WO2024057166A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2024057166A1
WO2024057166A1 PCT/IB2023/058970 IB2023058970W WO2024057166A1 WO 2024057166 A1 WO2024057166 A1 WO 2024057166A1 IB 2023058970 W IB2023058970 W IB 2023058970W WO 2024057166 A1 WO2024057166 A1 WO 2024057166A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductor
transistor
oxide
opening
Prior art date
Application number
PCT/IB2023/058970
Other languages
English (en)
French (fr)
Inventor
山崎舜平
國武寛司
松嵜隆徳
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024057166A1 publication Critical patent/WO2024057166A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One embodiment of the present invention relates to a transistor, a semiconductor device, a memory device, and an electronic device. Alternatively, one embodiment of the present invention relates to a method for manufacturing a memory device or a semiconductor device. Alternatively, one embodiment of the present invention relates to a semiconductor wafer and a module.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical fields of one embodiment of the present invention disclosed in this specification etc. include semiconductor devices, display devices, light emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices, input/output devices, and driving methods thereof. , or their manufacturing method.
  • Semiconductor devices refer to all devices that can function by utilizing semiconductor characteristics.
  • a CPU is an assembly of semiconductor elements, including a semiconductor integrated circuit (at least a transistor and a memory) formed into a chip by processing a semiconductor wafer, and on which electrodes serving as connection terminals are formed.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, such as printed wiring boards, and are used as one of the components of various electronic devices.
  • a technology that constructs a transistor using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, oxide semiconductors are attracting attention as other materials.
  • Patent Document 1 discloses a CPU with low power consumption that takes advantage of the low leakage current of a transistor using an oxide semiconductor.
  • Patent Document 2 discloses a memory device that can retain stored contents for a long period of time by applying the characteristic that a transistor using an oxide semiconductor has a small leakage current.
  • Patent Document 3 and Non-Patent Document 1 disclose a technique for increasing the density of an integrated circuit by superimposing a plurality of memory cells each including a transistor using an oxide semiconductor film.
  • Patent Document 4 discloses a vertical transistor in which a side surface of an oxide semiconductor is covered with a gate electrode via a gate insulator.
  • JP2012-257187A JP2011-151383A International Publication No. 2021/053473 JP2013-211537A
  • An object of one embodiment of the present invention is to provide a memory device that can be miniaturized or highly integrated.
  • one of the challenges is to separately produce a memory element and a peripheral circuit in a memory device at low cost.
  • Another object of the present invention is to provide a storage device that can reduce the load on wiring.
  • one of the challenges is to provide a storage device that operates at high speed.
  • one of the objects is to provide a storage device having good electrical characteristics.
  • one of the challenges is to provide a storage device with good reliability.
  • one of the challenges is to provide a storage device with a large on-state current.
  • one of the challenges is to provide a storage device with low power consumption.
  • one of the challenges is to provide a new storage device.
  • Another object of the present invention is to provide a method for manufacturing a new storage device.
  • One aspect of the present invention seeks to at least alleviate at least one of the problems of the prior art.
  • One embodiment of the present invention is a semiconductor device including a first transistor, a connection portion, a first insulator, a second insulator, and a first wiring.
  • the connection part has a first electrode and a second electrode.
  • the first transistor has a second electrode, a third electrode, a first semiconductor, a gate insulator, and a first gate electrode.
  • the first insulator is provided over the first wiring and has a first opening that reaches the first wiring.
  • the first electrode has a first portion in contact with a side surface in the first opening of the first insulator, and a second portion in contact with an upper surface of the first wiring.
  • the second electrode is embedded in the first opening and contacts the second portion of the first electrode.
  • the second insulator is provided on the first insulator and has a second opening that reaches the second electrode.
  • a third electrode is provided on the second insulator.
  • the first semiconductor has a third portion in contact with the third electrode, a fourth portion in contact with the side surface in the second opening of the second insulator, and a fifth portion in contact with the upper surface of the second electrode. has.
  • the gate insulator is located within the second opening and contacts the fourth and fifth portions of the first semiconductor.
  • the first gate electrode is located within the second opening and faces the third, fourth, and fifth portions of the first semiconductor with the gate insulator interposed therebetween.
  • the capacitive element has a fourth electrode, a fifth electrode, and a third insulator.
  • the first insulator has a third opening that reaches the second wiring.
  • the fourth electrode has a sixth portion that contacts the side wall in the third opening of the first insulator, and a seventh portion that contacts the upper surface of the second wiring.
  • the third insulator is located within the third opening and contacts the sixth and seventh portions of the fourth electrode.
  • the fifth electrode is embedded in the third opening and faces the sixth and seventh portions of the fourth electrode via the third insulator.
  • the second transistor has a fifth electrode, a sixth electrode, a second semiconductor, a gate insulator, and a second gate electrode.
  • the second insulator has a fourth opening that reaches the fifth electrode.
  • a sixth electrode is provided on the second insulator.
  • the second semiconductor has an eighth portion in contact with the sixth electrode, a ninth portion in contact with the side wall in the fourth opening of the second insulator, and a tenth portion in contact with the top surface of the fifth electrode. has.
  • the gate insulator is located within the fourth opening and contacts the eighth, ninth, and tenth portions of the second semiconductor.
  • the second gate electrode is located within the fourth opening and faces the ninth and tenth portions of the second semiconductor with the gate insulator interposed therebetween.
  • the second electrode is preferably in contact with the first portion of the first electrode.
  • the fourth insulator is preferably located within the first opening and in contact with the first portion of the first electrode. Furthermore, it is preferable that the second electrode be in contact with the fourth insulator.
  • the second electrode preferably includes a first conductor and a second conductor on the first conductor.
  • the first conductor is embedded in the first opening and is in contact with the second portion of the first electrode. Further, the second conductor is in contact with the first semiconductor.
  • a memory device that can be miniaturized or highly integrated can be provided.
  • the memory element and the peripheral circuit can be manufactured separately at low cost.
  • a storage device with high operating speed can be provided.
  • a highly reliable storage device can be provided.
  • a memory device with less variation in the electrical characteristics of transistors can be provided.
  • a storage device with good electrical characteristics can be provided.
  • a storage device with a large on-state current can be provided.
  • a storage device with low power consumption can be provided.
  • new storage devices can be provided.
  • a method for manufacturing a new storage device can be provided. According to one aspect of the present invention, at least one of the problems of the prior art can be at least alleviated.
  • 1A to 1D are configuration examples of storage devices.
  • 2A to 2D are configuration examples of storage devices.
  • 3A and 3B are configuration examples of storage devices.
  • 4A to 4D are configuration examples of storage devices.
  • 5A to 5D are configuration examples of storage devices.
  • 6A and 6B are configuration examples of storage devices.
  • 7A to 7D are configuration examples of storage devices.
  • 8A to 8C are configuration examples of storage devices.
  • 9A and 9B are configuration examples of storage devices.
  • 10A to 10D are configuration examples of storage devices.
  • FIGS. 11A and 11B are configuration examples of storage devices.
  • 12A to 12C are diagrams illustrating a method for manufacturing a storage device.
  • 13A to 13C are diagrams illustrating a method for manufacturing a storage device.
  • 14A to 14C are diagrams illustrating a method for manufacturing a storage device.
  • 15A to 15C are diagrams illustrating a method for manufacturing a storage device.
  • 16A to 16C are diagrams illustrating a method for manufacturing a storage device.
  • 17A to 17C are diagrams illustrating a method for manufacturing a storage device.
  • 18A to 18C are diagrams illustrating a method for manufacturing a storage device.
  • 19A to 19C are diagrams illustrating a method for manufacturing a storage device.
  • 20A to 20C are diagrams illustrating a method for manufacturing a storage device.
  • 21A to 21C are diagrams illustrating a method for manufacturing a storage device.
  • 22A to 22C are diagrams illustrating a method for manufacturing a storage device.
  • 23A to 23C are diagrams illustrating a method for manufacturing a storage device.
  • 24A and 24B are configuration examples of storage devices.
  • 25A and 25B are configuration examples of storage devices.
  • 26A and 26B are configuration examples of storage devices.
  • 27A and 27B are configuration examples of storage devices.
  • 28A to 28C are configuration examples of storage devices.
  • 29A to 29C are configuration examples of storage devices.
  • FIG. 30 shows a configuration example of a storage device.
  • FIG. 31 shows a configuration example of a storage device.
  • FIG. 32 is a block diagram showing an example of a storage device.
  • 33A and 33B are schematic diagrams showing an example of a storage device.
  • 34A to 34D are circuit diagrams showing an example of a storage device.
  • FIG. 35 is a circuit diagram showing an example of a storage device.
  • 36A and 36B are diagrams showing an example of an electronic component.
  • 37A and 37B are diagrams illustrating an example of an electronic device.
  • FIGS. 37C to 37E are diagrams showing an example of a large-sized computer.
  • FIG. 38A is a diagram illustrating an example of space equipment.
  • FIG. 38B is a diagram illustrating an example of a storage system applicable to a data center.
  • the size, layer thickness, or region may be exaggerated for clarity. Therefore, it is not necessarily limited to that scale.
  • the drawings schematically show ideal examples and are not limited to the shapes or values shown in the drawings.
  • a layer or a resist mask may be unintentionally reduced due to a process such as etching, but this may not be reflected in the diagram for ease of understanding.
  • the same reference numerals are used for the same parts or parts having similar functions in different drawings, and repeated explanations thereof may be omitted.
  • the hatching pattern may be the same and no particular reference numeral may be attached.
  • ordinal numbers such as first, second, etc. are used for convenience and do not indicate the order of steps or the order of lamination. Therefore, for example, the description can be made by replacing “first” with “second” or “third” as appropriate. Furthermore, the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
  • X and Y are connected means that X and Y are electrically connected.
  • X and Y are electrically connected refers to an object between X and Y (an element such as a switch, a transistor element, or a diode, or a circuit including the element and wiring).
  • X and Y are electrically connected refers to an object between X and Y (an element such as a switch, a transistor element, or a diode, or a circuit including the element and wiring).
  • X and Y are electrically connected includes the case where X and Y are directly connected.
  • "X and Y are directly connected” means that electrical signals are transmitted between X and Y via wiring (or electrodes) etc. between X and Y without going through the above object.
  • a direct connection refers to a connection that can be viewed as the same circuit diagram when expressed as an equivalent circuit.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source. It has a region where a channel is formed (hereinafter also referred to as a channel formation region) between the drain (drain terminal, drain region, or drain electrode) and the source (source terminal, source region, or source electrode). A current can be passed between the source and the drain through the formation region.
  • a channel formation region refers to a region where current mainly flows.
  • the function of the source or drain may be swapped if transistors with different polarities are used, or if the direction of current changes during circuit operation. Therefore, in this specification and the like, the terms source and drain may be used interchangeably.
  • impurity of a semiconductor refers to, for example, something other than the main components constituting the semiconductor.
  • an element having a concentration of less than 0.1 atomic % can be considered an impurity.
  • the inclusion of impurities may cause, for example, an increase in the defect level density of the semiconductor, a decrease in crystallinity, and the like.
  • impurities that change the characteristics of the semiconductor include, for example, Group 1 elements, Group 2 elements, Group 13 elements, Group 14 elements, Group 15 elements, and the oxide semiconductor.
  • transition metals other than the main components such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen.
  • water may also function as an impurity.
  • oxygen vacancies also referred to as V O
  • V O oxygen vacancies
  • oxynitride refers to a composition containing more oxygen than nitrogen.
  • examples of the oxynitride include silicon oxynitride, aluminum oxynitride, and hafnium oxynitride.
  • the nitrided oxide has a composition containing more nitrogen than oxygen.
  • examples of the nitride oxide include silicon nitride oxide, aluminum nitride oxide, and hafnium nitride oxide.
  • the term “insulator” can be translated as an insulating film or an insulating layer. Further, the term “conductor” can be translated as a conductive film or a conductive layer. Further, the term “semiconductor” can be translated as a semiconductor film or a semiconductor layer.
  • parallel refers to a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, the case where the temperature is greater than or equal to -5 degrees and less than or equal to 5 degrees is also included.
  • substantially parallel refers to a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less.
  • perpendicular refers to a state in which two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, cases where the angle is greater than or equal to 85 degrees and less than or equal to 95 degrees are also included.
  • substantially perpendicular refers to a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.
  • Voltage refers to a potential difference from a reference potential.
  • the reference potential is a ground potential (earth potential)
  • “voltage” can be translated into “potential.” Note that the ground potential does not necessarily mean 0V.
  • potential is relative, and as the reference potential changes, the potential applied to wiring, the potential applied to circuits, etc., the potential output from circuits, etc. also change.
  • the code when the same code is used for multiple elements, especially when it is necessary to distinguish between them, the code may include an identification such as "_1", “[n]", or "[m,n]". In some cases, a special code may be added to the description.
  • the heights match refers to a configuration in which the heights from a reference surface (for example, a flat surface such as a substrate surface) are equal in cross-sectional view.
  • a reference surface for example, a flat surface such as a substrate surface
  • the surface of a single layer or a plurality of layers may be exposed by performing a planarization process (typically a CMP (Chemical Mechanical Polishing) process).
  • CMP Chemical Mechanical Polishing
  • the surfaces to be subjected to CMP processing have the same height from the reference surface.
  • the heights of the plurality of layers may differ depending on the processing apparatus, processing method, or material of the surface to be processed during CMP processing.
  • the heights match In this specification, this case is also treated as "the heights match.”
  • the height of the top surface of the first layer and the height of the second layer are Even if the difference from the height of the top surface of the layer is 20 nm or less, it is also said that the heights match.
  • the ends coincide means that at least a portion of the outlines of the stacked layers overlap in plan view. For example, this includes a case where the upper layer and the lower layer are processed using the same mask pattern or partially the same mask pattern. However, strictly speaking, the contours do not overlap, and the contour of the upper layer may be located inside the contour of the lower layer, or the contour of the upper layer may be located outside the contour of the lower layer. "Concordance”.
  • match includes both a complete match and a general match.
  • the normally-on characteristic refers to a state in which a channel exists and current flows through the transistor even if no potential is applied to the gate.
  • the normally-off characteristic refers to a state in which no current flows through the transistor when no potential is applied to the gate or when a ground potential is applied to the gate.
  • off-state current may refer to, for example, a current flowing between a source and a drain when a transistor is in an off state.
  • Embodiment 1 In this embodiment, a configuration example of a storage device according to one embodiment of the present invention and a method for manufacturing the same will be described.
  • One embodiment of the present invention includes memory cells and functional elements on the same plane.
  • the memory cell has a capacitive element and a transistor on the capacitive element.
  • the capacitive element has a so-called MIM (Metal-Insulator-Metal) structure including a pair of conductors and a dielectric sandwiched between them.
  • the functional element includes a connection portion and a transistor on the connection portion.
  • the connection portion has a configuration in which a portion of the dielectric material in the capacitive element is removed.
  • the pair of conductors are electrically connected in a portion where the dielectric is not provided. That is, the memory cell and the functional element have the same configuration except for the dielectric configuration. With such a configuration, memory cells and functional elements including transistors can be separately manufactured on the same surface by adding only the process of processing the dielectric.
  • one of a source electrode and a drain electrode of a transistor included in the functional element can be electrically connected to a wiring located below the connection portion.
  • the transistor can be used as a switch for controlling conduction and non-conduction between the other of the source electrode and the drain electrode and the wiring.
  • FIG. 1A shows a cross-sectional perspective view of a region including a memory cell 150.
  • the left side of FIG. 1A shows a perspective view of the memory cell 150 taken along the X-Z plane, and the right side shows a perspective view of the memory cell 150 taken along the Y-Z plane.
  • FIG. 1A only the outlines of some components (insulator 180, insulator 280, etc.) are shown by solid lines.
  • arrows indicating the X direction, Y direction, and Z direction may be attached.
  • the "X direction” refers to the direction along the X axis, and the forward direction and reverse direction may not be distinguished unless explicitly stated.
  • the X direction, the Y direction, and the Z direction are directions that intersect with each other. More specifically, the X direction, the Y direction, and the Z direction are directions that are orthogonal to each other.
  • one of the X direction, the Y direction, or the Z direction may be referred to as a "first direction” or a “first direction.” Further, the other direction may be referred to as a “second direction” or “second direction”. Further, the remaining one may be referred to as a "third direction” or "third direction.”
  • the memory cell 150 includes a capacitive element 100 on a conductor 110 and a transistor 200 on the capacitive element 100.
  • the capacitive element has a conductor 115, a conductor 120, and an insulator 130 between them.
  • the conductor 115, the insulator 130, and the conductor 120 are embedded inside an opening provided in the insulator 180.
  • the transistor 200 includes a conductor 120 functioning as one of a source electrode and a drain electrode, an oxide semiconductor 230, an insulator 250 functioning as a gate insulator, a conductor 260 functioning as a gate electrode, and a source electrode and a drain electrode.
  • Conductor 240 is provided on insulator 280.
  • Insulator 280 is provided with an opening that reaches conductor 120 .
  • the oxide semiconductor 230 is provided along the inner wall of the opening and is in contact with the conductor 240 and the conductor 120.
  • the source electrode and the drain electrode are located at different heights, so the current flowing through the semiconductor flows in the height direction.
  • the channel length direction has a component in the height direction (vertical direction); therefore, the transistor of one embodiment of the present invention can be a VFET (Vertical Field Effect Transistor), a vertical transistor, a vertical channel transistor, or the like. It can also be called.
  • VFET Vertical Field Effect Transistor
  • the transistor 200 is a so-called planar transistor (also called a lateral transistor, LFET (Lateral FET), etc.) in which a semiconductor is arranged on a plane because it is possible to provide a source electrode, a semiconductor, and a drain electrode overlapping each other.
  • the area occupied can be significantly reduced compared to
  • the channel length of the transistor 200 can be precisely controlled by the thickness of the insulator 280 that functions as a spacer, variations in the channel length can be extremely reduced compared to a planar transistor. Furthermore, by making the insulator 280 thinner, a transistor with an extremely short channel length can be manufactured. For example, a transistor with a channel length of 50 nm or less, 30 nm or less, or 20 nm or less and a channel length of 5 nm or more, 7 nm or more, or 10 nm or more can be manufactured. Therefore, it is possible to realize a transistor with a channel length of less than 10 nm using a conventional exposure apparatus for mass production without using an extremely expensive exposure apparatus used in cutting-edge LSI technology.
  • FIG. 1B shows a circuit diagram corresponding to the memory cell 150.
  • the transistor 200 corresponds to the transistor Tr, and the capacitor 100 corresponds to the capacitor C, respectively.
  • the conductor 110 corresponds to the wiring PL
  • the conductor 240 corresponds to the wiring BL
  • the conductor 260 corresponds to the wiring WL.
  • the memory cell 150 is composed of one transistor Tr and one capacitive element C, and can also be written as 1Tr1C.
  • FIG. 1C shows a schematic perspective view of a region including the functional element 155.
  • the functional element 155 includes a connection portion 101 and a transistor 200 on the connection portion 101.
  • the transistors included in the functional element 155 have the same configuration as the transistors included in the memory cell 150, and therefore are given the same reference numerals and redundant description will be omitted.
  • the connecting portion 101 has a configuration in which a part of the insulator 130 in the capacitive element 100 is opened, and the conductor 115 and the conductor 120 are in contact with each other through the opening.
  • FIG. 1C shows an example in which a portion of the insulator 130 located at the bottom of the opening in the insulator 180 is removed, and a portion along the side surface of the opening remains.
  • Such a structure can be manufactured by performing anisotropic etching on the insulator 130, for example.
  • the conductor 120 and the conductor 115 are electrically connected, the conductor 120 and the conductor 110 are electrically connected via the conductor 115. That is, one of the source electrode and the drain electrode of the transistor 200 and the conductor 110 are electrically connected.
  • FIG. 1D shows a circuit diagram corresponding to the functional element 155.
  • the conductor 110 corresponds to the wiring CL
  • the conductor 240 corresponds to the wiring BL
  • the conductor 260 corresponds to the wiring WL.
  • the functional element 155 can function as a switch for controlling conduction and non-conduction between the wiring BL and the wiring CL.
  • Functional element 155 can also be considered as a single transistor.
  • the memory cell 150 and the functional element 155 can be separately manufactured on the same plane.
  • a memory cell array including a plurality of memory cells 150 and a peripheral circuit can be manufactured on the same plane through the same process.
  • FIG. 2A is a plan view of the memory cell 150
  • FIG. 2B is a schematic cross-sectional view taken along cutting line A1-A2 in FIG. 2A.
  • FIG. 2C is a plan view of the functional element 155
  • FIG. 2D is a schematic cross-sectional view taken along cutting line A3-A4 in FIG. 2C. Note that in the plan views of FIGS. 2A and 2C, some elements are omitted for clarity.
  • the memory device includes an insulator 140 on a substrate (not shown), a conductor 110 on the insulator 140, a memory cell 150 and a functional element 155 on the conductor 110, and an insulator 180 on the conductor 110. , an insulator 280, and an insulator 283 over the memory cell 150 and the functional element 155. Insulator 140, insulator 180, insulator 280, and insulator 283 function as interlayer films.
  • the conductor 110 functions as a wiring. Note that the conductor 110 that is electrically connected to the memory cell 150 and the conductor 110 that is electrically connected to the functional element 155 may function as independent wiring, or even if they are electrically connected. good.
  • the conductor 240 and the conductor 260 of the memory cell 150 and the conductive layer 240 and the conductive layer 260 of the functional element 155 may each function as mutually independent wiring, or any one of them may function as an independent wiring. Two or more may be electrically connected.
  • the memory cell 150 includes a capacitive element 100 on a conductor 110 and a transistor 200 on the capacitive element 100.
  • the functional element 155 includes a connection portion 101 on the conductor 110 and a transistor 200 on the connection portion 101.
  • the capacitive element 100 includes a conductor 115 on the conductor 110, an insulator 130 on the conductor 115, and a conductor 120 on the insulator 130.
  • the conductor 120 functions as one of a pair of electrodes (sometimes called an upper electrode)
  • the conductor 115 functions as the other of a pair of electrodes (sometimes called a lower electrode)
  • the insulator 130 functions as a dielectric. functions as In other words, the capacitive element 100 constitutes an MIM (Metal-Insulator-Metal) capacitor.
  • the insulator 180 is provided with an opening 190 that reaches the conductor 110. At least a portion of the conductor 115 is disposed in the opening 190. Note that the conductor 115 has a region in contact with the top surface of the conductor 110 at the opening 190, a region in contact with the side surface of the insulator 180 in the opening 190, and a region in contact with at least a part of the top surface of the insulator 180. have The insulator 130 is arranged such that at least a portion thereof is located in the opening 190. The conductor 120 is arranged such that at least a portion thereof is located in the opening 190. Note that the conductor 120 is preferably provided so as to fill the opening 190, as shown in FIG. 2B.
  • FIG. 3A is a plan view showing an excerpt of the conductor 110, the conductor 115, the conductor 120, and the opening 190. Note that the opening 190 provided in the insulator 180 is shown by a broken line. As shown in FIG. 3A, the conductor 115 has an opening 190 in a region overlapping with the conductor 110. As shown in FIG. 3A, the conductor 115 has an opening 190 in a region overlapping with the conductor 110.
  • the capacitive element 100 has a structure in which the upper electrode and the lower electrode face each other with a dielectric interposed not only on the bottom surface but also on the side surface of the opening 190, and the capacitance per unit area can be increased. can. Therefore, as the depth of the opening 190 is increased, the capacitance of the capacitive element 100 can be increased. By increasing the capacitance per unit area of the capacitive element 100 in this manner, the read operation of the storage device can be stabilized.
  • the side wall of the opening 190 is preferably perpendicular to the top surface of the conductor 110. At this time, the opening 190 has a cylindrical shape. With such a configuration, it is possible to miniaturize or highly integrate the memory device.
  • a conductor 115 and an insulator 130 are laminated along the side wall of the opening 190 and the top surface of the conductor 110. Further, a conductor 120 is provided on the insulator 130 so as to fill the opening 190.
  • the capacitive element 100 having such a configuration may be called a trench-type capacitor or a trench capacitor.
  • An insulator 280 is placed on the capacitive element 100. That is, the insulator 280 is placed on the conductor 115, the insulator 130, and the conductor 120. In other words, the conductor 120 is placed under the insulator 280.
  • the transistor 200 includes a conductor 120, a conductor 240 over an insulator 280, an oxide semiconductor 230, an insulator 250 over the oxide semiconductor 230, and a conductor 260 over the insulator 250.
  • the oxide semiconductor 230 functions as a semiconductor layer
  • the conductor 260 functions as a gate electrode
  • the insulator 250 functions as a gate insulator
  • the conductor 120 functions as one of a source electrode and a drain electrode
  • the conductor 240 functions as a source electrode and a drain electrode. functions as the other of the source electrode and the drain electrode.
  • the insulator 280 and the conductor 240 are provided with an opening 290 that reaches the conductor 120. At least a portion of the oxide semiconductor 230 is arranged in the opening 290. Note that the oxide semiconductor 230 has a region in contact with the top surface of the conductor 120 at the opening 290, a region in contact with the side surface of the conductor 240 in the opening 290, and a region in contact with at least a part of the top surface of the conductor 240. has. Insulator 250 is arranged such that at least a portion thereof is located in opening 290 . The conductor 260 is arranged so that at least a portion thereof is located in the opening 290. Note that the conductor 260 is preferably provided so as to fill the opening 290, as shown in FIG. 2B.
  • FIG. 3B is a plan view showing an excerpt of the conductor 120, the oxide semiconductor 230, the conductor 240, the conductor 260, and the opening 290.
  • the opening 290 provided in the insulator 280 is shown by a broken line.
  • the conductor 240 has an opening 290 in a region overlapping with the conductor 120. Further, it is preferable that the conductor 240 is not provided inside the opening 290. In other words, the conductor 240 preferably does not have a region in contact with the side surface of the insulator 280 on the opening 290 side.
  • the oxide semiconductor 230 has a region in contact with the side surface of the conductor 240 in the opening 290 and a region in contact with a part of the upper surface of the conductor 240. In this way, since the oxide semiconductor 230 is in contact with not only the side surface but also the top surface of the conductor 240, the area in which the oxide semiconductor 230 and the conductor 240 are in contact can be increased.
  • the transistor 200 is provided so as to overlap the capacitive element 100. Further, the opening 290 in which a part of the structure of the transistor 200 is provided has a region that overlaps with the opening 190 in which a part of the structure of the capacitor 100 is provided.
  • the conductor 120 has a function as one of the source electrode and drain electrode of the transistor 200 and a function as an upper electrode of the capacitor 100, the transistor 200 and the capacitor 100 share a part of the structure. I will do it.
  • the transistor 200 and the capacitor 100 can be provided without significantly increasing the occupied area in plan view. As a result, the area occupied by the memory cells 150 can be reduced, so the memory cells 150 can be arranged with high density and the storage capacity of the memory device can be increased. In other words, the storage device can be highly integrated.
  • the functional element 155 shown in FIGS. 2C and 2D includes a transistor 200 and a connection portion 101.
  • Transistor 200 has a similar configuration to memory cell 150.
  • the functional element 155 has generally the same configuration as the memory cell 150 described above, except that the configuration of the insulator 130 is different, the insulator 131 is included, and the conductor 115 and the conductor 120 are in contact with each other. have
  • the insulator 130 is provided with an opening that overlaps with the opening 190.
  • the opening of the insulator 130 is provided to encompass the opening 190. That is, in plan view, the opening 190 is preferably located inside the opening of the insulator 130.
  • an insulator 131 is provided along a portion of the conductor 115 provided along the inner wall of the insulator 180.
  • the insulator 131 is in contact with the conductor 115 and the conductor 120 .
  • the insulator 130 and the insulator 131 are formed by processing the same insulating film and contain the same element.
  • the insulator 131 is formed by leaving a portion of the insulator 130 when the portion of the insulator 130 located at the bottom of the opening 190 is removed using anisotropic etching.
  • the insulator 131 can also be called a sidewall insulator.
  • the insulator 131 may not be formed. In that case, the contact area between the conductor 120 and the conductor 115 becomes large, which is preferable.
  • Capacitive element 100 includes a conductor 115, an insulator 130, and a conductor 120. Furthermore, a conductor 110 is provided below the conductor 115 . The conductor 115 has a region in contact with the conductor 110.
  • the conductor 110 is provided on the insulator 140.
  • the conductor 110 functions as a wiring, and can be provided in a planar shape, for example.
  • the conductor 110 the conductors described in the section [Conductor] described below can be used in a single layer or a laminated structure.
  • a highly conductive material such as tungsten can be used as the conductor 110.
  • the conductor 115 is made of a conductive material that is difficult to oxidize, a conductive material that is difficult to diffuse oxygen, or the like in a single layer or a laminated layer.
  • a conductive material that is difficult to diffuse oxygen, or the like in a single layer or a laminated layer.
  • an oxide insulator is used as the insulator (insulator 130 and insulator 180) in contact with the conductor 115, it is possible to suppress an increase in resistance due to oxidation.
  • nitrides such as titanium nitride and tantalum nitride may be used.
  • an oxide such as indium tin oxide or indium tin oxide added with silicon may be used.
