WO2024095108A1 - 半導体装置、及び記憶装置 - Google Patents

半導体装置、及び記憶装置 Download PDF

Info

Publication number
WO2024095108A1
WO2024095108A1 PCT/IB2023/060831 IB2023060831W WO2024095108A1 WO 2024095108 A1 WO2024095108 A1 WO 2024095108A1 IB 2023060831 W IB2023060831 W IB 2023060831W WO 2024095108 A1 WO2024095108 A1 WO 2024095108A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductor
oxide
transistor
film
Prior art date
Application number
PCT/IB2023/060831
Other languages
English (en)
French (fr)
Inventor
山崎舜平
國武寛司
太田将志
齋藤暁
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024095108A1 publication Critical patent/WO2024095108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • One aspect of the present invention relates to a semiconductor device, a memory device, and an electronic device that use an oxide semiconductor. Another aspect of the present invention relates to a manufacturing method of the semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Examples of technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices (e.g., touch sensors), input/output devices (e.g., touch panels), driving methods thereof, or manufacturing methods thereof.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • Semiconductor elements such as transistors, as well as semiconductor circuits, arithmetic devices, and memory devices, are one embodiment of semiconductor devices.
  • Display devices (such as liquid crystal display devices and light-emitting display devices), projection devices, lighting devices, electro-optical devices, power storage devices, memory devices, semiconductor circuits, imaging devices, electronic devices, and the like may be said to have semiconductor devices.
  • a CPU is a collection of semiconductor elements that have semiconductor integrated circuits (at least transistors and memory) that are chipped by processing a semiconductor wafer and have electrodes that serve as connection terminals.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, such as printed wiring boards, and are used as components in a variety of electronic devices.
  • transistors are widely used in electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • Silicon-based semiconductor materials are widely known as semiconductor thin films that can be used in transistors, but oxide semiconductors are also attracting attention as other materials.
  • Patent Document 1 discloses a low-power consumption CPU that utilizes the property of low leakage current of transistors using oxide semiconductors.
  • Patent Document 2 discloses a memory device that can retain stored contents for a long period of time by utilizing the property of low leakage current of transistors using oxide semiconductors.
  • Patent Document 3 and Non-Patent Document 1 disclose a technique for increasing the density of integrated circuits by stacking a first transistor using an oxide semiconductor film and a second transistor using an oxide semiconductor film to provide multiple overlapping memory cells.
  • Patent Document 4 discloses a technique for increasing the density of integrated circuits by vertically arranging the channel of a transistor using an oxide semiconductor film.
  • An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device having good electrical characteristics. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with high operating speed. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with little variation in electrical characteristics of transistors. Alternatively, an object of one embodiment of the present invention is to provide a highly reliable semiconductor device. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with high on-state current. Alternatively, an object of one embodiment of the present invention is to provide a semiconductor device with low power consumption.
  • an object of one embodiment of the present invention is to provide a new semiconductor device.
  • an object of one embodiment of the present invention is to provide a method for manufacturing a semiconductor device with high productivity.
  • an object of one embodiment of the present invention is to provide a method for manufacturing a new semiconductor device.
  • one object of one embodiment of the present invention is to provide a memory device that can be miniaturized or highly integrated. Alternatively, one object of one embodiment of the present invention is to provide a memory device with a large storage capacity. Alternatively, one object of one embodiment of the present invention is to provide a memory device with a high operating speed. Alternatively, one object of one embodiment of the present invention is to provide a memory device with low power consumption. Alternatively, one object of one embodiment of the present invention is to provide a novel memory device.
  • One aspect of the present invention is a semiconductor device having a first insulator on a substrate, a second insulator on the first insulator, a third insulator on the second insulator, an oxide semiconductor disposed on the second insulator and covering the third insulator, a first conductor and a second conductor on the oxide semiconductor, a fourth insulator disposed on the first conductor and the second conductor, a fifth insulator disposed on the oxide semiconductor, and a third conductor disposed on the fifth insulator, in a region between the first conductor and the second conductor, the second insulator and the fourth insulator have an opening that reaches the oxide semiconductor and reaches the first insulator in a region that does not overlap with the oxide semiconductor, the fifth insulator and the third conductor are disposed in the opening, in a cross-sectional view in the channel width direction, the height of the third insulator is longer than the width of the third insulator, and in a region that does not overlap with the oxide semiconductor in the opening
  • the fifth insulator is in contact with the first insulator, and the film thickness of the fifth insulator in the region within the opening that does not overlap with the oxide semiconductor is thinner than the film thickness of the second insulator.
  • the side surface of the fourth insulator in the opening coincides or roughly coincides with the side surface of the first conductor and the side surface of the second conductor.
  • the height of the third insulator is at least 2 times and at most 20 times the width of the third insulator when viewed in a cross section in the channel width direction.
  • the first conductor functions as one of the source electrode and drain electrode of the transistor
  • the second conductor functions as the other of the source electrode and drain electrode of the transistor
  • the third conductor functions as the gate electrode of the transistor
  • the oxide semiconductor and the third conductor face each other on one side of the third insulator with the fifth insulator in between, and that the oxide semiconductor and the third conductor face each other on the other side of the third insulator with the fifth insulator in between.
  • the first conductor contacts the oxide semiconductor on one side and the other side of the third insulator, and the second conductor contacts the oxide semiconductor on one side and the other side of the third insulator.
  • Another aspect of the present invention is a memory device that includes the above-described semiconductor device and a capacitor, in which one electrode of the capacitor is electrically connected to a first conductor of the semiconductor device.
  • the capacitive element is disposed on the third conductor, and at least a portion of the capacitive element overlaps with the oxide semiconductor and the third conductor.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device having high operating speed can be provided.
  • a semiconductor device having less variation in electrical characteristics of transistors can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device having a large on-state current can be provided.
  • a semiconductor device having low power consumption can be provided.
  • a novel semiconductor device can be provided.
  • a method for manufacturing a semiconductor device with high productivity can be provided.
  • a method for manufacturing a novel semiconductor device can be provided.
  • a memory device that can be miniaturized or highly integrated can be provided.
  • a memory device with a large storage capacity can be provided.
  • a memory device with a high operating speed can be provided.
  • a memory device with low power consumption can be provided.
  • a novel memory device can be provided.
  • Fig. 1A is a plan view showing an example of a semiconductor device
  • Figs. 1B to 1D are cross-sectional views showing the example of the semiconductor device.
  • 2A and 2B are cross-sectional views showing an example of a semiconductor device.
  • 3A to 3C are cross-sectional views showing an example of a semiconductor device.
  • 4A to 4C are cross-sectional views showing an example of a semiconductor device.
  • Fig. 5A is a plan view showing an example of a semiconductor device, and Figs. 5B to 5D are cross-sectional views showing an example of the semiconductor device.
  • Fig. 6A is a plan view showing an example of a semiconductor device
  • Figs. 6B to 6D are cross-sectional views showing an example of the semiconductor device.
  • FIGS. 7A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 7B to 7D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 8A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 8B to 8D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 9A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 9B to 9D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 10A is a plan view illustrating an example of a method for manufacturing a semiconductor device, and FIGS.
  • FIGS. 11A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 12A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 12B to 12D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device
  • 13A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 13B to 13D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device
  • 14A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 14B to 14D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • FIG. 15A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 15B to 15D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • 16A is a plan view illustrating an example of a method for manufacturing a semiconductor device
  • FIGS. 16B to 16D are cross-sectional views illustrating an example of a method for manufacturing a semiconductor device.
  • FIG. 17 is a block diagram illustrating an example of a storage device.
  • 18A and 18B are a schematic diagram and a circuit diagram showing an example of a memory device.
  • 19A and 19B are schematic diagrams illustrating an example of a storage device.
  • FIG. 20 is a circuit diagram showing an example of a memory device.
  • 21A and 21B are cross-sectional views showing an example of a memory device.
  • 22A and 22B are cross-sectional views showing an example of a memory device.
  • FIG. 23 is a cross-sectional view showing an example of a storage device.
  • 24A and 24B are diagrams showing an example of a semiconductor device.
  • 25A and 25B are diagrams illustrating an example of an electronic component.
  • 26A and 26B are diagrams showing an example of electronic equipment
  • FIGS. 26C to 26E are diagrams showing an example of a mainframe computer.
  • FIG. 27 is a diagram showing an example of space equipment.
  • FIG. 28 is a diagram illustrating an example of a storage system that can be applied to a data center.
  • plan views also called “top views”
  • perspective views some components may be omitted to make the invention easier to understand.
  • Some hidden lines may also be omitted.
  • ordinal numbers “first” and “second” are used for convenience and do not limit the number of components or the order of the components (e.g., the order of processes or the order of stacking). Furthermore, an ordinal number attached to a component in one place in this specification may not match an ordinal number attached to the same component in another place in this specification or in the claims.
  • film and “layer” may be interchangeable depending on the circumstances.
  • conductive layer may be interchangeable with the term “conductive film”.
  • insulating film may be interchangeable with the term “insulating layer”.
  • conductor may be interchangeable with the term “conductive layer” or the term “conductive film” depending on the circumstances.
  • insulating material may be interchangeable with the term “insulating layer” or the term “insulating film” depending on the circumstances.
  • parallel refers to a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, it also includes cases where the angle is -5 degrees or more and 5 degrees or less.
  • approximately parallel refers to a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less.
  • Perfect refers to a state in which two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, it also includes cases where the angle is 85 degrees or more and 95 degrees or less.
  • approximately perpendicular refers to a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.
  • Openings include, for example, grooves and slits. Also, the area in which an opening is formed may be referred to as an opening.
  • drawings used in the embodiments of this specification show cases in which the sidewalls of the insulator at the opening are perpendicular or approximately perpendicular to the substrate surface or the surface on which the material is formed, but they may also be tapered.
  • a tapered shape refers to a shape in which at least a portion of the side of the structure is inclined with respect to the substrate surface or the surface on which the structure is to be formed.
  • it refers to the shape of an area in which the angle between the inclined side and the substrate surface or the surface on which the structure is to be formed (hereinafter, sometimes referred to as the taper angle) is less than 90°.
  • the side of the structure and the substrate surface do not necessarily need to be completely flat, and may be approximately planar with a slight curvature, or approximately planar with fine irregularities.
  • the same or approximately the same height refers to a configuration in which the heights from a reference surface (for example, a flat surface such as a substrate surface) are equal in cross-sectional view.
  • a planarization process typically a CMP process
  • the surfaces treated in the CMP process have a configuration in which the heights from the reference surface are equal.
  • the heights of multiple layers may differ depending on the processing device, processing method, or material of the surface to be treated during the CMP process. In this specification, this case is also treated as "the same or approximately the same height".
  • the difference in height between the top surface of the first layer and the top surface of the second layer is 20 nm or less is also referred to as "the same or approximately the same height".
  • side edges that coincide or roughly coincide means that, in a plan view, at least a portion of the contours of the stacked layers overlap. For example, this includes cases where the upper and lower layers are processed using the same mask pattern, or where a portion of the mask pattern is the same. However, strictly speaking, the contours may not overlap, and the contour of the upper layer may be located inside the contour of the lower layer, or the contour of the upper layer may be located outside the contour of the lower layer. In these cases, the term "side edges that coincide or roughly coincide" is also used.
  • Fig. 1A to Fig. 1D are plan views and cross-sectional views of a semiconductor device having a transistor 200a and a transistor 200b on a substrate (not shown). Note that since the transistor 200b has a similar structure to the transistor 200a, the components are given the same hatching pattern as the transistor 200a and are not particularly given reference symbols. In addition, in the following, the transistors 200a and 200b may be collectively referred to as the transistor 200.
  • the semiconductor device described in this embodiment can function as two 1T (transistor) 1C (capacitor) type memory cells by providing a capacitor electrically connected to the transistor 200a and a capacitor electrically connected to the transistor 200b, and can also be used for a memory device.
  • FIG. 1A is a plan view of the semiconductor device.
  • FIGS. 1B to 1D are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in FIG. 1A, and is also a cross-sectional view in the channel length direction of the transistor 200a.
  • FIG. 1C is a cross-sectional view of the portion indicated by the dashed line A3-A4 in FIG. 1A, and is also a cross-sectional view in the channel width direction of the transistors 200a and 200b.
  • FIG. 1D is a cross-sectional view of the portion indicated by the dashed line A5-A6 in FIG.
  • FIG. 1A shows an enlarged view of the vicinity of the conductor 260 in FIG. 1B.
  • FIG. 2B shows an enlarged view of the vicinity of the insulator 225 in FIG. 1C.
  • FIG. 4A shows an enlarged view of the vicinity of the conductor 242a in FIG. 1B.
  • FIG. 4B shows an enlarged view of the vicinity of the insulator 225 in FIG. 1D.
  • the semiconductor device has an insulator 216 on a substrate (not shown), an insulator 222 on the insulator 216, an insulator 225 on the insulator 222, an oxide 230 (oxide 230a and oxide 230b) on the insulator 225 and the insulator 222, a conductor 242a and a conductor 242b on the oxide 230, an insulator 250 on the oxide 230, and a conductor 260 (conductor 260a and conductor 260b) on the insulator 250.
  • conductor 242a and conductor 242b may be collectively referred to as conductor 242.
  • An insulator 275 is provided on the conductor 242, and an insulator 280 is provided on the insulator 275.
  • Insulator 250 and conductor 260 are disposed inside openings provided in insulators 280, 275, and 222 in the region between conductors 242a and 242b.
  • Insulator 282 is provided on insulator 280 and conductor 260.
  • Insulator 283 is provided on insulator 282.
  • Insulator 215 is provided below insulator 216.
  • Insulator 241a is provided in contact with the inner wall of the opening of insulator 280, etc., and conductor 240a is provided in contact with the side surface of insulator 241a. The bottom surface of conductor 240a is in contact with the top surface of conductor 242a.
  • Insulator 241b is provided in contact with the inner wall of the opening of insulator 280, etc., and conductor 240b is provided in contact with the side surface of insulator 241b. The bottom surface of conductor 240b is in contact with the top surface of conductor 242b.
  • conductors 240a and 240b may be collectively referred to as conductor 240.
  • Insulators 241a and 241b may be collectively referred to as insulator 241.
  • Oxide 230 has a region that functions as a channel formation region of transistor 200.
  • Conductor 260 also has a region that functions as a gate electrode (sometimes called a first gate electrode or an upper gate electrode) of transistor 200.
  • Insulator 250 has a region that functions as a gate insulator (sometimes called a first gate insulator or an upper gate insulator) of transistor 200.
  • the conductor 242a has a region that functions as one of the source electrode or drain electrode of the transistor 200.
  • the conductor 240a functions as a plug that connects to the conductor 242a.
  • the conductor 242b has a region that functions as the other of the source electrode or drain electrode of the transistor 200.
  • the conductor 240b functions as a plug that connects to the conductor 242b.
  • the oxide 230 preferably has an oxide 230a covering the insulator 225 and an oxide 230b on the oxide 230a.
  • the oxide 230a contacts the top and side surfaces of the insulator 225 and the top surface of the insulator 222.
  • the oxide 230a and the oxide 230b are provided so as to cover the insulator 225, which has a high aspect ratio. Therefore, it is preferable to form the oxide 230a and the oxide 230b using a film formation method with good coverage, such as the ALD method.
  • the oxide 230a and the oxide 230b are formed so as to be folded in half through the insulator 225. With this configuration, the channel formation region of the transistor 200 can be formed on the top, the side surface on the A3 side, and the side surface on the A4 side of the insulator 225, so that the channel width per unit area can be increased.
  • the openings of the insulator 280, the insulator 275, and the insulator 222 reach the oxide 230 and reach the insulator 216 in the region not overlapping with the oxide 230.
  • the lower surface (which can also be called the lower end or the lower edge) of the conductor 260 located in the region not overlapping with the oxide 230 in the opening is located lower than the lower surface (which can also be called the lower end or the lower edge) of the oxide 230.
  • oxide 230a below oxide 230b, it is possible to suppress the diffusion of impurities from structures formed below oxide 230a into oxide 230b.
  • oxide 230 has a two-layer structure of oxide 230a and oxide 230b, but this is not limiting.
  • Oxide 230 may have, for example, a single-layer structure of oxide 230b, or a laminated structure of three or more layers.
  • a channel formation region and a source region and a drain region are formed, sandwiching the channel formation region, in the transistor 200. At least a portion of the channel formation region overlaps with the conductor 260.
  • the source region overlaps with the conductor 242a, and the drain region overlaps with the conductor 242b. Note that the source region and the drain region can be interchanged.
  • the channel formation region is a high-resistance region with a low carrier concentration because it has fewer oxygen vacancies or a lower impurity concentration than the source and drain regions. Therefore, the channel formation region can be said to be i-type (intrinsic) or substantially i-type.
  • the source and drain regions are low-resistance regions with high carrier concentrations due to a large amount of oxygen vacancies or a high concentration of impurities such as hydrogen, nitrogen, and metal elements.
  • the source and drain regions are n-type regions (low-resistance regions) with a high carrier concentration compared to the channel formation region.
  • the carrier concentration of the channel formation region is preferably 1 ⁇ 10 18 cm ⁇ 3 or less, less than 1 ⁇ 10 17 cm ⁇ 3 , less than 1 ⁇ 10 16 cm ⁇ 3 , less than 1 ⁇ 10 15 cm ⁇ 3 , less than 1 ⁇ 10 14 cm ⁇ 3 , less than 1 ⁇ 10 13 cm ⁇ 3 , less than 1 ⁇ 10 12 cm ⁇ 3 , less than 1 ⁇ 10 11 cm ⁇ 3 , or less than 1 ⁇ 10 10 cm ⁇ 3 .
  • the lower limit of the carrier concentration of the channel formation region is not particularly limited, but may be, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • oxide 230b when the carrier concentration of oxide 230b is reduced, the impurity concentration in oxide 230b is reduced to reduce the defect state density.
  • a low impurity concentration and a low defect state density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor (or metal oxide) with a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor (or metal oxide).
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, etc.
  • impurities in the oxide 230b refer to, for example, anything other than the main component that constitutes the oxide 230b.
  • an element with a concentration of less than 0.1 atomic % can be considered an impurity.
  • the channel formation region, source region, and drain region may each be formed with oxide 230a as well as oxide 230b.
  • the concentrations of metal elements and impurity elements such as hydrogen and nitrogen detected in each region may not only vary stepwise from region to region, but may also vary continuously within each region. In other words, the closer a region is to the channel formation region, the lower the concentrations of metal elements and impurity elements such as hydrogen and nitrogen.
  • oxide 230 oxide 230a and oxide 230b.
  • the band gap of a metal oxide that functions as a semiconductor is preferably 2 eV or more, and more preferably 2.5 eV or more.
  • a metal oxide with a large band gap By using a metal oxide with a large band gap, the off-current of a transistor can be reduced.
  • a transistor having a metal oxide in a channel formation region in this way is called an OS transistor. Since the off-current of an OS transistor is small, the power consumption of a semiconductor device can be sufficiently reduced. Furthermore, since the frequency characteristics of an OS transistor are high, the semiconductor device can operate at high speed.
  • the oxide 230 preferably has a metal oxide (oxide semiconductor).
  • metal oxides that can be used for the oxide 230 include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide preferably contains at least indium (In) or zinc (Zn).
  • the metal oxide preferably has two or three elements selected from indium, element M, and zinc.
  • the element M is a metal element or semi-metal element that has a high bond energy with oxygen, for example, a metal element or semi-metal element that has a higher bond energy with oxygen than indium.
  • the element M include aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, calcium, strontium, barium, boron, silicon, germanium, and antimony.
  • the element M of the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and even more preferably gallium.
  • metal elements and metalloid elements may be collectively referred to as "metal elements", and the "metal element" described in this specification may include metalloid elements.
  • the oxide 230 may be, for example, indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as GZO), aluminum zinc oxide (Al-Zn oxide, also written as AZO), indium aluminum oxide (Al-Zn oxide, also written as AZO), Indium zinc oxide (In-Al-Zn oxide, also written as IAZO), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide, also written as IGZO),
  • the field effect mobility of the transistor can be increased.
  • the metal oxide may contain one or more metal elements with a high periodic number instead of or in addition to indium.
  • metal elements with a high periodic number include metal elements belonging to the fifth period and metal elements belonging to the sixth period. Specific examples of such metal elements include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may also contain one or more nonmetallic elements.
  • the field effect mobility of the transistor may be increased.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. This suppresses fluctuations in the electrical characteristics of the transistor, and increases its reliability.
  • the formation of oxygen vacancies in the metal oxide can be suppressed. Therefore, carrier generation caused by oxygen vacancies is suppressed, and a transistor with a small off-current can be obtained. In addition, fluctuations in the electrical characteristics of the transistor can be suppressed, and reliability can be improved.
  • the electrical characteristics and reliability of the transistor vary depending on the composition of the metal oxide used for oxide 230. Therefore, by varying the composition of the metal oxide depending on the electrical characteristics and reliability required of the transistor, a semiconductor device that combines excellent electrical characteristics and high reliability can be obtained.
  • the oxide 230 preferably has a laminated structure of multiple oxide layers with different chemical compositions.
  • the atomic ratio of element M to the main metal element is preferably greater than the atomic ratio of element M to the main metal element in the metal oxide used for the oxide 230b.
  • the atomic ratio of element M to In is preferably greater than the atomic ratio of element M to In in the metal oxide used for the oxide 230b. This configuration can suppress the diffusion of impurities and oxygen from structures formed below the oxide 230a to the oxide 230b.
  • the atomic ratio of In to element M is greater than the atomic ratio of In to element M in the metal oxide used for oxide 230a.
  • oxide 230a and oxide 230b have a common element other than oxygen as a main component, the defect state density at the interface between oxide 230a and oxide 230b can be reduced. As a result, the effect of interface scattering on carrier conduction is reduced, and transistor 200 can obtain a large on-current and high frequency characteristics.
  • the nearby composition includes a range of ⁇ 30% of the desired atomic ratio. It is preferable to use gallium as the element M.
  • the metal oxide that can be used for the oxide 230a may be applied as the oxide 230b.
  • the composition of the metal oxide that can be used for the oxide 230a and the oxide 230b is not limited to the above.
  • the composition of the metal oxide that can be used for the oxide 230a may be applied to the oxide 230b.
  • the composition of the metal oxide that can be used for the oxide 230b may be applied to the oxide 230a.
  • the metal oxide of the above composition may be stacked in either or both of the oxide 230a and the oxide 230b.
  • the above atomic ratio is not limited to the atomic ratio of the formed metal oxide film, but may be the atomic ratio of the sputtering target used to form the metal oxide film.
  • the oxide 230b is preferably crystalline.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • CAAC-OS is a metal oxide that has a highly crystalline and dense structure and has few impurities and defects (e.g., oxygen vacancies).
  • a temperature e.g. 400°C or higher and 600°C or lower
  • the CAAC-OS can be made to have a more crystalline and dense structure. In this way, the density of the CAAC-OS can be further increased, thereby further reducing the diffusion of impurities or oxygen in the CAAC-OS.
  • the oxide 230b Furthermore, by using a crystalline oxide such as CAAC-OS as the oxide 230b, it is possible to suppress the extraction of oxygen from the oxide 230b by the source electrode or drain electrode. As a result, even when heat treatment is performed, the extraction of oxygen from the oxide 230b can be reduced, so that the transistor 200 is stable against high temperatures (so-called thermal budget) in the manufacturing process.
  • a crystalline oxide such as CAAC-OS
  • the electrical characteristics of a transistor using an oxide semiconductor may fluctuate, and the reliability may be reduced.
  • hydrogen near the oxygen vacancies may form a defect in which hydrogen is inserted into the oxygen vacancies (hereinafter, may be referred to as VOH ), and may generate electrons that serve as carriers.
  • VOH hydrogen near the oxygen vacancies
  • the transistor is likely to have normally-on characteristics (characteristics in which a channel exists and a current flows through the transistor even when no voltage is applied to the gate electrode). Therefore, impurities, oxygen vacancies, and VOH are preferably reduced as much as possible in the channel formation region in the oxide semiconductor.
  • the carrier concentration of the channel formation region in the oxide semiconductor is reduced and the channel formation region in the oxide semiconductor is i-type (intrinsic) or substantially i-type.
  • excess oxygen oxygen that is desorbed by heating
  • excess oxygen oxygen can be supplied from the insulator to the oxide semiconductor, thereby reducing oxygen vacancies and VOH .
  • excess oxygen oxygen supplied to the source region or drain region
  • the on-current of the transistor 200 may be reduced or the field-effect mobility may be reduced.
  • the amount of oxygen supplied to the source region or drain region varies within the substrate surface, the characteristics of a semiconductor device including a transistor may vary.
  • the conductor When oxygen supplied from the insulator to the oxide semiconductor diffuses to a conductor such as a gate electrode, a source electrode, or a drain electrode, the conductor may be oxidized and its conductivity may be impaired, which may adversely affect the electrical characteristics and reliability of the transistor.
  • the channel formation region preferably has a reduced carrier concentration and is i-type or substantially i-type, whereas the source and drain regions preferably have a high carrier concentration and are n-type. That is, it is preferable to reduce oxygen vacancies and VOH in the channel formation region of the oxide semiconductor. It is also preferable to prevent an excessive amount of oxygen from being supplied to the source and drain regions and to prevent the amount of VOH in the source and drain regions from being excessively reduced. It is also preferable to have a structure that suppresses a decrease in the conductivity of the conductor 260, the conductor 242a, the conductor 242b, and the like.
  • the conductor 260 it is preferable to have a structure that suppresses oxidation of the conductor 260, the conductor 242a, the conductor 242b, and the like.
  • hydrogen in the oxide semiconductor can form VOH , and therefore the hydrogen concentration needs to be reduced in order to reduce the amount of VOH .
  • a semiconductor device is configured to reduce the hydrogen concentration in the channel formation region, suppress oxidation of conductor 242a, conductor 242b, and conductor 260, and suppress reduction in the hydrogen concentration in the source region and drain region.
  • the insulator 250 in contact with the channel formation region in the oxide 230b preferably has a function of capturing or fixing hydrogen. This can reduce the hydrogen concentration in the channel formation region of the oxide 230b. As a result, VOH in the channel formation region can be reduced, and the channel formation region can be made i-type or substantially i-type.
  • the insulator 250 has a layered structure of an insulator 250a in contact with the oxide 230, an insulator 250b on the insulator 250a, an insulator 250c on the insulator 250b, and an insulator 250d on the insulator 250c.
  • the insulators 250a and 250c have the function of capturing hydrogen or fixing hydrogen.
  • An example of an insulator that has the function of capturing or fixing hydrogen is a metal oxide having an amorphous structure.
  • a metal oxide such as magnesium oxide or an oxide containing one or both of aluminum and hafnium as insulator 250a and insulator 250c.
  • oxygen atoms have dangling bonds, and the dangling bonds may have the property of capturing or fixing hydrogen.
  • metal oxides having an amorphous structure have a high ability to capture or fix hydrogen.
  • a high dielectric constant (high-k) material for the insulator 250a and the insulator 250c.
  • An example of a high-k material is an oxide containing one or both of aluminum and hafnium.
  • the insulators 250a and 250c it is preferable to use an oxide containing one or both of aluminum and hafnium, and it is more preferable to use an oxide having an amorphous structure and containing one or both of aluminum and hafnium.
  • an aluminum oxide film is used as the insulator 250a.
  • the aluminum oxide preferably has an amorphous structure.
  • hafnium oxide is used as the insulator 250c.
  • the hydrogen contained in the insulators 250b and 250d can be captured and fixed more effectively.
  • a thermally stable insulator such as silicon oxide or silicon oxynitride for the insulator 250b.
  • an oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • a nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • the insulators are, for example, insulator 250a, insulator 250d, insulator 250c, and insulator 275.
  • a barrier insulator refers to an insulator that has barrier properties.
  • having barrier properties refers to having the property of preventing the penetration of the corresponding substance (also called low permeability).
  • an insulator with barrier properties has the property that the corresponding substance is unlikely to diffuse into the insulator.
  • an insulator with barrier properties has the function of capturing or fixing the corresponding substance inside the insulator (also called gettering).
  • the barrier insulator against oxygen examples include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide.
  • oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
  • the insulators 250a, 250c, 250d, and 275 each have a single-layer structure or a multilayer structure of the above-mentioned barrier insulator against oxygen.
  • the insulator 250a preferably has a barrier property against oxygen.
  • the insulator 250a is preferably at least less permeable to oxygen than the insulator 280.
  • the insulator 250a has an area in contact with the side surface of the conductor 242a and the side surface of the conductor 242b.
  • the insulator 250a having a barrier property against oxygen can suppress the side surfaces of the conductor 242a and the conductor 242b from being oxidized and forming an oxide film on the side surfaces. This can suppress a decrease in the on-current or a decrease in the field effect mobility of the transistor 200.
  • the insulator 250a is provided in contact with the upper surface and side surfaces of the oxide 230b, the side surfaces of the oxide 230a, and the upper surface of the insulator 222. Since the insulator 250a has a barrier property against oxygen, it is possible to suppress the desorption of oxygen from the channel formation region of the oxide 230b when a heat treatment or the like is performed. Therefore, it is possible to reduce the formation of oxygen vacancies in the oxide 230a and the oxide 230b.
  • the insulator 250a it is possible to prevent an excessive amount of oxygen from being supplied from the insulator 280 to the oxide 230a and the oxide 230b, and to supply an appropriate amount of oxygen to the oxide 230a and the oxide 230b. This prevents the source region and the drain region from being excessively oxidized, and suppresses a decrease in the on-current or a decrease in the field effect mobility of the transistor 200.
  • Oxides containing either or both of aluminum and hafnium have barrier properties against oxygen, and are therefore suitable for use as the insulator 250a.
  • the insulator 250d also preferably has a barrier property against oxygen.
  • the insulator 250d is provided between the channel formation region of the oxide 230 and the conductor 260, and between the insulator 280 and the conductor 260. This configuration can suppress the oxygen contained in the channel formation region of the oxide 230 from diffusing to the conductor 260 and forming oxygen vacancies in the channel formation region of the oxide 230. In addition, it can suppress the oxygen contained in the oxide 230 and the oxygen contained in the insulator 280 from diffusing to the conductor 260 and oxidizing the conductor 260.
  • the insulator 250d is preferably at least less permeable to oxygen than the insulator 280. For example, it is preferable to use a silicon nitride film as the insulator 250d. In this case, the insulator 250d is an insulator having at least nitrogen and silicon.
  • the insulator 250d has a barrier property against hydrogen. This can prevent impurities such as hydrogen contained in the conductor 260 from diffusing into the oxide 230b.
  • the insulator 275 also preferably has a barrier property against oxygen.
  • the insulator 275 is provided between the insulator 280 and the conductor 242a, and between the insulator 280 and the conductor 242b.
  • the insulator 275 is provided in contact with the side of the conductor 242, the side of the oxide 230, and the upper surface of the insulator 222.
  • This configuration can suppress the oxygen contained in the insulator 280 from diffusing into the conductor 242. Therefore, it is possible to suppress the conductor 242 from being oxidized by the oxygen contained in the insulator 280, which would increase the resistivity.
  • the insulator 275 is preferably at least less permeable to oxygen than the insulator 280.
  • the insulator 275 is an insulator having at least nitrogen and silicon.
  • the barrier insulator against hydrogen is, for example, insulator 275.
  • barrier insulators against hydrogen examples include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
  • the insulator 275 has a single-layer structure or a multilayer structure of the above-mentioned barrier insulators against hydrogen.
  • the source and drain regions can be made n-type.
  • the channel formation region can be made i-type or substantially i-type, and the source region and drain region can be made n-type, and a semiconductor device with good electrical characteristics can be provided. Furthermore, by using the above configuration, the semiconductor device can have good electrical characteristics even when miniaturized or highly integrated. Furthermore, by miniaturizing the transistor 200, the frequency characteristics can be improved. Specifically, the cutoff frequency can be improved.
  • the insulators 250a to 250d function as part of the gate insulator.
  • the insulators 250a to 250d are provided in an opening formed in the insulator 280 together with the conductor 260.
  • the thicknesses of the insulators 250a to 250d are each thin.
  • the thicknesses of the insulators 250a to 250d are each preferably 0.1 nm to 10 nm, more preferably 0.1 nm to 5.0 nm, more preferably 0.5 nm to 5.0 nm, more preferably 1.0 nm to less than 5.0 nm, and even more preferably 1.0 nm to 3.0 nm. Note that it is sufficient that the insulators 250a to 250d each have a region with the above-mentioned thickness at least in a portion thereof.
  • the film thickness of the insulators 250a to 250d as described above thin it is preferable to form the film using the atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • the ALD method includes a thermal ALD method in which the reaction between the precursor and the reactant is carried out using only thermal energy, and a plasma enhanced ALD method in which a plasma excited reactant is used.
  • the use of plasma allows film formation at a lower temperature, which may be preferable.
  • the ALD method allows atoms to be deposited one layer at a time, which has the advantages of enabling extremely thin films to be formed, films to be formed on structures with high aspect ratios, films to be formed with fewer defects such as pinholes, films to be formed with excellent coverage, and films to be formed at low temperatures. Therefore, the insulator 250 can be formed with good coverage on the side surfaces of the opening formed in the insulator 280 and the side ends of the conductors 242a and 242b, and with a thin film thickness as described above.
  • films formed by the ALD method may contain more impurities such as carbon than films formed by other film formation methods.
  • Quantitative determination of impurities can be performed using secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES).
  • the insulator 250 has been described above as having a four-layer structure of insulators 250a to 250d, the present invention is not limited to this.
  • the insulator 250 can have a structure including at least one of insulators 250a to 250d. By configuring the insulator 250 with one, two, or three layers of insulators 250a to 250d, the manufacturing process of the semiconductor device can be simplified and productivity can be improved.
  • the insulator 250 may have a two-layer structure.
  • the insulator 250 has a laminated structure of an insulator 250a and an insulator 250d on the insulator 250a.
  • a high-k material can be used for at least one of the insulators 250a and 250d. This makes it possible to reduce the equivalent oxide thickness (EOT) while maintaining the thickness of the insulators 250a and 250d at a level that suppresses leakage current.
  • EOT equivalent oxide thickness
  • the insulator 250 may be configured to have a three-layer structure.
  • the insulator 250 has a layered structure of insulator 250a, insulator 250b on insulator 250a, and insulator 250d on insulator 250b.
  • the configuration shown in FIG. 3A is configured with an additional insulator 250b.
  • the semiconductor device is preferably configured to suppress hydrogen from being mixed into the transistor 200 and the like.
  • an insulator having a function of suppressing hydrogen diffusion so as to cover one or both of the top and bottom of the transistor 200 and the like.
  • the insulator is, for example, the insulator 283, the insulator 282, the insulator 222, and the like.
  • the insulator 215 provided under the transistor 200 may have a structure similar to either one or both of the insulators 282 and 283.
  • the insulator 215 may have a stacked structure of the insulators 282 and 283, and may be configured to have the insulator 282 on the bottom and the insulator 283 on the top, or may be configured to have the insulator 282 on the top and the insulator 283 on the bottom.
  • one or more of the insulators 283, 282, and 222 function as a barrier insulator that suppresses the diffusion of impurities such as water and hydrogen from the substrate side or from above the transistor 200 to the transistor 200. Therefore, it is preferable that one or more of the insulators 283, 282, and 222 have an insulating material that has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (N 2 O, NO, NO 2 , etc.), and copper atoms (through which the above impurities are difficult to permeate).
  • one or more of the insulators 283, 282, and 222 have an insulating material that has a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (through which the above oxygen is difficult to permeate).
  • the insulators 283, 282, and 222 each preferably have an insulator that has a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen, and may be, for example, aluminum oxide, magnesium oxide, hafnium oxide, zirconium oxide, oxide containing aluminum and hafnium (hafnium aluminate), oxide containing hafnium and zirconium (hafnium zirconium oxide), gallium oxide, indium gallium zinc oxide, silicon nitride, or silicon nitride oxide.
  • the insulator 283 is preferably made of silicon nitride, which has a higher hydrogen barrier property.
  • the insulator 282 is preferably made of aluminum oxide, which has a high ability to capture or fix hydrogen.
  • the insulator 222 is preferably made of hafnium oxide, which has a high ability to capture or fix hydrogen and is a high dielectric constant (high-k) material.
  • silicon nitride which has a higher hydrogen barrier property, for insulator 275 and insulator 250d. It is also preferable to use aluminum oxide, which has a higher ability to capture hydrogen or fix hydrogen, for insulator 250a. It is also preferable to use hafnium oxide, which has a higher ability to capture hydrogen or fix hydrogen, for insulator 250c.
  • the insulator 225 is formed on and in contact with the insulator 222. As shown in FIG. 2B and FIG. 4B, the insulator 225 has a shape with a high aspect ratio in a cross-sectional view in the channel width direction.
  • the aspect ratio of the insulator 225 in a cross-sectional view in the channel width direction refers to the ratio of the length L of the insulator 225 in the A3-A4 direction (which can also be called the width L of the insulator 225) to the length H in a direction perpendicular to the surface on which the insulator 225 is formed (for example, the insulator 222) (which can also be called the height H of the insulator 225).
  • the height H of the insulator 225 is at least longer than the width L of the insulator 225.
  • the height H of the insulator 225 is greater than 1 time the width L of the insulator 225, preferably 2 times or more, more preferably 5 times or more, and even more preferably 10 times or more.
  • the height H of the insulator 225 is preferably 20 times or less the width L of the insulator 225.
  • the oxide 230a, the oxide 230b, and the conductor 242 are provided to cover the insulator 225 having such a high aspect ratio.
  • the oxide 230a and the oxide 230b are provided so as to sandwich the insulator 225 in a folded state, and the insulator 250 and the conductor 260 are further provided to cover the oxide 230b.
  • the oxide 230 and the conductor 260 are provided facing each other with the insulator 250 sandwiched between them on the upper part, the side surface on the A3 side, and the side surface on the A4 side of the insulator 225.
  • the upper part, the side surface on the A3 side, and the side surface on the A4 side of the insulator 225 each function as a channel formation region. Therefore, compared to the case where the insulator 225 is not provided, the channel width of the transistor 200 is larger by the side surface on the A3 side and the side surface on the A4 side of the insulator 225.
  • the channel width as described above By increasing the channel width as described above, the on-state current, field effect mobility, frequency characteristics, and the like of the transistor 200 can be improved. This makes it possible to provide a semiconductor device with high operating speed. In addition, the operating speed of a memory device using the semiconductor device can be increased. In addition, in the above structure, by providing the insulator 225, the channel width can be increased without increasing the area occupied by the transistor 200. This makes it possible to miniaturize or highly integrate the semiconductor device. In addition, the memory capacity of a memory device using the semiconductor device can be increased.
  • the insulator 225 may be made of an insulating material that can be used for the insulators 222, 280, and 250.
  • an insulating film made of the insulating material may be formed in a sidewall shape on the side of a sacrificial layer (insulator 223 described later) and then the sacrificial layer may be removed. Therefore, it is preferable to form the insulator 225 using the ALD method, which has good coverage.
  • the insulator 225 may be made of hafnium oxide formed by the thermal ALD method, or silicon nitride formed by the PEALD method.
  • the insulator 225 of the transistor 200a and the insulator 225 of the transistor 200b can be formed simultaneously.
  • the distance between the two insulators 225 can be set according to the size of the sacrificial layer. Therefore, the distance between the insulators 225 can be reduced, the area occupied by the transistors 200a and 200b can be reduced, and the semiconductor device can be highly integrated.
  • the insulator 225 is not limited to insulating materials in the strict sense.
  • metal oxides with relatively high insulating properties may be used.
  • metal oxides that can be used for the oxide 230a may be used.
  • the upper part of the insulator 225 may have a curved shape.
  • a curved shape can prevent defects such as voids from being formed in the oxide 230a, the oxide 230b, and the conductor 242 near the upper part of the insulator 225.
  • a symmetrical structure is shown in which a curved shape is provided on both the A3 side (A5 side) and the A4 side (A6 side) of the upper part of the insulator 225, but the present invention is not limited to this.
  • an asymmetrical structure may be used in which a curved shape is provided only on the A3 side (A5 side) of the upper part of the insulator 225.
  • the openings formed in the insulators 280, 275, and 222 reach the oxide 230 and reach the insulator 216 in the region where they do not overlap with the oxide 230.
  • the above openings are formed as one continuous opening in the insulators 280, 275, and 222, but it can also be considered that the openings of the insulators 280 and 275 overlap with the opening of the insulator 222.
  • the opening of the insulator 222 is provided in a region that overlaps with the openings of the insulators 280 and 275 and does not overlap with the oxide 230. Note that, as shown in FIG.
  • the part of the side of the oxide 230b that is perpendicular to the upper surface of the insulator 216 (which can also be said to be the part of the side of the oxide 230b that reflects the shape of the side of the insulator 225), the side end of the oxide 230a, and the side that forms the side wall of the opening of the insulator 222 coincide or approximately coincide.
