2] to SW[4] are illustrated as switch circuits provided in the element layers 40[2] to 40[4].
  • the switch circuit SW has a function of switching the electrical connection between any one of the multiple wirings WBL (wirings WBL[1] to WBL[4]) and the wiring GWBL, and the electrical connection between any one of the multiple wirings RBL (wirings RBL[1] to RBL[4]) and the wiring GRBL.
  • the wiring GWBL and wiring GRBL are provided from the element layer 50 across multiple element layers 40 in the direction in which the element layers 40 are stacked on the element layer 50 (Z direction).
  • the Z direction is perpendicular to the substrate surface on which the element layers 50 are provided.
  • the wiring GWBL has the function of transmitting a potential corresponding to the data output by the write bit line drive circuit 53 to the switch circuit SW of each layer.
  • the wiring GRBL has the function of transmitting a potential corresponding to the data read from the memory cell 42 in the element layer 40 to the wiring RBL to the read bit line drive circuit 54 via the switch circuit SW.
  • the switch circuit SW has a plurality of switches that switch the electrical connection between the wiring WBL and the wiring GWBL, and between the wiring RBL and the wiring GRBL.
  • the plurality of switches can be configured with transistors.
  • the transistors included in the switch circuit SW are preferably OS transistors that can be provided in the element layer 40. With this configuration, when the OS transistors included in the switch circuit SW are turned off, the potentials of the wiring WBL and the wiring RBL can be maintained.
  • the element layer 50 has elements provided on a silicon substrate or the like.
  • Si transistors are provided in the element layer 50.
  • silicon with high crystallinity, particularly single crystal silicon or polycrystalline silicon, since this can achieve high field effect mobility and enable faster operation.
  • the element layer 50 may be referred to as a substrate or silicon substrate.
  • the element layer 50 shown in FIG. 1B has a write word line drive circuit 51, a read word line drive circuit 52, a write bit line drive circuit 53, and a read bit line drive circuit 54, all of which are shown in FIG. 1A.
  • the element layer 50 shown in FIG. 1B also has an arithmetic circuit 55, an arithmetic control circuit 56, and a control circuit 57, all of which are shown in FIG. 1A.
  • Each circuit can be constructed using the Si transistors contained in the element layer 50, enabling high-speed operation.
  • the write word line drive circuit 51 outputs a signal that controls writing data to the memory cells 42 provided in the element layer 40 to a wiring that functions as a write word line.
  • the read word line drive circuit 52 outputs a signal that controls reading data from the memory cells 42 provided in the element layer 40 to a wiring that functions as a read word line.
  • the write word line drive circuit 51 and the read word line drive circuit 52 are sometimes collectively referred to as word line drive circuits.
  • the write bit line drive circuit 53 outputs a potential (signal) corresponding to the data to be written to the memory cells 42 provided in the element layer 40 to the wiring GWBL.
  • the read bit line drive circuit 54 outputs data based on a potential corresponding to the data read from the memory cells 42 provided in the element layer 40 to the wiring GRBL via the switch circuit SW.
  • the write bit line drive circuit 53 and the read bit line drive circuit 54 are sometimes collectively referred to as the bit line drive circuit.
  • the arithmetic circuit 55 has a function of performing arithmetic processing based on the data obtained by the read bit line drive circuit 54.
  • the arithmetic control circuit 56 is a circuit for controlling the arithmetic processing in the arithmetic circuit 55.
  • the arithmetic circuit 55 has, for example, multiple PEs (processing elements).
  • the PEs can perform parallel processing of multiply-accumulate operations, for example, parallel processing of matrix operations in graphic processing, parallel processing of multiply-accumulate operations in neural networks, and parallel processing of floating-point operations in scientific and technological calculations.
  • the memory cells 42 are configured to store weight data used in the arithmetic processing.
  • the semiconductor device 10 has a function as a so-called SoC in which the arithmetic circuit 55 performing parallel processing and the memory cells 42 that hold weight data are tightly coupled, and the wiring connecting the devices that transfer data can be shortened, thereby suppressing heat generation and an increase in power consumption.
  • the control circuit 57 functions as a memory controller that controls the bit line drive circuit and word line drive circuit described above.
  • the control circuit 57 may also have a function of controlling the arithmetic control circuit 56 and the like. Note that in the semiconductor device 10, the arithmetic circuit 55, the arithmetic control circuit 56, and the control circuit 57 may have different configurations.
  • FIG. 2A illustrates a case in which the element layer 40 in FIG. 1B has two layers.
  • FIG. 2B also illustrates a specific example of the circuits that the switch circuits SW[1] and SW[2] have in the configuration of FIG. 2A.
  • the switch circuit SW[1] shown in FIG. 2B has a switch whose on or off state is controlled by a signal ⁇ 1.
  • the switch circuit SW[2] shown in FIG. 2B has a switch whose on or off state is controlled by a signal ⁇ 2.
  • the switch in the switch circuit SW[1] switches between the wiring GWBL and the wiring WBL[1] and between the wiring GRBL and the wiring RBL[1], and between the wiring GRBL and the wiring RBL[1], and between the wiring GRBL and the wiring RBL[2], and between the wiring GRBL and the wiring RBL[2], and between the wiring GRBL and the wiring RBL[2].
  • a switch circuit SW having a switch is provided, and the switch is configured to switch between the wiring GWBL and the wiring WBL and between the wiring GRBL and the wiring RBL, and between the wiring GRBL and the wiring RBL.
  • Signals ⁇ 1 and ⁇ 2 are selection signals for selecting one of the layers depending on whether data is to be written to or read from the memory cells 42 in element layer 40[1] or element layer 40[2]. For example, when writing or reading data to element layer 40[1], signal ⁇ 1 is active, that is, a signal that turns the switch on, and signals such as signal ⁇ 2 provided to other switch circuits SW are inactive, that is, signals that turn the switch off. When writing or reading data to element layer 40[2], signal ⁇ 2 is active, that is, a signal that turns the switch on, and signals such as signal ⁇ 1 provided to other switch circuits SW are inactive, that is, signals that turn the switch off.
  • FIG. 3A is a schematic diagram showing the on (ON) or off (OFF) of the switches of the switch circuits SW[1] and SW[2] when the memory cell 42 of the element layer 40[1] is selected and data is written or read.
  • the switch of the switch circuit SW[1] is turned on by the signal ⁇ 1
  • the switch of the switch circuit SW[2] is turned off by the signal ⁇ 2, so that the memory cell 42 of the element layer 40[1] can be selected and data can be written or read. Note that in FIG.
  • the input and output of data between the memory cell 42 and the bit line driver circuits are indicated by dotted arrows between the wiring GWBL and the wiring WBL[1], and between the wiring GRBL and the wiring RBL[1].
  • FIG. 3B is a schematic diagram showing the on (ON) or off (OFF) of the switches of the switch circuits SW[1] and SW[2] when the memory cell 42 of the element layer 40[2] is selected and data is written or read.
  • the switch of the switch circuit SW[2] is turned on by the signal ⁇ 2
  • the switch of the switch circuit SW[1] is turned off by the signal ⁇ 1, so that the memory cell 42 of the element layer 40[2] can be selected and data can be written or read. Note that in FIG.
  • Figures 3A and 3B show a configuration in which the switches of the switch circuit SW are provided between the wiring GWBL and the wiring WBL, and between the wiring GRBL and the wiring RBL, other configurations are also possible.
  • a configuration in which the switches between the wiring GWBL and the wiring WBL are omitted is also possible.
  • a switch circuit is provided between a wiring connected to a bit line driver circuit and a wiring connected to a memory cell in each element layer.
  • FIG. 5A is a circuit diagram of a NOSRAM that can be used for memory cell 42. Also, FIGS. 5B and 5C are timing charts that explain the operation of the NOSRAM shown in FIG. 5A.
  • FIG. 5A shows an example of the circuit configuration of a NOSRAM memory cell that can be applied to the memory cells shown in FIG. 1B and other figures.
  • the memory cell 42 shown in FIG. 5A has transistors M1 to M3 and a capacitor C.
  • OS transistors can be used as the transistors M1 to M3.
  • FIG. 5A shows wiring WWL, wiring RWL, wiring WBL, wiring RBL, and wiring SL that are connected to the elements of the memory cell 42.
  • the wiring SL can also function as a wiring that transmits a potential to be applied to the backgate of each transistor.
  • FIG. 5B is a timing chart showing an example of the operation of memory cell 42.
  • VDD is input to each wiring as an "H” potential
  • VSS is input as an "L” potential. Note that although VDD and VSS are illustrated as the same potential for each wiring, different VDD and VSS may be used for each wiring.
  • the wiring WWL selected by the write word line drive circuit 51 is "H"
  • the wiring RWL selected by the read word line drive circuit 52 is "L”.
  • a potential according to the data is input to the wiring WBL selected by the write bit line drive circuit 53 and the switch circuit SW.
  • the wiring RBL selected by the read bit line drive circuit 54 and the switch circuit SW is "L”.
  • the potential of the gate of the transistor M2 of the selected memory cell 42 becomes VDD when data "1" is written, and becomes VSS when data "0" is written.
  • the wiring RBL selected by the read bit line drive circuit 54 and the switch circuit SW is pre-discharged (sometimes simply called discharged) to VSS.
  • the wiring RWL selected by the read word line drive circuit 52 is set to "H".
  • VDD is input to the gate of the transistor M2
  • the wiring SL is set to VDD
  • a large current flows between the source and drain of the transistor M2. Therefore, the wiring RBL is quickly charged, and the potential of the wiring RBL rises.
  • VSS is input to the gate of the transistor M2, so the transistor M2 hardly passes any drain current. Therefore, the wiring RBL maintains the discharge voltage (VSS).
  • the wiring RBL selected by the read bit line drive circuit 54 may be precharged to VDD. This case is shown in FIG. 5C.
  • the wiring RBL selected by the read bit line drive circuit 54 is precharged to VDD.
  • the wiring RWL selected by the read word line drive circuit 52 is set to "H".
  • VDD is input to the gate of the transistor M2
  • the wiring SL is set to VSS
  • a large current flows between the source and drain of the transistor M2. Therefore, the wiring RBL is quickly discharged, and the potential of the wiring RBL drops.
  • VSS is input to the gate of the transistor M2, so the transistor M2 hardly passes any drain current. Therefore, the wiring RBL maintains the precharge voltage (VDD).
  • the wiring WWL and the wiring RBL are at "L" during periods other than during the write operation and the read operation.
  • the transistors M1 and M3 of the memory cell 42 are in the off state. Since the transistors M1 to M3 are OS transistors with extremely low off-current, the memory cell 42 can retain data for a long time by turning off the transistors M1 and M3. In principle, the memory cell 42 has no limit to the number of write operations (rewrites), data can be rewritten with low energy, and no power is consumed to retain data. Therefore, the semiconductor device 10 can be configured to have non-volatile memory cells with low power consumption.
  • the circuit configuration of the memory cell 42 is not limited to that of FIG. 5A.
  • the transistors M1 to M3 can have a back gate.
  • the transistor M3 may be omitted.
  • the capacitance element C may be omitted by using parasitic capacitance or gate capacitance.
  • FIG. 7 is a diagram for explaining the configuration of the wiring WWL, RWL connected to the memory cells 42 in each element layer when the two-layer element layer 40 shown in FIGS. 2A and 2B is used.
  • FIG. 7 shows three memory cells 42 provided in each memory cell unit 41[1], 41[2] provided in each element layer 40.
  • FIG. 7 also shows wiring WWL[1]-[6] functioning as write word lines and wiring RWL[1]-[6] functioning as read word lines for controlling each memory cell 42 in the memory cell units 41[1], 41[2].
  • FIG. 7 shows a circuit diagram of the memory cell of the NOSRAM shown in FIG. 5A.
  • the memory cell 42 in the memory cell unit 41[1] is connected to common wirings WBL[1] and RBL[1].
  • the three memory cells 42 in the memory cell unit 41[1] shown in FIG. 7 are connected to different wirings WWL[1]-[3] and RWL[1]-[3].
  • the memory cell 42 in the memory cell unit 41[2] is connected to common wirings WBL[2] and RBL[2].
  • the three memory cells 42 in the memory cell unit 41[2] shown in FIG. 7 are connected to different wirings WWL[4]-[6] and RWL[4]-[6].
  • the switches in the switch circuits SW[1] and SW[2] are represented by transistors.
  • the transistors in the switch circuit SW[1] are shown as transistors RS_1 and WS_1.
  • the on or off state is controlled by a signal ⁇ 1, which controls the conductive or non-conductive state between the wiring GWBL and the wiring WBL[1] and between the wiring GRBL and the wiring RBL[1].
  • the transistors in the switch circuit SW[2] are shown as transistors RS_2 and WS_2.
  • the on or off state is controlled by a signal ⁇ 2, which controls the conductive or non-conductive state between the wiring GWBL and the wiring WBL[2] and between the wiring GRBL and the wiring RBL[2].
  • Each transistor in the switch circuits SW[1] and SW[2] can be an OS transistor, like the transistor in the memory cell 42. If the OS transistor is an n-channel type, it functions as a switch that turns on when the potential supplied to the gate is at H level and turns off when the potential is at L level. In addition, since the off-current of an OS transistor is small as described above, the potential of the wirings WBL and RBL can be maintained by turning off the transistor.
  • FIG. 8A is a schematic diagram in which layer selection circuits LSW[1] to LSW[4] are added to the configuration described in FIG. 1A.
  • the semiconductor device 10 can supply signals from the write word line driver circuit 51 and the read word line driver circuit 52 to the wiring WWL[1]-[6] and the wiring RWL[1]-[6] based on a signal that selects an arbitrary element layer 40.
  • FIG. 8B is a diagram showing the wiring WWL[1]-[6], wiring RWL[1]-[6], wiring GWWL, and wiring GRWL connected to the layer selection circuits LSW[1] and LSW[2] when the layer selection circuits LSW[1] and LSW[2] are applied to the configuration of FIG. 7.
  • the wiring GWWL is a wiring that has the function of transmitting signals from the write word line driving circuit 51 to the layer selection circuit LSW of each element layer 40.
  • the wiring GRWL is a wiring that has the function of transmitting signals from the read word line driving circuit 52 to the layer selection circuit LSW of each element layer 40.
  • the layer selection circuit LSW receives a signal from the write word line drive circuit 51 supplied via the wiring GWWL, a signal from the read word line drive circuit 52 supplied via the wiring GRWL, and a signal for selecting one of the element layers 40 (signals ⁇ 1, ⁇ 2, etc.), and outputs signals to be supplied to the wirings WWL[1]-[6] and wirings RWL[1]-[6]. Therefore, the number of wirings is smaller than the number of wirings WWL[1]-[6] and wirings RWL[1]-[6] that each element layer 40 has, and the signals of the write word line drive circuit 51 and the read word line drive circuit 52 can be transmitted to the element layer 40 in the upper layer. Therefore, the more element layers 40 there are, the fewer the number of wirings required to transmit the signals of the write word line drive circuit 51 and the read word line drive circuit 52 to the element layer 40 in the upper layer.
  • FIG. 9A is a circuit diagram illustrating an example of a circuit configuration applicable to the layer selection circuit LSW.
  • the layer selection circuit LSW illustrated in FIG. 9A is supplied with constant potentials (VDD, VSS), signal ⁇ 1, signal ⁇ 1B (an inverted signal of ⁇ 1), signal GWWL_S from the write word line drive circuit 51, and signal GRWL_S from the read word line drive circuit 52, and can generate signal WWL1 (a signal to be provided to wiring WWL[1]) and signal RWL1 (a signal to be provided to wiring RWL[1]).
  • VDD constant potentials
  • VSS constant potentials
  • signal ⁇ 1, signal ⁇ 1B an inverted signal of ⁇ 1
  • signal GWWL_S from the write word line drive circuit 51
  • signal GRWL_S from the read word line drive circuit 52
  • the layer selection circuit LSW shown in FIG. 9A includes transistors M11 to M16.
  • Each of the transistors M11 to M16 can be an OS transistor provided in the stacked element layer 40, similar to the memory cell 42. Therefore, the layer selection circuits LSW[1] to LSW[4] in FIG. 8A, which include the layer selection circuit LSW, can be provided so as to overlap in the Z direction, as shown in FIG. 8A.
  • FIG. 9B is a circuit diagram illustrating an example of a circuit configuration corresponding to layer selection circuits LSW[1] and LSW[2] for two layers.
  • the layer selection circuits LSW[1] and LSW[2] can generate constant potentials (VDD, VSS), signal ⁇ 1, signal ⁇ 1B, signal ⁇ 2, signal ⁇ 2B (an inverted signal of ⁇ 2), signal GWWL_S from the write word line driver circuit 51, signal WWL1 (signal provided to wirings WWL[1] to WWL[3]), signal RWL1 (signal provided to wirings RWL[1] to RWL[3]), signal WWL2 (signal provided to wirings WWL[4] to WWL[6]), and signal RWL2 (signal provided to wirings RWL[4] to RWL[6]).
  • the layer selection circuits LSW[1] and LSW[2] include transistors M11 to M16 and transistors M21 to M26. Like the memory cell 42, the transistors M11 to M16 and M21 to M26 are OS transistors provided in the stacked element layers 40[1] to 40[2].
  • the layer selection circuits LSW[1] and LSW[2] can be provided so as to overlap in the Z direction.
  • the number of signals given to the wirings WWL[1]-[6] and wirings RWL[1]-[6] for driving memory cells 42 provided in different element layers 40 increases according to the number of layers.
  • the semiconductor device 10 can suppress an increase in the area of the word line driving circuit that accompanies an increase in the number of layers of the element layer 40 in which the memory cells 42 are provided. In other words, the semiconductor device 10 can increase the number of layers of the element layer 40 in which the memory cells 42 are provided without increasing the area overhead.
  • the operation example shown in FIG. 10 will be explained based on the write operation and read operation of memory cell 42 explained in FIG. 5B.
  • the wiring SL is set to VDD
  • the read operation is performed by discharging the wiring RBL (corresponding to the wiring GRBL) to VSS.
  • Period P1 is a period during which address A1 (ADDR) of memory cell 42 in element layer 40[1] is accessed.
  • Period P2 is a period during which address A2 (ADDR) of memory cell 42 in element layer 40[2] is accessed.
  • Periods P1 and P2 include periods for write operation (Write), read operation (Read), and standby state (Standby).
  • signal ⁇ 1 is in the selected state (H level)
  • signal ⁇ 2 is in the selected state (H level).
  • node SN1 the node connected to the gate of transistor M2 at address A1 of memory cell 42 in element layer 40[1] is referred to as node SN1.
  • node SN2 The node connected to the gate of transistor M2 at address A2 of memory cell 42 in element layer 40[2] is referred to as node SN2.
  • L-level (VSS) data is written to nodes SN1 and SN2 in the initial state.
  • the signals of the wirings GWBL, GWWL, GRBL, and GRWL can be combined with the signals ⁇ 1 and ⁇ 2 to form signals that are supplied to the wirings connected to the memory cells 42 that are accessed in each period.
  • the potential of the wiring GWWL is set to the H level, and is selectively supplied by the signal ⁇ 1 to the wiring WWL[1] connected to the memory cell 42 in the element layer 40[1].
  • the potential of the wiring GWWL is set to the H level, and is selectively supplied by the signal ⁇ 2 to the wiring WWL[2] connected to the memory cell 42 in the element layer 40[2].
  • the potential of the wiring GWBL which is set to the H level, becomes a signal that is selectively supplied by the signal ⁇ 1 to the wiring WBL[1] connected to the memory cell 42 in the element layer 40[1].
  • the potential of the wiring GWBL which is set to the L level, becomes a signal that is selectively supplied by the signal ⁇ 2 to the wiring WBL[2] connected to the memory cell 42 in the element layer 40[2].
  • the potential of the wiring GWBL which varies depending on the potential of the data written to the selected memory cell 42, becomes a signal selectively supplied by signal ⁇ 1 to the wiring WBL[1] connected to the memory cell 42 of the element layer 40[1].
  • the potential of the wiring GWBL which varies depending on the potential of the data written to the selected memory cell 42, becomes a signal selectively supplied by signal ⁇ 2 to the wiring WBL[2] connected to the memory cell 42 of the element layer 40[2].
  • the potential of the wiring GRBL which varies depending on the potential held by the selected memory cell 42, varies selectively by signal ⁇ 1 in response to the variation in the potential of RBL[1] connected to the memory cell 42 in the element layer 40[1].
  • the potential of the wiring GRBL which varies depending on the potential held by the selected memory cell 42, varies selectively by signal ⁇ 2 in response to the variation in the potential of RBL[2] connected to the memory cell 42 in the element layer 40[2].
  • the signal ⁇ 1 is in the selected state (H level) and data "1" is written to the specified memory cell 42 by the write operation (Write).
  • the wiring GWBL and wiring GWWL become H level (VDD), and the wiring WBL[1] and wiring WWL[1] in the element layer 40 selected by the signal ⁇ 1 become H level, causing the potential of the node SN1 to rise.
  • the potential of the node SN1 fluctuates slightly due to the influence of feed-through or charge injection caused by switching the on/off state of the transistor M1 with the fall of the wiring GWWL (change from VDD to VSS).
  • the raised potential of the node SN1 is maintained after the standby state (Standby) period.
  • the data "1" is read from the specified memory cell 42 by the read operation (Read).
  • the wiring GRBL By discharging the wiring GRBL, the wiring RBL[1] in the element layer 40 selected by the signal ⁇ 1 is discharged.
  • the wiring RWL[1] in the element layer 40 selected by the signal ⁇ 1 becomes the H level.
  • the wiring RBL[1] is charged, and the wiring GRBL connected to the wiring RBL[1] in the element layer 40 selected by the signal ⁇ 1 is also charged.
  • the standby state (Standby) period begins, and the potential of the node SN1 continues to be maintained.
  • the signal ⁇ 2 is in the selected state (H level), and data "0" is written to the specified memory cell 42 by the write operation (Write).
  • the wiring GWBL becomes L level
  • the wiring WBL[2] in the element layer 40 selected by the signal ⁇ 2 becomes L level
  • the wiring GWWL becomes H level (VDD)
  • the wiring WWL[2] in the element layer 40 selected by the signal ⁇ 2 becomes H level.
  • the potential of the node SN2 fluctuates slightly due to the influence of feed-through or charge injection accompanying the rising (changing from VSS to VDD) and falling of the wiring GWWL, the potential does not change during the period before and after the write operation (Write).
  • the potential of the node SN2 is maintained after the standby state (Standby) period.
  • the data "0" is read from the specified memory cell 42 by the read operation (Read).
  • Read By discharging the wiring GRBL, the wiring RBL[2] in the element layer 40 selected by the signal ⁇ 2 is discharged.
  • the wiring RBL[2] in the element layer 40 selected by the signal ⁇ 2 becomes the H level.
  • the wiring RBL[2] remains at the L level, and the wiring GRBL connected to the wiring RBL[2] in the element layer 40 selected by the signal ⁇ 2 also remains at the L level.
  • the standby state (Standby) period begins, and the potential of the node SN2 continues to be held.
  • FIG. 11 illustrates a modified example of the switch circuit SW.
  • the configuration illustrated in FIG. 11 is obtained by adding a transistor PS_1 connected to the wiring RBL[1] in the switch circuit SW[1] illustrated in FIG. 7, and a transistor PS_2 connected to the wiring RBL[2] in the switch circuit SW[2].
  • the transistor PS_1 has a function of providing a potential VDD to the wiring RBL[1] in response to control of a precharge signal PRE.
  • the transistor PS_2 has a function of providing a potential VDD to the wiring RBL[2] in response to control of a precharge signal PRE.
  • This configuration allows a configuration in which precharging is performed when the switch of the switch circuit SW is in an off state, and the parasitic capacitance of the wiring to be precharged can be reduced, thereby shortening the precharge period. Note that a configuration in which discharging is performed can also be achieved by setting the precharge voltage to VSS.
  • FIG. 12 shows a configuration in which an AND gate is added as a modified example of the switch circuit SW different from that shown in FIG. 11.
  • the AND gate AND_1 is provided with a signal ⁇ 1 for selecting the element layer 40[1] and a precharge signal PRE.
  • the AND gate AND_2 is provided with a signal ⁇ 2 for selecting the element layer 40[2] and a precharge signal PRE. Therefore, a configuration can be made in which precharging is performed when the switch of the switch circuit SW of the selected element layer 40 is on and the switch of the switch circuit SW of the unselected element layer 40 is off. Therefore, the wiring RBL that performs precharging can be separated from the wiring RBL that does not perform precharging, thereby reducing the parasitic capacitance of the wiring that performs precharging. As a result, the precharge period can be shortened.
  • the AND gates AND_1 and AND_2 shown in FIG. 12 can be provided in the element layer 40 by configuring them with OS transistors as shown in FIG. 13.
  • the AND gate shown in FIG. 13 is configured with transistors M41 to M45, which are n-channel OS transistors.
  • the AND gate shown in FIG. 13 provides an output signal Y in response to input signals A and B. When both input signals A and B are at H level, the output signal can be at H level, so it can function as an AND gate.
  • the write operation and read operation of the memory cell 42 explained in FIG. 5C will be explained.
  • the wiring SL is set to VSS
  • the read operation is performed by precharging the wiring RBL (corresponding to the wiring GRBL) to VDD.
  • Period P1 is a period during which address A1 (ADDR) of memory cell 42 in element layer 40[1] is accessed.
  • Period P2 is a period during which address A2 (ADDR) of memory cell 42 in element layer 40[2] is accessed.