  • a laminated structure such as a structure in which titanium nitride is laminated on tungsten, or a structure in which tungsten is laminated on a first titanium nitride, and a second titanium nitride is laminated on the tungsten.
  • the insulator 130 is provided on the conductor 115.
  • the insulator 130 is provided so as to be in contact with the top and side surfaces of the conductor 115. That is, it is preferable that the insulator 130 has a structure that covers the side end portions of the conductor 110. This can prevent short-circuiting between the conductor 115 and the conductor 120.
  • a structure may be adopted in which the side end portion of the insulator 130 and the side end portion of the conductor 115 match.
  • the insulator 130 and the conductor 115 can be formed using the same mask, and the manufacturing process of the memory device can be simplified.
  • the insulator 130 it is preferable to use a material with a high dielectric constant, a so-called high-k material, described in the section [Insulator] described below.
  • a high-k material as the insulator 130, the insulator 130 can be made thick enough to suppress leakage current, and the capacitance of the capacitive element 100 can be sufficiently secured.
  • the insulator 130 is used by laminating insulators made of a high-k material, and is made of a material having a high dielectric constant (high-k) and a material having a dielectric strength higher than that of the high-k material.
  • a laminated structure is used.
  • the insulator 130 an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • an insulating film in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulating film in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulator having a relatively high dielectric strength, such as aluminum oxide the dielectric strength is improved and electrostatic breakdown of the capacitive element 100 can be suppressed.
  • a material exhibiting ferroelectricity may be used as the insulator 130.
  • materials exhibiting ferroelectricity include metal oxides such as hafnium oxide, zirconium oxide, and HfZrO x (X is a real number greater than 0).
  • element J1 here, element J1 is one or more selected from zirconium, silicon, aluminum, gadolinium, yttrium, lanthanum, strontium, etc.
  • hafnium oxide examples include materials.
  • the ratio of the number of atoms of hafnium to the number of atoms of element J1 can be set as appropriate.
  • the ratio of the number of atoms of hafnium to the number of atoms of element J1 may be set to 1:1 or around 1:1.
  • element J2 (here, element J2 is one or more selected from hafnium, silicon, aluminum, gadolinium, yttrium, lanthanum, strontium), etc.) is added to zirconium oxide. Examples include materials that have been made.
  • the ratio of the number of atoms of zirconium to the number of atoms of element J2 can be set as appropriate. For example, the ratio of the number of atoms of zirconium to the number of atoms of element J2 may be set to 1:1 or around 1:1.
  • materials that exhibit ferroelectricity include lead titanate (PbTiO x ), barium strontium titanate (BST), strontium titanate, lead zirconate titanate (PZT), strontium bismuthate tantalate (SBT), and bismuth ferrite.
  • PbTiO x lead titanate
  • BST barium strontium titanate
  • PZT lead zirconate titanate
  • SBT strontium bismuthate tantalate
  • bismuth ferrite ferrite
  • Piezoelectric ceramics having a perovskite structure, such as (BFO) and barium titanate may also be used.
  • examples of materials exhibiting ferroelectricity include metal nitrides containing element M1, element M2, and nitrogen.
  • the element M1 is one or more selected from aluminum, gallium, indium, and the like.
  • the element M2 is one or more selected from boron, scandium, yttrium, lanthanum, cerium, neodymium, europium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, and the like. Note that the ratio between the number of atoms of element M1 and the number of atoms of element M2 can be set as appropriate.
  • a metal oxide containing element M1 and nitrogen may have ferroelectricity even if it does not contain element M2.
  • materials exhibiting ferroelectricity include materials in which element M3 is added to the metal nitride.
  • the element M3 is one or more selected from magnesium, calcium, strontium, zinc, cadmium, and the like.
  • the ratio of the number of atoms of element M1, the number of atoms of element M2, and the number of atoms of element M3 can be set as appropriate.
  • Examples of materials exhibiting ferroelectricity include perovskite oxynitrides such as SrTaO 2 N and BaTaO 2 N, and GaFeO 3 having a ⁇ alumina structure.
  • metal oxides and metal nitrides are exemplified, but the present invention is not limited thereto.
  • a metal oxynitride obtained by adding nitrogen to the above-mentioned metal oxide, or a metal nitride obtained by adding oxygen to the above-mentioned metal nitride, etc. may be used.
  • the material exhibiting ferroelectricity for example, a mixture or compound consisting of a plurality of materials selected from the materials listed above can be used.
  • the insulator 130 can have a laminated structure made of a plurality of materials selected from the materials listed above.
  • a metal oxide containing one or both of hafnium and zirconium is preferable because it can exhibit ferroelectricity even when processed into a thin film of several nanometers.
  • the film thickness of the insulator 130 is 100 nm or less, preferably 50 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less.
  • a metal oxide containing one or both of hafnium and zirconium is preferable because it can exhibit ferroelectricity even in a small area.
  • the area (occupied area) of the ferroelectric layer in plan view is 100 ⁇ m 2 or less, 10 ⁇ m 2 or less, 1 ⁇ m 2 or less, 0.1 ⁇ m 2 or less, 10000 nm 2 or less, or 1000 nm 2 or less, the ferroelectric It may have a sexual nature.
  • the area occupied by the capacitive element 100 can be reduced.
  • a ferroelectric material is an insulator, and has the property that polarization occurs internally when an electric field is applied from the outside, and the polarization remains even when the electric field is reduced to zero. Therefore, a nonvolatile memory element can be formed using a capacitive element using this material as a dielectric (hereinafter sometimes referred to as a ferroelectric capacitor).
  • a nonvolatile memory element using a ferroelectric capacitor is sometimes called a Ferroelectric Random Access Memory (FeRAM), a ferroelectric memory, or the like.
  • a ferroelectric memory includes a transistor and a ferroelectric capacitor, and one of the source and drain of the transistor is electrically connected to one terminal of the ferroelectric capacitor. Therefore, when a ferroelectric capacitor is used as the capacitive element 100, the storage device described in this embodiment functions as a ferroelectric memory.
  • ferroelectricity is said to be developed when oxygen or nitrogen in the crystals contained in the ferroelectric layer is displaced by an external electric field. Furthermore, the development of ferroelectricity is presumed to depend on the crystal structure of the crystals included in the ferroelectric layer, and in order for the insulator 130 to develop ferroelectricity, it is necessary to include crystals. In particular, it is preferable for the insulator 130 to include a crystal having a rectangular crystal structure because ferroelectricity is exhibited. Note that the crystal structure of the crystal contained in the insulator 130 may be one or more selected from cubic, tetragonal, rectangular, monoclinic, and hexagonal. good. Further, the insulator 130 may have an amorphous structure. At this time, the insulator 130 may have a composite structure having an amorphous structure and a crystal structure.
  • the conductor 120 is provided in contact with a part of the upper surface of the insulator 130. Further, as shown in FIG. 2B, the side end portion of the conductor 120 is preferably located inside the side end portion of the conductor 115 in both the X direction and the Y direction. Note that in a structure in which the insulator 130 covers the side end portion of the conductor 115, the side end portion of the conductor 120 may be located outside the side end portion of the conductor 115.
  • the conductors described in the section [Conductor] described below can be used in a single layer or in a laminated manner.
  • a conductive material that is difficult to oxidize a conductive material that is difficult to diffuse oxygen, or the like.
  • titanium nitride or tantalum nitride can be used.
  • a structure in which tantalum nitride is laminated on titanium nitride may be used. In this case, titanium nitride is in contact with the insulator 130 and tantalum nitride is in contact with the oxide semiconductor 230.
  • the conductor 120 may have a structure in which tungsten is laminated on titanium nitride, for example.
  • the conductor 120 has a region in contact with the oxide semiconductor 230, it is preferable to use a conductive material containing oxygen described in the section [Conductor] described below.
  • a conductive material containing oxygen as the conductor 120, conductivity can be maintained even if the conductor 120 absorbs oxygen.
  • an insulator containing oxygen such as zirconium oxide is used as the insulator 130, the conductor 120 is suitable because it can maintain conductivity.
  • the conductor 120 for example, a single layer or a stack of indium tin oxide (also referred to as ITO), indium tin oxide added with silicon (also referred to as ITSO), indium zinc oxide (also referred to as IZO (registered trademark)), etc. It can be used indium tin oxide (also referred to as ITO), indium tin oxide added with silicon (also referred to as ITSO), indium zinc oxide (also referred to as IZO (registered trademark)), etc. It can be used indium tin
  • the dielectric constant is low. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • an insulator containing a material with a low dielectric constant described in the section [Insulator] described later can be used in a single layer or a laminated form. Silicon oxide and silicon oxynitride are preferable because they are thermally stable. At this time, the insulator 180b includes at least silicon and oxygen.
  • the insulator 180 is shown as a single layer in FIGS. 2B and 2D, the present invention is not limited to this.
  • the insulator 180 may have a laminated structure.
  • the insulator 180 may have a stacked structure of an insulator 180a and an insulator 180b on the insulator 180a.
  • the insulator 180b it is preferable to use an insulating material that is applicable to the insulator 180 described above.
  • the insulator 180a it is preferable to use an insulator that has barrier properties against oxygen and is described in the section [Insulator] described below.
  • the conductor 110 may be oxidized by oxygen contained in the insulator 180b, resulting in increased resistance. Therefore, it is preferable to provide an insulator 180a between the insulator 180b and the conductor 110.
  • impurities such as hydrogen When impurities such as hydrogen are mixed into the insulator 130, leakage current generated between the upper electrode and the lower electrode may increase. Further, when a material exhibiting ferroelectricity is used as the insulator 130, impurities such as hydrogen may be mixed into the material exhibiting ferroelectricity, which may reduce the crystallinity of the material exhibiting ferroelectricity. Therefore, it is preferable to prevent impurities such as hydrogen from entering the insulator 130.
  • the insulator 180a it is preferable to use an insulator having barrier properties against hydrogen, which is described in the section [Insulator] described later. This can suppress hydrogen from diffusing into the insulator 130 via the insulator 180b and the conductor 115. Silicon nitride and silicon nitride oxide can be suitably used for the insulator 180a because they each release less impurities (for example, water and hydrogen) from themselves and are less permeable to oxygen and hydrogen. At this time, the insulator 180a includes at least silicon and nitrogen.
  • the insulator 180a it is preferable to use an insulator that has a function of capturing or fixing hydrogen, which is described in the section [Insulator] described later. With such a configuration, hydrogen in the insulator 130 can be captured or fixed, and the hydrogen concentration in the insulator 130 can be reduced.
  • the insulator 180a magnesium oxide, aluminum oxide, hafnium oxide, or the like can be used. Further, for example, a laminated film of aluminum oxide and silicon nitride on the aluminum oxide may be used as the insulator 180a.
  • FIGS. 4A and 4B show a structure in which the insulator 180 has a two-layer stacked structure, one embodiment of the present invention is not limited to this.
  • the insulator 180 may have a laminated structure of three or more layers.
  • an insulator may be provided between the conductor 115 and the insulator 130 and the insulator 180b in addition to the insulator 180a and the insulator 180b.
  • an insulator applicable to the insulator 180a can be used. This can suppress hydrogen from diffusing into the insulator 130 via the insulator 180b.
  • the insulator 185 is provided so as to be in contact with the side surface of the insulator 180 in the opening 190. That is, the insulator 185 is preferably provided between the side surface of the insulator 180 in the opening 190 and the conductor 115.
  • the insulator 185 it is preferable to use an insulator having barrier properties against hydrogen as described above. This can suppress hydrogen from diffusing into the insulator 130 from outside the capacitive element 100 via the insulator 180. Further, as the insulator 185, it is preferable to use an insulator having a function of capturing or fixing hydrogen as described above. Thereby, hydrogen in the insulator 130 can be captured or fixed, and the hydrogen concentration in the insulator 130 can be reduced.
  • the insulator 185 is provided so as to be in contact with the side surface of the insulator 180a in the opening 190 and the side surface of the insulator 180b in the opening 190, but the present invention is not limited to this. It's not something you can do.
  • the insulator 185 may be provided so as to be in contact with a part of the upper surface of the insulator 180a and the side surface of the insulator 180b at the opening 190.
  • the conductor 120 is located inside the conductor 115 via the insulator 130, but the present invention is not limited to this.
  • the conductor 120 may be located outside the conductor 115 with the insulator 130 in between.
  • the insulator 130 is disposed on the outer side surface of the conductor 115 in addition to a region in contact with the inside of the recess of the conductor 115 and a region in contact with the upper surface of the conductor 115. It has an area located in .
  • the conductor 120 is provided so as to fill the recessed portion of the conductor 115 with the insulator 130 in between. Furthermore, the conductor 120 has a region that faces a part of the outer side surface of the conductor 115 with the insulator 130 in between.
  • the capacitance per unit area can be increased.
  • an insulator 135 may be provided between the outer side surface of the conductor 115 and the insulators 130 and 180.
  • an insulator 182 may be provided on the conductor 120 and the insulator 130. Further, it is preferable that the insulator 182 is subjected to a planarization treatment so that the upper surface of the conductor 120 is exposed. By performing planarization treatment on the insulator 182, the transistor 200 can be suitably formed over the capacitor 100.
  • the dielectric constant is low. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • an insulator applicable to the insulator 180 can be used as the insulator 182 .
  • the insulator 180 may be omitted.
  • the storage device shown in FIGS. 5C and 5D differs from the storage device shown in FIGS. 5A and 5B in that the insulator 180b is not provided. By not providing the insulator 180b, the manufacturing process of the memory device can be simplified.
  • the transistor 200 includes the conductor 120, the conductor 240 on the insulator 280, the upper surface of the conductor 120 exposed in the opening 290, and the insulator 280 in the opening 290. , the side surface of the conductor 240 in the opening 290, and the oxide semiconductor 230 provided in contact with at least a portion of the top surface of the conductor 240; and the insulator 250 provided in contact with the top surface of the oxide semiconductor 230. and a conductor 260 provided in contact with the upper surface of the insulator 250.
  • the bottom of the opening 290 is the top surface of the conductor 120
  • the sidewalls of the opening 290 are the side surfaces of the insulator 280 and the conductor 240.
  • the side wall of the opening 290 is preferably perpendicular to the top surface of the conductor 110. At this time, the opening 290 has a cylindrical shape. With such a configuration, it is possible to miniaturize or highly integrate the memory device.
  • the opening 290 is circular in plan view, but the present invention is not limited to this.
  • the opening 290 may be circular, oval, or rectangular with rounded corners.
  • it may be a regular polygon such as an equilateral triangle, a square, or a regular pentagon, or a polygon other than a regular polygon.
  • a concave polygon such as a star-shaped polygon, is a polygon in which at least one interior angle exceeds 180 degrees, the channel width can be increased.
  • it can be an ellipse, a polygon with rounded corners, a closed curve that is a combination of a straight line and a curved line, etc.
  • the maximum width of the opening 290 may be calculated as appropriate depending on the shape of the top of the opening 290.
  • the maximum width of the opening 290 may be the length of the diagonal line at the top of the opening 290.
  • the portions of the oxide semiconductor 230, the insulator 250, and the conductor 260 that are arranged in the opening 290 are provided to reflect the shape of the opening 290. Therefore, the oxide semiconductor 230 is provided to cover the bottom and sidewalls of the opening 290, the insulator 250 is provided to cover the oxide semiconductor 230, and a recessed portion of the insulator 250 that reflects the shape of the opening 290 is formed. A conductor 260 is provided so as to be buried therein.
  • FIG. 6A shows an enlarged view of the oxide semiconductor 230 and its vicinity in FIG. 2B. Further, a cross-sectional view in the XY plane including the conductor 240 is shown in FIG. 6B.
  • the oxide semiconductor 230 includes a region 230i, and a region 230na and a region 230nb provided to sandwich the region 230i.
  • the region 230na is a region of the oxide semiconductor 230 that is in contact with the conductor 120. At least a portion of the region 230na functions as one of a source region and a drain region of the transistor 200.
  • the region 230nb is a region of the oxide semiconductor 230 that is in contact with the conductor 240. At least a portion of the region 230nb functions as the other of the source region and the drain region of the transistor 200.
  • the conductor 240 is in contact with the entire outer periphery of the oxide semiconductor 230. Therefore, the other of the source region and the drain region of the transistor 200 can be formed over the entire outer periphery of a portion of the oxide semiconductor 230 that is formed in the same layer as the conductor 240.
  • the region 230i is a region between the region 230na and the region 230nb of the oxide semiconductor 230, and functions as a channel formation region.
  • the channel formation region of the transistor 200 can also be referred to as a region in contact with the insulator 280 or a region in the vicinity thereof.
  • the channel length of the transistor 200 is the distance between the source region and the drain region. In other words, it can be said that the channel length of the transistor 200 is determined by the thickness of the insulator 280 on the conductor 120.
  • FIG. 6A shows the channel length L of the transistor 200 with a dashed double-headed arrow.
  • the channel length L is the distance between the end of the region where the oxide semiconductor 230 and the conductor 120 are in contact with each other and the end of the region where the oxide semiconductor 230 and the conductor 240 are in contact in a cross-sectional view.
  • the channel length L corresponds to the length of the side surface of the insulator 280 on the opening 290 side in cross-sectional view.
  • the channel length is set by the exposure limit of photolithography, but in the present invention, the channel length can be set by the thickness of the insulator 280. Therefore, the channel length of the transistor 200 is set to a very fine structure below the exposure limit of photolithography (for example, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, but 1 nm or more, or 5 nm or more). As a result, the on-state current of the transistor 200 increases, and the frequency characteristics can be improved. Therefore, the read speed and write speed of the memory cell 150 can be improved, so that a memory device with high operating speed can be provided.
  • the exposure limit of photolithography for example, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, but 1 nm or more, or 5 nm or more.
  • a channel formation region, a source region, and a drain region can be formed in the opening 290.
  • the area occupied by the transistor 200 can be reduced compared to a planar transistor in which a channel formation region, a source region, and a drain region are provided separately on the XY plane. This allows the storage device to be highly integrated, thereby increasing the storage capacity per unit area.
  • the oxide semiconductor 230, the insulator 250, and the conductor 260 are provided concentrically, similarly to FIG. 6B. Therefore, the side surface of the conductor 260 provided at the center faces the side surface of the oxide semiconductor 230 with the insulator 250 interposed therebetween. That is, in plan view, the entire circumference of the oxide semiconductor 230 becomes a channel formation region.
  • the channel width of the transistor 200 is determined by the length of the outer circumference of the oxide semiconductor 230. In other words, the channel width of the transistor 200 can be said to be determined by the maximum width of the opening 290 (the diameter if the opening 290 is circular in plan view).
  • the maximum width D of the opening 290 is indicated by a two-dot chain double-headed arrow.
  • the channel width W of the transistor 200 is indicated by a dot-dash double-headed arrow.
  • the maximum width D of the opening 290 is set by the exposure limit of the photolithography. Further, the maximum width D of the opening 290 is set by the respective film thicknesses of the oxide semiconductor 230, the insulator 250, and the conductor 260 provided in the opening 290.
  • the maximum width D of the opening 290 is, for example, 5 nm or more, 10 nm or more, or 20 nm or more, and preferably 100 nm or less, 60 nm or less, 50 nm or less, 40 nm or less, or 30 nm or less. Note that when the opening 290 is circular in plan view, the maximum width D of the opening 290 corresponds to the diameter of the opening 290, and the channel width W can be calculated as "D ⁇ ".
  • the channel length L of the transistor 200 is preferably at least smaller than the channel width W of the transistor 200.
  • the channel length L of the transistor 200 according to one embodiment of the present invention is 0.1 to 0.99 times, preferably 0.5 to 0.8 times, the channel width W of the transistor 200. With such a structure, a transistor with favorable electrical characteristics and high reliability can be realized.
  • the oxide semiconductor 230, the insulator 250, and the conductor 260 are provided concentrically. Accordingly, the distance between the conductor 260 and the oxide semiconductor 230 becomes approximately uniform, so that a gate electric field can be applied to the oxide semiconductor 230 approximately uniformly.
  • a channel formation region of a transistor using an oxide semiconductor for a semiconductor layer preferably has fewer oxygen vacancies or a lower concentration of impurities such as hydrogen, nitrogen, or a metal element than the source and drain regions.
  • hydrogen near oxygen vacancies may form defects in which hydrogen is present in oxygen vacancies (hereinafter sometimes referred to as V O H), and generate electrons that become carriers.
  • V O H oxygen vacancies
  • V OH are also preferably reduced.
  • the channel formation region of the transistor is a high resistance region with low carrier concentration. Therefore, the channel formation region of the transistor can be said to be i-type (intrinsic) or substantially i-type.
  • the source region and drain region of a transistor using an oxide semiconductor for the semiconductor layer have more oxygen vacancies, more V O H, or a higher concentration of impurities such as hydrogen, nitrogen, and metal elements than the channel formation region.
  • the opening 290 is provided so that the side wall of the opening 290 is perpendicular to the top surface of the conductor 110, but the present invention is not limited to this.
  • the sidewalls of opening 290 may be tapered.
  • the storage device shown in FIGS. 7A and 7B has a configuration in which the side wall of the opening 290 has a tapered shape. Note that FIG. 2A can be referred to for a plan view of the storage device shown in FIGS. 7A and 7B.
  • the angle between the side surface of the insulator 280 in the opening 290 and the top surface of the conductor 120 is preferably 45 degrees or more and less than 90 degrees. Alternatively, it is preferably 45 degrees or more and 75 degrees or less. Alternatively, it is preferably 45 degrees or more and 65 degrees or less.
  • a tapered shape refers to a shape in which at least a part of the side surface of the structure is inclined with respect to the substrate surface or the surface to be formed. For example, there is a region where the angle between the inclined side surface and the substrate surface (hereinafter sometimes referred to as a taper angle) is less than 90 degrees.
  • the side surfaces of the structure and the substrate surface do not necessarily have to be completely flat, and may be substantially planar with minute curvatures or substantially planar with minute irregularities.
  • the shape of the opening 290 shown in FIGS. 7A and 7B is a truncated cone shape.
  • the opening 290 is circular in plan view, and trapezoidal in cross sectional view.
  • the area of the truncated cone-shaped upper base surface (for example, the opening provided in the conductor 240) is larger than the area of the truncated cone-shaped lower base surface (the upper surface of the conductor 120 exposed in the opening 290). small.
  • the maximum diameter of the opening 290 may be calculated based on the upper base of the truncated cone.
  • the channel length can be set by the thickness of the insulator 280 and the angle ⁇ 1 between the side surface of the insulator 280 and the top surface of the conductor 120 in the opening 290. Further, the length of the outer periphery of the oxide semiconductor 230 may be determined, for example, at a region facing the conductor 240 or at a position half the thickness of the insulator 280. Note that the length of the circumference at any position of the opening 290 may be used as the channel width of the transistor 200, if necessary. For example, the length of the circumference at the bottom of the opening 290 may be set as the channel width, or the length of the circumference at the top of the opening 290 may be set as the channel width.
  • FIGS. 7A and 7B show a configuration in which the side surface of the conductor 240 in the opening 290 and the side surface of the insulator 280 in the opening 290 match
  • the present invention is not limited to this.
  • the side surface of the conductor 240 at the opening 290 and the side surface of the insulator 280 at the opening 290 may be discontinuous.
  • the slope of the side surface of the conductor 240 at the opening 290 and the slope of the side surface of the insulator 280 at the opening 290 may be different from each other.
  • the angle between the side surface of the conductor 240 in the opening 290 and the top surface of the conductor 120 is preferably smaller than the angle ⁇ 1.
  • the bottom of the conductor 260 located in the opening 290 has a flat region.
  • the maximum width of the opening 290 (diameter if the opening 290 is circular in plan view), the thickness of the insulator 280 (corresponding to the depth of the opening 290), and the film of the oxide semiconductor 230
  • the bottom of the conductor 260 located in the opening 290 may not have a flat area.
  • the bottom of the conductor 260 located in the opening 290 may have a needle-like shape.
  • FIG. 2A can be referred to for a plan view of the storage device shown in FIGS. 7C and 7D.
  • the term acicular refers to a shape that becomes thinner toward the tip (closer to the bottom of the conductor 260 located in the opening 290).
  • the needle-like tip may have an acute angle or may have a downwardly convex curved shape.
  • a shape having an acute angle at the tip may be referred to as a V-shape.
  • a region of the conductor 260 located in the opening 290 that faces the oxide semiconductor 230 with the insulator 250 in between functions as a gate electrode. Therefore, the conductor 260 that fills the opening 290 and has a needle-like bottom shape may be referred to as a needle-shaped gate. Furthermore, as shown in FIGS. 7A and 7B, even if the conductor 260 has a shape with a flat bottom region, it may be called a needle-shaped gate.
  • the opening 190 is provided so that the side wall of the opening 190 is perpendicular to the top surface of the conductor 110, but the present invention is not limited to this.
  • the sidewall of opening 190 may be tapered or reverse tapered.
  • the angle between the side surface of the insulator 180 in the opening 190 and the top surface of the conductor 110 is preferably 45 degrees or more and less than 90 degrees. Alternatively, it is preferably 45 degrees or more and 75 degrees or less. Alternatively, it is preferably 45 degrees or more and 65 degrees or less.
  • the bottom of the conductor 120 located in the opening 190 has a flat region.
  • the maximum width of the opening 190 (diameter if the opening 190 is circular in plan view), the thickness of the insulator 180 (corresponding to the depth of the opening 190), and the thickness of the conductor 115 , the film thickness of the insulator 130, etc., the bottom of the conductor 120 located in the opening 190 may not have a flat region.
  • the bottom of the conductor 120 located in the opening 190 may have a needle-like shape.
  • FIG. 2A can be referred to for a plan view of the storage device shown in FIGS. 7C and 7D.
  • the angle ⁇ 1 and the angle ⁇ 2 match or approximately match.
  • the angle ⁇ 1 and the angle ⁇ 2 may be different depending on the materials used for the insulator 180 and the insulator 280, the method for forming the opening 190 and the opening 290, and the like.
  • the angle ⁇ 1 may be larger than the angle ⁇ 2, or may be smaller than the angle ⁇ 2.
  • one of the angle ⁇ 1 and the angle ⁇ 2 may be 90 degrees or a value close to 90 degrees.
  • the side wall of the opening 290 may have an inverted tapered shape.
  • the inverted tapered shape is a shape that has a side portion or an upper portion that protrudes from the bottom portion in a direction parallel to the substrate.
  • the shape of the opening 290 is a truncated cone shape.
  • the opening 290 is circular in plan view, and trapezoidal in cross sectional view.
  • the area of the truncated cone-shaped upper base (for example, the opening provided in the conductor 240) is larger than the area of the truncated cone-shaped lower base (the upper surface of the conductor 120 exposed in the opening 290). big. With such a structure, the area in which the oxide semiconductor 230 and the conductor 120 are in contact can be increased.
  • FIGS. 7B and 7D show an example in which the connection portion 101 of the functional element 155 does not have the insulator 131.
  • the insulator 131 when the side wall of the opening 190 has a tapered shape, even if anisotropic etching is performed as the etching method for the insulator 130, the insulator 131 often does not remain. Not having the insulator 131 is preferable because the contact area between the conductor 120 and the conductor 115 becomes larger and electrical resistance can be reduced. Note that the side wall of the opening 190 may have a tapered shape and may include the insulator 131.
  • FIGS. 2B and 2D a portion of the oxide semiconductor 230 is located outside the opening 290, that is, on the conductor 240.
  • FIG. 2B shows a configuration in which the oxide semiconductor 230 is divided in the X direction
  • the present invention is not limited to this.
  • the oxide semiconductor 230 may be provided extending in the X direction.
  • the oxide semiconductor 230 is divided in the Y direction.
  • the band gap of the metal oxide used as the oxide semiconductor 230 is preferably 2 eV or more, more preferably 2.5 eV or more.
  • a metal oxide with a large band gap as the oxide semiconductor 230 off-state current of the transistor can be reduced.
  • a transistor with a small off-state current in a memory cell it is possible to retain stored contents for a long period of time. In other words, since no refresh operation is required or the frequency of refresh operations is extremely low, power consumption of the storage device can be sufficiently reduced.
  • the refresh operation frequency needs to be approximately 1 time/60 msec, but in the storage device of one embodiment of the present invention, the refresh operation frequency is approximately 1 time/10 sec, and 10 msec.
  • the refresh operation frequency can be set to be twice or more or 100 times or more. Note that with the storage device of one embodiment of the present invention, the refresh operation can be performed once every 1 sec or more and 100 sec or less, preferably once every 5 sec or more and 50 sec or less.
  • oxide semiconductor 230 a metal oxide described in the section [Metal oxide] described below can be used in a single layer or in a stacked layer.
  • the nearby composition includes a range of ⁇ 30% of the desired atomic ratio.
  • the element M it is preferable to use gallium.
  • the above atomic ratio is not limited to the atomic ratio of the formed metal oxide, but also the atomic ratio of the sputtering target used for forming the metal oxide film. It may be.
  • EDX energy dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • ICP-MS Inductively Coupled Plasma-Mass Spectrometry
  • ICP-AES Inductively Coupled Plasma-Atomi c Emission Spectrometry
  • analysis may be performed by combining two or more of these methods. Note that for elements with low content rates, the actual content rate and the content rate obtained by analysis may differ due to the influence of analysis accuracy. For example, when the content of element M is low, the content of element M obtained by analysis may be lower than the actual content.