  • the conductor 260 and the insulator 250 are formed along the shapes of the insulators 280, 275, and the opening of the insulator 222. Therefore, in the opening of the insulator 222, as shown in FIG. 2B, the lower surface of the insulator 250 (insulator 250a) contacts the upper surface of the insulator 216. As shown in FIG. 2B, it is preferable that the film thickness t2 of the insulator 250 in the opening of the insulator 222 is thinner than the film thickness t1 of the insulator 222.
  • the lower surface of the conductor 260 (conductor 260a) located in the opening of the insulator 222 can be positioned lower than the lower surface of the oxide 230 (oxide 230a) by the difference (t1-t2) between the film thickness t1 and the film thickness t2. Note that the lower surface of the conductor 260 (conductor 260a) located in the opening of the insulator 222 is naturally positioned lower than the lower surface of the oxide 230b.
  • the bottom surface of the conductor 260 is located above the bottom surface of the oxide 230, there is a risk that the electric field of the conductor 260 may not be sufficiently applied to the bottom end of the oxide 230. In this case, a leakage current may occur between the source electrode and the drain electrode via the bottom end of the oxide 230. In other words, there is a risk that the bottom end of the oxide 230 may function as a pseudo channel (hereinafter referred to as a parasitic channel).
  • a pseudo channel hereinafter referred to as a parasitic channel
  • the lower surface of the conductor 260 is disposed below the lower surface of the oxide 230, so that a sufficient electric field can be applied from the upper end to the lower end of the oxide 230.
  • the entire oxide 230 is electrically surrounded by the electric field of the conductor 260, and can function as a channel formation region.
  • This configuration can prevent the lower end of the oxide 230 from functioning as a parasitic channel, and can reduce the leakage current between the source electrode and the drain electrode.
  • the channel width can be increased by making the oxide 230 function as a channel formation region from the top to the bottom. This can improve the on-current, field effect mobility, frequency characteristics, etc. of the transistor 200.
  • the transistor structure in which the electric field of the gate electrode electrically surrounds the channel formation region as described above is called a surrounded channel (S-channel) structure.
  • the gate electrode is arranged so as to surround at least two sides of the channel (specifically, two, three, or four sides, etc.).
  • the S-channel structure electrically surrounds the channel formation region, and is therefore essentially equivalent to a GAA (Gate All Around) structure or a LGAA (Lateral Gate All Around) structure.
  • GAA Gate All Around
  • LGAA Layer Advanced Gate All Around
  • the channel formation region formed at or near the interface between the oxide 230 and the gate insulator can be the entire bulk of the oxide 230. This makes it possible to improve the current density flowing through the transistor, which is expected to improve the on-current of the transistor or the field effect mobility of the transistor.
  • FIG. 5A is a plan view of the semiconductor device.
  • FIG. 5B to FIG. 5D are cross-sectional views of the semiconductor device.
  • FIG. 5B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in FIG. 5A.
  • FIG. 5C is a cross-sectional view of the portion indicated by the dashed line A3-A4 in FIG. 5A.
  • FIG. 5D is a cross-sectional view of the portion indicated by the dashed line A7-A8 in FIG. 5A. Note that some elements are omitted from the plan view of FIG. 5A for clarity.
  • the insulator 225 is integrated between the transistors 200a and 200b. Therefore, the insulator 275 contacts the top surface of the insulator 225 between the transistors 200a and 200b. As described above, the insulator 225 is preferably formed in a sidewall shape in contact with the side surface of the sacrificial layer. In the semiconductor device shown in FIG. 5A to FIG. 5D, the insulator 225 is formed by providing a sacrificial layer in the area surrounded by the insulator 225.
  • conductor 242a, conductor 242b, and conductor 260 are conductors that contain at least metal and nitrogen.
  • the conductors 242a and 242b are disposed at a distance from each other and are provided on the oxide 230b in contact with each other. As shown in Figures 4A and 4B, the conductor 242 is provided so as to cover the insulator 225, which has a high aspect ratio. Therefore, it is preferable to form the conductor 242 using a film formation method with good coverage, such as the ALD method or the CVD method.
  • the oxide 230a, the oxide 230b, and the conductor 242a are provided so as to be folded in half with the insulator 225 sandwiched therebetween.
  • the conductor 242a contacts the oxide 230b at the top, the side surface on the A5 side, and the side surface on the A6 side of the insulator 225. Therefore, compared to the case where the insulator 225 is not provided, the contact area between the conductor 242a and the oxide 230b is larger by the amount of the side surface on the A5 side and the side surface on the A6 side of the insulator 225.
  • FIG. 4B shows the vicinity of the conductor 242a, the same is true for the conductor 242b.
  • the contact area between the conductor 242b and the oxide 230b is larger, similar to the above-mentioned conductor 242a and the oxide 230b.
  • the on-current, frequency characteristics, and the like of the transistor 200 can be improved without increasing the area occupied by the transistor 200.
  • This makes it possible to provide a semiconductor device with a high operating speed.
  • the operating speed of a memory device using the semiconductor device can be increased.
  • This also makes it possible to miniaturize or highly integrate the semiconductor device.
  • the memory capacity of a memory device using the semiconductor device can be increased.
  • conductors 242a and 242b are in contact with oxide 230b, it is preferable to use a conductive material that is resistant to oxidation or a conductive material that has the function of suppressing the diffusion of oxygen. This can suppress a decrease in the conductivity of conductors 242a and 242b. It can also suppress the extraction of oxygen from oxide 230b, which would result in the formation of an excessive amount of oxygen vacancy. It is also preferable to use a material that easily absorbs (extracts) hydrogen for conductors 242a and 242b, as this can reduce the hydrogen concentration in oxide 230.
  • a metal nitride for example, a nitride containing tantalum, a nitride containing titanium, a nitride containing molybdenum, a nitride containing tungsten, a nitride containing tantalum and aluminum, or a nitride containing titanium and aluminum.
  • a nitride containing tantalum is particularly preferable.
  • ruthenium, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain their conductivity even when they absorb oxygen.
  • hydrogen contained in oxide 230b etc. may diffuse into conductor 242a or conductor 242b.
  • hydrogen contained in oxide 230b etc. is likely to diffuse into conductor 242a or conductor 242b, and the diffused hydrogen may combine with nitrogen contained in conductor 242a or conductor 242b.
  • hydrogen contained in oxide 230b etc. may be absorbed by conductor 242a or conductor 242b.
  • a crystalline oxide such as CAAC-OS as the oxide 230b.
  • a metal oxide containing indium, zinc, and one or more selected from gallium, aluminum, and tin By using CAAC-OS, it is possible to suppress the extraction of oxygen from the oxide 230b by the conductor 242a or the conductor 242b. It is also possible to suppress a decrease in the conductivity of the conductor 242a and the conductor 242b.
  • the conductors 242a and 242b may have a two-layer structure.
  • the conductor 242a may be a laminated film of the conductor 242a1 and the conductor 242a2 on the conductor 242a1
  • the conductor 242b may be a laminated film of the conductor 242b1 and the conductor 242b2 on the conductor 242b1.
  • This can suppress the decrease in the conductivity of the conductors 242a and 242b. In addition, it can suppress the extraction of oxygen from the oxide 230b, which can suppress the formation of an excessive amount of oxygen vacancy. In addition, it is preferable to use a material that easily absorbs (removes) hydrogen as the layer in contact with the oxide 230b (conductor 242a1 and conductor 242b1), as this can reduce the hydrogen concentration in the oxide 230.
  • the conductors 242a2 and 242b2 have higher conductivity than the conductors 242a1 and 242b1.
  • the film thickness of the conductors 242a2 and 242b2 is larger than the film thickness of the conductors 242a1 and 242b1.
  • the conductors 242a2 and 242b2 can be made of a conductive material mainly composed of tungsten, copper, or aluminum.
  • tantalum nitride or titanium nitride can be used as the conductor 242a1 and the conductor 242b1, and tungsten can be used as the conductor 242a2 and the conductor 242b2.
  • the insulator 255 is disposed in an opening formed in the insulator 280, etc., and contacts the side of the insulator 280, the side of the insulator 275, the side of the conductor 242a2, the side of the conductor 242b2, the top surface of the conductor 242a1, and the top surface of the conductor 242b1.
  • the insulator 255 is formed in contact with the side wall of the opening formed in the insulator 280, etc. That is, the insulator 255 can also be called a sidewall insulating film.
  • the insulator 255 is formed in contact with the side surface of the conductor 242a2 and the side surface of the conductor 242b2, and is an inorganic insulator that protects the conductor 242a2 and the conductor 242b2. Since the insulator 255 is exposed to an oxidizing atmosphere, it is preferable that the insulator 255 is an inorganic insulator that is not easily oxidized. Furthermore, since the insulator 255 is in contact with the conductor 242a2 and the conductor 242b2, it is preferable that the insulator 255 is an inorganic insulator that is not easily oxidized. Therefore, it is preferable that the insulator 255 is made of an insulating material that can be used for the insulator 250d that has a barrier property against oxygen. For example, silicon nitride can be used as the insulator 255.
  • 3C shows a structure in which the upper end of insulator 255 roughly coincides with the upper surface of insulator 280, the upper end of insulator 250, and the upper end of conductor 260, but this embodiment is not limited to this.
  • Insulator 255 may be structured to cover the side surface of conductor 242a2 and the side surface of conductor 242b2.
  • the upper end of insulator 255 may be structured to be lower than the upper surface of insulator 280 and higher than the upper surface of insulator 275.
  • the distance between the conductor 242a1 and the conductor 242b1 is smaller than the distance between the conductor 242a2 and the conductor 242b2.
  • the difference in distance is equal to or approximately equal to twice the film thickness of the insulator 255.
  • the film thickness of the insulator 255 refers to the film thickness in the A1-A2 direction of at least a portion of the insulator 255.
  • conductor 260 is disposed in an opening formed in insulator 280, insulator 275, conductor 242a, and conductor 242b.
  • Conductor 260 is disposed in the opening so as to cover the upper surface of insulator 222, the side of oxide 230a, the side of oxide 230b, and the upper surface of oxide 230b via insulator 250.
  • the upper surface of conductor 260 is disposed so as to be flush or approximately flush with the top of insulator 250 and the upper surface of insulator 280.
  • the sidewall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, or may be tapered.
  • the sidewall tapered By making the sidewall tapered, the coverage of the insulator 250 and the like provided in the opening of the insulator 280 is improved, and defects such as voids can be reduced.
  • the conductor 260 functions as a first gate electrode of the transistor 200.
  • the conductor 260 is preferably provided extending in the channel width direction, as shown in Figures 1A and 1C. With this configuration, the conductor 260 functions as wiring when multiple transistors are provided.
  • conductor 260 is shown as having a two-layer structure.
  • conductor 260 preferably has conductor 260a and conductor 260b arranged on conductor 260a.
  • conductor 260a is preferably arranged so as to wrap around the bottom and side surfaces of conductor 260b.
  • the conductor 260a is preferably made of a conductive material that has the function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • a conductive material that has the function of suppressing the diffusion of oxygen e.g., at least one of oxygen atoms and oxygen molecules).
  • the conductor 260a since the conductor 260a has the function of suppressing the diffusion of oxygen, it is possible to suppress the oxidation of the conductor 260b due to the oxygen contained in the insulator 280, etc., which would otherwise cause a decrease in conductivity.
  • a conductive material having the function of suppressing the diffusion of oxygen it is preferable to use, for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, etc.
  • the conductor 260b is a conductor having high conductivity.
  • the conductor 260b may be a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 260b may also have a layered structure, for example, a layered structure of titanium or titanium nitride and the above-mentioned conductive material.
  • the conductor 260 is formed in a self-aligned manner so as to fill an opening formed in the insulator 280 or the like.
  • the side of the insulator 280 in the opening coincides or roughly coincides with the side of the conductor 242a and the side of the conductor 242b. Therefore, the conductor 260 can be positioned so as to overlap the region between the conductor 242a and the conductor 242b without alignment.
  • the insulators 216 and 280 each have a lower dielectric constant than the insulator 222.
  • the parasitic capacitance that occurs between the wirings can be reduced.
  • the insulators 216 and 280 each have one or more of silicon oxide, silicon oxynitride, silicon oxide doped with fluorine, silicon oxide doped with carbon, silicon oxide doped with carbon and nitrogen, and silicon oxide having vacancies.
  • Silicon oxide and silicon oxynitride are particularly preferred because they are thermally stable. Materials such as silicon oxide, silicon oxynitride, and silicon oxide with vacancies are particularly preferred because they can easily form regions that contain oxygen that is released by heating.
  • the upper surfaces of the insulators 216 and 280 may each be flattened.
  • the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • the insulator 280 has an oxide containing silicon, such as silicon oxide or silicon oxynitride.
  • Conductor 240a and conductor 240b are formed in the openings of insulators 275, 280, 282, and 283, respectively.
  • the lower surface of conductor 240a contacts the upper surface of conductor 242a
  • the lower surface of conductor 240b contacts the upper surface of conductor 242b.
  • the height of the upper surface of conductor 240 and the height of the upper surface of insulator 283 are approximately the same.
  • the conductor 240 is preferably made of a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor 240 may also have a layered structure in which a first conductor is provided in contact with the side surface of the insulator 241, and a second conductor is provided further inside. In this case, the above-mentioned conductive material can be used as the second conductor.
  • the conductor 240 has a laminated structure, it is preferable to use a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen for the first conductor arranged near the insulators 283, 282, and 280, and the insulator 275.
  • a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen for the first conductor arranged near the insulators 283, 282, and 280, and the insulator 275.
  • the conductive material having a function of suppressing the permeation of impurities such as water and hydrogen may be used in a single layer or a laminated layer. With such a configuration, it is possible to suppress impurities such as water and hydrogen contained in layers above the insulator 283 from being mixed into the oxide 230 through the conductors 240a and 240b.
  • Insulators 241a and 241b are formed in contact with the inner walls of the openings of insulators 275, 280, 282, and 283, respectively.
  • the inner side of insulator 241a contacts conductor 240a, and the inner side of insulator 241b contacts conductor 240b.
  • the insulator 241 may be a barrier insulating film that can be used for the insulator 275, etc.
  • the insulator 241 may be an insulator such as silicon nitride, aluminum oxide, or silicon nitride oxide.
  • impurities such as water and hydrogen contained in the insulator 280, etc., can be prevented from mixing with the oxide 230 through the conductors 240a and 240b.
  • Silicon nitride is particularly suitable because it has a high blocking property against hydrogen.
  • the oxygen contained in the insulator 280 can be prevented from being absorbed by the conductors 240a and 240b.
  • the first insulator in contact with the inner wall of the opening, such as the insulator 280, and the second insulator on the inside thereof are made of a combination of a barrier insulating film against oxygen and a barrier insulating film against hydrogen.
  • the first insulator may be aluminum oxide formed by thermal ALD, and the second insulator may be silicon nitride formed by PEALD. This configuration can suppress oxidation of the conductor 240 and also reduce hydrogen contamination of the conductor 240.
  • the insulator 241 has a two-layer laminated structure
  • the present invention is not limited to this.
  • the insulator 241 may be configured as a single layer or a laminated structure of three or more layers.
  • the conductor 240 may be configured as a single layer or a laminated structure of three or more layers.
  • FIG. 4B and other figures a structure in which the conductor 240a contacts the conductor 242a only above the upper end of the insulator 225 is shown, but the present invention is not limited to this.
  • FIG. 4C a structure in which the conductor 240a covers the insulator 225 and the oxide 230a, oxide 230b, and conductor 242a that are folded in half with the insulator 225 in between may be used.
  • the conductor 240a contacts the conductor 242a at the top of the insulator 225, the side surface on the A5 side, and the side surface on the A6 side.
  • the contact area between the conductor 240a and the conductor 242a is larger by the side surface on the A5 side and the side surface on the A6 side of the insulator 225.
  • FIG. 4C the vicinity of the conductor 240a and the conductor 242a is shown, but the same applies to the conductor 240b and the conductor 242b.
  • the contact area between conductor 240b and conductor 242b is large.
  • transistor 200 By increasing the contact area between conductor 240 and conductor 242 as described above, the on-current, frequency characteristics, and the like of transistor 200 can be improved without significantly increasing the area occupied by transistor 200. This makes it possible to provide a semiconductor device with a high operating speed. In addition, the operating speed of a storage device using the semiconductor device can be increased. This also makes it possible to miniaturize or highly integrate the semiconductor device. In addition, the storage capacity of a storage device using the semiconductor device can be increased.
  • the semiconductor device of this embodiment may have a configuration including a conductor 205 embedded in an insulator 216, and an insulator 221 on the insulator 216 and the conductor 205.
  • Fig. 6A is a plan view of the semiconductor device.
  • Figs. 6B to 6D are cross-sectional views of the semiconductor device.
  • Fig. 6B is a cross-sectional view of the portion indicated by the dashed line A1-A2 in Fig. 6A.
  • Fig. 6C is a cross-sectional view of the portion indicated by the dashed line A3-A4 in Fig. 6A.
  • Fig. 6D is a cross-sectional view of the portion indicated by the dashed line A5-A6 in Fig. 6A. Note that some elements are omitted from the plan view of Fig. 6A for clarity.
  • the conductor 205 is disposed so as to overlap the oxide 230 and the conductor 260.
  • the conductor 205 is preferably provided by being embedded in an opening formed in the insulator 216.
  • the conductor 205 is preferably provided extending in the channel width direction, as shown in Figures 6A and 6C. With this configuration, the conductor 205 functions as wiring when multiple transistors are provided.
  • the conductor 205 has conductor 205a and conductor 205b.
  • Conductor 205a is provided in contact with the bottom surface and side wall of the opening.
  • Conductor 205b is provided so as to fill the recess of conductor 205a formed along the opening.
  • the height of the upper surface of conductor 205 coincides or approximately coincides with the height of the upper surface of insulator 216.
  • the conductor 205a preferably has a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2 , etc.), copper atoms, etc.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2 , etc.), copper atoms, etc.
  • it preferably has a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules, etc.).
  • a conductive material having the function of reducing hydrogen diffusion for the conductor 205a By using a conductive material having the function of reducing hydrogen diffusion for the conductor 205a, it is possible to prevent impurities such as hydrogen contained in the conductor 205b from diffusing into the oxide 230 via the insulator 216, etc. Also, by using a conductive material having the function of suppressing oxygen diffusion for the conductor 205a, it is possible to suppress the conductor 205b from being oxidized and its conductivity from decreasing. Examples of conductive materials having the function of suppressing oxygen diffusion include titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, and ruthenium oxide.
  • the conductor 205a can have a single layer structure or a multilayer structure of the above conductive materials.
  • the conductor 205a preferably has titanium nitride.
  • the conductor 205b is made of a conductive material mainly composed of tungsten, copper, or aluminum.
  • the conductor 205b contains tungsten.
  • the conductor 205 can function as a second gate electrode (sometimes called a back gate).
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260.
  • applying a negative potential to the conductor 205 can increase the Vth of the transistor 200 and reduce the off-current. Therefore, applying a negative potential to the conductor 205 can reduce the drain current when the potential applied to the conductor 260 is 0 V, compared to when a negative potential is not applied.
  • one embodiment of the present invention is not limited to the above configuration, and the conductor 205 and the conductor 260 may be connected to each other to have the same potential.
  • conductor 205 may have a single layer structure or a laminated structure of three or more layers.
  • the laminated structure of conductor 205a and conductor 205b may further include a conductor having the same material as conductor 205a on conductor 205b.
  • the conductor may be formed so that the top surface of conductor 205b is lower than the top of conductor 205a, and the recess formed by conductor 205a and conductor 205b is filled.
  • the insulator 221 may be an insulator that has barrier properties against oxygen, hydrogen, and water.
  • the insulator 221 may be an insulator that can be used for the insulator 283 described above.
  • silicon nitride which has high hydrogen barrier properties, as the insulator 221. With this configuration, it is possible to prevent impurities such as water and hydrogen from diffusing into the transistor 200 from the interlayer insulating film arranged below the insulator 221.
  • insulator 221 and insulator 222 each function as a second gate insulator of transistor 200.
  • the risk of short-circuiting between the conductor 205 and the oxide 230 and conductor 260 can be significantly reduced.
  • the oxide 230 has a folded structure with the insulator 225 interposed therebetween. Therefore, the conductor 260 located opposite the oxide 230 across the insulator 225 may function similarly to the conductor 205. For this reason, even in a configuration in which the conductor 205 is not provided as shown in FIGS. 1A to 1D, a part of the conductor 260 may function as a second gate electrode.
  • Each layer constituting the semiconductor device may have a single layer structure or a multilayer structure.
  • insulating substrate for example, a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria stabilized zirconia substrate), and a resin substrate can be mentioned.
  • semiconductor substrate for example, a semiconductor substrate made of silicon or germanium, and a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide can be mentioned.
  • a semiconductor substrate having an insulator region inside the semiconductor substrate for example, an SOI (Silicon On Insulator) substrate
  • the conductive substrate for example, a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate
  • the substrate for example, a substrate having a metal nitride, a substrate having a metal oxide, a substrate having a conductor or semiconductor provided on an insulator substrate, a substrate having a conductor or insulator provided on a semiconductor substrate, and a substrate having a semiconductor or insulator provided on a conductive substrate can be mentioned.
  • one or more types of elements may be provided on the substrate, such as a capacitor element, a resistor element, a switch element, a light-emitting element, and a memory element.
  • insulator examples include insulating oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides.
  • Examples of insulators with a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxide nitrides containing aluminum and hafnium, oxides containing silicon and hafnium, oxide nitrides containing silicon and hafnium, and nitrides containing silicon and hafnium.
  • Examples of insulators with low dielectric constants include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with added fluorine, silicon oxide with added carbon, silicon oxide with added carbon and nitrogen, silicon oxide with voids, and resin.
  • the electrical characteristics of a transistor using a metal oxide can be stabilized by surrounding it with an insulator that has a function of suppressing the permeation of impurities such as hydrogen and oxygen.
  • an insulator that has a function of suppressing the permeation of impurities such as hydrogen and oxygen for example, an insulator containing one or more of boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, and tantalum can be used in a single layer or a stacked layer.
  • an insulator that has a function of suppressing the permeation of impurities such as hydrogen and oxygen
  • metal oxides such as aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, and tantalum oxide
  • metal nitrides such as aluminum nitride, silicon nitride oxide, and silicon nitride can be used.
  • the insulator that functions as the gate insulator is an insulator having a region containing oxygen that is released by heating.
  • the oxygen vacancies in oxide 230 can be compensated for.
  • a metal element selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc.
  • tantalum nitride titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel can be mentioned.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain conductivity even when oxygen is absorbed.
  • a semiconductor having high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a layered structure combining the material containing the metal element described above with a conductive material containing oxygen for example, a layered structure combining the material containing the metal element described above with a conductive material containing oxygen, a layered structure combining the material containing the metal element described above with a conductive material containing nitrogen, or a layered structure combining the material containing the metal element described above with a conductive material containing oxygen and a conductive material containing nitrogen may be applied.
  • an oxide is used for the channel formation region of a transistor, it is preferable to use a layered structure in which a material containing the above-mentioned metal element and a conductive material containing oxygen are combined for the conductor that functions as the gate electrode. In this case, it is preferable to provide the conductive material containing oxygen on the channel formation region side. By providing the conductive material containing oxygen on the channel formation region side, oxygen desorbed from the conductive material is easily supplied to the channel formation region.
  • a conductive material containing oxygen and a metal element contained in the metal oxide in which the channel is formed as a conductor that functions as a gate electrode may also be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride, may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and indium tin oxide with added silicon may also be used.
  • Indium gallium zinc oxide containing nitrogen may also be used.
  • a metal oxide that functions as a semiconductor is preferably used as the oxide 230.
  • Metal oxides that can be used as the oxide 230 of one embodiment of the present invention are described below.
  • the metal oxide preferably contains at least indium or zinc. In particular, it is preferable that it contains indium and zinc. In addition to these, it is preferable that it contains aluminum, gallium, yttrium, tin, antimony, etc. Furthermore, it may contain one or more elements selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc.
  • the metal oxide is an In-M-Zn oxide having indium, element M, and zinc.
  • the element M is aluminum, gallium, yttrium, tin, or antimony.
  • Other elements that can be used for element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M may be a combination of multiple of the above elements.
  • metal oxides containing nitrogen may also be collectively referred to as metal oxides.
  • Metal oxides containing nitrogen may also be referred to as metal oxide nitrides.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystalline.
  • oxide semiconductors may be classified differently from the above when focusing on their structure. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and other non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above-mentioned CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, pseudo-amorphous oxide semiconductors (a-like OS: amorphous-like oxide semiconductors), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor having a plurality of crystalline regions, each of which has a c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the c-axis is preferably oriented in the normal direction of the surface of the insulator 225.
  • the crystalline region is a region having periodic atomic arrangement.
  • the crystalline region is also a region in which the lattice arrangement is uniform.
  • the CAAC-OS has a region in which a plurality of crystalline regions are connected in the a-b plane direction, and the region may have distortion.
  • the distortion refers to a portion in which the direction of the lattice arrangement is changed between a region in which the lattice arrangement is uniform and another region in which the lattice arrangement is uniform in a region in which the plurality of crystalline regions are connected. That is, the CAAC-OS is an oxide semiconductor that is c-axis aligned and does not clearly have an alignment in the a-b plane direction.
  • Each of the multiple crystal regions is composed of one or more tiny crystals (crystals with a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the maximum diameter of the crystal region may be several tens of nm.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that CAAC-OS is less susceptible to a decrease in electron mobility due to crystal grain boundaries.
  • CAAC-OS since the crystallinity of an oxide semiconductor can be decreased by the inclusion of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor having CAAC-OS has stable physical properties. Therefore, an oxide semiconductor having CAAC-OS is resistant to heat and highly reliable.
  • CAAC-OS is stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of CAAC-OS in an OS transistor can increase the degree of freedom in the manufacturing process.
  • the nc-OS has periodic atomic arrangement in a microscopic region (for example, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has microcrystals.
  • the size of the microcrystals is, for example, 1 nm to 10 nm, particularly 1 nm to 3 nm, and therefore the microcrystals are also called nanocrystals.
  • the nc-OS does not show regularity in the crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film. Therefore, the nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low-density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. Furthermore, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is a material in which elements constituting a metal oxide are unevenly distributed in a size range of 0.5 nm to 10 nm, preferably 1 nm to 3 nm, or in the vicinity thereof. Note that in the following, a state in which one or more metal elements are unevenly distributed in a metal oxide and a region containing the metal elements is mixed in a size range of 0.5 nm to 10 nm, preferably 1 nm to 3 nm, or in the vicinity thereof, is also referred to as a mosaic or patch shape.
  • CAC-OS is a structure in which the material is separated into a first region and a second region, forming a mosaic shape, and the first region is distributed throughout the film (hereinafter also referred to as a cloud shape).
  • CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • CAC-OS in In-Ga-Zn oxide refers to a material composition containing In, Ga, Zn, and O, in which some regions (first regions) mainly composed of In and some regions (second regions) mainly composed of Ga are arranged in a mosaic pattern, and these regions exist randomly. Therefore, it is presumed that CAC-OS has a structure in which metal elements are distributed non-uniformly.
  • CAC-OS can be formed, for example, by a sputtering method under conditions where the substrate is not heated.
  • any one or more of an inert gas (typically argon), oxygen gas, and nitrogen gas can be used as the film-forming gas.
  • the flow rate ratio of oxygen gas to the total flow rate of film-forming gas during film formation is set to 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • the first region is a region with higher conductivity than the second region.
  • the first region exhibits conductivity as a metal oxide when carriers flow through it. Therefore, the first region is distributed in a cloud-like shape in the metal oxide, achieving high field-effect mobility ( ⁇ ).
  • the second region has higher insulating properties than the first region.
  • the second region being distributed in the metal oxide can suppress leakage current.
  • the CAC-OS when used in a transistor, the conductivity due to the first region and the insulating property due to the second region act complementarily, so that the CAC-OS can be given a switching function (on/off function).
  • the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and the whole material has a function as a semiconductor. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using the CAC-OS in a transistor, a high on-current (I on ), a high field-effect mobility ( ⁇ ), and a good switching operation can be realized.
  • CAC-OS is ideal for a variety of semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor according to one embodiment of the present invention may have two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS.
  • the semiconductor layer of the transistor may be made of a semiconductor material having a band gap (a semiconductor material that is not a zero-gap semiconductor), such as a semiconductor of an element such as silicon or a compound semiconductor such as gallium arsenide.
  • a semiconductor material having a band gap such as a semiconductor of an element such as silicon or a compound semiconductor such as gallium arsenide.
  • transition metal chalcogenide that functions as a semiconductor in the semiconductor layer of the transistor.
  • transition metal chalcogenides that can be applied to the semiconductor layer of the transistor include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), molybdenum tellurium (typically MoTe 2 ), tungsten sulfide (typically WS 2 ), tungsten selenide (typically WSe 2 ), tungsten tellurium (typically WTe 2 ), hafnium sulfide (typically HfS 2 ), hafnium selenide (typically HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenide (typically ZrSe 2 ).
  • a in each figure shows a plan view.
  • B in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A1-A2 in A of each figure, and is also a cross-sectional view in the channel length direction of transistor 200.
  • C in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A3-A4 in A of each figure, and is also a cross-sectional view in the channel width direction of transistor 200.
  • D in each figure is a cross-sectional view corresponding to the portion indicated by the dashed line A5-A6 in A of each figure, and is also a cross-sectional view in the channel width direction of transistor 200. Note that some elements have been omitted from the plan view A in each figure to clarify the figure.
  • insulating materials for forming insulators, conductive materials for forming conductors, or semiconductor materials for forming semiconductors can be formed as films using a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an ALD method, or the like, as appropriate.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • ALD ALD method
  • Sputtering methods include RF sputtering, which uses a high-frequency power supply as the sputtering power source, DC sputtering, which uses a direct current power supply, and pulsed DC sputtering, which changes the voltage applied to the electrodes in a pulsed manner.
  • RF sputtering is mainly used when depositing insulating films
  • DC sputtering is mainly used when depositing metal conductive films.
  • Pulsed DC sputtering is mainly used when depositing compounds such as oxides, nitrides, and carbides using the reactive sputtering method.
  • CVD methods can be classified into plasma CVD (PECVD) methods, which use plasma, thermal CVD (TCVD: Thermal CVD) methods, which use heat, and photo CVD (Photo CVD) methods, which use light. They can also be further divided into metal CVD (MCVD: Metal CVD) methods and metal organic CVD (MOCVD: Metal CVD) methods, depending on the source gas used.
  • PECVD plasma CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal CVD
  • the plasma CVD method can produce high-quality films at relatively low temperatures. Furthermore, because the thermal CVD method does not use plasma, it is a film formation method that can reduce plasma damage to the workpiece. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) included in a semiconductor device may become charged up by receiving electric charge from the plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, etc. included in the semiconductor device. On the other hand, with the thermal CVD method, which does not use plasma, such plasma damage does not occur, and the yield of semiconductor devices can be increased. Furthermore, with the thermal CVD method, no plasma damage occurs during film formation, so films with fewer defects can be obtained.
  • the ALD method can be a thermal ALD method in which the reaction between the precursor and reactant is carried out using only thermal energy, or a PEALD method in which a plasma-excited reactant is used.
  • the CVD and ALD methods are different from sputtering methods in which particles emitted from a target or the like are deposited. Therefore, they are film formation methods that are less affected by the shape of the workpiece and have good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, making it suitable for coating the surfaces of openings with high aspect ratios.
  • the ALD method since the ALD method has a relatively slow film formation speed, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation speed.
  • a film of any composition can be formed by changing the flow rate ratio of the source gases.
  • a film with a continuously changing composition can be formed by changing the flow rate ratio of the source gases while forming the film.
  • a film of any composition can be formed by simultaneously introducing multiple different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles of each precursor.
  • the insulator 215 can be an insulator similar to one or more stacked films of the insulators 282 and 283.
  • the method for forming the insulator 215 can be, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the sputtering method which does not require the use of molecules containing hydrogen in the film formation gas, is preferable because it can reduce the hydrogen concentration in the insulator 215.
  • the insulator 216 is formed on the insulator 215.
  • the insulator 216 is preferably formed by a sputtering method.
  • a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in the insulator 216 can be reduced.
  • the formation of the insulator 216 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be used as appropriate.
  • a silicon oxide film is formed as the insulator 216 by a sputtering method.
  • insulators 215 and 216 it is preferable to deposit the insulators 215 and 216 in succession without exposing them to the atmosphere.
  • a multi-chamber deposition apparatus can be used. This allows the insulators 215 and 216 to be deposited with reduced hydrogen in the films, and further reduces the incorporation of hydrogen into the films between each deposition process.
  • a film of insulator 222 is formed on insulator 216 (see Figures 7A to 7D).
  • the insulator 222 it is preferable to form a film of an insulator containing one or both of aluminum and hafnium oxides.
  • the insulator containing one or both of aluminum and hafnium oxides it is preferable to use, for example, aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate). Alternatively, it is preferable to use hafnium zirconium oxide.
  • An insulator containing one or both of aluminum and hafnium oxides has a barrier property against oxygen, hydrogen, and water.
  • the insulator 222 has a barrier property against hydrogen and water, the hydrogen and water contained in the structure provided around the transistor are prevented from diffusing into the inside of the transistor through the insulator 222, and the generation of oxygen vacancies in the oxide 230 can be suppressed.
  • the insulator 222 can be formed by, for example, sputtering, CVD, MBE, PLD, or ALD.
  • a hafnium oxide film is formed as the insulator 222 by ALD.
  • an insulating film is formed on the insulator 222, and the insulating film is etched to form the insulator 223 (see Figures 7A to 7D).
  • the insulator 223 functions as a sacrificial layer for forming the insulator 225.
  • an insulator that can be used for the insulator 216 may be used.
  • the insulator 223 can be formed by, for example, sputtering, CVD, MBE, PLD, or ALD.
  • a silicon oxide film is formed as the insulator 223 by sputtering.
  • the insulator 223 can be processed into an island shape using lithography. This can be done using dry etching or wet etching. Dry etching is suitable for fine processing.
  • the side of the insulator 223 may be configured to be perpendicular or approximately perpendicular to the top surface of the insulator 222. This configuration allows for a smaller area and higher density when providing multiple transistors.
  • a heat treatment may be performed before the formation of the insulator 223.
  • the heat treatment may be performed under reduced pressure, and the insulator 223 may be continuously formed without exposure to the atmosphere. By performing such a treatment, moisture and hydrogen adsorbed on the surface of the insulator 222 can be removed, and the moisture concentration and hydrogen concentration in the insulator 222 can be further reduced.
  • the temperature of the heat treatment is preferably 100°C or higher and 400°C or lower. In this embodiment, the temperature of the heat treatment is 250°C.
  • Insulating film 225f which will become insulator 225, is formed to cover insulator 223 (see Figures 8A to 8D).
  • Insulating film 225f is an insulating film that will become insulator 225 in a later process, and the insulators described above can be used.
  • Insulating film 225f can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 225f is formed along the insulator 223, it is preferable that the insulating film 225f has good coverage. Therefore, it is preferable that the insulating film 225f is formed using an ALD method or the like that has good coverage. Furthermore, since it is preferable that the insulator 225 has a high aspect ratio, it is preferable that the insulating film 225f has a thin film thickness. Therefore, it is preferable to form the insulating film 225f using an ALD method that allows the film thickness to be adjusted to a thin film thickness. For example, it is preferable to form a film of hafnium oxide as the insulating film 225f using a thermal ALD method. By forming the insulating film 225f in this manner, the insulating film 225f is formed in contact with the upper surface and side surfaces of the insulator 223.
  • the insulator 225 is removed by anisotropic etching, and then the insulator 223 is removed (see Figures 9A to 9D).
  • the channel width of the transistor 200 can be increased without increasing the occupation area. This allows the on-current, field effect mobility, and frequency characteristics of the transistor 200 to be improved.
  • the contact area between the oxide 230b and the conductors 242a and 242b can be increased without increasing the occupation area, thereby allowing the on-current and frequency characteristics of the transistor 200 to be improved.
  • the distance between the two insulators 225 can be set to match the size of the insulator 223. Therefore, the distance between the insulators 225 can be reduced, the area occupied by the transistors 200a and 200b can be reduced, and the semiconductor device and memory device can be highly integrated. This can increase the memory capacity of the memory device.
  • an etching gas containing halogen can be used, specifically, an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • an etching gas containing one or more of fluorine, chlorine, and bromine can be used.
  • C4F6 gas , C5F6 gas , C4F8 gas, CF4 gas, SF6 gas, CHF3 gas, CH2F2 gas, Cl2 gas, BCl3 gas, SiCl4 gas, or BBr3 gas can be used alone or in a mixture of two or more gases.
  • oxygen gas, carbon dioxide gas, nitrogen gas, helium gas, argon gas, hydrogen gas, or hydrocarbon gas can be appropriately added to the above etching gas.
  • a gas containing no halogen gas but a hydrocarbon gas or hydrogen gas can be used as the etching gas.
  • the hydrocarbon used in the etching gas may be one or more of methane ( CH4 ), ethane ( C2H6 ) , propane ( C3H8 ), butane ( C4H10 ), ethylene (C2H4), propylene (C3H6), acetylene (C2H2), and propyne (C3H4 ) .
  • the etching conditions may be appropriately set according to the object to be etched.
  • a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used as the dry etching device.
  • the capacitively coupled plasma etching device having parallel plate electrodes can be configured to apply a high frequency voltage to one of the parallel plate electrodes. Alternatively, it can be configured to apply a plurality of different high frequency voltages to one of the parallel plate electrodes. Alternatively, it can be configured to apply a high frequency voltage of the same frequency to each of the parallel plate electrodes. Alternatively, it can be configured to apply high frequency voltages of different frequencies to each of the parallel plate electrodes.
  • a dry etching device having a high density plasma source can be used.
  • an inductively coupled plasma (ICP) etching device can be used as the dry etching device having a high density plasma source.
  • ICP inductively coupled plasma
  • a mixed gas of C 4 F 8 , H 2 , and Ar may be used as an etching gas in a CCP etching apparatus.
  • the insulator 223 can be removed by dry etching or wet etching.
  • the insulator 223 can be removed by wet etching.
  • Insulator 225 when formed by anisotropic etching, is formed in the shape of a sidewall in contact with the side surface of insulator 223. In other words, insulator 225 is formed in a circumferential shape surrounding insulator 223. When a semiconductor device is manufactured while maintaining insulator 225 in a circumferential shape, insulator 225 becomes an integral part of transistors 200a and 200b, for example, as shown in Figures 5A to 5D described above.
  • the insulator 225 is formed by removing the portion of the sidewall-shaped insulator that is not necessary for the configuration of the semiconductor device.
  • the unnecessary portion of the insulator 225 may be etched first before anisotropic etching of the insulating film 225f is performed.
  • an oxide film 230af is formed on the insulator 222 and the insulator 225, and an oxide film 230bf is formed on the oxide film 230af (see FIGS. 10A to 10D).
  • a metal oxide corresponding to the oxide 230a may be used as the oxide film 230af, and a metal oxide corresponding to the oxide 230b may be used as the oxide film 230bf. It is preferable that the oxide films 230af and 230bf are successively formed without being exposed to the air environment.
  • the films By forming the films without exposing them to the air, it is possible to prevent impurities or moisture from the air environment from adhering to the oxide films 230af and 230bf, and it is possible to keep the interface or the vicinity of the interface between the oxide films 230af and 230bf clean.
  • Oxide film 230af and oxide film 230bf can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the oxide film 230af and the oxide film 230bf are preferably formed by the ALD method, which has good coverage.
  • the oxide film 230af and the oxide film 230bf can be formed with good coverage on the side surface of the insulator 225. This allows channel formation regions to be provided on the A3 side surface and the A4 side surface of the insulator 225 in the transistor 200, and therefore the channel width of the transistor 200 can be increased. This allows the field effect mobility, on-current, and frequency characteristics of the transistor 200 to be improved.
  • the ALD method can control the composition of the film obtained by adjusting the amount of raw material gas introduced.
  • the ALD method can form oxide film 230af and oxide film 230bf of any composition by adjusting the amount of raw material gas introduced, the number of introductions (also called the number of pulses), the time required for one pulse (also called the pulse time), etc.
  • the ALD method can form oxide film 230af and oxide film 230bf whose composition changes continuously by changing the raw material gas while forming the film.
  • the time required for film formation can be shortened compared to forming a film using multiple film formation chambers because no time is required for transportation and pressure adjustment. Therefore, the productivity of semiconductor devices can be increased in some cases.
  • the oxide film 230af and the oxide film 230bf may be formed as a laminated structure of the above metal oxide layers.
  • the oxide film 230af and the oxide film 230bf may be formed by sputtering.
  • oxygen or a mixed gas of oxygen and a noble gas is used as the sputtering gas.
  • the sputtering gas By increasing the proportion of oxygen contained in the sputtering gas, the amount of excess oxygen in the oxide film to be formed can be increased.
  • an In-M-Zn oxide target or the like can be used.
  • an oxygen-excessive oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to more than 30% and not more than 100%, preferably 70% to 100%.