  • Periods P1 and P2 include periods for write operation (Write), read operation (Read), and standby state (Standby).
  • signal ⁇ 1 is in the selected state (H level)
  • signal ⁇ 2 is in the selected state (H level).
  • node SN1 the node connected to the gate of transistor M2 at address A1 of memory cell 42 in element layer 40[1] is referred to as node SN1.
  • node SN2 The node connected to the gate of transistor M2 at address A2 of memory cell 42 in element layer 40[2] is referred to as node SN2.
  • L-level (VSS) data is written to nodes SN1 and SN2 in the initial state.
  • the signals of the wirings GWBL, GWWL, GRBL, and GRWL, and the precharge signal PRE can be combined with the signals ⁇ 1 and ⁇ 2 to form signals that are supplied to the wirings connected to the memory cells 42 that are accessed in each period.
  • the potential of the wiring GWWL is set to the H level, and is selectively supplied to the wiring WWL[1] connected to the memory cell 42 in the element layer 40[1] by the signal ⁇ 1.
  • the potential of the wiring GWWL is set to the H level, and is selectively supplied to the wiring WWL[2] connected to the memory cell 42 in the element layer 40[2] by the signal ⁇ 2.
  • the potential of the wiring GWBL which is set to the H level, becomes the potential selectively supplied to the wiring WBL[1] connected to the memory cell 42 in the element layer 40[1] by the signal ⁇ 1.
  • the potential of the wiring GWBL which is set to the L level, becomes the potential selectively supplied to the wiring WBL[2] connected to the memory cell 42 in the element layer 40[2] by the signal ⁇ 2.
  • the potential of the wiring GWBL which varies depending on the potential of the data written to the selected memory cell 42, is selectively set by the signal ⁇ 1 to the potential supplied to the wiring WBL[1] connected to the memory cell 42 in the element layer 40[1].
  • the potential of the wiring GWBL which varies depending on the potential of the data written to the selected memory cell 42, is selectively set by the signal ⁇ 2 to the potential supplied to the wiring WBL[2] connected to the memory cell 42 in the element layer 40[2].
  • the potential of the wiring GRBL which varies depending on the potential held by the selected memory cell 42, varies selectively by signal ⁇ 1 in response to the variation in the potential of RBL[1] connected to the memory cell 42 in the element layer 40[1].
  • the potential of the wiring GRBL which varies depending on the potential held by the selected memory cell 42, varies selectively by signal ⁇ 2 in response to the variation in the potential of RBL[2] connected to the memory cell 42 in the element layer 40[2].
  • VDD given in response to control of the precharge signal PRE is selectively supplied by a signal ⁇ 1 to the wiring RBL[1] connected to the memory cell 42 in the element layer 40[1].
  • VDD given in response to control of the precharge signal PRE is selectively supplied by a signal ⁇ 2 to the wiring RBL[2] connected to the memory cell 42 in the element layer 40[2].
  • the signal ⁇ 1 is in the selected state (H level), and data "1" is written to the specified memory cell 42 by the write operation (Write).
  • the wiring GWBL and wiring GWWL become H level (VDD), and the wiring WBL[1] and wiring WWL[1] in the element layer 40 selected by the signal ⁇ 1 become H level, so that the potential of the node SN1 rises.
  • the potential of the node SN1 fluctuates slightly due to the influence of feed-through or charge injection accompanying the fall of the wiring GWWL (change from VDD to VSS).
  • the raised potential of the node SN1 is maintained after the standby state (Standby) period.
  • the data "1" is read from the specified memory cell 42 by the read operation (Read).
  • the precharge signal PRE is set to H level, and the wiring RBL[1] in the element layer 40 selected by the signal ⁇ 1 is precharged.
  • the wiring GRWL By setting the wiring GRWL to the H level, the wiring RWL[1] in the element layer 40 selected by the signal ⁇ 1 becomes the H level.
  • the wiring RBL[1] is discharged, and the wiring GRBL connected to the wiring RBL[1] in the element layer 40 selected by the signal ⁇ 1 is also discharged.
  • the standby state (Standby) period begins, and the potential of the node SN1 continues to be held.
  • the signal ⁇ 2 is in the selected state (H level), and data "0" is written to the specified memory cell 42 by the write operation (Write).
  • the wiring GWBL becomes L level
  • the wiring WBL[2] in the element layer 40 selected by the signal ⁇ 2 becomes L level
  • the wiring GWWL becomes H level (VDD)
  • the wiring WWL[2] in the element layer 40 selected by the signal ⁇ 2 becomes H level.
  • the potential of the node SN2 fluctuates slightly due to the influence of feed-through or charge injection accompanying the rising (changing from VSS to VDD) and falling of the wiring GWWL, the potential does not change during the period before and after the write operation (Write).
  • the potential of the node SN2 is maintained after the standby state (Standby) period.
  • the data "0" is read from the specified memory cell 42 by the read operation (Read).
  • the precharge signal PRE is set to H level, and the wiring RBL[2] in the element layer 40 selected by the signal ⁇ 2 is precharged. By setting the wiring GRWL to H level, the wiring RWL[2] in the element layer 40 selected by the signal ⁇ 2 becomes H level.
  • the wiring RBL[2] remains at H level
  • the wiring GRBL connected to the wiring RBL[2] in the element layer 40 selected by the signal ⁇ 2 also remains at H level.
  • a standby state (Standby) period begins, and the potential of the wiring GRWL is discharged by the off current of the Si transistor, etc., and the potential of the node SN2 continues to be held.
  • a switch circuit is provided between a wiring connected to a bit line driver circuit and a wiring connected to a memory cell in each element layer.
  • Embodiment 2 In this embodiment, a structure example different from the structure example of the semiconductor device which is one embodiment of the present invention described in Embodiment 1 will be described.
  • FIGS. 15A and 15B are schematic diagrams and block diagrams illustrating an example of the configuration of a semiconductor device according to one embodiment of the present invention.
  • the semiconductor device 10V shown in FIGS. 15A and 15B has a configuration in which another element layer 40 is stacked on an element layer 50, as in FIGS. 1A and 1B.
  • FIG. 15B four element layers 40 (element layers 40[1] to 40[4] are illustrated) are stacked on an element layer 50.
  • the semiconductor device 10V has a configuration in which data is written or read in the memory cells 42 of each element layer 40 through wiring from the bit line driver circuit (write bit line driver circuit 53, read bit line driver circuit 54) to the upper element layer 40, and wiring arranged from the upper element layer 40 toward the lower element layer 40, as shown in FIG. 15A.
  • the bit line driver circuit write bit line driver circuit 53, read bit line driver circuit 54
  • the element layer 40 has wiring WBL (wirings WBL[1] to WBL[3]) for writing data to the memory cells 42 and wiring RBL (wirings RBL[1] to RBL[3]) for reading data.
  • WBL wirings WBL[1] to WBL[3]
  • RBL wirings RBL[1] to RBL[3]
  • the wirings WBL[1] to WBL[3] and wirings RBL[1] to RBL[3] are arranged in a direction perpendicular to the direction in which the upper element layer 40 (element layer 40[4] in FIG.
  • each memory cell 42 is stacked on the element layer 50 (direction perpendicular to the Z direction), and are arranged in the direction in which the element layer 40 is stacked on the element layer 50 (Z direction), electrically connecting each memory cell 42 to the wiring GWBL or wiring GRBL.
  • the wiring GWBL and wiring GRBL are provided from the element layer 50 across multiple element layers 40 in the direction in which the element layers 40 are stacked on the element layer 50 (Z direction).
  • the wiring GWBL has the function of transmitting a potential corresponding to the data output by the write bit line driving circuit 53 to the wiring WBL of the element layer 40 above (element layer 40[4] in FIG. 15B).
  • the wiring GRBL has the function of transmitting a potential corresponding to the data read from the memory cell 42 in the element layer 40 to the wiring RBL of the element layer 40[4] to the read bit line driving circuit 54.
  • FIG. 16 illustrates a case where the element layer 40 in FIG. 15B has two layers.
  • FIG. 17 illustrates the configuration of the wiring WWL and RWL connected to the memory cells 42 in each element layer when the element layer 40 shown in FIG. 16 has two layers.
  • FIG. 17 illustrates three memory cells 42 provided in each of the memory cell units 41[1] and 41[2] provided for each element layer 40.
  • FIG. 17 illustrates wiring WWL[1]-[6] functioning as write word lines and wiring RWL[1]-[6] functioning as read word lines for controlling each memory cell 42 in the memory cell units 41[1] and 41[2].
  • FIG. 17 shows a circuit diagram of the memory cell of the NOSRAM shown in FIG. 5A of the first embodiment.
  • the memory cells 42 of the memory cell units 41[1] and 41[2] which can be arranged so as to overlap side by side in the Z direction, are connected to common wirings WBL[1] and RBL[1] (wirings WBL[2] and RBL[2], or wirings WBL[3] and RBL[3]).
  • the three memory cells 42 of the memory cell unit 41[1] shown in FIG. 17 are connected to different wirings WWL[1]-[3] and RWL[1]-[3].
  • the three memory cells 42 of the memory cell unit 41[2] shown in FIG. 17 are connected to different wirings WWL[4]-[6] and RWL[4]-[6].
  • the wiring WBL and wiring RBL have portions that are arranged in a direction (Z direction) parallel to the direction in which the wiring GWBL and wiring GRBL are arranged.
  • the wiring WBL and wiring RBL can be arranged in a direction perpendicular to the surface of each element layer 40 by being arranged in the Z direction across multiple element layers 40.
  • the wiring WBL and wiring RBL can be arranged perpendicular to other wirings arranged in the element layer 40, such as the wiring WWL and RWL. Therefore, in addition to lower power consumption, higher density, and larger memory capacity by forming a memory cell having stacked OS transistors, the wiring load of the wiring that functions as a signal line can be reduced, and therefore it is possible to increase the speed of reading and writing data and improve the reliability of data.
  • FIG. 18A shows a configuration example in which a wiring that connects the wiring WBL[1] and the wiring WBL[2] arranged in different element layers 40 in the configuration of FIG. 2A described in the first embodiment is added in a direction parallel to the Z direction and arranged in a ring (loop).
  • a configuration example in which the wiring RBL[1] and the wiring RBL[2] arranged in different element layers 40 are arranged in a ring (loop) is also shown. Note that in FIG.
  • a switch circuit is omitted because a wiring that connects the wiring WBL[1] and the wiring WBL[2] (the wiring RBL[1] and the wiring RBL[2]) is added, but when there is another wiring WBL (for example, the wiring WBL[3] and the wiring WBL[4]) or the wiring RBL (for example, the wiring RBL[3] and the wiring RBL[4]), it is preferable to provide a switch circuit for each of the wiring WBL (wiring RBL) arranged in a ring.
  • FIG. 18B shows a configuration example in which wiring connecting the wiring WBL or wiring RBL arranged in a different element layer 40 to the memory cell 42 in the configuration of FIG. 16 described in this embodiment is added in a direction parallel to the Z direction and arranged in a ring (loop).
  • the wiring resistance can be reduced by arranging the wiring that transmits signals in a circular (loop) shape. This reduces the wiring load, such as the wiring capacitance and wiring resistance, of the wiring that functions as a signal line, which can increase the speed of reading and writing data and improve the reliability of the data.
  • FIG. 19 shows a part of the cross-sectional structure of the semiconductor device.
  • the semiconductor device shown in FIG. 19 includes a transistor 550, a transistor 500, and a capacitor 600.
  • FIG. 20A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 20B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 20C is a cross-sectional view of the transistor 550 in the channel width direction.
  • the transistor 550 corresponds to the Si transistor shown in the above embodiment
  • the transistor 500 corresponds to an OS transistor.
  • transistor 500 is provided above transistor 550
  • capacitor 600 is provided above transistor 550 and transistor 500.
  • Transistor 550 is provided on substrate 311 and has conductor 316, insulator 315, semiconductor region 313 consisting of part of substrate 311, low resistance region 314a functioning as a source region or drain region, and low resistance region 314b.
  • the upper surface and the side surface in the channel width direction of the semiconductor region 313 of the transistor 550 are covered with the conductor 316 via the insulator 315.
  • the effective channel width is increased, thereby improving the on-characteristics of the transistor 550.
  • the contribution of the electric field of the gate electrode can be increased, thereby improving the off-characteristics of the transistor 550.
  • Transistor 550 may be either a p-channel type or an n-channel type.
  • the region where the channel of the semiconductor region 313 is formed, the region nearby, the low resistance region 314a which becomes the source region or drain region, and the low resistance region 314b preferably contain a semiconductor such as a silicon-based semiconductor, and preferably contain single crystal silicon.
  • they may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), etc.
  • a configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used.
  • the transistor 550 may be a HEMT (High Electron Mobility Transistor) by using GaAs and GaAlAs, etc.
  • Low resistance region 314a and low resistance region 314b contain, in addition to the semiconductor material applied to semiconductor region 313, an element that imparts n-type conductivity, such as arsenic or phosphorus, or an element that imparts p-type conductivity, such as boron.
  • the conductor 316 that functions as the gate electrode can be made of a conductive material such as a semiconductor material, metal material, alloy material, or metal oxide material, such as silicon containing an element that imparts n-type conductivity, such as arsenic or phosphorus, or an element that imparts p-type conductivity, such as boron.
  • a conductive material such as a semiconductor material, metal material, alloy material, or metal oxide material, such as silicon containing an element that imparts n-type conductivity, such as arsenic or phosphorus, or an element that imparts p-type conductivity, such as boron.
  • the work function is determined by the material of the conductor, so the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use materials such as titanium nitride and tantalum nitride for the conductor. Furthermore, in order to achieve both conductivity and embeddability, it is preferable to use metal materials such as tungsten and aluminum as a laminate for the conductor, and in particular, it is preferable to use tungsten in terms of heat resistance.
  • Transistor 550 may be formed using an SOI (Silicon on Insulator) substrate, etc.
  • a SIMOX (Separation by Implanted Oxygen) substrate formed by implanting oxygen ions into a mirror-polished wafer and then heating it at a high temperature to form an oxide layer at a certain depth from the surface and eliminate defects in the surface layer, or an SOI substrate formed using the Smart Cut method, which cleaves a semiconductor substrate by utilizing the growth of microvoids formed by hydrogen ion implantation through heat treatment, or the ELTRAN method (registered trademark: Epitaxial Layer Transfer), may be used.
  • a transistor formed using a single crystal substrate has a single crystal semiconductor in the channel formation region.
  • Insulator 320, insulator 322, insulator 324, and insulator 326 are stacked in this order to cover transistor 550.
  • Insulators 320, 322, 324, and 326 may be made of, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen
  • aluminum oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • aluminum nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • the insulator 322 may function as a planarizing film that flattens steps caused by the transistor 550 or the like provided below it.
  • the top surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve flatness.
  • CMP chemical mechanical polishing
  • a film for the insulator 324 that has barrier properties to prevent hydrogen, impurities, and the like from diffusing from the substrate 311 or the transistor 550 to the region where the transistor 500 is provided.
  • a film having barrier properties against hydrogen for example, silicon nitride formed by a CVD method can be used.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element having an oxide semiconductor such as the transistor 500, the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses hydrogen diffusion between the transistor 500 and the transistor 550.
  • a film that suppresses hydrogen diffusion is a film that releases a small amount of hydrogen.
  • the amount of desorption of hydrogen can be analyzed, for example, by using thermal desorption spectroscopy (TDS) etc.
  • TDS thermal desorption spectroscopy
  • the amount of desorption of hydrogen from the insulator 324 may be 1 ⁇ 10 16 atoms/cm 2 or less, preferably 5 ⁇ 10 15 atoms/cm 2 or less , converted into hydrogen atoms per area of the insulator 324, when the film surface temperature is in the range of 50° C. to 500° C., in a TDS analysis.
  • the insulator 326 has a lower dielectric constant than the insulator 324.
  • the relative dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3.
  • the relative dielectric constant of the insulator 326 is preferably 0.7 times or less than the relative dielectric constant of the insulator 324, and more preferably 0.6 times or less.
  • conductors 328 and 330 which connect to transistor 550, are embedded in insulators 320, 322, 324, and 326.
  • Conductors 328 and 330 function as plugs or wiring.
  • the same reference numerals may be used to refer to multiple components.
  • the wiring and the plug that connects to the wiring may be integrated. That is, there are cases where a part of the conductor functions as the wiring, and cases where a part of the conductor functions as the plug.
  • the materials for each plug and wiring can be a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material, either in a single layer or in a laminated form. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and tungsten is preferable. Alternatively, it is preferable to form the wiring from a low resistance conductive material such as aluminum or copper. By using a low resistance conductive material, the wiring resistance can be reduced.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are stacked in this order.
  • the conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or wiring that connects to the transistor 550.
  • the conductor 356 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 350 is an insulator having a barrier property against hydrogen, similar to the insulator 324. It is also preferable that the conductor 356 includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening of the insulator 350 having a barrier property against hydrogen. With this configuration, the transistor 550 and the transistor 500 can be separated by a barrier layer, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a conductor having a barrier property against hydrogen for example, tantalum nitride or the like can be used.
  • tantalum nitride As a conductor having a barrier property against hydrogen, for example, tantalum nitride or the like can be used.
  • tantalum nitride and highly conductive tungsten it is possible to suppress diffusion of hydrogen from the transistor 550 while maintaining the conductivity of the wiring.
  • the tantalum nitride layer having a barrier property against hydrogen is in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • the insulators 360, 362, and 364 are stacked in this order.
  • the conductor 366 is formed on the insulators 360, 362, and 364.
  • the conductor 366 functions as a plug or wiring.
  • the conductor 366 can be provided using the same material as the conductors 328 and 330.
  • the insulator 360 is an insulator having a barrier property against hydrogen, similar to the insulator 324. It is also preferable that the conductor 366 includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening of the insulator 360 having a barrier property against hydrogen. With this configuration, the transistor 550 and the transistor 500 can be separated by a barrier layer, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a wiring layer may be provided on the insulator 364 and the conductor 366.
  • the insulators 370, 372, and 374 are stacked in this order.
  • the conductor 376 is formed on the insulators 370, 372, and 374.
  • the conductor 376 functions as a plug or wiring.
  • the conductor 376 can be provided using the same material as the conductors 328 and 330.
  • the insulator 370 is an insulator having a barrier property against hydrogen, similar to the insulator 324. It is also preferable that the conductor 376 includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening of the insulator 370 having a barrier property against hydrogen. With this configuration, the transistor 550 and the transistor 500 can be separated by a barrier layer, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a wiring layer may be provided on the insulator 374 and the conductor 376.
  • the insulators 380, 382, and 384 are stacked in this order.
  • the conductor 386 is formed on the insulators 380, 382, and 384.
  • the conductor 386 functions as a plug or wiring.
  • the conductor 386 can be provided using the same material as the conductors 328 and 330.
  • the insulator 380 is an insulator having a barrier property against hydrogen, similar to the insulator 324. It is also preferable that the conductor 386 includes a conductor having a barrier property against hydrogen. In particular, a conductor having a barrier property against hydrogen is formed in an opening of the insulator 380 having a barrier property against hydrogen. With this configuration, the transistor 550 and the transistor 500 can be separated by a barrier layer, and the diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a wiring layer including conductor 356, a wiring layer including conductor 366, a wiring layer including conductor 376, and a wiring layer including conductor 386 have been described, but the semiconductor device according to this embodiment is not limited to this. There may be three or fewer wiring layers similar to the wiring layer including conductor 356, and there may be five or more wiring layers similar to the wiring layer including conductor 356.
  • Insulator 510, insulator 512, insulator 514, and insulator 516 are stacked in this order on insulator 384. It is preferable that any of insulators 510, 512, 514, and 516 be made of a material that has barrier properties against oxygen, hydrogen, and the like.
  • the insulator 510 and the insulator 514 it is preferable to use a film having barrier properties that prevent hydrogen, impurities, and the like from diffusing from, for example, the substrate 311 or the region where the transistor 550 is provided to the region where the transistor 500 is provided. Therefore, the same material as the insulator 324 can be used.
  • silicon nitride formed by a CVD method can be used as an example of a film having barrier properties against hydrogen.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element having an oxide semiconductor such as the transistor 500, the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses hydrogen diffusion between the transistor 500 and the transistor 550.
  • a film that suppresses hydrogen diffusion is a film that releases a small amount of hydrogen.
  • metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide are preferably used for insulators 510 and 514.
  • Aluminum oxide in particular, has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which are factors that cause fluctuations in the electrical characteristics of transistors. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the transistor manufacturing process. It can also suppress the release of oxygen from the oxide that constitutes the transistor 500. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the insulator 512 and the insulator 516 can be made of the same material as the insulator 320. Furthermore, by using a material with a relatively low dielectric constant for these insulators, the parasitic capacitance that occurs between the wirings can be reduced.
  • a silicon oxide film or a silicon oxynitride film can be used as the insulator 512 and the insulator 516.
  • conductor 518 and conductors constituting transistor 500 are embedded in insulators 510, 512, 514, and 516.
  • Conductor 518 functions as a plug or wiring that connects to capacitor 600 or transistor 550.
  • Conductor 518 can be provided using the same material as conductor 328 and conductor 330.
  • the insulator 510 and the conductor 518 in the region in contact with the insulator 514 are conductors that have barrier properties against oxygen, hydrogen, and water.
  • the transistor 550 and the transistor 500 can be separated by a layer that has barrier properties against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 516.
  • the transistor 500 has a conductor 503 disposed so as to be embedded in the insulator 514 and the insulator 516, an insulator 520 disposed on the insulator 516 and the conductor 503, an insulator 522 disposed on the insulator 520, an insulator 524 disposed on the insulator 522, a metal oxide 530a disposed on the insulator 524, a metal oxide 530b disposed on the metal oxide 530a, conductors 542a and 542b disposed apart from each other on the metal oxide 530b, an insulator 580 disposed on the conductors 542a and 542b and having an opening formed therebetween overlapping the conductors 542a and 542b, an insulator 545 disposed on the bottom and side surfaces of the opening, and a conductor 560 disposed on the surface on which the insulator 545 is formed.
  • an insulator 544 is disposed between the metal oxide 530a, the metal oxide 530b, the conductor 542a, and the conductor 542b and the insulator 580.
  • the conductor 560 has a conductor 560a disposed inside the insulator 545 and a conductor 560b disposed so as to be embedded inside the conductor 560a, as shown in FIGS. 20A and 20B.
  • an insulator 574 is disposed on the insulator 580, the conductor 560, and the insulator 545, as shown in FIGS. 20A and 20B.
  • metal oxide 530a and metal oxide 530b may be collectively referred to as metal oxide 530.
  • the transistor 500 a structure in which two layers of metal oxide 530a and metal oxide 530b are stacked in the region where the channel is formed and in the vicinity thereof is shown, but the present invention is not limited to this.
  • a structure in which a single layer of metal oxide 530b is provided, or a stacked structure of three or more layers may be provided.
  • the conductor 560 is shown as having a two-layer stacked structure, but the present invention is not limited to this.
  • the conductor 560 may have a single-layer structure or a stacked structure of three or more layers.
  • the transistor 500 shown in Figures 19 and 20A is one example, and the present invention is not limited to this structure, and an appropriate transistor may be used depending on the circuit configuration, driving method, etc.
  • the conductor 560 functions as the gate electrode of the transistor, and the conductors 542a and 542b function as the source electrode and drain electrode, respectively.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and in the region between the conductors 542a and 542b.
  • the arrangement of the conductors 560, 542a, and 542b is selected in a self-aligned manner with respect to the opening of the insulator 580. That is, in the transistor 500, the gate electrode can be arranged in a self-aligned manner between the source electrode and the drain electrode. Therefore, the conductor 560 can be formed without providing a margin for alignment, so that the area occupied by the transistor 500 can be reduced. This allows the semiconductor device to be miniaturized and highly integrated.
  • conductor 560 is formed in a self-aligned manner in the region between conductor 542a and conductor 542b, conductor 560 does not have a region that overlaps with conductor 542a or conductor 542b. This makes it possible to reduce the parasitic capacitance formed between conductor 560 and conductor 542a and conductor 542b. This makes it possible to improve the switching speed of transistor 500 and provide it with high frequency characteristics.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560.
  • the threshold voltage of the transistor 500 can be made higher than 0 V, and the off-current can be reduced. Therefore, applying a negative potential to the conductor 503 can reduce the drain current when the potential applied to the conductor 560 is 0 V, compared to when a negative potential is not applied.
  • the conductor 503 is arranged so as to overlap the metal oxide 530 and the conductor 560. In this way, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected, and the channel formation region formed in the metal oxide 530 can be covered.
  • the transistor structure in which the electric field of the first gate electrode electrically surrounds the channel formation region is called a surrounded channel (S-channel) structure.
  • the S-channel structure disclosed in this specification has a structure different from the Fin type structure and the planar type structure.
  • the S-channel structure disclosed in this specification can also be considered as a type of Fin type structure.
  • the Fin type structure refers to a structure in which the gate electrode is arranged to surround at least two or more sides of the channel (specifically, two, three, or four sides, etc.).
  • the channel formation region can be electrically surrounded. Since the S-channel structure electrically surrounds the channel formation region, it can be said that the S-channel structure is substantially equivalent to a GAA (Gate All Around) structure or a LGAA (Lateral Gate All Around) structure.