  • a sputtering method or an atomic layer deposition (ALD) method can be suitably used to form the metal oxide.
  • the composition of the formed metal oxide may be different from the composition of the sputtering target.
  • the content of zinc in the metal oxide after formation may be reduced to about 50% compared to the sputtering target.
  • the oxide semiconductor 230 preferably has crystallinity.
  • oxide semiconductors having crystallinity include CAAC-OS (c-axis aligned crystalline oxide semiconductor), nc-OS (nanocrystalline oxide semiconductor), and polycrystalline oxide semiconductors. Examples include semiconductors, single crystal oxide semiconductors, and the like.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • nc-OS nanocrystalline oxide semiconductor
  • polycrystalline oxide semiconductors examples include semiconductors, single crystal oxide semiconductors, and the like.
  • the CAAC-OS has a plurality of layered crystal regions, and the c-axis is oriented in the normal direction of the surface on which it is formed.
  • the oxide semiconductor 230 preferably has a layered crystal that is approximately parallel to the sidewall of the opening 290, particularly the sidewall of the insulator 280. With this structure, the layered crystal of the oxide semiconductor 230 is formed approximately parallel to the channel length direction of the transistor 200, so that the on-state current of the transistor can be increased.
  • CAAC-OS is a metal oxide that has a highly crystalline and dense structure and has few impurities and defects (for example, oxygen vacancies).
  • heat treatment at a temperature that does not polycrystallize the metal oxide (e.g., 400°C or higher and 600°C or lower) allows CAAC-OS to have a more highly crystalline and dense structure. It can be done. In this way, by further increasing the density of the CAAC-OS, it is possible to further reduce the diffusion of impurities or oxygen in the CAAC-OS.
  • CAAC-OS it is difficult to confirm clear grain boundaries, so it can be said that reduction in electron mobility due to grain boundaries is less likely to occur. Therefore, the metal oxide with CAAC-OS has stable physical properties. Therefore, metal oxides with CAAC-OS are resistant to heat and have high reliability.
  • the oxide semiconductor 230 Furthermore, by using a crystalline oxide such as CAAC-OS as the oxide semiconductor 230, extraction of oxygen from the oxide semiconductor 230 by the source electrode or the drain electrode can be suppressed. As a result, even if heat treatment is performed, oxygen can be suppressed from being extracted from the oxide semiconductor 230, so that the transistor 200 is stable against high temperatures (so-called thermal budget) during the manufacturing process.
  • a crystalline oxide such as CAAC-OS
  • the crystallinity of the oxide semiconductor 230 can be determined by, for example, X-ray diffraction (XRD), transmission electron microscope (TEM), or electron diffraction (ED). ) can be analyzed. Alternatively, analysis may be performed by combining two or more of these methods.
  • XRD X-ray diffraction
  • TEM transmission electron microscope
  • ED electron diffraction
  • the oxide semiconductor 230 may have a stacked structure of a plurality of oxide layers having different chemical compositions. For example, a structure may be adopted in which a plurality of metal oxides selected from the above metal oxides are laminated as appropriate.
  • the oxide semiconductor 230 may have a stacked structure of an oxide semiconductor 230a and an oxide semiconductor 230b over the oxide semiconductor 230a.
  • the conductivity of the material used for the oxide semiconductor 230a is preferably different from the conductivity of the material used for the oxide semiconductor 230b.
  • a material with higher conductivity than the oxide semiconductor 230b can be used for the oxide semiconductor 230a.
  • a material with high conductivity for the oxide semiconductor 230a that is in contact with the conductor 120 and the conductor 240 that function as a source electrode or a drain electrode the contact resistance between the oxide semiconductor 230 and the conductor 120 and the oxide semiconductor 230 can be reduced.
  • the contact resistance between the conductor 240 and the conductor 240 can be reduced, and a transistor with a large on-state current can be obtained.
  • the threshold voltage of the transistor shifts, and the drain current (hereinafter referred to as (also referred to as cut-off current) may become large.
  • the threshold voltage may become low. Therefore, it is preferable to use a material with lower conductivity than the oxide semiconductor 230a for the oxide semiconductor 230b.
  • the threshold voltage can be increased, and the transistor can have a small cutoff current. Note that a small cutoff current is sometimes referred to as normally off.
  • the oxide semiconductor 230 in a stacked structure and using a material with higher conductivity than the oxide semiconductor 230b for the oxide semiconductor 230a, a transistor that is normally off and has a large on-state current can be obtained. Therefore, it is possible to provide a storage device that has both low power consumption and high performance.
  • the carrier concentration of the oxide semiconductor 230a is preferably higher than the carrier concentration of the oxide semiconductor 230b.
  • the conductivity increases, and the contact resistance between the oxide semiconductor 230 and the conductor 120 and the contact resistance between the oxide semiconductor 230 and the conductor 240 can be reduced.
  • the transistor can have a large on-current.
  • the carrier concentration of the oxide semiconductor 230b By lowering the carrier concentration of the oxide semiconductor 230b, the conductivity is lowered, and a normally-off transistor can be obtained.
  • a material having higher conductivity than the oxide semiconductor 230b is used for the oxide semiconductor 230a; however, one embodiment of the present invention is not limited to this.
  • a material having lower conductivity than the oxide semiconductor 230b may be used for the oxide semiconductor 230a.
  • the carrier concentration of the oxide semiconductor 230a can be lower than the carrier concentration of the oxide semiconductor 230b.
  • the band gap of the first metal oxide used for the oxide semiconductor 230a is preferably different from the band gap of the second metal oxide used for the oxide semiconductor 230b.
  • the difference between the band gap of the first metal oxide and the band gap of the second metal oxide is preferably 0.1 eV or more, more preferably 0.2 eV or more, and even more preferably 0.3 eV or more.
  • the bandgap of the first metal oxide used for the oxide semiconductor 230a can be smaller than the bandgap of the second metal oxide used for the oxide semiconductor 230b. Accordingly, the contact resistance between the oxide semiconductor 230 and the conductor 120 and the contact resistance between the oxide semiconductor 230 and the conductor 240 can be reduced, and a transistor with high on-state current can be obtained. Further, when the transistor 200 is an n-channel transistor, the threshold voltage can be increased, and the transistor 200 can be a normally-off transistor.
  • the band gap of the first metal oxide is smaller than the band gap of the second metal oxide
  • one embodiment of the present invention is not limited to this.
  • the first metal oxide may have a larger band gap than the second metal oxide.
  • the bandgap of the first metal oxide used for the oxide semiconductor 230a can be smaller than the bandgap of the second metal oxide used for the oxide semiconductor 230b.
  • the composition of the first metal oxide is different from the composition of the second metal oxide.
  • the band gap can be controlled.
  • the content of element M in the first metal oxide is preferably lower than the content of element M in the second metal oxide.
  • the first metal oxide and the second metal oxide are In-M-Zn oxide
  • the first metal oxide used for the oxide semiconductor 230a can be an In-Zn oxide
  • the second metal oxide used for the oxide semiconductor 230b can be an In-M-Zn oxide
  • the first metal oxide can be an In-Zn oxide
  • the second metal oxide can be an In-Ga-Zn oxide.
  • the content of element M in the first metal oxide is lower than the content of element M in the second metal oxide, but one embodiment of the present invention is not limited to this.
  • the content of element M in the first metal oxide may be higher than the content of element M in the second metal oxide. Note that it is sufficient that the first metal oxide and the second metal oxide have different compositions, and the content rates of elements other than element M may be different.
  • the film thickness of the oxide semiconductor 230 is preferably 1 nm or more, 3 nm or more, or 5 nm or more, and 20 nm or less, 15 nm or less, 12 nm or less, or 10 nm or less.
  • each layer constituting the oxide semiconductor 230 may be determined so that the thickness of the oxide semiconductor 230 falls within the above range.
  • the thickness of the oxide semiconductor 230a can be determined so that the contact resistance between the oxide semiconductor 230a and the conductor 120 and the contact resistance between the oxide semiconductor 230a and the conductor 240 are within required ranges.
  • the thickness of the oxide semiconductor 230b can be determined so that the threshold voltage of the transistor is within a desired range. Note that the thickness of the oxide semiconductor 230a may be the same as or different from the thickness of the oxide semiconductor 230b.
  • FIGS. 9A and 9B show a structure in which the oxide semiconductor 230 has a two-layer stacked structure of an oxide semiconductor 230a and an oxide semiconductor 230b, the present invention is not limited to this.
  • the oxide semiconductor 230 may have a stacked structure of three or more layers.
  • the on-state current of the transistor 200 can be increased, and a highly reliable transistor structure with little variation can be achieved.
  • the insulators described in the section [Insulator] described below can be used in a single layer or in a laminated manner.
  • silicon oxide or silicon oxynitride can be used as the insulator 250. Silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 250 a material with a high dielectric constant described in the section [Insulator] described below, a so-called high-k material, may be used.
  • hafnium oxide or aluminum oxide may be used.
  • the film thickness of the insulator 250 is preferably 0.5 nm or more and 15 nm or less, more preferably 0.5 nm or more and 12 nm or less, and even more preferably 0.5 nm or more and 10 nm or less.
  • the insulator 250 only needs to have a region with the thickness described above at least in part.
  • the concentration of impurities such as water and hydrogen in the insulator 250 is reduced. This can suppress impurities such as water and hydrogen from entering the channel formation region of the oxide semiconductor 230.
  • a portion of the insulator 250 is located outside the opening 290, that is, above the conductor 240 and the insulator 280. At this time, it is preferable that the insulator 250 cover the side edges of the oxide semiconductor 230. Thereby, short circuit between the conductor 260 and the oxide semiconductor 230 can be prevented. Further, it is preferable that the insulator 250 covers the side end portions of the conductor 240. This can prevent short-circuiting between the conductor 260 and the conductor 240.
  • the insulator 250 is shown as a single layer in FIGS. 2B and 2D, the present invention is not limited to this.
  • the insulator 250 may have a laminated structure.
  • the insulator 250 may have a laminated structure of an insulator 250a, an insulator 250b on the insulator 250a, and an insulator 250c on the insulator 250b. .
  • the above-mentioned material with a low dielectric constant for the insulator 250b it is preferable to use the above-mentioned material with a low dielectric constant for the insulator 250b.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat. Thereby, the parasitic capacitance between the conductor 260 and the conductor 240 can be reduced. Further, it is preferable that the concentration of impurities such as water and hydrogen in the insulator 250b is reduced.
  • the insulator 250a it is preferable to use an insulator having barrier properties against oxygen as described above. Since the insulator 250a is in contact with the oxide semiconductor 230, it has barrier properties against oxygen, thereby suppressing desorption of oxygen from the oxide semiconductor 230 when heat treatment or the like is performed. The formation of oxygen vacancies can be suppressed. Thereby, the electrical characteristics of the transistor 200 can be improved and reliability can be improved.
  • aluminum oxide may be used as the insulator 250a. In this case, the insulator 250a contains at least oxygen and aluminum.
  • the insulator 250c it is preferable to use an insulator having barrier properties against hydrogen as described above. Thereby, diffusion of impurities contained in the conductor 260 into the oxide semiconductor 230 can be suppressed.
  • silicon nitride has high hydrogen barrier properties and is therefore suitable as the insulator 250c.
  • the insulator 250c may further have barrier properties against oxygen. Insulator 250c is provided between insulator 250b and conductor 260. Therefore, oxygen contained in the insulator 250b can be prevented from diffusing into the conductor 260, and oxidation of the conductor 260 can be suppressed. Further, a decrease in the amount of oxygen supplied to the region 230i can be suppressed.
  • an insulator may be provided between the insulator 250b and the insulator 250c.
  • the insulator it is preferable to use an insulator having the above-mentioned function of capturing or fixing hydrogen. Thereby, hydrogen contained in the oxide semiconductor 230 can be captured or fixed, and the hydrogen concentration in the oxide semiconductor 230 can be reduced.
  • the film thicknesses of the insulators 250a to 250c are preferably thin, and preferably within the above-mentioned range.
  • the film thicknesses of the insulator 250a, the insulator 250b, the insulator having a function of capturing or fixing hydrogen, and the insulator 250c are 1 nm, 2 nm, 2 nm, and 1 nm, respectively.
  • FIGS. 9A and 9B show a structure in which the insulator 250 has a three-layer stacked structure of insulators 250a to 250c, the present invention is not limited to this.
  • the insulator 250 may have a laminated structure of two layers, or four or more layers. At this time, each layer included in the insulator 250 may be appropriately selected from the insulators 250a to 250c and an insulator having a function of capturing or fixing hydrogen.
  • the conductor 260 the conductors described in the section [Conductor] described below can be used in a single layer or in a laminated manner.
  • a highly conductive material such as tungsten can be used as the conductor 260.
  • the conductor 260 it is preferable to use a conductive material that is difficult to oxidize, a conductive material that is difficult to diffuse oxygen, or the like.
  • the conductive material include a conductive material containing nitrogen (eg, titanium nitride or tantalum nitride), a conductive material containing oxygen (eg, ruthenium oxide, etc.), and the like. Thereby, it is possible to suppress the conductivity of the conductor 260 from decreasing.
  • the conductor 260 may have a laminated structure.
  • the conductor 260 may have a stacked structure of a conductor 260a and a conductor 260b on the conductor 260a.
  • titanium nitride may be used as the conductor 260a
  • tungsten may be used as the conductor 260b.
  • FIGS. 9A and 9B show a configuration in which the conductor 260 has a two-layer stacked structure of a conductor 260a and a conductor 260b, the present invention is not limited to this.
  • the conductor 260 may have a laminated structure of three or more layers.
  • the conductor 260 is provided to fill the opening 290 in FIGS. 2B and 2D, the present invention is not limited thereto.
  • a recess reflecting the shape of the opening 290 may be formed in the center of the conductor 260, and a portion of the recess may be located in the opening 290.
  • the recess may be filled with an inorganic insulating material or the like.
  • a portion of the conductor 260 is located outside the opening 290, that is, above the conductor 240 and the insulator 280.
  • the side end portion of the conductor 260 is preferably located inside the side end portion of the oxide semiconductor 230. Thereby, short circuit between the conductor 260 and the oxide semiconductor 230 can be prevented.
  • the side end portion of the conductor 260 may coincide with the side end portion of the oxide semiconductor 230, or may be located outside the side end portion of the oxide semiconductor 230.
  • FIGS. 2B and 2D show a configuration in which the upper surface of the conductor 120 is flat
  • the present invention is not limited to this.
  • a configuration may be adopted in which a recessed portion overlapping the opening 290 is formed on the upper surface of the conductor 120.
  • the conductors described in the section [Conductor] described below can be used in a single layer or in a laminated manner.
  • a highly conductive material such as tungsten can be used as the conductor 240.
  • the conductor 240 is also preferably made of a conductive material that does not easily oxidize or a conductive material that does not allow oxygen to easily diffuse.
  • a conductive material that does not easily oxidize or a conductive material that does not allow oxygen to easily diffuse For example, titanium nitride or tantalum nitride can be used. With such a structure, excessive oxidation of the conductor 240 by the oxide semiconductor 230 can be suppressed. Further, for example, a structure in which tungsten is laminated on titanium nitride may be used. By layering tungsten in this way, the conductivity of the conductor 240 can be improved and it can function sufficiently as the wiring BL.
  • the conductor 240 has a structure in which a first conductor and a second conductor are laminated
  • the first conductor is formed using a conductive material with high conductivity
  • the second conductor is formed using a conductive material with high conductivity.
  • the conductor may be formed using a conductive material containing oxygen.
  • a conductive material containing oxygen as the second conductor of the conductor 240 in contact with the insulator 250, it is possible to suppress oxygen in the insulator 250 from diffusing into the first conductor of the conductor 240.
  • tungsten can be used as the first conductor of the conductor 240
  • an oxide conductor can be used as the second conductor of the conductor 240.
  • ITO, ITSO, IZO (registered trademark), etc. can be used in a single layer or in a stacked layer.
  • the oxide semiconductor 230 and the conductor 120 come into contact, a metal compound or an oxygen vacancy is formed, and the resistance of the region 230na of the oxide semiconductor 230 is reduced.
  • the contact resistance between the oxide semiconductor 230 and the conductor 120 can be reduced.
  • the oxide semiconductor 230 and the conductor 240 are in contact with each other, the resistance of the region 230nb of the oxide semiconductor 230 is reduced. Therefore, contact resistance between the oxide semiconductor 230 and the conductor 240 can be reduced.
  • the dielectric constant is low. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • insulators containing the above-mentioned materials with low dielectric constants can be used in a single layer or in a stacked layer. Silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • the concentration of impurities such as water and hydrogen in the insulator 140 and the insulator 280 is reduced. This can suppress impurities such as water and hydrogen from entering the channel formation region of the oxide semiconductor 230.
  • the insulator 280 disposed near the channel formation region it is preferable to use an insulator containing oxygen that is released by heating (hereinafter sometimes referred to as excess oxygen).
  • excess oxygen an insulator containing oxygen that is released by heating
  • an insulator having a function of capturing or fixing hydrogen as described above may be used as described above. With such a structure, hydrogen in the oxide semiconductor 230 can be captured or fixed, and the hydrogen concentration in the oxide semiconductor 230 can be reduced.
  • the insulator 280 magnesium oxide, aluminum oxide, or the like can be used as the insulator 280.
  • the insulator 280 is shown as a single layer in FIGS. 2B and 2D, the present invention is not limited to this.
  • the insulator 280 may have a laminated structure.
  • the insulator 280 may have a laminated structure of an insulator 280a, an insulator 280b on the insulator 280a, and an insulator 280c on the insulator 280b. .
  • the insulator 280b preferably has a region containing more oxygen than at least one of the insulators 280a and 280c. In particular, it is preferable that the insulator 280b has a region with a higher oxygen content than each of the insulators 280a and 280c. By increasing the oxygen content of the insulator 280b, an i-type region can be easily formed in a region of the oxide semiconductor 230 that is in contact with the insulator 280b and in the vicinity thereof.
  • the insulator 280b releases oxygen due to heat applied during the manufacturing process of the transistor 200, so that oxygen can be supplied to the oxide semiconductor 230.
  • oxygen vacancies and V O H in the oxide semiconductor 230 can be reduced, and good electrical characteristics can be achieved. A highly reliable transistor can be obtained.
  • oxygen can be supplied to the insulator 280b by performing heat treatment in an atmosphere containing oxygen or plasma treatment in an atmosphere containing oxygen.
  • oxygen may be supplied by forming an oxide film on the upper surface of the insulator 280b in an oxygen atmosphere by a sputtering method. After that, the oxide film may be removed.
  • the insulator 280b is preferably formed by a film forming method such as a sputtering method or a plasma enhanced chemical vapor deposition (PECVD) method.
  • a film forming method such as a sputtering method or a plasma enhanced chemical vapor deposition (PECVD) method.
  • PECVD plasma enhanced chemical vapor deposition
  • oxygen vacancies in the channel formation region and V OH have a particularly large influence on the electrical characteristics and reliability.
  • oxygen vacancies in the channel formation region and V OH have a particularly large influence on the electrical characteristics and reliability.
  • insulator having barrier properties against oxygen as described in the section [Insulator] described later for each of the insulator 280a and the insulator 280c.
  • oxygen contained in the insulator 280b can be prevented from diffusing to the substrate side via the insulator 280a and to the insulator 250 side via the insulator 280c due to heating.
  • oxygen contained in the insulator 280b can be confined. Thereby, oxygen can be effectively supplied to the oxide semiconductor 230.
  • the conductor 120 and the conductor 240 may be oxidized by the oxygen contained in the insulator 280b, resulting in increased resistance.
  • the insulator 280a between the insulator 280b and the conductor 120 it is possible to prevent the conductor 120 from being oxidized and increasing its resistance.
  • the insulator 280c between the insulator 280b and the conductor 240 it is possible to suppress the conductor 240 from being oxidized and increasing its resistance.
  • the amount of oxygen supplied from the insulator 280b to the oxide semiconductor 230 increases, and oxygen vacancies in the oxide semiconductor 230 can be reduced.
  • the amount of oxygen supplied to the region of the oxide semiconductor 230 in contact with the insulator 280a and the region in contact with the insulator 280c is smaller than that in the region in contact with the insulator 280b. Therefore, a region of the oxide semiconductor 230 in contact with the insulator 280a and a region in contact with the insulator 280c may have low resistance. That is, by adjusting the film thickness of the insulator 280a, the range of the region 230na that functions as one of the source region and the drain region can be controlled. Similarly, by adjusting the film thickness of the insulator 280c, the range of the region 230nb functioning as the other of the source region and the drain region can be controlled.
  • the source region and the drain region can be controlled by the film thicknesses of the insulator 280a and the insulator 280c, so the film thicknesses of the insulator 280a and the insulator 280c can be adjusted according to the characteristics required for the transistor 200. You can set it as appropriate.
  • the film thickness of the insulator 280c and the film thickness of the insulator 280a may be approximately the same.
  • the thickness of the insulator 280c may be smaller than the thickness of the insulator 280a.
  • FIGS. 10C and 10D show a configuration in which an insulator 280c is provided on a flattened insulator 280b
  • the present invention is not limited to this.
  • the insulator 280c may be formed without performing planarization treatment on the insulator 280b. By not performing planarization treatment, manufacturing costs can be lowered and production yields can be increased. Further, the insulator 280a, the insulator 280b, and the insulator 280c can be continuously formed without being exposed to the atmospheric environment.
  • the film By forming the film without exposing it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the insulators 280a to 280c, and it is possible to prevent impurities or moisture from adhering to the insulators 280a to 280c.
  • the vicinity of the interface between the insulator 280b and the insulator 280c can be kept clean.
  • an insulator having barrier properties against hydrogen as described above for each of the insulator 280a and the insulator 280c.
  • hydrogen can be suppressed from diffusing into the oxide semiconductor 230 from outside the transistor through the insulator 280a or the insulator 280c.
  • a silicon nitride film and a silicon nitride oxide film are suitable for the insulator 280a and the insulator 280c because they release little impurity (for example, water and hydrogen) from themselves and are difficult for oxygen and hydrogen to pass through. It can be used for.
  • the insulator 280a and the insulator 280c may be made of the same material or different materials.
  • the insulator 280a it is preferable to use an insulator having the above-mentioned function of capturing or fixing hydrogen. Thereby, diffusion of hydrogen into the oxide semiconductor 230 from below the insulator 280a can be suppressed, hydrogen in the oxide semiconductor 230 can be captured or fixed, and the hydrogen concentration in the oxide semiconductor 230 can be reduced. Further, it is possible to suppress hydrogen from diffusing into the insulator 130 from above the insulator 280a, and further capture or fix hydrogen in the insulator 130, thereby reducing the hydrogen concentration in the insulator 130.
  • the insulator 280a magnesium oxide, aluminum oxide, hafnium oxide, or the like can be used. Further, for example, a laminated film of aluminum oxide and silicon nitride on the aluminum oxide may be used as the insulator 280a.
  • the film thickness of the insulator 280a is preferably smaller than the film thickness of the insulator 280b. Further, the thickness of the insulator 280c is preferably smaller than the thickness of the insulator 280b.
  • the thickness of the insulator 280a and the insulator 280c is preferably 1 nm or more and 15 nm or less, more preferably 2 nm or more and 10 nm or less, more preferably 3 nm or more and 7 nm or less, and even more preferably 3 nm or more and 5 nm or less.
  • the thickness of the insulator 280b is preferably 3 nm or more and 30 nm or less, more preferably 5 nm or more and 20 nm or less, and more preferably 7 nm or more and 15 nm or less.
  • each of the insulator 280a and the insulator 280c includes at least silicon and nitrogen.
  • the insulator 280b includes at least silicon and oxygen.
  • FIGS. 10A and 10B show a structure in which the insulator 280 has a three-layer stacked structure, one embodiment of the present invention is not limited to this.
  • the insulator 280 may have a laminated structure of two layers or four or more layers.
  • the insulator 283 it is preferable to use an insulator having barrier properties against hydrogen as described above. Thereby, hydrogen can be suppressed from diffusing into the oxide semiconductor 230 from outside the transistor through the insulator 250.
  • the insulator 283 it is preferable to use an insulator having the above-mentioned function of capturing or fixing hydrogen.
  • hydrogen is prevented from diffusing into the oxide semiconductor 230 from above the insulator 283, and hydrogen in the oxide semiconductor 230 is captured or fixed, thereby reducing the hydrogen concentration in the oxide semiconductor 230. Can be reduced.
  • FIGS. 2B and 2D show a structure in which the upper surface of the conductor 120 and the lower surface of the oxide semiconductor 230 are in contact with each other, the present invention is not limited to this.
  • a conductor may be provided between the conductor 120 and the oxide semiconductor 230.
  • a configuration may be adopted in which a conductor 125 is provided between the conductor 120 and the oxide semiconductor 230.
  • the conductor 125 it is preferable to use the above-mentioned conductive material containing oxygen.
  • a conductive material containing oxygen As the conductor 125, conductivity can be maintained even if the conductor 125 absorbs oxygen. Furthermore, diffusion of oxygen in the oxide semiconductor 230 into the conductor 120 can be suppressed.
  • the conductor 125 for example, indium tin oxide, silicon-added indium tin oxide, indium zinc oxide, or the like can be used in a single layer or in a stacked layer.
  • 2B and 2D show a configuration in which the conductor 240 is provided on an insulator 280. Further, a configuration is shown in which a region of the insulator 250 that does not overlap with the conductor 240 has a region in contact with the upper surface of the insulator 280. Note that the present invention is not limited to this.
  • the conductor 240 may be embedded in an insulator.
  • the height of the top surface of the conductor 240 preferably matches the height of the top surface of the insulator.
  • the insulator functions as an interlayer film, it is preferable to use a material with a low dielectric constant. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • an insulator containing the above-mentioned material with a low dielectric constant can be used in a single layer or a laminated layer.
  • an insulating substrate for example, an insulating substrate, a semiconductor substrate, or a conductive substrate may be used.
  • the insulating substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria-stabilized zirconia substrate), and a resin substrate.
  • the semiconductor substrate include a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
  • a semiconductor substrate having an insulator region inside the semiconductor substrate described above such as an SOI (Silicon On Insulator) substrate.
  • the conductive substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • substrates containing metal nitrides, substrates containing metal oxides, and the like there are substrates in which an insulator substrate is provided with a conductor or a semiconductor, a semiconductor substrate in which a conductor or an insulator is provided, and a conductor substrate in which a semiconductor or an insulator is provided.
  • these substrates provided with elements may be used.
  • Elements provided on the substrate include capacitive elements, resistive elements, switch elements, light emitting elements, and memory elements.
  • Insulator examples include oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides having insulating properties.
  • high-k materials include aluminum oxide, gallium oxide, hafnium oxide, tantalum oxide, zirconium oxide, hafnium zirconium oxide, oxides containing aluminum and hafnium, and oxides containing aluminum and hafnium.
  • examples include nitride, oxide containing silicon and hafnium, oxynitride containing silicon and hafnium, and nitride containing silicon and hafnium.
  • materials with a low dielectric constant include inorganic insulating materials such as silicon oxide, silicon oxynitride, and silicon nitride oxide, polyester, polyolefin, polyamide (nylon, aramid, etc.), polyimide, polycarbonate, and resins such as acrylic. Can be mentioned. Further, other inorganic insulating materials having a low dielectric constant include, for example, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, and silicon oxide to which carbon and nitrogen are added. Further, for example, silicon oxide having pores may be used. Note that these silicon oxides may contain nitrogen.
  • insulators having the function of suppressing permeation of impurities and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, Insulators including neodymium, hafnium, or tantalum can be used in single layers or in stacks.
  • insulators that have the function of suppressing the permeation of impurities and oxygen include aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, tantalum oxide, etc.
  • Metal nitrides such as aluminum nitride, silicon nitride oxide, and silicon nitride can be used.
  • an insulator such as a gate insulator that is in contact with the semiconductor or an insulator provided near the semiconductor layer is preferably an insulator that has a region containing excess oxygen.
  • oxygen vacancies in the semiconductor layer can be reduced by providing a structure in which an insulator having a region containing excess oxygen is in contact with the semiconductor layer or in the vicinity of the semiconductor layer.
  • insulators that can easily form a region containing excess oxygen include silicon oxide, silicon oxynitride, and silicon oxide having vacancies.
  • Insulators with barrier properties against oxygen include oxides containing one or both of aluminum and hafnium, oxides containing hafnium and silicon (hafnium silicate), magnesium oxide, gallium oxide, gallium zinc oxide, and nitride. Examples include silicon, silicon nitride oxide, and the like. Examples of oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, and oxides containing aluminum and hafnium (hafnium aluminate).
  • Insulators having barrier properties against hydrogen include aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, silicon nitride, silicon nitride oxide, and the like.
  • An insulator that has a barrier property against oxygen and an insulator that has a barrier property against hydrogen can be said to be an insulator that has a barrier property against one or both of oxygen and hydrogen.
  • examples of the insulator having the function of capturing or fixing hydrogen include an oxide containing magnesium, or an oxide containing one or both of aluminum and hafnium. Moreover, it is more preferable that these oxides have an amorphous structure. In an oxide having an amorphous structure, oxygen atoms have dangling bonds, and the dangling bonds may capture or fix hydrogen. Note that these metal oxides preferably have an amorphous structure, but a crystalline region may be formed in part.