  • a transistor using an oxygen-excessive oxide semiconductor in a channel formation region can have relatively high reliability.
  • one embodiment of the present invention is not limited to this.
  • an oxygen-deficient oxide semiconductor is formed when the ratio of oxygen contained in the sputtering gas is set to 1% to 30%, preferably 5% to 20%,.
  • a transistor using an oxygen-deficient oxide semiconductor in a channel formation region can have relatively high field effect mobility.
  • the crystallinity of the oxide film can be improved by forming the film while heating the substrate.
  • Each oxide film can be formed according to the desired characteristics of oxide 230a and oxide 230b by appropriately selecting the film formation conditions and atomic ratio.
  • the oxide film 230af may be formed by a sputtering method, and the oxide film 230bf may be formed by an ALD method.
  • the oxide film 230af and the oxide film 230bf may have a laminated structure.
  • the oxide film 230bf may be the above-mentioned metal oxide layer formed using the ALD method.
  • the crystallinity of the oxide film 230af can be increased by forming the oxide film 230af by sputtering. For example, by increasing the crystallinity of the oxide film 230af and then forming the oxide film 230bf on the oxide film 230af, a part or all of the oxide film 230bf can be crystallized. In other words, by increasing the crystallinity of the oxide film 230af, it is possible to increase the crystallinity of the oxide film 230bf as well. For example, if the oxide film 230af is an oxide semiconductor film with a CAAC structure, the oxide film 230bf formed on the oxide film 230af can also be an oxide semiconductor with a CAAC structure.
  • oxide film 230bf By forming the oxide film 230bf using the ALD method, a thin film can be formed with good controllability. This allows the oxide film 230bf to have a thin film thickness as designed. By using such oxide film 230af and oxide film 230bf, it is possible to improve the electrical characteristics and reliability of the transistor 200.
  • the oxide film 230af and the oxide film 230bf without exposing them to the atmosphere.
  • the heat treatment may be performed within a temperature range in which the oxide film 230af and the oxide film 230bf do not become polycrystallized.
  • the temperature of the heat treatment is preferably 100°C or higher, 250°C or higher, or 350°C or higher, and 650°C or lower, 600°C or lower, or 550°C or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • an atmosphere of nitrogen gas or an inert gas or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment may be carried out in a mixed atmosphere of nitrogen gas and oxygen gas, it is preferable to set the oxygen gas concentration at about 20%.
  • the heat treatment may be carried out under reduced pressure.
  • the heat treatment may be carried out in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the oxygen that has been released.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of moisture contained in the gas used in the heat treatment is preferably 1 ppb or less, more preferably 0.1 ppb or less, and even more preferably 0.05 ppb or less.
  • the heat treatment is performed at a temperature of 450° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • This heat treatment including oxygen gas can reduce impurities such as carbon, water, and hydrogen in the oxide film 230af and the oxide film 230bf.
  • impurities such as carbon, water, and hydrogen in the oxide film 230af and the oxide film 230bf.
  • the crystallinity of the oxide film 230af and the oxide film 230bf can be improved, resulting in a denser and more compact structure.
  • This increases the crystalline region in the oxide film 230af and the oxide film 230bf, and reduces the in-plane variation of the crystalline region in the oxide film 230af and the oxide film 230bf. This reduces the in-plane variation of the electrical characteristics of the transistor.
  • oxide film 230af and oxide film 230bf (later oxide 230a and oxide 230b) function as a channel formation region of transistor 200.
  • Transistor 200 formed using oxide film 230af and oxide film 230bf in which the hydrogen concentration is reduced is preferable because it has good reliability.
  • a conductive film 242f is formed on the oxide film 230bf (see Figures 10A to 10D). Conductors corresponding to the above-mentioned conductors 242a and 242b may be used as the conductive film 242f.
  • the conductive film 242f is formed on and in contact with the oxide film 230bf without an etching process or the like, so that the upper surface of the oxide film 230bf can be protected by the conductive film 242f. This can reduce the diffusion of impurities into the oxide 230 that constitutes the transistor, thereby improving the electrical characteristics and reliability of the semiconductor device.
  • the conductive film 242f can be formed, for example, by sputtering, CVD, MBE, PLD, or ALD. By using the ALD method, the conductive film 242f can be formed with good coverage on the side surface of the insulator 225. For example, tantalum nitride can be formed as the conductive film 242f by the ALD method. By forming the conductive film 242f with good coverage in this way, the contact area between the oxide 230b and the conductors 242a and 242b can be increased without increasing the area occupied. This can improve the on-current and frequency characteristics of the transistor 200.
  • the oxide film 230af, the oxide film 230bf, and the conductive film 242f are processed into an island shape using lithography to form the oxide 230a, the oxide 230b, and the conductor 242A (see Figures 11A to 11D).
  • the oxide 230a, oxide 230b, and conductor 242A that form the transistor 200a are separated from the oxide 230a, oxide 230b, and conductor 242A that form the transistor 200b.
  • the oxide 230a, oxide 230b, and conductor 242A are formed so as to cover the insulator 225 that forms the transistor 200a and the insulator 225 that forms the transistor 200b, respectively.
  • the above processing can be performed using a dry etching method or a wet etching method. Processing using the dry etching method is suitable for fine processing. Note that the above description can be referred to for the conditions of the dry etching method and the dry etching apparatus. Also, the processing of the oxide film 230af, the oxide film 230bf, and the conductive film 242f may be performed under different conditions.
  • oxide 230a, oxide 230b, and conductor 242A into an island shape all at once.
  • two or more side ends of oxide 230a, oxide 230b, and conductor 242A coincide or approximately coincide with each other.
  • insulator 222 is exposed in areas that do not overlap oxide 230a, oxide 230b, and conductor 242A.
  • the side surfaces of oxide 230a, oxide 230b, and conductor 242A may be configured to be perpendicular or approximately perpendicular to the top surface of insulator 222. By using such a configuration, it is possible to reduce the area and increase the density when providing multiple transistors.
  • the side surfaces of oxide 230a, oxide 230b, and conductor 242A may be tapered.
  • the taper angle of the side surfaces of oxide 230a, oxide 230b, and conductor 242A may be, for example, 60° or more and less than 90°.
  • the resist is first exposed through a mask.
  • the exposed area is removed or left using a developer to form a resist mask.
  • a conductor, semiconductor, or insulator can be processed into a desired shape by etching through the resist mask.
  • a resist mask can be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, or EUV (Extreme Ultraviolet) light.
  • a liquid immersion technique can be used in which a liquid (e.g., water) is filled between the substrate and the projection lens and exposure is performed.
  • an electron beam or an ion beam can be used instead of the light described above.
  • a mask may not be used.
  • the resist mask that is no longer needed after processing can be removed by performing a dry etching process such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), a wet etching process, a dry etching process followed by a wet etching process, or a wet etching process followed by a dry etching process.
  • a dry etching process such as ashing using oxygen plasma (hereinafter sometimes referred to as oxygen plasma treatment), a wet etching process, a dry etching process followed by a wet etching process, or a wet etching process followed by a dry etching process.
  • a hard mask made of an insulator or conductor may be used under the resist mask.
  • an insulating film or conductive film that will be the hard mask material is formed on the conductive film 242f, a resist mask is formed thereon, and the hard mask material is etched to form a hard mask of the desired shape.
  • Etching of the conductive film 242f etc. may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the oxide film 230bf etc.
  • the material of the hard mask does not affect the later process or can be used in the later process, it is not necessarily necessary to remove the hard mask.
  • a configuration may be adopted in which an SOC (Spin On Carbon) film and an SOG (Spin On Glass) film are formed between the workpiece and the resist mask.
  • SOC Spin On Carbon
  • SOG Spin On Glass
  • a SOC film, an SOG film, and a resist mask can be formed in this order on the workpiece, and then lithography can be performed.
  • a film of insulator 275 is formed to cover oxide 230a, oxide 230b, and conductor 242A, and then a film of insulator 280 is formed on insulator 275 (see Figures 12A to 12D).
  • the insulators described above may be used as insulator 275 and insulator 280.
  • the insulator 275 contacts the upper surface of the insulator 222.
  • the insulator 280 it is preferable to form an insulating film that will become the insulator 280, and then perform CMP processing on the insulating film to form an insulator with a flat upper surface. Note that it is also possible to form a film of silicon nitride on the insulator 280, for example, by a sputtering method, and then perform CMP processing on the silicon nitride until it reaches the insulator 280.
  • Insulator 275 and insulator 280 can each be formed using, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 275 it is preferable to use an insulator that has a function of suppressing oxygen transmission.
  • an insulator that has a function of suppressing oxygen transmission.
  • the oxide 230a, the oxide 230b, and the conductor 242A can be covered with the insulator 275, which has the function of suppressing the diffusion of oxygen. This makes it possible to reduce the direct diffusion of oxygen from the insulator 280, etc., to the oxide 230a, the oxide 230b, and the conductor 242A in a later process.
  • a film of silicon oxide as the insulator 280 by a sputtering method.
  • the insulator 280 containing excess oxygen can be formed.
  • the hydrogen concentration in the insulator 280 can be reduced.
  • a heat treatment may be performed before the formation of the insulating film. The heat treatment may be performed under reduced pressure, and the insulating film may be continuously formed without exposure to the atmosphere.
  • moisture and hydrogen adsorbed on the surface of the insulator 275, etc. can be removed, and the moisture concentration and hydrogen concentration in the oxide 230a and the oxide 230b can be further reduced.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the conductor 242A, the insulator 275, and the insulator 280 are processed using a lithography method to form an opening that reaches the oxide 230b and the insulator 222.
  • the opening is formed in a region that overlaps with the oxide 230b.
  • the insulator 222 is processed to remove a region of the insulator 222 that does not overlap with the oxide 230, and an opening that reaches the insulator 216 is formed (see Figures 13A to 13D).
  • the conductor 242A is divided to form the conductor 242a and the conductor 242b.
  • the bottom surface of the conductor 260 in the transistor 200 can be positioned below the bottom surface of the oxide 230. This allows a sufficient electric field to be applied from the conductor 260 to the entire oxide 230. Therefore, the electrical characteristics of the transistor 200 can be improved.
  • lithography methods can be used as appropriate.
  • a lithography method using short-wavelength light such as EUV light or an electron beam.
  • the above processing is preferably carried out using a dry etching method.
  • Dry etching is suitable for forming openings with high aspect ratios because it allows anisotropic etching. Please refer to the above description for the conditions of the dry etching method and the dry etching apparatus.
  • the present invention is not limited to this. If the transistor 200 satisfies the electrical characteristics required by the circuit, a configuration in which a portion of the oxide 230 that is not in contact with the insulator 225 remains may be used.
  • an ashing process using oxygen plasma may be performed.
  • impurities generated in the above etching process and diffused into the oxide 230, etc. can be removed.
  • the impurities include those originating from components contained in the workpiece of the above etching process and components contained in the gas used in the etching process. Examples of the impurities include chlorine, fluorine, tantalum, silicon, and hafnium.
  • chlorine gas is used in processing the conductor 242A, the oxide 230 is exposed to an atmosphere containing chlorine gas, so it is preferable to remove the chlorine attached to the oxide 230. By removing the impurities attached to the oxide 230 in this way, the electrical characteristics and reliability of the transistor can be improved.
  • a cleaning process may be performed to remove impurities that have adhered to the surface of oxide 230b during the etching process.
  • Cleaning methods include wet cleaning using a cleaning solution (which may also be called wet etching), plasma processing using plasma, and cleaning by heat treatment, and the above cleaning methods may be combined as appropriate. Note that the cleaning process may deepen the grooves.
  • wet cleaning may be performed using an aqueous solution of one or more of ammonia water, oxalic acid, phosphoric acid, and hydrofluoric acid diluted with carbonated water or pure water, pure water, carbonated water, etc.
  • ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
  • these cleaning methods may be combined as appropriate.
  • an aqueous solution in which hydrofluoric acid is diluted with pure water may be referred to as diluted hydrofluoric acid
  • an aqueous solution in which ammonia water is diluted with pure water may be referred to as diluted ammonia water.
  • the concentration and temperature of the aqueous solution are adjusted as appropriate depending on the impurities to be removed and the configuration of the semiconductor device to be cleaned.
  • the ammonia concentration of the diluted ammonia water is preferably 0.01% or more and 5% or less, and more preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid is preferably 0.01 ppm or more and 100 ppm or less, and more preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or more for ultrasonic cleaning and more preferably a frequency of 900 kHz or more. By using such a frequency, damage to the oxide 230b, etc. can be reduced.
  • the above cleaning process may be performed multiple times, and the cleaning solution may be changed for each cleaning process.
  • a first cleaning process may be performed using diluted hydrofluoric acid or diluted ammonia water
  • a second cleaning process may be performed using pure water or carbonated water.
  • wet cleaning is performed using diluted ammonia water.
  • impurities attached to the surfaces of oxide 230a, oxide 230b, etc. or diffused inside can be removed. Furthermore, the crystallinity of oxide 230a, oxide 230b, etc. can be improved.
  • the temperature of the heat treatment is preferably 100° C. or more, 250° C. or more, or 350° C. or more, and 650° C. or less, 600° C. or less, 550° C. or less, or 400° C. or less.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an atmosphere containing oxygen, and is preferably performed, for example, at a temperature of 350° C. for 1 hour with a flow rate ratio of nitrogen gas to oxygen gas of 4:1.
  • the heat treatment may be performed under reduced pressure. Alternatively, after the heat treatment in an oxygen atmosphere, the heat treatment may be performed in a nitrogen atmosphere without exposure to the air.
  • the sheet resistance may decrease in the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b.
  • the carrier concentration may also increase. Therefore, the resistance of the region of the oxide 230b that overlaps with the conductor 242a and the region that overlaps with the conductor 242b can be reduced in a self-aligned manner.
  • insulating film 250A which will become insulator 250, is deposited so as to fill the openings formed in insulator 280 and the like (see Figures 14A to 14D).
  • insulating film 250A contacts insulator 280, insulator 275, conductor 242a, conductor 242b, insulator 222, insulator 216, and oxide 230.
  • the insulating film 250A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulating film 250A is preferably formed using an ALD method (including a thermal ALD method and a PEALD method).
  • the insulating film 250A is preferably formed to a thin film thickness, and it is necessary to reduce the variation in film thickness.
  • the ALD method is a film formation method in which a precursor and a reactant (such as an oxidizer) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that precise film thickness adjustment is possible.
  • the insulating film 250A needs to be formed with good coverage on the bottom and side surfaces of the openings of the insulators 280, 275, and 222.
  • layers of atoms can be deposited one by one on the bottom and side surfaces of the opening, so that the insulating film 250A can be formed with good coverage of the opening.
  • ozone ( O3 ), oxygen ( O2 ), water ( H2O ), etc. can be used as an oxidizing agent.
  • Ozone ( O3 ), oxygen ( O2 ), etc. that do not contain hydrogen can be used as an oxidizing agent.
  • the film thickness of insulating film 250A in the opening of insulator 222 thinner than the film thickness of insulator 222.
  • the insulator 250 can have a layered structure as shown in Figures 2A and 2B.
  • the insulator 250 can have a layered structure of insulators 250a to 250d.
  • aluminum oxide can be deposited by thermal ALD as the insulator 250a
  • silicon oxide can be deposited by PEALD as the insulator 250b
  • hafnium oxide can be deposited by thermal ALD as the insulator 250c
  • silicon nitride can be deposited by PEALD as the insulator 250d.
  • microwave treatment refers to treatment using, for example, an apparatus having a power source that generates high-density plasma using microwaves.
  • microwaves refer to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less.
  • the frequency of the microwave processing device is preferably 300 MHz or more and 300 GHz or less, more preferably 2.4 GHz or more and 2.5 GHz or less, and can be, for example, 2.45 GHz.
  • the power of the power source that applies microwaves in the microwave processing device is preferably 1000 W or more and 10,000 W or less, more preferably 2000 W or more and 5000 W or less.
  • the microwave processing device may have a power source that applies RF to the substrate side. Furthermore, by applying RF to the substrate side, oxygen ions generated by high-density plasma can be efficiently guided into the oxide 230b.
  • the microwave treatment is preferably carried out under reduced pressure, with the pressure being preferably 10 Pa to 1000 Pa, and more preferably 300 Pa to 700 Pa.
  • the treatment temperature is preferably 750°C or less, and more preferably 500°C or less, and can be, for example, about 250°C.
  • a heat treatment may be carried out continuously without exposure to the outside air.
  • the heat treatment temperature is, for example, preferably 100°C to 750°C, and more preferably 300°C to 500°C.
  • the microwave treatment can be performed using oxygen gas and argon gas.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 100%.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 0% and less than 50%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 40%. More preferably, the oxygen flow ratio (O 2 /(O 2 +Ar)) is greater than 10% and less than 30%.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequency waves such as RF, and oxygen radicals formed in the oxygen plasma can act on the region between the conductor 242a and the conductor 242b of the oxide 230b.
  • oxygen radicals, microwaves, etc., VOH in the region can be separated into oxygen vacancies and hydrogen, and hydrogen can be removed from the region.
  • an insulating film e.g., aluminum oxide, etc.
  • hydrogen generated by the microwave treatment can be captured or fixed to the insulator 250a.
  • VOH contained in the channel formation region can be reduced.
  • oxygen vacancies and VOH in the channel formation region can be reduced, and the carrier concentration can be reduced.
  • the oxygen vacancies in the channel formation region can be further reduced, and the carrier concentration can be reduced.
  • the oxygen injected into the channel formation region can be in various forms, such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also called O radicals, which are atoms, molecules, or ions with an unpaired electron).
  • the oxygen injected into the channel formation region can be in one or more of the above forms, and is particularly preferably in the form of oxygen radicals.
  • the film quality of the insulator 250 can be improved, thereby improving the reliability of the transistor.
  • impurities such as carbon in the oxide 230b can also be removed.
  • carbon which is an impurity in the oxide 230b
  • the crystallinity of the oxide 230b can be improved. This allows the oxide 230b to become CAAC-OS.
  • carbon contained in the precursor may be incorporated into the oxide 230b, so it is preferable to remove the carbon by microwave treatment.
  • conductors 242a and 242b preferably function as a shielding film against the action of microwaves, high frequency waves such as RF, oxygen plasma, etc., when microwave processing is performed in an atmosphere containing oxygen.
  • conductors 242a and 242b preferably have the function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
  • the conductors 242a and 242b shield against the effects of microwaves, high frequency waves such as RF, oxygen plasma, etc., so that these effects do not extend to the regions of the oxide 230b that overlap with either of the conductors 242a and 242b.
  • the microwave treatment does not reduce VOH in the source and drain regions, and does not supply an excessive amount of oxygen, thereby preventing a decrease in carrier concentration.
  • oxygen vacancies and VOH can be selectively removed from the channel formation region of the oxide semiconductor to make the channel formation region i-type or substantially i-type. Furthermore, the supply of excess oxygen to the regions functioning as source or drain regions can be suppressed, and the conductivity (the state of being a low-resistance region) before the microwave treatment can be maintained. This can suppress fluctuations in the electrical characteristics of the transistor, and can suppress variations in the electrical characteristics of the transistor within the substrate surface.
  • thermal energy may be directly transferred to the oxide 230b due to electromagnetic interaction between the microwaves and the molecules in the oxide 230b.
  • This thermal energy may heat the oxide 230b.
  • This type of heating process may be called microwave annealing.
  • microwave annealing By performing microwave processing in an atmosphere containing oxygen, it may be possible to obtain an effect equivalent to that of oxygen annealing.
  • the oxide 230b contains hydrogen, it is thought that this thermal energy is transferred to the hydrogen in the oxide 230b, which activates the hydrogen and causes it to be released from the oxide 230b.
  • the diffusion of hydrogen, water, impurities, etc. can be suppressed. Therefore, by performing a post-process such as forming a conductive film that becomes the conductor 260, or a post-process such as heat treatment, it is possible to suppress the diffusion of hydrogen, water, impurities, etc. through the insulator 250 into the oxide 230b, the oxide 230a, etc. In this way, by improving the film quality of the insulator 250, the reliability of the transistor can be improved.
  • a heat treatment may be performed while maintaining the reduced pressure state after the microwave treatment.
  • hydrogen in the insulating film, the oxide 230b, and the oxide 230a can be efficiently removed.
  • some of the hydrogen may be gettered to the conductors 242a and 242b.
  • a step of performing a heat treatment may be repeated multiple times while maintaining the reduced pressure state after the microwave treatment.
  • the heat treatment temperature is preferably 300°C or higher and 500°C or lower.
  • the microwave treatment i.e., microwave annealing, may also serve as the heat treatment. If the oxide 230b, etc. is sufficiently heated by the microwave annealing, the heat treatment may not be performed.
  • microwave treatment When the insulator 250 has a layered structure of insulators 250a to 250d, it is preferable to perform microwave treatment after the formation of insulator 250b. Furthermore, microwave treatment may be performed again after the formation of insulator 250c. In this way, microwave treatment in an oxygen-containing atmosphere may be performed multiple times (at least two or more times).
  • a conductive film 260A that will become the conductor 260a and a conductive film 260B that will become the conductor 260b are formed in this order (see Figures 15A to 15D).
  • the conductive film 260A and the conductive film 260B can be formed, for example, by a sputtering method, a CVD method, an MBE method, a PLD method, a plating method, or an ALD method.
  • the conductive film 260A and the conductive film 260B are preferably formed so as to fill the opening of the insulator 222. Therefore, it is preferable to form the conductive film by an ALD method or a CVD method, which has high coverage.
  • titanium nitride is formed as the conductive film 260A by the ALD method
  • tungsten is formed as the conductive film 260B by the CVD method.
  • the insulating film 250A, the conductive film 260A, and the conductive film 260B are polished by CMP until the insulator 280 is exposed.
  • the portions of the insulating film 250A, the conductive film 260A, and the conductive film 260B exposed from the openings are removed. This forms the insulator 250 and the conductor 260 (conductor 260a and conductor 260b) in the openings formed in the insulator 280, etc. (see Figures 16A to 16D).
  • insulator 250 is provided in the opening in contact with insulator 280, insulator 275, conductor 242a, conductor 242b, oxide 230, insulator 222, and insulator 216.
  • conductor 260 is arranged to fill the opening via insulator 250.
  • conductor 260 is formed so that its lower surface is located lower than the lower surface of oxide 230. As a result, a sufficient electric field can be applied from conductor 260 to the entire oxide 230 in the opening. Therefore, the electrical characteristics of transistor 200 can be improved. In this manner, transistor 200 is formed.
  • the insulator 282 is formed on the insulator 250, the conductor 260, and the insulator 280.
  • the insulator 282 can be formed by, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the insulator 282 is preferably formed by a sputtering method. By using a sputtering method that does not require the use of hydrogen-containing molecules in the film formation gas, the hydrogen concentration in the insulator 282 can be reduced.
  • the insulator 282 in an oxygen-containing atmosphere using a sputtering method, oxygen can be added to the insulator 280 while the film is being formed. This allows the insulator 280 to contain excess oxygen. At this time, it is preferable to form the insulator 282 while heating the substrate.
  • oxygen can be diffused from the insulator 280 through the insulator 250 to the oxide 230b, and a suitable amount of oxygen can be supplied to the oxide 230b.
  • an excess amount of oxygen can be supplied into the insulator 250, which can prevent the conductors 242a and 242b near the insulator 250 from being excessively oxidized.
  • an aluminum oxide film is formed as the insulator 282 by sputtering using an aluminum target in an atmosphere containing oxygen gas.
  • the amount of oxygen injected into the layer below the insulator 282 can be controlled by the magnitude of the RF power applied to the substrate by the sputtering method. For example, the smaller the RF power, the less the amount of oxygen injected into the layer below the insulator 282, and the amount of oxygen is likely to be saturated even if the insulator 282 is thin. Also, the larger the RF power, the more the amount of oxygen injected into the layer below the insulator 282. By reducing the RF power, the amount of oxygen injected into the insulator 280 can be suppressed.
  • the insulator 282 may also be formed in a two-layer laminate structure. At this time, for example, the lower layer of the insulator 282 is formed without applying RF power to the substrate, and the upper layer of the insulator 282 is formed by applying RF power to the substrate.
  • the RF frequency is preferably 10 MHz or higher. Typically, it is 13.56 MHz. The higher the RF frequency, the less damage it can cause to the substrate.
  • a heat treatment may be performed before the formation of the insulator 282.
  • the heat treatment may be performed under reduced pressure, and the insulator 282 may be continuously formed without exposure to the atmosphere. By performing such a treatment, moisture and hydrogen adsorbed on the surface of the insulator 280 can be removed, and the moisture concentration and hydrogen concentration in the insulator 280 can be further reduced.
  • the temperature of the heat treatment is preferably 100°C or higher and 400°C or lower. In this embodiment, the temperature of the heat treatment is 250°C.
  • Insulator 283 is formed on insulator 282.
  • Insulator 283 can be formed by, for example, a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. It is preferable to form insulator 283 by a sputtering method. By using a sputtering method that does not require the use of molecules containing hydrogen in the film formation gas, the hydrogen concentration in insulator 283 can be reduced.
  • silicon nitride is formed as insulator 283 by a sputtering method.
  • the insulators 282 and 283 in succession without exposing them to the atmospheric environment. Depositing them without exposing them to the atmosphere can prevent impurities or moisture from the atmospheric environment from adhering to the insulators 282 and 283, and can keep the interface or the vicinity of the interface between the insulators 282 and 283 clean.
  • a heat treatment may be performed.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower.
  • the insulator 283 in contact with the upper surface of the insulator 282, impurities such as moisture or hydrogen can be prevented from entering from above the insulator 283 during the heat treatment. Furthermore, by performing the heat treatment, hydrogen contained in the oxide 230 is absorbed into the insulator 222. In other words, hydrogen contained in the oxide 230 diffuses into the insulator 222. Therefore, the hydrogen concentration in the insulator 222 increases, but the hydrogen concentration in the oxide 230 decreases.
  • an opening reaching conductor 242a and an opening reaching conductor 242b are formed in insulators 275, 280, 282, and 283 (see Figures 1A to 1D).
  • the openings may be formed using a lithography method. Note that, although the shape of the opening is circular in top view in Figure 1A, this is not limited to this. For example, the opening may be approximately circular such as an ellipse, polygonal such as a rectangle, or polygonal such as a rectangle with rounded corners in top view.
  • an insulating film that will become the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241a in the opening that reaches the conductor 242a, and the insulator 241b in the opening that reaches the conductor 242b (see Figures 1A to 1D).
  • the insulating film that will become the insulator 241 can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. It is preferable to use an insulating film that has a function of suppressing oxygen permeation as the insulating film that will become the insulator 241. For example, it is preferable to form a film of aluminum oxide using the ALD method, and then form a film of silicon nitride thereon using the PEALD method. Silicon nitride is preferable because it has high blocking properties against hydrogen.
  • the anisotropic etching of the insulating film that will become the insulator 241 can be performed, for example, by dry etching.
  • By providing the insulator 241 on the sidewall of the opening it is possible to suppress the transmission of oxygen from the outside and prevent the oxidation of the conductors 240a and 240b that will be formed next. It is also possible to prevent impurities such as water and hydrogen contained in the insulator 280 from diffusing into the conductors 240a and 240b.
  • the conductive film that will become conductor 240a and conductor 240b is desirably a laminated structure that includes a conductor that has the function of suppressing the permeation of impurities such as water and hydrogen.
  • a conductor that has the function of suppressing the permeation of impurities such as water and hydrogen.
  • it can be a laminate of tantalum nitride, titanium nitride, etc., and tungsten, molybdenum, copper, etc.
  • the conductive film that will become conductor 240a and conductor 240b can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, etc.
  • a CMP process is performed to remove a portion of the conductive film that will become conductor 240a and conductor 240b, exposing the upper surface of insulator 283.
  • the conductive film remains only in the openings, forming conductors 240a and 240b with flat upper surfaces (see Figures 1A to 1D). Note that the CMP process may remove a portion of the upper surface of insulator 283.
  • conductor 240a in contact with conductor 242a, conductor 240a, which functions as one of the source and drain of transistor 200, can be electrically connected to wiring.
  • conductor 240b in contact with conductor 242b, conductor 240b, which functions as the other of the source and drain of transistor 200, can be electrically connected to wiring.
  • a conductive film that functions as wiring or a conductive film that functions as a plug can be formed on the conductor 240a and the conductor 240b.
  • the semiconductor device shown in Figure 1 can be manufactured.
  • the carrier concentration of a channel formation region of the oxide semiconductor is 1 ⁇ 10 18 cm ⁇ 3 or less, preferably less than 1 ⁇ 10 17 cm ⁇ 3 , more preferably less than 1 ⁇ 10 16 cm ⁇ 3 , further preferably less than 1 ⁇ 10 13 cm ⁇ 3 , and further preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be reduced to reduce the density of defect states.
  • a semiconductor having a low impurity concentration and a low density of defect states is referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor an oxide semiconductor with a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor may have a low density of trap states due to a low density of defect states. Furthermore, charges captured in the trap states of the oxide semiconductor may take a long time to disappear and may behave as if they were fixed charges. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high density of trap states may have unstable electrical characteristics.
  • impurities in an oxide semiconductor refer to, for example, anything other than the main component that constitutes the oxide semiconductor.
  • an element with a concentration of less than 0.1 atomic % can be considered an impurity.
  • an OS transistor may form a defect in which hydrogen enters an oxygen vacancy in an oxide semiconductor (hereinafter, this may be referred to as VOH ), and generate electrons that serve as carriers.
  • VOH hydrogen enters an oxygen vacancy in an oxide semiconductor
  • the donor concentration in the channel formation region may increase.
  • the threshold voltage may vary.
  • the transistor when an oxygen vacancy is present in a channel formation region in an oxide semiconductor, the transistor is likely to have normally-on characteristics (characteristics in which a channel exists and a current flows through the transistor even when no voltage is applied to a gate electrode). Therefore, it is preferable that impurities, oxygen vacancies, and VOH be reduced as much as possible in the channel formation region in an oxide semiconductor.
  • the band gap of the oxide semiconductor is preferably larger than that of silicon (typically 1.1 eV), and is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3.0 eV or more.
  • the off-current (also referred to as Ioff) of the transistor can be reduced.
  • OS transistors use oxide semiconductors, which are semiconductor materials with a wide band gap, and therefore the short channel effect can be suppressed. In other words, OS transistors are transistors that do not have the short channel effect or have an extremely small short channel effect.
  • the short channel effect is a degradation of electrical characteristics that becomes evident as transistors are miniaturized (reduced channel length).
  • Specific examples of short channel effects include a decrease in threshold voltage, an increase in subthreshold swing value (sometimes written as S value), and an increase in leakage current.
  • the S value refers to the amount of change in gate voltage in the subthreshold region that changes the drain current by one order of magnitude at a constant drain voltage.
  • Characteristic length is widely used as an index of resistance to short channel effects.
  • Characteristic length is an index of how easily the potential of the channel formation region bends. The smaller the characteristic length, the steeper the potential rises, and therefore the more resistant it is to short channel effects.
  • OS transistors are accumulation-type transistors, while Si transistors are inversion-type transistors. Therefore, compared to Si transistors, OS transistors have smaller characteristic lengths between the source region and the channel-forming region, and between the drain region and the channel-forming region. Therefore, OS transistors are more resistant to the short-channel effect than Si transistors. In other words, when it is desired to manufacture a transistor with a short channel length, OS transistors are more suitable than Si transistors.
  • the OS transistor can also be regarded as having an n + / n ⁇ /n + accumulation-type junction-less transistor structure or an n + /n ⁇ /n + accumulation-type non-junction transistor structure in which the channel formation region is an n ⁇ type region and the source region and drain region are n + type regions.
  • the OS transistor can have good electrical characteristics even when the semiconductor device is miniaturized or highly integrated. For example, good electrical characteristics can be obtained even when the gate length of the OS transistor is 20 nm or less, 15 nm or less, 10 nm or less, 7 nm or less, or 6 nm or less, and 1 nm or more, 3 nm or more, or 5 nm or more.
  • the OS transistor can be suitably used as a transistor having a shorter channel length than that of a Si transistor.
  • the gate length is the length of the gate electrode in the direction in which carriers move inside the channel formation region when the transistor is operating, and refers to the width of the bottom surface of the gate electrode in a plan view of the transistor.
  • the cutoff frequency of the transistor can be improved.
  • the cutoff frequency of the transistor can be set to, for example, 50 GHz or more, preferably 100 GHz or more, and more preferably 150 GHz or more in a room temperature environment.
  • OS transistors As explained above, compared to Si transistors, OS transistors have the excellent advantages of having a smaller off-state current and being able to fabricate transistors with a short channel length.
  • a configuration example of a memory device using a memory cell having a transistor described in the above embodiment is described.
  • a configuration example of a memory device is described in which a layer having stacked memory cells and a layer having a functional circuit having a function of amplifying and outputting a data potential held in the memory cell are provided.
  • FIG. 17 illustrates a block diagram of a storage device of one embodiment of the present invention.
  • the memory device 300 shown in FIG. 17 has a drive circuit 21 and a memory array 20.
  • the memory array 20 has a plurality of memory cells 10 and a functional layer 50 having a plurality of functional circuits 51.
  • FIG. 17 shows an example in which the memory array 20 has a plurality of memory cells 10 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more).
  • FIG. 17 also shows an example in which a functional circuit 51 is provided for each wiring BL that functions as a bit line, and the functional layer 50 has n functional circuits 51 provided corresponding to the n wirings BL.
  • the memory cell 10 in the first row and first column is indicated as memory cell 10[1,1] and the memory cell 10 in the mth row and nth column is indicated as memory cell 10[m,n].
  • an arbitrary row may be indicated as row i.
  • An arbitrary column may be indicated as column j.
  • i is an integer between 1 and m
  • j is an integer between 1 and n.
  • the memory cell 10 in the ith row and jth column is indicated as memory cell 10[i,j].
  • i+ ⁇ ⁇ is a positive or negative integer
  • the memory array 20 also includes m wirings WL extending in the row direction, m wirings PL extending in the row direction, and n wirings BL extending in the column direction.
  • the first wiring WL (first row) is indicated as wiring WL[1]
  • the mth wiring WL (mth row) is indicated as wiring WL[m].
  • the first wiring PL (first row) is indicated as wiring PL[1]
  • the mth wiring PL (mth row) is indicated as wiring PL[m].
  • the first wiring BL (first column) is indicated as wiring BL[1]
  • the nth wiring BL (nth column) is indicated as wiring BL[n].
  • the multiple memory cells 10 in the i-th row are electrically connected to the i-th row wiring WL (wiring WL[i]) and the i-th row wiring PL (wiring PL[i]).
  • the multiple memory cells 10 in the j-th column are electrically connected to the j-th column wiring BL (wiring BL[j]).
  • the memory array 20 can be a DOSRAM (registered trademark) (Dynamic Oxide Semiconductor Random Access Memory).
  • DOSRAM is a RAM having 1T (transistor) 1C (capacitor) type memory cells, and the access transistor is an OS transistor.
  • the current flowing between the source and drain of an OS transistor in the off state, that is, the leakage current, is extremely small.
  • DOSRAM can hold a charge corresponding to the data held in the capacitance element (capacitor) for a long time. Therefore, DOSRAM can reduce the frequency of refresh operations compared to DRAM composed of transistors (Si transistors) having silicon in the channel formation region. As a result, it is possible to reduce power consumption.
  • the frequency characteristics of OS transistors are high, reading and writing of the storage device can be performed at high speed. This makes it possible to provide a storage device with high operating speed.
  • multiple memory arrays 20[1] to 20[m] can be stacked.
  • the memory arrays 20[1] to 20[m] of the memory array 20 can be arranged in the vertical direction of the substrate surface on which the drive circuit 21 is provided, thereby improving the memory density of the memory cells 10.
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling the on/off (conducting or non-conducting) of an access transistor that functions as a switch.
  • the wiring PL functions as a constant potential line connected to a capacitance element. Note that, as shown in FIG. 6, when an OS transistor having a backgate is used, it is preferable to provide a wiring having a function of transmitting a backgate potential to the backgate.
  • the memory cells 10 in each of the memory arrays 20[1] to 20[m] are connected to the functional circuit 51 via wiring BL.
  • the wiring BL can be arranged in a vertical direction to the substrate surface on which the driver circuit 21 is provided.
  • the length of the wiring between the memory array 20 and the functional circuit 51 can be shortened.
  • the signal propagation distance between the two circuits connected to the bit line can be shortened, and the resistance and parasitic capacitance of the bit line can be significantly reduced, thereby reducing power consumption and signal delay.
  • the memory device can be operated even if the capacitance of the capacitive element in the memory cell 10 is reduced.
  • the functional circuit 51 has a function of amplifying the data potential held in the memory cell 10 and outputting it to the sense amplifier 46 of the driver circuit 21 via the wiring GBL (not shown) described later.
  • This configuration makes it possible to amplify the slight potential difference of the wiring BL when reading data.
  • the wiring GBL can be arranged in the vertical direction of the substrate surface on which the driver circuit 21 is provided, just like the wiring BL.
  • the wiring BL is provided in contact with the semiconductor layer of the transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a region that functions as the source or drain of the semiconductor layer of the transistor included in the memory cell 10.
  • the wiring BL is provided in contact with a conductor that is provided in contact with a region that functions as the source or drain of the semiconductor layer of the transistor included in the memory cell 10.
  • the wiring BL can be said to be a wiring for electrically connecting one of the source or drain of the transistor included in the memory cell 10 in each layer of the memory array 20 to the functional circuit 51 in the vertical direction.
  • the memory array 20 can be stacked on the drive circuit 21. By stacking the drive circuit 21 and the memory array 20, the signal propagation distance between the drive circuit 21 and the memory array 20 can be shortened. This reduces the resistance and parasitic capacitance between the drive circuit 21 and the memory array 20, and reduces power consumption and signal delay. In addition, the storage device 300 can be made smaller.
  • the functional circuit 51 uses OS transistors similar to the transistors in the memory cells 10 of the DOSRAM, and can be freely arranged on circuits using Si transistors similar to the memory arrays 20[1] to 20[m], making integration easy. By configuring the functional circuit 51 to amplify signals, the circuits in the subsequent stage, such as the sense amplifier 46, can be made smaller, and the memory device 300 can be made smaller.
  • the drive circuit 21 has a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31.
  • the peripheral circuit 31 has a peripheral circuit 41, a control circuit 32, and a voltage generation circuit 33.
  • each circuit, signal, and voltage can be selected or removed as needed. Alternatively, other circuits or other signals may be added.
  • Signals BW, CE, GW, CLK, WAKE, ADDR, WDA, PON1, and PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • signals BW, CE, and GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signals PON1 and PON2 are signals for power gating control. Signals PON1 and PON2 may be generated by control circuit 32.
  • the control circuit 32 is a logic circuit that has the function of controlling the overall operation of the memory device 300. For example, the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 300. Alternatively, the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 300.
  • the control circuit 32 generates a control signal for the peripheral circuit 41 so that this operation mode is executed.
  • the voltage generation circuit 33 has the function of generating a negative voltage.
  • the signal WAKE has the function of controlling the input of the signal CLK to the voltage generation circuit 33. For example, when an H-level signal is given to the signal WAKE, the signal CLK is input to the voltage generation circuit 33, and the voltage generation circuit 33 generates a negative voltage.
  • the peripheral circuit 41 is a circuit for writing and reading data to the memory cells 10.
  • the peripheral circuit 41 is also a circuit for outputting various signals for controlling the functional circuit 51.
  • the peripheral circuit 41 has a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, an output circuit 48, and a sense amplifier 46.
  • the row decoder 42 and column decoder 44 have the function of decoding the signal ADDR.
  • the row decoder 42 is a circuit for specifying the row to be accessed
  • the column decoder 44 is a circuit for specifying the column to be accessed.
  • the row driver 43 has the function of selecting the wiring WL specified by the row decoder 42.
  • the column driver 45 has the function of writing data to the memory cell 10, reading data from the memory cell 10, and retaining the read data.
  • the input circuit 47 has a function of holding a signal WDA.
  • the data held by the input circuit 47 is output to the column driver 45.
  • the output data of the input circuit 47 is the data (Din) to be written to the memory cell 10.
  • the data (Dout) read from the memory cell 10 by the column driver 45 is output to the output circuit 48.
  • the output circuit 48 has a function of holding Dout.
  • the output circuit 48 has a function of outputting Dout to the outside of the memory device 300.
  • the data output from the output circuit 48 is the signal RDA.
  • PSW22 has a function of controlling the supply of VDD to the peripheral circuit 31.
  • PSW23 has a function of controlling the supply of VHM to the row driver 43.
  • the high power supply voltage of the memory device 300 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to set the word line to a high level, and is higher than VDD.
  • the on/off of PSW22 is controlled by signal PON1, and the on/off of PSW23 is controlled by signal PON2.
  • the number of power domains to which VDD is supplied in the peripheral circuit 31 is one, but it is also possible to have multiple power domains. In this case, a power switch can be provided for each power supply domain.