  • GAA Gate All Around
  • LGAA Layer Advanced Gate All Around
  • the channel formation region formed at or near the interface between the metal oxide 530 and the gate insulator can be the entire bulk of the metal oxide 530. Therefore, it is possible to improve the current density flowing through the transistor, which is expected to improve the on-current of the transistor or the field effect mobility of the transistor.
  • the conductor 503 has a structure similar to that of the conductor 518, with the conductor 503a being formed in contact with the inner walls of the openings of the insulators 514 and 516, and the conductor 503b being formed further inward.
  • the transistor 500 shows a structure in which the conductors 503a and 503b are stacked, the present invention is not limited to this.
  • the conductor 503 may be configured as a single layer or a stacked structure of three or more layers.
  • the conductor 503a is made of a conductive material that has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, copper atoms, etc. (the impurities are less likely to permeate).
  • the conductor 503a is made of a conductive material that has a function of suppressing the diffusion of oxygen (e.g., at least one of oxygen atoms, oxygen molecules, etc.) (the oxygen is less likely to permeate).
  • the function of suppressing the diffusion of impurities or oxygen refers to the function of suppressing the diffusion of any one or all of the impurities or oxygen mentioned above.
  • conductor 503a has the function of suppressing the diffusion of oxygen, which can prevent conductor 503b from being oxidized and causing a decrease in conductivity.
  • the conductor 503 when the conductor 503 also functions as wiring, it is preferable that the conductor 503b is made of a highly conductive material containing tungsten, copper, or aluminum as a main component. Note that in this embodiment, the conductor 503 is illustrated as a laminate of the conductor 503a and the conductor 503b, but the conductor 503 may have a single layer structure.
  • Insulator 520, insulator 522, and insulator 524 function as a second gate insulating film.
  • the insulator 524 in contact with the metal oxide 530 is preferably an insulator containing more oxygen than the oxygen that satisfies the stoichiometric composition.
  • the oxygen is easily released from the film by heating.
  • oxygen released by heating may be referred to as "excess oxygen”. That is, the insulator 524 preferably has a region containing excess oxygen (also referred to as an "excess oxygen region").
  • the vacancies may function as donors and generate electrons that are carriers.
  • some of the hydrogen may bond to oxygen that is bonded to a metal atom to generate electrons that are carriers. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen is likely to have normally-on characteristics.
  • hydrogen in an oxide semiconductor is easily mobile due to stress such as heat or an electric field, and therefore, if the oxide semiconductor contains a large amount of hydrogen, the reliability of the transistor may be deteriorated.
  • an oxide material from which part of oxygen is released by heating is an oxide film from which the amount of oxygen released in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms/cm 3 or more, preferably 1.0 ⁇ 10 19 atoms/cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms/cm 3 or more, or 3.0 ⁇ 10 20 atoms/cm 3 or more, in TDS (Thermal Desorption Spectroscopy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100° C. to 700° C., or 100° C. to 400° C.
  • the insulator having the excess oxygen region may be brought into contact with the metal oxide 530 and one or more of heat treatment, microwave treatment, and RF treatment may be performed.
  • heat treatment microwave treatment
  • RF treatment may be performed.
  • water or hydrogen in the metal oxide 530 can be removed.
  • a reaction occurs in the metal oxide 530 that breaks the bond of VoH, in other words, a reaction of " VOH ⁇ Vo+H" occurs, and dehydrogenation can be performed.
  • some of the generated hydrogen may be combined with oxygen to become H 2 O and removed from the metal oxide 530 or the insulator near the metal oxide 530.
  • some of the hydrogen may be gettered to the conductors 542a and 542b.
  • the microwave treatment is preferably performed using, for example, a device having a power source that generates high-density plasma or a device having a power source that applies RF to the substrate side.
  • high-density oxygen radicals can be generated by using a gas containing oxygen and high-density plasma, and by applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be efficiently introduced into the metal oxide 530 or the insulator near the metal oxide 530.
  • the pressure of the microwave treatment may be 133 Pa or more, preferably 200 Pa or more, and more preferably 400 Pa or more.
  • oxygen and argon are used as gases to be introduced into the microwave treatment device, and the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 50% or less, preferably 10% or more and 30% or less.
  • the heat treatment may be performed, for example, at a temperature of 100° C. or higher and 450° C. or lower, more preferably 350° C. or higher and 400° C. or lower.
  • the heat treatment is performed in a nitrogen gas or inert gas atmosphere, or an atmosphere containing an oxidizing gas at 10 ppm or higher, 1% or higher, or 10% or higher.
  • the heat treatment is preferably performed in an oxygen atmosphere. This allows oxygen to be supplied to the metal oxide 530, thereby reducing oxygen vacancies (V O ).
  • the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing an oxidizing gas at 10 ppm or higher, 1% or higher, or 10% or higher in order to compensate for desorbed oxygen after the heat treatment in a nitrogen gas or inert gas atmosphere.
  • the heat treatment may be performed in an atmosphere containing an oxidizing gas at 10 ppm or higher, 1% or higher, or 10% or higher, and then the heat treatment may be performed in a nitrogen gas or inert gas atmosphere.
  • oxygen vacancies in the metal oxide 530 can be repaired by the supplied oxygen, in other words, the reaction of "Vo+O ⁇ null" can be promoted. Furthermore, the supplied oxygen reacts with hydrogen remaining in the metal oxide 530, and the hydrogen can be removed as H2O (dehydrated). This can prevent hydrogen remaining in the metal oxide 530 from recombining with the oxygen vacancies to form VOH .
  • the insulator 524 has an excess oxygen region, it is preferable that the insulator 522 has a function of suppressing the diffusion of oxygen (e.g., oxygen atoms, oxygen molecules, etc.) (the oxygen is less likely to permeate).
  • oxygen e.g., oxygen atoms, oxygen molecules, etc.
  • the insulator 522 has the function of suppressing the diffusion of oxygen, impurities, etc., so that the oxygen contained in the metal oxide 530 does not diffuse toward the insulator 520, which is preferable.
  • the conductor 503 can be suppressed from reacting with the oxygen contained in the insulator 524, metal oxide 530, etc.
  • the insulator 522 is preferably a single layer or a multilayer insulator containing a so-called high-k material, such as aluminum oxide, hafnium oxide, oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr)TiO 3 (BST).
  • a so-called high-k material such as aluminum oxide, hafnium oxide, oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba, Sr)TiO 3 (BST).
  • an insulator containing an oxide of one or both of aluminum and hafnium which are insulating materials that have the function of suppressing the diffusion of impurities and oxygen (the oxygen is less likely to permeate).
  • an insulator containing an oxide of one or both of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like.
  • the insulator 522 functions as a layer that suppresses the release of oxygen from the metal oxide 530, or the intrusion of impurities such as hydrogen into the metal oxide 530 from the periphery of the transistor 500.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be laminated on the above insulators.
  • the insulator 520 is thermally stable.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • by combining a high-k material insulator with silicon oxide or silicon oxynitride it is possible to obtain an insulator 520 having a layered structure that is thermally stable and has a high relative dielectric constant.
  • the second gate insulating film is illustrated as having a three-layer stack structure, with insulators 520, 522, and 524, but the second gate insulating film may have a single layer, two layers, or four or more layers. In that case, the second gate insulating film is not limited to a stack structure made of the same material, and may have a stack structure made of different materials.
  • the transistor 500 uses a metal oxide that functions as an oxide semiconductor for the metal oxide 530, which includes the channel formation region.
  • the metal oxide that functions as an oxide semiconductor may be formed by sputtering or ALD (Atomic Layer Deposition).
  • ALD Advanced Deposition
  • the metal oxide that functions as an oxide semiconductor will be described in detail in other embodiments.
  • a metal oxide that functions as a channel formation region in the metal oxide 530 with a band gap of 2 eV or more, preferably 2.5 eV or more. In this way, by using a metal oxide with a large band gap, the off-current of the transistor can be reduced.
  • metal oxide 530 By having metal oxide 530a below metal oxide 530b, metal oxide 530 can suppress the diffusion of impurities from components formed below metal oxide 530a to metal oxide 530b.
  • the metal oxide 530 has a structure of a plurality of oxide layers in which the atomic ratio of each metal atom is different.
  • the atomic ratio of element M among the constituent elements is preferably greater than the atomic ratio of element M among the constituent elements in the metal oxide used for the metal oxide 530b.
  • the atomic ratio of element M to In in the metal oxide used for the metal oxide 530a is greater than the atomic ratio of element M to In in the metal oxide used for the metal oxide 530b.
  • the atomic ratio of In to element M in the metal oxide used for the metal oxide 530b is greater than the atomic ratio of In to element M in the metal oxide used for the metal oxide 530a.
  • the energy of the conduction band minimum of the metal oxide 530a is higher than the energy of the conduction band minimum of the metal oxide 530b.
  • the electron affinity of the metal oxide 530a is smaller than the electron affinity of the metal oxide 530b.
  • the energy level of the conduction band minimum changes smoothly.
  • the energy level of the conduction band minimum at the junction between metal oxide 530a and metal oxide 530b changes continuously or can be said to be a continuous junction.
  • metal oxide 530a and metal oxide 530b have a common element other than oxygen (as a main component), a mixed layer with a low defect level density can be formed.
  • metal oxide 530b is In-Ga-Zn oxide
  • metal oxide 530a may be In-Ga-Zn oxide, Ga-Zn oxide, gallium oxide, or the like.
  • the main carrier path is metal oxide 530b.
  • metal oxide 530a As described above, the defect state density at the interface between metal oxide 530a and metal oxide 530b can be reduced. Therefore, the effect of interface scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-current.
  • the metal oxide 530 is illustrated as having a two-layer structure of the metal oxide 530a and the metal oxide 530b on the metal oxide 530a, but is not limited thereto.
  • the metal oxide 530 may have a three-layer structure in which the metal oxide 530a, the metal oxide 530b, and the metal oxide 530c (not shown) are formed in this order.
  • the metal oxide 530c By making the metal oxide 530c have the same composition as the metal oxide 530a, it is possible to suppress the diffusion of impurities from a structure formed above the metal oxide 530c to the metal oxide 530b.
  • the structure in which the metal oxide 530b is sandwiched between the metal oxide 530a and the metal oxide 530c (so-called buried channel structure)
  • the buried channel structure by making the buried channel structure, the interface scattering of carriers is reduced, and a transistor having high field effect mobility can be realized.
  • Conductors 542a and 542b functioning as a source electrode and a drain electrode are provided on the metal oxide 530b.
  • a metal element selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum, or an alloy containing the above-mentioned metal elements as a component, or an alloy combining the above-mentioned metal elements.
  • tantalum nitride titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are conductive materials that are difficult to oxidize, or materials that maintain conductivity even when oxygen is absorbed, and are therefore preferable.
  • metal nitride films such as tantalum nitride are preferable because they have barrier properties against hydrogen or oxygen.
  • FIG. 20A shows conductor 542a and conductor 542b as a single layer structure, they may be laminated with two or more layers.
  • a tantalum nitride film and a tungsten film may be laminated.
  • a titanium film and an aluminum film may also be laminated.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, or a two-layer structure in which a copper film is laminated on a tungsten film may be used.
  • Other examples include a three-layer structure in which a titanium film or titanium nitride film is laminated with an aluminum film or copper film on the titanium film or titanium nitride film, and a titanium film or titanium nitride film is further formed on top of that; and a three-layer structure in which a molybdenum film or molybdenum nitride film is laminated with an aluminum film or copper film on the molybdenum film or molybdenum nitride film, and a molybdenum film or molybdenum nitride film is further formed on top of that.
  • a transparent conductive material containing indium oxide, tin oxide, or zinc oxide may also be used.
  • regions 543a and 543b may be formed as low-resistance regions at and near the interface of metal oxide 530 with conductor 542a (conductor 542b).
  • region 543a functions as one of the source region and drain region
  • region 543b functions as the other of the source region and drain region.
  • a channel formation region is formed in the region sandwiched between regions 543a and 543b.
  • the oxygen concentration in the region 543a (region 543b) may be reduced.
  • a metal compound layer containing the metal contained in the conductor 542a (conductor 542b) and components of the metal oxide 530 may be formed in the region 543a (region 543b). In such a case, the carrier concentration in the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided to cover the conductors 542a and 542b, and suppresses oxidation of the conductors 542a and 542b.
  • the insulator 544 may be provided to cover the side surface of the metal oxide 530 and to be in contact with the insulator 524.
  • insulator 544 a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, etc. can be used.
  • silicon nitride oxide or silicon nitride can also be used as the insulator 544.
  • an insulator containing an oxide of either or both of aluminum and hafnium such as aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate).
  • hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, it is preferable because it is less likely to crystallize during heat treatment in a later process.
  • the conductors 542a and 542b are made of a material that is resistant to oxidation, or a material whose conductivity does not decrease significantly even when it absorbs oxygen, the insulator 544 is not an essential component. It may be designed appropriately depending on the desired transistor characteristics.
  • insulator 544 can prevent impurities such as water and hydrogen contained in insulator 580 from diffusing into metal oxide 530b.
  • the presence of excess oxygen in insulator 580 can prevent conductors 542a and 542b from oxidizing.
  • the insulator 545 functions as a first gate insulating film. As with the insulator 524 described above, the insulator 545 is preferably formed using an insulator that contains excess oxygen and releases oxygen when heated.
  • silicon oxide with excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with added fluorine, silicon oxide with added carbon, silicon oxide with added carbon and nitrogen, and silicon oxide with vacancies can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • insulator 545 By providing an insulator containing excess oxygen as insulator 545, oxygen can be effectively supplied from insulator 545 to the channel formation region of metal oxide 530b. As with insulator 524, it is preferable that the concentration of impurities such as water or hydrogen in insulator 545 is reduced.
  • the thickness of insulator 545 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 545 and the conductor 560.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 545 to the conductor 560.
  • the diffusion of excess oxygen from the insulator 545 to the conductor 560 is suppressed.
  • a decrease in the amount of excess oxygen supplied to the metal oxide 530 can be suppressed.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 545 may have a layered structure, similar to the second gate insulating film. As transistors become smaller and more highly integrated, problems such as off-current may occur due to thinner gate insulating films. Therefore, by making the insulator that functions as the gate insulating film a layered structure of a high-k material and a thermally stable material, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. In addition, a layered structure that is thermally stable and has a high relative dielectric constant can be achieved.
  • the conductor 560 functioning as the first gate electrode is shown as having a two-layer structure in Figures 20A and 20B, but may have a single-layer structure or a stacked structure of three or more layers.
  • the conductor 560a is preferably made of a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 , etc.), and copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 , etc.), and copper atoms.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one of oxygen atoms, oxygen molecules, etc.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, or ruthenium oxide is preferably used.
  • an oxide semiconductor that can be applied to the metal oxide 530 can be used as the conductor 560a.
  • the conductor 560b can be formed by a sputtering method to reduce the electrical resistance value of the conductor 560a to make it a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the conductor 560b is made of a conductive material containing tungsten, copper, or aluminum as a main component. Moreover, since the conductor 560b also functions as wiring, it is preferable that a conductor with high conductivity is used. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used. Furthermore, the conductor 560b may have a layered structure, for example, a layered structure of titanium or titanium nitride and the above-mentioned conductive material.
  • the insulator 580 is provided on the conductor 542a and the conductor 542b via the insulator 544.
  • the insulator 580 preferably has an excess oxygen region.
  • the insulator 580 preferably has silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with added fluorine, silicon oxide with added carbon, silicon oxide with added carbon and nitrogen, silicon oxide with voids, or resin.
  • silicon oxide and silicon oxynitride are preferred because they are thermally stable.
  • silicon oxide and silicon oxide with voids are preferred because they allow for easy formation of excess oxygen regions in a later process.
  • the insulator 580 preferably has an excess oxygen region. By providing the insulator 580 from which oxygen is released when heated, the oxygen in the insulator 580 can be efficiently supplied to the metal oxide 530. It is preferable that the concentration of impurities such as water or hydrogen in the insulator 580 is reduced.
  • the opening of insulator 580 is formed so as to overlap the region between conductor 542a and conductor 542b. This allows conductor 560 to be formed so as to be embedded in the opening of insulator 580 and the region sandwiched between conductor 542a and conductor 542b.
  • the conductor 560 When miniaturizing semiconductor devices, it is necessary to shorten the gate length, but it is also necessary to ensure that the conductivity of the conductor 560 does not decrease. If the thickness of the conductor 560 is increased in order to achieve this, the conductor 560 may have a shape with a high aspect ratio. In this embodiment, the conductor 560 is provided so as to be embedded in the opening of the insulator 580, so that even if the conductor 560 has a shape with a high aspect ratio, it can be formed without the conductor 560 collapsing during the process.
  • the insulator 574 is preferably provided in contact with the top surface of the insulator 580, the top surface of the conductor 560, and the top surface of the insulator 545.
  • an excess oxygen region can be provided in the insulator 545 and the insulator 580. This allows oxygen to be supplied from the excess oxygen region into the metal oxide 530.
  • the insulator 574 may be a metal oxide containing one or more of the following elements: hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, etc.
  • Aluminum oxide in particular, has high barrier properties and can suppress the diffusion of hydrogen and nitrogen even in a thin film with a thickness of 0.5 nm to 3.0 nm. Therefore, aluminum oxide formed by sputtering can function as both an oxygen source and a barrier film against impurities such as hydrogen.
  • an insulator 581 that functions as an interlayer film on the insulator 574. As with the insulator 524, it is preferable that the concentration of impurities such as water or hydrogen in the insulator 581 is reduced.
  • conductors 540a and 540b are arranged in the openings formed in insulators 581, 574, 580, and 544. Conductors 540a and 540b are arranged facing each other with conductor 560 in between. Conductors 540a and 540b have the same configuration as conductors 546 and 548, which will be described later.
  • Insulator 582 is provided on insulator 581. It is preferable that insulator 582 is made of a material that has barrier properties against oxygen, hydrogen, and the like. Therefore, the same material as insulator 514 can be used for insulator 582. For example, it is preferable that insulator 582 is made of a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.
  • Aluminum oxide in particular, has a high blocking effect that prevents the film from permeating both oxygen and impurities such as hydrogen and moisture, which are factors that cause fluctuations in the electrical characteristics of transistors. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the transistor manufacturing process. It can also suppress the release of oxygen from the oxide that constitutes the transistor 500. Therefore, it is suitable for use as a protective film for the transistor 500.
  • an insulator 586 is provided on the insulator 582.
  • the insulator 586 can be made of the same material as the insulator 320. Furthermore, by using a material with a relatively low dielectric constant for these insulators, the parasitic capacitance that occurs between wirings can be reduced. For example, a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 586.
  • conductors 546 and 548 are embedded in insulators 520, 522, 524, 544, 580, 574, 581, 582, and 586.
  • the conductor 546 and the conductor 548 function as plugs or wirings that connect to the capacitor 600, the transistor 500, or the transistor 550.
  • the conductor 546 and the conductor 548 can be formed using the same material as the conductor 328 and the conductor 330.
  • an opening may be formed to surround the transistor 500, and an insulator with high barrier properties against hydrogen or water may be formed to cover the opening.
  • an insulator with high barrier properties against hydrogen or water By wrapping the transistor 500 in the insulator with high barrier properties, it is possible to prevent moisture and hydrogen from entering from the outside.
  • a plurality of transistors 500 may be wrapped together in an insulator with high barrier properties against hydrogen or water.
  • the insulator with high barrier properties against hydrogen or water for example, a material similar to the insulator 522 or the insulator 514 may be used.
  • the transistor that can be used in the present invention is not limited to the transistor 500 shown in Figures 20A and 20B.
  • a transistor 500 having the structure shown in Figure 21 may be used.
  • the transistor 500 shown in Figure 21 differs from the transistor shown in Figures 20A and 20B in that an insulator 555 is used and that the conductor 542a (conductor 542a1 and conductor 542a2) and the conductor 542b (conductor 542b1 and conductor 542b2) have a layered structure.
  • Conductor 542a has a laminated structure of conductor 542a1 and conductor 542a2 on conductor 542a
  • conductor 542b has a laminated structure of conductor 542b1 and conductor 542b2 on conductor 542b1.
  • Conductor 542a1 and conductor 542b1 in contact with metal oxide 530b are preferably conductors that are difficult to oxidize, such as metal nitrides. This can prevent conductor 542a and conductor 542b from being excessively oxidized by oxygen contained in metal oxide 530b.
  • Conductors 542a2 and conductor 542b2 are preferably conductors such as metal layers that are more conductive than conductor 542a1 and conductor 542b1.
  • conductor 542a and conductor 542b to function as highly conductive wiring or electrodes.
  • a semiconductor device can be provided in which conductors 542a and 542b, which function as wiring or electrodes, are provided in contact with the upper surface of metal oxide 530, which functions as an active layer.
  • a metal nitride for example, a nitride containing tantalum, a nitride containing titanium, a nitride containing molybdenum, a nitride containing tungsten, a nitride containing tantalum and aluminum, or a nitride containing titanium and aluminum.
  • a nitride containing tantalum is particularly preferable.
  • ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain their conductivity even when they absorb oxygen.
  • conductor 542a2 and conductor 542b2 have higher conductivity than conductor 542a1 and conductor 542b1.
  • the film thickness of conductor 542a2 and conductor 542b2 is greater than the film thickness of conductor 542a1 and conductor 542b1.
  • Conductors 542a2 and conductor 542b2 may be conductors that can be used for conductor 560b.
  • tantalum nitride or titanium nitride can be used as the conductor 542a1 and the conductor 542b1, and tungsten can be used as the conductor 542a2 and the conductor 542b2.
  • the distance between conductor 542a1 and conductor 542b1 is smaller than the distance between conductor 542a2 and conductor 542b2.
  • the insulator 555 is preferably an insulator that is difficult to oxidize, such as a nitride.
  • the insulator 555 is formed in contact with the side surface of the conductor 542a2 and the side surface of the conductor 542b2, and has the function of protecting the conductor 542a2 and the conductor 542b2. Since the insulator 555 is exposed to an oxidizing atmosphere, it is preferable that the insulator 555 is an inorganic insulator that is difficult to oxidize.
  • the insulator 555 is in contact with the conductor 542a2 and the conductor 542b2, it is preferable that the insulator 555 is an inorganic insulator that is difficult to oxidize the conductors 542a2 and 542b2. Therefore, it is preferable that the insulator 555 is made of an insulating material that has a barrier property against oxygen. For example, silicon nitride can be used as the insulator 555.
  • the 21 is formed by forming an opening in the insulator 580 and the insulator 544, forming an insulator 555 in contact with the sidewall of the opening, and then dividing the conductor 542a1 and the conductor 542b1 using a mask.
  • the opening overlaps with the region between the conductor 542a2 and the conductor 542b2.
  • parts of the conductor 542a1 and the conductor 542b1 are formed to protrude into the opening.
  • the insulator 555 contacts the top surface of the conductor 542a1, the top surface of the conductor 542b1, the side surface of the conductor 542a2, and the side surface of the conductor 542b2 within the opening.
  • the insulator 545 contacts the top surface of the metal oxide 530 in the region between the conductor 542a1 and the conductor 542b1.
  • the conductor 542a1 and the conductor 542b1 After separating the conductor 542a1 and the conductor 542b1, it is preferable to perform heat treatment in an atmosphere containing oxygen before forming the insulator 545. This allows oxygen to be supplied to the metal oxide 530a and the metal oxide 530b, thereby reducing oxygen deficiency. Furthermore, since the insulator 555 is formed in contact with the side surface of the conductor 542a2 and the side surface of the conductor 542b2, excessive oxidation of the conductor 542a2 and the conductor 542b2 can be prevented. As a result, the electrical characteristics and reliability of the transistor can be improved. In addition, the variation in the electrical characteristics of multiple transistors formed on the same substrate can be suppressed.
  • the insulator 524 may be formed in an island shape as shown in FIG. 21.
  • the insulator 524 may be formed so that its side end roughly coincides with the metal oxide 530.
  • the insulator 522 may be in contact with the insulator 516 and the conductor 503.
  • the transistor 500 may be configured without the insulator 520 shown in FIG. 20A and FIG. 20B.
  • the capacitor 600 has a conductor 610, a conductor 620, and an insulator 630.
  • a conductor 612 may be provided on the conductor 546 and the conductor 548.
  • the conductor 612 functions as a plug or wiring that connects to the transistor 500.
  • the conductor 610 functions as an electrode of the capacitor 600. Note that the conductor 612 and the conductor 610 can be formed at the same time.
  • a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements (tantalum nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film), etc., can be used.
  • a conductive material such as indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium tin oxide with added silicon oxide can also be used.
  • the conductor 612 and the conductor 610 are shown in a single layer structure, but the present invention is not limited to this structure and may be a laminated structure of two or more layers.
  • a conductor having barrier properties and a conductor having high adhesion to the conductor having high conductivity may be formed between a conductor having barrier properties and a conductor having high conductivity.
  • the conductor 620 is provided so as to overlap the conductor 610 with the insulator 630 interposed therebetween.
  • the conductor 620 can be made of a conductive material such as a metal material, an alloy material, or a metal oxide material. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten.
  • a low resistance metal material such as Cu (copper) or Al (aluminum).
  • An insulator 640 is provided on the conductor 620 and the insulator 630.
  • the insulator 640 can be provided using the same material as the insulator 320.
  • the insulator 640 may also function as a planarizing film that covers the uneven shape below it.