  • barrier insulating film refers to an insulating film having barrier properties.
  • barrier property refers to the property that the corresponding substance is difficult to diffuse (also referred to as the property that the corresponding substance is difficult to permeate, the property that the corresponding substance has low permeability, or the ability to suppress the diffusion of the corresponding substance). do.
  • the function of capturing or fixing a corresponding substance can be referred to as barrier property.
  • hydrogen when described as a corresponding substance refers to at least one of, for example, a hydrogen atom, a hydrogen molecule, and a substance bonded to hydrogen such as a water molecule and OH ⁇ .
  • impurities described as corresponding substances refer to impurities in the channel forming region or semiconductor layer, such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, oxidation Refers to at least one of nitrogen molecules ( N2O , NO, NO2, etc.), copper atoms, etc.
  • oxygen refers to at least one of, for example, an oxygen atom or an oxygen molecule.
  • the barrier property against oxygen refers to the property that at least one of oxygen atoms, oxygen molecules, etc. is difficult to diffuse.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the following, an alloy containing the above-mentioned metal elements as a component, an alloy containing a combination of the above-mentioned metal elements, or the like. As the alloy containing the aforementioned metal element as a component, a nitride of the alloy or an oxide of the alloy may be used.
  • tantalum nitride titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, etc. It is preferable. Further, a semiconductor having high electrical conductivity, typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • nitrides containing tantalum nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, nitrides containing ruthenium, nitrides containing tantalum and aluminum, or nitrides containing titanium and aluminum, etc.
  • a conductive material that does not easily oxidize a conductive material that does not easily diffuse oxygen, or a material that maintains conductivity even if it absorbs oxygen.
  • conductive materials containing oxygen indium oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide, indium tin oxide containing titanium oxide, indium tin oxide containing silicon, indium Examples include zinc oxide and indium zinc oxide containing tungsten oxide.
  • a conductive film formed using a conductive material containing oxygen is sometimes referred to as an oxide conductive film.
  • conductive materials mainly composed of tungsten, copper, or aluminum are preferred because they have high conductivity.
  • a plurality of conductors made of the above materials may be stacked and used.
  • a layered structure may be used in which a material containing the metal element described above and a conductive material containing oxygen are combined.
  • a laminated structure may be used in which a material containing the aforementioned metal element and a conductive material containing nitrogen are combined.
  • a laminated structure may be used in which a material containing the aforementioned metal element, a conductive material containing oxygen, and a conductive material containing nitrogen are combined.
  • a metal oxide is used for the channel formation region of a transistor, it is preferable to use a layered structure in which a material containing the above-mentioned metal element and a conductive material containing oxygen are combined for the conductor that functions as the gate electrode. In this case, it is preferable to provide the conductive material containing oxygen on the channel formation region side. By providing the conductive material containing oxygen on the channel formation region side, oxygen desorbed from the conductive material is easily supplied to the channel formation region.
  • a conductive material containing oxygen and a metal element contained in the metal oxide in which the channel is formed as the conductor functioning as the gate electrode.
  • a conductive material containing the aforementioned metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • one or more of the added indium tin oxides may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • Metal oxides may have lattice defects.
  • Lattice defects include atomic vacancies, point defects such as foreign atoms, line defects such as dislocations, planar defects such as crystal grain boundaries, and volume defects such as voids.
  • factors for the generation of lattice defects include a deviation in the ratio of the number of atoms of constituent elements (excess or deficiency of constituent atoms), impurities, and the like.
  • the metal oxide used for the semiconductor layer of the transistor preferably has few lattice defects.
  • the channel forming region in the metal oxide has a reduced carrier concentration and is made i-type (intrinsic) or substantially i-type.
  • the type of lattice defects that are likely to exist in a metal oxide and the amount of lattice defects that exist vary depending on the structure of the metal oxide, the method of forming a metal oxide film, etc.
  • the structure of metal oxides is divided into single crystal structure and other structures (non-single crystal structure).
  • non-single crystal structures include a CAAC structure, a polycrystalline structure, a nc structure, an amorphous-like (a-like) structure, and an amorphous structure.
  • the a-like structure has a structure between an nc structure and an amorphous structure. Note that the classification of crystal structures will be described later.
  • metal oxides having an a-like structure and metal oxides having an amorphous structure have cavities or low-density regions. That is, metal oxides having an a-like structure and metal oxides having an amorphous structure have lower crystallinity than metal oxides having an nc structure and metal oxides having a CAAC structure. Further, a metal oxide having an a-like structure has a higher hydrogen concentration than a metal oxide having an nc structure and a metal oxide having a CAAC structure. Therefore, lattice defects are likely to be generated in metal oxides having an a-like structure and metal oxides having an amorphous structure.
  • a highly crystalline metal oxide for the semiconductor layer of the transistor.
  • a metal oxide having a CAAC structure or a metal oxide having a single crystal structure By using the metal oxide in a transistor, a transistor with good electrical characteristics can be realized. Furthermore, a highly reliable transistor can be realized.
  • a metal oxide that increases the on-state current of the transistor for the channel formation region of the transistor.
  • the crystal has a crystal structure in which a plurality of layers (for example, a first layer, a second layer, and a third layer) are stacked. That is, the crystal has a layered crystal structure (also referred to as a layered crystal or layered structure). At this time, the c-axis of the crystal is oriented in the direction in which a plurality of layers are stacked.
  • metal oxides having such crystals include single-crystal oxide semiconductors, CAAC-OS, and the like.
  • the c-axis of the crystal is oriented in the normal direction to the surface on which the metal oxide is formed or the film surface.
  • the plurality of layers are arranged parallel or approximately parallel to the surface on which the metal oxide is formed or the film surface. That is, the multiple layers extend in the channel length direction.
  • the three-layered crystal structure described above has the following structure.
  • the first layer has an octahedral atomic coordination structure of oxygen in which the metal of the first layer is located at the center.
  • the second layer has a trigonal bipyramidal or tetrahedral atomic coordination structure of oxygen in which the metal of the second layer exists at the center.
  • the third layer has a trigonal bipyramidal or tetrahedral atomic coordination structure of oxygen in which the metal of the third layer exists at the center.
  • Examples of the crystal structure of the above crystal include a YbFe 2 O 4 type structure, a Yb 2 Fe 3 O 7 type structure, and modified structures thereof.
  • each of the first to third layers is preferably composed of one metal element or a plurality of metal elements having the same valence and oxygen.
  • the valence of one or more metal elements forming the first layer is the same as the valence of one or more metal elements forming the second layer.
  • the first layer and the second layer may have the same metal element.
  • the valence of one or more metal elements forming the first layer is different from the valence of one or more metal elements forming the third layer.
  • the crystallinity of the metal oxide can be improved and the carrier mobility of the metal oxide can be increased. Therefore, by using the metal oxide in a channel formation region of a transistor, the on-state current of the transistor increases, and the electrical characteristics of the transistor can be improved.
  • Examples of the metal oxide of one embodiment of the present invention include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide of one embodiment of the present invention preferably contains at least indium (In) or zinc (Zn). Moreover, it is preferable that the metal oxide has two or three selected from indium, element M, and zinc.
  • the element M is a metal element or a metalloid element that has a high bonding energy with oxygen, for example, a metal element or a metalloid element that has a higher bonding energy with oxygen than indium.
  • the element M includes aluminum, gallium, tin, yttrium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, molybdenum, hafnium, tantalum, tungsten, lanthanum, cerium, neodymium, magnesium, and calcium. , strontium, barium, boron, silicon, germanium, and antimony.
  • the element M included in the metal oxide is preferably one or more of the above elements, more preferably one or more selected from aluminum, gallium, tin, and yttrium, and further gallium. preferable.
  • the metal oxide of one embodiment of the present invention preferably contains one or more selected from indium, gallium, and zinc.
  • metal elements and metalloid elements may be collectively referred to as "metal elements," and the "metal elements” described in this specification and the like may include semimetal elements.
  • Examples of the metal oxide semiconductor of one embodiment of the present invention include indium zinc oxide (In-Zn oxide), indium tin oxide (In-Sn oxide), indium titanium oxide (In-Ti oxide), Indium gallium oxide (In-Ga oxide), indium gallium aluminum oxide (In-Ga-Al oxide), indium gallium tin oxide (In-Ga-Sn oxide), gallium zinc oxide (Ga-Zn oxide, also written as GZO), aluminum zinc oxide (also written as Al-Zn oxide, AZO), indium aluminum zinc oxide (also written as In-Al-Zn oxide, IAZO), indium tin zinc oxide (In -Sn-Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium zinc oxide (In-Ga-Zn oxide, also written as IGZO), indium gallium tin zinc oxide (In -Ga-Sn-Zn oxide (also referred to as IGZTO), indium gallium aluminum zinc oxide (In-G
  • the field effect mobility of the transistor can be increased.
  • the metal oxide may contain one or more metal elements having a large periodic number in the periodic table of elements.
  • the metal oxide may contain one or more metal elements having a large periodic number in addition to indium.
  • the metal element examples include yttrium, zirconium, silver, cadmium, tin, antimony, barium, lead, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. Note that lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium are called light rare earth elements.
  • the metal oxide may contain one or more types of nonmetallic elements.
  • the metal oxide contains a nonmetal element, the field effect mobility of the transistor can be increased in some cases.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. . Therefore, fluctuations in the electrical characteristics of the transistor are suppressed, and reliability can be improved.
  • the transistor can obtain a large on-current and high frequency characteristics.
  • an In-Ga-Zn oxide may be used as an example of the metal oxide.
  • the method for forming a metal oxide film of one embodiment of the present invention uses an ALD method, it is easy to form a metal oxide having the above-described layered crystal structure.
  • Examples of the ALD method include a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, and a plasma enhanced ALD (PEALD) method in which a plasma-excited reactant is used.
  • a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy
  • PEALD plasma enhanced ALD
  • the ALD method can deposit atoms one layer at a time, it is possible to form extremely thin films, to form structures with high aspect ratios, to form films with few defects such as pinholes, and to improve coverage. It has advantages such as being able to form an excellent film and being able to form a film at a low temperature. Further, the PEALD method may be preferable because it can form a film at a lower temperature by using plasma. Note that some precursors used in the ALD method include elements such as carbon or chlorine. For this reason, a film formed by the ALD method may contain more elements such as carbon or chlorine than films formed by other film formation methods. Note that these elements can be quantified using XPS or secondary ion mass spectrometry (SIMS).
  • the method for forming a metal oxide film of one embodiment of the present invention uses an ALD method
  • one or both of the conditions of high substrate temperature during film formation and the implementation of impurity removal treatment may be applied.
  • the amount of carbon and chlorine contained in the film may be smaller than when ALD is used without applying these.
  • the ALD method is a film-forming method in which a film is formed by a reaction on the surface of an object, unlike a film-forming method in which particles emitted from a target or the like are deposited. Therefore, this is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with other film formation methods such as sputtering or CVD, which have a high film formation rate.
  • a method may be used in which a first metal oxide is deposited using a sputtering method, and a second metal oxide is deposited on the first metal oxide using an ALD method.
  • the second metal oxide may grow crystals using the crystal part as a nucleus.
  • the composition of the resulting film can be controlled by the amount of raw material gas introduced.
  • the amount of raw material gas introduced it is possible to form a film of any composition by adjusting the amount of raw material gas introduced, the number of times it is introduced (also called the number of pulses), the time required for one pulse (also called pulse time), etc. can.
  • the ALD method by changing the raw material gas during film formation, it is possible to form a film whose composition changes continuously.
  • a transistor with high field-effect mobility can be achieved. Furthermore, a highly reliable transistor can be realized. Further, it is possible to realize miniaturized or highly integrated transistors. For example, a transistor with a channel length of 2 nm or more and 30 nm or less can be manufactured.
  • the carrier concentration in the channel formation region of the oxide semiconductor is 1 ⁇ 10 18 cm ⁇ 3 or less, preferably 1 ⁇ 10 17 cm ⁇ 3 or less, more preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ It is 1013 cm -3 or less, more preferably 1x1011 cm -3 or less, even more preferably less than 1x1010 cm- 3 , and 1x10-9 cm- 3 or more. Note that in the case of lowering the carrier concentration of the oxide semiconductor film, the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • low impurity concentration and low defect level density are referred to as high purity intrinsic or substantially high purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a high-purity intrinsic oxide semiconductor or a substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • charges captured in trap levels of an oxide semiconductor may take a long time to disappear, and may behave as if they were fixed charges. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap level density may have unstable electrical characteristics.
  • the impurity in the oxide semiconductor refers to, for example, a substance other than the main component that constitutes the oxide semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be considered an impurity.
  • the band gap of the oxide semiconductor is preferably larger than the band gap of silicon (typically 1.1 eV), preferably 2 eV or more, more preferably 2.5 eV or more, and even more preferably 3.0 eV or more. It is.
  • the off-state current (also referred to as Ioff) of the transistor can be reduced.
  • Si transistors As transistors become smaller, a short channel effect (also referred to as SCE) occurs. Therefore, it is difficult to miniaturize Si transistors.
  • SCE short channel effect
  • silicon has a small band gap.
  • an OS transistor uses an oxide semiconductor, which is a semiconductor material with a large band gap, short channel effects can be suppressed. In other words, an OS transistor is a transistor that has no short channel effect or has very little short channel effect.
  • the short channel effect is a deterioration in electrical characteristics that becomes apparent as transistors become smaller (reduction in channel length).
  • Specific examples of short channel effects include a decrease in threshold voltage, an increase in subthreshold swing value (sometimes referred to as S value), and an increase in leakage current.
  • the S value refers to the amount of change in gate voltage in a subthreshold region that causes a drain current to change by one order of magnitude with a constant drain voltage.
  • characteristic length is widely used as an index of resistance to short channel effects.
  • the characteristic length is an index of the bendability of the potential in the channel forming region. The smaller the characteristic length, the more steeply the potential rises, so it can be said to be resistant to short channel effects.
  • the OS transistor is an accumulation type transistor, and the Si transistor is an inversion type transistor. Therefore, compared to a Si transistor, an OS transistor has a smaller characteristic length between the source region and the channel forming region and a smaller characteristic length between the drain region and the channel forming region. Therefore, OS transistors are more resistant to short channel effects than Si transistors. That is, when it is desired to manufacture a transistor with a short channel length, an OS transistor is more suitable than a Si transistor.
  • the carrier concentration of the oxide semiconductor is lowered until the channel formation region becomes i-type or substantially i-type, conduction in the channel formation region decreases due to the conduction-band-lowering (CBL) effect in short-channel transistors. Since the lower end of the conduction band is lowered, the energy difference at the lower end of the conduction band between the source region or the drain region and the channel formation region may be reduced to 0.1 eV or more and 0.2 eV or less.
  • the OS transistor has an n + /n- / n + accumulation type junction-less transistor structure, in which the channel forming region becomes an n - type region and the source and drain regions become n + -type regions, or , n + /n ⁇ /n + storage type non-junction transistor structure.
  • the OS transistor By making the OS transistor have the above structure, it can have good electrical characteristics even if the OS transistor is miniaturized or highly integrated. For example, even if the channel length or gate length of an OS transistor is 20 nm or less, 15 nm or less, 10 nm or less, 7 nm or less, or 6 nm or less, and it is 1 nm or more, 3 nm or more, or 5 nm or more, good electrical characteristics can be obtained. Obtainable. On the other hand, since a short channel effect occurs in a Si transistor, it may be difficult to set the gate length to 20 nm or less or 15 nm or less. Therefore, the OS transistor can be suitably used as a transistor having a shorter channel length than a Si transistor. Note that the gate length is the length of the gate electrode in the direction in which carriers move inside the channel formation region during transistor operation.
  • the high frequency characteristics of the transistor can be improved.
  • the cutoff frequency of the transistor can be improved.
  • the cutoff frequency of the transistor can be set to 50 GHz or more, preferably 100 GHz or more, more preferably 150 GHz or more, for example in a room temperature environment.
  • OS transistors have superior effects compared to Si transistors, such as lower off-state current and the ability to manufacture transistors with shorter channel lengths.
  • the carbon concentration in the channel formation region of the oxide semiconductor obtained by SIMS is 1 ⁇ 10 20 atoms/cm 3 or less, preferably 5 ⁇ 10 19 atoms/cm 3 or less, more preferably 3 ⁇ 10 19 atoms /cm 3 or less, more preferably 1 ⁇ 10 19 atoms/cm 3 or less, more preferably 3 ⁇ 10 18 atoms/cm 3 or less, even more preferably 1 ⁇ 10 18 atoms/cm 3 or less.
  • the silicon concentration in the channel formation region of the oxide semiconductor obtained by SIMS is 1 ⁇ 10 20 atoms/cm 3 or less, preferably 5 ⁇ 10 19 atoms/cm 3 or less, and more preferably 3 ⁇ 10 19 atoms/cm 3 or less. cm 3 or less, more preferably 1 ⁇ 10 19 atoms/cm 3 or less, more preferably 3 ⁇ 10 18 atoms/cm 3 or less, even more preferably 1 ⁇ 10 18 atoms/cm 3 or less.
  • the nitrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is 1 ⁇ 10 20 atoms/cm 3 or less, preferably 5 ⁇ 10 19 atoms/cm 3 or less, and more preferably 1 ⁇ 10 19 atoms/cm 3 or less. cm 3 or less, more preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less, still more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • hydrogen contained in the oxide semiconductor reacts with oxygen bonded to metal atoms to become water, which may result in the formation of oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated. Further, a portion of hydrogen may combine with oxygen that is bonded to a metal atom to generate electrons, which are carriers. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have normally-on characteristics. Therefore, it is preferable that hydrogen in the channel formation region of the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 5 ⁇ 10 19 atoms/cm 3 , more preferably 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm 3 , even more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • the concentration of alkali metal or alkaline earth metal in the channel formation region of the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the oxide semiconductor 230 can be referred to as a semiconductor layer including a channel formation region of a transistor.
  • Semiconductor materials that can be used for the semiconductor layer are not limited to the metal oxides mentioned above.
  • a semiconductor material having a band gap semiconductor material that is not a zero-gap semiconductor may be used as the semiconductor layer.
  • a layered material is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent bonds or ionic bonds are stacked via bonds weaker than covalent bonds or ionic bonds, such as van der Waals bonds.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity.
  • Examples of single element semiconductors that can be used as semiconductor materials include silicon and germanium.
  • Examples of silicon that can be used for the semiconductor layer include single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon.
  • Examples of polycrystalline silicon include low temperature polysilicon (LTPS).
  • Compound semiconductors that can be used as semiconductor materials include silicon carbide, silicon germanium, gallium arsenide, indium phosphide, boron nitride, and boron arsenide.
  • Boron nitride that can be used for the semiconductor layer preferably includes an amorphous structure.
  • Boron arsenide that can be used in the semiconductor layer preferably contains crystals with a cubic crystal structure.
  • Examples of layered materials include graphene, silicene, boron carbonitride, and chalcogenides.
  • boron carbonitride as a layered material, carbon atoms, nitrogen atoms, and boron atoms are arranged in a hexagonal lattice structure on a plane.
  • a chalcogenide is a compound containing chalcogen.
  • chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • examples of chalcogenides include transition metal chalcogenides, group 13 chalcogenides, and the like.
  • transition metal chalcogenide that functions as a semiconductor.
  • transition metal chalcogenides that can be used as a semiconductor layer include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), molybdenum tellurium (typically MoTe 2 ), Tungsten sulfide (typically WS 2 ), tungsten selenide (typically WSe 2 ), tungsten tellurium (typically WTe 2 ), hafnium sulfide (typically HfS 2 ), hafnium selenide (typically Examples include HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenide (typically ZrSe 2 ).
  • a in each figure shows a plan view of a region having a memory cell 150.
  • B in each figure corresponds to FIG. 2B, and is a sectional view corresponding to the portion indicated by the dashed line A1-A2 in A in each figure.
  • C in each figure is a cross-sectional view of the functional element 155 corresponding to FIG. 2D.
  • some elements are omitted for clarity of the figure.
  • a plan view of the functional element 155 corresponding to FIG. 2C is similar to the memory cell 150, and will be omitted since it can be referred to.
  • an insulating material for forming an insulator, a conductive material for forming a conductor, or a semiconductor material for forming a semiconductor is used by a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method.
  • the film can be formed using a method such as the following.
  • sputtering methods include an RF sputtering method that uses a high frequency power source as a sputtering power source, a DC sputtering method that uses a DC power source, and a pulsed DC sputtering method that changes the voltage applied to the electrode in a pulsed manner.
  • the RF sputtering method is mainly used when forming an insulating film
  • the DC sputtering method is mainly used when forming a metal conductive film.
  • the pulsed DC sputtering method is mainly used when forming a film of a compound such as an oxide, nitride, or carbide by a reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD) method that uses plasma, a thermal CVD (TCVD) method that uses heat, a photo CVD (Photo CVD) method that uses light, etc. Furthermore, depending on the raw material gas used, the method can be divided into a metal CVD (MCVD) method and a metal organic CVD (MOCVD) method.
  • PECVD plasma CVD
  • TCVD thermal CVD
  • Photo CVD Photo CVD
  • MCVD metal CVD
  • MOCVD metal organic CVD
  • the plasma CVD method can obtain high-quality films at relatively low temperatures. Further, since the thermal CVD method does not use plasma, it is a film forming method that can reduce plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitors, etc.) included in a memory device may be charged up by receiving charges from plasma. At this time, the accumulated charges may destroy wiring, electrodes, elements, etc. included in the memory device. On the other hand, in the case of a thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of memory devices can be increased. Further, in the thermal CVD method, since plasma damage does not occur during film formation, a film with fewer defects can be obtained.
  • the ALD method a thermal ALD method in which a reaction between a precursor and a reactant is performed using only thermal energy, a PEALD method in which a plasma-excited reactant is used, etc. can be used.
  • the CVD method and the ALD method are different from the sputtering method in which particles emitted from a target or the like are deposited. Therefore, this is a film forming method that is not easily affected by the shape of the object to be processed and has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with other film formation methods such as the CVD method, which has a fast film formation rate.
  • a film of any composition can be formed by changing the flow rate ratio of source gases.
  • the flow rate ratio of source gases by changing the flow rate ratio of source gases during film formation, it is possible to form a film whose composition changes continuously.
  • the time required for film formation is reduced because it does not require time for transport or pressure adjustment. can do. Therefore, it may be possible to increase the productivity of the storage device.
  • a film of any composition can be formed by simultaneously introducing a plurality of different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles for each precursor.
  • a substrate (not shown) is prepared, and an insulator 140 is formed on the substrate (see FIGS. 12A to 12C).
  • an insulator 140 any of the above-mentioned insulating materials may be used as appropriate.
  • the insulator 140 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the conductor 110 is formed on the insulator 140.
  • the above-mentioned conductive material may be used as appropriate.
  • the conductor 110 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a stacked film of tungsten and titanium nitride may be formed in this order using a CVD method.
  • the conductor 110 may be processed into a shape that extends in the X direction or the Y direction.
  • the conductor 110 may be processed using a lithography method.
  • a dry etching method or a wet etching method can be used. Processing by dry etching is suitable for microfabrication. By performing this processing, the side end portions of the conductor 110 are covered with an insulator 130 that will be formed later.
  • a resist mask is formed by removing or leaving the exposed area using a developer.
  • a conductor, semiconductor, insulator, or the like can be processed into a desired shape.
  • a resist mask may be formed by exposing a resist to light using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure.
  • an electron beam or an ion beam may be used instead of the light described above.
  • the resist mask can be removed by performing dry etching treatment such as ashing, wet etching treatment, wet etching treatment after dry etching treatment, or dry etching treatment after wet etching treatment.
  • a capacitively coupled plasma (CCP) etching device having parallel plate electrodes can be used as the dry etching device.
  • a capacitively coupled plasma etching apparatus having parallel plate electrodes may have a configuration in which a high frequency voltage is applied to one electrode of the parallel plate electrodes.
  • a configuration may be adopted in which a plurality of different high frequency voltages are applied to one electrode of a parallel plate type electrode.
  • a configuration may be adopted in which a high frequency voltage of the same frequency is applied to each of the parallel plate type electrodes.
  • a configuration may be adopted in which high frequency voltages having different frequencies are applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • the dry etching device having a high-density plasma source for example, an inductively coupled plasma (ICP) etching device or the like can be used.
  • ICP inductively coupled plasma
  • an insulator 180 is formed on the conductor 110 (see FIGS. 12A to 12C).
  • the insulating material described above may be used as appropriate for the insulator 180.
  • the insulator 180 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a silicon oxide film may be formed using a sputtering method.
  • the insulator 180 is preferably subjected to CMP treatment after film formation to flatten the upper surface. Note that there are cases where it is not necessary to perform CMP processing. At this time, the upper surface of the insulator 180 has an upwardly convex curved shape. By not performing planarization treatment, manufacturing costs can be lowered and production yields can be increased.
  • the film thickness of the insulator 180 corresponds to the capacitance of the capacitive element 100
  • the film thickness of the insulator 180 may be appropriately set according to the design value of the capacitance of the capacitive element 100.
  • the hydrogen concentration in the insulator 180 can be reduced by using a sputtering method that does not require the use of hydrogen-containing molecules in the film formation gas.
  • the opening 190 may be formed using a lithography method.
  • the shape of the opening 190 is circular in plan view, it is not limited to this.
  • the shape of the opening 190 may be a substantially circular shape such as an ellipse, a polygonal shape such as a quadrilateral, or a polygonal shape such as a quadrilateral with rounded corners when viewed from above.
  • the side wall of the opening 190 is preferably perpendicular to the top surface of the conductor 110. With such a configuration, it is possible to miniaturize or highly integrate the memory device. Note that the side wall of the opening 190 may have a tapered shape. By tapering the side wall of the opening 190, the coverage of a conductive film, which will be described later as a conductor 115, can be improved, and defects such as holes can be reduced.
  • the maximum width (diameter if the opening 190 is circular in plan view) of the opening 190 is minute.
  • the maximum width of the opening 190 is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, or 20 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • the opening 190 has a large aspect ratio, it is preferable to process a part of the insulator 280 using anisotropic etching. In particular, processing by dry etching is preferable because it is suitable for fine processing.
  • a conductive film that will become the conductor 115 is formed in contact with the bottom and sidewalls of the opening 190 and at least a portion of the top surface of the insulator 180.
  • a conductor that can be used as the conductor 115 described above may be used as appropriate.
  • the conductive film may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the conductive film is preferably formed in contact with the bottom and sidewalls of the opening 190 having a large aspect ratio.
  • a film forming method with good coverage it is preferable to use a CVD method, an ALD method, or the like.
  • a titanium nitride film may be formed as the conductive film using a CVD method.
  • the conductive film that will become the conductor 115 is processed using a lithography method to form the conductor 115 (see FIGS. 14A to 14C). As a result, a portion of the conductor 115 is formed in the opening 190. Further, the conductor 115 is in contact with a portion of the side surface and the top surface of the insulator 180.
  • an insulator 130 is formed on the conductor 115 and the insulator 180 (see FIGS. 15A to 15C).
  • the above-mentioned high-k material or material exhibiting ferroelectricity may be used as appropriate.
  • the insulator 130 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a laminated film of zirconium oxide, aluminum oxide, and zirconium oxide may be formed in this order using an ALD method.
  • a resist mask 145 is formed on the insulator 130 (see FIGS. 15A to 15C).
  • the resist mask 145 is formed so that an opening 146 is provided in a portion that overlaps with the opening 190 in the region that will become the functional element 155 (see FIG. 15C).
  • the resist mask 145 is formed so that the opening 146 overlaps with the opening 190 in the region that will become the functional element 155. Form to cover.
  • the opening 146 of the resist mask 145 may have any shape as long as it includes the opening 190 in plan view. Even when the opening 190 is circular in shape, the opening 146 does not necessarily have to be circular in shape, and may be rectangular, for example.
  • the portion of the insulator 130 that is not covered by the resist mask 145 is removed by etching (see FIGS. 16A to 16C).
  • etching see FIGS. 16A to 16C.
  • anisotropic etching By using anisotropic etching, the insulator 131 remains within the opening 190. Note that if isotropic etching is used, a configuration in which the insulator 131 does not remain can be achieved.
  • the aspect ratio of the opening 190 is high (for example, 2 or more)
  • the opening 190 will be larger than the insulator 130 located at the bottom of the opening 190. It takes longer to etch the insulator 130 located on the inner wall of the insulator 130 . Therefore, the insulator 130 disappears first at the bottom of the opening 190, and the conductor 115 is exposed to etching and may be damaged.
  • etching can be performed to the extent that at least the insulator 130 located at the bottom of the opening 190 is removed, so damage to the conductor 115 can be alleviated.
  • the adhesion of the conductor 120 formed thereon may be improved.
  • a conductive film 120A is formed (see FIGS. 17A to 17C).
  • the conductive material described above may be used for the conductive film 120A.
  • the conductive film 120A may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a stacked film of titanium nitride and tantalum nitride may be formed in this order using a CVD method.
  • a stacked film in which titanium nitride and tungsten are deposited in this order may be formed using a CVD method.
  • the conductive film 120A is processed to form the conductor 120 (see FIGS. 18A to 18C).