  • the memory array 20 having memory arrays 20[1] to 20[m] (m is an integer of 2 or more) and a functional layer 50 can be provided by stacking multiple layers of memory arrays 20 on a driving circuit 21. By stacking multiple layers of memory arrays 20, the memory density of the memory cells 10 can be increased.
  • the memory array 20 provided in the first layer is shown as memory array 20[1]
  • the memory array 20 provided in the second layer is shown as memory array 20[2]
  • the memory array 20 provided in the fifth layer is shown as memory array 20[5].
  • Also shown in FIG. 18A are wiring WL and wiring PL extending in the X direction, and wiring BL extending in the Z direction (the direction perpendicular to the substrate surface on which the drive circuit is provided). Note that to make the drawing easier to understand, some of the wiring WL and wiring PL of each memory array 20 have been omitted.
  • FIG. 18B is a schematic diagram illustrating an example of the configuration of the functional circuit 51 connected to the wiring BL shown in FIG. 18A, and the memory cells 10 in the memory arrays 20[1] to 20[5] connected to the wiring BL.
  • FIG. 18B also illustrates the wiring GBL provided between the functional circuit 51 and the driver circuit 21. Note that a configuration in which multiple memory cells (memory cells 10) are electrically connected to one wiring BL is also referred to as a "memory string.” Note that in the drawings, the wiring GBL may be illustrated with a thick line to improve visibility.
  • FIG. 18B illustrates an example of a circuit configuration of a memory cell 10 connected to wiring BL.
  • the memory cell 10 has a transistor 11 and a capacitor 12.
  • the transistor 11, the capacitor 12, and each wiring may also be referred to as wiring BL[1] and wiring WL[1], for example.
  • the transistor 11 corresponds to the transistor 200 described in embodiment 1.
  • one of the source and drain of transistor 11 is connected to wiring BL.
  • the other of the source and drain of transistor 11 is connected to one electrode of capacitance element 12.
  • the other electrode of capacitance element 12 is connected to wiring PL.
  • the gate of transistor 11 is connected to wiring WL.
  • the wiring PL is a wiring that provides a constant potential to maintain the potential of the capacitance element 12.
  • GND ground potential
  • FIG. 19A shows a schematic diagram of a memory device 300 in which a functional circuit 51 and memory arrays 20[1] to 20[m] are repeated as a unit 70. Note that while FIG. 19A shows one wiring GBL, the wiring GBL may be provided as needed depending on the number of functional circuits 51 provided in the functional layer 50.
  • the wiring GBL is provided in contact with the semiconductor layer of the transistor in the functional circuit 51.
  • the wiring GBL is provided in contact with a region that functions as the source or drain of the semiconductor layer of the transistor in the functional circuit 51.
  • the wiring GBL is provided in contact with a conductor that is provided in contact with a region that functions as the source or drain of the semiconductor layer of the transistor in the functional circuit 51.
  • the wiring GBL can be said to be a wiring for electrically connecting one of the source or drain of the transistor in the functional circuit 51 in the functional layer 50 to the driver circuit 21 in the vertical direction.
  • the repeating unit 70 including the functional circuit 51 and the memory arrays 20[1] to 20[m] may be further stacked.
  • the memory device 300A of one embodiment of the present invention can have repeating units 70[1] to 70[p] (p is an integer of 2 or more) as shown in FIG. 19B.
  • the wiring GBL is connected to the functional layer 50 included in the repeating unit 70.
  • the wiring GBL may be provided as appropriate depending on the number of functional circuits 51.
  • OS transistors are stacked, and wiring that functions as bit lines is arranged in a vertical direction to the substrate surface on which the driver circuit 21 is provided.
  • the wiring that functions as bit lines extending from the memory array 20 in a vertical direction to the substrate surface, the length of the wiring between the memory array 20 and the driver circuit 21 can be shortened. This allows the parasitic capacitance of the bit lines to be significantly reduced.
  • the layer in which the memory array 20 is provided includes a functional layer 50 having a functional circuit 51 that has a function of amplifying and outputting the data potential held in the memory cell 10.
  • the slight potential difference of the wiring BL that functions as a bit line when reading data can be amplified to drive the sense amplifier 46 of the drive circuit 21. Since the circuits such as the sense amplifier can be miniaturized, the memory device 300 can be miniaturized. In addition, the memory device 300 can be operated even if the capacitance of the capacitive element 12 in the memory cell 10 is reduced.
  • the semiconductor device according to the present invention can also be used for a single-layer memory device having only memory array 20[1].
  • FIG. 20 Example of configuration of memory array 20 and functional circuit 51
  • the driver circuit 21 connected to wirings GBL (wirings GBL_A, GBL_B) connected to functional circuits 51 (functional circuits 51_A, 51_B) connected to memory cells 10 (memory cells 10_A, 10_B) connected to different wirings BL (wirings BL_A, BL_B) is illustrated.
  • a precharge circuit 71_A, a precharge circuit 71_B, a switch circuit 72_A, a switch circuit 72_B, and a write/read circuit 73 are illustrated.
  • Transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b are illustrated as functional circuits 51_A and 51_B.
  • the transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b illustrated in FIG. 20 are OS transistors, similar to the transistor 11 included in the memory cell 10.
  • the functional layer 50 including the functional circuit 51 can be stacked on the driver circuit 21, similar to the memory arrays 20[1] to 20[m].
  • Wiring BL_A is connected to the gate of transistor 52_a, and wiring BL_B is connected to the gate of transistor 52_b.
  • One of the sources or drains of transistors 53_a and 54_a is connected to wiring GBL_A.
  • One of the sources or drains of transistors 53_b and 54_b is connected to wiring GBL_B.
  • Wirings GBL_A and GBL_B are provided vertically like wirings BL_A and BL_B, and are connected to transistors in driver circuit 21. As shown in FIG. 20, a selection signal MUX, a control signal WE, or a control signal RE is applied to the gates of transistors 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b, respectively.
  • the transistors 81_1 to 81_6 and 82_1 to 82_4 constituting the sense amplifier 46, precharge circuit 71_A, and precharge circuit 71_B shown in FIG. 20 are composed of Si transistors.
  • the switches 83_A to 83_D constituting the switch circuit 72_A and switch circuit 72_B can also be composed of Si transistors.
  • One of the sources or drains of the transistors 53_a, 53_b, 54_a, and 54_b is connected to the transistors or switches constituting the precharge circuit 71_A, precharge circuit 71_B, sense amplifier 46, and switch circuit 72_A.
  • the precharge circuit 71_A has n-channel transistors 81_1 to 81_3.
  • the precharge circuit 71_A is a circuit for precharging the wiring BL_A and the wiring BL_B to an intermediate potential VPC that corresponds to a potential VDD/2 between a high power supply potential (VDD) and a low power supply potential (VSS) in response to a precharge signal provided to a precharge line PCL1.
  • VDD high power supply potential
  • VSS low power supply potential
  • the precharge circuit 71_B has n-channel transistors 81_4 to 81_6.
  • the precharge circuit 71_B is a circuit for precharging the wiring GBL_A and the wiring GBL_B to an intermediate potential VPC that corresponds to a potential VDD/2 between VDD and VSS in response to a precharge signal provided to the precharge line PCL2.
  • the sense amplifier 46 has p-channel transistors 82_1 and 82_2 and n-channel transistors 82_3 and 82_4 connected to the wiring VHH or wiring VLL.
  • the wiring VHH or wiring VLL is a wiring that has a function of providing VDD or VSS.
  • the transistors 82_1 to 82_4 are transistors that form an inverter loop.
  • the potentials of the precharged wirings BL_A and BL_B change by selecting memory cells 10_A and 10_B, and the potentials of the wirings GBL_A and GBL_B are set to VDD or VSS in response to the change.
  • the potentials of the wirings GBL_A and GBL_B can be output to the outside via the switches 83_C and 83_D, and the write/read circuit 73.
  • the wirings BL_A and BL_B, and the wirings GBL_A and GBL_B correspond to bit line pairs.
  • the write/read circuit 73 controls the writing of data signals according to the signal EN_data.
  • the switch circuit 72_A is a circuit for controlling the conduction state between the sense amplifier 46 and the wiring GBL_A and wiring GBL_B.
  • the switch circuit 72_A is switched on or off under the control of the switching signal CSEL1.
  • the switches 83_A and 83_B are n-channel transistors, the switching signal CSEL1 is on at a high level and off at a low level.
  • the switch circuit 72_B is a circuit for controlling the conduction state between the write/read circuit 73 and the bit line pair connected to the sense amplifier 46.
  • the switch circuit 72_B is switched on or off under the control of the switching signal CSEL2.
  • the switches 83_C and 83_D may operate in the same manner as the switches 83_A and 83_B.
  • the memory device 300 can be configured to connect the memory cell 10, the functional circuit 51, and the sense amplifier 46 via wiring BL and wiring GBL that are arranged in the vertical direction, which is the shortest distance.
  • the number of functional layers 50 having transistors that constitute the functional circuit 51 increases, the load on the wiring BL is reduced, which shortens the write time and makes it easier to read data.
  • each transistor in the functional circuits 51_A and 51_B is controlled in response to control signals WE, RE, and a selection signal MUX.
  • Each transistor can output the potential of the wiring BL to the driver circuit 21 via the wiring GBL in response to the control signal and selection signal.
  • the functional circuits 51_A and 51_B can function as sense amplifiers made up of OS transistors. With this configuration, a slight potential difference in the wiring BL can be amplified during reading to drive the sense amplifier 46 using Si transistors.
  • Example of memory cell configuration An example of the configuration of a memory cell 10 used in the memory device will be described with reference to FIG. 21A.
  • the X direction is parallel to the channel length direction of the illustrated transistor
  • the Y direction is perpendicular to the X direction
  • the Z direction is perpendicular to the X and Y directions.
  • the memory cell 10 includes a transistor 11 and a capacitor 12.
  • An insulator 285 is provided on the transistor 11, and an insulator 284 is provided on the insulator 285.
  • the insulators 285 and 284 may be made of an insulator that can be used for the insulator 216.
  • the transistor 11 has a similar structure to the transistor 200 described in the previous embodiment, and the same components are denoted by the same reference numerals. For details of the transistor 200, the previous embodiment can be referred to.
  • a conductor 240b is provided in contact with one of the source and drain (conductor 242b) of the transistor 11.
  • the conductor 240b is provided extending in the Z direction and functions as a wiring BL.
  • the capacitance element 12 has a conductor 153 on the conductor 242a, an insulator 154 on the conductor 153, and a conductor 160 (conductor 160a and conductor 160b) on the insulator 154.
  • At least a portion of conductor 153, insulator 154, and conductor 160 are disposed inside openings provided in insulators 275, 280, 282, 283, and 285, respectively.
  • the ends of conductors 153, 154, and 160 are located at least on insulator 282, and preferably on insulator 285.
  • Insulator 154 is disposed so as to cover the end of conductor 153. This allows electrical insulation between conductor 153 and conductor 160.
  • insulators 275, 280, 282, 283, and 285 are (i.e., the thicker one or more of insulators 275, 280, 282, 283, and 285 are), the larger the capacitance of capacitive element 12 can be. Increasing the capacitance per unit area of capacitive element 12 allows for miniaturization or high integration of the memory device.
  • the conductor 153 has a region that functions as one electrode (lower electrode) of the capacitance element 12.
  • the insulator 154 has a region that functions as a dielectric of the capacitance element 12.
  • the conductor 160 has a region that functions as the other electrode (upper electrode) of the capacitance element 12.
  • the upper part of the conductor 260 can be extended to function as the wiring PL shown in Figures 18A and 18B.
  • the capacitance element 12 constitutes a MIM (Metal-Insulator-Metal) capacitance.
  • the conductor 242a overlapping the oxide 230 functions as an electrode electrically connected to the conductor 153 of the capacitor 12.
  • the conductor 153 and the conductor 160 of the capacitance element 12 can each be formed using any of the various conductors that can be used for the conductor 260. It is preferable that the conductor 153 and the conductor 160 are each formed using a film formation method with good coating properties, such as the ALD method or the CVD method.
  • the conductor 153 can be made of titanium nitride or tantalum nitride formed using the ALD method or the CVD method.
  • the upper surface of conductor 242a contacts the lower surface of conductor 153.
  • the contact resistance between conductor 153 and conductor 242a can be reduced.
  • the conductor 160a may be made of titanium nitride formed using the ALD method or the CVD method, and the conductor 160b may be made of tungsten formed using the CVD method. If the adhesion of tungsten to the insulator 154 is sufficiently high, the conductor 160 may be a single layer structure of tungsten formed using the CVD method.
  • the insulator 154 of the capacitance element 12 is preferably made of a high-k material (a material with a high relative dielectric constant).
  • the insulator 154 is preferably formed using a film formation method with good coating properties, such as the ALD method or the CVD method.
  • high-dielectric constant (high-k) insulators examples include oxides, oxynitrides, oxynitrides, and nitrides that contain one or more metal elements selected from aluminum, hafnium, zirconium, and gallium. Silicon may also be contained in the oxides, oxynitrides, oxynitrides, or nitrides. Insulators made of the above materials may also be stacked.
  • examples of insulators made of high dielectric constant (high-k) materials include aluminum oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, oxynitrides having aluminum and hafnium, oxides having silicon and hafnium, oxynitrides having silicon and hafnium, oxides having silicon and zirconium, oxynitrides having silicon and zirconium, oxides having hafnium and zirconium, and oxynitrides having hafnium and zirconium.
  • high-k materials include aluminum oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, oxynitrides having aluminum and hafnium, oxides having silicon and hafnium, oxynitrides having silicon and hafnium, oxides having silicon and zirconium, oxynitrides having hafnium and zirconium.
  • insulators made of the above materials in a laminated structure, and it is preferable to use a laminated structure of a high dielectric constant (high-k) material and a material having a higher dielectric strength than the high dielectric constant (high-k) material.
  • a high dielectric constant (high-k) material for example, an insulator laminated in the order of zirconium oxide, aluminum oxide, and zirconium oxide can be used as the insulator 154.
  • an insulator laminated in the order of zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide can be used.
  • an insulator laminated in the order of hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide can be used.
  • a material that can have ferroelectricity may be used as the insulator 154.
  • materials that can have ferroelectricity include metal oxides such as hafnium oxide, zirconium oxide, and HfZrO x (X is a real number greater than 0).
  • materials that can have ferroelectricity include a material in which an element J1 (here, the element J1 is one or more selected from zirconium, silicon, aluminum, gadolinium, yttrium, lanthanum, strontium, etc.) is added to hafnium oxide.
  • the ratio of the number of atoms of hafnium atoms to the number of atoms of the element J1 can be set appropriately, and for example, the ratio of the number of atoms of hafnium atoms to the number of atoms of the element J1 may be set to 1:1 or close to 1:1.
  • materials that can have ferroelectricity include a material in which an element J2 (here, the element J2 is one or more selected from hafnium, silicon, aluminum, gadolinium, yttrium, lanthanum, strontium, etc.) is added to zirconium oxide.
  • the ratio of the number of zirconium atoms to the number of atoms of element J2 can be set appropriately, for example, the ratio of the number of zirconium atoms to the number of atoms of element J2 may be set to 1: 1 or close to 1.
  • piezoelectric ceramics having a perovskite structure such as lead titanate (PbTiO x ), barium strontium titanate (BST), strontium titanate, lead zirconate titanate (PZT), strontium bismuthate tantalate (SBT), bismuth ferrite (BFO), and barium titanate, may be used.
  • examples of materials that can have ferroelectricity include metal nitrides having element M1, element M2, and nitrogen.
  • element M1 is one or more selected from aluminum, gallium, indium, etc.
  • element M2 is one or more selected from boron, scandium, yttrium, lanthanum, cerium, neodymium, europium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, etc. It should be noted that the ratio of the number of atoms of element M1 to the number of atoms of element M2 can be set appropriately. Also, metal oxides having element M1 and nitrogen may have ferroelectricity even if they do not contain element M2.
  • examples of materials that can have ferroelectricity include materials in which element M3 is added to the above metal nitride.
  • element M3 is one or more selected from magnesium, calcium, strontium, zinc, cadmium, etc.
  • the ratio of the number of atoms of element M1, the number of atoms of element M2, and the number of atoms of element M3 can be set appropriately.
  • examples of materials that can have ferroelectricity include perovskite-type oxynitrides such as SrTaO 2 N and BaTaO 2 N, and GaFeO 3 with a ⁇ -alumina structure.
  • metal oxides and metal nitrides are given as examples, but the present invention is not limited to these.
  • metal oxynitrides in which nitrogen is added to the above-mentioned metal oxides, or metal oxynitrides in which oxygen is added to the above-mentioned metal nitrides, etc. may also be used.
  • a material that can have ferroelectricity for example, a mixture or compound made of multiple materials selected from the materials listed above can be used.
  • the insulator 154 can have a layered structure made of multiple materials selected from the materials listed above.
  • the crystal structure (characteristics) of the materials listed above can change not only depending on the film formation conditions but also on various processes, in this specification, not only materials that exhibit ferroelectricity are called ferroelectrics, but also materials that can have ferroelectricity.
  • a ferroelectric is an insulator that is polarized when an electric field is applied from the outside, and has the property that the polarization remains even when the electric field is made zero. For this reason, a nonvolatile memory element can be formed using a capacitance element (hereinafter sometimes referred to as a ferroelectric capacitor) that uses this material as a dielectric.
  • a nonvolatile memory element that uses a ferroelectric capacitor is sometimes called a FeRAM (Ferroelectric Random Access Memory), a ferroelectric memory, etc.
  • a ferroelectric memory has a transistor and a ferroelectric capacitor, and one of the source and drain of the transistor is electrically connected to one terminal of the ferroelectric capacitor. Therefore, when a ferroelectric capacitor is used as the capacitance element 12, the memory device shown in this embodiment functions as a ferroelectric memory.
  • the insulators 275, 280, 282, 283, and 285 function as barrier insulators, it is preferable to set the film thickness according to the barrier properties required for the semiconductor device.
  • the film thickness of the conductor 260 that functions as a gate electrode is determined according to the film thickness of the insulator 280, it is preferable to set the film thickness of the insulator 280 according to the film thickness of the conductor 260 required for the semiconductor device.
  • the film thickness of the insulator 285 may be set in the range of 50 nm to 250 nm, and the depth of the opening may be set to approximately 150 nm to 350 nm.
  • the capacitance element 12 By forming the capacitance element 12 in such a range, it is possible to provide the capacitance element 12 with sufficient capacitance, and to prevent the height of one layer from becoming excessively high in a semiconductor device in which multiple memory cell layers are stacked.
  • a configuration may be adopted in which the capacitance of the capacitance element provided in each memory cell is different in each of the multiple memory cell layers. In this configuration, for example, the film thickness of the insulator 285 provided in each memory cell layer may be different.
  • the sidewall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, or may be tapered.
  • the sidewall tapered By making the sidewall tapered, the coverage of the conductor 153 or the like provided in the opening of the insulator 285 or the like is improved, and defects such as voids can be reduced.
  • the conductor 242b superimposed on the oxide 230 functions as wiring that electrically connects to the conductor 240b.
  • the upper surface and side end of the conductor 242b are electrically connected to the conductor 240b extending in the Z direction.
  • the upper surface and side end of the conductor 242b are in contact with the conductor 240b.
  • the conductor 240b By directly contacting the conductor 240b with at least one of the upper surface and side end of the conductor 242b, there is no need to provide a separate electrode for connection, and the area occupied by the memory array can be reduced. In addition, the integration density of memory cells is improved, and the memory capacity of the storage device can be increased. Note that it is preferable that the conductor 240b contacts a part of the upper surface and the side end of the conductor 242b. By contacting multiple surfaces of the conductor 242b with the conductor 240b, the contact resistance between the conductor 240b and the conductor 242b can be reduced.
  • Conductor 240b is disposed within openings formed in insulators 216, 222, 275, 280, 282, 283, 285, and 284.
  • the insulator 241b is provided in contact with the side surface of the conductor 240b. Specifically, the insulator 241b is provided in contact with the inner walls of the openings of the insulators 216, 222, 275, 280, 282, 283, 285, and 284. The insulator 241b is also formed on the side surface of the oxide 230 that is formed to protrude into the opening. Here, at least a portion of the conductor 242b is exposed from the insulator 241b and is in contact with the conductor 240b. In other words, the conductor 240b is provided so as to fill the inside of the opening via the insulator 241b.
  • the top of the insulator 241b formed below the conductor 242b is preferably located below the top surface of the conductor 242b.
  • This configuration allows the conductor 240b to contact at least a portion of the side end of the conductor 242b.
  • the insulator 241b formed below the conductor 242b preferably has an area that contacts the side surface of the oxide 230. This configuration can prevent impurities such as water and hydrogen contained in the insulator 280 from entering the oxide 230 through the conductor 240b.
  • the sidewall of the opening may be perpendicular or approximately perpendicular to the upper surface of the insulator 222, or may be tapered. By making the sidewall tapered, the coverage of the insulator 241b and the like provided in the opening is improved.
  • the conductor 153 of the capacitance element 12 is in contact with the conductor 242a of the transistor 11, but the present invention is not limited to this.
  • a configuration may be used in which a conductor 240a is provided in the transistor 11 and the capacitance element 12 is provided on top of that.
  • an insulator 286 can be provided on the insulator 283, an insulator 287 can be provided on the insulator 286, and an insulator 288 can be provided on the insulator 287.
  • the insulators 286, 287, and 288 may be made of an insulator that can be used for the insulator 284.
  • Conductors 246a and 246b are provided so as to be embedded in the insulator 286.
  • Conductors 246a and 246b function as wiring or electrodes, and may be made of a conductor that can be used for the conductor 260.
  • a capacitor 12 is provided so as to be embedded in the insulator 287 and the insulator 288. The capacitor 12 shown in FIG.
  • the transistor 11 shown in FIG. 21B has a structure similar to that of FIG. 21A. Also, the transistor 11 shown in FIG. 21B has a conductor 240a, a conductor 240b, an insulator 241a, and an insulator 241b embedded in an insulator 280, similar to the transistor 200 shown in FIG. 1B, etc.
  • conductor 240a contacts conductor 242a
  • conductor 246a contacts conductor 240a
  • conductor 153 contacts conductor 246a. Therefore, conductor 153, which is the lower electrode of capacitance element 12, is electrically connected to conductor 242a, which is one of the source and drain of transistor 11, via conductor 246a and conductor 240a.
  • conductor 240b contacts conductor 242b
  • conductor 246b contacts conductor 240b
  • conductor 246b can be extended in the same layer to function as wiring BL.
  • the memory cells 10 shown in FIG. 21B are provided in a matrix in the same layer to form a memory array. Furthermore, without being limited to this, it may be configured to be extended in the Z direction, similar to conductor 240b shown in FIG. 21A.
  • the conductor 246a and the conductor 246b are configured to be formed in the same layer, but the present invention is not limited to this.
  • the conductor 246a may be configured to be provided in a layer above the conductor 246b.
  • an insulator 289 can be provided on the insulator 286, and an insulator 290 can be provided on the insulator 289.
  • the insulator 289 can be an insulator that can be used for the insulator 283, and the insulator 290 can be an insulator that can be used for the insulator 284.
  • a conductor 246a is provided so as to be embedded in the insulator 290.
  • the conductor 246a can be arranged overlapping the transistor 11 without interfering with the conductor 246b. Therefore, the capacitor 12 provided on the conductor 246a can be arranged overlapping the transistor 11.
  • the insulator 289 functions as an etching stopper when forming the conductor 246a. With this configuration, even if a part of the conductor 246a overlaps with the conductor 246b, the part of the conductor 246a can be prevented from contacting the conductor 246b.
  • the capacitance element 12 is configured to be provided on the transistor 11, but the present invention is not limited to this.
  • the capacitance element 12 may be configured to be provided below the transistor 11.
  • an insulator 215 can be provided under the insulator 216 as in FIG. 1B
  • an insulator 291 can be provided under the insulator 215, an insulator 292 can be provided under the insulator 291, and an insulator 293 can be provided under the insulator 292.
  • the insulators 291, 292, and 293 may be made of an insulator that can be used for the insulator 284.
  • a conductor 294 is provided so as to be embedded in the insulator 293.
  • the conductor 294 may be made of a conductor that functions as a wiring or an electrode and can be used for the conductor 260.
  • a capacitor 12 is provided so as to be embedded in the insulators 291 and 292.
  • the capacitor 12 shown in FIG. 22B has a structure similar to that of FIG. 21A.
  • a conductor 206 is provided so as to be embedded in the insulators 215 and 216.
  • the conductor 206 may be formed, for example, by using a dual damascene method.
  • Conductor 240c and insulator 241c are provided so as to be embedded in insulator 222, insulator 275, insulator 280, insulator 282, and insulator 283.
  • Conductor 240c can be formed in the same process as conductor 240a and conductor 240b, and insulator 241c can be formed in the same process as insulator 241a and insulator 241b.
  • conductor 240a contacts conductor 242a
  • conductor 246a contacts conductor 240a
  • conductor 240c contacts conductor 246a
  • conductor 206 contacts conductor 240c
  • conductor 160 contacts conductor 206.
  • conductor 160 which is the upper electrode of capacitance element 12
  • conductor 242a which is one of the source and drain of transistor 11, via conductor 206, conductor 240c, conductor 246a, and conductor 240a.
  • the conductor 294 contacts the conductor 153.
  • the conductor 153 can function as the wiring PL.
  • the capacitor 12 can be arranged overlapping under the transistor 11.
  • the memory device 300 has a driver circuit 21, which is a layer having transistors 310 and the like, a functional layer 50, which is a layer having transistors 52, 53, 55, and the like on the driver circuit 21, and memory arrays 20[1] to 20[m] on the functional layer 50.
  • transistors 52, 53, and 55 are shown in FIG. 23, transistors 54_a, 54_b, and the like may also be provided in the functional layer 50.
  • transistor 52 corresponds to the above-mentioned transistors 52_a and 52_b
  • transistor 53 corresponds to the above-mentioned transistors 53_a and 53_b
  • transistor 55 corresponds to the above-mentioned transistors 55_a and 55_b.
  • a transistor 310 included in the driver circuit 21 is illustrated.
  • the transistor 310 is provided on a substrate 311, and has a conductor 316 functioning as a gate, an insulator 315 functioning as a gate insulator, a semiconductor region 313 including a part of the substrate 311, and a low-resistance region 314a and a low-resistance region 314b functioning as a source region or a drain region.
  • the transistor 310 may be either a p-channel transistor or an n-channel transistor.
  • a single crystal silicon substrate can be used as the substrate 311.
  • the semiconductor region 313 (part of the substrate 311) in which the channel is formed has a convex shape. Also, the side and top surfaces of the semiconductor region 313 are covered with a conductor 316 via an insulator 315. Note that the conductor 316 may be made of a material that adjusts the work function. Such a transistor 310 is also called a Fin-type transistor because it uses the convex portion of the semiconductor substrate. Note that an insulator that contacts the top of the convex portion and functions as a mask for forming the convex portion may be provided. Also, here, a case where a convex portion is formed by processing a part of the semiconductor substrate is shown, but a semiconductor film having a convex shape may be formed by processing an SOI (Silicon on Insulator) substrate.
  • SOI Silicon on Insulator
  • transistor 310 shown in FIG. 23 is just an example, and the structure is not limited to this, and an appropriate transistor can be used depending on the circuit configuration or driving method.
  • a wiring layer having an interlayer film, wiring, plugs, etc. may be provided between each structure. Also, multiple wiring layers may be provided depending on the design. Also, in this specification, the wiring and the plug electrically connected to the wiring may be integrated. That is, there are cases where a part of the conductor functions as the wiring, and cases where a part of the conductor functions as the plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are stacked in this order as an interlayer film.
  • Conductors 328 and the like are embedded in the insulators 320 and 322.
  • Conductors 330 and the like are embedded in the insulators 324 and 326.
  • Conductors 328 and 330 function as contact plugs or wiring.
  • the insulator functioning as an interlayer film may also function as a planarizing film that covers the uneven shape underneath.
  • the top surface of the insulator 322 may be planarized by a planarization process using a chemical mechanical polishing (CMP) method or the like to improve flatness.
  • CMP chemical mechanical polishing
  • FIG. 23 also illustrates transistors 52, 53, and 55 in the functional layer 50.
  • the transistors 52, 53, and 55 have the same configuration as the transistor 11 in the memory cell 10.
  • the sources and drains of the transistors 52, 53, and 55 are connected in series.
  • An insulator 208 is provided on the transistors 52, 53, and 55, and a conductor 207 is provided in an opening formed in the insulator 208. Furthermore, an insulator 210 is provided on the insulator 208, and a conductor 209 is provided in an opening formed in the insulator 210. Furthermore, an insulator 212 is provided on the insulator 210, and an insulator 214 is provided on the insulator 212. A part of the conductor 240b provided in the memory array 20[1] is embedded in the openings formed in the insulators 212 and 214.
  • the insulators 208 and 210 can be made of an insulator that can be used for the insulator 216. Furthermore, the insulator 212 can be made of an insulator that can be used for the insulator 283. Furthermore, the insulator 214 can be made of an insulator that can be used for the insulator 282.
  • the bottom surface of conductor 207 is in contact with the top surface of conductor 260 of transistor 52.
  • the top surface of conductor 207 is in contact with the bottom surface of conductor 209.
  • the top surface of conductor 209 is in contact with the bottom surface of conductor 240b provided in memory array 20[1]. With this configuration, conductor 240b, which corresponds to wiring BL, can be electrically connected to the gate of transistor 52.
  • Memory arrays 20[1] to 20[m] each include a plurality of memory cells 10.
  • the conductor 240b of each memory cell 10 is electrically connected to the conductor 240b in the upper layer and the conductor 240b in the lower layer.
  • the conductor 240b is shared between adjacent memory cells 10.
  • the configuration on the right side and the configuration on the left side are arranged symmetrically with respect to the conductor 240b.
  • multiple memory arrays 20[1] to 20[m] can be stacked.
  • the memory arrays 20[1] to 20[m] of the memory array 20 can be arranged in the vertical direction of the substrate surface on which the drive circuit 21 is provided, thereby improving the memory density of the memory cells 10.
  • the memory array 20 can also be manufactured using the same manufacturing process repeatedly in the vertical direction.
  • the storage device 300 can reduce the manufacturing cost of the memory array 20.
  • the chip 1200 shown in Figures 24A and 24B has multiple circuits (systems) implemented on it. This technology of integrating multiple circuits (systems) on a single chip is sometimes called a system on chip (SoC).
  • SoC system on chip
  • the chip 1200 has a CPU 1211, a GPU 1212, one or more analog computing units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, etc.
  • Bumps (not shown) are provided on the chip 1200, and as shown in FIG. 24B, they are connected to the first surface of the package substrate 1201.
  • a plurality of bumps 1202 are provided on the back surface of the first surface of the package substrate 1201, and they are connected to the motherboard 1203.
  • the motherboard 1203 may be provided with a storage device such as a DRAM 1221 or a flash memory 1222.
  • a storage device such as a DRAM 1221 or a flash memory 1222.
  • the DOSRAM described in the previous embodiment may be used for the DRAM 1221. This allows the DRAM 1221 to consume less power, operate at a higher speed, and have a larger capacity.
  • the CPU 1211 preferably has multiple CPU cores.
  • the GPU 1212 preferably has multiple GPU cores.
  • the CPU 1211 and the GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200.
  • the memory may be the DOSRAM described above.
  • the GPU 1212 is suitable for parallel calculation of a large amount of data, and may be used for image processing or multiply-and-accumulate operations. By providing the GPU 1212 with an image processing circuit or a multiply-and-accumulate circuit using the OS transistor described in the previous embodiment, it becomes possible to perform image processing or multiply-and-accumulate operations with low power consumption.
  • the wiring between the CPU 1211 and GPU 1212 can be shortened, and data can be transferred from the CPU 1211 to the GPU 1212, data can be transferred between the memories of the CPU 1211 and GPU 1212, and the results of calculations performed by the GPU 1212 can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog calculation unit 1213 has one or both of an A/D (analog/digital) conversion circuit and a D/A (digital/analog) conversion circuit.
  • the analog calculation unit 1213 may also be provided with the above-mentioned product-sum calculation circuit.
  • the memory controller 1214 has a circuit that functions as a controller for the DRAM 1221 and a circuit that functions as an interface for the flash memory 1222.
  • the interface 1215 has an interface circuit with externally connected devices such as a display device, speaker, microphone, camera, and controller. Controllers include mice, keyboards, and game controllers. Examples of such interfaces that can be used include USB (Universal Serial Bus) and HDMI (registered trademark) (High-Definition Multimedia Interface).
  • USB Universal Serial Bus
  • HDMI registered trademark
  • the network circuit 1216 has a circuit for connecting to a network such as a LAN (Local Area Network). It may also have a circuit for network security.
  • a network such as a LAN (Local Area Network). It may also have a circuit for network security.
  • circuits can be formed in chip 1200 using the same manufacturing process. Therefore, even if the number of circuits required for chip 1200 increases, there is no need to increase the manufacturing process, and chip 1200 can be manufactured at low cost.
  • the package substrate 1201 on which the chip 1200 having the GPU 1212 is provided, the motherboard 1203 on which the DRAM 1221 and the flash memory 1222 are provided, can be called a GPU module 1204.
  • the GPU module 1204 has the chip 1200 using SoC technology, so its size can be reduced. In addition, because it excels in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game consoles.
  • the product-sum calculation circuit using the GPU 1212 can execute techniques such as deep neural networks (DNN), convolutional neural networks (CNN), recurrent neural networks (RNN), autoencoders, deep Boltzmann machines (DBM), and deep belief networks (DBN), so the chip 1200 can be used as an AI chip, and the GPU module 1204 can be used as an AI system module.
  • DNN deep neural networks
  • CNN convolutional neural networks
  • RNN recurrent neural networks
  • DBM deep Boltzmann machines
  • DBN deep belief networks
  • Embodiment 5 electronic components, electronic devices, large scale computers, space equipment, and data centers (also referred to as data centers (DCs)) in which the semiconductor device described in the above embodiment can be used will be described.
  • the electronic components, electronic devices, large scale computers, space equipment, and data centers using the semiconductor device of one embodiment of the present invention are effective in achieving high performance, such as low power consumption.
  • FIG. 25A shows a perspective view of a substrate (mounting substrate 704) on which an electronic component 700 is mounted.
  • the electronic component 700 shown in FIG. 25A has a semiconductor device 710 in a mold 711. In FIG. 25A, some parts are omitted in order to show the inside of the electronic component 700.
  • the electronic component 700 has lands 712 on the outside of the mold 711. The lands 712 are electrically connected to electrode pads 713, and the electrode pads 713 are electrically connected to the semiconductor device 710 via wires 714.
  • the electronic component 700 is mounted on, for example, a printed circuit board 702. A plurality of such electronic components are combined and electrically connected on the printed circuit board 702 to complete the mounting substrate 704.
  • the semiconductor device 710 also has a drive circuit layer 715 and a memory layer 716.
  • the memory layer 716 is configured by stacking a plurality of memory cell arrays.
  • the stacked configuration of the drive circuit layer 715 and the memory layer 716 can be a monolithic stacked configuration. In the monolithic stacked configuration, the layers can be connected without using through-electrode technology such as TSV (Through Silicon Via) and bonding technology such as Cu-Cu direct bonding.
  • TSV Through Silicon Via
  • bonding technology such as Cu-Cu direct bonding.
  • the memory as an on-chip memory, it is possible to reduce the size of the connection wiring, etc., compared to technologies that use through electrodes such as TSVs, and it is also possible to increase the number of connection pins. Increasing the number of connection pins enables parallel operation, making it possible to improve the memory bandwidth (also called memory bandwidth).
  • the multiple memory cell arrays in the memory layer 716 are formed using OS transistors and the multiple memory cell arrays are monolithically stacked.
  • OS transistors By configuring the multiple memory cell arrays as monolithic stacks, it is possible to improve either or both of the memory bandwidth and the memory access latency.
  • the bandwidth is the amount of data transferred per unit time
  • the access latency is the time from access to the start of data exchange.
  • Si transistors when Si transistors are used for the memory layer 716, it is difficult to configure the memory layer 716 as a monolithic stack compared to OS transistors. Therefore, it can be said that OS transistors have a superior structure to Si transistors in the monolithic stack configuration.
  • the semiconductor device 710 may also be referred to as a die.
  • a die refers to a chip piece obtained during the manufacturing process of a semiconductor chip by forming a circuit pattern on, for example, a disk-shaped substrate (also called a wafer) and cutting it into cubes.
  • Semiconductor materials that can be used for the die include, for example, silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also called a silicon wafer
  • a silicon die obtained from a silicon substrate (also called a silicon wafer) may be called a silicon die.
  • Electronic component 730 is an example of a SiP (System in Package) or MCM (Multi Chip Module).
  • Electronic component 730 has an interposer 731 provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and multiple semiconductor devices 710 provided on interposer 731.
  • semiconductor device 710 is used as a high bandwidth memory (HBM).
  • semiconductor device 735 can be used in integrated circuits such as a central processing unit (CPU), a graphics processing unit (GPU), or a field programmable gate array (FPGA).
  • CPU central processing unit
  • GPU graphics processing unit
  • FPGA field programmable gate array
  • the package substrate 732 may be, for example, a ceramic substrate, a plastic substrate, or a glass epoxy substrate.
  • the interposer 731 may be, for example, a silicon interposer or a resin interposer.
  • the interposer 731 has multiple wirings and functions to electrically connect multiple integrated circuits with different terminal pitches.
  • the multiple wirings are provided in a single layer or multiple layers.
  • the interposer 731 also functions to electrically connect the integrated circuits provided on the interposer 731 to electrodes provided on the package substrate 732.
  • the interposer is sometimes called a "rewiring substrate” or "intermediate substrate.”
  • a through electrode is provided in the interposer 731, and the integrated circuits and the package substrate 732 are electrically connected using the through electrode.
  • a TSV can also be used as the through electrode.
  • the interposer that implements the HBM requires fine, high-density wiring. For this reason, it is preferable to use a silicon interposer for the interposer that implements the HBM.
  • silicon interposers Furthermore, in SiP and MCM using silicon interposers, deterioration in reliability due to differences in the expansion coefficient between the integrated circuit and the interposer is unlikely to occur. Furthermore, since the surface of the silicon interposer is highly flat, poor connection between the integrated circuit mounted on the silicon interposer and the silicon interposer is unlikely to occur. In particular, it is preferable to use silicon interposers in 2.5D packages (2.5-dimensional mounting) in which multiple integrated circuits are arranged horizontally on the interposer.
  • a composite structure may be used that combines a memory cell array stacked using TSVs and a monolithic stacking memory cell array.
  • a heat sink may be provided overlapping the electronic component 730.
  • electrodes 733 may be provided on the bottom of the package substrate 732.
  • FIG. 25B shows an example in which the electrodes 733 are formed from solder balls. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be achieved.
  • the electrodes 733 may also be formed from conductive pins. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be achieved.
  • the electronic component 730 can be mounted on other substrates using various mounting methods, including but not limited to BGA and PGA.
  • mounting methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), QFJ (Quad Flat J-leaded package), and QFN (Quad Flat Non-leaded package).
  • FIG. 26A a perspective view of an electronic device 6500 is shown in FIG. 26A.
  • the electronic device 6500 shown in FIG. 26A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, a control device 6509, and the like.
  • the control device 6509 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6502, the control device 6509, and the like.
  • the electronic device 6600 shown in FIG. 26B is an information terminal that can be used as a notebook personal computer.
  • the electronic device 6600 includes a housing 6611, a keyboard 6612, a pointing device 6613, an external connection port 6614, a display portion 6615, a control device 6616, and the like.
  • the control device 6616 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6615, the control device 6616, and the like. Note that the use of the semiconductor device of one embodiment of the present invention for the above-described control device 6509 and control device 6616 is preferable because power consumption can be reduced.
  • Fig. 26C shows a perspective view of the large scale computer 5600.
  • the large scale computer 5600 shown in Fig. 26C has a rack 5610 housing a plurality of rack-mounted computers 5620.
  • the large scale computer 5600 may also be called a supercomputer.
  • Computer 5620 can be configured, for example, as shown in the perspective view of FIG. 26D.
  • computer 5620 has motherboard 5630, which has multiple slots 5631 and multiple connection terminals.
  • PC card 5621 is inserted into slot 5631.
  • PC card 5621 has connection terminals 5623, 5624, and 5625, each of which is connected to motherboard 5630.
  • PC card 5621 shown in FIG. 26E is an example of a processing board equipped with a CPU, a GPU, a storage device, and the like.
  • PC card 5621 has board 5622.
  • Board 5622 also has connection terminal 5623, connection terminal 5624, connection terminal 5625, semiconductor device 5626, semiconductor device 5627, semiconductor device 5628, and connection terminal 5629.
  • FIG. 26E illustrates semiconductor devices other than semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628, but for those semiconductor devices, the explanation of semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628 described below may be referred to.
  • connection terminal 5629 has a shape that allows it to be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • An example of the standard for the connection terminal 5629 is PCIe.