  • Substrates that can be used in the semiconductor device of one embodiment of the present invention include glass substrates, quartz substrates, sapphire substrates, ceramic substrates, metal substrates (e.g., stainless steel substrates, substrates having stainless steel foil, tungsten substrates, substrates having tungsten foil, etc.), semiconductor substrates (e.g., single crystal semiconductor substrates, polycrystalline semiconductor substrates, compound semiconductor substrates, etc.), SOI (Silicon on Insulator) substrates, and the like.
  • a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment may also be used.
  • glass substrates include barium borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, and the like. In addition, crystallized glass and the like can be used.
  • a flexible substrate, a laminated film, paper containing a fibrous material, or a base film can be used as the substrate.
  • flexible substrates, laminated films, base films, etc. include the following.
  • plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PTFE polytetrafluoroethylene
  • Another example is synthetic resins such as acrylic.
  • polyamide, polyimide, aramid resin, epoxy resin, inorganic deposition film, or paper is another example.
  • transistors using a semiconductor substrate, a single crystal substrate, or an SOI substrate, it is possible to manufacture transistors that have little variation in characteristics, size, or shape, have high current capacity, and are small in size.
  • configuring a circuit using such transistors it is possible to reduce the power consumption of the circuit or to increase the integration of the circuit.
  • a flexible substrate may be used as the substrate, and transistors, resistors, and/or capacitors may be formed directly on the flexible substrate.
  • a release layer may be provided between the substrate and the transistors, resistors, and/or capacitors. The release layer can be used to separate a semiconductor device from the substrate after a part or whole of the semiconductor device is completed thereon, and transfer the semiconductor device to another substrate. In this case, the transistors, resistors, and/or capacitors can be transferred to a substrate with poor heat resistance, a flexible substrate, and the like.
  • the release layer for example, a laminated structure of inorganic films of a tungsten film and a silicon oxide film, a structure in which an organic resin film such as polyimide is formed on a substrate, a silicon film containing hydrogen, etc. can be used.
  • a semiconductor device may be formed on a certain substrate, and then the semiconductor device may be transferred to another substrate.
  • substrates onto which the semiconductor device may be transferred include substrates on which the above-mentioned transistors can be formed, as well as paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, stone substrates, wood substrates, cloth substrates (including natural fibers (silk, cotton, hemp), synthetic fibers (nylon, polyurethane, polyester) or regenerated fibers (acetate, cupra, rayon, regenerated polyester)), leather substrates, or rubber substrates.
  • substrates it is possible to manufacture semiconductor devices that are flexible, that are not easily broken, that have heat resistance, and that are lightweight or thin.
  • the transistor 550 shown in FIG. 19 is an example, and the present invention is not limited to this configuration.
  • An appropriate transistor may be used depending on the circuit configuration, driving method, and the like.
  • the semiconductor device is a unipolar circuit including only OS transistors (meaning a circuit including transistors of the same polarity, such as only n-channel transistors)
  • the configuration of the transistor 550 may be the same as that of the transistor 500.
  • the transistor that can be used in the present invention is not limited to the transistor 500 shown in Figures 20A, 20B, and 21.
  • a transistor 500A having a structure shown in Figures 22A to 22D may be used.
  • the transistor 500A shown in Figures 22A to 22D differs from the transistor shown in Figures 20A, 20B, and 21 in that it is a vertical channel type transistor.
  • FIG. 22A to 22D are top and cross-sectional views showing examples of the configuration of a transistor.
  • FIG. 22A is a top view of a transistor 500A.
  • FIG. 22B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in FIG. 22A
  • FIG. 22C is a cross-sectional view of the portion indicated by the dashed line A3-A4 in FIG. 22A.
  • FIG. 22D is a top view of the portion indicated by the dashed line B1-B2 in FIG. 22B. Note that some elements are omitted from the top views of FIG. 22A and FIG. 22D to clarify the figures.
  • Transistor 500A has conductor 241 and insulator 270 on insulator 210, metal oxide 230 on conductor 241, insulator 250 on metal oxide 230, conductor 260 on insulator 250, and conductor 242 on insulator 270.
  • the conductor 241 has a region that functions as one of the source and drain electrodes of the transistor 500A
  • the conductor 242 has a region that functions as the other of the source and drain electrodes of the transistor 500A
  • the conductor 260 has a region that functions as the gate electrode of the transistor 500A.
  • the metal oxide 230 has a region that functions as a channel formation region.
  • metal oxide 530a and metal oxide 530b can be used for metal oxide 230.
  • the metal oxide 230 has a channel formation region in the transistor 500A, and a source region and a drain region that are arranged to sandwich the channel formation region. At least a portion of the channel formation region overlaps with the conductor 260.
  • the source region overlaps with one of the conductors 241 and 242, and the drain region overlaps with the other of the conductors 241 and 242.
  • the conductor 242 and the insulator 270 are provided with an opening 290 that reaches the conductor 241.
  • the opening 290 has an area that overlaps with the conductor 241 in a top view. At least a portion of each of the metal oxide 230, the insulator 250, and the conductor 260 is disposed within the opening 290. It can be said that the opening 290 includes an opening in the conductor 242 and an opening in the insulator 270. It can be said that the conductor 242 has an opening that overlaps with the conductor 241 in a top view.
  • the metal oxide 230 is provided in contact with the side and bottom surfaces of the opening 290 provided in the conductor 242 and the insulator 270.
  • the metal oxide 230 has an area in contact with each of the side surfaces of the opening 290 provided in the conductor 242 and the insulator 270, and the top surfaces of the conductors 241 and 242.
  • the metal oxide 230 also has a recess.
  • the recess has an area that overlaps with the opening 290 provided in the conductor 242 when viewed from above.
  • At least a portion of the insulator 250 is provided in a recess in the metal oxide 230.
  • the insulator 250 has a region that contacts the upper surface of the metal oxide 230.
  • the insulator 250 also has a recess. The recess is located inside the recess that the metal oxide 230 has.
  • the conductor 260 is provided so as to fill the recess of the insulator 250.
  • the conductor 260 has a region in contact with the upper surface of the insulator 250.
  • the conductor 260 also has a region that overlaps with the metal oxide 230 via the insulator 250 in the region between the conductors 241 and 242 in a cross-sectional view.
  • the conductor 260 whose bottom is needle-shaped, may be referred to as a needle-shaped gate.
  • the channel length of transistor 500A is the distance from the top surface of conductor 241 to the bottom surface of conductor 242 in a cross-sectional view.
  • the channel length of transistor 500A can be adjusted by the film thickness of insulator 270 in the area that overlaps with conductor 241. For example, by reducing the film thickness of insulator 270, a transistor 500A with a short channel length can be manufactured.
  • the channel width of the transistor 500A is the length of the region where the insulator 270 and the metal oxide 230 contact each other when viewed from above, and is also the length of the contour (outer periphery) of the metal oxide 230 when viewed from above.
  • the channel width of the transistor 500A can be adjusted by the diameter of the opening provided in the insulator 270. For example, by increasing the diameter of the opening, a transistor 500A with a large channel width can be manufactured.
  • the opening can be rephrased as an opening in which some of the components of the transistor 500A (here, the metal oxide 230, the insulator 250, and the conductor 260) are provided.
  • Transistor 500A has a structure in which the channel formation region surrounds the gate electrode. Therefore, transistor 500A can be said to be a transistor with a CAA (Channel-All-Around) structure.
  • FIG. 22D shows a configuration in which the top surface shape of the opening of the conductor 242 is circular
  • the present invention is not limited to this.
  • the top surface shape of the opening of the conductor 242 may be elliptical, polygonal, or polygonal with rounded corners.
  • polygonal shapes refer to triangles, rectangles, pentagons, hexagons, etc.
  • the insulator 250 may have a single layer structure or a laminated structure.
  • the insulator 250 for example, silicon oxide, silicon oxynitride, silicon oxide doped with fluorine, silicon oxide doped with carbon, silicon oxide doped with carbon and nitrogen, silicon oxide with vacancies, etc. can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 250 is an insulator that contains at least oxygen and silicon.
  • the concentration of impurities such as water and hydrogen in the insulator 250 is reduced.
  • an insulator having a barrier property against oxygen may be provided between the insulator 250 and the metal oxide 230.
  • the insulator is provided in contact with the lower surface of the insulator 250 and the recess of the metal oxide 230.
  • the insulator having a barrier property against oxygen can supply oxygen contained in the insulator 250 to the channel formation region and suppress the excessive supply of oxygen contained in the insulator 250 to the channel formation region. Therefore, when a heat treatment or the like is performed, oxygen can be suppressed from being desorbed from the metal oxide 230 and the formation of oxygen vacancies in the metal oxide 230 can be suppressed. Therefore, the electrical characteristics of the transistor 500A can be improved and the reliability can be improved.
  • the insulator it is preferable to use an insulator containing an oxide of one or both of aluminum and hafnium.
  • the insulator aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), an oxide containing hafnium and silicon (hafnium silicate), etc. can be used. It is more preferable to use aluminum oxide as the insulator.
  • the insulator is an insulator containing at least oxygen and aluminum. Note that the insulator may be, for example, less permeable to oxygen than the insulator 250. Also, as the insulator, for example, a material less permeable to oxygen than the insulator 250 may be used. Also, as the insulator, for example, magnesium oxide, gallium oxide, gallium zinc oxide, indium gallium zinc oxide, etc. may be used.
  • the conductor 260 is shown as being a single layer.
  • the conductor 260 may be a laminated structure.
  • the conductor 260 preferably has a first conductor and a second conductor on the first conductor.
  • the first conductor of the conductor 260 is preferably arranged so as to enclose the bottom and side surfaces of the second conductor of the conductor 260.
  • the first conductor of the conductor 260 is preferably made of a conductive material that has the function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, or copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, or copper atoms.
  • it is preferably made of a conductive material that has the function of suppressing the diffusion of oxygen (e.g., at least one of oxygen atoms and oxygen molecules, etc.).
  • it is preferably made of a conductive material that is not easily oxidized.
  • the first conductor of the conductor 260 has a function of suppressing the diffusion of oxygen, which can suppress the second conductor of the conductor 260 from being oxidized by the oxygen contained in the insulator 250, causing a decrease in conductivity.
  • a conductive material having a function of suppressing the diffusion of oxygen it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, or ruthenium oxide.
  • the insulator 283 is provided on the insulator 250.
  • the silicon nitride film and the silicon nitride oxide film each have the characteristics of releasing little impurities (e.g., water and hydrogen) from themselves and being difficult for oxygen and hydrogen to permeate, and therefore can be suitably used for the insulator 283.
  • FIG. 23 shows a cross-sectional configuration example when a NOSRAM circuit configuration is used.
  • FIG. 23 illustrates a case where element layers 700[1] to 700[3] are stacked on element layer 701.
  • Element layer 701 corresponds to element layer 50 described in embodiment 1, and element layer 700 corresponds to element layer 40.
  • FIG 23 also illustrates a transistor 550 included in the element layer 701.
  • the transistor 550 described in the above embodiment can be used as the transistor 550.
  • transistor 550 shown in FIG. 23 is just one example, and the present invention is not limited to this structure. An appropriate transistor may be used depending on the circuit configuration or driving method.
  • a wiring layer having an interlayer film, wiring, plugs, etc. may be provided between the element layer 701 and the element layer 700, or between the kth element layer 700 and the k+1th element layer 700.
  • the kth element layer 700 may be referred to as element layer 700[k]
  • the k+1th element layer 700 may be referred to as element layer 700[k+1].
  • k is an integer between 1 and N.
  • the solutions of "k+ ⁇ " and "k- ⁇ ” are integers between 1 and N.
  • wiring and the plug electrically connected to the wiring may be integrated. That is, there are cases where a part of the conductor functions as the wiring, and cases where a part of the conductor functions as the plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are stacked in this order as an interlayer film.
  • Conductors 328 and the like are embedded in the insulators 320 and 322.
  • Conductors 330 and the like are embedded in the insulators 324 and 326.
  • Conductors 328 and 330 function as contact plugs or wiring.
  • the insulator functioning as an interlayer film may also function as a planarizing film that covers the uneven shape underneath.
  • the top surface of the insulator 320 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve flatness.
  • CMP chemical mechanical polishing
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • insulator 350, insulator 357, insulator 352, and insulator 354 are stacked in this order on the insulator 326 and the conductor 330.
  • Conductor 356 is formed on insulator 350, insulator 357, and insulator 352. Conductor 356 functions as a contact plug or wiring.
  • the insulator 514 of the element layer 700[1] is provided on the insulator 354.
  • a conductor 358 is embedded in the insulator 514 and the insulator 354.
  • the conductor 358 functions as a contact plug or a wiring.
  • the wiring WBL (or the wiring RBL) and the transistor 550 are electrically connected via the conductor 358, the conductor 356, the conductor 330, and the like.
  • FIG. 24A shows an example of the cross-sectional structure of element layer 700[k].
  • FIG. 24B shows an equivalent circuit diagram of FIG. 24A.
  • the memory cell MC shown in Figures 23 and 24A has transistors M1, M2, and M3 on an insulator 514.
  • a conductor 215 is provided on the insulator 514.
  • the conductor 215 can be formed simultaneously with the conductor 503 using the same material and in the same process.
  • the transistors M2 and M3 shown in Figures 23 and 24A share one island-shaped metal oxide 530.
  • a part of the island-shaped metal oxide 530 functions as a channel formation region for the transistor M2, and another part functions as a channel formation region for the transistor M3.
  • the source of the transistor M2 and the drain of the transistor M3, or the drain of the transistor M2 and the source of the transistor M3, are also shared. Therefore, the area occupied by the transistors is smaller than when the transistors M2 and M3 are provided independently.
  • an insulator 287 is provided on an insulator 581, and a conductor 161 is embedded in the insulator 287.
  • An insulator 514 of an element layer 700[k+1] is provided on the insulator 287 and the conductor 161.
  • conductor 215 of element layer 700[k+1] functions as one terminal of capacitance element C
  • insulator 514 of element layer 700[k+1] functions as a dielectric of capacitance element C
  • conductor 161 functions as the other terminal of capacitance element C.
  • the other of the source or drain of transistor M1 is electrically connected to conductor 161 via a contact plug
  • the gate of transistor M2 is electrically connected to conductor 161 via another contact plug.
  • the carrier concentration of a channel formation region of the oxide semiconductor is 1 ⁇ 10 18 cm ⁇ 3 or less, preferably less than 1 ⁇ 10 17 cm ⁇ 3 , more preferably less than 1 ⁇ 10 16 cm ⁇ 3 , further preferably less than 1 ⁇ 10 13 cm ⁇ 3 , and further preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be reduced to reduce the density of defect states.
  • a semiconductor having a low impurity concentration and a low density of defect states is referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor an oxide semiconductor with a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor may have a low density of trap states due to a low density of defect states. Furthermore, charges captured in the trap states of the oxide semiconductor may take a long time to disappear and may behave as if they were fixed charges. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high density of trap states may have unstable electrical characteristics.
  • impurities in an oxide semiconductor refer to, for example, anything other than the main component that constitutes the oxide semiconductor.
  • an element with a concentration of less than 0.1 atomic % can be considered an impurity.
  • an OS transistor may form a defect in which hydrogen enters an oxygen vacancy in an oxide semiconductor (hereinafter, this may be referred to as VOH ), and generate electrons that serve as carriers.
  • VOH an oxide semiconductor
  • the donor concentration in the channel formation region may increase.
  • the threshold voltage may vary.
  • impurities, oxygen vacancies, and VOH be reduced as much as possible in the channel formation region of an oxide semiconductor.
  • the band gap of the oxide semiconductor is preferably larger than that of silicon (typically 1.1 eV), and is preferably 2 eV or more, more preferably 2.5 eV or more, and even more preferably 3.0 eV or more.
  • the off-current (also referred to as Ioff) of the transistor can be reduced.
  • OS transistors use oxide semiconductors, which are semiconductor materials with a wide band gap, and therefore the short channel effect can be suppressed. In other words, OS transistors are transistors that do not have the short channel effect or have an extremely small short channel effect.
  • the short channel effect is a degradation of electrical characteristics that becomes evident as transistors are miniaturized (reduced channel length).
  • Specific examples of short channel effects include a decrease in threshold voltage, an increase in subthreshold swing value (sometimes written as S value), and an increase in leakage current.
  • the S value refers to the amount of change in gate voltage in the subthreshold region that changes the drain current by one order of magnitude at a constant drain voltage.
  • Characteristic length is widely used as an index of resistance to short channel effects.
  • Characteristic length is an index of how easily the potential of the channel formation region bends. The smaller the characteristic length, the steeper the potential rises, and therefore the more resistant it is to short channel effects.
  • OS transistors are accumulation-type transistors, while Si transistors are inversion-type transistors. Therefore, compared to Si transistors, OS transistors have smaller characteristic lengths between the source region and the channel-forming region, and between the drain region and the channel-forming region. Therefore, OS transistors are more resistant to the short-channel effect than Si transistors. In other words, when it is desired to manufacture a transistor with a short channel length, OS transistors are more suitable than Si transistors.
  • the OS transistor can also be regarded as having an n + / n ⁇ /n + accumulation-type junction-less transistor structure or an n + /n ⁇ /n + accumulation-type non-junction transistor structure in which the channel formation region is an n ⁇ type region and the source region and drain region are n + type regions.
  • the OS transistor can have good electrical characteristics even when the semiconductor device is miniaturized or highly integrated. For example, good electrical characteristics can be obtained even when the gate length of the OS transistor is 20 nm or less, 15 nm or less, 10 nm or less, 7 nm or less, or 6 nm or less, and 1 nm or more, 3 nm or more, or 5 nm or more.
  • the OS transistor can be suitably used as a transistor having a shorter channel length than that of a Si transistor.
  • the gate length is the length of the gate electrode in the direction in which carriers move inside the channel formation region when the transistor is operating, and refers to the width of the bottom surface of the gate electrode in a plan view of the transistor.
  • the cutoff frequency of the transistor can be improved.
  • the cutoff frequency of the transistor can be set to, for example, 50 GHz or more, preferably 100 GHz or more, and more preferably 150 GHz or more in a room temperature environment.
  • OS transistors As explained above, compared to Si transistors, OS transistors have the excellent advantages of having a smaller off-state current and being able to fabricate transistors with a short channel length.
  • FIG. 25A shows a perspective view of a substrate (mounting substrate 704) on which an electronic component 709 is mounted.
  • the electronic component 709 shown in FIG. 25A has a semiconductor device 710 in a mold 711. In FIG. 25A, some parts are omitted in order to show the inside of the electronic component 709.
  • the electronic component 709 has lands 712 on the outside of the mold 711. The lands 712 are electrically connected to electrode pads 713, and the electrode pads 713 are electrically connected to the semiconductor device 710 via wires 714.
  • the electronic component 709 is mounted on, for example, a printed circuit board 702. A plurality of such electronic components are combined and electrically connected on the printed circuit board 702 to complete the mounting substrate 704.
  • the semiconductor device 710 also has a drive circuit layer 715 and an element layer 716.
  • the element layer 716 is configured by stacking a plurality of memory cell arrays.
  • the stacked configuration of the drive circuit layer 715 and the element layer 716 can be a monolithic stacked configuration. In the monolithic stacked configuration, the layers can be connected without using through-electrode technology such as TSV (Through Silicon Via) and bonding technology such as Cu-Cu direct bonding.
  • TSV Through Silicon Via
  • bonding technology such as Cu-Cu direct bonding.
  • the memory as an on-chip memory, it is possible to reduce the size of the connection wiring, etc., compared to technologies that use through electrodes such as TSVs, and it is also possible to increase the number of connection pins. Increasing the number of connection pins enables parallel operation, making it possible to improve the memory bandwidth (also called memory bandwidth).
  • the multiple memory cell arrays included in the element layer 716 are formed using OS transistors and the multiple memory cell arrays are monolithically stacked.
  • OS transistors By configuring the multiple memory cell arrays as a monolithic stack, it is possible to improve either or both of the memory bandwidth and the memory access latency.
  • the bandwidth is the amount of data transferred per unit time
  • the access latency is the time from access to the start of data exchange.
  • Si transistors when Si transistors are used for the element layer 716, it is difficult to configure the element layer 716 as a monolithic stack compared to OS transistors. Therefore, it can be said that OS transistors have a superior structure to Si transistors in the monolithic stack configuration.
  • the semiconductor device 710 may also be referred to as a die.
  • a die refers to a chip piece obtained during the manufacturing process of a semiconductor chip by forming a circuit pattern on, for example, a disk-shaped substrate (also called a wafer) and cutting it into cubes.
  • Semiconductor materials that can be used for the die include, for example, silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also called a silicon wafer
  • a silicon die obtained from a silicon substrate (also called a silicon wafer) may be called a silicon die.
  • Electronic component 730 is an example of a SiP (System in Package) or MCM (Multi Chip Module).
  • Electronic component 730 has an interposer 731 provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and multiple semiconductor devices 710 provided on interposer 731.
  • semiconductor device 710 is used as a high bandwidth memory (HBM).
  • semiconductor device 735 can be used in integrated circuits such as a central processing unit (CPU), a graphics processing unit (GPU), or a field programmable gate array (FPGA).
  • CPU central processing unit
  • GPU graphics processing unit
  • FPGA field programmable gate array
  • the package substrate 732 may be, for example, a ceramic substrate, a plastic substrate, or a glass epoxy substrate.
  • the interposer 731 may be, for example, a silicon interposer or a resin interposer.
  • the interposer 731 has multiple wirings and functions to electrically connect multiple integrated circuits with different terminal pitches.
  • the multiple wirings are provided in a single layer or multiple layers.
  • the interposer 731 also functions to electrically connect the integrated circuits provided on the interposer 731 to electrodes provided on the package substrate 732.
  • the interposer is sometimes called a "rewiring substrate” or "intermediate substrate.”
  • a through electrode is provided in the interposer 731, and the integrated circuits and the package substrate 732 are electrically connected using the through electrode.
  • a TSV can also be used as the through electrode.
  • the interposer that implements the HBM requires fine, high-density wiring. Therefore, it is preferable to use a silicon interposer for the interposer that implements the HBM.
  • silicon interposers Furthermore, in SiP and MCM using silicon interposers, deterioration in reliability due to differences in the expansion coefficient between the integrated circuit and the interposer is unlikely to occur. Furthermore, since the surface of the silicon interposer is highly flat, poor connection between the integrated circuit mounted on the silicon interposer and the silicon interposer is unlikely to occur. In particular, it is preferable to use silicon interposers in 2.5D packages (2.5-dimensional mounting) in which multiple integrated circuits are arranged horizontally on the interposer.
  • a composite structure may be used that combines a memory cell array stacked using TSVs and a monolithic stacking memory cell array.
  • a heat sink may be provided overlapping the electronic component 730.
  • electrodes 733 may be provided on the bottom of the package substrate 732.
  • FIG. 25B shows an example in which the electrodes 733 are formed from solder balls. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be achieved.
  • the electrodes 733 may also be formed from conductive pins. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be achieved.
  • the electronic component 730 can be mounted on other substrates using various mounting methods, including but not limited to BGA and PGA.
  • mounting methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), QFJ (Quad Flat J-leaded package), and QFN (Quad Flat Non-leaded package).
  • FIG. 26A a perspective view of an electronic device 6500 is shown in FIG. 26A.
  • the electronic device 6500 shown in FIG. 26A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, a control device 6509, and the like.
  • the control device 6509 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6502, the control device 6509, and the like.
  • the electronic device 6600 shown in FIG. 26B is an information terminal that can be used as a notebook personal computer.
  • the electronic device 6600 has a housing 6611, a keyboard 6612, a pointing device 6613, an external connection port 6614, a display portion 6615, a control device 6616, and the like.
  • the control device 6616 has, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6615, the control device 6616, and the like. Note that the use of the semiconductor device of one embodiment of the present invention for the above-mentioned control device 6509 and the control device 6616 is preferable because power consumption can be reduced.
  • Fig. 26C shows a perspective view of the large scale computer 5600.
  • the large scale computer 5600 shown in Fig. 26C has a rack 5610 housing a plurality of rack-mounted computers 5620.
  • the large scale computer 5600 may also be called a supercomputer.
  • Computer 5620 can be configured, for example, as shown in the perspective view of FIG. 26D.
  • computer 5620 has motherboard 5630, which has multiple slots 5631 and multiple connection terminals.
  • PC card 5621 is inserted into slot 5631.
  • PC card 5621 has connection terminals 5623, 5624, and 5625, each of which is connected to motherboard 5630.
  • PC card 5621 shown in FIG. 26E is an example of a processing board equipped with a CPU, a GPU, a storage device, and the like.
  • PC card 5621 has board 5622.
  • Board 5622 also has connection terminal 5623, connection terminal 5624, connection terminal 5625, semiconductor device 5626, semiconductor device 5627, semiconductor device 5628, and connection terminal 5629.
  • FIG. 26E illustrates semiconductor devices other than semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628, but for those semiconductor devices, please refer to the explanation of semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628 described below.
  • connection terminal 5629 has a shape that allows it to be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • An example of the standard for the connection terminal 5629 is PCIe.
  • Connection terminals 5623, 5624, and 5625 can be interfaces for supplying power to PC card 5621, inputting signals, and the like. They can also be interfaces for outputting signals calculated by PC card 5621, and the like. Examples of standards for connection terminals 5623, 5624, and 5625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). In addition, when a video signal is output from connection terminals 5623, 5624, and 5625, examples of standards for each include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and the semiconductor device 5626 and the board 5622 can be electrically connected by inserting the terminal into a socket (not shown) provided on the board 5622.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 can be electrically connected by, for example, soldering the terminals to wiring provided on the board 5622 using a reflow method.