  • the conductor 120 may be formed using a lithography method.
  • a dry etching method or a wet etching method can be used to process the conductive film 120A. Processing by dry etching is suitable for microfabrication.
  • the capacitive element 100 having the conductor 115, the insulator 130, and the conductor 120 and the connection portion 101 can be separately manufactured.
  • an insulator 280 is formed on the insulator 130 and the conductor 120 (see FIGS. 19A to 19C).
  • the insulating material described above may be used as appropriate for the insulator 280.
  • the insulator 280 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a silicon oxide film may be formed using a sputtering method.
  • the insulator 280 is preferably subjected to CMP (Chemical Mechanical Polishing) treatment after film formation to flatten the upper surface.
  • CMP Chemical Mechanical Polishing
  • the conductor 240 functioning as a wiring can be suitably formed.
  • CMP treatment may be performed until the insulator 280 is reached.
  • the surface of the insulator 280 can be flattened and smoothed.
  • the upper surface of the insulator 280 has an upwardly convex curved shape.
  • the film thickness of the insulator 280 on the conductor 120 corresponds to the channel length of the transistor 200
  • the film thickness of the insulator 280 may be appropriately set according to the design value of the channel length of the transistor 200. .
  • the insulator 280 by forming the insulator 280 by a sputtering method in an atmosphere containing oxygen, the insulator 280 containing excess oxygen can be formed. Furthermore, by using a sputtering method that does not require the use of hydrogen-containing molecules in the film-forming gas, the hydrogen concentration in the insulator 280 can be reduced. By forming the insulator 280 in this manner, oxygen can be supplied from the insulator 280 to the channel formation region of the oxide semiconductor 230, and oxygen vacancies and V OH can be reduced.
  • a conductive film 240A is formed on the insulator 280 (see FIGS. 19A to 19C).
  • the conductive material described above may be used as appropriate for the conductive film 240A.
  • the conductive film 240A may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the opening 290 may be formed using a lithography method.
  • the shape of the opening 290 shown in FIG. 20A is circular in plan view, the shape is not limited to this.
  • the shape of the opening 290 may be a substantially circular shape such as an ellipse, a polygonal shape such as a quadrilateral, or a polygonal shape such as a quadrilateral with rounded corners when viewed from above.
  • the side wall of the opening 290 is preferably perpendicular to the top surface of the conductor 110. With such a configuration, it is possible to miniaturize or highly integrate the memory device. Further, the side wall of the opening 290 may have a tapered shape. By tapering the sidewall of the opening 290, coverage of an oxide semiconductor film or the like that becomes the oxide semiconductor 230 (described later) can be improved, and defects such as holes can be reduced.
  • the maximum width (maximum diameter when the opening 290 is circular in plan view) of the opening 290 is minute.
  • the maximum width of the opening 290 is preferably 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, or 20 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • the opening 290 has a large aspect ratio, it is preferable to process a part of the conductive film 240A and a part of the insulator 280 using anisotropic etching. In particular, processing by dry etching is preferable because it is suitable for fine processing. Further, the processing may be performed under different conditions. Note that depending on the conditions for processing a portion of the conductive film 240A and a portion of the insulator 280, as described above, the slope of the side surface of the conductor 240 at the opening 290 and the slope of the insulator 280 at the opening 290 may vary. The slopes of the sides may differ from each other.
  • heat treatment may be performed.
  • the heat treatment may be performed at a temperature of 250°C or higher and 650°C or lower, preferably 300°C or higher and 500°C or lower, and more preferably 320°C or higher and 450°C or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the oxygen gas content may be about 20%.
  • the heat treatment may be performed under reduced pressure.
  • heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the desorbed oxygen.
  • impurities such as water contained in the insulator 280 and the like can be reduced before forming an oxide semiconductor film that will become the oxide semiconductor 230 described later.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • an oxide semiconductor film that will become the oxide semiconductor 230 is formed in contact with the bottom and sidewalls of the opening 290 and at least a portion of the top surface of the conductive film 240A.
  • a metal oxide that can be used for the oxide semiconductor 230 described above may be used as appropriate.
  • the oxide semiconductor film may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the oxide semiconductor film is preferably formed in contact with the bottom and sidewalls of the opening 290 having a large aspect ratio.
  • the oxide semiconductor film it is preferable to use a film forming method with good coverage, and it is more preferable to use a CVD method, an ALD method, or the like.
  • a CVD method an ALD method, or the like.
  • an In-Ga-Zn oxide may be formed using an ALD method. Note that the details of the method for forming a metal oxide film using the ALD method will be described in the embodiment described later.
  • the oxide semiconductor film that becomes the oxide semiconductor 230 is not limited to the case where the CVD method or the ALD method is used.
  • a sputtering method may be used.
  • microwave processing refers to processing using, for example, a device having a power source that generates high-density plasma using microwaves.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequency waves such as RF, and the oxygen plasma can be activated.
  • oxygen that acts on an oxide semiconductor has various forms such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also referred to as O radicals; atoms, molecules, or ions with unpaired electrons). Note that the oxygen that acts on the oxide semiconductor may be any one or more of the above-mentioned forms, and oxygen radicals are particularly preferable.
  • heating the substrate when performing the microwave treatment in the above-mentioned oxygen-containing atmosphere is preferable because the impurity concentration in the oxide semiconductor can be further reduced.
  • the temperature at which the above-mentioned substrate is heated may be 100°C or more and 650°C or less, preferably 200°C or more and 600°C or less, and more preferably 300°C or more and 450°C or less.
  • the carbon concentration in the oxide semiconductor obtained by SIMS can be reduced to less than 1 ⁇ 10 20 atoms/cm 3 , preferably 1 ⁇ 10 19 It can be less than 1 ⁇ 10 18 atoms/cm 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • microwave treatment may be performed on an insulating film, more specifically a silicon oxide film, located near an oxide semiconductor in an atmosphere containing oxygen.
  • an insulating film more specifically a silicon oxide film, located near an oxide semiconductor in an atmosphere containing oxygen.
  • hydrogen contained in the silicon oxide film can be released to the outside as H 2 O.
  • the deposition methods for each layer included in the oxide semiconductor 230 may be the same or different.
  • the lower layer of the oxide semiconductor film may be formed by a sputtering method
  • the upper layer of the oxide semiconductor film may be formed by an ALD method.
  • An oxide semiconductor film formed using a sputtering method tends to have crystallinity. Therefore, by providing an oxide semiconductor film having crystallinity as a lower layer of the oxide semiconductor film, the crystallinity of the upper layer of the oxide semiconductor film can be improved.
  • the oxide semiconductor film formed by the ALD method which has good coverage, can cover the overlapping portions. It can be closed with the upper layer of
  • the oxide semiconductor film serving as the oxide semiconductor 230 covers the top surface of the conductor 120 in the opening 290, the side surface of the insulator 280 in the opening 290, the side surface of the conductor 240 in the opening 290, and the side surface of the conductor 240 in the opening 290. Preferably, it is formed in contact with the upper surface.
  • the oxide semiconductor film in contact with the conductor 120 the conductor 120 functions as one of a source electrode and a drain electrode of the transistor 200.
  • the conductor 240 functions as the other of the source electrode and the drain electrode of the transistor 200.
  • the heat treatment may be performed at a temperature range in which the oxide semiconductor film does not become polycrystalline, and may be performed at a temperature of 250° C. or more and 650° C. or less, preferably 400° C. or more and 600° C. or less.
  • the heat treatment is performed in an atmosphere of nitrogen gas or inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas.
  • the oxygen gas content may be about 20%.
  • the heat treatment may be performed under reduced pressure.
  • heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the desorbed oxygen.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • the heat treatment is preferably performed with the insulator 280 containing excess oxygen provided in contact with the oxide semiconductor film.
  • oxygen can be supplied from the insulator 280 to the channel formation region of the oxide semiconductor 230, and oxygen vacancies and VoH can be reduced.
  • the heat treatment is performed after the oxide semiconductor film is formed, but the present invention is not limited to this.
  • the heat treatment may be performed in a later step.
  • the oxide semiconductor film that will become the oxide semiconductor 230 is processed using a lithography method to form the oxide semiconductor 230 (see FIGS. 21A to 21C). As a result, part of the oxide semiconductor 230 is formed in the opening 290. Further, the oxide semiconductor 230 is in contact with a part of the side surface and the top surface of the conductor 240. Therefore, the area of the region where the oxide semiconductor 230 and the conductor 240 are in contact can be increased.
  • the conductor 240A is processed to form the conductor 240.
  • the conductor 240 may be formed using a lithography method.
  • a dry etching method or a wet etching method can be used to process the conductive film 240A. Processing by dry etching is suitable for microfabrication.
  • the conductive film 240A may be processed first. That is, after forming the conductive film 240A on the insulator 280, the conductive film 240A is processed to form the conductor 240, the opening 290 is formed in the conductor 240 and the insulator 280, and then the oxide semiconductor is formed.
  • the oxide semiconductor 230 may be formed by forming a film and processing the film.
  • an insulator 250 is formed over the oxide semiconductor 230, the conductor 240, and the insulator 280 (see FIGS. 22A to 22C).
  • the insulator 250 any of the above-mentioned insulating materials may be used as appropriate.
  • the insulator 250 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the insulator 250 is preferably formed in contact with the oxide semiconductor 230 provided in the opening 290 with a large aspect ratio.
  • the insulator 250 it is preferable to use a film forming method that provides good coverage, and it is more preferable to use a CVD method, an ALD method, or the like.
  • silicon oxide may be formed as the insulator 250 using an ALD method.
  • the film formation of the insulator 250 is not limited to the case where the CVD method or the ALD method is used.
  • a sputtering method may be used.
  • the side edges of the oxide semiconductor 230 are covered with the insulator 250. Therefore, short circuit between the oxide semiconductor 230 and the conductor 260 can be prevented. Furthermore, with the above configuration, the side end portions of the conductor 240 are covered with the insulator 250. Therefore, short circuit between the conductor 240 and the conductor 260 can be prevented.
  • a conductive film 260A is formed so as to fill the recesses of the insulator 250 (see FIGS. 22A to 22C).
  • the conductive material described above may be used as appropriate for the conductive film 260A.
  • the conductive film 260A may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • the conductive film 260A is preferably formed in contact with the insulator 250 provided in the opening 290 having a large aspect ratio.
  • the conductive film 260A it is preferable to use a film forming method that provides good coverage or embeddability, and it is more preferable to use a CVD method, an ALD method, or the like.
  • a CVD method an ALD method
  • titanium nitride may be formed as the conductive film 260A using a CVD method or an ALD method.
  • the conductive film 260A is formed using the CVD method, the average surface roughness of the upper surface of the conductive film 260A may become large. In this case, it is preferable to planarize the conductive film 260A using a CMP method. At this time, before performing the CMP treatment, a silicon oxide film or a silicon oxynitride film may be formed over the conductive film 260A, and the CMP treatment may be performed until the silicon oxide film or silicon oxynitride film is removed.
  • the conductive film 260A is provided so as to fill the opening 290, but the present invention is not limited to this.
  • a recess reflecting the shape of the opening 290 may be formed in the center of the conductive film 260A.
  • the recess may be filled with an inorganic insulating material or the like.
  • the conductor 260 is processed to form the conductor 260 (see FIGS. 23A to 23C).
  • the conductor 260 may be formed using a lithography method.
  • a dry etching method or a wet etching method can be used. Processing by dry etching is suitable for microfabrication.
  • the side end portion of the conductor 260 is located inside the side end portion of the oxide semiconductor 230 in plan view. Thereby, short circuit between the conductor 260 and the oxide semiconductor 230 can be prevented.
  • the transistor 200 including the conductor 120, the conductor 240, the oxide semiconductor 230, the insulator 250, and the conductor 260 can be formed.
  • an insulator 283 is formed to cover the conductor 260 and the insulator 250.
  • the above-mentioned insulating material may be used as appropriate.
  • the insulator 283 may be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like as appropriate.
  • a memory device having the memory cell 150 and functional element 155 shown in FIGS. 2A to 2D can be manufactured.
  • a new transistor, a new semiconductor device, and a new memory device can be provided.
  • a memory device that can be miniaturized or highly integrated can be provided.
  • a storage device with good frequency characteristics can be provided.
  • a storage device with high operating speed can be provided.
  • a highly reliable storage device can be provided.
  • a storage device with low power consumption can be provided.
  • a memory device including a transistor with a large on-state current can be provided.
  • a memory device with less variation in transistor characteristics can be provided.
  • a storage device with good electrical characteristics can be provided.
  • the memory cell 150 including the transistor 200 and the capacitor 100 described in this embodiment can be used as a memory cell of a memory device. Further, a functional element including the transistor 200 and the connection portion 101 can be used as a peripheral circuit of a memory device.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer including an oxide semiconductor. Since the transistor 200 has a small off-state current, it is possible to retain stored contents for a long period of time by using the transistor 200 in a memory device. In other words, since no refresh operation is required or the frequency of refresh operations is extremely low, power consumption of the storage device can be sufficiently reduced. Further, since the transistor 200 has high frequency characteristics, reading and writing to the memory device can be performed at high speed.
  • FIG. 24A is a plan view of the storage device.
  • FIG. 24B is a cross-sectional view of a portion shown by a dashed line A1-A2 in FIG. 24A. Note that in the plan view of FIG. 24A, some elements are omitted for clarity.
  • each of the memory cell 150a and the memory cell 150b shown in FIGS. 24A and 24B has the same configuration as the memory cell 150.
  • the memory cell 150a has a capacitive element 100a and a transistor 200a
  • the memory cell 150b has a capacitive element 100b and a transistor 200b.
  • the conductor 260 functioning as the wiring WL is provided in the memory cell 150a and the memory cell 150b, respectively. Further, a conductor 240 that functions as a part of the wiring BL is provided in common to the memory cell 150a and the memory cell 150b. In other words, the conductor 240 is in contact with the oxide semiconductor 230 of the memory cell 150a and the oxide semiconductor 230 of the memory cell 150b.
  • the memory device shown in FIGS. 24A and 24B includes a conductor 245 and a conductor 246 that are electrically connected to the memory cell 150a and the memory cell 150b and function as a plug (also referred to as a connection electrode).
  • the conductor 245 is disposed within the opening formed in the insulator 180, the insulating layer 130, the insulator 280, and the insulator 140, and is in contact with the lower surface of the conductor 240.
  • the conductor 246 is disposed within the openings formed in the insulator 287, the insulator 283, and the insulator 250, and is in contact with the upper surface of the conductor 240. Note that for the conductor 245 and the conductor 246, a conductive material that can be used for the conductor 240 can be used.
  • the dielectric constant is low. By using a material with a low dielectric constant as an interlayer film, parasitic capacitance generated between wirings can be reduced.
  • an insulator containing the above-mentioned material with a low dielectric constant can be used in a single layer or a stacked layer. Further, it is preferable that the concentration of impurities such as water and hydrogen in the insulator 287 is reduced. Thereby, impurities such as water and hydrogen can be suppressed from entering the channel formation region of the oxide semiconductor 230.
  • the conductor 245 is electrically connected to a sense amplifier (not shown) provided below the storage device shown in FIG. 24B, for example, and the conductor 246 is connected to a sense amplifier (not shown) provided above the storage device shown in FIG. 24B. It can be configured to be electrically connected to a storage device (not shown). In this case, the conductor 245 and the conductor 246 function as part of the wiring BL. In this way, by providing a storage device or the like above or below the storage device shown in FIG. 24B, the storage capacity per unit area can be increased.
  • the memory cell 150a and the memory cell 150b are arranged in line-symmetrical positions with the conductor 245 and the conductor 246 in between. Further, the transistor 200a and the transistor 200b share a conductor 245 and a conductor 246 that function as a plug. In this way, by connecting the two transistors and the plug to the above-described configuration, it is possible to provide a memory device that can be miniaturized or highly integrated.
  • the conductor 110 functioning as the wiring PL may be provided in each of the memory cell 150a and the memory cell 150b, or may be provided in common in the memory cell 150a and the memory cell 150b. However, as shown in FIG. 24B, the conductor 110 is provided apart from the conductor 245 to prevent short circuit between the conductor 110 and the conductor 245.
  • a memory cell array can be configured by arranging the memory cells 150 three-dimensionally in a matrix.
  • FIGS. 25A and 25B show an example of a memory device in which 4 ⁇ 2 ⁇ 4 memory cells 150 are arranged in the X direction, Y direction, and Z direction.
  • FIG. 25A is a plan view of the storage device.
  • FIG. 25B is a cross-sectional view of a portion shown by a dashed line A1-A2 in FIG. 25A. Note that in the plan view of FIG. 25A, some elements are omitted for clarity.
  • each of the memory cells 150a to 150d shown in FIGS. 25A and 25B has the same configuration as the memory cell 150.
  • the memory cell 150c has a capacitive element 100c and a transistor 200c
  • the memory cell 150d has a capacitive element 100d and a transistor 200d.
  • a storage device made up of memory cells 150a to 150d will be referred to as a memory unit.
  • 25A and 25B show memory units 160[1,1] to 160[2,4] among the memory units included in the storage device. Note that in the following description, matters common to each memory unit may be referred to as the memory unit 160.
  • the memory unit 160 [a, b] (a, b are positive integers), a indicates an address in the Y direction, and b indicates an address in the Z direction.
  • a memory cell 150c is arranged outside the memory cell 150a, and a memory cell 150d is arranged outside the memory cell 150b, with the conductor 245 at the center.
  • the memory cell 150c is provided adjacent to the memory cell 150a, and the memory cell 150d is provided adjacent to the memory cell 150b.
  • the conductor 260 functioning as the wiring WL is shared by memory cells 150 adjacent to each other in the Y direction. Furthermore, the conductor 240 that functions as part of the wiring BL is shared within the same memory unit. In other words, the conductor 240 is in contact with the oxide semiconductor 230 of each of the memory cells 150a to 150d.
  • a conductor 245 is provided between the conductors 240 of memory units 160 adjacent in the Z direction.
  • the wiring BL is formed by the conductor 240 and the conductor 245 provided in each memory unit 160.
  • the conductor 245 is electrically connected to a sense amplifier (not shown) provided below the memory device shown in FIGS. 25A and 25B. In this way, in the storage device shown in FIGS. 25A and 25B, by stacking a plurality of memory units, the storage capacity per unit area can be increased.
  • the memory cell 150a and the memory cell 150c, and the memory cell 150b and the memory cell 150d are arranged in line-symmetrical positions with the conductor 245 in between. In this way, by connecting the four transistors and the plugs in the above-described configuration, it is possible to provide a memory device that can be miniaturized or highly integrated.
  • FIG. 25B by stacking a plurality of memory cells, cells can be arranged in an integrated manner without increasing the area occupied by the memory cell array.
  • a 3D memory cell array can be configured. Note that although FIG. 25B illustrates a configuration in which four layers each having two memory units are stacked, the present invention is not limited to this.
  • the memory device may have one layer having at least one memory cell 150, or may have two or more layers stacked.
  • FIG. 25B shows a configuration in which a conductor 245 functioning as a plug is arranged between memory cells 150.
  • a configuration is shown in which the conductor 245 functioning as a plug is arranged inside the memory unit 160. Note that the present invention is not limited to this. Electrical conductor 245 may be placed outside the memory unit.
  • FIGS. 26A and 26B show an example of a memory device in which 3 ⁇ 3 ⁇ 4 memory cells 150 are arranged in the X direction, Y direction, and Z direction.
  • FIG. 26A is a plan view of the storage device.
  • FIG. 26B is a cross-sectional view of a portion indicated by a dashed line A1-A2 in FIG. 26A. Note that in the plan view of FIG. 26A, some elements are omitted for clarity.
  • the memory device shown in FIGS. 26A and 26B has a structure in which m (m is an integer of 2 or more) layers including the memory cell 150 are laminated.
  • the layer provided as the first layer (bottom) is referred to as layer 170[1]
  • the layer provided as the m-th layer (top) is referred to as layer 170[m]
  • the memory device of one embodiment of the present invention may have a plurality of layers including the memory cell 150, and may have a structure in which the plurality of layers are stacked.
  • the conductor 245 may be provided outside the memory unit. Further, the conductor 245 may be electrically connected to a wiring provided in an upper layer of the layer including the conductor 245. For example, the conductor 245 provided in layer 170[1] is electrically connected to the wiring provided in layer 170[2]. Note that the wiring provided in layer 170[2] is provided in the same layer as the lower electrode (conductor 110) of memory cell 150 included in layer 170[2]. In other words, the wiring can be formed in the same process as the conductor 110.
  • FIG. 26B shows a configuration in which the conductor 245 is electrically connected to the wiring provided in the upper layer of the layer including the conductor 245, the present invention is not limited to this.
  • the conductor 245 may be electrically connected to wiring provided in a layer including the conductor 245.
  • the conductor 245 provided in the layer 170[1] may be electrically connected to the wiring provided in the layer 170[1].
  • the wiring provided in layer 170[1] is provided in the same layer as the lower electrode (conductor 110) of memory cell 150 included in layer 170[1]. In other words, the wiring can be formed in the same process as the conductor 110.
  • FIGS. 27A and 27B show an example in which a functional element 155 that functions as a selector circuit, which is one of the peripheral circuits, is provided.
  • a functional element 155 that functions as a selector circuit, which is one of the peripheral circuits.
  • one functional element 155 is provided in each layer 170.
  • FIG. 27A shows a circuit diagram corresponding to one layer 170.
  • the transistor Tr1 corresponds to the transistor 200 included in the memory cell 150, and the capacitive element C corresponds to the capacitive element 100.
  • the transistor Tr2 corresponds to the functional element 155 and the transistor 200 included in the functional element 155.
  • a wiring WL functioning as a word line is connected to the gate of each transistor Tr1.
  • a wiring WL functioning as a word line is connected to the gate of each transistor Tr1.
  • one of WL[1] to WL[n] (n is a positive integer) is connected to the transistor Tr1.
  • One of the source electrode and drain electrode of the transistor Tr1 is connected to the capacitive element C, and the other is connected to the wiring BL1.
  • the wiring BL1 functions as a first bit line and corresponds to the conductor 240.
  • the gate of the transistor Tr2 is connected to the wiring S functioning as a selection signal line, one of the source electrode and the drain electrode is connected to the wiring BL1, and the other is connected to the wiring BL2.
  • the wiring BL2 functions as a second bit line and is electrically connected to, for example, a sense amplifier (not shown) provided below the memory device in FIG. 27B.
  • the transistor Tr2 is controlled by a signal applied to the wiring S, and functions as a switch for controlling conduction or non-conduction between the first bit line and the second bit line.
  • the second bit line is electrically connected to the first bit line included in all the stacked layers 170 via the transistor Tr2.
  • the first bit line and the second bit line of that layer 170 are electrically connected.
  • the load on the second bit lines can be significantly reduced. Therefore, the time required for access can be significantly reduced.
  • FIG. 28A shows a planar layout of the storage device corresponding to FIG. 26A.
  • FIG. 28A shows a region including 4 ⁇ 4 memory cells 150. Further, a conductor 260 functioning as the wiring WL, a conductor 240 functioning as the wiring BL, and an opening 290 are illustrated.
  • the memory cell 150 is provided in a region where the conductor 260, the conductor 240, and the opening 290 overlap (intersect).
  • FIG. 28A shows a configuration in which memory cells 150 are arranged at intersections of orthogonal grids.
  • the conductor 260 extends in the Y direction, and the conductor 240 extends in the X direction.
  • the distance between two adjacent memory cells 150 is equal in the X direction and the Y direction.
  • a configuration is shown in which the width of the conductor 260 in the X direction is uniform, and the width of the conductor 240 in the Y direction is uniform. Note that the present invention is not limited to this.
  • FIG. 28B is another example of the planar layout of the storage device.
  • the planar layout of FIG. 28B illustrates the conductor 260, the conductor 240, the memory cell 150, and the opening 290, similar to FIG. 28A.
  • the memory device shown in FIG. 28B differs from the memory device shown in FIG. 28A mainly in the arrangement of the memory cells 150 (openings 290), the shape of the conductors 240, and the direction in which the conductors 260 extend.
  • the memory cells 150 may be arranged in a zigzag pattern in the Y direction.
  • a memory cell adjacent to the first memory cell in the X direction is a second memory cell
  • a memory cell adjacent to the first memory cell and the second memory cell in the Y direction is a third memory cell.
  • the center of the third memory cell may be located on a straight line that passes between the first memory cell and the second memory cell and is parallel to the Y direction. At this time, it can be said that the third memory cell is located at a position shifted by half in the X direction from the first memory cell and the second memory cell.
  • the conductor 240 has a first region that is wide in the X direction and a second region that is narrow.
  • the first region is the opening 290 and its vicinity.
  • the first region can be said to have a shape of a quadrilateral with rounded corners.
  • the second region is a region between adjacent openings 290 in one conductor 240.
  • the extending direction of the conductor 260 is arranged at an angle with respect to the Y direction. That is, depending on the arrangement of the memory cells 150 (openings 290), the extending direction of the conductor 260 is not perpendicular to the extending direction of the conductor 240.
  • FIG. 28C is another example of the planar layout of the storage device.
  • the memory device shown in FIG. 28C differs from the memory device shown in FIG. 28B mainly in the shape of the first region of the conductor 240.
  • the first region of the conductor 240 shown in FIG. 28B has a rectangular shape with rounded corners in a plan view, and one side of the rectangle is parallel to the X direction or the Y direction.
  • the first region of the conductor 240 shown in FIG. 28C has a rectangular shape with rounded corners in a plan view, and the diagonal of the rectangle is parallel to the X direction or the Y direction.
  • FIGS. 28B and 28C show an example in which the first region of the conductor 240 has a rectangular shape with rounded corners in plan view, the present invention is not limited to this.
  • FIG. 29A is another example of the planar layout of the storage device.
  • the memory device shown in FIG. 29A differs from the memory devices shown in FIGS. 28B and 28C mainly in the shape of the first region of the conductor 240.
  • the first region of the conductor 240 shown in FIG. 29B has a circular shape in plan view.
  • the memory cells 150 openings 290
  • the physical distance between the conductors 240 can be reduced. Therefore, miniaturization and high integration of the memory device can be achieved.
  • the first region of the conductor 240 in plan view is not limited to the shape described above.
  • the first region of the conductor 240 in plan view may have a substantially circular shape such as an ellipse, a polygonal shape such as a quadrilateral, or a polygonal shape such as a quadrilateral with rounded corners.
  • FIG. 28A shows a configuration in which the width of the conductor 260 in the direction perpendicular to the direction in which the conductor 260 extends is uniform, the present invention is not limited to this.
  • FIG. 29B is another example of the planar layout of the storage device.
  • the memory device shown in FIG. 29B differs from the memory device shown in FIG. 29A mainly in the shape of the conductor 260.
  • the conductor 260 shown in FIG. 29B has a first region and a second region.
  • the first region has a circular shape in plan view. Note that the first region of the conductor 260 overlaps with the first region of the conductor 240.
  • FIG. 29C is another example of the planar layout of the storage device.
  • the memory device shown in FIG. 29C differs from the memory device shown in FIG. 29A mainly in the shape and stretching direction of the conductor 260.
  • the conductor 260 shown in FIG. 29C has a meandering shape like a triangular wave in plan view, and is provided extending in the Y direction. With this configuration, when the memory cells 150 (openings 290) are arranged in a zigzag pattern in the Y direction, the physical distance between the conductors 240 can be reduced. Therefore, miniaturization and high integration of the memory device can be achieved. Note that the conductor 260 in plan view is not limited to the above, and may have a meander shape or the like.
  • one or both of the physical distance between the conductors 260 and the physical distance between the conductors 240 can be reduced, and the storage device can be miniaturized and highly integrated.
  • FIG. 30 shows an example of a cross-sectional configuration of a memory device in which a layer having memory cells is stacked on a layer in which a drive circuit including a sense amplifier is provided.
  • the capacitor 100 is provided above the transistor 300, and the transistor 200 is provided above the transistor 300 and the capacitor 100.
  • the transistor 300 is one of the transistors included in the sense amplifier.
  • the configuration of the memory cell 150 (transistor 200 and capacitor 100) shown in FIG. 30 is as described above.
  • the bit line can be shortened. This reduces the bit line capacitance and reduces the storage capacitance of the memory cell.
  • the transistor 200 is not subjected to thermal history during manufacturing of the capacitor 100. Therefore, in the transistor 200, deterioration of electrical characteristics such as fluctuation in threshold voltage and increase in parasitic resistance, and increase in variation in electrical characteristics due to deterioration of electrical characteristics can be suppressed.
  • the storage device shown in FIG. 30 can be made to correspond to the storage device 80 described below.
  • transistor 300 corresponds to a transistor included in sense amplifier 46 in memory device 80.
  • the memory cell 150 corresponds to the memory cell 32
  • the transistor 200 corresponds to the transistor 37
  • the capacitor 100 corresponds to the capacitor 38.
  • the transistor 300 is provided over a substrate 311 and includes a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that is a part of the substrate 311, and functions as a source region or a drain region. It has a low resistance region 314a and a low resistance region 314b. Transistor 300 may be either a p-channel type or an n-channel type.
  • a semiconductor region 313 (a part of the substrate 311) in which a channel is formed has a convex shape.
  • a conductor 316 is provided to cover the side and top surfaces of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be made of a material that adjusts the work function.