  • Connection terminals 5623, 5624, and 5625 can be interfaces for supplying power to PC card 5621, inputting signals, and the like. They can also be interfaces for outputting signals calculated by PC card 5621, and the like. Examples of standards for connection terminals 5623, 5624, and 5625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). In addition, when a video signal is output from connection terminals 5623, 5624, and 5625, examples of standards for each include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and the semiconductor device 5626 and the board 5622 can be electrically connected by inserting the terminal into a socket (not shown) provided on the board 5622.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 can be electrically connected by, for example, soldering the terminals to wiring provided on the board 5622 using a reflow method.
  • Examples of the semiconductor device 5627 include an FPGA, a GPU, and a CPU.
  • the electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 can be electrically connected by, for example, soldering the terminals to wiring provided on the board 5622 using a reflow method.
  • An example of the semiconductor device 5628 is a memory device.
  • the electronic component 700 can be used as the semiconductor device 5628.
  • the mainframe computer 5600 can also function as a parallel computer. By using the mainframe computer 5600 as a parallel computer, it is possible to perform large-scale calculations required for artificial intelligence learning and inference, for example.
  • the semiconductor device of one embodiment of the present invention can be suitably used in space equipment, such as equipment for processing and storing data.
  • the semiconductor device of one embodiment of the present invention can include an OS transistor.
  • the OS transistor has small changes in electrical characteristics due to radiation exposure.
  • the OS transistor has high resistance to radiation and can be preferably used in an environment where radiation may be incident.
  • the OS transistor can be preferably used in outer space.
  • FIG. 27 shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 has a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807.
  • FIG. 27 shows a planet 6804 in outer space.
  • outer space refers to an altitude of 100 km or more, for example, but the outer space described in this specification may also include the thermosphere, mesosphere, and stratosphere.
  • the secondary battery 6805 may be provided with a battery management system (also called BMS) or a battery control circuit.
  • BMS battery management system
  • the use of OS transistors in the above-mentioned battery management system or battery control circuit is preferable because it has low power consumption and high reliability even in space.
  • outer space is an environment with radiation levels 100 times higher than on Earth.
  • radiation include electromagnetic waves (electromagnetic radiation) such as X-rays and gamma rays, as well as particle radiation such as alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, and meson rays.
  • the power required for the operation of the satellite 6800 is generated.
  • the amount of power generated is small. Therefore, there is a possibility that the power required for the operation of the satellite 6800 will not be generated.
  • the solar panel may be called a solar cell module.
  • Satellite 6800 can generate a signal.
  • the signal is transmitted via antenna 6803, and can be received, for example, by a receiver installed on the ground or by another satellite.
  • the position of the receiver that received the signal can be measured.
  • satellite 6800 can constitute a satellite positioning system.
  • the control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using, for example, one or more of a CPU, a GPU, and a storage device.
  • a semiconductor device according to one embodiment of the present invention is preferably used for the control device 6807.
  • an OS transistor Compared to a Si transistor, an OS transistor has smaller fluctuations in electrical characteristics due to radiation exposure. In other words, an OS transistor has high reliability even in an environment where radiation may be incident, and can be preferably used.
  • the artificial satellite 6800 can also be configured to have a sensor. For example, by configuring it to have a visible light sensor, the artificial satellite 6800 can have the function of detecting sunlight reflected off an object on the ground. Or, by configuring it to have a thermal infrared sensor, the artificial satellite 6800 can have the function of detecting thermal infrared rays emitted from the earth's surface. From the above, the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is given as an example of space equipment, but the present invention is not limited to this.
  • a semiconductor device according to one embodiment of the present invention can be suitably used in space equipment such as a spaceship, a space capsule, or a space probe.
  • OS transistors As explained above, compared to Si transistors, OS transistors have the advantages of being able to achieve a wider memory bandwidth and having higher radiation resistance.
  • the semiconductor device can be suitably used in a storage system applied to a data center or the like.
  • the data center is required to perform long-term management of data, such as by ensuring the immutability of the data.
  • it is necessary to increase the size of the building for example, by installing storage and servers for storing a huge amount of data, by securing a stable power source for holding the data, or by securing cooling equipment required for holding the data.
  • a semiconductor device By using a semiconductor device according to one embodiment of the present invention in a storage system applied to a data center, it is possible to reduce the power required to store data and to miniaturize the semiconductor device that stores the data. This makes it possible to miniaturize the storage system, miniaturize the power source for storing data, and reduce the scale of cooling equipment. This makes it possible to save space in the data center.
  • the semiconductor device of one embodiment of the present invention consumes less power, and therefore heat generation from the circuit can be reduced. This reduces adverse effects of heat generation on the circuit itself, peripheral circuits, and modules. Furthermore, by using the semiconductor device of one embodiment of the present invention, a data center that operates stably even in a high-temperature environment can be realized. This improves the reliability of the data center.
  • Figure 28 shows a storage system applicable to a data center.
  • the storage system 7000 shown in Figure 28 has multiple servers 7001sb as hosts 7001 (illustrated as Host Computer). It also has multiple storage devices 7003md as storage 7003 (illustrated as Storage).
  • the host 7001 and storage 7003 are shown connected via a storage area network 7004 (illustrated as SAN: Storage Area Network) and a storage control circuit 7002 (illustrated as Storage Controller).
  • SAN Storage Area Network
  • the host 7001 corresponds to a computer that accesses data stored in the storage 7003.
  • the hosts 7001 may be connected to each other via a network.
  • Storage 7003 uses flash memory to reduce data access speed, that is, the time required to store and output data, but this time is significantly longer than the time required by DRAM that can be used as cache memory in storage 7003.
  • cache memory is usually provided in storage 7003 to reduce the time required to store and output data.
  • the above-mentioned cache memory is used in the storage control circuit 7002 and the storage 7003. Data exchanged between the host 7001 and the storage 7003 is stored in the cache memory in the storage control circuit 7002 and the storage 7003, and then output to the host 7001 or the storage 7003.
  • OS transistors as transistors for storing data in the above-mentioned cache memory and configuring them to hold a potential according to the data, it is possible to reduce the frequency of refreshes and lower power consumption.
  • memory cell arrays in a stacked structure, it is possible to reduce the size of the storage.
  • the application of the semiconductor device of one embodiment of the present invention to any one or more selected from electronic components, electronic devices, mainframe computers, space equipment, and data centers is expected to have an effect of reducing power consumption. Therefore, while energy demand is expected to increase with the improvement in performance or high integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention can also reduce emissions of greenhouse gases such as carbon dioxide (CO 2 ). In addition, the semiconductor device of one embodiment of the present invention is effective as a measure against global warming because of its low power consumption.
  • CO 2 greenhouse gases
  • ADDR signal, BL[1]: wiring, BL[j]: wiring, BL[n]: wiring, BL_A: wiring, BL_B: wiring, BL: wiring, BW: signal, CE: signal, CLK: signal, EN_data: signal, GBL_A: wiring, GBL_B: wiring, GBL: wiring, GW: signal, MUX: selection signal, PL[1]: wiring, PL[i]: wiring, PL[m]: Wiring, PL: wiring, RDA: signal, RE: control signal, VHH: wiring, VLL: wiring, VPC: intermediate potential, WAKE: signal, WDA: signal, WE: control signal, WL[1]: wiring, WL[i]: wiring, WL[m]: wiring, WL: wiring, 10[1,1]: memory cell, 10[i,j]: memory cell, 10[m,n]: memory cell, 10_A: memory recell, 10_B: memory cell, 10: memory cell, 11: transistor, 12: capac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。 基板上の第1の絶縁体と、第1の絶縁体上の第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、第2の絶縁体上に配置され、第3の絶縁体を覆う酸化物半導体と、酸化物半導体上の第1の導電体 及び第2の導電体と、第1の導電体、及び第2の導電体上に配置される第4の絶縁体と、酸化物半導体上に配置される第5の絶縁体と、第5の絶縁体上に配置される、第3の導電体と、を有し、第1の導電体と第2の導電体の間の領域において、第2の絶縁体、及び第4の絶縁体は、酸化物半導体に達し、且つ酸化物半導体と重畳しない領域において第1の絶縁体に達する開口を有し、第5の 絶縁体、及び第3の導電体は、開口内に配置され、チャネル幅方向の断面視において、第3の絶縁体の高さは、第3の絶縁体の幅より長く、開口内の酸化物半導体に重畳しない領域において、第3 の導電体の下面は、酸化物半導体の下面より下に位置する。

Description

半導体装置、及び記憶装置
 本発明の一態様は、酸化物半導体を用いた半導体装置、記憶装置、及び電子機器に関する。また、本発明の一態様は、上記半導体装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサ)、入出力装置(例えば、タッチパネル)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有するといえる場合がある。
 近年、半導体装置の開発が進められ、LSI、CPU、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSI、CPU、メモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)、画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、特許文献1には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。例えば、特許文献3及び非特許文献1では、酸化物半導体膜を用いる第1のトランジスタと、酸化物半導体膜を用いる第2のトランジスタとを積層させることで、メモリセルを複数重畳して設けることにより、集積回路の高密度化を図る技術が開示されている。また、例えば、特許文献4のように、酸化物半導体膜を用いるトランジスタのチャネルを縦方向に配置し、集積回路の高密度化を図る技術も開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2021/053473号 特開2013−211537号公報
M.Oota et.al,"3D−Stacked CAAC−In−Ga−Zn Oxide FETs with Gate Length of 72nm",IEDM Tech.Dig.,2019,pp.50−53
 本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一とする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い半導体装置を提供することを課題の一とする。または、本発明の一態様は、トランジスタの電気特性のばらつきが少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、信頼性が高い半導体装置を提供することを課題の一とする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、新規の半導体装置を提供することを課題の一とする。または、本発明の一態様は、生産性の高い半導体装置の作製方法を提供することを課題の一とする。または、本発明の一態様は、新規の半導体装置の作製方法を提供することを課題の一とする。
 または、本発明の一態様は、微細化または高集積化が可能な記憶装置を提供することを課題の一とする。または、本発明の一態様は、記憶容量が大きい記憶装置を提供することを課題の一とする。または、本発明の一態様は、動作速度が速い記憶装置を提供することを課題の一とする。または、本発明の一態様は、消費電力が少ない記憶装置を提供することを課題の一とする。または、本発明の一態様は、新規な記憶装置を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、基板上の第1の絶縁体と、第1の絶縁体上の第2の絶縁体と、第2の絶縁体上の第3の絶縁体と、第2の絶縁体上に配置され、第3の絶縁体を覆う酸化物半導体と、酸化物半導体上の第1の導電体及び第2の導電体と、第1の導電体、及び第2の導電体上に配置される第4の絶縁体と、酸化物半導体上に配置される第5の絶縁体と、第5の絶縁体上に配置される、第3の導電体と、を有し、第1の導電体と第2の導電体の間の領域において、第2の絶縁体、及び第4の絶縁体は、酸化物半導体に達し、且つ酸化物半導体と重畳しない領域において第1の絶縁体に達する開口を有し、第5の絶縁体、及び第3の導電体は、開口内に配置され、チャネル幅方向の断面視において、第3の絶縁体の高さは、第3の絶縁体の幅より長く、開口内の酸化物半導体に重畳しない領域において、第3の導電体の下面は、酸化物半導体の下面より下に位置する、半導体装置である。
 上記において、開口内において、第5の絶縁体は、第1の絶縁体に接し、開口内の酸化物半導体に重畳しない領域における第5の絶縁体の膜厚は、第2の絶縁体の膜厚より薄い、ことが好ましい。
 また、上記において、平面視において、開口における第4の絶縁体の側面は、第1の導電体の側面、及び第2の導電体の側面と一致または概略一致する、ことが好ましい。
 また、上記において、チャネル幅方向の断面視において、第3の絶縁体の高さは、第3の絶縁体の幅の2倍以上20倍以下である、ことが好ましい。
 また、上記において、第1の導電体は、トランジスタのソース電極及びドレイン電極の一方として機能し、第2の導電体は、トランジスタのソース電極及びドレイン電極の他方として機能し、第3の導電体は、トランジスタのゲート電極として機能する、ことが好ましい。
 また、上記において、チャネル幅方向の断面視において、第3の絶縁体の一方の側面で、酸化物半導体と第3の導電体が第5の絶縁体を挟んで対向し、第3の絶縁体の他方の側面で、酸化物半導体と第3の導電体が第5の絶縁体を挟んで対向する、ことが好ましい。
 また、上記において、チャネル幅方向の断面視において、第1の導電体は、第3の絶縁体の一方の側面側、及び他方の側面側において、酸化物半導体と接し、第2の導電体は、第3の絶縁体の一方の側面側、及び他方の側面側において、酸化物半導体と接する、ことが好ましい。
 また、本発明の他の一態様は、上記の半導体装置と、容量素子と、を有し、容量素子の一方の電極が、半導体装置の第1の導電体と電気的に接続される、記憶装置である。
 また、上記において、容量素子は、第3の導電体上に配置され、容量素子の少なくとも一部は、酸化物半導体、及び第3の導電体と重畳する、ことが好ましい。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供できる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供できる。または、本発明の一態様により、動作速度が速い半導体装置を提供できる。または、本発明の一態様により、トランジスタの電気特性のばらつきが少ない半導体装置を提供できる。または、本発明の一態様により、信頼性が高い半導体装置を提供できる。または、本発明の一態様により、オン電流が大きい半導体装置を提供できる。または、本発明の一態様により、消費電力が少ない半導体装置を提供できる。または、本発明の一態様により、新規の半導体装置を提供できる。または、本発明の一態様により、生産性の高い半導体装置の作製方法を提供できる。または、本発明の一態様により、新規の半導体装置の作製方法を提供できる。
 または、本発明の一態様により、微細化または高集積化が可能な記憶装置を提供できる。または、本発明の一態様により、記憶容量が大きい記憶装置を提供できる。または、本発明の一態様により、動作速度が速い記憶装置を提供できる。または、本発明の一態様により、消費電力が少ない記憶装置を提供できる。または、本発明の一態様により、新規な記憶装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、半導体装置の一例を示す平面図である。図1B乃至図1Dは、半導体装置の一例を示す断面図である。
図2A及び図2Bは、半導体装置の一例を示す断面図である。
図3A乃至図3Cは、半導体装置の一例を示す断面図である。
図4A乃至図4Cは、半導体装置の一例を示す断面図である。
図5Aは、半導体装置の一例を示す平面図である。図5B乃至図5Dは、半導体装置の一例を示す断面図である。
図6Aは、半導体装置の一例を示す平面図である。図6B乃至図6Dは、半導体装置の一例を示す断面図である。
図7Aは、半導体装置の作製方法の一例を示す平面図である。図7B乃至図7Dは、半導体装置の作製方法の一例を示す断面図である。
図8Aは、半導体装置の作製方法の一例を示す平面図である。図8B乃至図8Dは、半導体装置の作製方法の一例を示す断面図である。
図9Aは、半導体装置の作製方法の一例を示す平面図である。図9B乃至図9Dは、半導体装置の作製方法の一例を示す断面図である。
図10Aは、半導体装置の作製方法の一例を示す平面図である。図10B乃至図10Dは、半導体装置の作製方法の一例を示す断面図である。
図11Aは、半導体装置の作製方法の一例を示す平面図である。図11B乃至図11Dは、半導体装置の作製方法の一例を示す断面図である。
図12Aは、半導体装置の作製方法の一例を示す平面図である。図12B乃至図12Dは、半導体装置の作製方法の一例を示す断面図である。
図13Aは、半導体装置の作製方法の一例を示す平面図である。図13B乃至図13Dは、半導体装置の作製方法の一例を示す断面図である。
図14Aは、半導体装置の作製方法の一例を示す平面図である。図14B乃至図14Dは、半導体装置の作製方法の一例を示す断面図である。
図15Aは、半導体装置の作製方法の一例を示す平面図である。図15B乃至図15Dは、半導体装置の作製方法の一例を示す断面図である。
図16Aは、半導体装置の作製方法の一例を示す平面図である。図16B乃至図16Dは、半導体装置の作製方法の一例を示す断面図である。
図17は、記憶装置の一例を示すブロック図である。
図18A及び図18Bは、記憶装置の一例を示す模式図及び回路図である。
図19A及び図19Bは、記憶装置の一例を示す模式図である。
図20は、記憶装置の一例を示す回路図である。
図21A及び図21Bは、記憶装置の一例を示す断面図である。
図22A及び図22Bは、記憶装置の一例を示す断面図である。
図23は、記憶装置の一例を示す断面図である。
図24A及び図24Bは半導体装置の一例を示す図である。
図25A及び図25Bは、電子部品の一例を示す図である。
図26A及び図26Bは、電子機器の一例を示す図であり、図26C乃至図26Eは、大型計算機の一例を示す図である。
図27は、宇宙用機器の一例を示す図である。
図28は、データセンターに適用可能なストレージシステムの一例を示す図である。
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。
 また、特に平面図(「上面図」ともいう)、または斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線の記載を省略する場合がある。
 なお、本明細書等において、「第1」、「第2」という序数詞は、便宜上用いるものであり、構成要素の数、または、構成要素の順序(例えば、工程順、または積層順)を限定するものではない。また、本明細書のある箇所において構成要素に付す序数詞と、本明細書の他の箇所、または特許請求の範囲において、当該構成要素に付す序数詞と、が一致しない場合がある。
 なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。また、「導電体」という用語は、場合によっては、または、状況に応じて、「導電層」という用語、または「導電膜」という用語に、互いに入れ替えることが可能である。また、「絶縁体」という用語は、場合によっては、または、状況に応じて、「絶縁層」という用語、または「絶縁膜」という用語に、互いに入れ替えることが可能である。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 開口とは、例えば、溝、スリットなども含まれる。また、開口が形成された領域を開口部と記す場合がある。
 また、本明細書における実施の形態で用いる図面において、開口部における、絶縁体の側壁が、基板面または被形成面に対して垂直、または概略垂直である場合を示すが、テーパー形状であってもよい。
 なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(以下、テーパー角と呼ぶ場合がある)が90°未満である領域の形状のことを指す。なお、構造の側面及び基板面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
 なお、本明細書等において、「高さが一致または概略一致」とは、断面視において、基準となる面(例えば、基板表面などの平坦な面)からの高さが等しい構成を示す。例えば、半導体装置の製造プロセスにおいて、平坦化処理(代表的にはCMP処理)を行うことで、単層または複数の層の表面を露出する場合がある。この場合、CMP処理の被処理面は、基準となる面からの高さが等しい構成となる。ただし、CMP処理の際の処理装置、処理方法、または被処理面の材料によって、複数の層の高さが異なる場合がある。本明細書等においては、この場合も「高さが一致または概略一致」として扱う。例えば、基準面に対して、2つの高さを有する層(ここでは第1の層と、第2の層とする)を有する場合、第1の層の上面の高さと、第2の層の上面の高さとの差が、20nm以下である場合も、「高さが一致または概略一致」という。
 なお、本明細書等において、「側端部が一致または概略一致」とは、平面視において、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重ならず、上層の輪郭が下層の輪郭より内側に位置すること、または、上層の輪郭が下層の輪郭より外側に位置することもあり、この場合も「側端部が一致または概略一致」という。
(実施の形態1)
 本実施の形態では、酸化物半導体を有する半導体装置、及び当該半導体装置の作製方法について、図1乃至図16を用いて説明する。
<半導体装置の構成例>
 図1乃至図6を用いて、半導体装置の構成例について説明する。図1A乃至図1Dは、基板(図示せず)上にトランジスタ200a、及びトランジスタ200bを有する、半導体装置の平面図および断面図である。なお、トランジスタ200bは、トランジスタ200aと同様の構造を有するため、構成要素にトランジスタ200aと同じハッチングパターンを付し、特に符号を付さない。また、以下において、トランジスタ200aとトランジスタ200bをまとめてトランジスタ200と記載する場合がある。なお、本実施の形態に示す半導体装置は、トランジスタ200aと電気的に接続する容量素子、及びトランジスタ200bと電気的に接続する容量素子を設けることで、2個の1T(トランジスタ)1C(容量)型のメモリセルとして機能させることができ、記憶装置に用いることもできる。
 図1Aは、上記半導体装置の平面図である。また、図1B乃至図1Dは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200aのチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200a及びトランジスタ200bのチャネル幅方向の断面図でもある。また、図1Dは、図1AにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200a及びトランジスタ200bのチャネル幅方向の断面図でもある。ここで、A1−A2の一点鎖線は、A3−A4の一点鎖線及びA5−A6の一点鎖線と直交しており、A3−A4の一点鎖線とA5−A6の一点鎖線は互いに平行である。なお、図1Aの平面図では、図の明瞭化のために一部の要素を省いている。また、図2Aに、図1Bの導電体260近傍の拡大図を示す。また、図2Bに、図1Cの絶縁体225近傍の拡大図を示す。また、図4Aに、図1Bの導電体242a近傍の拡大図を示す。また、図4Bに、図1Dの絶縁体225近傍の拡大図を示す。
 本実施の形態に係る半導体装置は、基板(図示せず)上の絶縁体216と、絶縁体216上の絶縁体222と、絶縁体222上の絶縁体225と、絶縁体225及び絶縁体222上の酸化物230(酸化物230a及び酸化物230b)と、酸化物230上の導電体242a及び導電体242bと、酸化物230上の絶縁体250と、絶縁体250上の導電体260(導電体260a及び導電体260b)と、を有する。なお、以下において、導電体242aと導電体242bをまとめて導電体242と記載する場合がある。
 導電体242上には、絶縁体275が設けられ、絶縁体275上には絶縁体280が設けられている。絶縁体250、及び導電体260は、導電体242aと導電体242bの間の領域において、絶縁体280、絶縁体275及び絶縁体222に設けられた開口の内部に配置されている。また、絶縁体280上及び導電体260上に絶縁体282が設けられている。また、絶縁体282上に絶縁体283が設けられている。また、絶縁体216の下に絶縁体215が設けられている。
 絶縁体280などの開口の内壁に接して絶縁体241aが設けられ、絶縁体241aの側面に接して導電体240aが設けられている。導電体240aの下面は、導電体242aの上面に接している。また、絶縁体280などの開口の内壁に接して絶縁体241bが設けられ、絶縁体241bの側面に接して導電体240bが設けられている。導電体240bの下面は、導電体242bの上面に接している。なお、以下において、導電体240aと導電体240bをまとめて導電体240と記載する場合がある。また、絶縁体241aと絶縁体241bをまとめて絶縁体241と記載する場合がある。
 酸化物230は、トランジスタ200のチャネル形成領域として機能する領域を有する。また、導電体260は、トランジスタ200のゲート電極(第1のゲート電極、または上側のゲート電極という場合もある。)として機能する領域を有する。絶縁体250は、トランジスタ200のゲート絶縁体(第1のゲート絶縁体、または上側のゲート絶縁体という場合もある。)として機能する領域を有する。
 導電体242aは、トランジスタ200のソース電極またはドレイン電極の一方として機能する領域を有する。導電体240aは、導電体242aに接続するプラグとして機能する。導電体242bは、トランジスタ200のソース電極またはドレイン電極の他方として機能する領域を有する。導電体240bは、導電体242bに接続するプラグとして機能する。
 酸化物230は、絶縁体225を覆う酸化物230aと、酸化物230a上の酸化物230bと、を有することが好ましい。ここで、酸化物230aは、絶縁体225の上面及び側面、ならびに絶縁体222の上面に接する。酸化物230a及び酸化物230bは、図2Bなどに示すように、アスペクト比が高い絶縁体225を覆うように設けられる。よって、酸化物230a及び酸化物230bは、ALD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。ここで、図2Bに示すように、チャネル幅方向の断面では、絶縁体225を介して、二つ折りの状態になるように、酸化物230a及び酸化物230bが形成される。このような構成にすることで、絶縁体225の、上部、A3側の側面、及びA4側の側面にトランジスタ200のチャネル形成領域を形成することができるため、単位面積当たりのチャネル幅を大きくすることができる。
 さらに、絶縁体280、絶縁体275、及び絶縁体222の開口は、酸化物230に達し、且つ酸化物230と重畳しない領域において、絶縁体216に達する。図2Bなどに示すように、当該開口内の酸化物230と重畳しない領域に位置する導電体260の下面(下端、または下端部ということもできる。)は、酸化物230の下面(下端、または下端部ということもできる。)より下に位置する。このような構成にすることで、導電体260から酸化物230の上端部から下端部まで十分な電界を印加することができる。これにより、酸化物230の下端部を介する、ソース電極とドレイン電極の間のリーク電流を低減することができる。また、当該リーク電流に起因する、トランジスタのノーマリーオン化などの特性不良を抑制することができる。つまり、トランジスタ200の電気特性を良好にすることができる。
 酸化物230bの下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、本実施の形態では、酸化物230が、酸化物230a及び酸化物230bの2層構造である例を示すが、これに限定されない。酸化物230は、例えば、酸化物230bの単層構造であってもよく、3層以上の積層構造としてもよい。
 酸化物230bには、トランジスタ200における、チャネル形成領域と、チャネル形成領域を挟むように設けられるソース領域及びドレイン領域と、が形成される。チャネル形成領域の少なくとも一部は、導電体260と重なる。ソース領域は導電体242aと重なり、ドレイン領域は導電体242bと重なる。なお、ソース領域とドレイン領域は互いに入れ替えることができる。
 チャネル形成領域は、ソース領域及びドレイン領域よりも、酸素欠損が少ない、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって、チャネル形成領域は、i型(真性)または実質的にi型であるということができる。
 また、ソース領域及びドレイン領域は、酸素欠損が多い、または水素、窒素、金属元素などの不純物濃度が高いため、キャリア濃度が高い低抵抗領域である。すなわち、ソース領域及びドレイン領域は、チャネル形成領域と比較してキャリア濃度が高い、n型の領域(低抵抗領域)である。
 なお、チャネル形成領域のキャリア濃度は、1×1018cm−3以下、1×1017cm−3未満、1×1016cm−3未満、1×1015cm−3未満、1×1014cm−3未満、1×1013cm−3未満、1×1012cm−3未満、1×1011cm−3未満、または、1×1010cm−3未満であることが好ましい。また、チャネル形成領域のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 なお、酸化物230bのキャリア濃度を低くする場合においては、酸化物230b中の不純物濃度を低くし、欠陥準位密度を低くする。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、キャリア濃度の低い酸化物半導体(または金属酸化物)を、高純度真性または実質的に高純度真性な酸化物半導体(または金属酸化物)と呼ぶ場合がある。
 トランジスタ200の電気特性を安定にするためには、酸化物230b中の不純物濃度を低減することが有効である。また、酸化物230bの不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物230b中の不純物とは、例えば、酸化物230bを構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物といえる。
 なお、チャネル形成領域、ソース領域、及び、ドレイン領域は、それぞれ、酸化物230bだけでなく、酸化物230aまで形成されていてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、並びに、水素、及び窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、並びに、水素、及び窒素などの不純物元素の濃度が減少していてもよい。
 酸化物230(酸化物230a及び酸化物230b)には、半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
 半導体として機能する金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。このように、チャネル形成領域に金属酸化物を有するトランジスタをOSトランジスタと呼ぶ。OSトランジスタは、オフ電流が小さいため、半導体装置の消費電力を十分に低減できる。また、OSトランジスタの周波数特性が高いため、半導体装置を高速に動作させることができる。
 酸化物230は、金属酸化物(酸化物半導体)を有することが好ましい。酸化物230に用いることができる金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素又は半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素又は半金属元素である。元素Mとして、具体的には、アルミニウム、ガリウム、スズ、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、及びアンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、スズ、及びイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。
 酸化物230は、例えば、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウムスズ酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、GZOとも記す)、アルミニウム亜鉛酸化物(Al−Zn酸化物、AZOとも記す)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、IAZOとも記す)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも記す)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物、IGZTOとも記す)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、IGAZOまたはIAGZOとも記す)などを用いることができる。または、シリコンを含むインジウムスズ酸化物、ガリウムスズ酸化物(Ga−Sn酸化物)、アルミニウムスズ酸化物(Al−Sn酸化物)などを用いることができる。
 金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、トランジスタの電界効果移動度を高めることができる。
 なお、金属酸化物は、インジウムに代えて、又は、インジウムに加えて、周期番号が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期番号が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期番号が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、スズ、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムは、軽希土類元素と呼ばれる。
 また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されるのを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 前述したように、酸化物230に適用する金属酸化物の組成により、トランジスタの電気特性、及び信頼性が異なる。したがって、トランジスタに求められる電気特性、及び信頼性に応じて金属酸化物の組成を異ならせることにより、優れた電気特性と高い信頼性を両立した半導体装置とすることができる。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。当該構成にすることで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物及び酸素の拡散を抑制できる。
 また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。当該構成することで、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 また、酸化物230a及び酸化物230bが、酸素以外に共通の元素を主成分として有することで、酸化物230a及び酸化物230bの界面における欠陥準位密度を低減できる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、及び高い周波数特性を得ることができる。
 具体的には、酸化物230aとして、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、In:M:Zn=4:2:3[原子数比]もしくはその近傍の組成、または、元素Mを含まず、In:Zn=4:1[原子数比]もしくはその近傍の組成の金属酸化物を用いることができる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。また、酸化物230として酸化物230bの単層を設ける場合、酸化物230bとして、酸化物230aに用いることができる金属酸化物を適用してもよい。また、酸化物230a、及び酸化物230bに用いることのできる金属酸化物の組成については、上記に限定されない。例えば、酸化物230aに用いることのできる金属酸化物の組成は、酸化物230bに適用してもよい。同様に、酸化物230bに用いることのできる金属酸化物の組成は、酸化物230aに適用してもよい。また、酸化物230a、および酸化物230bのいずれか一方または両方において、上記組成の金属酸化物を積層してもよい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230bは、結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物及び欠陥(例えば、酸素欠損)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 また、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 また、酸化物230bとしてCAAC−OSなどの結晶性を有する酸化物を用いることで、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるため、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物及び酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、及びVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネル形成領域は、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、及びVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素の量が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。また、当該絶縁体から酸化物半導体に供給する酸素が、ゲート電極、ソース電極、及びドレイン電極などの導電体に拡散すると、当該導電体が酸化してしまい、導電性が損なわれることなどにより、トランジスタの電気特性及び信頼性に悪影響を及ぼす場合がある。
 よって、酸化物半導体中において、チャネル形成領域は、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域及びドレイン領域は、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体のチャネル形成領域の酸素欠損、及びVHを低減することが好ましい。また、ソース領域及びドレイン領域には過剰な量の酸素が供給されないようにすること、及びソース領域及びドレイン領域のVHの量が過剰に低減しないようにすることが好ましい。また、導電体260、導電体242a、及び導電体242bなどの導電率が低下することを抑制する構成にすることが好ましい。例えば、導電体260、導電体242a、及び導電体242bなどの酸化を抑制する構成にすることが好ましい。なお、酸化物半導体中の水素はVHを形成しうるため、VHの量を低減するには、水素濃度を低減する必要がある。
 そこで、本実施の形態では、半導体装置において、チャネル形成領域の水素濃度を低減し、かつ、導電体242a、導電体242b、及び導電体260の酸化を抑制し、かつ、ソース領域及びドレイン領域中の水素濃度が低減することを抑制する構成とする。
 酸化物230bにおけるチャネル形成領域と接する絶縁体250は、水素を捕獲または水素を固着する機能を有することが好ましい。これにより、酸化物230bのチャネル形成領域中の水素濃度を低減できる。よって、チャネル形成領域中のVHを低減し、チャネル形成領域をi型または実質的にi型とすることができる。
 ここで、図2Aに示すように、絶縁体250は、酸化物230に接する絶縁体250aと、絶縁体250a上の絶縁体250bと、絶縁体250b上の絶縁体250cと、絶縁体250c上の絶縁体250dの積層構造とすることが好ましい。この場合、絶縁体250a及び絶縁体250cが水素を捕獲または水素を固着する機能を有することが好ましい。
 水素を捕獲または水素を固着する機能を有する絶縁体として、アモルファス構造を有する金属酸化物が挙げられる。絶縁体250a及び絶縁体250cとして、例えば、酸化マグネシウム、またはアルミニウム及びハフニウムの一方または双方を含む酸化物などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。つまり、アモルファス構造を有する金属酸化物は、水素を捕獲または固着する能力が高いといえる。
 また、絶縁体250a及び絶縁体250cに、高誘電率(high−k)材料を用いることが好ましい。なお、high−k材料の一例として、アルミニウム及びハフニウムの一方または双方を含む酸化物がある。絶縁体250a及び絶縁体250cとしてhigh−k材料を用いることで、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 絶縁体250a及び絶縁体250cとして、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることが好ましく、アモルファス構造を有し、アルミニウム及びハフニウムの一方または双方を含む酸化物を用いることがより好ましい。
 本実施の形態では、絶縁体250aとして、酸化アルミニウム膜を用いる。また、当該酸化アルミニウムは、アモルファス構造を有することが好ましい。ここで、酸化物230bに接して、絶縁体250aを設けることにより、酸化物230bなどに含まれる水素を、より効果的に捕獲及び固着させることができる。
 本実施の形態では、絶縁体250cとして、酸化ハフニウムを用いる。ここで、絶縁体250bと絶縁体250dの間に、絶縁体250cを設けることにより、絶縁体250bなどに含まれる水素を、より効果的に捕獲及び固着させることができる。
 次に、絶縁体250bは、酸化シリコンまたは酸化窒化シリコンなどの、熱に対し安定な絶縁体を用いることが好ましい。なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 導電体242a、導電体242b、及び導電体260の酸化を抑制するために、導電体242a、導電体242b、及び導電体260それぞれの近傍に酸素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体250a、絶縁体250d、絶縁体250c、及び絶縁体275である。
 なお、本明細書等において、バリア絶縁体とは、バリア性を有する絶縁体のことを指す。本明細書等において、バリア性を有するとは、対応する物質の透過を妨げる性質(透過性が低いともいう)を有することを指す。例えば、バリア性を有する絶縁体は、対応する物質が当該絶縁体内部に拡散しにくい性質を有する。また例えば、バリア性を有する絶縁体は、対応する物質を、当該絶縁体内部で捕獲、または固着する(ゲッタリングともいう)機能を有する。
 酸素に対するバリア絶縁体としては、例えば、アルミニウム及びハフニウムの一方または双方を含む酸化物、酸化マグネシウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、及び窒化酸化シリコンが挙げられる。また、アルミニウム及びハフニウムの一方または双方を含む酸化物として、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、並びに、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)が挙げられる。例えば、絶縁体250a、絶縁体250c、絶縁体250d、及び絶縁体275はそれぞれ、上記酸素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 絶縁体250aは、酸素に対するバリア性を有することが好ましい。絶縁体250aは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。絶縁体250aは、導電体242aの側面、及び導電体242bの側面と接する領域を有する。絶縁体250aが酸素に対するバリア性を有することで、導電体242a及び導電体242bの側面が酸化され、当該側面に酸化膜が形成されることを抑制できる。これにより、トランジスタ200のオン電流の低下、または電界効果移動度の低下を抑制できる。