  • Examples of the semiconductor device 5627 include an FPGA, a GPU, and a CPU.
  • the electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 can be electrically connected to each other by, for example, soldering the terminals to wiring provided on the board 5622 using a reflow method.
  • An example of the semiconductor device 5628 is a memory device.
  • the electronic component 709 can be used as the semiconductor device 5628.
  • the mainframe computer 5600 can also function as a parallel computer. By using the mainframe computer 5600 as a parallel computer, it is possible to perform large-scale calculations required for artificial intelligence learning and inference, for example.
  • the semiconductor device of one embodiment of the present invention can be suitably used in space equipment, such as equipment for processing and storing data.
  • the semiconductor device of one embodiment of the present invention can include an OS transistor.
  • the OS transistor has small changes in electrical characteristics due to radiation exposure.
  • the OS transistor has high resistance to radiation and can be preferably used in an environment where radiation may be incident.
  • the OS transistor can be preferably used in outer space.
  • FIG. 27 shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 has a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807.
  • FIG. 27 shows a planet 6804 in outer space.
  • outer space refers to an altitude of 100 km or more, for example, but the outer space described in this specification may also include the thermosphere, mesosphere, and stratosphere.
  • the secondary battery 6805 may be provided with a battery management system (also called BMS) or a battery control circuit.
  • BMS battery management system
  • the use of OS transistors in the above-mentioned battery management system or battery control circuit is preferable because it has low power consumption and high reliability even in space.
  • outer space is an environment with radiation levels 100 times higher than on Earth.
  • radiation include electromagnetic waves (electromagnetic radiation) such as X-rays and gamma rays, as well as particle radiation such as alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, and meson rays.
  • the power required for the operation of the satellite 6800 is generated.
  • the amount of power generated is small. Therefore, there is a possibility that the power required for the operation of the satellite 6800 will not be generated.
  • the solar panel may be called a solar cell module.
  • Satellite 6800 can generate a signal.
  • the signal is transmitted via antenna 6803, and can be received, for example, by a receiver installed on the ground or by another satellite.
  • the position of the receiver that received the signal can be measured.
  • satellite 6800 can constitute a satellite positioning system.
  • the control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using, for example, one or more of a CPU, a GPU, and a storage device.
  • a semiconductor device according to one embodiment of the present invention is preferably used for the control device 6807.
  • an OS transistor Compared to a Si transistor, an OS transistor has smaller fluctuations in electrical characteristics due to radiation exposure. In other words, an OS transistor has high reliability even in an environment where radiation may be incident, and can be preferably used.
  • the artificial satellite 6800 can also be configured to have a sensor. For example, by configuring it to have a visible light sensor, the artificial satellite 6800 can have the function of detecting sunlight reflected off an object on the ground. Or, by configuring it to have a thermal infrared sensor, the artificial satellite 6800 can have the function of detecting thermal infrared rays emitted from the earth's surface. From the above, the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is given as an example of space equipment, but the present invention is not limited to this.
  • a semiconductor device according to one embodiment of the present invention can be suitably used in space equipment such as a spaceship, a space capsule, or a space probe.
  • OS transistors As explained above, compared to Si transistors, OS transistors have the advantages of being able to achieve a wider memory bandwidth and having higher radiation resistance.
  • the semiconductor device can be suitably used in a storage system applied to a data center or the like.
  • the data center is required to perform long-term data management, such as ensuring the immutability of data.
  • long-term data management such as ensuring the immutability of data.
  • a semiconductor device By using a semiconductor device according to one embodiment of the present invention in a storage system applied to a data center, it is possible to reduce the power required to store data and to miniaturize the semiconductor device that stores the data. This makes it possible to miniaturize the storage system, miniaturize the power source for storing data, and reduce the scale of cooling equipment. This makes it possible to save space in the data center.
  • the semiconductor device of one embodiment of the present invention consumes less power, and therefore heat generation from the circuit can be reduced. This reduces adverse effects of heat generation on the circuit itself, peripheral circuits, and modules. Furthermore, by using the semiconductor device of one embodiment of the present invention, a data center that operates stably even in a high-temperature environment can be realized. This improves the reliability of the data center.
  • Figure 28 shows a storage system applicable to a data center.
  • the storage system 7000 shown in Figure 28 has multiple servers 7001sb as hosts 7001 (illustrated as Host Computer). It also has multiple storage devices 7003md as storage 7003 (illustrated as Storage).
  • the host 7001 and storage 7003 are shown connected via a storage area network 7004 (illustrated as SAN: Storage Area Network) and a storage control circuit 7002 (illustrated as Storage Controller).
  • SAN Storage Area Network
  • the host 7001 corresponds to a computer that accesses data stored in the storage 7003.
  • the hosts 7001 may be connected to each other via a network.
  • Storage 7003 uses flash memory to reduce data access speed, i.e. the time required to store and output data, but this time is significantly longer than the time required by DRAM, which can be used as cache memory within the storage.
  • cache memory is usually provided within the storage to reduce the time required to store and output data.
  • the above-mentioned cache memory is used in the storage control circuit 7002 and the storage 7003. Data exchanged between the host 7001 and the storage 7003 is stored in the cache memory in the storage control circuit 7002 and the storage 7003, and then output to the host 7001 or the storage 7003.
  • OS transistors as transistors for storing data in the above-mentioned cache memory and configuring it to hold a potential according to the data, it is possible to reduce the frequency of refreshing and lower power consumption.
  • configuring the memory cell array in a stacked structure it is possible to reduce the size.
  • the application of the semiconductor device of one embodiment of the present invention to any one or more selected from electronic components, electronic devices, mainframe computers, space equipment, and data centers is expected to have an effect of reducing power consumption. Therefore, while energy demand is expected to increase with the improvement in performance or high integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention can also reduce emissions of greenhouse gases such as carbon dioxide (CO 2 ). In addition, the semiconductor device of one embodiment of the present invention is effective as a measure against global warming because of its low power consumption.
  • CO 2 greenhouse gases
  • the content described in one embodiment can be applied to, combined with, or replaced with another content described in that embodiment (or even a part of the content) and/or the content described in one or more other embodiments (or even a part of the content).
  • a figure (or a part of it) described in one embodiment can be combined with another part of that figure, with another figure (or a part of it) described in that embodiment, and/or with one or more figures (or a part of it) described in another embodiment to form even more figures.
  • the components in the block diagrams are classified by function and shown as independent blocks.
  • it is difficult to separate components by function and there may be cases where one circuit is involved in multiple functions, or where one function is involved across multiple circuits.
  • the blocks in the block diagrams are not limited to the components described in the specification and may be rephrased appropriately depending on the situation.
  • the terms "one of the source or drain” (or first electrode or first terminal) and “the other of the source or drain” (or second electrode or second terminal) are used. This is because the source and drain of a transistor vary depending on the structure or operating conditions of the transistor. Note that the source and drain of a transistor can be appropriately referred to as source (drain) terminal, source (drain) electrode, or the like depending on the situation.
  • electrode and “wiring” used in this specification and elsewhere do not limit the functionality of these components.
  • an “electrode” may be used as part of a “wiring”, and vice versa.
  • the terms “electrode” and “wiring” also include cases where multiple “electrodes” or “wirings” are formed as a single unit.
  • Voltage refers to the potential difference from a reference potential, and if the reference potential is a ground voltage (earth voltage), for example, voltage can be interchanged with potential. Ground potential does not necessarily mean 0V. Note that potential is relative, and the potential applied to wiring, etc. may change depending on the reference potential.
  • film and “layer” may be interchangeable depending on the circumstances.
  • conductive layer may be changed to the term “conductive film.”
  • insulating film may be changed to the term “insulating layer.”
  • a switch refers to a device that has the function of being in a conductive state (on state) or a non-conductive state (off state) and controlling whether or not a current flows.
  • a switch refers to a device that has the function of selecting and switching the path through which a current flows.
  • the channel length refers to, for example, the distance between the source and drain in the region where the semiconductor (or the portion of the semiconductor through which current flows when the transistor is on) and the gate overlap in a top view of the transistor, or in the region where the channel is formed.
  • the channel width refers to, for example, the length of the area where the semiconductor (or the part of the semiconductor through which current flows when the transistor is on) and the gate electrode overlap, or the length of the part where the source and drain face each other in the area where the channel is formed.
  • a node can be referred to as a terminal, wiring, electrode, conductive layer, conductor, impurity region, etc. depending on the circuit configuration, device structure, etc. Also, a terminal, wiring, etc. can be referred to as a node.
  • a and B are connected means that A and B are electrically connected.
  • a and B are electrically connected means a connection that allows transmission of an electrical signal between A and B when an object (referring to an element such as a switch, transistor element, or diode, or a circuit including said element and wiring, etc.) exists between A and B.
  • a and B being electrically connected includes the case where A and B are directly connected.
  • a and B being directly connected means a connection that allows transmission of an electrical signal between A and B via wiring (or electrodes) between A and B, without going through the object.
  • a direct connection means a connection that can be regarded as the same circuit diagram when expressed as an equivalent circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Databases & Information Systems (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

新規な構成の半導体装置の提供。 ビット線駆動回路を有する第1素子層と、第1スイッチ回路、第1メモリセル、および第1スイッチ回路と第1メモリセルとの間に設けられる第1配線、を有する第2素子層と、第2スイッチ回路、第2メモリセル、および第2スイッチ回路と第2メモリセルとの間に設けられる第2配線、を有する第3素子層と、を有する。第1スイッチ回路は、第2メモリセルのデータの書き込み動作または読み出し動作において第1配線と第3配線との間を非導通状態にする機能を有する。第2スイッチ回路は、第1メモリセルのデータの書き込み動作状態または読み出し動作状態において第2配線と 第3配線との間を非導通状態にする機能を有する。

Description

半導体装置
 本発明の一態様は、半導体装置等に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置(メモリ装置)、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
 近年、SRAM(Static Random Access Memory)セルまたはDRAM(Dynamic Random Access Memory)セルといった、異なる機能を有する回路が設けられた複数のダイ(例えばシリコンダイ)を3次元的に積層して設ける構成について研究開発が活発である(例えば非特許文献1および非特許文献2)。
 また近年、酸化物半導体をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることで、データに応じた電荷を保持できる半導体装置の技術開発が進んでいる。OSトランジスタを有する層は、シリコンをチャネル形成領域に用いたトランジスタ(以下、Siトランジスタ)を有するダイ(素子層)上に積層して設けることができる。特許文献1では、複数のOSトランジスタを有する素子層を、Siトランジスタを有する素子層上に3次元的に積層して設ける構成について開示している。
国際公開第2020/152522号
W.Gomes et al.,ISSCC Dig.Tech.Papers、pp.42−43、2022. M.Park et al.,ISSCC Dig.Tech.Papers、pp.444−445、2022.
 Siトランジスタを有する素子層上に、複数のOSトランジスタを有する素子層を設ける構成は、メモリ密度の向上を図れるなど回路の高集積化を図る上で有効である。しかしながら、OSトランジスタを有する素子層の積層数を増やすことで高集積化を図る構成では、上層の素子層が有する回路と、下層の素子層が有する回路と、を電気的に接続する配線が長くなる。例えば、Siトランジスタを有する素子層に設けられるビット線駆動回路と、上層のOSトランジスタを有する素子層に設けられるメモリセルと、の間に設けられる配線が長くなる虞がある。その結果、ビット線駆動回路とメモリセルとの間でデータの書き込みまたは読み出しを行うための配線の寄生容量および寄生抵抗が増大し、動作速度の低下、あるいはデータの信頼性が損なわれる虞がある。
 本発明の一態様は、新規な半導体装置等を提供することを課題の一とする。または、本発明の一態様は、低消費電力化に優れた、新規な構成の半導体装置等を提供することを課題の一とする。または、本発明の一態様は、動作速度の向上が図られた、新規な構成の半導体装置等を提供することを課題の一とする。または、本発明の一態様は、データの信頼性に優れた、新規な構成の半導体装置等を提供することを課題の一とする。
 なお本発明の一態様の課題は、上記課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。
 本発明の一態様は、ビット線駆動回路を有する第1素子層と、第1スイッチ回路、第1メモリセル、および第1スイッチ回路と第1メモリセルとの間に設けられる第1配線、を有する第2素子層と、第2スイッチ回路、第2メモリセル、および第2スイッチ回路と第2メモリセルとの間に設けられる第2配線、を有する第3素子層と、を有し、第2素子層は、第1素子層上に重ねて設けられ、第3素子層は、第2素子層上に重ねて設けられ、第2素子層および第3素子層には、ビット線駆動回路に電気的に接続された第3配線が設けられ、ビット線駆動回路は、第3配線を介して、第1スイッチ回路および第2スイッチ回路と電気的に接続され、第1スイッチ回路は、第2メモリセルのデータの書き込み動作または読み出し動作において第1配線と第3配線との間を非導通状態にする機能を有し、第2スイッチ回路は、第1メモリセルのデータの書き込み動作または読み出し動作において第2配線と第3配線との間を非導通状態にする機能を有する、半導体装置である。
 上記本発明の一態様において、第2素子層および第3素子層は、チャネル形成領域を有する半導体層が酸化物半導体であるトランジスタが設けられる、半導体装置が好ましい。
 上記本発明の一態様において、酸化物半導体は、In、Ga、及びZnを有する、半導体装置が好ましい。
 上記本発明の一態様において、第1素子層は、チャネル形成領域を有する半導体層がシリコンであるトランジスタが設けられる、半導体装置が好ましい。
 上記本発明の一態様において、第1スイッチ回路は、第1配線の電位をプリチャージする機能を有し、第2スイッチ回路は、第2配線の電位をプリチャージする機能を有する、半導体装置が好ましい。
 上記本発明の一態様において、第1素子層は、ビット線駆動回路に読み出されたデータをもとに演算処理を行う機能を有する演算回路を有し、演算回路は、第2素子層が有する第1メモリセルおよび第3素子層が有する第2メモリセルが設けられる領域と重なる領域に設けられる、半導体装置が好ましい。
 上記本発明の一態様において、第1配線及び第2配線は、第1素子層が設けられる基板表面に垂直な方向と同じ方向に設けられる部分を有する、半導体装置が好ましい。
 本発明の一態様は、ワード線駆動回路およびビット線駆動回路を有する第1素子層と、第1スイッチ回路、第1層選択回路、第1メモリセル、第1スイッチ回路と第1メモリセルとの間に設けられる第1配線、および第1層選択回路と第1メモリセルとの間に設けられる第2配線、を有する第2素子層と、第2スイッチ回路、第2層選択回路、第2メモリセル、第2スイッチ回路と第2メモリセルとの間に設けられる第3配線、および第2層選択回路と第2メモリセルとの間に設けられる第4配線、を有する第3素子層と、を有し、第2素子層は、第1素子層上に重ねて設けられ、第3素子層は、第2素子層上に重ねて設けられ、第2素子層および第3素子層には、ビット線駆動回路に電気的に接続された第5配線、およびワード線駆動回路に電気的に接続された第6配線が設けられ、ビット線駆動回路は、第5配線を介して、第1スイッチ回路および第2スイッチ回路と電気的に接続され、ワード線駆動回路は、第6配線を介して、第1層選択回路および第2層選択回路と電気的に接続され、第1スイッチ回路は、第2メモリセルのデータの書き込み動作または読み出し動作において第1配線と第5配線との間を非導通状態にする機能を有し、第2スイッチ回路は、第1メモリセルのデータの書き込み動作または読み出し動作において第3配線と第5配線との間を非導通状態にする機能を有し、第1層選択回路および第2層選択回路は、ワード線駆動回路が出力する信号を第2配線または第4配線に出力する機能を有する、半導体装置である。
 上記本発明の一態様において、第2素子層および第3素子層は、チャネル形成領域を有する半導体層が酸化物半導体であるトランジスタが設けられる、半導体装置が好ましい。
 上記本発明の一態様において、酸化物半導体は、In、Ga、及びZnを有する、半導体装置が好ましい。
 上記本発明の一態様において、第1素子層は、チャネル形成領域を有する半導体層がシリコンであるトランジスタが設けられる、半導体装置が好ましい。
 上記本発明の一態様において、第1スイッチ回路は、第1配線の電位をプリチャージする機能を有し、第2スイッチ回路は、第3配線の電位をプリチャージする機能を有する、半導体装置が好ましい。
 上記本発明の一態様において、第1素子層は、ビット線駆動回路に読み出されたデータをもとに演算処理を行う機能を有する演算回路を有し、演算回路は、第2素子層が有する第1メモリセルおよび第3素子層が有する第2メモリセルが設けられる領域と重なる領域に設けられる、半導体装置が好ましい。
 上記本発明の一態様において、前記第1配線及び前記第3配線は、前記第1素子層が設けられる基板表面に垂直な方向と同じ方向に設けられる部分を有する、半導体装置が好ましい。
 なおその他の本発明の一態様については、以下で述べる実施の形態における説明、及び図面に記載されている。
 本発明の一態様は、新規な半導体装置等を提供することができる。または、本発明の一態様は、低消費電力化に優れた、新規な構成の半導体装置等を提供することができる。または、本発明の一態様は、動作速度の向上が図られた、新規な構成の半導体装置等を提供することができる。または、本発明の一態様は、データの信頼性に優れた、新規な構成の半導体装置等を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aおよび図1Bは、半導体装置の構成例を説明する図である。
図2Aおよび図2Bは、半導体装置の構成例を説明する図である。
図3Aおよび図3Bは、半導体装置の構成例を説明する図である。
図4は、半導体装置の構成例を説明する図である。
図5Aは、半導体装置の構成例を説明する回路図であり、図5Bおよび図5Cは半導体装置の動作例を説明するタイミングチャートである。
図6Aおよび図6Bは、半導体装置の構成例を説明する図である。
図7は、半導体装置の構成例を説明する図である。
図8Aおよび図8Bは、半導体装置の構成例を説明する図である。
図9Aおよび図9Bは、半導体装置の構成例を説明する図である。
図10は、半導体装置の動作例を説明するタイミングチャートである。
図11は、半導体装置の構成例を説明する図である。
図12は、半導体装置の構成例を説明する図である。
図13は、半導体装置の構成例を説明する図である。
図14は、半導体装置の動作例を説明するタイミングチャートである。
図15Aおよび図15Bは、半導体装置の構成例を説明する図である。
図16は、半導体装置の構成例を説明する図である。
図17は、半導体装置の構成例を説明する図である。
図18Aおよび図18Bは、半導体装置の構成例を説明する図である。
図19は、半導体装置の構成例を説明する図である。