  • Such a transistor 300 is also called a FIN type transistor because it utilizes a convex portion of a semiconductor substrate.
  • an insulator may be provided in contact with the upper portion of the convex portion to function as a mask for forming the convex portion.
  • a semiconductor film having a convex shape may be formed by processing an SOI substrate.
  • transistor 300 shown in FIG. 30 is an example, and the structure is not limited, and an appropriate transistor can be used depending on the circuit configuration or driving method.
  • a wiring layer including an interlayer film, wiring, plugs, etc. may be provided between each structure. Further, a plurality of wiring layers can be provided depending on the design. Here, a plurality of structures of a conductor functioning as a plug or a wiring may be given the same reference numeral. Further, in this specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked and provided as interlayer films. Further, a conductor 328 is embedded in the insulator 320 and the insulator 322, and a conductor 330 is embedded in the insulator 324 and the insulator 326. Note that the conductor 328 and the conductor 330 function as a plug or wiring.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape underneath.
  • the upper surface of the insulator 322 may be planarized by a planarization process using a CMP method or the like to improve flatness.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are stacked in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 functions as a plug or wiring.
  • the above-mentioned insulators that can be used in memory devices can be used.
  • the above-mentioned conductors can be used as the conductors that function as plugs or wiring, such as the conductor 328, the conductor 330, and the conductor 356. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferable to use a low resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low resistance conductive material.
  • the conductor 240 of the transistor 200 connects to the source of the transistor 300 via a conductor 643, a conductor 642, a conductor 644, a conductor 645, a conductor 646, a conductor 356, a conductor 330, and a conductor 328. It is electrically connected to a low resistance region 314b that functions as a region or a drain region.
  • the conductor 643 is embedded in the insulator 280.
  • the conductor 642 is provided on the insulator 130 and embedded in the insulator 641.
  • the conductor 642 can be manufactured using the same material and the same process as the conductor 120.
  • the conductor 644 is embedded in the insulator 180 and the insulator 130.
  • the conductor 645 is embedded in the insulator 647.
  • the conductor 645 can be manufactured using the same material and the same process as the conductor 110.
  • a conductor 646 is embedded in an insulator 648.
  • the transistor 300 and the conductor 110 are electrically insulated by the insulator 648.
  • FIG. 31 shows an example in which a functional element 155 functioning as a peripheral circuit is provided in place of the conductors 642, 643, and 644 in FIG. 30.
  • the transistor 200 included in the functional element 155 controls conduction or non-conduction between the conductor 645 electrically connected to one of the source or drain of the transistor 300 and the conductor 240 functioning as a bit line. Functions as a switch.
  • a novel transistor, a semiconductor device, and a memory device can be provided.
  • a transistor, a semiconductor device, and a memory device that can be miniaturized or highly integrated can be provided.
  • a highly reliable transistor, semiconductor device, and memory device can be provided.
  • a transistor with a large on-state current, a semiconductor device including the transistor, and a memory device can be provided.
  • a semiconductor device and a memory device with less variation in transistor characteristics can be provided.
  • a transistor with good electrical characteristics, and a semiconductor device and a memory device including the transistor can be provided.
  • a semiconductor device and a memory device with low power consumption can be provided.
  • a storage device with good frequency characteristics can be provided.
  • a storage device with high operating speed can be provided.
  • This embodiment can be implemented by appropriately combining at least a part of it with other embodiments described in this specification.
  • Embodiment 2 a storage device that is one embodiment of the present invention will be described with reference to FIGS. 32 to 35.
  • a configuration example of a memory device in which a layer having memory cells is stacked over a layer in which a drive circuit including a sense amplifier is provided will be described.
  • FIG. 32 shows a block diagram illustrating a configuration example of a storage device 80 according to one aspect of the present invention.
  • a storage device 80 shown in FIG. 32 includes a layer 20 and a stacked layer 70.
  • the layer 20 is a layer having a Si transistor.
  • element layers 30[1] to 30[m] (m is an integer of 2 or more) are stacked.
  • the element layers 30[1] to 30[m] are layers including OS transistors.
  • the layer 70 in which layers having OS transistors are stacked can be provided in a stack on the layer 20 .
  • FIG. 32 shows an example in which the element layers 30[1] to 30[m] have a plurality of memory cells 32 arranged in a matrix of m rows and n columns (n is an integer of 2 or more).
  • the memory cell 32 in the first row and first column is shown as a memory cell 32[1,1] and the memory cell 32 in the mth row and nth column is shown as a memory cell 32[m,n].
  • the memory cell 32 in the mth row and nth column is shown as a memory cell 32[m,n].
  • i line when indicating an arbitrary line, it may be written as i line.
  • column j when indicating an arbitrary column, it may be written as column j. Therefore, i is an integer of 1 or more and m or less, and j is an integer of 1 or more and n or less.
  • the memory cell 32 in the i-th row and j-th column is referred to as a memory cell 32[i,j].
  • m wires WL extending in the row direction m wires PL extending in the row direction, m wires PL extending in the row direction, and n wires BL extending in the column direction are illustrated. ing.
  • the wiring WL provided in the first (first row) is referred to as wiring WL[1]
  • the wiring WL provided in m-th (m-th row) is referred to as wiring WL[m].
  • the first wiring PL (first row) is designated as wiring PL[1]
  • the mth wiring PL (mth row) is designated as wiring PL[m].
  • wiring BL provided in the first (first column) is referred to as wiring BL[1]
  • wiring BL provided in the nth (nth column) is referred to as wiring BL[n].
  • the number of element layers 30[1] to 30[m] and the number of wirings WL (and wirings PL) may not be the same.
  • the plurality of memory cells 32 provided in the i-th row are electrically connected to the i-th wiring WL (wiring WL[i]) and the i-th wiring PL (wiring PL[i]).
  • the plurality of memory cells 32 provided in the j-th column are electrically connected to the j-th column wiring BL (wiring BL[j]).
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling on or off (conductive state or non-conductive state) of an access transistor functioning as a switch.
  • the wiring PL has a function as a constant potential line connected to the capacitor. Note that a wiring CL (not shown) can be provided separately as a wiring for transmitting the back gate potential.
  • the memory cells 32 each of the element layers 30[1] to 30[m] have are connected to the sense amplifier 46 via the wiring BL.
  • the wiring BL can be arranged horizontally and vertically on the surface of the substrate on which the layer 20 is provided.
  • the length of the wiring between the element layer 30 and the sense amplifier 46 can be shortened. Since the signal propagation distance between the memory cell and the sense amplifier can be shortened, and the bit line resistance and parasitic capacitance can be significantly reduced, power consumption and signal delay can be reduced. Therefore, the power consumption and signal delay of the storage device 80 can be reduced. Furthermore, it is possible to operate the memory cell 32 even if the capacitance of the capacitor is reduced. Therefore, the storage device 80 can be made smaller.
  • the layer 20 includes a PSW 71 (power switch), a PSW 72, and a peripheral circuit 22.
  • the peripheral circuit 22 includes a drive circuit 40, a control circuit 73, and a voltage generation circuit 74. Note that each circuit included in the layer 20 is a circuit including a Si transistor.
  • each circuit, each signal, and each voltage can be removed or discarded as necessary. Alternatively, other circuits or other signals may be added.
  • Signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signal PON1 and signal PON2 are power gating control signals. Note that the signal PON1 and the signal PON2 may be generated by the control circuit 73.
  • the control circuit 73 is a logic circuit that has a function of controlling the overall operation of the storage device 80. For example, the control circuit performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 80. Alternatively, the control circuit 73 generates a control signal for the drive circuit 40 so that this operation mode is executed.
  • the control circuit 73 performs a logical operation on the signal CE, the signal GW, and the signal BW to determine the operation mode (eg, write operation, read operation) of the storage device 80.
  • the control circuit 73 generates a control signal for the drive circuit 40 so that this operation mode is executed.
  • the voltage generation circuit 74 has a function of generating a negative voltage.
  • Signal WAKE has a function of controlling input of signal CLK to voltage generation circuit 74. For example, when an H level signal is applied to the signal WAKE, the signal CLK is input to the voltage generation circuit 74, and the voltage generation circuit 74 generates a negative voltage.
  • the drive circuit 40 is a circuit for writing and reading data to and from the memory cells 32.
  • the drive circuit 40 includes the above-described sense amplifier 46 in addition to a row decoder 42, a column decoder 44, a row driver 43, a column driver 45, an input circuit 47, and an output circuit 48.
  • the row decoder 42 and column decoder 44 have a function of decoding the signal ADDR.
  • the row decoder 42 is a circuit for specifying a row to be accessed
  • the column decoder 44 is a circuit for specifying a column to be accessed.
  • the row driver 43 has a function of selecting the wiring WL specified by the row decoder 42.
  • the column driver 45 has a function of writing data into the memory cell 32, a function of reading data from the memory cell 32, a function of holding the read data, and the like.
  • the input circuit 47 has a function of holding the signal WDA.
  • the data held by the input circuit 47 is output to the column driver 45.
  • the output data of the input circuit 47 is the data (Din) to be written into the memory cell 32.
  • the data (Dout) read from the memory cell 32 by the column driver 45 is output to the output circuit 48.
  • the output circuit 48 has a function of holding Dout. Further, the output circuit 48 has a function of outputting Dout to the outside of the storage device 80.
  • the data output from the output circuit 48 is the signal RDA.
  • the PSW 71 has a function of controlling the supply of VDD to the peripheral circuit 22.
  • the PSW 72 has a function of controlling the supply of VHM to the row driver 43.
  • the high power supply voltage of the memory device 80 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to bring the word line to a high level, and is higher than VDD.
  • the signal PON1 controls on/off of the PSW 71
  • the signal PON2 controls the on/off of the PSW 72.
  • the number of power domains to which VDD is supplied is one, but it may be plural. In this case, a power switch may be provided for each power domain.
  • the layer 70 can be provided with the selector circuit exemplified in Embodiment 1. This makes it possible to reduce the load on the bit line and realize a memory device with extremely high operating speeds (writing speed and reading speed).
  • the element layer 30 provided as the first layer is shown as an element layer 30[1]
  • the element layer 30 provided as the second layer is shown as an element layer 30[2]
  • the element layer 30 provided as the fifth layer is shown as an element layer 30[2].
  • the element layer 30 is shown as an element layer 30[5].
  • a wiring WL and a wiring PL extending in the X direction, a wiring BL and a wiring BLB extending in the Y direction and the Z direction (direction perpendicular to the surface of the substrate on which the drive circuit is provided), is illustrated.
  • the wiring BLB is an inverted bit line. Note that, in order to make the drawing easier to read, some descriptions of the wiring WL and the wiring PL included in each of the element layers 30 are omitted.
  • FIG. 33B shows the structure of the sense amplifier 46 connected to the wiring BL and the wiring BLB illustrated in FIG. 33A, and the memory cell 32 included in the element layers 30[1] to 30[5] connected to the wiring BL and the wiring BLB.
  • a schematic diagram illustrating an example is shown. Note that a configuration in which a plurality of memory cells (memory cells 32) are electrically connected to one wiring BL and one wiring BLB is also referred to as a "memory string.”
  • FIG. 33B illustrates an example of the circuit configuration of the memory cell 32 connected to the wiring BLB.
  • the memory cell 32 includes a transistor 37 and a capacitor 38.
  • the transistor 37, the capacitor 38, and each wiring (BL, WL, etc.) for example, the wiring BL[1] and the wiring WL[1] may be referred to as the wiring BL and the wiring WL.
  • the memory cell 150 illustrated in the previous embodiment can be applied to the memory cell 32. That is, the transistor 200 can be used as the transistor 37, and the capacitor 100 can be used as the capacitor 38. Further, as the transistor included in the sense amplifier 46, a transistor 300 (see FIG. 30) can be used.
  • one of the source and drain of the transistor 37 is connected to the wiring BL.
  • the other of the source and drain of the transistor 37 is connected to one electrode of the capacitive element 38.
  • the other electrode of the capacitive element 38 is connected to the wiring PL.
  • the gate of the transistor 37 is connected to the wiring WL.
  • the above-mentioned functional element 155 may be connected between the wiring BL and the memory cell 32.
  • the wiring PL is a wiring that provides a constant potential to maintain the potential of the capacitive element 38.
  • the number of wires can be reduced by connecting the plurality of wires PL as one wire.
  • OS transistors are stacked and wirings that function as bit lines are arranged in a direction perpendicular to the substrate surface on which layer 20 is provided.
  • the transistors 37 and capacitors 38 of the memory cells 32 are arranged in a direction perpendicular to the substrate surface on which layer 20 is provided.
  • FIGS. 34A and 34B show a circuit diagram corresponding to the above-described memory cell 32 and a diagram illustrating a circuit block corresponding to the circuit diagram.
  • the memory cells 32 may be represented as blocks in drawings and the like. Note that the wiring BL illustrated in FIGS. 34A and 34B can be similarly expressed when replaced with the wiring BLB.
  • FIGS. 34C and 34D show a circuit diagram corresponding to the sense amplifier 46 described above and a diagram illustrating a circuit block corresponding to the circuit diagram.
  • the sense amplifier 46 includes a switch circuit 82, a precharge circuit 83, a precharge circuit 84, and an amplifier circuit 85.
  • a wiring SA_OUT and a wiring SA_OUTB that output signals to be read are also illustrated.
  • the switch circuit 82 includes, for example, n-channel transistors 82_1 and 82_2.
  • the transistors 82_1 and 82_2 switch the conduction state between the wiring pair of the wiring SA_OUT and the wiring SA_OUTB and the wiring pair of the wiring BL and the wiring BLB in response to the signal CSEL.
  • the precharge circuit 83 is composed of n-channel transistors 83_1 to 83_3, as shown in FIG. 34C.
  • the precharge circuit 83 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE corresponding to the potential VDD/2 in response to the signal EQ.
  • the precharge circuit 84 is composed of p-channel transistors 84_1 to 84_3, as shown in FIG. 34C.
  • the precharge circuit 84 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE corresponding to the potential VDD/2 in response to the signal EQB.
  • the amplifier circuit 85 includes p-channel transistors 85_1 and 85_2 and n-channel transistors 85_3 and 85_4, which are connected to the wiring SAP or the wiring SAN.
  • the wiring SAP or the wiring SAN is a wiring that has a function of providing VDD or VSS.
  • Transistors 85_1 to 85_4 are transistors forming an inverter loop.
  • FIG. 34D shows a diagram illustrating a circuit block corresponding to the sense amplifier 46 described in FIG. 34C and the like. As shown in FIG. 34D, the sense amplifier 46 may be represented as a block in drawings and the like.
  • FIG. 35 is a circuit diagram of the storage device 80 of FIG. 32.
  • FIG. 35 is illustrated using the circuit blocks described in FIGS. 34A to 34D.
  • the layer 70 including the element layer 30[m] has the memory cell 32.
  • the memory cell 32 illustrated in FIG. 35 is connected to a pair of wiring BL[1] and wiring BLB[1], or wiring BL[2] and wiring BLB[2], as an example.
  • the memory cell 32 connected to the wiring BL is a memory cell into which data is written or read.
  • the wiring BL[1] and the wiring BLB[1] are connected to the sense amplifier 46[1], and the wiring BL[2] and the wiring BLB[2] are connected to the sense amplifier 46[2].
  • the sense amplifier 46[1] and the sense amplifier 46[2] can read data according to the various signals described with reference to FIG. 34C.
  • This embodiment can be implemented by appropriately combining at least a part of it with other embodiments described in this specification.
  • a semiconductor device of one embodiment of the present invention can be used for, for example, electronic components, electronic equipment, large computers, space equipment, and data centers (also referred to as DCs).
  • Electronic components, electronic equipment, large computers, space equipment, and data centers using the semiconductor device of one embodiment of the present invention are effective in achieving higher performance such as lower power consumption.
  • FIG. 36A A perspective view of a board (mounted board 704) on which electronic component 700 is mounted is shown in FIG. 36A.
  • An electronic component 700 shown in FIG. 36A includes a semiconductor device 710 within a mold 711. In FIG. 36A, some descriptions are omitted to show the inside of the electronic component 700.
  • the electronic component 700 has a land 712 on the outside of the mold 711. Land 712 is electrically connected to electrode pad 713, and electrode pad 713 is electrically connected to semiconductor device 710 via wire 714.
  • the electronic component 700 is mounted on a printed circuit board 702, for example.
  • a mounting board 704 is completed by combining a plurality of such electronic components and electrically connecting them on the printed circuit board 702.
  • the semiconductor device 710 includes a drive circuit layer 715 and a memory layer 716.
  • the storage layer 716 has a structure in which a plurality of memory cell arrays are stacked.
  • the structure in which the drive circuit layer 715 and the memory layer 716 are stacked can be a monolithic stacked structure.
  • each layer can be connected without using a through electrode technology such as TSV (Through Silicon Via) or a bonding technology such as Cu-Cu direct bonding.
  • connection wiring etc. can be made smaller compared to technology using through-hole electrodes such as TSV, so it is also possible to increase the number of connection pins.
  • through-hole electrodes such as TSV
  • parallel operation becomes possible, thereby making it possible to improve the memory bandwidth (also referred to as memory bandwidth).
  • the plurality of memory cell arrays included in the storage layer 716 be formed using OS transistors, and the plurality of memory cell arrays be monolithically stacked.
  • OS transistors the plurality of memory cell arrays be monolithically stacked.
  • bandwidth is the amount of data transferred per unit time
  • access latency is the time from access to the start of data exchange.
  • the semiconductor device 710 may be referred to as a die.
  • a die refers to a chip piece obtained by forming a circuit pattern on, for example, a disk-shaped substrate (also referred to as a wafer) and cutting it into dice in the semiconductor chip manufacturing process.
  • semiconductor materials that can be used for the die include silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also referred to as a silicon wafer
  • a silicon die is sometimes referred to as a silicon die.
  • the electronic component 730 is an example of SiP (System in Package) or MCM (Multi Chip Module).
  • an interposer 731 is provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of semiconductor devices 710 are provided on the interposer 731.
  • the semiconductor device 710 is used as a high bandwidth memory (HBM).
  • the semiconductor device 735 is an integrated circuit such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an FPGA (Field Programmable Gate Array). Can be used.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • a ceramic substrate, a plastic substrate, or a glass epoxy substrate can be used, for example.
  • the interposer 731 for example, a silicon interposer or a resin interposer can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits with different terminal pitches.
  • the plurality of wirings are provided in a single layer or in multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrodes provided on the package substrate 732.
  • interposers are sometimes called "rewiring boards" or “intermediate boards.”
  • a through electrode is provided in the interposer 731, and the integrated circuit and the package substrate 732 are electrically connected using the through electrode.
  • TSV can also be used as the through electrode.
  • HBM In HBM, it is necessary to connect many wires to achieve a wide memory bandwidth. For this reason, an interposer mounting an HBM is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer for mounting the HBM.
  • a silicon interposer in SiP, MCM, etc. using a silicon interposer, reliability is less likely to deteriorate due to the difference in expansion coefficient between the integrated circuit and the interposer. Furthermore, since the silicon interposer has a highly flat surface, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is less likely to occur. In particular, it is preferable to use a silicon interposer in a 2.5D package (2.5-dimensional packaging) in which a plurality of integrated circuits are arranged side by side on an interposer.
  • 2.5D package 2.5-dimensional packaging
  • a monolithic stacked structure using OS transistors is preferable. It may also be a composite structure in which a memory cell array stacked using TSVs and a memory cell array stacked monolithically are combined.
  • a heat sink may be provided overlapping the electronic component 730.
  • a heat sink it is preferable that the heights of the integrated circuits provided on the interposer 731 are the same.
  • the heights of the semiconductor device 710 and the semiconductor device 735 are the same.
  • an electrode 733 may be provided on the bottom of the package board 732.
  • FIG. 36B shows an example in which the electrode 733 is formed with a solder ball. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be realized.
  • the electrode 733 may be formed of a conductive pin. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be realized.
  • the electronic component 730 can be mounted on other boards using various mounting methods, not limited to BGA and PGA. Examples of implementation methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), and QFJ (Quad Flat J-lead). package), and QFN (Quad Flat Non-leaded package) can be mentioned.
  • FIG. 37A a perspective view of electronic device 6500 is shown in FIG. 37A.
  • Electronic device 6500 shown in FIG. 37A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, a control device 6509, and the like.
  • the control device 6509 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6502, the control device 6509, and the like.
  • An electronic device 6600 shown in FIG. 37B is an information terminal that can be used as a notebook personal computer.
  • the electronic device 6600 includes a housing 6611, a keyboard 6612, a pointing device 6613, an external connection port 6614, a display portion 6615, a control device 6616, and the like.
  • the control device 6616 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6615, the control device 6616, and the like. Note that it is preferable to use the semiconductor device of one embodiment of the present invention for the above-described control device 6509 and control device 6616 because power consumption can be reduced.
  • FIG. 37C a perspective view of large computer 5600 is shown in FIG. 37C.
  • a plurality of rack-mount computers 5620 are stored in a rack 5610.
  • the large computer 5600 may be called a supercomputer.
  • the computer 5620 can have the configuration shown in the perspective view shown in FIG. 37D.
  • a computer 5620 has a motherboard 5630, and the motherboard 5630 has a plurality of slots 5631 and a plurality of connection terminals.
  • a PC card 5621 is inserted into the slot 5631.
  • the PC card 5621 has a connection terminal 5623, a connection terminal 5624, and a connection terminal 5625, each of which is connected to the motherboard 5630.
  • a PC card 5621 shown in FIG. 37E is an example of a processing board that includes a CPU, GPU, storage device, and the like.
  • PC card 5621 has a board 5622.
  • the board 5622 includes a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629.
  • FIG. 37E illustrates semiconductor devices other than the semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628, these semiconductor devices are described below as the semiconductor device 5626, the semiconductor device 5627, and the semiconductor device 5627.
  • the description of the semiconductor device 5628 can be referred to.
  • connection terminal 5629 has a shape that can be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • Examples of the standard of the connection terminal 5629 include PCIe.
  • connection terminal 5623, the connection terminal 5624, and the connection terminal 5625 can be used as an interface for supplying power, inputting signals, etc. to the PC card 5621, for example. Further, for example, it can be used as an interface for outputting a signal calculated by the PC card 5621.
  • the respective standards of the connection terminal 5623, connection terminal 5624, and connection terminal 5625 include, for example, USB (Universal Serial Bus), SATA (Serial ATA), SCSI (Small Computer System Interface), etc. Can be mentioned.
  • the respective standards include HDMI (registered trademark).
  • the semiconductor device 5626 has a terminal (not shown) for inputting and outputting signals, and by inserting the terminal into a socket (not shown) provided on the board 5622, the semiconductor device 5626 and the board 5622 are electrically connected. can be connected to.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5627 include an FPGA, a GPU, and a CPU.
  • an electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 are electrically connected by, for example, reflow soldering the terminals to wiring provided on the board 5622. be able to.
  • Examples of the semiconductor device 5628 include a storage device.
  • the electronic component 700 can be used as the semiconductor device 5628.
  • the large computer 5600 can also function as a parallel computer. By using the large-scale computer 5600 as a parallel computer, it is possible to perform large-scale calculations necessary for, for example, artificial intelligence learning and inference.
  • a semiconductor device of one embodiment of the present invention can be suitably used for space equipment.
  • a semiconductor device of one embodiment of the present invention includes an OS transistor.
  • OS transistors have small variations in electrical characteristics due to radiation irradiation. In other words, since it has high resistance to radiation, it can be suitably used in environments where radiation may be incident.
  • OS transistors can be suitably used when used in outer space.
  • the OS transistor can be used as a transistor configuring a semiconductor device provided in a space shuttle, an artificial satellite, or a space probe.
  • the radiation include X-rays and neutron beams.
  • outer space refers to, for example, an altitude of 100 km or more, but outer space described in this specification may include one or more of the thermosphere, mesosphere, and stratosphere.
  • FIG. 38A shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 includes a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807. Note that in FIG. 38A, a planet 6804 is illustrated in outer space.
  • the secondary battery 6805 may be provided with a battery management system (also referred to as BMS) or a battery control circuit. It is preferable to use an OS transistor in the battery management system or the battery control circuit described above because it has low power consumption and high reliability even in outer space.
  • BMS battery management system
  • OS transistor an OS transistor in the battery management system or the battery control circuit described above because it has low power consumption and high reliability even in outer space.
  • outer space is an environment with more than 100 times higher radiation levels than on the ground.
  • radiation include electromagnetic waves (electromagnetic radiation) represented by X-rays and gamma rays, and particle radiation represented by alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, meson rays, etc. It will be done.
  • the electric power necessary for the operation of the artificial satellite 6800 is generated.
  • the power necessary for satellite 6800 to operate may not be generated.
  • the solar panel is sometimes called a solar cell module.
  • the satellite 6800 can generate signals.
  • the signal is transmitted via antenna 6803 and can be received by a ground-based receiver or other satellite, for example.
  • a ground-based receiver or other satellite for example.
  • the position of the receiver that received the signal can be measured.
  • the artificial satellite 6800 can constitute a satellite positioning system.
  • control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using one or more selected from, for example, a CPU, a GPU, and a storage device.
  • a semiconductor device including an OS transistor which is one embodiment of the present invention, is preferably used for the control device 6807.
  • OS transistors Compared to Si transistors, OS transistors have smaller fluctuations in electrical characteristics due to radiation irradiation. In other words, it is highly reliable and can be suitably used even in environments where radiation may be incident.
  • the artificial satellite 6800 can be configured to include a sensor.
  • the artificial satellite 6800 can have a function of detecting sunlight reflected by hitting an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface.
  • the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is illustrated as an example of space equipment, but the present invention is not limited to this.
  • the semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as a spacecraft, a space capsule, and a space probe.
  • OS transistors have superior effects compared to Si transistors, such as being able to realize a wide memory bandwidth and having high radiation resistance.
  • a semiconductor device can be suitably used in, for example, a storage system applied to a data center or the like.
  • Data centers are required to perform long-term data management, including ensuring data immutability.
  • it is necessary to install storage and servers to store huge amounts of data, secure a stable power supply to retain data, or secure cooling equipment required to retain data, etc. due to the large size of the building. ization is required.
  • the semiconductor device of one embodiment of the present invention in a storage system applied to a data center, the power required to hold data can be reduced and the semiconductor device that holds data can be made smaller. Therefore, it is possible to downsize the storage system, downsize the power supply for holding data, and downsize the cooling equipment. Therefore, it is possible to save space in the data center.
  • the semiconductor device of one embodiment of the present invention consumes less power, heat generated from the circuit can be reduced. Therefore, the adverse effect of the heat generation on the circuit itself, peripheral circuits, and module can be reduced. Furthermore, by using the semiconductor device of one embodiment of the present invention, a data center that operates stably even in a high-temperature environment can be realized. Therefore, the reliability of the data center can be improved.
  • FIG. 38B shows a storage system applicable to data centers.
  • the storage system 7000 shown in FIG. 38B includes a plurality of servers 7001sb as hosts 7001 (shown as Host Computer). It also includes a plurality of storage devices 7003md as storage 7003 (shown as Storage).
  • a host 7001 and a storage 7003 are shown connected via a storage area network 7004 (SAN: Storage Area Network) and a storage control circuit 7002 (Storage Controller).
  • SAN Storage Area Network
  • Storage Controller Storage Controller
  • the host 7001 corresponds to a computer that accesses data stored in the storage 7003.
  • the hosts 7001 may be connected to each other via a network.
  • the storage 7003 uses flash memory to shorten the data access speed, that is, the time required to store and output data, this time is the time required by DRAM, which can be used as a cache memory in the storage. It is much longer than .
  • a cache memory is usually provided in the storage to shorten the time required to store and output data.
  • the cache memory described above is used in the storage control circuit 7002 and the storage 7003. Data exchanged between the host 7001 and the storage 7003 is stored in the storage control circuit 7002 and the cache memory in the storage 7003, and then output to the host 7001 or the storage 7003.
  • an OS transistor as a transistor for storing data in the cache memory described above and maintaining a potential according to the data, the frequency of refreshing can be reduced and power consumption can be reduced. Further, size reduction is possible by using a structure in which memory cell arrays are stacked.
  • the semiconductor device of one embodiment of the present invention by applying the semiconductor device of one embodiment of the present invention to one or more selected from electronic components, electronic devices, large computers, space equipment, and data centers, power consumption can be reduced. There is expected. Therefore, as energy demand is expected to increase due to higher performance or higher integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention will reduce the greenhouse effect typified by carbon dioxide (CO 2 ). It also becomes possible to reduce the amount of gas discharged. Further, since the semiconductor device of one embodiment of the present invention has low power consumption, it is effective as a countermeasure against global warming.