 また、絶縁体250aは、酸化物230bの上面及び側面、酸化物230aの側面、及び絶縁体222の上面に接して設けられる。絶縁体250aが酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物230bのチャネル形成領域から酸素が脱離することを抑制できる。よって、酸化物230a及び酸化物230bに酸素欠損が形成されることを低減できる。
 また、絶縁体250aを設けることにより、絶縁体280から、酸化物230a及び酸化物230bに過剰な量の酸素が供給されることを抑制し、適量の酸素を酸化物230a及び酸化物230bに供給することができる。よって、ソース領域及びドレイン領域が過剰に酸化されることを防ぎ、トランジスタ200のオン電流の低下、または電界効果移動度の低下を抑制できる。
 アルミニウム及びハフニウムの一方または双方を含む酸化物は酸素に対するバリア性を有するため、絶縁体250aとして好適に用いることができる。
 絶縁体250dも、酸素に対するバリア性を有することが好ましい。絶縁体250dは酸化物230のチャネル形成領域と導電体260との間、及び絶縁体280と導電体260との間に設けられている。当該構成にすることで、酸化物230のチャネル形成領域に含まれる酸素が導電体260へ拡散し、酸化物230のチャネル形成領域に酸素欠損が形成されることを抑制できる。また、酸化物230に含まれる酸素及び絶縁体280に含まれる酸素が導電体260へ拡散し、導電体260が酸化することを抑制できる。絶縁体250dは、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体250dとして、窒化シリコン膜を用いることが好ましい。この場合、絶縁体250dは、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 また、絶縁体250dは、水素に対するバリア性を有することが好ましい。これにより、導電体260に含まれる水素などの不純物が、酸化物230bに拡散することを防ぐことができる。
 絶縁体275も、酸素に対するバリア性を有することが好ましい。絶縁体275は、絶縁体280と導電体242aとの間、及び、絶縁体280と導電体242bとの間に設けられている。絶縁体275は、導電体242の側面、酸化物230の側面、及び絶縁体222の上面に接して設けられる。当該構成にすることで、絶縁体280に含まれる酸素が、導電体242に拡散することを抑制できる。したがって、絶縁体280に含まれる酸素によって、導電体242が酸化されて抵抗率が増大することを抑制できる。絶縁体275は、少なくとも絶縁体280よりも酸素を透過しにくいことが好ましい。例えば、絶縁体275として、窒化シリコンを用いることが好ましい。この場合、絶縁体275は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 酸化物230におけるソース領域及びドレイン領域の水素濃度が低減することを抑制するために、ソース領域及びドレイン領域それぞれの近傍に水素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該水素に対するバリア絶縁体は、例えば、絶縁体275である。
 水素に対するバリア絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの酸化物、及び窒化シリコンなどの窒化物が挙げられる。例えば、絶縁体275は、上記水素に対するバリア絶縁体の単層構造または積層構造であると好ましい。
 上記のような絶縁体275を設けることで、ソース領域及びドレイン領域の水素が外部に拡散するのを低減することができるため、ソース領域及びドレイン領域の水素濃度が低減するのを抑制することができる。したがって、ソース領域及びドレイン領域をn型とすることができる。
 上記構成にすることで、チャネル形成領域をi型または実質的にi型とし、ソース領域及びドレイン領域をn型とすることができ、良好な電気特性を有する半導体装置を提供できる。また、上記構成にすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。また、トランジスタ200を微細化することで周波数特性を向上することができる。具体的には、遮断周波数を向上することができる。
 絶縁体250a乃至絶縁体250dは、ゲート絶縁体の一部として機能する。絶縁体250a乃至絶縁体250dは、導電体260とともに、絶縁体280に形成された開口に設ける。トランジスタ200の微細化を図るにあたって、絶縁体250a乃至絶縁体250dの膜厚はそれぞれ薄いことが好ましい。絶縁体250a乃至絶縁体250dの膜厚は、それぞれ、0.1nm以上10nm以下が好ましく、0.1nm以上5.0nm以下がより好ましく、0.5nm以上5.0nm以下がより好ましく、1.0nm以上5.0nm未満がより好ましく、1.0nm以上3.0nm以下がさらに好ましい。なお、絶縁体250a乃至絶縁体250dは、それぞれ、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 絶縁体250a乃至絶縁体250dの膜厚を上記のように薄くするためには、原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜することが好ましい。また、絶縁体280等の開口内に、絶縁体250a乃至絶縁体250dを設けるには、ALD法を用いて成膜することが好ましい。ALD法は、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。
 ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁体250を、絶縁体280に形成された開口部の側面、及び導電体242a、242bの側端部などに被覆性良く、上記のような薄い膜厚で成膜することができる。
 なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、またはオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて行うことができる。
 なお、上記において、絶縁体250が、絶縁体250a乃至絶縁体250dの4層構造となる構成について説明したが、本発明はこれに限られるものではない。絶縁体250は、絶縁体250a乃至絶縁体250dのうち、少なくとも一つを有する構成にすることができる。絶縁体250を、絶縁体250a乃至絶縁体250dのうち、1層、2層または3層で構成することで、半導体装置の作製工程を簡略化し、生産性の向上を図ることができる。
 例えば、図3Aに示すように、絶縁体250を2層構造にする構成にしてもよい。この場合、絶縁体250を、絶縁体250aと、絶縁体250a上の絶縁体250dの積層構造にすることが好ましい。絶縁体250a及び絶縁体250dの少なくとも一方にhigh−k材料を用いることができる。これにより、絶縁体250a及び絶縁体250dをリーク電流が抑制される程度の膜厚に維持しながら、等価酸化膜厚(EOT)の薄膜化が可能となる。
 また、例えば、図3Bに示すように、絶縁体250を3層構造にする構成にしてもよい。この場合、絶縁体250を、絶縁体250aと、絶縁体250a上の絶縁体250bと、絶縁体250b上の絶縁体250dの積層構造にすることが好ましい。つまり、図3Aに示す構成に、さらに絶縁体250bを設けた構成になる。
 また、本実施の形態では、半導体装置を、上記構成に加えて、水素がトランジスタ200等に混入することを抑制する構成とすることが好ましい。例えば、水素の拡散を抑制する機能を有する絶縁体を、トランジスタ200等の上下の一方または双方を覆うように設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体283、絶縁体282、及び絶縁体222などである。また、トランジスタ200の下に設ける絶縁体215を、絶縁体282、及び絶縁体283のいずれか一方、または両方と同様の構成にしてもよい。この場合、絶縁体215を、絶縁体282と絶縁体283の積層構造にしてもよく、絶縁体282を下にし、絶縁体283を上にする構成にしてもよいし、絶縁体282を上にし、絶縁体283を下にする構成にしてもよい。
 絶縁体283、絶縁体282、及び絶縁体222のうち一つまたは複数は、水、水素などの不純物が、基板側から、または、トランジスタ200等の上方からトランジスタ200等に拡散することを抑制するバリア絶縁体として機能することが好ましい。したがって、絶縁体283、絶縁体282、及び絶縁体222のうち一つまたは複数は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を有することが好ましい。
 絶縁体283、絶縁体282、及び絶縁体222は、それぞれ、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体を有することが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウム及びジルコニウムを含む酸化物(ハフニウムジルコニウム酸化物)、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体283は、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体282は、水素を捕獲または水素を固着する能力が高い、酸化アルミニウムなどを用いることが好ましい。また、例えば、絶縁体222は、水素を捕獲または水素を固着する能力が高く、高誘電率(high−k)材料である、酸化ハフニウムなどを用いることが好ましい。
 このような構成にすることで、絶縁体283よりも上側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200等に拡散することを抑制できる。また、絶縁体222よりも下側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200等に拡散することを抑制できる。また、絶縁体280、及び絶縁体250等に含まれる水素を、絶縁体282または絶縁体222に、捕獲及び固着することができる。また、絶縁体282及び絶縁体283を設けることで、絶縁体280などに含まれる酸素が、トランジスタ200等より上方に拡散することを抑制できる。また、絶縁体222を設けることで、酸化物230などに含まれる酸素が、トランジスタ200等より下方に拡散することを抑制できる。このように、トランジスタ200の上下を、水、水素などの不純物、及び酸素の拡散を抑制する機能を有する絶縁体で取り囲む構造にすることで、酸化物半導体に過剰な酸素及び水素が拡散するのを低減することができる。これにより、半導体装置の電気特性、及び信頼性の向上を図ることができる。
 さらに、絶縁体275及び絶縁体250dに、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、絶縁体250aに、水素を捕獲または水素を固着する能力が高い、酸化アルミニウムなどを用いることが好ましい。また、絶縁体250cに、水素を捕獲または水素を固着する能力が高い、酸化ハフニウムなどを用いることが好ましい。
 絶縁体225は、絶縁体222の上に接して形成される。絶縁体225は、図2B及び図4Bに示すように、チャネル幅方向の断面視において、高いアスペクト比の形状を有する。ここで、チャネル幅方向の断面視における、絶縁体225のアスペクト比は、絶縁体225のA3−A4方向の長さL(絶縁体225の幅Lということもできる。)と、絶縁体225の被形成面(例えば絶縁体222)に垂直な方向の長さH(絶縁体225の高さHということもできる。)の比のことを指す。絶縁体225において、絶縁体225の高さHは、少なくとも絶縁体225の幅Lより長くなる。絶縁体225の高さHは、絶縁体225の幅Lの1倍より大きく、好ましくは2倍以上、より好ましくは5倍以上、さらに好ましくは10倍以上にすればよい。また、絶縁体225の高さHは、絶縁体225の幅Lの20倍以下が好ましい。
 このような高アスペクト比の絶縁体225を覆って、酸化物230a、酸化物230b、及び導電体242が設けられる。トランジスタ200においては、図2Bに示すように、絶縁体225を挟んで二つ折りの状態になるように酸化物230a及び酸化物230bが設けられ、さらに酸化物230bを覆って絶縁体250、及び導電体260が設けられる。これにより、チャネル幅方向の断面視において、絶縁体225の上部、A3側の側面、及びA4側の側面それぞれにおいて、酸化物230と導電体260が、絶縁体250を挟んで対向して設けられる。つまり、絶縁体225の上部、A3側の側面、及びA4側の側面それぞれがチャネル形成領域として機能する。よって、絶縁体225を設けない場合と比較して、絶縁体225のA3側の側面、及びA4側の側面の分だけ、トランジスタ200のチャネル幅が大きくなっている。
 上記のようにチャネル幅が大きくなることで、トランジスタ200のオン電流、電界効果移動度、周波数特性などを良好にすることができる。これにより、動作速度が速い半導体装置を提供することができる。また、当該半導体装置を用いた記憶装置の動作速度を速くすることができる。また、上記の構造では、絶縁体225を設けることにより、トランジスタ200の占有面積を広げることなく、チャネル幅を大きくすることができる。これにより、半導体装置の微細化または高集積化を図ることができる。また、当該半導体装置を用いた記憶装置の記憶容量を大きくすることができる。
 絶縁体225は、絶縁体222、絶縁体280、絶縁体250などに用いることができる絶縁性材料を用いればよい。絶縁体225に用いる高アスペクト比の形状を形成するには、例えば、犠牲層(後述する絶縁体223)の側面に、上記絶縁性材料からなる絶縁膜をサイドウォール状に形成した後、犠牲層を除去するとよい。よって、絶縁体225は被覆性の良好なALD法を用いて形成することが好ましい。例えば、絶縁体225は、熱ALD法で成膜した酸化ハフニウム、またはPEALD法で成膜した窒化シリコンなどを用いることができる。
 このように、犠牲層の側面に接してサイドウォール状に絶縁体225を形成することで、図1Aなどに示すように、トランジスタ200aの絶縁体225と、トランジスタ200bの絶縁体225と、を同時に形成することができる。このように、2個の絶縁体225を形成することで、犠牲層の大きさに合わせて、2個の絶縁体225の距離を設定することができる。よって、絶縁体225の距離を小さくし、トランジスタ200a、及びトランジスタ200bの占有面積を低減し、半導体装置の高集積化を図ることができる。
 ただし、絶縁体225は、厳密な意味で絶縁性材料のみに限定されるものではない。例えば、比較的絶縁性が高い金属酸化物などを用いることもできる。例えば、上記酸化物230aに用いることが可能な金属酸化物などを用いてもよい。
 また、絶縁体225の上部は、湾曲形状を有していてもよい。このような湾曲形状を有することで、絶縁体225の上部近傍において、酸化物230a、酸化物230b、及び導電体242に鬆などの欠陥が形成されるのを防ぐことができる。なお、図2B及び図4Bなどにおいては、絶縁体225上部のA3側(A5側)と、A4側(A6側)の両方に、湾曲形状が設けられる、対称の構造にしているが、本発明はこれに限られるものではない。例えば、絶縁体225上部のA3側(A5側)だけに、湾曲形状が設けられた、非対称の構造になる場合もある。
 さらに、図1Cなどに示すように、絶縁体280、絶縁体275、及び絶縁体222に形成された開口は、酸化物230に達し、且つ酸化物230と重畳しない領域において、絶縁体216に達する。上記開口は、絶縁体280、絶縁体275、及び絶縁体222において、連続する一つの開口として形成されているが、絶縁体222の開口に、絶縁体280及び絶縁体275の開口が重畳しているとみなすこともできる。この場合、絶縁体222の開口は、絶縁体280及び絶縁体275の開口と重畳し、且つ酸化物230と重畳しない領域に設けられる。なお、図2Bに示すように、酸化物230bの側面の絶縁体216の上面に垂直な部分(酸化物230bの側面の絶縁体225の側面の形状が反映された部分ということもできる。)と、酸化物230aの側面端部と、絶縁体222の開口の側壁を形成する側面とは、一致または概略一致することが好ましい。
 ここで、導電体260及び絶縁体250は、絶縁体280、絶縁体275、及び絶縁体222の開口の形状に沿って形成される。よって、絶縁体222の開口内において、図2Bに示すように、絶縁体250(絶縁体250a)の下面が絶縁体216の上面に接する。図2Bに示すように、絶縁体222の開口内における絶縁体250の膜厚t2は、絶縁体222の膜厚t1より薄いことが好ましい。このような構成にすることで、絶縁体222の開口内に位置する導電体260(導電体260a)の下面を、酸化物230(酸化物230a)の下面より、膜厚t1と膜厚t2の差分(t1−t2)だけ、下に配置することができる。なお、絶縁体222の開口内に位置する導電体260(導電体260a)の下面は、当然酸化物230bの下面より下に配置される。
 ここで、例えば、導電体260の下面が、酸化物230の下面より上に位置するトランジスタでは、導電体260の電界が酸化物230の下端部に十分に印加されない恐れがある。このとき、酸化物230の下端部を介する、ソース電極とドレイン電極の間のリーク電流が発生する場合がある。つまり、酸化物230の下端部が疑似的なチャネル(以下、寄生チャネルと呼ぶ。)として機能する恐れがある。
 これに対して、本実施の形態では、導電体260の下面を、酸化物230の下面より下に配置することで、酸化物230の上端部から下端部まで十分に電界を印加することができる。言い換えると、絶縁体280などの開口内において、酸化物230全体を導電体260の電界によって電気的に取り囲み、チャネル形成領域として機能させることができる。このような構成にすることで、酸化物230の下端部が寄生チャネルとして機能することを防ぎ、ソース電極とドレイン電極の間のリーク電流を低減することができる。また、当該寄生チャネルに起因する、トランジスタのノーマリーオン化などの特性不良を抑制することができる。つまり、トランジスタ200の電気特性を良好にすることができる。
 また、上記のように、酸化物230の上端部から下端部までチャネル形成領域として機能させることで、チャネル幅を大きくすることができる。これにより、トランジスタ200のオン電流、電界効果移動度、周波数特性などを良好にすることができる。
 なお、本明細書等において、上記のようにゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。S−channel構造では、ゲート電極が、少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように、配置される。S−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタ200をS−channel構造、GAA構造、又はLGAA構造とすることで、酸化物230とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、酸化物230のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 また、図1Aなどに示すように、絶縁体225をA1−A2方向に延伸させる構造にしたが、本発明はこれに限られるものではない。例えば、図5A乃至図5Dに示すように、絶縁体225を周状(枠状、または閉曲線状ということもできる。)に設ける構造にしてもよい。図5Aは、上記半導体装置の平面図である。また、図5B乃至図5Dは、当該半導体装置の断面図である。ここで、図5Bは、図5AにA1−A2の一点鎖線で示す部位の断面図である。また、図5Cは、図5AにA3−A4の一点鎖線で示す部位の断面図である。また、図5Dは、図5AにA7−A8の一点鎖線で示す部位の断面図である。なお、図5Aの平面図では、図の明瞭化のために一部の要素を省いている。
 図5DのA7−A8断面に示すように、トランジスタ200aとトランジスタ200bで絶縁体225が一体物になっている。このため、トランジスタ200aとトランジスタ200bの間で、絶縁体275が絶縁体225の上面に接する。上述の通り、絶縁体225は、犠牲層の側面に接してサイドウォール状に形成することが好ましい。図5A乃至図5Dに示す半導体装置では、絶縁体225に囲まれた領域の中に犠牲層を設けることで、絶縁体225が形成される。
 導電体242a、導電体242b、及び導電体260として、それぞれ、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。当該導電性材料として、例えば、窒素を含む導電性材料、及び酸素を含む導電性材料が挙げられる。これにより、導電体242a、導電体242b、及び導電体260の導電率が低下することを抑制できる。導電体242a、導電体242b、及び導電体260として、金属及び窒素を含む導電性材料を用いる場合、導電体242a、導電体242b、及び導電体260は、少なくとも金属と、窒素と、を有する導電体となる。
 導電体242aと導電体242bは互いに離隔して配置され、酸化物230b上に接して設けられる。導電体242は、図4A及び図4Bなどに示すように、アスペクト比が高い絶縁体225を覆うように設けられる。よって、導電体242は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。
 ここで、トランジスタ200aのソースまたはドレイン近傍においては、図4Bに示すように、絶縁体225を挟んで二つ折りの状態になるように、酸化物230a、酸化物230b、及び導電体242aが設けられる。これにより、チャネル幅方向の断面視において、絶縁体225の上部、A5側の側面、及びA6側の側面それぞれにおいて、導電体242aが、酸化物230bに接する。よって、絶縁体225を設けない場合と比較して、絶縁体225のA5側の側面、及びA6側の側面の分だけ、導電体242aと酸化物230bの接触面積が大きくなっている。なお、図4Bにおいては、導電体242aの近傍を示したが、導電体242bについても同様である。つまり、上述の導電体242aと酸化物230bと同様に、導電体242bと酸化物230bの接触面積が大きくなっている。
 上記のように導電体242と酸化物230bの接触面積が大きくなることで、トランジスタ200の占有面積を広げることなく、トランジスタ200のオン電流、周波数特性などを良好にすることができる。これにより、動作速度が速い半導体装置を提供することができる。また、当該半導体装置を用いた記憶装置の動作速度を速くすることができる。また、これにより、半導体装置の微細化または高集積化を図ることができる。また、当該半導体装置を用いた記憶装置の記憶容量を大きくすることができる。
 導電体242aと導電体242bは、酸化物230bに接するため、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。これにより、導電体242a、242bの導電率が低下することを抑制できる。また、酸化物230bから酸素が引き抜かれ、過剰な量の酸素欠損が形成されるのを抑制できる。また、導電体242a、242bとして、水素を吸い取りやすい(抜き取りやすい)材料を用いると、酸化物230の水素濃度を低減でき、好ましい。
 導電体242としては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242aまたは導電体242bに拡散する場合がある。特に、導電体242a及び導電体242bに、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに拡散しやすく、拡散した水素は、導電体242aまたは導電体242bが有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに吸い取られる場合がある。
 また、導電体242a及び導電体242bの導電率が低下することを抑制するために、酸化物230bとして、CAAC−OSなどの結晶性を有する酸化物を用いることが好ましい。特に、インジウムと、亜鉛と、ガリウム、アルミニウム、及び錫から選ばれる一または複数と、を有する金属酸化物を用いることが好ましい。CAAC−OSを用いることで、導電体242aまたは導電体242bによる、酸化物230bからの酸素の引き抜きを抑制できる。また、導電体242a及び導電体242bの導電率が低下することを抑制できる。
 また、図3Cに示すように、導電体242a、242bを2層構造にしてもよい。導電体242aを、導電体242a1と導電体242a1上の導電体242a2の積層膜とし、導電体242bを、導電体242b1と導電体242b1上の導電体242b2の積層膜とすることができる。このとき、酸化物230bに接する層(導電体242a1及び導電体242b1)として、上述の酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。これにより、導電体242a、242bの導電率が低下することを抑制できる。また、酸化物230bから酸素が引き抜かれ、過剰な量の酸素欠損が形成されるのを抑制できる。また、酸化物230bに接する層(導電体242a1及び導電体242b1)として、水素を吸い取りやすい(抜き取りやすい)材料を用いると、酸化物230の水素濃度を低減でき、好ましい。
 また、導電体242a2及び導電体242b2は、導電体242a1及び導電体242b1よりも、導電性が高いことが好ましい。例えば、導電体242a2及び導電体242b2の膜厚を、導電体242a1及び導電体242b1の膜厚より大きくすることが好ましい。導電体242a2及び導電体242b2としては、導電性が高い導電体を用いることが好ましい。例えば、導電体242a2及び導電体242b2は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。上記のような構造にすることで、導電体242a2及び導電体242b2の抵抗を低減することができる。これにより、トランジスタ200のオン電流を大きくし、本実施の形態に係る半導体装置の動作速度の向上を図ることができる。
 例えば、導電体242a1及び導電体242b1として、窒化タンタルまたは窒化チタンを用い、導電体242a2及び導電体242b2として、タングステンを用いることができる。
 さらに、図3Cに示すように、導電体242a2、導電体242b2、絶縁体275、及び絶縁体280と、絶縁体250の間に、絶縁体255を設けることが好ましい。絶縁体255は、絶縁体280等に形成された開口の中に配置され、絶縁体280の側面、絶縁体275の側面、導電体242a2の側面、導電体242b2の側面、導電体242a1の上面、及び導電体242b1の上面に接する。言い換えると、絶縁体255は、絶縁体280等に形成された開口の側壁に接して形成されている。すなわち、絶縁体255は、サイドウォール絶縁膜ということもできる。
 絶縁体255は、導電体242a2の側面、及び導電体242b2の側面に接して形成されており、導電体242a2、及び導電体242b2を保護する無機絶縁体である。絶縁体255は、酸化雰囲気に曝されるため、酸化されにくい無機絶縁体が好ましい。また、絶縁体255は、導電体242a2及び導電体242b2に接するため、導電体242a2、242b2を酸化させにくい、無機絶縁体であることが好ましい。よって、絶縁体255は、酸素に対するバリア性を有する絶縁体250dに用いることが可能な絶縁性材料を用いることが好ましい。例えば、絶縁体255として、窒化シリコンを用いることができる。
 このような絶縁体255を用いることで、導電体を導電体242a1と導電体242b1とに分断した後で、絶縁体250を成膜する前に酸素を含む雰囲気で熱処理を行っても、導電体242a2及び導電体242b2が過剰に酸化されるのを防ぐことができる。
 なお、図3Cにおいて、絶縁体255の上端と絶縁体280の上面、絶縁体250の上端、及び導電体260の上端が概略一致する構造を示したが、本実施の形態はこれに限られるものではない。絶縁体255は、導電体242a2の側面、及び導電体242b2の側面を覆う構造になっていればよい。例えば、絶縁体255の上端が、絶縁体280の上面より低く、絶縁体275の上面より高い構造にしてもよい。
 また、図3Cに示すように、トランジスタ200のチャネル長方向の断面視において、導電体242a1と導電体242b1の間の距離は、導電体242a2と導電体242b2の間の距離より小さい。具体的には、上記の距離の差は、絶縁体255の膜厚の2倍と一致または概略一致する。ここで、絶縁体255の膜厚とは、絶縁体255の少なくとも一部における、A1−A2方向の膜厚を指す。このような構成にすることで、ソースとドレインの間の距離をより短くし、それに応じてチャネル長を短くすることが可能になる。よって、トランジスタ200の周波数特性を向上させることができる。このように、半導体装置の微細化を図ることで、動作速度の向上した半導体装置を提供することができる。
 導電体260は、図1B及び図1Cに示すように、絶縁体280、絶縁体275、導電体242a、及び導電体242bに形成された開口内に配置される。導電体260は、当該開口内において、絶縁体250を介して、絶縁体222の上面、酸化物230aの側面、酸化物230bの側面、及び酸化物230bの上面を覆うように設けられる。また、導電体260の上面は、絶縁体250の最上部、及び絶縁体280の上面と高さが一致または概略一致するように配置される。
 なお、導電体260及び絶縁体250が配置された、上記開口において、当該開口の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体280の開口に設けられる、絶縁体250などの被覆性が向上し、鬆などの欠陥を低減できる。
 導電体260は、トランジスタ200の第1のゲート電極として機能する。ここで、導電体260は、図1A、及び図1Cに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体260は配線として機能する。
 図1Bなどでは、導電体260を2層構造で示す。ここで、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。例えば、導電体260aは、導電体260bの底面及び側面を包むように配置されることが好ましい。このとき、導電体260aとして、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を有することにより、絶縁体280などに含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体260bは、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口を埋めるように自己整合的に形成される。ここで、上記開口における絶縁体280の側面は、導電体242aの側面、及び導電体242bの側面と一致、または概略一致する。よって、位置合わせをしなくても、導電体242aと導電体242bとの間の領域に重畳して、導電体260を配置することができる。
 絶縁体216、及び絶縁体280は、それぞれ、絶縁体222よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。
 例えば、絶縁体216、及び絶縁体280は、それぞれ、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、及び、空孔を有する酸化シリコンのうち一つまたは複数を有することが好ましい。
 特に、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 また、絶縁体216、及び絶縁体280の上面は、それぞれ、平坦化されていてもよい。
 絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を有することが好ましい。
 導電体240a、及び導電体240bは、それぞれ絶縁体275、絶縁体280、絶縁体282、及び絶縁体283の開口内に形成されている。導電体240aの下面は、導電体242aの上面に接し、導電体240bの下面は、導電体242bの上面に接している。ここで、導電体240の上面の高さと、絶縁体283の上面の高さは、同程度になる。
 導電体240は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240は、第1の導電体が絶縁体241の側面に接して設けられ、さらに内側に第2の導電体が設けられる、積層構造としてもよい。この場合、第2の導電体として、上記の導電性材料を用いることができる。
 また、導電体240を積層構造とする場合、絶縁体283、絶縁体282、絶縁体280、及び、絶縁体275の近傍に配置される第1の導電体には、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、酸化ルテニウムなどを用いることが好ましい。また、水、水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。このような構成にすることで、絶縁体283より上層に含まれる水、水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。
 絶縁体241a、及び絶縁体241bは、それぞれ絶縁体275、絶縁体280、絶縁体282、及び絶縁体283の開口の内壁に接して形成されている。絶縁体241aの内側の側面は、導電体240aに接し、絶縁体241bの内側の側面は、導電体240bに接する。
 絶縁体241としては、絶縁体275などに用いることができるバリア絶縁膜を用いればよい。例えば、絶縁体241として、窒化シリコン、酸化アルミニウム、窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体241を設けることで、絶縁体280などに含まれる水、水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するブロッキング性が高いため好適である。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。
 絶縁体241を、図1Bに示すように積層構造にする場合、絶縁体280などの開口の内壁に接する第1の絶縁体と、その内側の第2の絶縁体は、酸素に対するバリア絶縁膜と、水素に対するバリア絶縁膜を組み合わせて用いることが好ましい。
 例えば、第1の絶縁体として、熱ALD法で成膜された酸化アルミニウムを用い、第2の絶縁体として、PEALD法で成膜された窒化シリコンを用いればよい。このような構成にすることで、導電体240の酸化を抑制し、さらに、導電体240に水素が混入するのを低減することができる。
 なお、上記において、絶縁体241が2層の積層構造である構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体241を単層、または3層以上の積層構造として設ける構成にしてもよい。また、上記において、導電体240が2層の積層構造である構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。
 また、図4Bなどにおいて、導電体240aが、絶縁体225の上端部より上だけで、導電体242aと接する構造について示したが、本発明はこれに限られるものではない。例えば、図4Cに示すように、導電体240aが、絶縁体225と、絶縁体225を挟んで二つ折りの状態になっている酸化物230a、酸化物230b、及び導電体242aと、を覆う構造にしてもよい。これにより、チャネル幅方向の断面視において、絶縁体225の上部、A5側の側面、及びA6側の側面それぞれにおいて、導電体240aが、導電体242aに接する。よって、絶縁体225を設けない場合と比較して、絶縁体225のA5側の側面、及びA6側の側面の分だけ、導電体240aと導電体242aの接触面積が大きくなっている。なお、図4Cにおいては、導電体240a及び導電体242aの近傍を示したが、導電体240b及び導電体242bについても同様である。つまり、上述の導電体240aと導電体242aと同様に、導電体240bと導電体242bの接触面積が大きくなっている。
 上記のように導電体240と導電体242の接触面積が大きくなることで、トランジスタ200の占有面積を大きく広げることなく、トランジスタ200のオン電流、周波数特性などを良好にすることができる。これにより、動作速度が速い半導体装置を提供することができる。また、当該半導体装置を用いた記憶装置の動作速度を速くすることができる。また、これにより、半導体装置の微細化または高集積化を図ることができる。また、当該半導体装置を用いた記憶装置の記憶容量を大きくすることができる。
 また、本実施の形態の半導体装置は、図6A乃至図6Dに示すように、絶縁体216に埋め込まれるように設けられた導電体205と、絶縁体216及び導電体205上の絶縁体221と、を有する構成にしてもよい。図6Aは、上記半導体装置の平面図である。また、図6B乃至図6Dは、当該半導体装置の断面図である。ここで、図6Bは、図6AにA1−A2の一点鎖線で示す部位の断面図である。また、図6Cは、図6AにA3−A4の一点鎖線で示す部位の断面図である。また、図6Dは、図6AにA5−A6の一点鎖線で示す部位の断面図である。なお、図6Aの平面図では、図の明瞭化のために一部の要素を省いている。
 トランジスタ200において、導電体205は、酸化物230及び導電体260と重なるように配置する。ここで、導電体205は、絶縁体216に形成された開口部に埋め込まれて設けることが好ましい。また、導電体205は、図6A及び図6Cに示すように、チャネル幅方向に延在して設けられることが好ましい。このような構成にすることで、複数のトランジスタを設ける場合に、導電体205は配線として機能する。
 図6B及び図6Cに示すように、導電体205は、導電体205a及び導電体205bを有する事が好ましい。導電体205aは、上記開口部の底面及び側壁に接して設けられる。導電体205bは、上記開口部に沿って形成された導電体205aの凹部を埋め込むように設けられる。ここで、導電体205の上面の高さは、絶縁体216の上面の高さと一致または概略一致する。
 ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を有することが好ましい。または、酸素(例えば、酸素原子、及び酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を有することが好ましい。
 導電体205aに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体216等を介して、酸化物230に拡散することを防ぐことができる。また、導電体205aに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、及び、酸化ルテニウムが挙げられる。導電体205aは、上記導電性材料の単層構造または積層構造とすることができる。例えば、導電体205aは、窒化チタンを有することが好ましい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを有することが好ましい。
 導電体205は、第2のゲート電極(バックゲートという場合もある)として機能することができる。その場合、導電体205に印加する電位を、導電体260に印加する電位と連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。なお、本発明の一態様においては、上記構成に限定されず、導電体205と、導電体260と、を接続させて同電位とする構成としてもよい。
 なお、上記において、導電体205aと導電体205bの積層構造について示したが、本発明はこれに限られるものではなく、導電体205は、単層構造であってもよく、3層以上の積層構造であってもよい。例えば、導電体205を3層の積層構造にする場合、上記導電体205aと導電体205bの積層構造でさらに、導電体205bの上に、導電体205aと同様の材料を有する導電体を設ける構成にすることができる。このとき、導電体205bの上面が導電体205aの最上部より低くなるようにして、導電体205aと導電体205bで形成された凹部を埋め込むように、上記導電体を形成する構成にしてもよい。
 絶縁体221は、酸素、水素、及び水に対してバリア性を有する絶縁体を用いればよい。絶縁体221としては、上述の絶縁体283に用いることが可能な絶縁体を用いることができる。例えば、絶縁体221として、水素バリア性が高い、窒化シリコンなどを用いることが好ましい。このような構成にすることで、絶縁体221よりも下側に配置されている層間絶縁膜などから、水、水素などの不純物が、トランジスタ200等に拡散することを抑制できる。
 また、絶縁体221、及び絶縁体222は、それぞれ、トランジスタ200の第2のゲート絶縁体として機能する。
 また、絶縁体221を、導電体205を覆って設けることで、導電体205と、酸化物230及び導電体260とがショートする危険性を大きく低減することができる。
 なお、図2Bに示すように、トランジスタ200において、酸化物230は、絶縁体225を介して二つ折りの構造になっている。よって、酸化物230に対して、絶縁体225を挟んで対向する位置の導電体260が、上記導電体205と同様の機能を奏する場合がある。このため、図1A乃至図1D等に示すように、導電体205を設けない構成にしても、導電体260の一部が第2のゲート電極として機能する場合がある。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。なお、半導体装置を構成する各層は、単層構造であってもよく、積層構造であってもよい。
<<基板>>
 トランジスタを形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いることができる。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、及び、樹脂基板が挙げられる。また、半導体基板としては、例えば、シリコンまたはゲルマニウムを材料とした半導体基板、及び、炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、もしくは酸化ガリウムからなる化合物半導体基板が挙げられる。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などが挙げられる。導電体基板としては、例えば、黒鉛基板、金属基板、合金基板、及び導電性樹脂基板が挙げられる。また、基板としては、例えば、金属の窒化物を有する基板、金属の酸化物を有する基板、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、及び、導電体基板に半導体または絶縁体が設けられた基板が挙げられる。または、これらの基板に1種または複数種の素子が設けられたものを用いてもよい。基板に設けられる素子としては、例えば、容量素子、抵抗素子、スイッチ素子、発光素子、及び記憶素子が挙げられる。
<<絶縁体>>
 絶縁体としては、例えば、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、及び、金属窒化酸化物が挙げられる。
 例えば、トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 比誘電率の高い絶縁体としては、例えば、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、並びに、シリコン及びハフニウムを有する窒化物が挙げられる。
 比誘電率が低い絶縁体としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、及び、樹脂が挙げられる。
 また、金属酸化物を用いたトランジスタは、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、及びタンタルのうち一つまたは複数を含む絶縁体を、単層で、または積層で用いることができる。具体的には、水素などの不純物及び酸素の透過を抑制する機能を有する絶縁体として、例えば、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、及び、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物が挙げられる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。導電体としては、例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物が挙げられる。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、及び、ランタンとニッケルを含む酸化物は、それぞれ、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、導電率が高い半導体、または、ニッケルシリサイドなどのシリサイドを用いてもよい。
 積層構造の導電体を用いる場合、例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造、または、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造を適用してもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から脱離した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、及び、シリコンを添加したインジウム錫酸化物のうち一つまたは複数を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明の一態様に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫、アンチモンなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素M及び亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、錫、またはアンチモンとする。その他、元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。特に、元素Mは、ガリウム、アルミニウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸化窒化物(metal oxynitride)と呼称してもよい。
 以降では、金属酸化物の一例として、In−Ga−Zn酸化物について説明する。
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。なお、図2Bなどに示すように、酸化物230が絶縁体225に接している領域では、c軸が絶縁体225の膜の表面の法線方向に配向していることが好ましい。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の最大径は、数十nm程度となる場合がある。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にInを主成分とする領域(第1の領域)と、一部にGaを主成分とする領域(第2の領域)とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いることができる。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<<その他の半導体材料>>
 トランジスタの半導体層には、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体を用いてもよい。
 また、トランジスタの半導体層に、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。トランジスタの半導体層に適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。上述の遷移金属カルコゲナイドを、トランジスタの半導体層に適用することで、オン電流が大きい半導体装置を提供することができる。
<半導体装置の作製方法例>
 図7A乃至図16Dを用いて、本発明の一態様の半導体装置の作製方法例について説明する。ここでは、図1A乃至図1Dに示す半導体装置を作製する場合を例に挙げて説明する。
 各図のAは、平面図を示す。また、各図のBはそれぞれ、各図のAにA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図のCはそれぞれ、各図のAにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図のDはそれぞれ、各図のAにA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。なお、各図のAの平面図では、図の明瞭化のために一部の要素を省いている。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法及びALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性と、を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体215を成膜する(図7A乃至図7D参照)。上述の通り、絶縁体215は、絶縁体282、及び絶縁体283のいずれか一、または複数の積層膜と同様の絶縁体を用いることができる。絶縁体215の成膜方法は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いることができる。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体215中の水素濃度を低減できるため好ましい。
 次に、絶縁体215上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減できる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。本実施の形態では、絶縁体216として、スパッタリング法を用いて酸化シリコンを成膜する。
 絶縁体215、及び絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体215、及び絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減できる。
 次に、絶縁体216上に絶縁体222を成膜する(図7A乃至図7D参照)。
 絶縁体222として、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、または、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)を用いることが好ましい。または、ハフニウムジルコニウム酸化物を用いることが好ましい。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、及び水に対するバリア性を有する。絶縁体222が、水素及び水に対するバリア性を有することで、トランジスタの周辺に設けられた構造体に含まれる水素、及び水が、絶縁体222を通じてトランジスタの内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制できる。
 絶縁体222は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁体222として、ALD法を用いて、酸化ハフニウムを成膜する。
 次に、絶縁体222上に絶縁膜を成膜し、当該絶縁膜をエッチングして絶縁体223を形成する(図7A乃至図7D参照)。絶縁体223は、絶縁体225を形成するための犠牲層として機能する。絶縁体223としては、例えば、絶縁体216に用いることができる絶縁体を用いればよい。
 絶縁体223は、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。本実施の形態では、絶縁体223として、スパッタリング法を用いて、酸化シリコンを成膜する。
 絶縁体223は、リソグラフィ法を用いて島状に加工すればよい。当該加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 図7C及び図7Dに示すように、絶縁体223の側面が、絶縁体222の上面に対し、垂直または概略垂直になる構成にしてもよい。このような構成にすることで、複数のトランジスタを設ける際に、小面積化、高密度化が可能となる。
 なお、絶縁体223の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁体223を成膜してもよい。このような処理を行うことによって、絶縁体222の表面に吸着している水分及び水素を除去し、さらに絶縁体222中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁体223を覆って、絶縁体225となる絶縁膜225fを成膜する(図8A乃至図8D参照)。絶縁膜225fは、後の工程で絶縁体225となる絶縁膜であり、上述の絶縁体を用いることができる。絶縁膜225fは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁膜225fは、絶縁体223に沿って成膜されるため、被覆性が良好であることが好ましい。よって、絶縁膜225fは、良好な被覆性を有するALD法などを用いて成膜することが好ましい。また、絶縁体225は、アスペクト比が高いことが好ましいため、絶縁膜225fは膜厚が薄いことが好ましい。よって、薄い膜厚での膜厚調整が可能なALD法を用いて、絶縁膜225fを成膜することが好ましい。例えば、絶縁膜225fとして、熱ALD法を用いて酸化ハフニウムを成膜することが好ましい。このように絶縁膜225fを成膜することで、絶縁膜225fは、絶縁体223の上面及び側面に接して形成される。
 次に、絶縁膜225fの一部を異方性エッチングによって除去し、さらに絶縁体223を除去する(図9A乃至図9D参照)。これにより、アスペクト比が高い絶縁体225を形成することができる。絶縁体225を用いることで、占有面積を大きくせずに、トランジスタ200のチャネル幅を大きくすることができる。これにより、トランジスタ200の、オン電流、電界効果移動度、及び周波数特性を向上させることができる。また、占有面積を大きくせずに、酸化物230bと、導電体242a及び導電体242bとの接触面積を大きくすることができるため、トランジスタ200の、オン電流、及び周波数特性を向上させることができる。
 図9A乃至図9Dに示すように、2個の絶縁体225を形成することで、絶縁体223の大きさに合わせて、2個の絶縁体225の距離を設定することができる。よって、絶縁体225の距離を小さくし、トランジスタ200a、及びトランジスタ200bの占有面積を低減し、半導体装置、及び記憶装置の高集積化を図ることができる。これにより、記憶装置の記憶容量を増大させることができる。
 絶縁膜225fの異方性エッチングには、ドライエッチング法を用いることが好ましい。
 ドライエッチング処理用のエッチングガスとしては、ハロゲンを含むエッチングガスを用いることができ、具体的には、フッ素、塩素、及び臭素のうち、一または複数を含むエッチングガスを用いることができる。例えば、エッチングガスとして、Cガス、Cガス、Cガス、CFガス、SFガス、CHFガス、CHガス、Clガス、BClガス、SiClガス、またはBBrガスなどを単独または2以上のガスを混合して用いることができる。また、上記のエッチングガスに酸素ガス、炭酸ガス、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、または炭化水素ガスなどを適宜添加することができる。また、ドライエッチング処理の被処理物によっては、ハロゲンガスを含まず、炭化水素ガスまたは水素ガスを含むガスを、エッチングガスとして用いることができる。エッチングガスに用いる炭化水素としては、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)、エチレン(C)、プロピレン(C)、アセチレン(C)、およびプロピン(C)の一または複数を用いることができる。エッチング条件は、エッチングする対象に合わせて適宜設定することができる。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。エッチング装置は、エッチングする対象に合わせて適宜設定することができる。
 例えば、絶縁膜225fに酸化ハフニウムを用いる場合、CCPエッチング装置で、エッチングガスとして、C、H、及びArの混合ガスを用いればよい。
 なお、絶縁体223の除去は、ドライエッチング法またはウェットエッチング法を用いることができる。例えば、絶縁体223は、ウェットエッチング法を用いて除去すればよい。
 また、絶縁体225は、異方性エッチングで形成した時点では、絶縁体223の側面に接してサイドウォール状に形成される。つまり、絶縁体223を囲んで周状に絶縁体225が形成される。周状に絶縁体225を維持して半導体装置を作製すると、例えば前述した図5A乃至図5Dに示すように、絶縁体225がトランジスタ200aとトランジスタ200bで一体物になる。
 ここで、図9に示す構成では、サイドウォール状絶縁体のうち、半導体装置の構成上必要ない部分を除去して絶縁体225を形成している。このような絶縁体225を形成する場合、絶縁膜225fの異方性エッチングを行う前に、絶縁体225の不要な部分を先にエッチングする構成にしてもよい。
 次に、絶縁体222及び絶縁体225上に、酸化膜230afを成膜し、酸化膜230af上に、酸化膜230bfを成膜する(図10A乃至図10D参照)。酸化膜230afとしては、上記酸化物230aに対応する金属酸化物を、酸化膜230bfとしては、上記酸化物230bに対応する金属酸化物を、用いればよい。なお、酸化膜230af及び酸化膜230bfは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230af上及び酸化膜230bf上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230afと酸化膜230bfとの界面または界面近傍を清浄に保つことができる。
 酸化膜230af及び酸化膜230bfは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。