図20A乃至図20Cは、半導体装置の構成例を説明する図である。
図21は、半導体装置の構成例を説明する図である。
図22A乃至図22Dは、半導体装置の構成例を説明する図である。
図23は、半導体装置の構成例を説明する図である。
図24Aは、半導体装置の構成例を説明する図である。図24Bは、半導体装置の等価回路を説明する図である。
図25A及び図25Bは、電子部品の一例を示す図である。
図26A及び図26Bは、電子機器の一例を示す図であり、図26C乃至図26Eは、大型計算機の一例を示す図である。
図27は、宇宙用機器の一例を示す図である。
図28は、データセンターに適用可能なストレージシステムの一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
 また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)等に分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
(実施の形態1)
 本実施の形態では、本発明の一態様である半導体装置の構成例、動作例等について説明する。
 本発明の一態様で説明する半導体装置は、複数の素子層にわたって設けられるメモリセルアレイ、当該メモリセルアレイを駆動するための駆動回路、等が密結合されたSoC(System on Chip)としての機能を有する。
 図1Aおよび図1Bは、本発明の一態様に係る半導体装置の構成例を説明する模式図およびブロック図である。
 なお、図1A、図1B等に示す模式図およびブロック図において、半導体装置を構成する各要素の配置を説明するため、X方向、Y方向、およびZ方向を規定している。X方向、Y方向、およびZ方向のそれぞれは、互いに垂直または概略垂直である。
 また図1A、図1B等において、半導体装置10を構成する各要素の配置をわかりやすくするため、各要素同士を離して示している。同じ層に設けられる各要素は、同じ工程で形成されるものであることが好ましいが、これに限らない。例えば、貼り合わせ技術等を用いて、別々の工程で形成したものを一体化する構成であってもよい。
 図1A、図1Bに示す半導体装置10は、素子層50上に別の素子層(素子層40)を積層して設けられる構成である。例えば図1Bに示すように、素子層50上に、4層の素子層40(素子層40[1]乃至40[4]を例示)が積層して設けられる構成を有する。
 なお1層目の素子層40を素子層40[1]と示し、2層目の素子層40を素子層40[2]と示し、3層目の素子層40を素子層40[3]と示す。また、k層目(kは2以上の整数)層目の素子層40を素子層40[k]と示す。なお、本実施の形態等において、複数の素子層40全体に係る事柄を説明する場合、又は複数ある素子層40の各層に共通の事柄を示す場合に、単に「素子層40」と表記する場合がある。同様に、複数の構成を説明する符号を付した構成についても同様である。
 素子層40[1]乃至40[4]は、OSトランジスタを有する。OSトランジスタを有する素子層40[1]乃至40[4]は、素子層50などの基板上に積層して設けることができる。
 素子層40において、OSトランジスタに適用される金属酸化物は、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三以上を有することが好ましい。なお、元素Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種である。特に、元素Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
 特に、金属酸化物として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、及び亜鉛を含む酸化物(ITZOとも記す)を用いることが好ましい。または、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZOとも記す)を用いることが好ましい。または、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及びスズ(Sn)を含む酸化物(IGZTOとも記す)を用いることが好ましい。
 また、OSトランジスタに適用される金属酸化物は、組成が異なる2層以上の金属酸化物層を有していてもよい。例えば、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造を好適に用いることができる。
 また、例えば、インジウム酸化物、インジウムガリウム酸化物、及びIGZOの中から選ばれるいずれか一と、IAZO、IAGZO、及びITZOの中から選ばれるいずれか一と、の積層構造などを用いてもよい。
 なお、OSトランジスタに適用される金属酸化物は、結晶性を有すると好ましい。結晶性を有する酸化物半導体としては、CAAC(c−axis−aligned crystalline)−OS、nc(nanocrystalline)−OS等が挙げられる。結晶性を有する酸化物半導体を用いると、信頼性が高い半導体装置を提供することができる。
 素子層40は、層毎にメモリセル部41(メモリセル部41[1]乃至41[4])が設けられる。メモリセル部41はそれぞれ、複数のメモリセル42を有する。各素子層40に設けられる複数のメモリセル部41は、メモリセルアレイ43を構成する。
 メモリセル42を有するメモリセルアレイ43は、例えばNOSRAMの回路構成を有することが好ましい。つまり、メモリセル42は、NOSRAMの回路構成を有するメモリセルである。NOSRAM(登録商標)とは、「Nonvolatile Oxide Semiconductor Random Access Memory(RAM)」の略称である。NOSRAMは、メモリセルが2トランジスタ型(2T)、又は3トランジスタ型(3T)ゲインセルであり、トランジスタがOSトランジスタであるメモリのことをいう。
 素子層40に設けることができるOSトランジスタは、オフ状態でソースとドレインとの間を流れる電流、つまりオフ電流が極めて小さい。NOSRAMは、オフ電流が極めて小さい特性を用いてデータに応じた電荷をメモリセル内に保持することで、不揮発性メモリとして用いることができる。特にNOSRAMは保持しているデータを破壊することなく読み出しすること(非破壊読み出し)が可能なため、データ読み出し動作のみを大量に繰り返す、演算処理に適している。NOSRAMは、積層して設けることでデータ容量を大きくできるため、大規模なキャッシュメモリ、メインメモリ、ストレージメモリとして用いることで半導体装置の高性能化を図ることができる。
 素子層40は、メモリセル42のデータの書き込みを行うための配線WBL(配線WBL[1]乃至WBL[4])、およびデータの読み出しを行うための配線RBL(配線RBL[1]乃至RBL[4])を有する。図1Bでは、各素子層40[1]に設けられる配線WBL、配線RBLを配線WBL[1]、配線RBL[1]として表している。配線WBL[2]乃至WBL[4]、および配線RBL[2]乃至RBL[4]についても同様に、素子層40[2]乃至40[4]に設けられる配線として図示している。
 配線WBLは、メモリセル42に接続される。配線WBLは、メモリセル42にデータを書き込むためのビット線としての機能を有する。配線RBLは、メモリセル42に接続される。配線RBLは、メモリセル42からデータを読み出すためのビット線としての機能を有する。
 素子層40は、スイッチ回路SW(スイッチ回路SW[1]乃至SW[4])を有する。図1Bでは、素子層40[1]に設けられるスイッチ回路SWをスイッチ回路SW[1]として表している。スイッチ回路SW[2]乃至SW[4]についても同様に、素子層40[2]乃至40[4]に設けられるスイッチ回路として図示している。スイッチ回路SWは、複数の配線WBL(配線WBL[1]乃至WBL[4])のいずれか一と、配線GWBLと、の電気的な接続、および複数の配線RBL(配線RBL[1]乃至RBL[4])のいずれか一と、配線GRBLと、の電気的な接続、を切り替える機能を有する。
 配線GWBLおよび配線GRBLは、素子層40が素子層50上に積層される方向(Z方向)に、素子層50から複数の素子層40にわたって設けられる。Z方向は、素子層50が設けられる基板表面に垂直な方向である。配線GWBLは、書き込みビット線駆動回路53が出力するデータに応じた電位を各層のスイッチ回路SWに伝える機能を有する。配線GRBLは、素子層40が有するメモリセル42から配線RBLに読み出されたデータに応じた電位を、スイッチ回路SWを介して読み出しビット線駆動回路54に伝える機能を有する。
 スイッチ回路SWは、配線WBLと配線GWBL、および配線RBLと配線GRBL、の間の電気的な接続を切り替える複数のスイッチを有する。複数のスイッチは、トランジスタで構成することができる。スイッチ回路SWが有するトランジスタは、素子層40に設けることができるOSトランジスタとすることが好ましい。当該構成とすることで、スイッチ回路SWが有するOSトランジスタをオフ状態とした際、配線WBLおよび配線RBLの電位を保持する構成とすることができる。
 素子層50は、シリコン基板などに設けられる素子を有する。素子層50にSiトランジスタが設けられる。Siトランジスタとしては、特に単結晶シリコンまたは多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。素子層50は、基板またはシリコン基板という場合がある。
 図1Bに図示する素子層50は、図1Aに図示する書き込みワード線駆動回路51、読み出しワード線駆動回路52、書き込みビット線駆動回路53、読み出しビット線駆動回路54、を有する。また、図1Bに図示する素子層50は、図1Aに図示する演算回路55、演算制御回路56およびコントロール回路57を有する。各回路は、素子層50が有するSiトランジスタを用いて構成することができるため、高速動作が可能となる。
 書き込みワード線駆動回路51は、素子層40に設けられたメモリセル42へのデータ書き込みを制御する信号を、書き込みワード線として機能する配線に出力する。読み出しワード線駆動回路52は、素子層40に設けられたメモリセル42からのデータ読み出しを制御する信号を、読み出しワード線として機能する配線に出力する。書き込みワード線駆動回路51および読み出しワード線駆動回路52は、併せてワード線駆動回路という場合がある。
 書き込みビット線駆動回路53は、素子層40に設けられたメモリセル42に書き込むデータに応じた電位(信号)を、配線GWBLに出力する。読み出しビット線駆動回路54は、素子層40に設けられたメモリセル42からスイッチ回路SWを介して配線GRBLに読み出されるデータに応じた電位を元にデータを出力する。書き込みビット線駆動回路53および読み出しビット線駆動回路54は、併せてビット線駆動回路という場合がある。
 演算回路55は、読み出しビット線駆動回路54で得られたデータをもとに演算処理を行う機能を有する。演算制御回路56は、演算回路55における演算を制御するための回路である。演算回路55は、例えば複数のPE(processing element)を有する。PEは、積和演算の並列処理をすることで、例えば、グラフィック処理における行列演算の並列処理、ニューラルネットワークの積和演算の並列処理、科学技術計算における浮動小数点演算の並列処理などを行うことができる。なおこの場合、メモリセル42には、演算処理に用いられる重みデータを記憶する構成が好ましい。半導体装置10は、並列処理を行う演算回路55、および重みデータを保持するメモリセル42、などを密結合させた、所謂SoCとしての機能を有することで、データ転送を行う装置間を接続する配線を短くできるため、発熱、及び消費電力の増加を抑制できる。
 コントロール回路57は、上述したビット線駆動回路およびワード線駆動回路の制御を行うメモリコントローラとしての機能を有する。コントロール回路57は、演算制御回路56などの制御を行う機能を有していてもよい。なお半導体装置10において、演算回路55、演算制御回路56およびコントロール回路57は別の構成としてもよい。
 図2Aには、上述した半導体装置10の動作例を説明するため、図1Bの素子層40が2層の場合を図示している。また図2Bでは、図2Aの構成において、スイッチ回路SW[1]、SW[2]が有する回路の具体例を図示している。
 図2Bに示すスイッチ回路SW[1]は、信号φ1でオンまたはオフ状態が制御されるスイッチを有する。図2Bに示すスイッチ回路SW[2]は、信号φ2でオンまたはオフ状態が制御されるスイッチを有する。スイッチ回路SW[1]が有するスイッチは、配線GWBLと配線WBL[1]の間、および配線GRBLと配線RBL[1]の間、の導通(オン)状態または非導通(オフ)状態を切り替える。スイッチ回路SW[2]が有するスイッチは、配線GWBLと配線WBL[2]の間、および配線GRBLと配線RBL[2]の間、の導通(オン)状態または非導通(オフ)状態を切り替える。素子層40が3層以上である場合も同様に、スイッチを有するスイッチ回路SWを設け、配線GWBLと配線WBLの間、および配線GRBLと配線RBLの間、の導通(オン)状態または非導通(オフ)状態を切り替える構成とする。
 信号φ1、φ2は、素子層40[1]または素子層40[2]が有するメモリセル42へのデータの書き込みまたは読み出しに応じていずれか一の層を選択するための選択信号である。例えば、素子層40[1]へのデータの書き込みまたは読み出しを行う場合、信号φ1をアクティブ、つまりスイッチをオンにする信号とし、信号φ2などの他のスイッチ回路SWに与える信号をインアクティブ、つまりスイッチをオフにする信号とする。また素子層40[2]へのデータの書き込みまたは読み出しを行う場合、信号φ2をアクティブ、つまりスイッチをオンにする信号とし、信号φ1などの他のスイッチ回路SWに与える信号をインアクティブ、つまりスイッチをオフにする信号とする。
 図3Aは、素子層40[1]が有するメモリセル42を選択し、データの書き込みまたは読み出しを行う場合のスイッチ回路SW[1]、SW[2]が有するスイッチのオン(ON)またはオフ(OFF)を模式的に表した図である。図3Aに図示するように、信号φ1によってスイッチ回路SW[1]が有するスイッチをオンにし、信号φ2によってスイッチ回路SW[2]が有するスイッチをオフにすることで、素子層40[1]が有するメモリセル42を選択し、データの書き込みまたは読み出しを行うことができる。なお図3A中において、配線GWBLと配線WBL[1]との間、および配線GRBLと配線RBL[1]との間、には、メモリセル42とビット線駆動回路(書き込みビット線駆動回路53、読み出しビット線駆動回路54)との間のデータの入出力を点線矢印で表している。
 図3Bは、素子層40[2]が有するメモリセル42を選択し、データの書き込みまたは読み出しを行う場合のスイッチ回路SW[1]、SW[2]が有するスイッチのオン(ON)またはオフ(OFF)を模式的に表した図である。図3Bに図示するように、信号φ2によってスイッチ回路SW[2]が有するスイッチをオンにし、信号φ1によってスイッチ回路SW[1]が有するスイッチをオフにすることで、素子層40[2]が有するメモリセル42を選択し、データの書き込みまたは読み出しを行うことができる。なお図3B中において、配線GWBLと配線WBL[2]との間、および配線GRBLと配線RBL[2]との間、には、メモリセル42とビット線駆動回路(書き込みビット線駆動回路53、読み出しビット線駆動回路54)との間のデータの入出力を点線矢印で表している。
 なお図3Aおよび図3Bでは、スイッチ回路SWのスイッチを、配線GWBLと配線WBLとの間、および配線GRBLと配線RBLとの間、に設ける構成を図示したが、他の構成でもよい。例えば図4に図示するように、配線GWBLと配線WBLとの間のスイッチを省略した構成とすることもできる。
 本発明の一態様の半導体装置では、複数の素子層にわたって設けられたメモリセルへのデータの書き込みまたは読み出しを行う構成において、ビット線駆動回路に接続された配線と、各素子層にあるメモリセルに接続される配線と、の間に、スイッチ回路を設ける構成とする。当該構成とすることで、メモリセルへのデータの書き込みまたは読み出しを行わない素子層にあるメモリセルに接続された配線と、メモリセルへのデータの書き込みまたは読み出しを行う素子層にあるメモリセルに接続された配線と、を電気的に切り離すことができる。そのため、積層して設けられたOSトランジスタを有するメモリセルとすることによる低消費電力化、高密度化および記憶容量の大容量化に加え、信号線として機能する配線の配線負荷を低減することができるため、データの読み出しおよび書き込みの高速化、およびデータの信頼性の向上を図ることができる。
 図5Aは、メモリセル42に適用可能なNOSRAMの回路図である。また図5Bおよび図5Cは、図5Aに示すNOSRAMの動作を説明するタイミングチャートである。
 図5Aは、図1Bなどで図示したメモリセルに適用可能なNOSRAMのメモリセルの回路構成の一例を示している。図5Aに示すメモリセル42は、トランジスタM1乃至M3および容量素子Cを有する。トランジスタM1乃至M3として、OSトランジスタを用いることができる。図5Aでは、メモリセル42が有する素子に接続される配線WWL、配線RWL、配線WBL、配線RBL、および配線SLを図示している。配線SLは容量線としての機能の他、各トランジスタのバックゲートに与える電位を伝える配線として機能することも可能である。
 図5Bを参照して、メモリセル42の動作例を説明する。図5Bは、メモリセル42の動作例を示すタイミングチャートである。書き込み動作(Write)、読み出し動作(Read)、およびスタンバイ状態(Standby)において、各配線には、“H”の電位としてVDDが入力され、“L”の電位としてVSSが入力される。なおVDD、VSSは、各配線で同じ電位として図示しているが、各配線で異なるVDD、VSSとしてもよい。
 書き込み動作において、書き込みワード線駆動回路51によって選択された配線WWLは“H”であり、読み出しワード線駆動回路52によって選択された配線RWLは“L”である。書き込みビット線駆動回路53およびスイッチ回路SWによって選択された配線WBLには、データに応じた電位が入力される。読み出しビット線駆動回路54およびスイッチ回路SWによって選択された配線RBLは“L”である。選択されたメモリセル42のトランジスタM2のゲートの電位は、データ“1”が書き込まれた場合VDDとなり、データ“0”が書き込まれた場合VSSとなる。
 図5Bの読み出し動作において、読み出しビット線駆動回路54およびスイッチ回路SWによって選択された配線RBLをVSSにプリディスチャージ(単にディスチャージという場合がある)する。次いで、読み出しワード線駆動回路52によって選択された配線RWLを“H”とする。選択されたメモリセル42がデータ“1”を保持している場合、トランジスタM2のゲートにはVDDが入力されているため、配線SLをVDDとすることで、トランジスタM2のソースードレイン間には大きな電流が流れる。したがって、配線RBLは速やかに充電され、配線RBLの電位は上昇する。選択されたメモリセル42がデータ“0”を保持している場合、トランジスタM2のゲートにはVSSが入力されているため、トランジスタM2はドレイン電流を殆んど流さない。そのため、配線RBLはディスチャージ電圧(VSS)を維持する。
 なお読み出し動作において、読み出しビット線駆動回路54によって選択された配線RBLをVDDにプリチャージする構成でもよい。この場合を、図5Cに示す。
 図5Cの読み出し動作において、読み出しビット線駆動回路54によって選択された配線RBLをVDDにプリチャージする。次いで、読み出しワード線駆動回路52によって選択された配線RWLは“H”とする。選択されたメモリセル42がデータ“1”を保持している場合、トランジスタM2のゲートにはVDDが入力されているため、配線SLをVSSとすることで、トランジスタM2のソースードレイン間には大きな電流が流れる。したがって、配線RBLは速やかに放電され、配線RBLの電位は下降する。選択されたメモリセル42がデータ“0”を保持している場合、トランジスタM2のゲートにはVSSが入力されているため、トランジスタM2はドレイン電流を殆んど流さない。そのため、配線RBLはプリチャージ電圧(VDD)を維持する。
 スタンバイ状態において、書き込み動作時および読み出し動作時以外の期間では、配線WWL、配線RBLは“L”である。メモリセル42のトランジスタM1、M3はオフ状態である。トランジスタM1乃至M3が極小オフ電流のOSトランジスタであるため、トランジスタM1およびトランジスタM3をオフ状態とすることで、メモリセル42は長時間データを保持することが可能である。メモリセル42は原理的に書き込み動作(書き換え)回数に制限はなく、データの書き換えを低エネルギーで行え、データの保持に電力を消費しない。よって半導体装置10は、不揮発性の低消費電力なメモリセルを有する構成とすることができる。
 メモリセル42の回路構成は、図5Aの回路構成に限定されない。例えば、図6Aに図示するメモリセル42Aのように、トランジスタM1乃至M3は、バックゲートを有する構成とすることができる。また、図6Bに図示するメモリセル42Bのように、トランジスタM3を省略した構成でもよい。または、寄生容量あるいはゲート容量などを用いることにより、容量素子Cを省略する構成としてもよい。
 図7は、図2A、図2Bで示した2層の素子層40とした際の、各素子層のメモリセル42に接続される配線WWL、RWLの構成を説明する図である。図7では、素子層40ごとに設けられるメモリセル部41[1]、41[2]において、3個ずつ設けられたメモリセル42を示している。図7では、メモリセル部41[1]、41[2]の各メモリセル42を制御するための、書き込みワード線として機能する配線WWL[1]−[6]、および読み出しワード線として機能する配線RWL[1]−[6]を図示している。
 図7では、図5Aで示したNOSRAMのメモリセルの回路図を図示している。メモリセル部41[1]が有するメモリセル42は、共通の配線WBL[1]、RBL[1]に接続される。また図7に図示するメモリセル部41[1]が有する3つのメモリセル42は、異なる配線WWL[1]−[3]、RWL[1]−[3]に接続される。また図7では、メモリセル部41[2]が有するメモリセル42は、共通の配線WBL[2]、RBL[2]に接続される。また図7に図示するメモリセル部41[2]が有する3つのメモリセル42は、異なる配線WWL[4]−[6]、RWL[4]−[6]に接続される。
 図7では、スイッチ回路SW[1]、SW[2]が有するスイッチをトランジスタで表している。スイッチ回路SW[1]が有するトランジスタは、トランジスタRS_1、WS_1として示している。信号φ1によってオンまたはオフ状態が制御され、配線GWBLと配線WBL[1]との間、配線GRBLと配線RBL[1]との間の導通状態または非導通状態が制御される。またスイッチ回路SW[2]が有するトランジスタは、トランジスタRS_2、WS_2として示している。信号φ2によってオンまたはオフ状態が制御され、配線GWBLと配線WBL[2]との間、配線GRBLと配線RBL[2]との間の導通状態または非導通状態が制御される。
 スイッチ回路SW[1]、SW[2]が有する各トランジスタは、メモリセル42が有するトランジスタと同様にOSトランジスタとすることができる。OSトランジスタがnチャネル型の場合、ゲートに供給される電位がHレベルでオン、Lレベルでオフするスイッチとして機能する。またOSトランジスタは、上述したようにオフ電流が小さいため、当該トランジスタをオフとすることで配線WBL、RBLの電位を保持することができる。
 図8Aは、図1Aで説明した構成に、層選択回路LSW[1]乃至LSW[4]を追加した模式図である。層選択回路LSWを設けることで半導体装置10は、任意の素子層40を選択する信号をもとに配線WWL[1]−[6]および配線RWL[1]−[6]に書き込みワード線駆動回路51および読み出しワード線駆動回路52の信号を供給することができる。
 図8Bは、図7の構成に層選択回路LSW[1]およびLSW[2]を適用した際に、層選択回路LSW[1]およびLSW[2]に接続される配線WWL[1]−[6]、配線RWL[1]−[6]、配線GWWL、および配線GRWLを示す図である。配線GWWLは、書き込みワード線駆動回路51の信号を各素子層40の層選択回路LSWに伝える機能を有する配線である。配線GRWLは、読み出しワード線駆動回路52の信号を各素子層40の層選択回路LSWに伝える機能を有する配線である。
 層選択回路LSWは、配線GWWLを介して供給される書き込みワード線駆動回路51からの信号、配線GRWLを介して供給される読み出しワード線駆動回路52からの信号、および素子層40のいずれか一を選択するための信号(信号φ1、φ2など)と、が入力され、配線WWL[1]−[6]、配線RWL[1]−[6]、に供給する信号を出力する。そのため、各素子層40が有する配線WWL[1]−[6]、配線RWL[1]−[6]の配線数に比べて少ない配線数で、書き込みワード線駆動回路51および読み出しワード線駆動回路52の信号を上層にある素子層40に伝えることができる。そのため、素子層40が増えるほど、書き込みワード線駆動回路51および読み出しワード線駆動回路52の信号を、上層にある素子層40に少ない配線数で伝えることができる。
 図9Aは、層選択回路LSWに適用可能な回路構成例を説明する回路図である。図9Aに図示する層選択回路LSWは、定電位(VDD、VSS)、信号φ1、信号φ1B(φ1の反転信号)、書き込みワード線駆動回路51からの信号GWWL_S、読み出しワード線駆動回路52からの信号GRWL_Sが供給され、信号WWL1(配線WWL[1]に与える信号)、および信号RWL1(配線RWL[1]に与える信号)を生成することができる。
 図9Aに図示する層選択回路LSWは、トランジスタM11乃至M16を有する。トランジスタM11乃至M16のそれぞれは、メモリセル42と同様に、積層された素子層40に設けられるOSトランジスタとすることができる。そのため、層選択回路LSWを有する図8Aの層選択回路LSW[1]乃至LSW[4]は、図8Aに示すように、Z方向に重なるように設けることができる。
 図9Bは、2層分の層選択回路LSW[1]およびLSW[2]に相当する回路構成例を説明する回路図である。層選択回路LSW[1]およびLSW[2]は、図9Bに図示するように、定電位(VDD、VSS)、信号φ1、信号φ1B、信号φ2、信号φ2B(φ2の反転信号)、書き込みワード線駆動回路51からの信号GWWL_S、信号WWL1(配線WWL[1]乃至WWL[3]に与える信号)、信号RWL1(配線RWL[1]乃至RWL[3]に与える信号)、信号WWL2(配線WWL[4]乃至WWL[6]に与える信号)、および信号RWL2(配線RWL[4]乃至RWL[6]に与える信号)を生成することができる。
 層選択回路LSW[1]およびLSW[2]は、トランジスタM11乃至M16、およびをトランジスタM21乃至M26を有する。トランジスタM11乃至M16、M21乃至M26のそれぞれは、メモリセル42と同様に、積層された素子層40[1]乃至40[2]に設けられるOSトランジスタである。層選択回路LSW[1]およびLSW[2]は、Z方向に重なるように設けることができる。
 異なる素子層40に設けられたメモリセル42を駆動するための配線WWL[1]−[6]、配線RWL[1]−[6]に与える信号は、積層数に応じて増加する。層選択回路LSWを設ける構成とすることで、素子層40の層数が増加しても層選択のための信号を供給するための信号数が増えるのみで、配線WWLおよび配線RWLに供給する信号を出力することができる。よって半導体装置10は、メモリセル42が設けられる素子層40の層数を増やすことに伴うワード線駆動回路の面積増大を抑えることができる。すなわち半導体装置10は、面積オーバーヘッドを増大させること無く、メモリセル42が設けられる素子層40の層数を増やすことができる。
 次いで図10に示すタイミングチャートを参照して半導体装置の動作例について説明する。
 図10に示す動作例では、図5Bで説明したメモリセル42の書き込み動作および読み出し動作をもとに説明する。つまり配線SLをVDDとし、読み出し動作において配線RBL(配線GRBLに対応)をVSSにディスチャージして行うものとする。
 期間P1は、素子層40[1]が有するメモリセル42のアドレスA1(ADDR)にアクセスする期間である。期間P2は、素子層40[2]が有するメモリセル42のアドレスA2(ADDR)にアクセスする期間である。期間P1、P2において、書き込み動作(Write)、読み出し動作(Read)、およびスタンバイ状態(Standby)の期間を設けている。素子層40[1]にアクセスする期間、信号φ1を選択状態(Hレベル)とし、素子層40[2]にアクセスする期間、信号φ2を選択状態(Hレベル)とする。
 図10において素子層40[1]が有するメモリセル42のアドレスA1にあるトランジスタM2のゲートに接続されたノードをノードSN1とする。素子層40[2]が有するメモリセル42のアドレスA2にあるトランジスタM2のゲートに接続されたノードをノードSN2とする。ノードSN1およびSN2は、初期状態でLレベル(VSS)のデータが書きこまれているとして説明する。
 また図10において、配線GWBL、配線GWWL、配線GRBL、および配線GRWLの各信号は、信号φ1および信号φ2を組み合わせることで、各期間においてアクセスされるメモリセル42に接続される配線に供給される信号とすることができる。
 例えば、期間P1において、Hレベルとされる配線GWWLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WWL[1]に供給される信号となる。また期間P2において、Hレベルとされる配線GWWLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WWL[2]に供給される信号となる。
 また、期間P1において、Hレベルとされる配線GWBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WBL[1]に供給される信号となる。また期間P2において、Lレベルとされる配線GWBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WBL[2]に供給される信号となる。
 また、期間P1において、選択したメモリセル42に書きこまれるデータの電位によって変動する配線GWBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WBL[1]に供給される信号となる。また期間P2において、選択したメモリセル42に書きこまれるデータの電位によって変動する配線GWBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WBL[2]に供給される信号となる。
 また、期間P1において、選択したメモリセル42が保持する電位によって変動する配線GRBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続されたRBL[1]の電位の変動に応じて変動する。また期間P2において、選択したメモリセル42が保持する電位によって変動する配線GRBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続されたRBL[2]の電位の変動に応じて変動する。
 素子層40[1]が有するメモリセル42のアドレスA1にアクセスする期間P1は、信号φ1を選択状態(Hレベル)とした状態で、書き込み動作(Write)で所定のメモリセル42にデータ“1”を書き込む。配線GWBLおよび配線GWWLがHレベル(VDD)となり、信号φ1で選択された素子層40にある配線WBL[1]および配線WWL[1]がHレベルとなることでノードSN1の電位が上昇する。ノードSN1の電位は、配線GWWLの立ち下がり(VDDからVSSへの変化)に伴う、トランジスタM1のオンまたはオフ状態の切り替えによるフィードスルーまたはチャージインジェクションの影響によって僅かに変動する。上昇したノードSN1の電位は、スタンバイ状態(Standby)の期間以降保持される。読み出し動作(Read)で所定のメモリセル42からデータ“1”を読み出す。配線GRBLをディスチャージすることで、信号φ1で選択された素子層40にある配線RBL[1]がディスチャージされる。配線GRWLをHレベルとすることで、信号φ1で選択された素子層40にある配線RWL[1]がHレベルとなる。その結果、配線RBL[1]が充電され、信号φ1で選択された素子層40にある配線RBL[1]に接続された配線GRBLも充電される。その後、スタンバイ状態(Standby)の期間となり、ノードSN1の電位は保持され続ける。
 素子層40[2]が有するメモリセル42のアドレスA2にアクセスする期間P2は、信号φ2を選択状態(Hレベル)とした状態で、書き込み動作(Write)で所定のメモリセル42にデータ“0”を書き込む。配線GWBLがLレベルとなり、信号φ2で選択された素子層40にある配線WBL[2]がLレベルとなる。また配線GWWLがHレベル(VDD)となり、信号φ2で選択された素子層40にある配線WWL[2]がHレベルとなる。ノードSN2の電位は、配線GWWLの立ち上がり(VSSからVDDへの変化)および立ち下がりに伴うフィードスルーまたはチャージインジェクションの影響によって僅かに変動するものの、書き込み動作(Write)の前後の期間で電位が変化しない。ノードSN2の電位は、スタンバイ状態(Standby)の期間以降保持される。読み出し動作(Read)で所定のメモリセル42からデータ“0”を読み出す。配線GRBLをディスチャージすることで、信号φ2で選択された素子層40にある配線RBL[2]がディスチャージされる。配線GRWLをHレベルとすることで、信号φ2で選択された素子層40にある配線RWL[2]がHレベルとなる。その結果、配線RBL[2]はLレベルのままとなり、信号φ2で選択された素子層40にある配線RBL[2]に接続された配線GRBLもLレベルのままとなる。その後、スタンバイ状態(Standby)の期間となり、ノードSN2の電位は保持され続ける。
 次いで図11では、スイッチ回路SWの変形例について説明する。図11に示す構成は、図7で示したスイッチ回路SW[1]において、配線RBL[1]に接続されるトランジスタPS_1と、スイッチ回路SW[2]において、配線RBL[2]に接続されるトランジスタPS_2と、を追加した構成である。トランジスタPS_1は、プリチャージ信号PREの制御に応じて電位VDDを配線RBL[1]に与える機能を有する。トランジスタPS_2は、プリチャージ信号PREの制御に応じて電位VDDを配線RBL[2]に与える機能を有する。当該構成とすることでスイッチ回路SWが有するスイッチがオフ状態のときにプリチャージを行う構成とすることができ、プリチャージされる配線の寄生容量を減らせるため、プリチャージ期間を短くできる。なおプリチャージ電圧をVSSとすることで、ディスチャージする構成とすることもできる。
 また図12では、図11とは異なるスイッチ回路SWの変形例として、ANDゲートを追加した構成を示す。ANDゲートAND_1には、素子層40[1]を選択するための信号φ1と、プリチャージ信号PREが与えられる。同様に、ANDゲートAND_2には、素子層40[2]を選択するための信号φ2と、プリチャージ信号PREが与えられる。そのため、選択されている素子層40のスイッチ回路SWが有するスイッチがオンであり、選択されていない素子層40のスイッチ回路SWが有するスイッチがオフである状態で、プリチャージを行う構成とすることができる。そのため、プリチャージを行う配線RBLとプリチャージを行わない配線RBLとを切り離すことができるため、プリチャージを行う配線の寄生容量を減らせる。その結果、プリチャージ期間を短くできる。
 なお図12に図示するANDゲートAND_1、AND_2は、図13に示すようにOSトランジスタで構成することで素子層40に設けることができる。図13に示すANDゲートは、nチャネル型のOSトランジスタである、トランジスタM41乃至M45で構成される。図13に示すANDゲートは、入力信号A、Bに対して出力信号Yが得られる。入力信号A、Bが共にHレベルで、出力信号がHレベルとすることができるため、ANDゲートとして機能させることができる。
 次いで図14に示すタイミングチャートを参照して図12に示す構成を適用した半導体装置の動作例について説明する。
 図14に示す動作例では、図5Cで説明したメモリセル42の書き込み動作および読み出し動作をもとに説明する。つまり配線SLをVSSとし、読み出し動作において配線RBL(配線GRBLに対応)をVDDにプリチャージして行うものとする。
 期間P1は、素子層40[1]が有するメモリセル42のアドレスA1(ADDR)にアクセスする期間である。期間P2は、素子層40[2]が有するメモリセル42のアドレスA2(ADDR)にアクセスする期間である。期間P1、P2において、書き込み動作(Write)、読み出し動作(Read)、およびスタンバイ状態(Standby)の期間を設けている。素子層40[1]にアクセスする期間、信号φ1を選択状態(Hレベル)とし、素子層40[2]にアクセスする期間、信号φ2を選択状態(Hレベル)とする。
 図14において素子層40[1]が有するメモリセル42のアドレスA1にあるトランジスタM2のゲートに接続されたノードをノードSN1とする。素子層40[2]が有するメモリセル42のアドレスA2にあるトランジスタM2のゲートに接続されたノードをノードSN2とする。ノードSN1およびSN2は、初期状態でLレベル(VSS)のデータが書きこまれているとして説明する。
 また図14において、配線GWBL、配線GWWL、配線GRBL、および配線GRWLの各信号、およびプリチャージ信号PREは、信号φ1および信号φ2を組み合わせることで、各期間においてアクセスされるメモリセル42に接続される配線に供給される信号とすることができる。
 例えば、期間P1において、Hレベルとされる配線GWWLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WWL[1]に供給される電位となる。また期間P2において、Hレベルとされる配線GWWLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WWL[2]に供給される電位となる。