  • CO 2 carbon dioxide
  • This embodiment can be implemented by appropriately combining at least a part of it with other embodiments described in this specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。 半導体装置は第1のトランジスタ、接続部、第1の絶縁体、第2の絶縁体、第1の配線を有する。 接続部は第1の電極及び第2の電極を有する。第1のトランジスタは第2、第3の電極、第1の半導体、ゲート絶縁体、第1のゲート電極を有する。第1の絶縁体は第1の配線に達する第1の開口を有する。第1の電極は第1の開口内の側面、及び第1の配線の上面に接する。第2の電極は第1の開口において第1の電極と接する。第2の絶縁体は、第2の電極に達する第2の開口を有する。第3の電極は第2の絶縁体上に設けられる。第1の半導体は第3の電極、第2の絶縁体の第2の開口内の側面、及び第2の電極の上面に接する。ゲート絶縁体は第2の開口内において第1の半導体と接する。第1のゲート電極はゲート絶縁体を介して第1の半導体と対向する。

Description

半導体装置
 本発明の一態様は、トランジスタ、半導体装置、記憶装置、および電子機器に関する。または、本発明の一態様は、記憶装置、または半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、およびモジュールに関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、半導体装置の開発が進められ、LSI(Large Scale Integration)、CPU(Central Processing Unit)、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSI、CPU、メモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)、画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、特許文献1には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。例えば、特許文献3及び非特許文献1では、酸化物半導体膜を用いるトランジスタを備えるメモリセルを複数重畳して設けることにより、集積回路の高密度化を図る技術が開示されている。
 さらに、トランジスタを縦型とすることができれば、集積回路の高密度化を図ることができる。例えば、特許文献4には、酸化物半導体の側面が、ゲート絶縁体を介してゲート電極に覆われている縦型のトランジスタが開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2021/053473号 特開2013−211537号公報
M.Oota et al.,"3D−Stacked CAAC−In−Ga−Zn Oxide FETs with Gate Length of 72nm",IEDM Tech.Dig.,2019,pp.50−53
 本発明の一態様は、微細化または高集積化が可能な記憶装置を提供することを課題の一とする。または、記憶装置において記憶素子と周辺回路とを低コストで作り分けることを課題の一とする。または、配線の負荷を軽減できる記憶装置を提供することを課題の一とする。または、動作速度が速い記憶装置を提供することを課題の一とする。または、良好な電気特性を有する記憶装置を提供することを課題の一とする。または、トランジスタの電気特性のばらつきが少ない記憶装置を提供することを課題の一とする。または、信頼性が良好な記憶装置を提供することを課題の一とする。または、オン電流が大きい記憶装置を提供することを課題の一とする。または、低消費電力の記憶装置を提供することを課題の一とする。または、新規の記憶装置を提供することを課題の一とする。または、新規の記憶装置の作製方法を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を、少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、第1のトランジスタ、接続部、第1の絶縁体、第2の絶縁体、及び第1の配線を有する半導体装置である。接続部は、第1の電極、及び第2の電極を有する。第1のトランジスタは、第2の電極、第3の電極、第1の半導体、ゲート絶縁体、及び第1のゲート電極を有する。第1の絶縁体は、第1の配線上に設けられ、且つ、第1の配線に達する第1の開口を有する。第1の電極は、第1の絶縁体の第1の開口内の側面に接する第1の部分、及び第1の配線の上面に接する第2の部分を有する。第2の電極は、第1の開口に埋め込まれ、且つ第1の電極の第2の部分と接する。第2の絶縁体は、第1の絶縁体上に設けられ、且つ、第2の電極に達する第2の開口を有する。第3の電極は、第2の絶縁体上に設けられる。第1の半導体は、第3の電極と接する第3の部分、第2の絶縁体の第2の開口内の側面に接する第4の部分、及び第2の電極の上面に接する第5の部分を有する。ゲート絶縁体は、第2の開口内に位置し、且つ、第1の半導体の第4の部分、及び第5の部分と接する。第1のゲート電極は、第2の開口内に位置し、且つ、ゲート絶縁体を介して、第1の半導体の第3の部分、第4の部分、及び第5の部分と対向する。
 また、上記において、容量素子、及び第2の配線をさらに有することが好ましい。容量素子は、第4の電極、第5の電極、及び第3の絶縁体を有する。第1の絶縁体は、第2の配線に達する第3の開口を有する。第4の電極は、第1の絶縁体の第3の開口内の側壁に接する第6の部分、及び第2の配線の上面に接する第7の部分を有する。第3の絶縁体は、第3の開口内に位置し、且つ、第4の電極の第6の部分及び第7の部分と接する。第5の電極は、第3の開口に埋め込まれ、且つ、第3の絶縁体を介して第4の電極の第6の部分及び第7の部分と対向する。
 また、上記において、容量素子上に第2のトランジスタをさらに有することが好ましい。第2のトランジスタは、第5の電極、第6の電極、第2の半導体、ゲート絶縁体、及び第2のゲート電極を有する。第2の絶縁体は、第5の電極に達する第4の開口を有する。第6の電極は第2の絶縁体上に設けられる。第2の半導体は、第6の電極と接する第8の部分、第2の絶縁体の第4の開口内の側壁に接する第9の部分、及び第5の電極の上面に接する第10の部分を有する。ゲート絶縁体は、第4の開口内に位置し、且つ、第2の半導体の第8の部分、第9の部分、及び第10の部分と接する。第2のゲート電極は、第4の開口内に位置し、且つ、ゲート絶縁体を介して第2の半導体の第9の部分、及び第10の部分と対向する。
 また、上記いずれかにおいて、第2の電極は、第1の電極の第1の部分に接することが好ましい。
 または、上記いずれかにおいて、第4の絶縁体をさらに有することが好ましい。このとき、第4の絶縁体は、第1の開口内に位置し、且つ、第1の電極の第1の部分と接することが好ましい。さらに、第2の電極は、第4の絶縁体と接することが好ましい。
 また、上記いずれかにおいて、第2の電極は、第1の導電体と、第1の導電体上の第2の導電体と、を有することが好ましい。このとき、第1の導電体は、第1の開口に埋め込まれ、且つ第1の電極の第2の部分と接する。また第2の導電体は、第1の半導体と接する。
 本発明の一態様により、微細化または高集積化が可能な記憶装置を提供できる。または、記憶装置において記憶素子と周辺回路とを低コストで作り分けることができる。または、配線の負荷を軽減できる記憶装置を提供できる。または、動作速度が速い記憶装置を提供できる。または、信頼性が良好な記憶装置を提供できる。または、トランジスタの電気特性のばらつきが少ない記憶装置を提供できる。または、良好な電気特性を有する記憶装置を提供できる。または、オン電流が大きい記憶装置を提供できる。または、低消費電力の記憶装置を提供できる。または、新規の記憶装置を提供できる。または、新規の記憶装置の作製方法を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を、少なくとも軽減できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1A乃至図1Dは、記憶装置の構成例である。
図2A乃至図2Dは、記憶装置の構成例である。
図3A及び図3Bは、記憶装置の構成例である。
図4A乃至図4Dは、記憶装置の構成例である。
図5A乃至図5Dは、記憶装置の構成例である。
図6A及び図6Bは、記憶装置の構成例である。
図7A乃至図7Dは、記憶装置の構成例である。
図8A乃至図8Cは、記憶装置の構成例である。
図9A及び図9Bは、記憶装置の構成例である。
図10A乃至図10Dは、記憶装置の構成例である。
図11A及び図11Bは、記憶装置の構成例である。
図12A乃至図12Cは、記憶装置の作製方法を説明する図である。
図13A乃至図13Cは、記憶装置の作製方法を説明する図である。
図14A乃至図14Cは、記憶装置の作製方法を説明する図である。
図15A乃至図15Cは、記憶装置の作製方法を説明する図である。
図16A乃至図16Cは、記憶装置の作製方法を説明する図である。
図17A乃至図17Cは、記憶装置の作製方法を説明する図である。
図18A乃至図18Cは、記憶装置の作製方法を説明する図である。
図19A乃至図19Cは、記憶装置の作製方法を説明する図である。
図20A乃至図20Cは、記憶装置の作製方法を説明する図である。
図21A乃至図21Cは、記憶装置の作製方法を説明する図である。
図22A乃至図22Cは、記憶装置の作製方法を説明する図である。
図23A乃至図23Cは、記憶装置の作製方法を説明する図である。
図24A及び図24Bは、記憶装置の構成例である。
図25A及び図25Bは、記憶装置の構成例である。
図26A及び図26Bは、記憶装置の構成例である。
図27A及び図27Bは、記憶装置の構成例である。
図28A乃至図28Cは、記憶装置の構成例である。
図29A乃至図29Cは、記憶装置の構成例である。
図30は、記憶装置の構成例である。
図31は、記憶装置の構成例である。
図32は、記憶装置の一例を示すブロック図である。
図33A及び図33Bは、記憶装置の一例を示す模式図である。
図34A乃至図34Dは、記憶装置の一例を示す回路図である。
図35は、記憶装置の一例を示す回路図である。
図36A及び図36Bは、電子部品の一例を示す図である。
図37A及び図37Bは、電子機器の一例を示す図である。図37C乃至図37Eは、大型計算機の一例を示す図である。
図38Aは、宇宙用機器の一例を示す図である。図38Bは、データセンターに適用可能なストレージシステムの一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層、またはレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 また、特に平面図(「上面図」ともいう)、または斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線の記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成要素同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成要素同士の位置関係は、各構成要素を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、とは、XとYとが電気的に接続されているものをいう。ここで、XとYとが電気的に接続されているとは、XとYとの間で対象物(スイッチ、トランジスタ素子、またはダイオード等の素子、あるいは当該素子および配線を含む回路等を指す)が存在する場合にXとYとの電気信号の伝達が可能である接続をいう。なおXとYとが電気的に接続されている場合には、XとYとが直接接続されている場合を含む。ここで、XとYとが直接接続されているとは、上記対象物を介することなく、XとYとの間で配線(または電極)等を介してXとYとの電気信号の伝達が可能である接続をいう。換言すれば、直接接続とは、等価回路で表した際に同じ回路図として見なせる接続をいう。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネルが形成される領域(以下、チャネル形成領域ともいう)を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソース、またはドレインの機能は、異なる極性のトランジスタを採用する場合、または回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソース、またはドレインの用語は、入れ替えて用いることができる場合がある。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなること、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。なお、水も不純物として機能する場合がある。また、例えば不純物の混入によって、酸化物半導体に酸素欠損(V:oxygen vacancyともいう)が形成される場合がある。
 なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多いものである。酸化窒化物としては、酸化窒化シリコン、酸化窒化アルミニウム、及び、酸化窒化ハフニウムなどが挙げられる。また、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多いものである。窒化酸化物としては、窒化酸化シリコン、窒化酸化アルミニウム、及び、窒化酸化ハフニウムなどが挙げられる。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。なお、グラウンド電位は必ずしも0Vを意味するとは限らない。また、電位は相対的なものであり、基準となる電位が変わることによって、配線に与えられる電位、回路などに印加される電位、回路などから出力される電位なども変化する。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、または“[m,n]”等の識別用の符号を付記して記載する場合がある。
 なお、本明細書等において、「高さが一致」とは、断面視において、基準となる面(例えば、基板表面などの平坦な面)からの高さが等しい構成を示す。例えば、記憶装置の製造プロセスにおいて、平坦化処理(代表的にはCMP(Chemical Mechanical Polishing)処理)を行うことで、単層または複数の層の表面を露出する場合がある。この場合、CMP処理の被処理面は、基準となる面からの高さが等しい構成となる。ただし、CMP処理の際の処理装置、処理方法、または被処理面の材料によって、複数の層の高さが異なる場合がある。本明細書等においては、この場合も「高さが一致」として扱う。例えば、基準面に対して、2つの高さを有する層(ここでは第1の層と、第2の層とする)を有する場合であって、第1の層の上面の高さと、第2の層の上面の高さとの差が、20nm以下である場合も、「高さが一致」という。
 なお、本明細書等において、「端部が一致」とは、平面視において、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重ならず、上層の輪郭が下層の輪郭より内側に位置すること、または、上層の輪郭が下層の輪郭より外側に位置することもあり、この場合も「端部が一致」という。
 なお、一般に、「完全一致」と「概略一致」の差を明確に区分けするのは困難である。このため、本明細書等において「一致」とは、完全に一致している場合と、概略一致している場合のいずれも含むものとする。
 なお、本明細書等において、ノーマリーオン特性とは、ゲートに電位を印加しなくてもチャネルが存在し、トランジスタに電流が流れてしまう状態のことをいう。また、ノーマリーオフ特性とは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに電流が流れない状態のことをいう。
 また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の記憶装置の構成例、及びその作製方法について説明する。本発明の一態様は、同一平面上にメモリセルと、機能素子とを有する。
 メモリセルは、容量素子と、容量素子上のトランジスタを有する。容量素子は、一対の導電体と、これらに挟持された誘電体を備える、いわゆるMIM(Metal−Insulator−Metal)構造を有する。一方、機能素子は、接続部と、当該接続部上のトランジスタを有する。ここで、接続部は、上記容量素子における誘電体の一部が除去された構成を有する。接続部は、当該誘電体が設けられない部分において一対の導電体が導通する。すなわち、メモリセルと機能素子とは、誘電体の構成が異なる以外は同様の構成を有する。このような構成により、誘電体を加工する工程のみを追加することで、同一面上にメモリセルと、トランジスタを含む機能素子とを作り分けることができる。
 機能素子では、機能素子が有するトランジスタのソース電極及びドレイン電極の一方と、接続部よりも下側に位置する配線とを電気的に接続することができる。トランジスタは、ソース電極及びドレイン電極の他方と、当該配線との導通及び非導通を制御するためのスイッチなどとして利用することができる。当該機能素子を組み合わせることで様々な周辺回路を構成することが可能となる。
 図1Aに、メモリセル150を含む領域の断面斜視図を示す。図1Aの左側にはメモリセル150をX−Z平面で切断した切断面を含む斜視図を、右側にはメモリセル150をY−Z平面で切断した切断面を含む斜視図を並べて示している。また図1Aでは、一部の構成要素(絶縁体180、絶縁体280等)は輪郭のみを実線で示している。
 なお、本明細書に係る図面等において、X方向、Y方向、及びZ方向を示す矢印を付す場合がある。なお、本明細書等において、「X方向」とはX軸に沿う方向であり、明示する場合を除き順方向と逆方向を区別しない場合がある。「Y方向」及び「Z方向」についても同様である。また、X方向、Y方向、及びZ方向は、それぞれが互いに交差する方向である。より具体的には、X方向、Y方向、及びZ方向は、それぞれが互いに直交する方向である。本明細書等では、X方向、Y方向、又はZ方向の1つを「第1方向」又は「第1の方向」と呼ぶ場合がある。また、他の1つを「第2方向」又は「第2の方向」と呼ぶ場合がある。また、残りの1つを「第3方向」又は「第3の方向」と呼ぶ場合がある。
 メモリセル150は、導電体110上の容量素子100と、容量素子100上のトランジスタ200と、を有する。
 容量素子は導電体115と、導電体120と、これらの間に絶縁体130と、を有する。導電体115、絶縁体130、及び導電体120は、絶縁体180に設けられた開口の内側に埋め込まれている。
 トランジスタ200は、ソース電極及びドレイン電極の一方として機能する導電体120と、酸化物半導体230と、ゲート絶縁体として機能する絶縁体250と、ゲート電極として機能する導電体260と、ソース電極及びドレイン電極の他方として機能する導電体240と、を有する。導電体240は絶縁体280上に設けられる。絶縁体280は導電体120に達する開口が設けられる。酸化物半導体230は当該開口の内壁に沿って設けられ、導電体240及び導電体120に接する。
 上記のような構成のトランジスタ200は、ソース電極とドレイン電極とが、異なる高さに位置しているため、半導体を流れる電流は高さ方向に流れることとなる。すなわち、チャネル長方向が高さ方向(縦方向)の成分を有するということができるため、本発明の一態様のトランジスタは、VFET(Vertical Field Effect Transistor)、縦型トランジスタ、縦型チャネルトランジスタ、などとも呼ぶことができる。
 トランジスタ200は、ソース電極、半導体、及びドレイン電極を、それぞれ重ねて設けることが可能となるため、半導体を平面上に配置した、いわゆるプレーナ型のトランジスタ(横型トランジスタ、LFET(Lateral FET)などとも呼ぶことができる)と比較して、大幅に占有面積を縮小することができる。
 また、トランジスタ200のチャネル長は、スペーサとして機能する絶縁体280の厚さによって精密に制御することが可能となるため、プレーナ型のトランジスタと比較して、チャネル長のばらつきを極めて小さくできる。さらには、絶縁体280を薄くすることで、極めてチャネル長の短いトランジスタも作製することができる。例えばチャネル長が50nm以下、30nm以下、または20nm以下であって、5nm以上、7nm以上、または10nm以上のトランジスタを作製することができる。そのため、最先端のLSI技術で用いられる極めて高額な露光装置を用いることなく、従来の量産用の露光装置であっても、チャネル長が10nm未満のトランジスタを実現することもできる。
 図1Bには、メモリセル150に対応する回路図を示している。トランジスタ200がトランジスタTrに、容量素子100が容量素子Cに、それぞれ対応する。また導電体110が配線PLに、導電体240が配線BLに、導電体260が配線WLにそれぞれ対応する。メモリセル150は、1つのトランジスタTrと一つの容量素子Cにより構成され、1Tr1Cとも表記することができる。
 続いて、図1Cに機能素子155を含む領域の斜視概略図を示す。機能素子155は、接続部101と、接続部101上のトランジスタ200と、を有する。機能素子155が有するトランジスタは、メモリセル150が有するトランジスタと同様の構成を有するため、同じ符号を付し、重複する説明は省略する。
 接続部101は、上記容量素子100における絶縁体130の一部が開口され、その開口を介して導電体115と導電体120とが接する構成を有する。図1Cでは、絶縁体130の、絶縁体180の開口の底に位置する部分が除去され、開口の側面に沿う部分は残存している例を示している。このような構成は、例えば絶縁体130に対して異方性のエッチングを行うことで作製することができる。
 導電体120と導電体115とが導通するため、導電体120と導電体110とが導電体115を介して導通する。すなわち、トランジスタ200のソース電極及びドレイン電極の一方と、導電体110とが導通することとなる。
 図1Dには、機能素子155に対応する回路図を示している。導電体110が配線CLに、導電体240が配線BLに、導電体260が配線WLにそれぞれ対応する。このように、機能素子155は、配線BLと配線CLとの導通及び非導通を制御するためのスイッチとして機能することができる。機能素子155は、単体のトランジスタとみなすこともできる。
 本発明の一態様は、メモリセル150と、機能素子155とを、同一平面上に作り分けることができる。例えば、複数のメモリセル150を備えるメモリセルアレイと、周辺回路とを同一の工程を経て同一平面上に作製することができる。
 以下では、より具体的な例について説明する。
<記憶装置の構成例>
 以下では、メモリセル150及び機能素子155を有する記憶装置の例について説明する。図2Aはメモリセル150の平面図であり、図2Bは図2A中の切断線A1−A2で切断したときの断面概略図である。また図2Cは機能素子155の平面図であり、図2Dは図2C中の切断線A3−A4で切断したときの断面概略図である。なお、図2A、図2Cの平面図では、図の明瞭化のために一部の要素を省いている。
 記憶装置は、基板(図示せず)上の絶縁体140と、絶縁体140上の導電体110と、導電体110上のメモリセル150及び機能素子155と、導電体110上の絶縁体180と、絶縁体280と、メモリセル150及び機能素子155上の絶縁体283と、を有する。絶縁体140、絶縁体180、絶縁体280、及び絶縁体283は、層間膜として機能する。導電体110は、配線として機能する。なお、メモリセル150と電気的に接続する導電体110と、機能素子155と電気的に接続する導電体110とは、それぞれ独立した配線として機能してもよいし、これらが導通していてもよい。同様に、メモリセル150が有する導電体240及び導電体260と、機能素子155が有する導電層240及び導電層260とは、それぞれ互いに独立した配線として機能してもよいし、これらのうちいずれか2つ以上が導通していてもよい。
 メモリセル150は、導電体110上の容量素子100と、容量素子100上のトランジスタ200と、を有する。機能素子155は、導電体110上の接続部101と、接続部101上のトランジスタ200と、を有する。
 容量素子100は、導電体110上の導電体115と、導電体115上の絶縁体130と、絶縁体130上の導電体120と、を有する。導電体120は一対の電極の一方(上部電極と呼ぶ場合がある)として機能し、導電体115は一対の電極の他方(下部電極と呼ぶ場合がある)として機能し、絶縁体130は誘電体として機能する。つまり、容量素子100は、MIM(Metal−Insulator−Metal)容量を構成している。
 図2Bに示すように、絶縁体180には、導電体110に達する開口部190が設けられている。導電体115の少なくとも一部は、開口部190に配置されている。なお、導電体115は、開口部190において導電体110の上面に接する領域と、開口部190において絶縁体180の側面に接する領域と、絶縁体180の上面の少なくとも一部に接する領域と、を有する。絶縁体130は、少なくとも一部が開口部190に位置するように配置されている。導電体120は、少なくとも一部が開口部190に位置するように配置されている。なお、導電体120は、図2Bに示すように、開口部190を埋め込むように設けることが好ましい。
 図3Aは、導電体110、導電体115、導電体120、及び開口部190を抜粋して示す平面図である。なお、絶縁体180に設けられる開口部190は破線で示している。図3Aに示すように、導電体115は、導電体110と重なる領域に開口部190を有する。
 容量素子100は、開口部190において、底面だけでなく、側面においても上部電極と下部電極とが誘電体を挟んで対向する構成となっており、単位面積当たりの静電容量を大きくすることができる。よって、開口部190の深さを深くするほど、容量素子100の静電容量を大きくすることができる。このように容量素子100の単位面積当たりの静電容量を大きくすることにより、記憶装置の読み出し動作を安定にすることができる。
 開口部190の側壁は、導電体110の上面に対して垂直であることが好ましい。このとき、開口部190は円筒形状を有する。このような構成にすることで、記憶装置の微細化または高集積化を図ることができる。
 開口部190の側壁及び導電体110の上面に沿って導電体115及び絶縁体130が積層して設けられている。また、開口部190を埋めるように、絶縁体130上に導電体120が設けられている。このような構成を有する容量素子100は、トレンチ型容量またはトレンチ容量と呼称してもよい。
 容量素子100上に、絶縁体280が配置されている。つまり、導電体115、絶縁体130、及び導電体120の上に、絶縁体280が配置されている。別言すると、絶縁体280の下に、導電体120が配置されている。
 トランジスタ200は、導電体120と、絶縁体280上の導電体240と、酸化物半導体230と、酸化物半導体230上の絶縁体250と、絶縁体250上の導電体260と、を有する。酸化物半導体230は半導体層として機能し、導電体260はゲート電極として機能し、絶縁体250はゲート絶縁体として機能し、導電体120はソース電極及びドレイン電極の一方として機能し、導電体240はソース電極及びドレイン電極の他方として機能する。
 図2Bに示すように、絶縁体280及び導電体240には、導電体120に達する開口部290が設けられている。酸化物半導体230の少なくとも一部は、開口部290に配置されている。なお、酸化物半導体230は、開口部290において導電体120の上面に接する領域と、開口部290において導電体240の側面に接する領域と、導電体240の上面の少なくとも一部に接する領域と、を有する。絶縁体250は、少なくとも一部が開口部290に位置するように配置されている。導電体260は、少なくとも一部が開口部290に位置するように配置されている。なお、導電体260は、図2Bに示すように、開口部290を埋め込むように設けることが好ましい。
 図3Bは、導電体120、酸化物半導体230、導電体240、導電体260、及び開口部290を抜粋して示す平面図である。なお、絶縁体280に設けられる開口部290は破線で示している。図3Bに示すように、導電体240は、導電体120と重なる領域に開口部290を有する。また、導電体240は、開口部290の内部に設けないことが好ましい。つまり、導電体240は、絶縁体280の開口部290側の側面と接する領域を有さないことが好ましい。
 酸化物半導体230は、開口部290における導電体240の側面と接する領域と、導電体240の上面の一部と接する領域と、有する。このように、酸化物半導体230が導電体240の側面だけでなく上面にも接することで、酸化物半導体230と導電体240とが接する面積を大きくすることができる。
 図2Bに示すように、トランジスタ200は、容量素子100と重なるように設けられる。また、トランジスタ200の構造の一部が設けられる開口部290は、容量素子100の構造の一部が設けられる開口部190と重なる領域を有する。特に、導電体120は、トランジスタ200のソース電極及びドレイン電極の一方としての機能と、容量素子100の上部電極としての機能とを有するため、トランジスタ200と容量素子100は、構造の一部を共有することになる。このような構成にすることで、平面視において、占有面積を大きく増加させることなく、トランジスタ200及び容量素子100を設けることができる。これにより、メモリセル150の占有面積を低減できるため、メモリセル150を高密度に配置し、記憶装置の記憶容量を大きくすることができる。言い換えると、記憶装置を高集積化することができる。
 図2C、図2Dに示す機能素子155は、トランジスタ200と接続部101を有する。トランジスタ200は、メモリセル150と同様の構成を有する。また、機能素子155は、絶縁体130の構成が異なる点、絶縁体131を有する点、及び導電体115と導電体120とが接している点以外は、上記メモリセル150と概ね同様の構成を有する。
 機能素子155において、絶縁体130には開口部190と重なる開口部が設けられる。絶縁体130の開口部は、開口部190を包含するように設けられることが好ましい。すなわち、平面視において、開口部190は絶縁体130の開口部の内側に位置することが好ましい。
 また、開口部190の内側において、導電体115の絶縁体180の内壁に沿って設けられる部分に沿って、絶縁体131を有する。絶縁体131は、導電体115及び導電体120と接する。絶縁体130と絶縁体131とは、同一の絶縁膜を加工して形成され、同一の元素を含む。絶縁体131は、絶縁体130の開口部190の底部に位置する部分を異方性のエッチングを用いて除去する際に、絶縁体130の一部が残存することで形成される。絶縁体131は、サイドウォール絶縁体ともいうことができる。
 なお、絶縁体130となる絶縁膜の加工方法によっては、絶縁体131が形成されない場合がある。その場合は、導電体120と導電体115とが接触する面積が大きくなるため好ましい。
[容量素子100]
 容量素子100は、導電体115と、絶縁体130と、導電体120と、を有する。また、導電体115の下方に導電体110が設けられている。導電体115は、導電体110と接する領域を有する。
 導電体110は、絶縁体140上に設けられる。導電体110は、配線として機能し、例えば、平面状に設けることができる。導電体110としては、後述する[導電体]の項目に記載の導電体を、単層または積層で用いることができる。例えば、導電体110として、タングステンなどの、導電性が高い導電性材料を用いることができる。
 また、導電体115は、酸化しにくい導電性材料、または、酸素が拡散しにくい導電性材料などを、単層または積層で用いることが好ましい。これにより、導電体115と接する絶縁体(絶縁体130及び絶縁体180)に酸化物絶縁体を用いた場合でも、酸化により抵抗が上昇してしまうことを抑制できる。例えば、窒化チタン、窒化タンタルなどの窒化物を用いてもよい。又はインジウム錫酸化物、もしくはシリコンを添加したインジウム錫酸化物などの酸化物を用いてもよい。又は、タングステンの上に窒化チタンを積層した構造、もしくは第1の窒化チタンの上にタングステンを積層し、当該タングステンの上に第2の窒化チタンを積層した構造などの積層構造にしてもよい。
 絶縁体130は、導電体115上に設けられる。絶縁体130は、導電体115の上面及び側面に接するように設けられる。つまり、絶縁体130は、導電体110の側端部を覆う構造にすることが好ましい。これにより、導電体115と導電体120がショートすることを防ぐことができる。
 また、絶縁体130の側端部と導電体115の側端部が一致する構造にしてもよい。このような構造にすることで、絶縁体130と導電体115を同一のマスクを用いて形成することができ、記憶装置の作製工程を簡略化することができる。
 絶縁体130として、後述する[絶縁体]の項目に記載の比誘電率が高い材料、所謂high−k材料を用いることが好ましい。絶縁体130としてhigh−k材料を用いることで、リーク電流を抑制できる程度に絶縁体130を厚くし、且つ容量素子100の静電容量を十分確保することができる。
 また、絶縁体130は、high−k材料からなる絶縁体を積層して用いることが好ましく、比誘電率が高い(high−k)材料と、当該high−k材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体130として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子100の静電破壊を抑制できる。