 酸化膜230af及び酸化膜230bfの成膜は、被覆性の良好なALD法を用いることが好ましい。ALD法を用いることで、絶縁体225の側面に、酸化膜230af及び酸化膜230bfを被覆性良く成膜することができる。これにより、トランジスタ200において、絶縁体225のA3側の側面、及びA4側の側面にもチャネル形成領域を設けることができるため、トランジスタ200のチャネル幅を大きくすることができる。よって、トランジスタ200の電界効果移動度、オン電流、及び周波数特性を良好にすることができる。
 ここで、ALD法は、原料ガスの導入量によって、得られる膜の組成を制御することができる。例えば、ALD法では、原料ガスの導入量、導入回数(パルス回数ともいう)、1パルスに要する時間(パルス時間ともいう)などを調節することによって、任意の組成の酸化膜230af及び酸化膜230bfを成膜することができる。また、例えば、ALD法では、成膜しながら原料ガスを変化させることによって、組成が連続的に変化した酸化膜230af及び酸化膜230bfを成膜することができる。原料ガスを変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送及び圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 酸化膜230afは、ALD法を用いて、In:Ga:Zn=1:3:2[原子数比]の金属酸化物層、In:Ga:Zn=1:3:4[原子数比]の金属酸化物層、または、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層を成膜すればよい。また、酸化膜230bfは、ALD法を用いて、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層、またはIn:Zn=4:1[原子数比]の金属酸化物層を成膜すればよい。また、酸化膜230af、及び酸化膜230bfは、上記金属酸化物層の積層構造にしてもよい。例えば、酸化膜230bfを、In:Zn=4:1[原子数比]の金属酸化物層、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層の順に積層した積層膜にしてもよい。なお、上記酸化膜230bfにおいて、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層の代わりに、In:Ga:Zn=1:3:2[原子数比]の金属酸化物層、またはIn:Ga:Zn=1:3:4[原子数比]の金属酸化物層を用いてもよい。
 また、酸化膜230af及び酸化膜230bfの成膜はスパッタリング法を用いてもよい。例えば、酸化膜230af及び酸化膜230bfをスパッタリング法によって成膜する場合は、スパッタリングガスとして、酸素、または、酸素と貴ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、In−M−Zn酸化物ターゲットなどを用いることができる。
 また、酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230afを、スパッタリング法によって、In:Ga:Zn=1:3:2[原子数比]の酸化物ターゲット、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230bfを、スパッタリング法によって、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、In:Ga:Zn=4:2:4.1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:2[原子数比]の酸化物ターゲット、またはIn:Zn=4:1[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、及び原子数比を適宜選択することで、酸化物230a、及び酸化物230bに求める特性に合わせて形成するとよい。
 また、例えば、酸化膜230afをスパッタリング法で成膜し、酸化膜230bfをALD法で成膜してもよい。ここで、酸化膜230afおよび酸化膜230bfのいずれか一方または両方を積層構造にしてもよい。例えば、酸化膜230afは、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、In:Ga:Zn=1:3:2[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットのいずれかを用いて、スパッタリング法で成膜すればよい。
 また、酸化膜230bfは、ALD法を用いて成膜した、上述の金属酸化物層を用いることができる。例えば、酸化膜230bfは、In:Zn=4:1[原子数比]の金属酸化物層、In:Ga:Zn=1:1:1[原子数比]の金属酸化物層の順に積層した積層膜を成膜すればよい。
 酸化膜230afをスパッタリング法で成膜することで結晶性を高めることができる。例えば、酸化膜230afの結晶性を高めてから、酸化膜230af上に、酸化膜230bfを成膜することで、酸化膜230bfの一部または全部を結晶化することができる。すなわち、酸化膜230afの結晶性を高めることで、酸化膜230bfの結晶性も高めることが可能となる。例えば、酸化膜230afが、CAAC構造の酸化物半導体膜の場合、酸化膜230af上に形成する酸化膜230bfもCAAC構造の酸化物半導体とすることができる。
 また、ALD法を用いて酸化膜230bfを成膜することで、薄い膜を制御性良く成膜することができる。これにより、酸化膜230bfを、設計通りの薄い膜厚にすることができる。このような、酸化膜230af及び酸化膜230bfを用いることで、トランジスタ200の電気特性の向上、及び信頼性の向上を図ることができる。
 なお、酸化膜230af、及び酸化膜230bfを、大気に暴露することなく、成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いることが好ましい。これにより、酸化膜230af、及び酸化膜230bfについて、各成膜工程の合間に膜中に水素が混入することを低減できる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230af、及び酸化膜230bfが多結晶化しない温度範囲で行えばよい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、または550℃以下であると好ましい。
 なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすることが好ましい。また、加熱処理は減圧状態で行ってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量は、1ppb以下が好ましく、0.1ppb以下がより好ましく、0.05ppb以下がさらに好ましい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230af、及び酸化膜230bfなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素ガスと酸素ガスの流量比を4:1として、450℃の温度で1時間の処理を行う。このような酸素ガスを含む加熱処理によって、酸化膜230af及び酸化膜230bf中の炭素、水、水素などの不純物を低減できる。このように膜中の不純物を低減することで、酸化膜230af及び酸化膜230bfの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230af及び酸化膜230bf中の結晶領域を増大させ、酸化膜230af及び酸化膜230bf中における、結晶領域の面内ばらつきを低減できる。よって、トランジスタの電気特性の面内ばらつきを低減できる。
 また、加熱処理を行うことで、絶縁体216、酸化膜230af、及び酸化膜230bf中の水素が絶縁体225及び絶縁体222内に吸い取られる。別言すると、絶縁体216、酸化膜230af、及び酸化膜230bf中の水素が、絶縁体225及び絶縁体222に拡散する。従って、絶縁体225及び絶縁体222の水素濃度は高くなるが、絶縁体216、酸化膜230af、及び酸化膜230bf中のそれぞれの水素濃度は低下する。
 特に、酸化膜230af及び酸化膜230bf(後の酸化物230a及び酸化物230b)は、トランジスタ200のチャネル形成領域として機能する。水素濃度が低減された酸化膜230af及び酸化膜230bfを用いて形成されたトランジスタ200は、良好な信頼性を有するため好ましい。
 次に、酸化膜230bf上に、導電膜242fを成膜する(図10A乃至図10D参照)。導電膜242fとしては、上記導電体242a、242bに対応する導電体を用いればよい。酸化膜230bfの成膜後に、エッチング工程などを挟まずに、酸化膜230bf上に接して導電膜242fを成膜することで、酸化膜230bfの上面を、導電膜242fで保護することができる。これにより、トランジスタを構成する酸化物230に不純物が拡散するのを低減することができるため、半導体装置の電気特性及び信頼性の向上を図ることができる。
 導電膜242fは、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。ALD法を用いることで、絶縁体225の側面に、導電膜242fを被覆性良く成膜することができる。例えば、導電膜242fとして、ALD法を用いて窒化タンタルを成膜すればよい。このように、被覆性良く導電膜242fを成膜することで、占有面積を大きくせずに、酸化物230bと、導電体242a及び導電体242bとの接触面積を大きくすることができる。これにより、トランジスタ200の、オン電流、及び周波数特性を向上させることができる。
 次に、リソグラフィ法を用いて、酸化膜230af、酸化膜230bf、及び導電膜242fを島状に加工して、酸化物230a、酸化物230b、及び導電体242Aを形成する(図11A乃至図11D参照)。
 これにより、トランジスタ200aを形成する、酸化物230a、酸化物230b、及び導電体242Aと、トランジスタ200bを形成する、酸化物230a、酸化物230b、及び導電体242Aと、が分離される。このとき、酸化物230a、酸化物230b、及び導電体242Aは、トランジスタ200aを形成する絶縁体225と、トランジスタ200bを形成する絶縁体225を、それぞれ覆って形成されることが好ましい。
 上記加工には、ドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。また、酸化膜230af、酸化膜230bf、及び導電膜242fの加工は、それぞれ異なる条件で行ってもよい。
 ここで、酸化物230a、酸化物230b、及び導電体242Aを一括で島状に加工することが好ましい。ここで、酸化物230a、酸化物230b、及び導電体242Aの二つ以上の側端部が、互いに一致または概略一致する。このような構成にすることで、本発明の一態様に係る半導体装置の工程数を削減することができる。よって、生産性の良好な半導体装置の作製方法を提供することができる。
 また、酸化物230a、酸化物230b、及び導電体242Aと重畳しない領域において、絶縁体222が露出する。
 図11Bに示すように、酸化物230a、酸化物230b、及び導電体242Aの側面が、絶縁体222の上面に対し、垂直または概略垂直になる構成にしてもよい。このような構成にすることで、複数のトランジスタを設ける際に、小面積化、高密度化が可能となる。
 ただし、上記に限られず、酸化物230a、酸化物230b、及び導電体242Aの側面がテーパー形状になっていてもよい。酸化物230a、酸化物230b、及び導電体242Aの側面のテーパー角は、例えば、60°以上90°未満であってもよい。このように側面をテーパー形状にすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減できる。
 なお、リソグラフィ法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで、導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成することができる。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクを用いなくてもよい場合がある。
 なお、加工後に不要になったレジストマスクは、酸素プラズマを用いたアッシング(以下、酸素プラズマ処理と呼ぶ場合がある。)などのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 さらに、レジストマスクの下に絶縁体または導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電膜242f上にハードマスク材料となる絶縁膜または導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。導電膜242fなどのエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。酸化膜230bfなどのエッチング後にハードマスクをエッチングにより除去してもよい。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
 また、被加工物とレジストマスクの間に、SOC(Spin On Carbon)膜、及びSOG(Spin On Glass)膜を成膜する構成にしてもよい。SOC膜及びSOG膜をマスクとして用いることで、レジストマスクとの密着性を向上させ、マスクパターンの耐久性を向上させることができる。例えば、被加工物の上に、SOC膜、SOG膜、レジストマスクの順に成膜してリソグラフィ法を行うことができる。
 次に、酸化物230a、酸化物230b、及び導電体242Aを覆って、絶縁体275を成膜し、さらに絶縁体275上に絶縁体280を成膜する(図12A乃至図12D参照)。絶縁体275、及び絶縁体280としては、上述の絶縁体を用いればよい。
 ここで、絶縁体275は、絶縁体222の上面に接することが好ましい。
 絶縁体280としては、絶縁体280となる絶縁膜を形成し、当該絶縁膜にCMP処理を行うことで、上面が平坦な絶縁体を形成することが好ましい。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、該窒化シリコンを絶縁体280に達するまで、CMP処理を行ってもよい。
 絶縁体275及び絶縁体280は、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。
 絶縁体275には、酸素の透過を抑制する機能を有する絶縁体を用いることが好ましい。例えば、絶縁体275として、PEALD法を用いて窒化シリコンを成膜することが好ましい。または、絶縁体275として、スパッタリング法を用いて、酸化アルミニウムを成膜し、その上にPEALD法を用いて窒化シリコンを成膜することが好ましい。絶縁体275を上記のような構造とすることで、水、水素などの不純物、及び酸素の拡散を抑制する機能の向上を図ることができる。
 このようにして、酸化物230a、酸化物230b、及び導電体242Aを、酸素の拡散を抑制する機能を有する絶縁体275で覆うことができる。これにより、のちの工程で、酸化物230a、酸化物230b、及び導電体242Aに、絶縁体280などから酸素が直接拡散することを低減できる。
 また、絶縁体280として、スパッタリング法を用いて酸化シリコンを成膜することが好ましい。絶縁体280となる絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減できる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分及び水素を除去し、さらに酸化物230a、及び酸化物230b中の水分濃度及び水素濃度を低減できる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、リソグラフィ法を用いて、導電体242A、絶縁体275、及び絶縁体280を加工して、酸化物230b及び絶縁体222に達する開口を形成する。当該開口は、酸化物230bと重なる領域に形成する。さらに、上記開口内において、酸化物230を加工して、酸化物230の絶縁体225と接しない部分(酸化物230の絶縁体225の形状を反映していない部分ということもできる。)を除去することが好ましい。さらに、上記開口内において、絶縁体222を加工して、絶縁体222の酸化物230と重畳しない領域を除去し、絶縁体216に達する開口を形成する(図13A乃至図13D参照)。ここで、導電体242Aが分断されて、導電体242a及び導電体242bが形成される。
 上記のように絶縁体222に開口を形成することで、トランジスタ200において、導電体260の下面を、酸化物230の下面より下に位置させることができる。これにより、導電体260から酸化物230全体に十分な電界を印加することができる。よって、トランジスタ200の電気特性を良好にすることができる。
 リソグラフィ法は、上記の方法を適宜用いることができる。上記絶縁体280の開口を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィ法を用いることが好ましい。
 上記加工は、ドライエッチング法を用いて行うことが好ましい。ドライエッチング法は、異方性エッチングが可能なため、アスペクト比が高い開口を形成するのに好適である。なお、ドライエッチング法の条件、及びドライエッチング装置については、上記の記載を参照することができる。
 なお、上記において、酸化物230の絶縁体225と接しない部分を除去する構成について示したが、本発明はこれに限られるものではない。トランジスタ200が、回路の要求する電気特性を満たすならば、酸化物230の絶縁体225と接しない部分の一部が残存する構成にしてもよい。
 なお、上記加工後に、酸素プラズマを用いたアッシング処理を行ってもよい。このような酸素プラズマ処理を行うことで、上記エッチング処理で発生し、酸化物230などに拡散した不純物を除去することができる。当該不純物は、上記エッチング処理の被加工物に含まれる成分、及び、エッチングに使用されるガスなどに含まれる成分に起因したものが挙げられる。例えば、塩素、フッ素、タンタル、シリコン、ハフニウムなどが挙げられる。特に、上記エッチング処理に示すように、導電体242Aの加工で塩素ガスを用いると、塩素ガスを含む雰囲気に酸化物230が曝されるため、酸化物230に付着した塩素を除去することが好ましい。このように酸化物230に付着した不純物を除去することで、トランジスタの電気特性、及び信頼性を向上させることができる。
 また、上記エッチング工程で酸化物230b表面に付着した不純物などを除去するために、洗浄処理を行ってもよい。洗浄方法としては、洗浄液など用いたウェット洗浄(ウェットエッチング処理ということもできる)、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、及びフッ化水素酸のうち一つまたは複数を炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、フッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、アンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整する。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下が好ましく、0.1%以上0.5%以下がより好ましい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下が好ましく、0.1ppm以上10ppm以下がより好ましい。
 なお、超音波洗浄には、200kHz以上の周波数を用いることが好ましく、900kHz以上の周波数を用いることがより好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈アンモニア水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230a、酸化物230bなどの結晶性を高めることができる。
 上記エッチング後、または上記洗浄後に加熱処理を行うことが好ましい。加熱処理の温度は、100℃以上、250℃以上、または350℃以上であり、かつ、650℃以下、600℃以下、550℃以下、または400℃以下であると好ましい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。当該加熱処理は、酸素を含む雰囲気で行うことが好ましく、例えば、窒素ガスと酸素ガスの流量比を4:1として、350℃の温度で1時間の処理を行うことが好ましい。これにより、酸化物230a及び酸化物230bに酸素を供給して、酸素欠損の低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。さらに、酸化物230a及び酸化物230b中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230a及び酸化物230b中に残存していた水素が酸素欠損に再結合してVHが形成されることを抑制できる。これにより、酸化物230が設けられたトランジスタの電気特性を良好にし、信頼性を向上させることができる。また、同一基板上に複数形成されるトランジスタの電気特性のばらつきを抑制することができる。なお、上記加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 なお、酸化物230bに、導電体242a及び導電体242bが接した状態で加熱処理を行う場合、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域は、それぞれシート抵抗が低下することがある。また、キャリア濃度が増加することがある。したがって、酸化物230bにおける導電体242aと重なる領域、及び、導電体242bと重なる領域を、自己整合的に低抵抗化することができる。
 次に、絶縁体280などに形成された開口を埋めるように、絶縁体250となる絶縁膜250Aを成膜する(図14A乃至図14D参照)。ここで、絶縁膜250Aは、絶縁体280、絶縁体275、導電体242a、導電体242b、絶縁体222、絶縁体216、酸化物230に接する。
 絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、または、ALD法を用いて成膜することができる。例えば、絶縁膜250AはALD法(熱ALD法、及びPEALD法を含む。)を用いて成膜することが好ましい。上述の絶縁体250と同様に、絶縁膜250Aは薄い膜厚で形成することが好ましく、膜厚のバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(例えば酸化剤など)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。また、絶縁膜250Aは、絶縁体280、絶縁体275、及び絶縁体222の開口の底面及び側面に、被覆性良く成膜される必要がある。熱ALD法、及びPEALD法のいずれか一方または両方を用いることで、上記開口の底面及び側面において、原子の層を一層ずつ堆積させることができるため、絶縁膜250Aを当該開口に対して良好な被覆性で形成できる。
 また、絶縁膜250AをALD法で成膜する場合、酸化剤として、オゾン(O)、酸素(O)、水(HO)などを用いることができる。水素を含まない、オゾン(O)、酸素(O)などを酸化剤として用いることで、酸化物230bに拡散する水素を低減できる。
 ここで、絶縁体222の開口における絶縁膜250Aの膜厚を、絶縁体222の膜厚より薄くすることが好ましい。これにより、図2Bに示すように、絶縁体222の開口における絶縁体250の膜厚t2を、絶縁体222の膜厚t1より薄くすることができる。これにより、トランジスタ200において、導電体260の下面を、酸化物230の下面より下に位置させることができる。よって、絶縁体280などの開口内において、導電体260から酸化物230全体に十分な電界を印加することができる。このようにして、トランジスタ200の電気特性を良好にすることができる。
 絶縁体250は、図2A、図2Bなどで示したように、積層構造にすることができる。例えば、図2Aに示すように、絶縁体250を絶縁体250a乃至絶縁体250dの積層構造にすることができる。この場合、絶縁体250aとして、酸化アルミニウムを熱ALD法によって成膜し、絶縁体250bとして、酸化シリコンをPEALD法によって成膜し、絶縁体250cとして、酸化ハフニウムを熱ALD法によって成膜し、絶縁体250dとして、窒化シリコンをPEALD法によって成膜することができる。
 また、絶縁膜250Aの成膜後、または絶縁膜250Aを構成するいずれかの絶縁体の成膜後に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。また、本明細書などにおいて、マイクロ波とは、300MHz以上300GHz以下の周波数を有する電磁波を指すものとする。
 ここで、マイクロ波処理装置の周波数は、300MHz以上300GHz以下が好ましく、2.4GHz以上2.5GHz以下がより好ましく、例えば、2.45GHzにすることができる。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、マイクロ波処理装置のマイクロ波を印加する電源の電力は、1000W以上10000W以下が好ましく、2000W以上5000W以下がより好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。
 また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力は、10Pa以上1000Pa以下が好ましく、300Pa以上700Pa以下がより好ましい。また、処理温度は、750℃以下が好ましく、500℃以下がより好ましく、例えば250℃程度とすることができる。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して加熱処理を行ってもよい。加熱処理の温度は、例えば、100℃以上750℃以下が好ましく、300℃以上500℃以下がより好ましい。
 また、例えば、上記マイクロ波処理は、酸素ガスとアルゴンガスを用いて行うことができる。ここで、酸素流量比(O/(O+Ar))は、0%より大きく、100%以下とする。好ましくは、酸素流量比(O/(O+Ar))を、0%より大きく、50%以下とする。より好ましくは、酸素流量比(O/(O+Ar))を、10%以上、40%以下とする。さらに好ましくは、酸素流量比(O/(O+Ar))を、10%以上、30%以下とする。このように、酸素を含む雰囲気でマイクロ波処理を行うことで、酸化物230b中のキャリア濃度を低下させることができる。また、マイクロ波処理において、チャンバーに過剰な量の酸素が導入されないようにすることで、酸化物230bでキャリア濃度が過剰に低下することを防ぐことができる。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマ中で形成された酸素ラジカルなどを酸化物230bの、導電体242aと導電体242bとの間の領域に作用させることができる。プラズマ、酸素ラジカル、マイクロ波などの作用により、当該領域におけるVHを酸素欠損と水素とに分断し、水素を当該領域から除去することができる。ここで、図2Aなどに示す構造にする場合、絶縁体250aとして、水素を捕獲または水素を固着する機能を有する絶縁膜(例えば、酸化アルミニウムなど)を用いることが好ましい。このような構成にすることで、マイクロ波処理により生じた水素を、絶縁体250aに捕獲、または固着させることができる。このようにして、チャネル形成領域に含まれるVHを低減できる。以上により、チャネル形成領域中の酸素欠損、及びVHを低減し、キャリア濃度を低下させることができる。また、チャネル形成領域で形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカルを供給することで、さらに、チャネル形成領域中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 チャネル形成領域中に注入される酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、チャネル形成領域中に注入される酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。また、絶縁体250の膜質を向上させることができるため、トランジスタの信頼性が向上する。
 また、マイクロ波処理を行うことで、酸化物230b中の炭素などの不純物も除去することができる。酸化物230b中の不純物である炭素を除去することで、酸化物230bの結晶性向上を図ることができる。これにより、酸化物230bをCAAC−OSにすることができる。特に、酸化物230bをALD法で成膜した場合、プリカーサに含まれる炭素が酸化物230b中に取り込まれることがあるため、マイクロ波処理で炭素を除去することが好ましい。
 一方、酸化物230bには、導電体242a、242bのいずれかと重なる領域が存在する。当該領域は、ソース領域またはドレイン領域として機能することができる。ここで、導電体242a、242bは、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、RF等の高周波、酸素プラズマなどの作用に対する遮蔽膜として機能することが好ましい。このため、導電体242a、242bは、300MHz以上300GHz以下、例えば、2.4GHz以上2.5GHz以下の電磁波を遮蔽する機能を有することが好ましい。
 導電体242a、242bは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するため、これらの作用は、酸化物230bの導電体242a、242bのいずれかと重なる領域には及ばない。これにより、マイクロ波処理によって、ソース領域及びドレイン領域で、VHの低減、及び過剰な量の酸素供給が発生しないため、キャリア濃度の低下を防ぐことができる。
 以上のようにして、酸化物半導体のチャネル形成領域で選択的に酸素欠損、及びVHを除去して、チャネル形成領域をi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域に過剰な酸素が供給されることを抑制し、マイクロ波処理を行う前の導電性(低抵抗領域である状態)を維持することができる。これにより、トランジスタの電気特性の変動を抑制し、基板面内でトランジスタの電気特性がばらつくことを抑制できる。
 なお、マイクロ波処理では、マイクロ波と酸化物230b中の分子の電磁気的な相互作用により、酸化物230bに直接的に熱エネルギーを伝達する場合がある。この熱エネルギーにより、酸化物230bが加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、酸化物230bに水素が含まれる場合、この熱エネルギーが酸化物230b中の水素に伝わり、これにより活性化した水素が酸化物230bから放出されることが考えられる。
 また、マイクロ波処理を行って、絶縁体250の膜質を改質することで、水素、水、不純物等の拡散を抑制できる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体250を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制できる。このように、絶縁体250の膜質を向上させることで、トランジスタの信頼性を向上させることができる。
 また、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素を効率よく除去できる。また、水素の一部は、導電体242a、242bにゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、当該絶縁膜中、酸化物230b中、及び酸化物230a中の水素をさらに効率よく除去できる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。また、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、酸化物230bなどが十分加熱される場合、該加熱処理を行わなくてもよい。
 絶縁体250を絶縁体250a乃至絶縁体250dの積層構造にする場合、絶縁体250bの成膜後にマイクロ波処理を行うことが好ましい。さらに、絶縁体250cの成膜後にもう一度マイクロ波処理を行ってもよい。このように、酸素を含む雰囲気でのマイクロ波処理は、複数回(少なくとも2回以上)の処理としてもよい。
 次に、導電体260aとなる導電膜260Aと、導電体260bとなる導電膜260Bと、を順に成膜する(図15A乃至図15D参照)。導電膜260A、及び導電膜260Bは、それぞれ、例えば、スパッタリング法、CVD法、MBE法、PLD法、メッキ法または、ALD法を用いて成膜することができる。導電膜260A、及び導電膜260Bは、絶縁体222の開口内を埋め込むように形成されることが好ましい。よって、被覆性が高い、ALD法、またはCVD法などで成膜することが好ましい。本実施の形態では、ALD法を用いて、導電膜260Aとして窒化チタンを成膜し、CVD法を用いて導電膜260Bとしてタングステンを成膜する。
 次に、CMP処理によって、絶縁膜250A、導電膜260A、及び、導電膜260Bを、絶縁体280が露出するまで研磨する。つまり、絶縁膜250A、導電膜260A、及び、導電膜260Bの、上記開口から露出した部分を除去する。これによって、絶縁体280などに形成された開口の中に、絶縁体250、及び導電体260(導電体260a及び導電体260b)を形成する(図16A乃至図16D参照)。
 これにより、絶縁体250は、上記開口内で、絶縁体280、絶縁体275、導電体242a、導電体242b、酸化物230、絶縁体222、及び絶縁体216に接して設けられる。また、導電体260は、絶縁体250を介して、上記開口を埋め込むように配置される。ここで、導電体260は、下面が、酸化物230の下面より下に位置するように形成される。これにより、上記開口内において、導電体260から酸化物230全体に十分な電界を印加することができる。よって、トランジスタ200の電気特性を良好にすることができる。以上のようにして、トランジスタ200が形成される。
 次に、絶縁体250上、導電体260上、及び絶縁体280上に、絶縁体282を形成する。絶縁体282は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減できる。
 また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加できる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。このように絶縁体282を成膜することで、絶縁体280から、絶縁体250を介して酸化物230bまで拡散させ、好適な量の酸素を酸化物230bに供給することができる。また、絶縁体250中に絶縁体250aを設けておくことで、過剰な量の酸素が絶縁体250中に供給され、導電体242a、242bの絶縁体250近傍が過剰に酸化されるのを防ぐことができる。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、スパッタリング法で酸化アルミニウムを成膜する。スパッタリング法で基板に印加するRF電力の大きさによって、絶縁体282より下層へ注入する酸素量を制御することができる。例えば、RF電力が小さいほど絶縁体282より下層へ注入する酸素量が減り、絶縁体282の膜厚が薄くても当該酸素量は飽和しやすくなる。また、RF電力が大きいほど絶縁体282より下層へ注入する酸素量が増える。RF電力を小さくすることで、絶縁体280へ注入される酸素量を抑制できる。また、絶縁体282を2層の積層構造で成膜してもよい。このとき、例えば、絶縁体282の下層を、基板に印加するRF電力を印加しないで成膜し、絶縁体282の上層を、基板にRF電力を印加して成膜する。
 なお、RFの周波数は、10MHz以上が好ましい。代表的には、13.56MHzである。RFの周波数が高いほど基板へ与えるダメージを小さくすることができる。
 また、絶縁体282の成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁体282を成膜してもよい。このような処理を行うことによって、絶縁体280の表面に吸着している水分及び水素を除去し、さらに絶縁体280中の水分濃度及び水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を250℃とする。
 次に、絶縁体282上に、絶縁体283を形成する。絶縁体283は、例えば、スパッタリング法、CVD法、MBE法、PLD法、またはALD法を用いて成膜することができる。絶縁体283の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体283中の水素濃度を低減できる。本実施の形態では、絶縁体283として、スパッタリング法を用いて、窒化シリコンを成膜する。
 ここで、絶縁体282及び絶縁体283は、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁体282及び絶縁体283上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁体282及び絶縁体283との界面または界面近傍を清浄に保つことができる。
 また、絶縁体283の成膜後に、加熱処理を行ってもよい。当該加熱処理の温度は、100℃以上400℃以下が好ましい。加熱処理を行うことで、絶縁体280、絶縁体250、及び酸化物230に含まれる水素が絶縁体282に吸い取られる。別言すると、絶縁体280、絶縁体250、及び酸化物230に含まれる水素が絶縁体282に拡散する。従って、絶縁体282の水素濃度は高くなるが、絶縁体280、絶縁体250、及び酸化物230のそれぞれの水素濃度は低下する。なお、絶縁体282の上面に接して絶縁体283を設けておくことで、当該加熱処理において、絶縁体283より上方から水分、または水素などの不純物が侵入するのを防ぐことができる。また、加熱処理を行うことで、酸化物230に含まれる水素が、絶縁体222内に吸い取られる。別言すると、酸化物230に含まれる水素が絶縁体222に拡散する。従って、絶縁体222の水素濃度は高くなるが、酸化物230中の水素濃度は低下する。
 次に、絶縁体275、絶縁体280、絶縁体282、及び絶縁体283に、導電体242aに達する開口と、導電体242bに達する開口を形成する(図1A乃至図1D参照)。当該開口の形成は、リソグラフィ法を用いて行えばよい。なお、図1Aで当該開口の形状は、上面視において円形状にしているが、これに限られるものではない。例えば、当該開口が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして、導電体242aに達する開口に絶縁体241aを形成し、導電体242bに達する開口に絶縁体241bを形成する(図1A乃至図1D参照)。絶縁体241となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法を用いて、酸化アルミニウムを成膜し、その上に、PEALD法を用いて、窒化シリコンを成膜することが好ましい。窒化シリコンは水素に対するブロッキング性が高いため好ましい。
 また、絶縁体241となる絶縁膜の異方性エッチングとしては、例えばドライエッチング法などを用いればよい。開口の側壁部に絶縁体241を設けることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bに、絶縁体280などに含まれる、水、水素などの不純物が拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。たとえば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240aおよび導電体240bとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体283の上面を露出する。その結果、開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図1A乃至図1D参照)。なお、当該CMP処理により、絶縁体283の上面の一部が除去される場合がある。
 上記のように、導電体242aに接する導電体240aを設けることで、トランジスタ200のソース及びドレインの一方として機能する導電体240aを配線と電気的に接続させることができる。また、導電体242bに接する導電体240bを設けることで、トランジスタ200のソース及びドレインの他方として機能する導電体240bを配線と電気的に接続させることができる。
 なお、導電体240aおよび導電体240b上に、配線として機能する導電膜、またはプラグとして機能する導電膜を形成することができる。
 以上により、図1に示す半導体装置を作製できる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
 本実施の形態では、先の実施の形態に示すOSトランジスタと、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタともいう)との比較について説明する。
[OSトランジスタ]
 OSトランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1018cm−3以下、好ましくは1×1017cm−3未満、より好ましくは1×1016cm−3未満、さらに好ましくは1×1013cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素等が挙げられる。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
 また、OSトランジスタは、酸化物半導体中のチャネル形成領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、OSトランジスタは、酸化物半導体中の酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。また、チャネル形成領域にVHが形成されると、チャネル形成領域中のドナー濃度が増加する場合がある。チャネル形成領域中のドナー濃度が増加するにつれ、しきい値電圧がばらつくことがある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。
 また、酸化物半導体のバンドギャップは、シリコンのバンドギャップ(代表的には1.1eV)よりも大きいことが好ましく、好ましくは2eV以上、より好ましくは2.5eV以上、さらに好ましくは3.0eV以上である。シリコンよりも、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流(Ioffとも呼称する)を低減することができる。
 また、Siトランジスタでは、トランジスタの微細化が進むにつれて、短チャネル効果(ショートチャネル効果:Short Channel Effect:SCEともいう)が発現する。そのため、Siトランジスタでは、微細化が困難となる。短チャネル効果が発現する要因の一つとして、シリコンのバンドギャップが小さいことが挙げられる。一方、OSトランジスタは、バンドギャップの大きい半導体材料である、酸化物半導体を用いるため、短チャネル効果の抑制を図ることができる。別言すると、OSトランジスタは、短チャネル効果がない、または短チャネル効果が極めて少ないトランジスタである。
 なお、短チャネル効果とは、トランジスタの微細化(チャネル長の縮小)に伴って顕在化する電気特性の劣化である。短チャネル効果の具体例としては、しきい値電圧の低下、サブスレッショルドスイング値(S値と表記することがある)の増大、漏れ電流の増大などがある。ここで、S値とは、ドレイン電圧一定にてドレイン電流を1桁変化させるサブスレッショルド領域でのゲート電圧の変化量をいう。
 また、短チャネル効果に対する耐性の指標として、特性長(Characteristic Length)が広く用いられている。特性長とは、チャネル形成領域のポテンシャルの曲がりやすさの指標である。特性長が小さいほどポテンシャルが急峻に立ち上がるため、短チャネル効果に強いといえる。
 OSトランジスタは蓄積型のトランジスタであり、Siトランジスタは反転型のトランジスタである。したがって、Siトランジスタと比較して、OSトランジスタは、ソース領域−チャネル形成領域間の特性長、及びドレイン領域−チャネル形成領域間の特性長が小さい。したがって、OSトランジスタは、Siトランジスタよりも短チャネル効果に強い。すなわち、チャネル長の短いトランジスタを作製したい場合においては、OSトランジスタは、Siトランジスタよりも好適である。
 チャネル形成領域がi型又は実質的にi型となるまで、酸化物半導体のキャリア濃度を下げた場合においても、短チャネルのトランジスタではConduction−Band−Lowering(CBL)効果により、チャネル形成領域の伝導帯下端が下がるため、ソース領域またはドレイン領域と、チャネル形成領域との間の伝導帯下端のエネルギー差は、0.1eV以上0.2eV以下まで小さくなる可能性がある。これにより、OSトランジスタは、チャネル形成領域がn型の領域となり、ソース領域およびドレイン領域がn型の領域となる、n/n/nの蓄積型junction−lessトランジスタ構造、または、n/n/nの蓄積型non−junctionトランジスタ構造と、捉えることもできる。
 OSトランジスタを、上記の構造とすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。例えば、OSトランジスタのゲート長が、20nm以下、15nm以下、10nm以下、7nm以下、または6nm以下であって、1nm以上、3nm以上、または5nm以上であっても、良好な電気特性を得ることができる。一方で、Siトランジスタは、短チャネル効果が発現するため、20nm以下、または15nm以下のゲート長とすることが困難な場合がある。したがって、OSトランジスタは、Siトランジスタと比較してチャネル長の短いトランジスタに好適に用いることができる。なお、ゲート長とは、トランジスタ動作時にキャリアがチャネル形成領域内部を移動する方向における、ゲート電極の長さであり、トランジスタの平面視における、ゲート電極の底面の幅をいう。
 また、OSトランジスタを微細化することで、トランジスタの周波数特性を向上させることができる。具体的には、トランジスタの遮断周波数を向上させることができる。OSトランジスタのゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、好ましくは100GHz以上、さらに好ましくは150GHz以上とすることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、オフ電流が小さいこと、チャネル長の短いトランジスタの作製が可能なこと、といった優れた効果を有する。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、本発明の一態様のトランジスタを用いた記憶装置について図17乃至図23を用いて説明する。
 本実施の形態では、上記実施の形態で説明したトランジスタを有するメモリセルを用いた記憶装置の構成例について説明する。本実施の形態では、積層されたメモリセルを有する層と、メモリセルに保持したデータ電位を増幅して出力する機能を有する機能回路を有する層が設けられた、記憶装置の構成例について説明する。
[記憶装置の構成例]
 図17に、本発明の一態様の記憶装置のブロック図を示す。
 図17に示す記憶装置300は、駆動回路21と、メモリアレイ20と、を有する。メモリアレイ20は、複数のメモリセル10と、複数の機能回路51を有する機能層50と、を有する。
 図17では、メモリアレイ20がm行n列(m及びnは2以上の整数。)のマトリクス状に配置された複数のメモリセル10を有する例を示している。また、図17では、機能回路51を、ビット線として機能する配線BLごとに設ける例を示しており、機能層50が、n本の配線BLに対応して設けられたn個の機能回路51を有する例を示している。
 図17では、1行1列目のメモリセル10をメモリセル10[1,1]と示し、m行n列目のメモリセル10をメモリセル10[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル10をメモリセル10[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また、メモリアレイ20は、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を備える。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。
 i行目に設けられた複数のメモリセル10は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル10は、j列目の配線BL(配線BL[j])と電気的に接続される。
 メモリアレイ20には、DOSRAM(登録商標)(Dynamic Oxide Semiconductor Random Access Memory)を適用することができる。DOSRAMは、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMであり、アクセストランジスタがOSトランジスタであるメモリのことをいう。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。DOSRAMは、アクセストランジスタをオフ(非導通状態)にすることで、容量素子(キャパシタ)に保持しているデータに応じた電荷を長時間保持することが可能である。そのためDOSRAMは、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)で構成されるDRAMと比較して、リフレッシュ動作の頻度を低減できる。その結果、低消費電力化を図ることができる。また、OSトランジスタの周波数特性は高いため、記憶装置の読み出し、及び書き込みを高速に行うことができる。これにより、動作速度が速い記憶装置を提供することができる。
 図17に示すメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。
 配線BLは、データの書き込み及び読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、容量素子に接続される定電位線としての機能を有する。なお、図6に示すように、バックゲートを有するOSトランジスタを用いる場合、バックゲートにバックゲート電位を伝える機能を有する配線を設けることが好ましい。
 メモリアレイ20[1]乃至20[m]がそれぞれ有するメモリセル10は、配線BLを介して機能回路51に接続される。配線BLは、駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BLを基板表面の垂直方向に設けることで、メモリアレイ20と機能回路51との間の配線の長さを短くできる。そのため、ビット線に接続される2つの回路の間の信号伝搬距離を短くでき、ビット線の抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。またメモリセル10が有する容量素子の容量を小さくしても、記憶装置を動作させることが可能となる。
 機能回路51は、メモリセル10に保持したデータ電位を増幅し、後述する配線GBL(図示せず)を介して駆動回路21が有するセンスアンプ46に出力する機能を有する。当該構成にすることで、データ読み出し時に配線BLのわずかな電位差を増幅することができる。配線GBLは、配線BLと同様に駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BL及び配線GBLを基板表面の垂直方向に設けることで、機能回路51とセンスアンプ46との間の配線の長さを短くできる。そのため、配線GBLに接続される2つの回路の間の信号伝搬距離を短くでき、配線GBLの抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。
 なお配線BLは、メモリセル10が有するトランジスタの半導体層に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線BLは、メモリアレイ20の各層におけるメモリセル10が有するトランジスタのソースまたはドレインの一方のそれぞれと、機能回路51と、を垂直方向で電気的に接続するための配線であるといえる。
 メモリアレイ20は、駆動回路21上に重ねて設けることができる。駆動回路21とメモリアレイ20を重ねて設けることで、駆動回路21とメモリアレイ20の間の信号伝搬距離を短くすることができる。よって、駆動回路21とメモリアレイ20の間の抵抗及び寄生容量が低減され、消費電力及び信号遅延の低減が実現できる。また、記憶装置300の小型化が実現できる。
 機能回路51は、DOSRAMのメモリセル10が有するトランジスタと同様にOSトランジスタを用いることで、メモリアレイ20[1]乃至20[m]と同様にしてSiトランジスタを用いた回路上などに自由に配置可能であるため、集積化を容易に行うことができる。機能回路51で信号を増幅する構成とすることで後段の回路であるセンスアンプ46等の回路を小型化できるため、記憶装置300の小型化を図ることができる。
 駆動回路21は、PSW22(パワースイッチ)、PSW23、及び周辺回路31を有する。周辺回路31は、周辺回路41、コントロール回路32(Control Circuit)、及び電圧生成回路33を有する。
 記憶装置300において、各回路、各信号及び各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、及び信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路32で生成してもよい。
 コントロール回路32は、記憶装置300の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GW及び信号BWを論理演算して、記憶装置300の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路32は、この動作モードが実行されるように、周辺回路41の制御信号を生成する。
 電圧生成回路33は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路33への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路33へ入力され、電圧生成回路33は負電圧を生成する。
 周辺回路41は、メモリセル10に対するデータの書き込み及び読み出しを行うための回路である。また周辺回路41は、機能回路51を制御するための各種信号を出力する回路である。周辺回路41は、行デコーダ42(Row Decoder)、列デコーダ44(Column Decoder)、行ドライバ43(Row Driver)、列ドライバ45(Column Driver)、入力回路47(Input Cir.)、出力回路48(Output Cir.)、センスアンプ46(Sense Amplifier)を有する。
 行デコーダ42及び列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線WLを選択する機能を有する。列ドライバ45は、データをメモリセル10に書き込む機能、メモリセル10からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、メモリセル10に書き込むデータ(Din)である。列ドライバ45がメモリセル10から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置300の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。
 PSW22は周辺回路31へのVDDの供給を制御する機能を有する。PSW23は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置300の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW22のオン・オフが制御され、信号PON2によってPSW23のオン・オフが制御される。図17では、周辺回路31において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 メモリアレイ20[1]乃至20[m](mは2以上の整数)及び機能層50を有するメモリアレイ20は、駆動回路21上に複数層のメモリアレイ20を重ねて設けることができる。複数層のメモリアレイ20を重ねて設けることで、メモリセル10のメモリ密度を高めることができる。図18Aに、駆動回路21上に機能層50と、5層(m=5)のメモリアレイ20[1]乃至20[5]と、を重ねて有する記憶装置300の斜視図を示している。
 図18Aでは、1層目に設けられたメモリアレイ20をメモリアレイ20[1]と示し、2層目に設けられたメモリアレイ20をメモリアレイ20[2]と示し、5層目に設けられたメモリアレイ20をメモリアレイ20[5]と示している。また図18Aにおいて、X方向に延びて設けられる配線WL、及び配線PLと、Z方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BLと、を図示している。なお、図面を見やすくするため、メモリアレイ20それぞれが有する配線WL及び配線PLの記載を一部省略している。
 図18Bに、図18Aで図示した配線BLに接続された機能回路51、及び配線BLに接続されたメモリアレイ20[1]乃至20[5]が有するメモリセル10の構成例を説明する模式図を示す。また図18Bでは、機能回路51と駆動回路21との間に設けられる配線GBLを図示している。なお、1つの配線BLに複数のメモリセル(メモリセル10)が電気的に接続される構成を「メモリストリング」ともいう。なお図面において、配線GBLは、視認性を高めるため、太線で図示する場合がある。
 図18Bでは、配線BLに接続されるメモリセル10の回路構成の一例を図示している。メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11、容量素子12、及び各配線(配線BL、及び配線WLなど)についても、例えば配線BL[1]及び配線WL[1]を配線BL及び配線WLなどのようにいう場合がある。ここで、トランジスタ11は、実施の形態1で示したトランジスタ200と対応する。
 メモリセル10において、トランジスタ11のソースまたはドレインの一方は配線BLに接続される。トランジスタ11のソースまたはドレインの他方は容量素子12の一方の電極に接続される。容量素子12の他方の電極は、配線PLに接続される。トランジスタ11のゲートは配線WLに接続される。