 また、期間P1において、Hレベルとされる配線GWBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WBL[1]に供給される電位となる。また期間P2において、Lレベルとされる配線GWBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WBL[2]に供給される電位となる。
 また、期間P1において、選択したメモリセル42に書きこまれるデータの電位によって変動する配線GWBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線WBL[1]に供給される電位となる。また期間P2において、選択したメモリセル42に書きこまれるデータの電位によって変動する配線GWBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線WBL[2]に供給される電位となる。
 また、期間P1において、選択したメモリセル42が保持する電位によって変動する配線GRBLの電位は、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続されたRBL[1]の電位の変動に応じて変動する。また期間P2において、選択したメモリセル42が保持する電位によって変動する配線GRBLの電位は、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続されたRBL[2]の電位の変動に応じて変動する。
 例えば、期間P1において、プリチャージ信号PREの制御に応じて与えられるVDDは、信号φ1によって選択的に、素子層40[1]が有するメモリセル42に接続される配線RBL[1]に供給される。また期間P2において、プリチャージ信号PREの制御に応じて与えられるVDDは、信号φ2によって選択的に、素子層40[2]が有するメモリセル42に接続される配線RBL[2]に供給される。
 素子層40[1]が有するメモリセル42のアドレスA1にアクセスする期間P1は、信号φ1を選択状態(Hレベル)とした状態で、書き込み動作(Write)で所定のメモリセル42にデータ“1”を書き込む。配線GWBLおよび配線GWWLがHレベル(VDD)となり、信号φ1で選択された素子層40にある配線WBL[1]および配線WWL[1]がHレベルとなることでノードSN1の電位が上昇する。ノードSN1の電位は、配線GWWLの立ち下がり(VDDからVSSへの変化)に伴う、フィードスルーまたはチャージインジェクションの影響によって僅かに変動する。上昇したノードSN1の電位は、スタンバイ状態(Standby)の期間以降保持される。読み出し動作(Read)で所定のメモリセル42からデータ“1”を読み出す。プリチャージ信号PREをHレベルとし、信号φ1で選択された素子層40にある配線RBL[1]がプリチャージされる。配線GRWLをHレベルとすることで、信号φ1で選択された素子層40にある配線RWL[1]がHレベルとなる。その結果、配線RBL[1]が放電され、信号φ1で選択された素子層40にある配線RBL[1]に接続された配線GRBLも放電される。その後、スタンバイ状態(Standby)の期間となり、ノードSN1の電位は保持され続ける。
 素子層40[2]が有するメモリセル42のアドレスA2にアクセスする期間P2は、信号φ2を選択状態(Hレベル)とした状態で、書き込み動作(Write)で所定のメモリセル42にデータ“0”を書き込む。配線GWBLがLレベルとなり、信号φ2で選択された素子層40にある配線WBL[2]がLレベルとなる。また配線GWWLがHレベル(VDD)となり、信号φ2で選択された素子層40にある配線WWL[2]がHレベルとなる。ノードSN2の電位は、配線GWWLの立ち上がり(VSSからVDDへの変化)および立ち下がりに伴うフィードスルーまたはチャージインジェクションの影響によって僅かに変動するものの、書き込み動(Write)の前後の期間で電位が変化しない。ノードSN2の電位は、スタンバイ状態(Standby)の期間以降保持される。読み出し動作(Read)で所定のメモリセル42からデータ“0”を読み出す。プリチャージ信号PREをHレベルとし、信号φ2で選択された素子層40にある配線RBL[2]がプリチャージされる。配線GRWLをHレベルとすることで、信号φ2で選択された素子層40にある配線RWL[2]がHレベルとなる。その結果、配線RBL[2]はHレベルのままとなり、信号φ2で選択された素子層40にある配線RBL[2]に接続された配線GRBLもHレベルのままとなる。その後、スタンバイ状態(Standby)の期間となり、配線GRWLの電位はSiトランジスタのオフ電流等によって放電し、ノードSN2の電位は保持され続ける。
 本発明の一態様の半導体装置では、複数の素子層にわたって設けられたメモリセルへのデータの書き込みまたは読み出しを行う構成において、ビット線駆動回路に接続された配線と、各素子層にあるメモリセルに接続される配線と、の間に、スイッチ回路を設ける構成とする。当該構成とすることで、メモリセルへのデータの書き込みまたは読み出しを行わない素子層にあるメモリセルに接続された配線と、メモリセルへのデータの書き込みまたは読み出しを行う素子層にあるメモリセルに接続された配線と、を電気的に切り離すことができる。そのため、積層して設けられたOSトランジスタを有するメモリセルとすることによる低消費電力化、高密度化および記憶容量の大容量化に加え、信号線として機能する配線の配線負荷を低減することができるため、データの読み出しおよび書き込みの高速化、およびデータの信頼性の向上を図ることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、実施の形態1で説明した、本発明の一態様である半導体装置の構成例とは異なる構成例について説明する。
なお本実施の形態において、実施の形態1と同様の構成については、説明を省略する。本実施の形態では、模式図およびブロック図を用いて素子層40および素子層50にわたって設けられる配線の構成を説明するが、適宜実施の形態1に本変形例を適用することができる。
 図15Aおよび図15Bは、本発明の一態様に係る半導体装置の構成例を説明する模式図およびブロック図である。図15A、図15Bに示す半導体装置10Vは、図1A、図1Bと同様に、素子層50上に別の素子層40を積層して設けられる構成である。例えば図15Bに示すように、素子層50上に、4層の素子層40(素子層40[1]乃至40[4]を例示)が積層して設けられる構成を有する。半導体装置10Vは、各素子層40が有するメモリセル42には、図15Aに図示するようにビット線駆動回路(書き込みビット線駆動回路53、読み出しビット線駆動回路54)から上層の素子層40にかけての配線、および上層の素子層40から下層の素子層40に向けて配置される配線を介して、データの書き込みまたは読み出しが行われる構成となる。
図15Aおよび図15Bに示す構成において、素子層40は、メモリセル42のデータの書き込みを行うための配線WBL(配線WBL[1]乃至WBL[3])、およびデータの読み出しを行うための配線RBL(配線RBL[1]乃至RBL[3])を有する。図15Bでは、素子層40[1]乃至40[4]が有するメモリセル42に接続される配線WBL、配線RBLを配線WBL[1]乃至WBL[3]および配線RBL[1]乃至RBL[3]として図示している。配線WBL[1]乃至WBL[3]および配線RBL[1]乃至RBL[3]は、上層にある素子層40(図15Bでは素子層40[4])が素子層50上に積層される方向に垂直な方向(Z方向に垂直な方向)に設けられる配線と、素子層40が素子層50上に積層される方向(Z方向)に設けられる配線と、によって、各メモリセル42と、配線GWBLまたは配線GRBLと、を電気的に接続している。
 配線GWBLおよび配線GRBLは、素子層40が素子層50上に積層される方向(Z方向)に、素子層50から複数の素子層40にわたって設けられる。配線GWBLは、書き込みビット線駆動回路53が出力するデータに応じた電位を、上層にある素子層40(図15Bでは素子層40[4])の配線WBLに伝える機能を有する。配線GRBLは、素子層40が有するメモリセル42から、素子層40[4]の配線RBLに読み出されたデータに応じた電位を、読み出しビット線駆動回路54に伝える機能を有する。
 図16には、上述した半導体装置10Vの具体例を説明するため、図15Bの素子層40が2層の場合を図示している。また図17は、図16で示した2層の素子層40とした際の、各素子層のメモリセル42に接続される配線WWL、RWLの構成を説明する図である。図17では、素子層40ごとに設けられるメモリセル部41[1]、41[2]において、3個ずつ設けられたメモリセル42を示している。図17では、メモリセル部41[1]、41[2]の各メモリセル42を制御するための、書き込みワード線として機能する配線WWL[1]−[6]、および読み出しワード線として機能する配線RWL[1]−[6]を図示している。
 図17では、実施の形態1の図5Aで示したNOSRAMのメモリセルの回路図を図示している。Z方向に並んで重なるように配置することができるメモリセル部41[1]、41[2]のメモリセル42は、共通の配線WBL[1]およびRBL[1](配線WBL[2]およびRBL[2]、または配線WBL[3]およびRBL[3])に接続される。また図17に図示するメモリセル部41[1]が有する3つのメモリセル42は、異なる配線WWL[1]−[3]、RWL[1]−[3]に接続される。また図17に図示するメモリセル部41[2]が有する3つのメモリセル42は、異なる配線WWL[4]−[6]、RWL[4]−[6]に接続される。
 配線WBLおよび配線RBLは、配線GWBLおよび配線GRBLが設けられる方向に平行な方向(Z方向)に設けられる部分を有する。当該配線WBLおよび配線RBLは、複数の素子層40にわたってZ方向に設けられることで、各素子層40が有する面に対して垂直な方向に配置することができる。配線WBLおよび配線RBLは、素子層40に設けられる他の配線、例えば配線WWL、RWLと、垂直に配置することができる。そのため、積層して設けられたOSトランジスタを有するメモリセルとすることによる低消費電力化、高密度化および記憶容量の大容量化に加え、信号線として機能する配線の配線負荷を低減することができるため、データの読み出しおよび書き込みの高速化、およびデータの信頼性の向上を図ることができる。
また、配線負荷として配線容量よりも配線抵抗の影響が大きい場合、信号を伝える配線を環状(ループ状)に配置することが好ましい。例えば図18Aでは、実施の形態1で説明した図2Aの構成において異なる素子層40に配置される配線WBL[1]と配線WBL[2]とを接続する配線をZ方向に平行な方向に追加し、環状(ループ状)に配置する構成例である。異なる素子層40に配置される配線RBL[1]と配線RBL[2]についても同様に、環状(ループ状)に配置する構成例を図示している。なお図18Aにおいて、配線WBL[1]と配線WBL[2](配線RBL[1]と配線RBL[2])を接続する配線を追加しているため、スイッチ回路を省略しているが、別の配線WBL(例えば配線WBL[3]と配線WBL[4])または配線RBL(例えば配線RBL[3]と配線RBL[4])を有する場合、それぞれの環状に配置される配線WBL(配線RBL)ごとにスイッチ回路を設ける構成が好ましい。
また別の構成例として、例えば図18Bでは、本実施の形態で説明した図16の構成において異なる素子層40に配置される配線WBLまたは配線RBLと、メモリセル42と、を接続する配線をZ方向に平行な方向に追加し、環状(ループ状)に配置する構成例である。
図18A、図18Bに図示するように信号を伝える配線を環状(ループ状)に配置することで配線抵抗を低減することができる。そのため、信号線として機能する配線の配線容量および配線抵抗といった配線負荷を低減することができるため、データの読み出しおよび書き込みの高速化、およびデータの信頼性の向上を図ることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で説明した半導体装置に適用可能なトランジスタの構成について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
 半導体装置の断面構造の一部を図19に示す。図19に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量600と、を有している。図20Aはトランジスタ500のチャネル長方向の断面図であり、図20Bはトランジスタ500のチャネル幅方向の断面図であり、図20Cはトランジスタ550のチャネル幅方向の断面図である。例えば、トランジスタ550は上記実施の形態に示したSiトランジスタに相当し、トランジスタ500はOSトランジスタに相当する。
 図19では、トランジスタ500はトランジスタ550の上方に設けられ、容量600はトランジスタ550、およびトランジスタ500の上方に設けられている。
 トランジスタ550は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
 図20Cに示すように、トランジスタ550は、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
 なお、トランジスタ550は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ヒ化ガリウム)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 トランジスタ550は、SOI(Silicon on Insulator)基板などを用いて形成してもよい。
 また、SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板、または水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
 トランジスタ550を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、1×1016atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326にはトランジスタ550と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図19では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
 絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図19では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図19では、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図19では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素、水素などに対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜または酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図20Aおよび図20Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された金属酸化物530aと、金属酸化物530aの上に配置された金属酸化物530bと、金属酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
 また、図20Aおよび図20Bに示すように、金属酸化物530a、金属酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図20Aおよび図20Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図20Aおよび図20Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
 なお、本明細書などにおいて、金属酸化物530a、および金属酸化物530bをまとめて金属酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、金属酸化物530a、および金属酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、金属酸化物530bの単層、または3層以上の積層構成を設ける構成にしてもよい。
 また、トランジスタ500では、導電体560を2層の積層構成として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構成であってもよい。また、図19、および図20Aに示すトランジスタ500は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるため、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるため、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、金属酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、金属酸化物530に形成されるチャネル形成領域を覆うことができる。
 本明細書等において、第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、およびS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 トランジスタを、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタをS−channel構造、GAA構造、又はLGAA構造とすることで、金属酸化物530とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、金属酸化物530のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構成として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
 絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、金属酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう。)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を金属酸化物530に接して設けることにより、金属酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、金属酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、金属酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう。)と、酸化物半導体に酸素を供給して酸素欠損を補償すること(「加酸素化処理」ともいう。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、金属酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、金属酸化物530中の水、または水素を除去することができる。例えば、金属酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、金属酸化物530、または金属酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542aおよび542bにゲッタリングされる場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく金属酸化物530、または金属酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、金属酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、金属酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、金属酸化物530に加酸素化処理を行うことで、金属酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、金属酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、金属酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素、不純物などの拡散を抑制する機能を有することで、金属酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524、金属酸化物530などが有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、オフ電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、金属酸化物530からの酸素の放出、またはトランジスタ500の周辺部から金属酸化物530への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構成の絶縁体520を得ることができる。
 なお、図20Aおよび図20Bのトランジスタ500では、3層の積層構成からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構成を有していてもよい。その場合、同じ材料からなる積層構成に限定されず、異なる材料からなる積層構成でもよい。
 トランジスタ500は、チャネル形成領域を含む金属酸化物530に、酸化物半導体として機能する金属酸化物を用いる。
 酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行ってもよいし、ALD(Atomic Layer Deposition)法で行ってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
 また、金属酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 金属酸化物530は、金属酸化物530b下に金属酸化物530aを有することで、金属酸化物530aよりも下方に形成された構成物から、金属酸化物530bへの不純物の拡散を抑制することができる。
 なお、金属酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の構成を有することが好ましい。具体的には、金属酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、金属酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、金属酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、金属酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、金属酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、金属酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、金属酸化物530aの伝導帯下端のエネルギーが、金属酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、金属酸化物530aの電子親和力が、金属酸化物530bの電子親和力より小さいことが好ましい。
 ここで、金属酸化物530aおよび金属酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、金属酸化物530aおよび金属酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、金属酸化物530aと金属酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、金属酸化物530aと金属酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、金属酸化物530bがIn−Ga−Zn酸化物の場合、金属酸化物530aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は金属酸化物530bとなる。金属酸化物530aを上述の構成とすることで、金属酸化物530aと金属酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 なお、本実施の形態においては、金属酸化物530は、金属酸化物530aと、金属酸化物530a上の金属酸化物530bとの2層の構造について例示したがこれに限定されない。例えば、金属酸化物530を、金属酸化物530a、金属酸化物530b、及び金属酸化物530c(図示せず)を、この順で形成した3層の構造としてもよい。金属酸化物530cは、金属酸化物530aと、同等の組成とすることで、金属酸化物530cよりも上方に形成された構成物から、金属酸化物530bへの不純物の拡散を抑制することができる。また、金属酸化物530aと、金属酸化物530cと、によって金属酸化物530bを挟み込む構造(いわゆる、埋め込みチャネル構造)とすることで、チャネル形成領域を絶縁膜界面から遠ざけることが可能となる。なお、埋め込みチャネル構造とすることで、キャリアの界面散乱が低減され、高い電界効果移動度を有するトランジスタを実現することができる。
 金属酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
 また、図20Aでは、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構成としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
 また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図20Aに示すように、金属酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 金属酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、金属酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、金属酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない材料である場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が金属酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体542aおよび542bが酸化するのを抑制することができる。
 絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、金属酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体545が有する過剰酸素を、効率的に金属酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、金属酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構成としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、オフ電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構成とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構成とすることができる。
 第1のゲート電極として機能する導電体560は、図20Aおよび図20Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構成であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、金属酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構成としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構成としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を金属酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、金属酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素、水素などに対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜、酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
 導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
 なお、本発明に用いることができるトランジスタは、図20A及び図20Bに示すトランジスタ500に限られるものではない。例えば、図21に示す構造のトランジスタ500を用いてもよい。図21に示すトランジスタ500は、絶縁体555が用いられている点、ならびに導電体542a(導電体542a1および導電体542a2)及び導電体542b(導電体542b1および導電体542b2)が、積層構造である点において、図20A及び図20Bに示すトランジスタと異なる。
 導電体542aは、導電体542a1と、導電体542a1上の導電体542a2の積層構造であり、導電体542bは、導電体542b1と、導電体542b1上の導電体542b2の積層構造である。金属酸化物530bに接する導電体542a1及び導電体542b1は、金属窒化物などの酸化しにくい導電体であることが好ましい。これにより、金属酸化物530bに含まれる酸素によって、導電体542a及び導電体542bが過剰に酸化されるのを防ぐことができる。また、導電体542a2及び導電体542b2は、導電体542a1及び導電体542b1より導電性が高い、金属層などの導電体であることが好ましい。これにより、導電体542a及び導電体542bを、導電性が高い配線または電極として機能させることができる。このようにして、活性層として機能する金属酸化物530の上面に接して、配線または電極として機能する導電体542a及び導電体542bが設けられた、半導体装置を提供することができる。
 導電体542a1、542b1としては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 また、導電体542a2及び導電体542b2は、導電体542a1及び導電体542b1よりも、導電性が高いことが好ましい。例えば、導電体542a2及び導電体542b2の膜厚を、導電体542a1及び導電体542b1の膜厚より大きくすることが好ましい。導電体542a2及び導電体542b2としては、上記導電体560bに用いることが可能な導電体を用いればよい。上記のような構造にすることで、導電体542a2及び導電体542b2の抵抗を低減することができる。
 例えば、導電体542a1及び導電体542b1として、窒化タンタルまたは窒化チタンを用い、導電体542a2及び導電体542b2として、タングステンを用いることができる。
 図21に示すように、トランジスタ500のチャネル長方向の断面視において、導電体542a1と導電体542b1の間の距離は、導電体542a2と導電体542b2の間の距離より小さい。このような構成にすることで、ソースとドレインの間の距離をより短くし、それに応じてチャネル長を短くすることが可能になる。よって、トランジスタ500の周波数特性を向上させることができる。このように、半導体装置の微細化を図ることで、動作速度の向上した半導体装置を提供することができる。
 絶縁体555は、窒化物などの酸化しにくい絶縁体であることが好ましい。絶縁体555は、導電体542a2の側面、及び導電体542b2の側面に接して形成されており、導電体542a2、及び導電体542b2を保護する機能を有する。絶縁体555は、酸化雰囲気に曝されるため、酸化されにくい無機絶縁体が好ましい。また、絶縁体555は、導電体542a2及び導電体542b2に接するため、導電体542a2、542b2を酸化させにくい、無機絶縁体であることが好ましい。よって、絶縁体555は、酸素に対するバリア性を有する絶縁性材料を用いることが好ましい。例えば、絶縁体555として、窒化シリコンを用いることができる。
 図21に示すトランジスタ500は、絶縁体580及び絶縁体544に開口を形成し、当該開口の側壁に接して絶縁体555を形成し、さらにマスクを用いて、導電体542a1と導電体542b1を分断することで、形成される。ここで、上記開口は、導電体542a2と導電体542b2の間の領域と重畳する。また、導電体542a1及び導電体542b1の一部は、上記開口内に突出するように形成されている。よって、絶縁体555は、上記開口内で、導電体542a1の上面、導電体542b1の上面、導電体542a2の側面、及び導電体542b2の側面に接する。また、絶縁体545は、導電体542a1と導電体542b1の間の領域において、金属酸化物530の上面と接する。
 導電体542a1と導電体542b1を分断した後で、絶縁体545を成膜する前に、酸素を含む雰囲気で熱処理を行うことが好ましい。これにより、金属酸化物530a及び金属酸化物530bに酸素を供給して、酸素欠損の低減を図ることができる。さらに、絶縁体555が、導電体542a2の側面、及び導電体542b2の側面に接して形成されていることで、導電体542a2及び導電体542b2が過剰に酸化されるのを防ぐことができる。以上により、トランジスタの電気特性、及び信頼性を向上させることができる。また、同一基板上に複数形成されるトランジスタの電気特性のばらつきを抑制することができる。
 また、トランジスタ500において、図21に示すように、絶縁体524を島状に形成してもよい。ここで、絶縁体524は、金属酸化物530と側端部が概略一致するように形成してもよい。
 また、トランジスタ500において、図21に示すように、絶縁体522が絶縁体516及び導電体503と接する構成にしてもよい。言い換えると、図20A及び図20Bに示す絶縁体520を設けない構成にしてもよい。
 続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
 また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
 導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構成でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)、Al(アルミニウム)等を用いればよい。
 導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
 本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミックス基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
 または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板、可撓性の基板などにも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構成の構成、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
 つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
 可撓性を有する基板上に半導体装置を設けることで、重量の増加を抑え、且つ破損しにくい半導体装置を提供することができる。
 なお、図19に示すトランジスタ550は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、など同じ極性のトランジスタで構成される回路を意味する)とする場合、トランジスタ550の構成を、トランジスタ500と同様の構成にすればよい。
 なお、本発明に用いることができるトランジスタは、図20A、図20Bおよび図21に示すトランジスタ500に限られるものではない。例えば、図22A乃至図22Dに示す構造のトランジスタ500Aを用いてもよい。図22A乃至図22Dに示すトランジスタ500Aは、縦チャネル型のトランジスタである点において、図20A、図20Bおよび図21に示すトランジスタと異なる。
 図22A乃至図22Dは、トランジスタの構成例を示す上面図及び断面図である。図22Aはトランジスタ500Aの上面図である。図22Bは、図22AのA1−A2の一点鎖線で示す部位の断面図であり、図22Cは、図22AのA3−A4の一点鎖線で示す部位の断面図である。図22Dは、図22BのB1−B2の一点鎖線で示す部位の上面図である。なお、図22A及び図22Dの上面図では、図の明瞭化のために一部の要素を省いている。
 トランジスタ500Aは、絶縁体210上の導電体241及び絶縁体270と、導電体241上の金属酸化物230と、金属酸化物230上の絶縁体250と、絶縁体250上の導電体260と、絶縁体270上の導電体242と、を有する。
 導電体241はトランジスタ500Aのソース電極及びドレイン電極の一方として機能する領域を有し、導電体242はトランジスタ500Aのソース電極及びドレイン電極の他方として機能する領域を有し、導電体260はトランジスタ500Aのゲート電極として機能する領域を有する。金属酸化物230は、チャネル形成領域として機能する領域を有する。
 金属酸化物230には、上記金属酸化物530aと金属酸化物530bとして説明した各材料を用いることができる。