 配線PLは、容量素子12の電位を保持するための定電位を与える配線である。例えば、配線PLにGND(接地電位)を供給すればよい。
 図18Bに図示する配線GBLは、駆動回路21と機能層50との間を電気的に接続するように設けられる。図19Aでは、機能回路51、及びメモリアレイ20[1]乃至20[m]を繰り返し単位70とする記憶装置300の模式図を示している。なお図19Aでは、配線GBLを1本図示しているが、配線GBLは機能層50に設けられる機能回路51の数に応じて適宜設ければよい。
 なお配線GBLは、機能回路51が有するトランジスタの半導体層に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線GBLは、機能層50における機能回路51が有するトランジスタのソースまたはドレインの一方と、駆動回路21と、を垂直方向で電気的に接続するための配線であるといえる。
 また機能回路51、及びメモリアレイ20[1]乃至20[m]を有する繰り返し単位70は、さらに積層する構成としてもよい。本発明の一態様の記憶装置300Aは、図19Bに図示するように繰り返し単位70[1]乃至70[p](pは2以上の整数)とすることができる。配線GBLは繰り返し単位70が有する機能層50に接続される。配線GBLは、機能回路51の数に応じて適宜設ければよい。
 本発明の一形態では、OSトランジスタを積層して設けるとともに、ビット線として機能する配線を、駆動回路21が設けられる基板表面の垂直方向に配置する。メモリアレイ20から延びて設けられるビット線として機能する配線を基板表面の垂直方向に設けることで、メモリアレイ20と駆動回路21との間の配線の長さを短くできる。そのため、ビット線の寄生容量を大幅に削減できる。
 また本発明の一形態は、メモリアレイ20が設けられる層において、メモリセル10に保持したデータ電位を増幅して出力する機能を有する機能回路51を有する機能層50を備えている。当該構成にすることで、データ読み出し時にビット線として機能する配線BLのわずかな電位差を増幅して、駆動回路21が有するセンスアンプ46を駆動することができる。センスアンプ等の回路を小型化できるため、記憶装置300の小型化を図ることができる。またメモリセル10が有する容量素子12の容量を小さくしても記憶装置300を動作させることが可能となる。
 なお、上記においては、メモリアレイ20[1]乃至20[m]を有する記憶装置について説明したが、本発明に係る半導体装置は、メモリアレイ20[1]だけを有する単層の記憶装置についても用いることができる。
[メモリアレイ20及び機能回路51の構成例]
 図20を用いて、図17乃至図19で説明した機能回路51の構成例、及びメモリアレイ20及び駆動回路21が有するセンスアンプ46の構成例について説明する。図20では、異なる配線BL(配線BL_A、配線BL_B)に接続されたメモリセル10(メモリセル10_A、メモリセル10_B)に接続された機能回路51(機能回路51_A、機能回路51_B)に接続される配線GBL(配線GBL_A、配線GBL_B)に接続された駆動回路21を図示している。図20に図示する駆動回路21として、センスアンプ46の他、プリチャージ回路71_A、プリチャージ回路71_B、スイッチ回路72_A、スイッチ回路72_B及び書き込み読み出し回路73を図示している。
 機能回路51_A、51_Bとして、トランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bを図示している。図20に図示するトランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bは、メモリセル10が有するトランジスタ11と同様にOSトランジスタである。機能回路51を有する機能層50は、メモリアレイ20[1]乃至20[m]と同様に、駆動回路21上に積層して設けることができる。
 配線BL_Aは、トランジスタ52_aのゲートに接続され、配線BL_Bはトランジスタ52_bのゲートに接続される。配線GBL_Aは、トランジスタ53_a、54_aのソースまたはドレインの一方が接続される。配線GBL_Bは、トランジスタ53_b、54_bのソースまたはドレインの一方が接続される。配線GBL_A、GBL_Bは、配線BL_A、BL_Bと同様に垂直方向に設けられ、駆動回路21が有するトランジスタに接続される。トランジスタ53_a、53_b、54_a、54_b、55_a、55_bのゲートには、図20に示すように、それぞれ、選択信号MUX、制御信号WE、または制御信号REが与えられる。
 図20に示すセンスアンプ46、プリチャージ回路71_A、及びプリチャージ回路71_Bを構成するトランジスタ81_1乃至81_6、及び82_1乃至82_4は、Siトランジスタで構成される。スイッチ回路72_A及びスイッチ回路72_Bを構成するスイッチ83_A乃至83_DもSiトランジスタで構成することができる。トランジスタ53_a、53_b、54_a、54_bのソースまたはドレインの一方は、プリチャージ回路71_A、プリチャージ回路71_B、センスアンプ46、スイッチ回路72_Aを構成するトランジスタまたはスイッチに接続される。
 プリチャージ回路71_Aは、nチャネル型のトランジスタ81_1乃至81_3を有する。プリチャージ回路71_Aは、プリチャージ線PCL1に与えられるプリチャージ信号に応じて、配線BL_A及び配線BL_Bを高電源電位(VDD)と低電源電位(VSS)の間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 プリチャージ回路71_Bは、nチャネル型のトランジスタ81_4乃至81_6を有する。プリチャージ回路71_Bは、プリチャージ線PCL2に与えられるプリチャージ信号に応じて、配線GBL_A及び配線GBL_BをVDDとVSSの間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 センスアンプ46は、配線VHHまたは配線VLLに接続された、pチャネル型のトランジスタ82_1、82_2及びnチャネル型のトランジスタ82_3、82_4を有する。配線VHHまたは配線VLLは、VDDまたはVSSを与える機能を有する配線である。トランジスタ82_1乃至82_4は、インバータループを構成するトランジスタである。メモリセル10_A、10_Bを選択することでプリチャージされた配線BL_A及び配線BL_Bの電位が変化し、当該変化に応じて配線GBL_A及び配線GBL_Bの電位をVDDまたはVSSとする。配線GBL_A及び配線GBL_Bの電位は、スイッチ83_C及びスイッチ83_D、及び書き込み読み出し回路73を介して外部に出力することができる。配線BL_A及び配線BL_B、並びに配線GBL_A及び配線GBL_Bは、ビット線対に相当する。書き込み読み出し回路73は、信号EN_dataに応じて、データ信号の書き込みが制御される。
 スイッチ回路72_Aは、センスアンプ46と配線GBL_A及び配線GBL_Bとの間の導通状態を制御するための回路である。スイッチ回路72_Aは、切り替え信号CSEL1の制御によってオンまたはオフが切り替えられる。スイッチ83_A及び83_Bが、nチャネルトランジスタの場合、切り替え信号CSEL1がハイレベルでオン、ローレベルでオフとなる。スイッチ回路72_Bは、書き込み読み出し回路73と、センスアンプ46に接続されるビット線対との間の導通状態を制御するための回路である。スイッチ回路72_Bは、切り替え信号CSEL2の制御によってオンまたはオフが切り替えられる。スイッチ83_C及び83_Dは、スイッチ83_A及び83_Bと同様に動作すればよい。
 図20に示すように記憶装置300は、メモリセル10と、機能回路51と、センスアンプ46と、を最短距離になる垂直方向に設けられる配線BL及び配線GBLを介して接続する構成とすることができる。機能回路51を構成するトランジスタを有する機能層50が増えるものの、配線BLの負荷が低減されることで、書き込み時間の短縮、およびデータを読み出しやすくすること、ができる。
 また図20に示すように機能回路51_A、51_Bが有する各トランジスタは、制御信号WE、RE、及び選択信号MUXに応じて制御される。各トランジスタは、制御信号及び選択信号に応じて、配線GBLを介して配線BLの電位を駆動回路21に出力することができる。機能回路51_A、51_Bは、OSトランジスタで構成されるセンスアンプとして機能させることができる。当該構成にすることで、読み出し時に配線BLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ46を駆動することができる。
<メモリセルの構成例>
 図21Aを用いて、上記記憶装置に用いられるメモリセル10の構成例について説明する。
 なお、図21Aにおいて、X方向は、図示するトランジスタのチャネル長方向と平行であり、Y方向は、X方向に垂直であり、Z方向は、X方向及びY方向に垂直である。
 図21Aに示すように、メモリセル10は、トランジスタ11及び容量素子12を有する。トランジスタ11の上には、絶縁体285が設けられ、絶縁体285の上には、絶縁体284が設けられている。絶縁体285、及び絶縁体284は、絶縁体216に用いることが可能な絶縁体を用いればよい。なお、トランジスタ11は、先の実施の形態に示すトランジスタ200と同様の構成を有し、同じ構成要素には同符号を付す。トランジスタ200の詳細については、先の実施の形態を参照することができる。また、トランジスタ11のソースまたはドレインの一方(導電体242b)に接して導電体240bが設けられる。導電体240bは、Z方向に延伸して設けられており、配線BLとして機能する。
 容量素子12は、導電体242a上の導電体153と、導電体153上の絶縁体154と、絶縁体154上の導電体160(導電体160a及び導電体160b)と、を有する。
 導電体153、絶縁体154、及び、導電体160は、それぞれ、少なくとも一部が、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられた開口の内部に配置されている。導電体153、絶縁体154、及び、導電体160のそれぞれの端部は、少なくとも絶縁体282上に位置し、好ましくは絶縁体285上に位置する。絶縁体154は、導電体153の端部を覆うように設けられる。これにより、導電体153と導電体160とを電気的に絶縁させることができる。
 絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。容量素子12の単位面積当たりの静電容量を大きくすることで、記憶装置の微細化または高集積化を図ることができる。
 導電体153は、容量素子12の一方の電極(下部電極)として機能する領域を有する。絶縁体154は、容量素子12の誘電体として機能する領域を有する。導電体160は、容量素子12の他方の電極(上部電極)として機能する領域を有する。また、導電体260の上部を延伸させて、図18A及び図18Bに示す配線PLとして機能させることができる。容量素子12は、MIM(Metal−Insulator−Metal)容量を構成している。
 また、酸化物230上に重畳して設けられた導電体242aは、容量素子12の導電体153と電気的に接続する電極として機能する。
 容量素子12が有する導電体153及び導電体160は、それぞれ、導電体260に用いることができる各種導電体を用いて形成することができる。導電体153及び導電体160は、それぞれ、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。例えば、導電体153として、ALD法またはCVD法を用いて成膜した窒化チタンまたは窒化タンタルを用いることができる。
 また、導電体153の下面には、導電体242aの上面が接する。ここで、導電体242aとして、導電性の良好な導電性材料を用いることで、導電体153と導電体242aとの接触抵抗を低減することができる。
 また、導電体160aとして、ALD法またはCVD法を用いて成膜した窒化チタンを用い、導電体160bとして、CVD法を用いて成膜したタングステンを用いることができる。なお、絶縁体154に対するタングステンの密着性が十分高い場合は、導電体160として、CVD法を用いて成膜したタングステンの単層構造を用いてもよい。
 容量素子12が有する絶縁体154には、高誘電率(high−k)材料(高い比誘電率の材料)を用いることが好ましい。絶縁体154は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。
 高誘電率(high−k)材料の絶縁体としては、例えば、アルミニウム、ハフニウム、ジルコニウム、及びガリウムなどから選ばれた金属元素を一種以上含む、酸化物、酸化窒化物、窒化酸化物、及び窒化物が挙げられる。また、上記酸化物、酸化窒化物、窒化酸化物、または窒化物に、シリコンを含有させてもよい。また、上記の材料からなる絶縁体を積層して用いることもできる。
 例えば、高誘電率(high−k)材料の絶縁体として、例えば、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、シリコン及びジルコニウムを有する酸化物、シリコン及びジルコニウムを有する酸化窒化物、ハフニウム及びジルコニウムを有する酸化物、並びに、ハフニウム及びジルコニウムを有する酸化窒化物が挙げられる。このようなhigh−k材料を用いることで、リーク電流を抑制できる程度に絶縁体154を厚くし、且つ容量素子12の静電容量を十分確保することができる。
 また、上記の材料からなる絶縁体を積層して用いることが好ましく、高誘電率(high−k)材料と、当該高誘電率(high−k)材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体154として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁体を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁体を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁体を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子12の静電破壊を抑制することができる。
 また、絶縁体154として、強誘電性を有しうる材料を用いてもよい。強誘電性を有しうる材料としては、酸化ハフニウム、酸化ジルコニウム、HfZrO(Xは0よりも大きい実数とする)などの金属酸化物が挙げられる。また、強誘電性を有しうる材料としては、酸化ハフニウムに元素J1(ここでの元素J1は、ジルコニウム、シリコン、アルミニウム、ガドリニウム、イットリウム、ランタン、ストロンチウムなどから選ばれた一つまたは複数)を添加した材料が挙げられる。ここで、ハフニウム原子の原子数と元素J1の原子数の比は適宜設定することができ、例えば、ハフニウム原子の原子数と元素J1の原子数の比を1:1またはその近傍にすればよい。また、強誘電性を有しうる材料としては、酸化ジルコニウムに元素J2(ここでの元素J2は、ハフニウム、シリコン、アルミニウム、ガドリニウム、イットリウム、ランタン、ストロンチウムなどから選ばれた一つまたは複数)を添加した材料、などが挙げられる。また、ジルコニウム原子の原子数と元素J2の原子数の比は適宜設定することができ、例えば、ジルコニウム原子の原子数と元素J2の原子数の比を1:1またはその近傍にすればよい。また、強誘電性を有しうる材料として、チタン酸鉛(PbTiO)、チタン酸バリウムストロンチウム(BST)、チタン酸ストロンチウム、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、チタン酸バリウム、などのペロブスカイト構造を有する圧電性セラミックスを用いてもよい。
 また、強誘電性を有しうる材料としては、元素M1と、元素M2と、窒素と、を有する金属窒化物が挙げられる。ここで、元素M1は、アルミニウム、ガリウム、インジウムなどから選ばれた一つまたは複数である。また、元素M2は、ホウ素、スカンジウム、イットリウム、ランタン、セリウム、ネオジム、ユーロピウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロムなどから選ばれた一つまたは複数である。なお、元素M1の原子数と元素M2の原子数の比は適宜設定することができる。また、元素M1と、窒素と、を有する金属酸化物は、元素M2を含まなくても、強誘電性を有する場合がある。また、強誘電性を有しうる材料としては、上記金属窒化物に元素M3が添加された材料が挙げられる。なお、元素M3は、マグネシウム、カルシウム、ストロンチウム、亜鉛、カドミウムなどから選ばれた一つまたは複数である。ここで、元素M1の原子数、元素M2の原子数、および元素M3の原子数の比は適宜設定することができる。
 また、強誘電性を有しうる材料としては、SrTaON、BaTaONなどのペロブスカイト型酸窒化物、κアルミナ型構造のGaFeOなどが挙げられる。
 なお、上記の説明においては、金属酸化物、及び金属窒化物について例示したがこれに限定されない。例えば、上述の金属酸化物に窒素が添加された金属酸窒化物、または上述の金属窒化物に酸素が添加された金属窒酸化物などを用いてもよい。
 また、強誘電性を有しうる材料としては、例えば、上記に列挙した材料から選ばれた複数の材料からなる混合物または化合物を用いることができる。または、絶縁体154を、上記に列挙した材料から選ばれた複数の材料からなる積層構造とすることができる。ところで、上記に列挙した材料などは、成膜条件だけでなく、各種プロセスなどによっても結晶構造(特性)が変わり得る可能性があるため、本明細書等では強誘電性を発現する材料のみを強誘電体と呼ぶだけでなく、強誘電性を有しうる材料とも呼んでいる。
 強誘電体は、絶縁体であって、外部から電場を与えることによって内部に分極が生じ、かつ当該電場をゼロにしても分極が残る性質を有する。このため、当該材料を誘電体として用いた容量素子(以下、強誘電体キャパシタと呼ぶ場合がある)を用いて、不揮発性の記憶素子を形成することができる。強誘電体キャパシタを用いた、不揮発性の記憶素子は、FeRAM(Ferroelectric Random Access Memory)、強誘電体メモリなどと呼ばれることがある。例えば、強誘電体メモリは、トランジスタと、強誘電体キャパシタを有し、トランジスタのソースおよびドレインの一方が、強誘電体キャパシタの一方の端子に電気的に接続された構成を有する。よって、容量素子12として強誘電体キャパシタを用いる場合、本実施の形態で示す記憶装置は、強誘電体メモリとして機能する。
 絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285に設けられる開口の深さを深くする(つまり、絶縁体275、絶縁体280、絶縁体282、絶縁体283及び絶縁体285のうち一つまたは複数の厚さを厚くする)ほど、容量素子12の静電容量を大きくすることができる。ここで、絶縁体275、絶縁体282、及び絶縁体283はバリア絶縁体として機能するため、半導体装置に求められるバリア性に応じて膜厚を設定することが好ましい。また、絶縁体280の膜厚に応じて、ゲート電極として機能する導電体260の膜厚が決定されるため、絶縁体280の膜厚は、半導体装置に求められる導電体260の膜厚に合わせて設定することが好ましい。
 よって、絶縁体285の膜厚を調節することで、容量素子12の静電容量を設定することが好ましい。例えば、絶縁体285の膜厚を50nm以上250nm以下の範囲で設定し、上記開口の深さを150nm以上350nm以下程度にすればよい。このような範囲で容量素子12を形成することで、容量素子12に十分な静電容量を有せしめ、且つ複数のメモリセルの層を積層する半導体装置において、一つの層の高さが過剰に高くならないようにすることができる。なお、複数のメモリセルの層のそれぞれにおいて、各メモリセルに設けられる容量素子の静電容量を異ならせる構成としてもよい。当該構成の場合、例えば、各メモリセルの層に設けられる絶縁体285の膜厚を異ならせればよい。
 なお、容量素子12が配置された、絶縁体285等に設けられた開口部において、当該開口部の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、絶縁体285等の開口部に設ける導電体153などの被覆性が向上し、鬆などの欠陥を低減できる。
 また、酸化物230上に重畳して設けられた導電体242bは、導電体240bと電気的に接続する配線として機能する。例えば、図21Aでは、導電体242bの上面及び側端部が、Z方向に延在する導電体240bと電気的に接続している。特に図21Aでは、導電体242bの上面及び側端部が、導電体240bと接している。
 導電体240bが直接、導電体242bの上面、及び側端部の少なくとも一と接することで、別途接続用の電極を設ける必要がないため、メモリアレイの占有面積を低減できる。また、メモリセルの集積度が向上し、記憶装置の記憶容量を増大できる。なお、導電体240bは、導電体242bの上面の一部、及び側端部と接することが好ましい。導電体240bが導電体242bの複数面と接することで、導電体240bと導電体242bの接触抵抗を低減できる。
 導電体240bは、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び、絶縁体284に形成された開口内に設けられている。
 また、図21Aに示すように、導電体240bの側面に接して絶縁体241bが設けられることが好ましい。具体的には、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、絶縁体283、絶縁体285、及び、絶縁体284の開口の内壁に接して絶縁体241bが設けられる。また、当該開口内に突出して形成される、酸化物230の側面にも絶縁体241bが形成される。ここで、導電体242bの少なくとも一部は、絶縁体241bから露出しており、導電体240bに接している。つまり、導電体240bは、絶縁体241bを介して、上記開口の内部を埋め込むように設けられる。
 なお、図21Aに示すように、導電体242bより下に形成される絶縁体241bの最上部は、導電体242bの上面よりも下方に位置することが好ましい。当該構成にすることで、導電体240bが導電体242bの側端部の少なくとも一部と接することができる。なお、導電体242bより下に形成される絶縁体241bは、酸化物230の側面と接する領域を有することが好ましい。当該構成にすることで、絶縁体280等に含まれる水、水素等の不純物が、導電体240bを通じて酸化物230に混入するのを抑制できる。
 なお、導電体240b、及び絶縁体241bが配置された、開口部において、当該開口部の側壁は、絶縁体222の上面に対して垂直または概略垂直であってもよく、テーパー形状であってもよい。側壁をテーパー形状にすることで、当該開口部に設ける絶縁体241bなどの被覆性が向上する。
 また、図21Aに示すメモリセル10では、容量素子12の導電体153が、トランジスタ11の導電体242aに接する構成にしたが、本発明はこれに限られるものではない。例えば、図21Bに示すように、トランジスタ11に導電体240aを設け、その上に容量素子12を設ける構成にしてもよい。
 図21Bに示すメモリセル10では、絶縁体283上に絶縁体286を設け、絶縁体286上に絶縁体287を設け、絶縁体287上に絶縁体288を設けることができる。絶縁体286、絶縁体287、及び絶縁体288は、絶縁体284に用いることができる絶縁体を用いればよい。また、絶縁体286に埋め込まれるように導電体246a及び導電体246bが設けられる。導電体246a及び導電体246bは、配線または電極として機能し、導電体260に用いることができる導電体を用いればよい。また、絶縁体287及び絶縁体288に埋め込まれるように、容量素子12が設けられる。図21Bに示す容量素子12は、図21Aと同様の構造を有する。また、図21Bに示すトランジスタ11は、図1Bなどに示すトランジスタ200と同様に、絶縁体280などに埋め込まれた導電体240a、導電体240b、絶縁体241a、及び絶縁体241bを有する。
 図21Bに示すように、導電体240aは導電体242aに接し、導電体246aは導電体240aに接し、導電体153は導電体246aに接する。よって、容量素子12の下部電極である導電体153は、導電体246a、及び導電体240aを介して、トランジスタ11のソース及びドレインの一方である導電体242aに電気的に接続される。
 また、図21Bに示すように、導電体240bは導電体242bに接し、導電体246bは導電体240bに接する。ここで、導電体246bを同一層で延伸して設けることで、配線BLとして機能させることができる。この場合、図21Bに示すメモリセル10は、同一層に行列状に設けられて、メモリアレイを形成する。また、これに限られることなく、図21Aに示す導電体240bと同様に、Z方向に延伸して設ける構成にしてもよい。
 また、図21Bに示すメモリセル10では、導電体246aと導電体246bを同一層に形成する構成にしたが、本発明はこれに限られるものではない。例えば、図22Aに示すように、導電体246aを導電体246bより上の層に設ける構成にしてもよい。
 図22Aに示すメモリセル10では、絶縁体286上に絶縁体289を設け、絶縁体289上に絶縁体290を設けることができる。絶縁体289は、絶縁体283に用いることができる絶縁体を用いればよく、絶縁体290は、絶縁体284に用いることができる絶縁体を用いればよい。また、絶縁体290に埋め込まれるように導電体246aが設けられる。
 上記のような構成にすることで、導電体246bに干渉することなく、導電体246aをトランジスタ11上に重畳して配置することができる。よって、導電体246a上に設けられる容量素子12を、トランジスタ11上に重畳して配置することができる。ここで、容量素子12の少なくとも一部、例えば、導電体153、絶縁体154、及び導電体160が重なる部位が、酸化物230、及び導電体260と重畳することが好ましい。このような構成にすることで、占有面積を大きく増やすことなく、トランジスタ11及び容量素子12を有するメモリセル10を設けることができる。これにより、記憶装置の単位面積あたりの記憶容量を大きくすることができる。
 なお、絶縁体289は、導電体246aを形成する際にエッチングストッパとして機能することが好ましい。このような構成にすることで、導電体246aの一部が導電体246bに重畳しても、当該導電体246aの一部が、導電体246bに接するのを防ぐことができる。
 また、図21Aに示すメモリセル10では、容量素子12が、トランジスタ11上に設けられる構成にしたが、本発明はこれに限られるものではない。例えば、図22Bに示すように、トランジスタ11の下に容量素子12が設けられる構成にしてもよい。
 図22Bに示すメモリセル10では、絶縁体216の下に、図1Bと同様に絶縁体215を設け、絶縁体215の下に絶縁体291を設け、絶縁体291の下に絶縁体292を設け、絶縁体292の下に絶縁体293を設けることができる。絶縁体291、絶縁体292、及び絶縁体293は、絶縁体284に用いることができる絶縁体を用いればよい。また、絶縁体293に埋め込まれるように導電体294が設けられる。導電体294は、配線または電極として機能し、導電体260に用いることができる導電体を用いればよい。また、絶縁体291及び絶縁体292に埋め込まれるように、容量素子12が設けられる。図22Bに示す容量素子12は、図21Aと同様の構造を有する。また、絶縁体215及び絶縁体216に埋め込まれるように導電体206が設けられる。導電体206は、例えばデュアルダマシン法を用いて形成すればよい。また、絶縁体222、絶縁体275、絶縁体280、絶縁体282、及び絶縁体283に埋め込まれるように、導電体240c、及び絶縁体241cが設けられる。導電体240cは、導電体240a及び導電体240bと同じ工程で形成することができ、絶縁体241cは、絶縁体241a及び絶縁体241bと同じ工程で形成することができる。
 図22Bに示すように、導電体240aは導電体242aに接し、導電体246aは導電体240aに接し、導電体240cは導電体246aに接し、導電体206は導電体240cに接し、導電体160は導電体206に接する。よって、容量素子12の上部電極である導電体160は、導電体206、導電体240c、導電体246a、及び導電体240aを介して、トランジスタ11のソース及びドレインの一方である導電体242aに電気的に接続される。
 また、図22Bに示すように、導電体294は導電体153に接する。ここで、導電体153は、配線PLとして機能させることができる。
 上記のような構成にすることで、容量素子12を、トランジスタ11の下に重畳して配置することができる。ここで、容量素子12の少なくとも一部、例えば、導電体153、絶縁体154、及び導電体160が重なる部位が、酸化物230、及び導電体260と重畳することが好ましい。このような構成にすることで、占有面積を大きく増やすことなく、トランジスタ11及び容量素子12を有するメモリセル10を設けることができる。これにより、記憶装置の単位面積あたりの記憶容量を大きくすることができる。
<記憶装置300の構成例>
 図23を用いて、上記記憶装置300の構成例について説明する。
 記憶装置300は、トランジスタ310等を有する層である、駆動回路21と、駆動回路21上の、トランジスタ52、53、55等を有する層である、機能層50と、機能層50上のメモリアレイ20[1]乃至20[m]と、を有する。なお、図23では、トランジスタ52、53、55だけを表示しているが、機能層50にトランジスタ54_a、54_bなどを設けることもできる。なお、トランジスタ52は、上記トランジスタ52_a、52_bに対応し、トランジスタ53は、上記トランジスタ53_a、53_bに対応し、トランジスタ55は、上記トランジスタ55_a、55_bに対応する。
 図23では、駆動回路21が有するトランジスタ310を例示している。トランジスタ310は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部を含む半導体領域313、及びソース領域またはドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。トランジスタ310は、pチャネル型のトランジスタ、あるいはnチャネル型のトランジスタのいずれでもよい。基板311としては、例えば単結晶シリコン基板を用いることができる。
 ここで、図23に示すトランジスタ310はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面及び上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ310は半導体基板の凸部を利用していることからFin型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI(Silicon on Insulator)基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図23に示すトランジスタ310は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いることができる。
 各構造体の間には、層間膜、配線、及びプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ310上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。また、絶縁体320及び絶縁体322には導電体328などが埋め込まれている。また、絶縁体324及び絶縁体326には導電体330などが埋め込まれている。なお、導電体328及び導電体330はコンタクトプラグまたは配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 また、図23では、機能層50が有するトランジスタ52、53、55を例示している。トランジスタ52、53、55は、メモリセル10が有するトランジスタ11と同様の構成を有する。トランジスタ52、53、55は、互いのソース及びドレインが直列に接続されている。
 トランジスタ52、53、55上に、絶縁体208が設けられ、絶縁体208に形成された開口に導電体207が設けられる。さらに、絶縁体208上に絶縁体210が設けられ、絶縁体210に形成された開口に導電体209が設けられる。さらに、絶縁体210上に絶縁体212が設けられ、絶縁体212上に絶縁体214が設けられる。絶縁体212及び絶縁体214に形成された開口には、メモリアレイ20[1]に設けられた導電体240bの一部が埋め込まれている。ここで、絶縁体208、及び絶縁体210は、絶縁体216に用いることが可能な絶縁体を用いることができる。また、絶縁体212は、絶縁体283に用いることが可能な絶縁体を用いることができる。また、絶縁体214は、絶縁体282に用いることが可能な絶縁体を用いることができる。
 導電体207の下面は、トランジスタ52の導電体260の上面に接して設けられる。また、導電体207の上面は、導電体209の下面に接して設けられる。また、導電体209の上面は、メモリアレイ20[1]に設けられた導電体240bの下面に接して設けられる。このような構成にすることで、配線BLに相当する導電体240bと、トランジスタ52のゲートを電気的に接続することができる。
 メモリアレイ20[1]乃至20[m]は、それぞれ、複数のメモリセル10を含む。各メモリセル10が有する導電体240bは、上の層の導電体240b、及び下の層の導電体240bと電気的に接続される。
 図23に示すように、隣接するメモリセル10において、導電体240bが共有されている。また、隣接するメモリセル10において、導電体240bを境に、右側の構成と左側の構成と、が対称に配置される。
 上述のメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。またメモリアレイ20は、垂直方向に繰り返し同じ製造工程を用いて作製することができる。記憶装置300は、メモリアレイ20の製造コストの低減を図ることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、本発明の一態様の記憶装置が実装されたチップの一例について、図24を用いて説明する。
 図24A及び図24Bに示すチップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図24Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図24Bに示すように、パッケージ基板1201の第1の面と接続する。また、パッケージ基板1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。これにより、DRAM1221を、低消費電力化、高速化、及び大容量化させることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、及びGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、及びGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したDOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理または積和演算に用いることができる。GPU1212に、先の実施の形態に記載のOSトランジスタを用いた画像処理回路、または、積和演算回路を設けることで、画像処理、または積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、及びGPU1212が同一チップに設けられていることで、CPU1211、及びGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、及びGPU1212が有するメモリ間のデータ転送、及びGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、及びD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、及びフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワークと接続するための回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたパッケージ基板1201、DRAM1221、及びフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行できるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、上記実施の形態で説明した半導体装置を用いることができる、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンター(Data Center:DCとも呼称する)について説明する。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターは、低消費電力化といった高性能化に有効である。
[電子部品]
 電子部品700が実装された基板(実装基板704)の斜視図を、図25Aに示す。図25Aに示す電子部品700は、モールド711内に半導体装置710を有している。図25Aは、電子部品700の内部を示すために、一部の記載を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は半導体装置710とワイヤ714を介して電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、記憶層716と、を有する。なお、記憶層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、記憶層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、および、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、記憶層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくすることが可能であるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、記憶層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシのいずれか一または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、記憶層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図25Bに示す。電子部品730は、SiP(System in Package)又はMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、又は、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、又は樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層又は多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」又は「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を電気的に接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、上述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図25Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[電子機器]
 次に、電子機器6500の斜視図を図26Aに示す。図26Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508、及び制御装置6509などを有する。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。
 図26Bに示す電子機器6600は、ノート型パーソナルコンピュータとして用いることのできる情報端末機である。電子機器6600は、筐体6611、キーボード6612、ポインティングデバイス6613、外部接続ポート6614、表示部6615、制御装置6616などを有する。なお、制御装置6616としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6615、制御装置6616などに適用することができる。なお、本発明の一態様の半導体装置を、上述の制御装置6509、及び制御装置6616に用いることで、消費電力を低減させることができるため好適である。
[大型計算機]
 次に、大型計算機5600の斜視図を図26Cに示す。図26Cに示す大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 計算機5620は、例えば、図26Dに示す斜視図の構成とすることができる。図26Dにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図26Eに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図26Eには、半導体装置5626、半導体装置5627、および半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、および半導体装置5628の説明を参酌すればよい。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード5622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品700を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、情報を処理および記憶する機器などの宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含むことができる。当該OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。
 図27には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図27においては、宇宙空間に惑星6804を例示している。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 また、図27には、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。上述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様である半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。データを長期的に管理する場合、膨大なデータを記憶するためのストレージおよびサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図28にデータセンターに適用可能なストレージシステムを示す。図28に示すストレージシステム7000は、ホスト7001(Host Computerと図示)として複数のサーバ7001sbを有する。また、ストレージ7003(Storageと図示)として複数の記憶装置7003mdを有する。ホスト7001とストレージ7003とは、ストレージエリアネットワーク7004(SAN:Storage Area Networkと図示)およびストレージ制御回路7002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト7001は、ストレージ7003に記憶されたデータにアクセスするコンピュータに相当する。ホスト7001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ7003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ7003内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ7003のアクセススピードの長さの問題を解決するために、通常ストレージ7003内にキャッシュメモリを設けてデータの記憶及び出力を短くしている。
 上述のキャッシュメモリは、ストレージ制御回路7002およびストレージ7003内に用いられる。ホスト7001とストレージ7003との間でやり取りされるデータは、ストレージ制御回路7002およびストレージ7003内の当該キャッシュメモリに記憶されたのち、ホスト7001またはストレージ7003に出力される。
 上述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることでストレージの小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
ADDR:信号、BL[1]:配線、BL[j]:配線、BL[n]:配線、BL_A:配線、BL_B:配線、BL:配線、BW:信号、CE:信号、CLK:信号、EN_data:信号、GBL_A:配線、GBL_B:配線、GBL:配線、GW:信号、MUX:選択信号、PL[1]:配線、PL[i]:配線、PL[m]:配線、PL:配線、RDA:信号、RE:制御信号、VHH:配線、VLL:配線、VPC:中間電位、WAKE:信号、WDA:信号、WE:制御信号、WL[1]:配線、WL[i]:配線、WL[m]:配線、WL:配線、10[1,1]:メモリセル、10[i,j]:メモリセル、10[m,n]:メモリセル、10_A:メモリセル、10_B:メモリセル、10:メモリセル、11:トランジスタ、12:容量素子、20[1]:メモリアレイ、20[2]:メモリアレイ、20[5]:メモリアレイ、20[m]:メモリアレイ、20:メモリアレイ、21:駆動回路、22:PSW、23:PSW、31:周辺回路、32:コントロール回路、33:電圧生成回路、41:周辺回路、42:行デコーダ、43:行ドライバ、44:列デコーダ、45:列ドライバ、46:センスアンプ、47:入力回路、48:出力回路、50:機能層、51_A:機能回路、51_B:機能回路、51:機能回路、52_a:トランジスタ、52_b:トランジスタ、52:トランジスタ、53_a:トランジスタ、53_b:トランジスタ、53:トランジスタ、54_a:トランジスタ、54_b:トランジスタ、54:トランジスタ、55_a:トランジスタ、55_b:トランジスタ、55:トランジスタ、70[1]:繰り返し単位、70:繰り返し単位、71_A:プリチャージ回路、71_B:プリチャージ回路、72_A:スイッチ回路、72_B:スイッチ回路、73:書き込み読み出し回路、81_1:トランジスタ、81_3:トランジスタ、81_4:トランジスタ、81_6:トランジスタ、82_1:トランジスタ、82_2:トランジスタ、82_3:トランジスタ、82_4:トランジスタ、83_A:スイッチ、83_B:スイッチ、83_C:スイッチ、83_D:スイッチ、153:導電体、154:絶縁体、160a:導電体、160b:導電体、160:導電体、200a:トランジスタ、200b:トランジスタ、200:トランジスタ、205a:導電体、205b:導電体、205:導電体、206:導電体、207:導電体、208:絶縁体、209:導電体、210:絶縁体、212:絶縁体、214:絶縁体、215:絶縁体、216:絶縁体、221:絶縁体、222:絶縁体、223:絶縁体、225f:絶縁膜、225:絶縁体、230a:酸化物、230af:酸化膜、230b:酸化物、230bf:酸化膜、230:酸化物、240a:導電体、240b:導電体、240c:導電体、240:導電体、241a:絶縁体、241b:絶縁体、241c:絶縁体、241:絶縁体、242A:導電体、242a:導電体、242b:導電体、242f:導電膜、242:導電体、246a:導電体、246b:導電体、250a:絶縁体、250A:絶縁膜、250b:絶縁体、250c:絶縁体、250d:絶縁体、250:絶縁体、255:絶縁体、260a:導電体、260A:導電膜、260b:導電体、260B:導電膜、260:導電体、275:絶縁体、280:絶縁体、282:絶縁体、283:絶縁体、284:絶縁体、285:絶縁体、286:絶縁体、287:絶縁体、288:絶縁体、289:絶縁体、290:絶縁体、291:絶縁体、292:絶縁体、293:絶縁体、294:導電体、300A:記憶装置、300:記憶装置、310:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、700:電子部品、702:プリント基板、704:実装基板、710:半導体装置、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、715:駆動回路層、716:記憶層、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、1200:チップ、1201:パッケージ基板、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、5600:大型計算機、5610:ラック、5620:計算機、5621:PCカード、5622:ボード、5623:接続端子、5624:接続端子、5625:接続端子、5626:半導体装置、5627:半導体装置、5628:半導体装置、5629:接続端子、5630:マザーボード、5631:スロット、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6509:制御装置、6600:電子機器、6611:筐体、6612:キーボード、6613:ポインティングデバイス、6614:外部接続ポート、6615:表示部、6616:制御装置、6800:人工衛星、6801:機体、6802:ソーラーパネル、6803:アンテナ、6804:惑星、6805:二次電池、6807:制御装置、7000:ストレージシステム、7001sb:サーバ、7001:ホスト、7002:ストレージ制御回路、7003md:記憶装置、7003:ストレージ

Claims (10)

  1.  基板上の第1の絶縁体と、
     前記第1の絶縁体上の第2の絶縁体と、
     前記第2の絶縁体上の第3の絶縁体と、
     前記第2の絶縁体上に配置され、前記第3の絶縁体を覆う酸化物半導体と、
     前記酸化物半導体上の第1の導電体及び第2の導電体と、
     前記第1の導電体、及び前記第2の導電体上に配置される第4の絶縁体と、
     前記酸化物半導体上に配置される第5の絶縁体と、
     前記第5の絶縁体上に配置される、第3の導電体と、を有し、
     前記第1の導電体と前記第2の導電体の間の領域において、前記第2の絶縁体、及び前記第4の絶縁体は、前記酸化物半導体に達し、且つ前記酸化物半導体と重畳しない領域において前記第1の絶縁体に達する開口を有し、
     前記第5の絶縁体、及び前記第3の導電体は、前記開口内に配置され、
     チャネル幅方向の断面視において、前記第3の絶縁体の高さは、前記第3の絶縁体の幅より長く、
     前記開口内の前記酸化物半導体に重畳しない領域において、前記第3の導電体の下面は、前記酸化物半導体の下面より下に位置する、
     半導体装置。
  2.  請求項1において、
     前記開口内において、前記第5の絶縁体は、前記第1の絶縁体に接し、
     前記開口内の前記酸化物半導体に重畳しない領域における前記第5の絶縁体の膜厚は、前記第2の絶縁体の膜厚より薄い、
     半導体装置。
  3.  請求項1において、
     平面視において、前記開口における前記第4の絶縁体の側面は、前記第1の導電体の側面、及び前記第2の導電体の側面と一致または概略一致する、
     半導体装置。
  4.  請求項1において、
     チャネル幅方向の断面視において、前記第3の絶縁体の高さは、前記第3の絶縁体の幅の2倍以上20倍以下である、半導体装置。
  5.  請求項1において、
     前記第1の導電体は、トランジスタのソース電極及びドレイン電極の一方として機能し、
     前記第2の導電体は、前記トランジスタのソース電極及びドレイン電極の他方として機能し、
     前記第3の導電体は、前記トランジスタのゲート電極として機能する、
     半導体装置。
  6.  請求項5において、
     チャネル幅方向の断面視において、
     前記第3の絶縁体の一方の側面において、前記酸化物半導体と前記第3の導電体が前記第5の絶縁体を挟んで対向し、
     前記第3の絶縁体の他方の側面において、前記酸化物半導体と前記第3の導電体が前記第5の絶縁体を挟んで対向する、
     半導体装置。
  7.  請求項5において、
     チャネル幅方向の断面視において、
     前記第1の導電体は、前記第3の絶縁体の一方の側面側、及び他方の側面側において、前記酸化物半導体と接し、
     前記第2の導電体は、前記第3の絶縁体の一方の側面側、及び他方の側面側において、前記酸化物半導体と接する、
     半導体装置。
  8.  請求項1乃至請求項7のいずれか一項において、
     前記酸化物半導体は、In、Ga、及びZnの中から選ばれるいずれか一または複数を有する、
     半導体装置。
  9.  請求項8に記載の半導体装置と、容量素子と、を有し、
     前記容量素子の一方の電極が、前記半導体装置の前記第1の導電体と電気的に接続される、
     記憶装置。
  10.  請求項9において、
     前記容量素子は、前記第3の導電体上に配置され、
     前記容量素子の少なくとも一部は、前記酸化物半導体、及び前記第3の導電体と重畳する、
     記憶装置。
PCT/IB2023/060831 2022-11-03 2023-10-27 半導体装置、及び記憶装置 WO2024095108A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176809 2022-11-03
JP2022176809 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024095108A1 true WO2024095108A1 (ja) 2024-05-10

Family

ID=90929885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/060831 WO2024095108A1 (ja) 2022-11-03 2023-10-27 半導体装置、及び記憶装置

Country Status (1)

Country Link
WO (1) WO2024095108A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165260A (ja) * 2012-01-10 2013-08-22 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2015073039A (ja) * 2013-10-04 2015-04-16 株式会社半導体エネルギー研究所 半導体装置
JP2016157943A (ja) * 2015-02-25 2016-09-01 株式会社半導体エネルギー研究所 半導体装置
WO2020115595A1 (ja) * 2018-12-07 2020-06-11 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2020120116A (ja) * 2019-01-25 2020-08-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165260A (ja) * 2012-01-10 2013-08-22 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2015073039A (ja) * 2013-10-04 2015-04-16 株式会社半導体エネルギー研究所 半導体装置
JP2016157943A (ja) * 2015-02-25 2016-09-01 株式会社半導体エネルギー研究所 半導体装置
WO2020115595A1 (ja) * 2018-12-07 2020-06-11 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2020120116A (ja) * 2019-01-25 2020-08-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Similar Documents

Publication Publication Date Title
WO2024095108A1 (ja) 半導体装置、及び記憶装置
WO2024079586A1 (ja) 半導体装置、及び記憶装置
WO2024069339A1 (ja) 記憶装置
WO2023209486A1 (ja) 半導体装置、及び記憶装置
WO2024047486A1 (ja) 記憶装置
WO2024028681A1 (ja) 半導体装置、及び記憶装置
WO2023237961A1 (ja) 半導体装置、記憶装置、及び半導体装置の作製方法
US20230411500A1 (en) Manufacturing method of semiconductor device
WO2024057166A1 (ja) 半導体装置
WO2024100467A1 (ja) 半導体装置
TW202431429A (zh) 半導體裝置及記憶體裝置
WO2024052774A1 (ja) 半導体装置の作製方法
TW202437400A (zh) 半導體裝置及記憶體裝置
WO2024194726A1 (ja) 半導体装置、及び、半導体装置の作製方法
WO2024180432A1 (ja) 半導体装置、及び、半導体装置の作製方法
WO2024057165A1 (ja) 記憶装置
WO2024052787A1 (ja) 半導体装置
WO2024209330A1 (ja) 半導体装置、及び、半導体装置の作製方法
TW202437517A (zh) 記憶體裝置
US20240314999A1 (en) Semiconductor device
WO2023242664A1 (ja) 半導体装置、記憶装置
WO2023209484A1 (ja) 半導体装置
WO2023152588A1 (ja) 半導体装置
WO2024116037A1 (ja) 半導体装置
WO2024084366A1 (ja) 半導体装置、及び、記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885190

Country of ref document: EP

Kind code of ref document: A1