 金属酸化物230は、トランジスタ500Aにおける、チャネル形成領域と、チャネル形成領域を挟むように設けられるソース領域及びドレイン領域と、を有する。チャネル形成領域の少なくとも一部は、導電体260と重なる。ソース領域は、導電体241及び導電体242の一方と重なり、ドレイン領域は、導電体241及び導電体242の他方と重なる。
 導電体242及び絶縁体270には導電体241に達する開口部290が設けられる。また、開口部290は、上面視において導電体241と重なる領域を有する。また、開口部290内に、金属酸化物230、絶縁体250、及び導電体260のそれぞれの少なくとも一部が配置される。なお、開口部290は、導電体242が有する開口部と、絶縁体270が有する開口とを含むと言える。また、導電体242は、上面視において導電体241と重なる開口を有すると言える。
 金属酸化物230は、導電体242及び絶縁体270に設けられる開口部290の側面及び底面と接して設けられる。別言すると、金属酸化物230は、導電体242及び絶縁体270が有する開口部290の側面、及び導電体241、242の上面のそれぞれと接する領域を有する。また、金属酸化物230は、凹部を有する。当該凹部は、上面視において導電体242が有する開口部290と重なる領域を有する。
 絶縁体250の少なくとも一部は、金属酸化物230の凹部に設けられる。また、絶縁体250は、金属酸化物230の上面と接する領域を有する。また、絶縁体250は、凹部を有する。当該凹部は、金属酸化物230が有する凹部の内側に位置する。
 導電体260は、絶縁体250の凹部を埋め込むように設けられる。また、導電体260は、絶縁体250の上面と接する領域を有する。また、導電体260は、断面視における導電体241と導電体242の間の領域において、絶縁体250を介して金属酸化物230と重なる領域を有する。なお底部の形状が針状である導電体260は、針状ゲートと呼称してもよい。
 上記構成において、トランジスタ500Aのチャネル長は、断面視における、導電体241の上面から導電体242の下面までの距離である。つまり、トランジスタ500Aのチャネル長は、導電体241と重なる領域の絶縁体270の膜厚によって調整できる。例えば、絶縁体270の膜厚を薄くすることで、チャネル長の短いトランジスタ500Aを作製できる。
 また、上記構成において、トランジスタ500Aのチャネル幅は、上面視における、絶縁体270と金属酸化物230が接する領域の長さであり、上面視における金属酸化物230の輪郭(外周)の長さでもある。つまり、トランジスタ500Aのチャネル幅は、絶縁体270に設ける開口の径によって調整できる。例えば、当該開口の径を大きくすることで、チャネル幅の大きいトランジスタ500Aを作製できる。なお、当該開口は、トランジスタ500Aの構成要素の一部(ここでは、金属酸化物230、絶縁体250、及び導電体260)が設けられる開口と言い換えることができる。
 トランジスタ500Aは、チャネル形成領域がゲート電極を取り囲む構造を有する。したがって、トランジスタ500Aは、CAA(Channel−All−Around)構造のトランジスタと言える。
 なお、図22Dでは、導電体242が有する開口の上面形状が、円形状を有する構成を示しているが、本発明はこれに限られない。例えば、導電体242が有する開口の上面形状は、楕円形状、多角形状、又は、角が丸みを帯びている多角形状であってもよい。ここで、多角形状とは、三角形、四角形、五角形、及び六角形等を指す。
 絶縁体250は、単層構造であってもよく、積層構造であってもよい。
 絶縁体250として、例えば、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを用いることができる。特に、酸化シリコン及び酸化窒化シリコンは熱に対し安定であるため好ましい。この場合、絶縁体250は、少なくとも酸素と、シリコンと、を有する絶縁体となる。
 絶縁体250中の水、及び水素等の不純物濃度は低減されていることが好ましい。
 なお、絶縁体250と金属酸化物230との間に、酸素に対するバリア性を有する絶縁体を設けてもよい。当該絶縁体は、絶縁体250の下面、及び金属酸化物230の凹部に接して設けられる。当該絶縁体が酸素に対するバリア性を有することで、絶縁体250に含まれる酸素をチャネル形成領域に供給し、絶縁体250に含まれる酸素がチャネル形成領域に過剰に供給されるのを抑制できる。よって、熱処理などを行った際に、金属酸化物230から酸素が脱離するのを抑制し、金属酸化物230における酸素欠損の形成を抑制できる。したがって、トランジスタ500Aの電気特性を良好にし、信頼性を向上させることができる。
 上記絶縁体として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウムおよびシリコンを含む酸化物(ハフニウムシリケート)などを用いることができる。上記絶縁体として、酸化アルミニウムを用いることがより好ましい。この場合、上記絶縁体は、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。なお、上記絶縁体は、例えば絶縁体250よりも酸素を透過しにくければよい。また、上記絶縁体として、例えば絶縁体250よりも酸素を透過しにくい材料を用いればよい。また、上記絶縁体として、例えば、酸化マグネシウム、酸化ガリウム、ガリウム亜鉛酸化物、又はインジウムガリウム亜鉛酸化物などを用いてもよい。
 図22Bでは、導電体260を単層とする構成を示している。なお、導電体260は、積層構造であってもよい。例えば、導電体260は、第1の導電体と、第1の導電体上の第2の導電体と、を有することが好ましい。具体的には、導電体260の第1の導電体は、導電体260の第2の導電体の底面及び側面を包むように配置されることが好ましい。
 導電体260の第1の導電体は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、又は銅原子等の不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、及び酸素分子等の少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸化しにくい導電性材料を用いることが好ましい。
 導電体260の第1の導電体が酸素の拡散を抑制する機能を有することで、例えば絶縁体250に含まれる酸素により導電体260の第2の導電体が酸化して、導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウム等を用いることが好ましい。
 絶縁体250上に絶縁体283が設けられる。絶縁体283には、水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、トランジスタ500Aの外から絶縁体250を介して、金属酸化物230に水素が拡散することを抑制できる。窒化シリコン膜、及び窒化酸化シリコン膜は、それぞれ、自身からの不純物(例えば、水及び水素)の放出が少なく、酸素及び水素が透過しにくい特徴を有するため、絶縁体283に好適に用いることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、半導体装置が有する各回路に適用可能な構成である、積層されたSiトランジスタを有する素子層(駆動回路層)上に設けられたOSトランジスタを有する素子層(記憶層)、の断面構成例について説明する。本実施の形態では、NOSRAMの回路構成に適用可能な断面模式図の一例について説明する。
 図23に、NOSRAMの回路構成を用いた場合の断面構成例を示す。図23では、素子層701の上に素子層700[1]乃至素子層700[3]が積層されている場合を例示している。素子層701は、実施の形態1で説明した素子層50に相当し、素子層700は、素子層40に相当する。
 また、図23では、素子層701が有するトランジスタ550を例示している。トランジスタ550は、上記実施の形態で説明したトランジスタ550を適用することができる。
 なお、図23に示すトランジスタ550は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いればよい。
 素子層701と素子層700の間、または、k層目の素子層700とk+1層目の素子層700の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。なお、本実施の形態などでは、k層目の素子層700を素子層700[k]と示し、k+1層目の素子層700を素子層700[k+1]と示す場合がある。ここで、kは1以上N以下の整数である。また、本実施の形態などにおいて「k+α(αは1以上の整数)」または「k−α」と示した場合、「k+α」および「k−α」それぞれの解は1以上N以下の整数とする。
 また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ550上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320および絶縁体322には導電体328などが埋め込まれている。また、絶縁体324および絶縁体326には導電体330などが埋め込まれている。なお、導電体328および導電体330はコンタクトプラグまたは配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体320の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326および導電体330上に、配線層を設けてもよい。例えば、図23において、絶縁体326および導電体330上に、絶縁体350、絶縁体357、絶縁体352、および絶縁体354が順に積層して設けられている。絶縁体350、絶縁体357、および絶縁体352には、導電体356が形成されている。導電体356は、コンタクトプラグまたは配線として機能する。
 絶縁体354の上には素子層700[1]が有する絶縁体514が設けられている。また、絶縁体514および絶縁体354には導電体358が埋め込まれている。導電体358は、コンタクトプラグまたは配線として機能する。例えば、配線WBL(または配線RBL)とトランジスタ550は、導電体358、導電体356、および導電体330などを介して電気的に接続される。
 図24Aに素子層700[k]の断面構造例を示す。また、図24Bに、図24Aの等価回路図を示す。
 図23および図24Aに示すメモリセルMCは、絶縁体514の上にトランジスタM1、トランジスタM2、およびトランジスタM3を有する。また、絶縁体514の上に導電体215が設けられている。導電体215は導電体503と同じ材料かつ同じ工程で同時に形成できる。
 また、図23および図24Aに示すトランジスタM2およびトランジスタM3は、1つの島状の金属酸化物530を両者が共用している。言い換えると、1つの島状の金属酸化物530の一部がトランジスタM2のチャネル形成領域として機能し、他の一部がトランジスタM3のチャネル形成領域として機能する。また、トランジスタM2のソースとトランジスタM3のドレイン、もしくは、トランジスタM2のドレインとトランジスタM3のソースが共用される。よって、トランジスタM2とトランジスタM3をそれぞれ独立して設ける場合よりも、トランジスタの占有面積が少ない。
 また、図23および図24Aに示すメモリセルMCは、絶縁体581の上に絶縁体287が設けられ、絶縁体287に導電体161が埋め込まれている。また、絶縁体287および導電体161の上に素子層700[k+1]の絶縁体514が設けられている。
 図23および図24Aにおいて、素子層700[k+1]の導電体215が容量素子Cの一方の端子として機能し、素子層700[k+1]の絶縁体514が容量素子Cの誘電体として機能し、導電体161が容量素子Cの他方の端子として機能する。また、トランジスタM1のソースまたはドレインの他方はコンタクトプラグを介して導電体161と電気的に接続され、トランジスタM2のゲートは他のコンタクトプラグを介して導電体161と電気的に接続される。
 本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、チャネル形成領域に酸化物半導体を有するトランジスタ(OSトランジスタ)について、説明する。なお、OSトランジスタの説明において、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタともいう)との比較についても簡単に説明する。
[OSトランジスタ]
 OSトランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1018cm−3以下、好ましくは1×1017cm−3未満、より好ましくは1×1016cm−3未満、さらに好ましくは1×1013cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素等が挙げられる。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
 また、OSトランジスタは、酸化物半導体中のチャネル形成領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、OSトランジスタは、酸化物半導体中の酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。また、チャネル形成領域にVHが形成されると、チャネル形成領域中のドナー濃度が増加する場合がある。チャネル形成領域中のドナー濃度が増加するにつれ、しきい値電圧がばらつくことがある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。
 また、酸化物半導体のバンドギャップは、シリコンのバンドギャップ(代表的には1.1eV)よりも大きいことが好ましく、好ましくは2eV以上、より好ましくは2.5eV以上、さらに好ましくは3.0eV以上である。シリコンよりも、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流(Ioffとも呼称する)を低減することができる。
 また、Siトランジスタでは、トランジスタの微細化が進むにつれて、短チャネル効果(ショートチャネル効果:Short Channel Effect:SCEともいう)が発現する。そのため、Siトランジスタでは、微細化が困難となる。短チャネル効果が発現する要因の一つとして、シリコンのバンドギャップが小さいことが挙げられる。一方、OSトランジスタは、バンドギャップの大きい半導体材料である、酸化物半導体を用いるため、短チャネル効果の抑制を図ることができる。別言すると、OSトランジスタは、短チャネル効果がない、または短チャネル効果が極めて少ないトランジスタである。
 なお、短チャネル効果とは、トランジスタの微細化(チャネル長の縮小)に伴って顕在化する電気特性の劣化である。短チャネル効果の具体例としては、しきい値電圧の低下、サブスレッショルドスイング値(S値と表記することがある)の増大、漏れ電流の増大などがある。ここで、S値とは、ドレイン電圧一定にてドレイン電流を1桁変化させるサブスレッショルド領域でのゲート電圧の変化量をいう。
 また、短チャネル効果に対する耐性の指標として、特性長(Characteristic Length)が広く用いられている。特性長とは、チャネル形成領域のポテンシャルの曲がりやすさの指標である。特性長が小さいほどポテンシャルが急峻に立ち上がるため、短チャネル効果に強いといえる。
 OSトランジスタは蓄積型のトランジスタであり、Siトランジスタは反転型のトランジスタである。したがって、Siトランジスタと比較して、OSトランジスタは、ソース領域−チャネル形成領域間の特性長、及びドレイン領域−チャネル形成領域間の特性長が小さい。したがって、OSトランジスタは、Siトランジスタよりも短チャネル効果に強い。すなわち、チャネル長の短いトランジスタを作製したい場合においては、OSトランジスタは、Siトランジスタよりも好適である。
 チャネル形成領域がi型又は実質的にi型となるまで、酸化物半導体のキャリア濃度を下げた場合においても、短チャネルのトランジスタではConduction−Band−Lowering(CBL)効果により、チャネル形成領域の伝導帯下端が下がるため、ソース領域またはドレイン領域と、チャネル形成領域との間の伝導帯下端のエネルギー差は、0.1eV以上0.2eV以下まで小さくなる可能性がある。これにより、OSトランジスタは、チャネル形成領域がn型の領域となり、ソース領域およびドレイン領域がn型の領域となる、n/n/nの蓄積型junction−lessトランジスタ構造、または、n/n/nの蓄積型non−junctionトランジスタ構造と、捉えることもできる。
 OSトランジスタを、上記の構造とすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。例えば、OSトランジスタのゲート長が、20nm以下、15nm以下、10nm以下、7nm以下、または6nm以下であって、1nm以上、3nm以上、または5nm以上であっても、良好な電気特性を得ることができる。一方で、Siトランジスタは、短チャネル効果が発現するため、20nm以下、または15nm以下のゲート長とすることが困難な場合がある。したがって、OSトランジスタは、Siトランジスタと比較してチャネル長の短いトランジスタに好適に用いることができる。なお、ゲート長とは、トランジスタ動作時にキャリアがチャネル形成領域内部を移動する方向における、ゲート電極の長さであり、トランジスタの平面視における、ゲート電極の底面の幅をいう。
 また、OSトランジスタを微細化することで、トランジスタの高周波特性を向上させることができる。具体的には、トランジスタの遮断周波数を向上させることができる。OSトランジスタのゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、好ましくは100GHz以上、さらに好ましくは150GHz以上とすることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、オフ電流が小さいこと、チャネル長の短いトランジスタの作製が可能なこと、といった優れた効果を有する。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
 本実施の形態では、上記実施の形態で説明した半導体装置を用いることができる、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンター(Data Center:DCとも呼称する)について説明する。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターは、低消費電力化といった高性能化に有効である。
[電子部品]
 電子部品709が実装された基板(実装基板704)の斜視図を、図25Aに示す。図25Aに示す電子部品709は、モールド711内に半導体装置710を有している。図25Aは、電子部品709の内部を示すために、一部の記載を省略している。電子部品709は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は半導体装置710とワイヤ714を介して電気的に接続されている。電子部品709は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、素子層716と、を有する。なお、素子層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、素子層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、および、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、素子層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくすることが可能であるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、素子層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシのいずれか一または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、素子層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図25Bに示す。電子部品730は、SiP(System in Package)又はMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、又は、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、又は樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層又は多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」又は「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を電気的に接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、上述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図25Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[電子機器]
 次に、電子機器6500の斜視図を図26Aに示す。図26Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508、及び制御装置6509などを有する。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。
 図26Bに示す電子機器6600は、ノート型パーソナルコンピュータとして用いることのできる情報端末機である。電子機器6600は、筐体6611、キーボード6612、ポインティングデバイス6613、外部接続ポート6614、表示部6615、制御装置6616などを有する。なお、制御装置6616としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6615、制御装置6616などに適用することができる。なお、本発明の一態様の半導体装置を、上述の制御装置6509、及び制御装置6616に用いることで、消費電力を低減させることができるため好適である。
[大型計算機]
 次に、大型計算機5600の斜視図を図26Cに示す。図26Cに示す大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 計算機5620は、例えば、図26Dに示す斜視図の構成とすることができる。図26Dにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図26Eに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図26Eには、半導体装置5626、半導体装置5627、および半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、および半導体装置5628の説明を参照すればよい。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード5622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品709を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、情報を処理および記憶する機器などの宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含むことができる。当該OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。
 図27には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図27においては、宇宙空間に惑星6804を例示している。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 また、図27には、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。上述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様である半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。長期的なデータを管理する場合、膨大なデータを記憶するためのストレージおよびサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図28にデータセンターに適用可能なストレージシステムを示す。図28に示すストレージシステム7000は、ホスト7001(Host Computerと図示)として複数のサーバ7001sbを有する。また、ストレージ7003(Storageと図示)として複数の記憶装置7003mdを有する。ホスト7001とストレージ7003とは、ストレージエリアネットワーク7004(SAN:Storage Area Networkと図示)およびストレージ制御回路7002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト7001は、ストレージ7003に記憶されたデータにアクセスするコンピュータに相当する。ホスト7001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ7003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ7003のアクセススピードの長さの問題を解決するために、通常ストレージ内にキャッシュメモリを設けてデータの記憶及び出力を短くしている。
 上述のキャッシュメモリは、ストレージ制御回路7002およびストレージ7003内に用いられる。ホスト7001とストレージ7003との間でやり取りされるデータは、ストレージ制御回路7002およびストレージ7003内の当該キャッシュメモリに記憶されたのち、ホスト7001またはストレージ7003に出力される。
 上述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることで小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
<本明細書等の記載に関する付記>
 以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
 各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
 また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合、または複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
 また、図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 本明細書等において、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子、またはソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
 また、本明細書等において「電極」または「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
 本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。
 本明細書等において、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
 また本明細書等において、ノードは、回路構成、デバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 本明細書等において、AとBとが接続されている、とは、AとBとが電気的に接続されているものをいう。ここで、AとBとが電気的に接続されているとは、AとBとの間で対象物(スイッチ、トランジスタ素子、またはダイオード等の素子、あるいは当該素子および配線を含む回路等を指す)が存在する場合にAとBとの電気信号の伝達が可能である接続をいう。なおAとBとが電気的に接続されている場合には、AとBとが直接接続されている場合を含む。ここで、AとBとが直接接続されているとは、上記対象物を介することなく、AとBとの間で配線(または電極)等を介してAとBとの電気信号の伝達が可能である接続をいう。換言すれば、直接接続とは、等価回路で表した際に同じ回路図として見なせる接続をいう。
10:半導体装置、40:素子層、41:メモリセル部、42:メモリセル、43:メモリセルアレイ、50:素子層、51:書き込みワード線駆動回路、52:読み出しワード線駆動回路、53:書き込みビット線駆動回路、54:読み出しビット線駆動回路、55:演算回路、56:演算制御回路、57:コントロール回路

Claims (14)

  1.  ビット線駆動回路を有する第1素子層と、
     第1スイッチ回路、第1メモリセル、および前記第1スイッチ回路と前記第1メモリセルとの間に設けられる第1配線、を有する第2素子層と、
     第2スイッチ回路、第2メモリセル、および前記第2スイッチ回路と前記第2メモリセルとの間に設けられる第2配線、を有する第3素子層と、を有し、
     前記第2素子層は、前記第1素子層上に重ねて設けられ、
     前記第3素子層は、前記第2素子層上に重ねて設けられ、
     前記第2素子層および前記第3素子層には、前記ビット線駆動回路に電気的に接続された第3配線が設けられ、
     前記ビット線駆動回路は、前記第3配線を介して、前記第1スイッチ回路および前記第2スイッチ回路と電気的に接続され、
     前記第1スイッチ回路は、前記第2メモリセルのデータの書き込み動作または読み出し動作において前記第1配線と前記第3配線との間を非導通状態にする機能を有し、
     前記第2スイッチ回路は、前記第1メモリセルのデータの書き込み動作または読み出し動作において前記第2配線と前記第3配線との間を非導通状態にする機能を有する、半導体装置。
  2.  請求項1において、
     前記第2素子層および前記第3素子層には、チャネル形成領域を有する半導体層が酸化物半導体であるトランジスタが設けられる、半導体装置。
  3.  請求項2において、
     前記酸化物半導体は、In、Ga、及びZnを有する、半導体装置。
  4.  請求項1において、
     前記第1素子層には、チャネル形成領域を有する半導体層がシリコンであるトランジスタが設けられる、半導体装置。
  5.  請求項1において、
     前記第1スイッチ回路は、前記第1配線の電位をプリチャージする機能を有し、
     前記第2スイッチ回路は、前記第2配線の電位をプリチャージする機能を有する、半導体装置。
  6.  請求項1において、
     前記第1素子層は、前記ビット線駆動回路に読み出されたデータをもとに演算処理を行う機能を有する演算回路を有し、
     前記演算回路は、前記第2素子層が有する前記第1メモリセルおよび前記第3素子層が有する前記第2メモリセルが設けられる領域と重なる領域に設けられる、半導体装置。
  7.  請求項1において、
     前記第3配線は、前記第1素子層が設けられる基板表面に垂直な方向と同じ方向に設けられる部分を有する、半導体装置。
  8.  ワード線駆動回路およびビット線駆動回路を有する第1素子層と、
     第1スイッチ回路、第1層選択回路、第1メモリセル、前記第1スイッチ回路と前記第1メモリセルとの間に設けられる第1配線、および前記第1層選択回路と前記第1メモリセルとの間に設けられる第2配線、を有する第2素子層と、
     第2スイッチ回路、第2層選択回路、第2メモリセル、前記第2スイッチ回路と前記第2メモリセルとの間に設けられる第3配線、および前記第2層選択回路と前記第2メモリセルとの間に設けられる第4配線、を有する第3素子層と、を有し、
     前記第2素子層は、前記第1素子層上に重ねて設けられ、
     前記第3素子層は、前記第2素子層上に重ねて設けられ、
     前記第2素子層および前記第3素子層には、前記ビット線駆動回路に電気的に接続された第5配線、および前記ワード線駆動回路に電気的に接続された第6配線が設けられ、
     前記ビット線駆動回路は、前記第5配線を介して、前記第1スイッチ回路および前記第2スイッチ回路と電気的に接続され、
     前記ワード線駆動回路は、前記第6配線を介して、前記第1層選択回路および前記第2層選択回路と電気的に接続され、
     前記第1スイッチ回路は、前記第2メモリセルのデータの書き込み動作または読み出し動作において前記第1配線と前記第5配線との間を非導通状態にする機能を有し、
     前記第2スイッチ回路は、前記第1メモリセルのデータの書き込み動作または読み出し動作において前記第3配線と前記第5配線との間を非導通状態にする機能を有し、
     前記第1層選択回路および前記第2層選択回路は、前記ワード線駆動回路が出力する信号を前記第2配線または前記第4配線に出力する機能を有する、半導体装置。
  9.  請求項8において、
     前記第2素子層および前記第3素子層には、チャネル形成領域を有する半導体層が酸化物半導体であるトランジスタが設けられる、半導体装置。
  10.  請求項9において、
     前記酸化物半導体は、In、Ga、及びZnを有する、半導体装置。
  11.  請求項8において、
     前記第1素子層には、チャネル形成領域を有する半導体層がシリコンであるトランジスタが設けられる、半導体装置。
  12.  請求項8において、
     前記第1スイッチ回路は、前記第1配線の電位をプリチャージする機能を有し、
     前記第2スイッチ回路は、前記第3配線の電位をプリチャージする機能を有する、半導体装置。
  13.  請求項8において、
     前記第1素子層は、前記ビット線駆動回路に読み出されたデータをもとに演算処理を行う機能を有する演算回路を有し、
     前記演算回路は、前記第2素子層が有する前記第1メモリセルおよび前記第3素子層が有する前記第2メモリセルが設けられる領域と重なる領域に設けられる、半導体装置。
  14.  請求項8において、
     前記第5配線及び前記第6配線は、前記第1素子層が設けられる基板表面に垂直な方向と同じ方向に設けられる部分を有する、半導体装置。
PCT/IB2023/059989 2022-10-13 2023-10-05 半導体装置 WO2024079575A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022164532 2022-10-13
JP2022-164532 2022-10-13
JP2022-168765 2022-10-21
JP2022168765 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024079575A1 true WO2024079575A1 (ja) 2024-04-18

Family

ID=90668918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/059989 WO2024079575A1 (ja) 2022-10-13 2023-10-05 半導体装置

Country Status (1)

Country Link
WO (1) WO2024079575A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028237A (ja) * 2014-10-10 2017-02-02 株式会社半導体エネルギー研究所 半導体装置、回路基板及び電子機器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028237A (ja) * 2014-10-10 2017-02-02 株式会社半導体エネルギー研究所 半導体装置、回路基板及び電子機器

Similar Documents

Publication Publication Date Title
CN113330554A (zh) 存储装置
WO2021191734A1 (ja) 記憶装置、及び電子機器
WO2024079575A1 (ja) 半導体装置
WO2023209491A1 (ja) 半導体装置
WO2023203435A1 (ja) 半導体装置
WO2024028680A1 (ja) 半導体装置
WO2023218279A1 (ja) 半導体装置
WO2023223126A1 (ja) 半導体装置
WO2024047454A1 (ja) 半導体装置および半導体装置の駆動方法
WO2024052787A1 (ja) 半導体装置
WO2023242665A1 (ja) 半導体装置
WO2024013604A1 (ja) 半導体装置
WO2024089570A1 (ja) 半導体装置
WO2024100467A1 (ja) 半導体装置
WO2024057167A1 (ja) 記憶装置
WO2024069339A1 (ja) 記憶装置
WO2024105497A1 (ja) 記憶装置
WO2023209484A1 (ja) 半導体装置
WO2023199182A1 (ja) 半導体装置
WO2024057166A1 (ja) 半導体装置
WO2024079586A1 (ja) 半導体装置、及び記憶装置
WO2024047486A1 (ja) 記憶装置
WO2024095108A1 (ja) 半導体装置、及び記憶装置
JP2023177765A (ja) 半導体装置
WO2024095110A1 (ja) 半導体装置、及び、半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876869

Country of ref document: EP

Kind code of ref document: A1