 また、絶縁体130として、強誘電性を示す材料を用いてもよい。強誘電性を示す材料としては、酸化ハフニウム、酸化ジルコニウム、HfZrO(Xは0よりも大きい実数とする)などの金属酸化物が挙げられる。また、強誘電性を示す材料としては、酸化ハフニウムに元素J1(ここでの元素J1は、ジルコニウム、シリコン、アルミニウム、ガドリニウム、イットリウム、ランタン、ストロンチウムなどから選ばれた一つまたは複数)を添加した材料が挙げられる。ここで、ハフニウムの原子数と元素J1の原子数の比は適宜設定することができ、例えば、ハフニウムの原子数と元素J1の原子数の比を1:1またはその近傍にすればよい。また、強誘電性を示す材料としては、酸化ジルコニウムに元素J2(ここでの元素J2は、ハフニウム、シリコン、アルミニウム、ガドリニウム、イットリウム、ランタン、ストロンチウム)などから選ばれた一つまたは複数)を添加した材料、などが挙げられる。また、ジルコニウムの原子数と元素J2の原子数の比は適宜設定することができ、例えば、ジルコニウムの原子数と元素J2の原子数の比を1:1またはその近傍にすればよい。また、強誘電性を示す材料として、チタン酸鉛(PbTiO)、チタン酸バリウムストロンチウム(BST)、チタン酸ストロンチウム、チタン酸ジルコン酸鉛(PZT)、タンタル酸ビスマス酸ストロンチウム(SBT)、ビスマスフェライト(BFO)、チタン酸バリウム、などのペロブスカイト構造を有する圧電性セラミックスを用いてもよい。
 また、強誘電性を示す材料としては、元素M1と、元素M2と、窒素と、を有する金属窒化物が挙げられる。ここで、元素M1は、アルミニウム、ガリウム、インジウムなどから選ばれた一つまたは複数である。また、元素M2は、ホウ素、スカンジウム、イットリウム、ランタン、セリウム、ネオジム、ユーロピウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロムなどから選ばれた一つまたは複数である。なお、元素M1の原子数と元素M2の原子数の比は適宜設定することができる。また、元素M1と、窒素と、を有する金属酸化物は、元素M2を含まなくても、強誘電性を有する場合がある。また、強誘電性を示す材料としては、上記金属窒化物に元素M3が添加された材料が挙げられる。なお、元素M3は、マグネシウム、カルシウム、ストロンチウム、亜鉛、カドミウムなどから選ばれた一つまたは複数である。ここで、元素M1の原子数、元素M2の原子数、および元素M3の原子数の比は適宜設定することができる。
 また、強誘電性を示す材料としては、SrTaON、BaTaONなどのペロブスカイト型酸窒化物、κアルミナ型構造のGaFeOなどが挙げられる。
 なお、上記の説明においては、金属酸化物、及び金属窒化物について例示したがこれに限定されない。例えば、上述の金属酸化物に窒素が添加された金属酸窒化物、または上述の金属窒化物に酸素が添加された金属窒酸化物などを用いてもよい。
 また、強誘電性を示す材料としては、例えば、上記に列挙した材料から選ばれた複数の材料からなる混合物または化合物を用いることができる。または、絶縁体130を、上記に列挙した材料から選ばれた複数の材料からなる積層構造とすることができる。ところで、上記に列挙した材料などは、成膜条件だけでなく、各種プロセスなどによっても結晶構造(特性)が変わり得る可能性があるため、本明細書等では強誘電性を発現する材料、または強誘電性を示す材料のみだけでなく、強誘電性を有しうる材料も強誘電体などと呼ぶ場合がある。
 ハフニウム及びジルコニウムの一方又は両方を含む金属酸化物は、数nmといった薄膜に加工しても強誘電性を示すことができるため、好ましい。ここで、絶縁体130の膜厚は、100nm以下、好ましくは50nm以下、より好ましくは20nm以下、さらに好ましくは10nm以下とする。薄膜化することができる強誘電体層とすることで、容量素子100を、微細化されたトランジスタなどの半導体素子に組み合わせて半導体装置を形成することができる。
 また、ハフニウム及びジルコニウムの一方又は両方を含む金属酸化物は、微小な面積でも強誘電性を示すことができるため、好ましい。例えば、強誘電体層の平面視における面積(占有面積)が、100μm以下、10μm以下、1μm以下、0.1μm以下、10000nm以下、又は1000nm以下であっても、強誘電性を有する場合がある。面積が小さい強誘電体層とすることで、容量素子100の占有面積を小さくすることができる。
 強誘電体は、絶縁体であって、外部から電場を与えることによって内部に分極が生じ、かつ当該電場をゼロにしても分極が残る性質を有する。このため、当該材料を誘電体として用いた容量素子(以下、強誘電体キャパシタと呼ぶ場合がある)を用いて、不揮発性の記憶素子を形成することができる。強誘電体キャパシタを用いた、不揮発性の記憶素子は、FeRAM(Ferroelectric Random Access Memory)、強誘電体メモリなどと呼ばれることがある。例えば、強誘電体メモリは、トランジスタと、強誘電体キャパシタを有し、トランジスタのソースおよびドレインの一方が、強誘電体キャパシタの一方の端子に電気的に接続された構成を有する。よって、容量素子100として強誘電体キャパシタを用いる場合、本実施の形態で示す記憶装置は、強誘電体メモリとして機能する。
 なお、強誘電性は、外部電場により強誘電体層に含まれる結晶の酸素又は窒素が変位することで、発現するとされている。また、強誘電性の発現は、強誘電体層に含まれる結晶の結晶構造に依存すると推定され、絶縁体130が強誘電性を発現するには、結晶を含む必要がある。特に絶縁体130は、直方晶系の結晶構造を有する結晶を含むと、強誘電性が発現するため好ましい。なお、絶縁体130に含まれる結晶の結晶構造としては、立方晶系、正方晶系、直方晶系、単斜晶系、及び六方晶系の中から選ばれるいずれか一または複数であってもよい。また、絶縁体130は、アモルファス構造を有していてもよい。このとき、絶縁体130は、アモルファス構造と、結晶構造とを有する複合構造としてもよい。
 導電体120は、絶縁体130の上面の一部に接して設けられる。また、図2Bに示すように、導電体120の側端部は、X方向及びY方向のいずれにおいても、導電体115の側端部よりも内側に位置することが好ましい。なお、絶縁体130が導電体115の側端部を覆う構造においては、導電体120の側端部は、導電体115の側端部よりも外側に位置してもよい。
 導電体120としては、後述する[導電体]の項目に記載の導電体を、単層または積層で用いることができる。導電体120として、酸化しにくい導電性材料、または、酸素が拡散しにくい導電性材料などを用いることが好ましい。例えば、窒化チタンまたは窒化タンタルなどを用いることができる。また、例えば、窒化チタンの上に窒化タンタルを積層した構造にしてもよい。この場合、窒化チタンが絶縁体130に接し、窒化タンタルが酸化物半導体230に接する。このような構造にすることで、酸化物半導体230によって導電体120が過剰に酸化されるのを抑制できる。また、絶縁体130に酸化物絶縁体を用いる場合、絶縁体130によって導電体120が過剰に酸化されるのを抑制できる。又は、導電体120として、例えば、窒化チタンの上にタングステンを積層した構造にしてもよい。
 また、導電体120は、酸化物半導体230と接する領域を有するため、後述する[導電体]の項目に記載の酸素を含む導電性材料を用いることが好ましい。導電体120として酸素を含む導電性材料を用いることで、導電体120が酸素を吸収しても導電性を維持することができる。また、絶縁体130として酸化ジルコニウムなどの酸素を含む絶縁体を用いる場合においても、導電体120は導電性を維持できるため好適である。導電体120として、例えば、インジウム錫酸化物(ITOともいう)、シリコンを添加したインジウム錫酸化物(ITSOともいう)、インジウム亜鉛酸化物(IZO(登録商標)ともいう)などを単層または積層で用いることができる。
 絶縁体180は層間膜として機能するため、比誘電率が低いことが好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。絶縁体180としては、後述する[絶縁体]の項目に記載の、比誘電率が低い材料を含む絶縁体を、単層または積層で用いることができる。酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。このとき、絶縁体180bは、少なくともシリコンと、酸素と、を有する。
 なお、図2B及び図2Dでは、絶縁体180を単層で示したが、本発明はこれに限られるものではない。絶縁体180は、積層構造であってもよい。
 例えば、図4A及び図4Bに示すように、絶縁体180は、絶縁体180aと、絶縁体180a上の絶縁体180bとの積層構造を有してもよい。
 絶縁体180bとしては、上述した絶縁体180に適用可能な絶縁性材料を用いるとよい。
 絶縁体180aには、後述する[絶縁体]の項目に記載の、酸素に対するバリア性を有する絶縁体を用いることが好ましい。絶縁体180bと導電体110とが接すると、絶縁体180bに含まれる酸素によって、導電体110が酸化され、抵抗が高くなってしまう場合がある。そのため絶縁体180bと導電体110との間に絶縁体180aを設けることが好ましい。
 絶縁体130に水素などの不純物が混入すると、上部電極と下部電極の間に生じるリーク電流が増加する場合がある。また、絶縁体130として強誘電性を示す材料を用いる場合、強誘電性を示す材料中に水素などの不純物が混入することで、強誘電性を示す材料の結晶性を低下させる恐れがある。そこで、絶縁体130に、水素などの不純物が混入するのを抑制することが好ましい。
 そこで、絶縁体180aには、後述する[絶縁体]の項目に記載の、水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、絶縁体180b及び導電体115を介して、絶縁体130に水素が拡散することを抑制できる。窒化シリコン、及び窒化酸化シリコンは、それぞれ、自身からの不純物(例えば、水及び水素)の放出が少なく、酸素及び水素が透過しにくい特徴を有するため、絶縁体180aに好適に用いることができる。このとき、絶縁体180aは、少なくともシリコンと、窒素と、を有する。
 また、絶縁体180aとして、後述する[絶縁体]の項目に記載の、水素を捕獲するまたは水素を固着する機能を有する絶縁体を用いることが好ましい。このような構成にすることで、絶縁体130の水素を捕獲または固着し、絶縁体130の水素濃度を低減できる。絶縁体180aとしては、酸化マグネシウム、酸化アルミニウム、又は酸化ハフニウムなどを用いることができる。また、例えば、絶縁体180aとして、酸化アルミニウムと、当該酸化アルミニウム上の窒化シリコンの積層膜を用いてもよい。
 なお、図4A及び図4Bでは絶縁体180が2層の積層構造である構成を示しているが、本発明の一態様はこれに限られない。絶縁体180は、3層以上の積層構造であってもよい。
 例えば、絶縁体180を3層積層構造とする場合、絶縁体180a及び絶縁体180bに加えて、導電体115及び絶縁体130と絶縁体180bとの間に絶縁体を設けるとよい。当該絶縁体として、絶縁体180aに適用可能な絶縁体を用いることができる。これにより、絶縁体180bを介して、絶縁体130に水素が拡散することを抑制できる。
 また、図4A及び図4Bに示すように、導電体115と絶縁体180との間に絶縁体185を設けることが好ましい。また、絶縁体185は、開口部190における絶縁体180の側面に接するように設けられることが好ましい。つまり、絶縁体185は、開口部190における絶縁体180の側面と、導電体115との間に設けられることが好ましい。
 絶縁体185には、上述した水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、容量素子100の外から絶縁体180を介して、絶縁体130に水素が拡散することを抑制できる。また、絶縁体185として、上述した水素を捕獲するまたは水素を固着する機能を有する絶縁体を用いることが好ましい。これにより絶縁体130の水素を捕獲または固着し、絶縁体130の水素濃度を低減できる。
 なお、図4A及び図4Bでは、開口部190における絶縁体180aの側面、及び開口部190における絶縁体180bの側面と接するように、絶縁体185が設けられているが、本発明はこれに限られるものではない。例えば図4C及び図4Dに示すように、絶縁体185は、絶縁体180aの上面の一部、及び開口部190における絶縁体180bの側面と接するように設けられてもよい。
 なお、図2B及び図2Dでは導電体120は、絶縁体130を介して導電体115の内側に位置しているが、本発明はこれに限られるものではない。例えば、導電体120は、絶縁体130を介して導電体115の外側に位置してもよい。
 例えば、図5A及び図5Bに示すように、絶縁体130は、導電体115が有する凹部の内側と接する領域、及び導電体115の上面と接する領域に加えて、導電体115の外側の側面側に位置する領域を有する。
 導電体120は、絶縁体130を介して、導電体115が有する凹部を埋め込むように設けられている。さらに、導電体120は、絶縁体130を介して、導電体115の外側の側面の一部と対向する領域を有する。
 上記のような構成にすることで、単位面積当たりの静電容量をより大きくすることができる。
 なお、図5A及び図5Bに示すように、導電体115の外側の側面と、絶縁体130及び絶縁体180との間に、絶縁体135を設けてもよい。
 また、導電体120、及び絶縁体130上に絶縁体182を設けてもよい。また、絶縁体182は、導電体120の上面が露出するように平坦化処理を行うことが好ましい。絶縁体182の平坦化処理を行うことで、容量素子100上にトランジスタ200を好適に形成することができる。
 絶縁体182は、層間膜として機能するため、比誘電率が低いことが好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。絶縁体182としては、絶縁体180に適用可能な絶縁体を用いることができる。
 なお、図5A及び図5Bに示すように、導電体115の内側及び外側に面して導電体120が設けられる構成にすることで、メモリセルとして十分な静電容量を確保できる場合、絶縁体180を設けない構成にしてもよい。
 図5C及び図5Dに示す記憶装置は、絶縁体180bを設けない点で、図5A及び図5Bに示す記憶装置とは異なる。絶縁体180bを設けないことで、記憶装置の作製工程を簡略化することができる。
[トランジスタ200]
 図2A乃至図2Dに示すように、トランジスタ200は、導電体120と、絶縁体280上の導電体240と、開口部290において露出している導電体120の上面、開口部290における絶縁体280の側面、開口部290における導電体240の側面、及び導電体240の上面の少なくとも一部に接して設けられた酸化物半導体230と、酸化物半導体230の上面に接して設けられた絶縁体250と、絶縁体250の上面に接して設けられた導電体260と、を有する構成にすることができる。
 トランジスタ200の構成要素の少なくとも一部は、開口部290に配置される。ここで、開口部290の底部は、導電体120の上面であり、開口部290の側壁は、絶縁体280の側面、及び導電体240の側面である。
 開口部290の側壁は、導電体110の上面に対して垂直であることが好ましい。このとき、開口部290は円筒形状を有する。このような構成にすることで、記憶装置の微細化または高集積化を図ることができる。
 また、本実施の形態では、平面視において開口部290が円形である例について示したが、本発明はこれに限られるものではない。例えば、平面視において開口部290が、円形の他、楕円形、角の丸い四角形などとすることができる。また、正三角形、正方形、正五角形をはじめとした正多角形、正多角形以外の多角形としてもよい。また、星形多角形などの、少なくとも一つの内角が180度を超える多角形である、凹多角形とすると、チャネル幅を大きくできる。そのほか、楕円形、角の丸い多角形、直線と曲線とを組み合わせた閉曲線などとすることができる。このとき、開口部290の最大幅は、開口部290の最上部の形状に合わせて適宜算出するとよい。例えば、平面視において開口部が正方形または長方形である場合、開口部290の最大幅は、開口部290の最上部の対角線の長さとするとよい。
 酸化物半導体230、絶縁体250、及び導電体260の開口部290に配置される部分は、開口部290の形状を反映して設けられる。よって、開口部290の底部及び側壁を覆うように酸化物半導体230が設けられ、酸化物半導体230を覆うように絶縁体250が設けられ、開口部290の形状を反映した絶縁体250の凹部を埋め込むように導電体260が設けられる。
 ここで、図2Bにおける酸化物半導体230及びその近傍の拡大図を図6Aに示す。また、導電体240を含む、XY平面における断面図を、図6Bに示す。
 図6Aに示すように、酸化物半導体230は、領域230iと、領域230iを挟むように設けられる領域230na及び領域230nbと、を有する。
 領域230naは、酸化物半導体230の導電体120と接する領域である。領域230naの少なくとも一部は、トランジスタ200のソース領域及びドレイン領域の一方として機能する。領域230nbは、酸化物半導体230の導電体240と接する領域である。領域230nbの少なくとも一部は、トランジスタ200のソース領域及びドレイン領域の他方として機能する。図6Bに示すように、導電体240は酸化物半導体230の外周全体に接する。よって、トランジスタ200のソース領域及びドレイン領域の他方は、酸化物半導体230の、導電体240と同じ層に形成される部分の外周全体に形成されうる。
 領域230iは、酸化物半導体230の、領域230naと領域230nbの間の領域であり、チャネル形成領域として機能する。トランジスタ200のチャネル形成領域は、絶縁体280と接する領域またはその近傍の領域ということもできる。
 トランジスタ200のチャネル長は、ソース領域とドレイン領域の間の距離となる。つまり、トランジスタ200のチャネル長は、導電体120上の絶縁体280の厚さによって決定される、ということができる。図6Aは、トランジスタ200のチャネル長Lを破線の両矢印で示している。チャネル長Lは、断面視において、酸化物半導体230と導電体120が接する領域の端部と、酸化物半導体230と導電体240が接する領域の端部との距離となる。つまり、チャネル長Lは、断面視における絶縁体280の開口部290側の側面の長さに相当する。
 プレーナ型のトランジスタでは、チャネル長がフォトリソグラフィの露光限界で設定されていたが、本発明においては、絶縁体280の膜厚でチャネル長を設定することができる。よって、トランジスタ200のチャネル長を、フォトリソグラフィの露光限界以下の非常に微細な構造(例えば、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上)にすることができる。これにより、トランジスタ200のオン電流が大きくなり、周波数特性の向上を図ることができる。よって、メモリセル150の読み出し速度及び書き込み速度を向上させることができるため、動作速度が速い記憶装置を提供できる。
 さらに、上記のように、開口部290に、チャネル形成領域、ソース領域、及びドレイン領域を形成することができる。これにより、チャネル形成領域、ソース領域、及びドレイン領域が、XY平面上に別々に設けられていた、プレーナ型のトランジスタを比較して、トランジスタ200の占有面積を低減できる。これにより、記憶装置を高集積化することができるため、単位面積当たりの記憶容量を大きくすることができる。
 また、酸化物半導体230のチャネル形成領域を含むXY平面においても、図6Bと同様に、酸化物半導体230、絶縁体250、及び導電体260は、同心円状に設けられる。よって、中心に設けられた導電体260の側面は、絶縁体250を介して、酸化物半導体230の側面と対向する。つまり、平面視において、酸化物半導体230の周全体がチャネル形成領域になる。このとき、例えば、酸化物半導体230の外周の長さによって、トランジスタ200のチャネル幅が決まる。つまり、トランジスタ200のチャネル幅は、開口部290の最大幅(平面視において開口部290が円形である場合は直径)の大きさによって決定される、ということができる。図6A及び図6Bは、開口部290の最大幅Dを二点鎖線の両矢印で示している。図6Bは、トランジスタ200のチャネル幅Wを一点鎖線の両矢印で示している。開口部290の最大幅Dの大きさを大きくすることで、単位面積当たりのチャネル幅を大きくし、オン電流を大きくすることができる。
 フォトリソグラフィ法を用いて開口部290を形成する場合、開口部290の最大幅Dはフォトリソグラフィの露光限界で設定される。また、開口部290の最大幅Dは、開口部290に設ける、酸化物半導体230、絶縁体250、及び導電体260それぞれの膜厚によって設定される。開口部290の最大幅Dは、例えば、5nm以上、10nm以上、又は20nm以上であって、100nm以下、60nm以下、50nm以下、40nm以下、又は30nm以下が好ましい。なお、平面視において開口部290が円形である場合、開口部290の最大幅Dは開口部290の直径に相当し、チャネル幅Wは“D×π”と算出することができる。
 また、本発明の一態様の記憶装置においては、トランジスタ200のチャネル長Lは、少なくともトランジスタ200のチャネル幅Wよりも小さいことが好ましい。本発明の一態様に係るトランジスタ200のチャネル長Lは、トランジスタ200のチャネル幅Wに対し、0.1倍以上0.99倍以下、好ましくは0.5倍以上0.8倍以下である。このような構成にすることで、良好な電気特性及び高い信頼性を有するトランジスタを実現できる。
 また、平面視で円形になるように開口部290を形成することで、酸化物半導体230、絶縁体250、及び導電体260は、同心円状に設けられる。これにより、導電体260と酸化物半導体230の距離が概略均一になるため、酸化物半導体230にゲート電界を概略均一に印加することができる。
 半導体層に酸化物半導体を用いるトランジスタのチャネル形成領域は、ソース領域及びドレイン領域よりも、酸素欠損が少ない、または水素、窒素、金属元素などの不純物濃度が低いことが好ましい。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合があるため、チャネル形成領域においては、VHも低減されていることが好ましい。このように、トランジスタのチャネル形成領域は、キャリア濃度が低い高抵抗領域である。よってトランジスタのチャネル形成領域は、i型(真性)または実質的にi型であるということができる。
 また、半導体層に酸化物半導体を用いるトランジスタのソース領域及びドレイン領域は、チャネル形成領域よりも、酸素欠損が多い、VHが多い、または水素、窒素、金属元素などの不純物濃度が高い、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、トランジスタのソース領域及びドレイン領域は、チャネル形成領域と比較して、キャリア濃度が高く、低抵抗なn型の領域である。
 なお、図2B及び図2Dでは、開口部290の側壁が導電体110の上面に対して垂直となるように、開口部290を設けているが、本発明はこれに限られるものではない。例えば、開口部290の側壁は、テーパー形状になってもよい。
 図7A及び図7Bに示す記憶装置は、開口部290の側壁がテーパー形状である構成を有する。なお、図7A及び図7Bに示す記憶装置の平面図は、図2Aを参照できる。
 開口部290の側壁をテーパー形状にすることで、酸化物半導体230、又は絶縁体250などの被覆性が向上し、鬆などの欠陥を低減できる。例えば、開口部290における絶縁体280の側面と、導電体120の上面とがなす角度(図7Aに示す角度θ1)は、45度以上であって、90度未満であることが好ましい。または、45度以上であって、75度以下であることが好ましい。または、45度以上であって、65度以下であることが好ましい。
 なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面とがなす角(以下、テーパー角と呼ぶ場合がある)が90度未満である領域を有する。なお、構造の側面及び基板面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
 図7A及び図7Bに示す開口部290の形状は、円錐台形状である。この場合、平面視において開口部290は円形であり、断面視において開口部290は台形になる。また、円錐台形状の上底面(例えば、導電体240に設けられた開口部)の面積は、円錐台形状の下底面(開口部290において露出している導電体120の上面)の面積よりも小さい。このとき、開口部290の最大径は、円錐台形状の上底面をもとに算出するとよい。
 開口部290の側壁がテーパー形状である場合、絶縁体280の膜厚と、開口部290における絶縁体280の側面と導電体120の上面とがなす角度θ1でチャネル長を設定することができる。また、酸化物半導体230の外周の長さは、例えば、導電体240と対向する領域、又は絶縁体280の膜厚の半分の位置で求めればよい。なお、必要に応じて、開口部290の任意の位置の周の長さを、トランジスタ200のチャネル幅としてもよい。例えば、開口部290の最下部の周の長さをチャネル幅としてもよいし、開口部290の最上部の周の長さをチャネル幅としてもよい。
 図7A及び図7Bでは、開口部290における導電体240の側面と、開口部290における絶縁体280の側面とが一致する構成を示しているが、本発明はこれに限られない。例えば、開口部290における導電体240の側面と、開口部290における絶縁体280の側面とが不連続になってもよい。また、開口部290における導電体240の側面の傾きと、開口部290における絶縁体280の側面の傾きとが互いに異なってもよい。また例えば、開口部290における導電体240の側面と、導電体120の上面とがなす角度は、角度θ1よりも小さいことが好ましい。このような構成にすることで、開口部290における導電体240の側面への、酸化物半導体230の被覆性が向上し、鬆などの欠陥を低減できる。
 図7A及び図7Bに示すように、開口部290に位置する導電体260の底部は、平坦な領域を有する。なお、開口部290の最大幅(平面視において開口部290が円形である場合は直径)の大きさ、絶縁体280の膜厚(開口部290の深さに相当)、酸化物半導体230の膜厚、及び絶縁体250の膜厚などによっては、開口部290に位置する導電体260の底部は平坦な領域を有さない場合がある。例えば、図7C及び図7Dに示すように、開口部290に位置する導電体260の底部の形状は、針状となることがある。なお、図7C及び図7Dに示す記憶装置の平面図は、図2Aを参照できる。
 ここで、針状とは、先端になる(開口部290に位置する導電体260の底部に近づく)ほど細くなる形状を指す。なお、針状の先端は、鋭角であってもよいし、下に凸の曲面形状であってもよい。なお、針状のうち、先端が鋭角である形状を、V字形状と呼んでもよい。
 開口部290に位置する導電体260のうち、絶縁体250を介して酸化物半導体230と対向する領域はゲート電極として機能する。よって、開口部290を埋め込み、底部の形状が針状である導電体260を、針状ゲートと呼称してもよい。また、図7A及び図7Bに示すように、導電体260の底部が平坦な領域を有する形状であっても、針状ゲートと呼称してもよい場合がある。
 図2B及び図2Dでは、開口部190の側壁が導電体110の上面に対して垂直となるように、開口部190を設けているが、本発明はこれに限られるものではない。例えば、開口部290と同様に、開口部190の側壁は、テーパー形状になってもよいし、逆テーパー形状になってもよい。
 開口部190の側壁をテーパー形状にすることで、導電体115、又は絶縁体130などの被覆性が向上し、鬆などの欠陥を低減できる。例えば、開口部190における絶縁体180の側面と、導電体110の上面とがなす角度(図7Aに示す角度θ2)は、45度以上であって、90度未満であることが好ましい。または、45度以上であって、75度以下であることが好ましい。または、45度以上であって、65度以下であることが好ましい。
 図7A及び図7Bに示すように、開口部190に位置する導電体120の底部は、平坦な領域を有する。なお、開口部190の最大幅(平面視において開口部190が円形である場合は直径)の大きさ、絶縁体180の膜厚(開口部190の深さに相当)、導電体115の膜厚、及び絶縁体130の膜厚などによっては、開口部190に位置する導電体120の底部は平坦な領域を有さない場合がある。例えば、図7C及び図7Dに示すように、開口部190に位置する導電体120の底部の形状は、針状となることがある。なお、図7C及び図7Dに示す記憶装置の平面図は、図2Aを参照できる。
 また、絶縁体180及び絶縁体280が互いに同じ材料を用いる場合、角度θ1と角度θ2は、一致又は概略一致する。なお、絶縁体180及び絶縁体280のそれぞれに用いる材料、開口部190及び開口部290のそれぞれの形成方法などによっては、角度θ1と角度θ2とは異なってもよい。例えば、角度θ1が、角度θ2よりも大きくてもよいし、角度θ2よりも小さくてもよい。また、角度θ1及び角度θ2の一方が90度又はその近傍値であってもよい。
 または、例えば、開口部290の側壁は、逆テーパー形状になっていてもよい。
 ここで、逆テーパー形状とは、底部よりも基板に平行な方向にせり出した側部、または上部を有した形状である。このとき、開口部290の形状は、円錐台形状である。この場合、平面視において開口部290は円形であり、断面視において開口部290は台形になる。また、円錐台形状の上底面(例えば、導電体240に設けられた開口部)の面積は、円錐台形状の下底面(開口部290において露出している導電体120の上面)の面積よりも大きい。このような構成にすることで、酸化物半導体230と導電体120とが接する面積を大きくすることができる。
 ここで、図7B及び図7Dには、機能素子155が有する接続部101が、絶縁体131を有さない場合の例を示している。このように、開口部190の側壁がテーパー形状を有する場合、絶縁体130のエッチング方法として異方性エッチングを行ったとしても、絶縁体131が残存しないことが多い。絶縁体131を有さないことで、導電体120と導電体115とが接触する面積が大きくなり、電気抵抗が低減できるため好ましい。なお、開口部190の側壁がテーパー形状を有し、且つ、絶縁体131を有していてもよい。
 図2B及び図2Dに示すように、酸化物半導体230の一部は、開口部290の外、つまり、導電体240の上に位置する。なお、図2Bでは、酸化物半導体230が、X方向において分断される構成を示しているが、本発明はこれに限られない。例えば、図8A及び図8Bに示すように、酸化物半導体230は、X方向に延在して設けられてもよい。なお、図8A及び図8Bに示す構成においても、酸化物半導体230は、Y方向において分断される。
 酸化物半導体230として用いる金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。酸化物半導体230としてバンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。オフ電流が小さいトランジスタをメモリセルに用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、または、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減できる。なお、一般的なDRAMにおいては、リフレッシュ動作の頻度を約1回/60msecとする必要があるが、本発明の一態様の記憶装置においては、リフレッシュ動作の頻度を約1回/10secと、10倍以上または100倍以上のリフレッシュ動作の頻度とすることができる。なお、本発明の一態様の記憶装置とすることで、リフレッシュ動作は、1sec以上100sec以下、好ましくは、5sec以上50sec以下に1回の頻度とすることができる。
 なお、酸化物半導体230としては、後述する[金属酸化物]の項目に記載の金属酸化物を、単層または積層で用いることができる。
 酸化物半導体230として、具体的には、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物半導体230に用いる金属酸化物の組成の分析には、例えば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectrometry)、誘導結合プラズマ質量分析法(ICP−MS:Inductively Coupled Plasma−Mass Spectrometry)、または誘導結合高周波プラズマ発光分光法(ICP−AES:Inductively Coupled Plasma−Atomic Emission Spectrometry)を用いることができる。または、これらの手法を複数組み合わせて分析を行ってもよい。なお、含有率が低い元素は、分析精度の影響により、実際の含有率と分析によって得られた含有率が異なる場合がある。例えば、元素Mの含有率が低い場合、分析によって得られた元素Mの含有率が、実際の含有率より低くなる場合がある。
 金属酸化物の形成には、スパッタリング法、または原子層堆積(ALD:Atomic Layer Deposition)法を好適に用いることができる。なお、金属酸化物をスパッタリング法で形成する場合、形成後の金属酸化物の組成はスパッタリングターゲットの組成と異なる場合がある。特に、亜鉛は、形成後の金属酸化物における含有率が、スパッタリングターゲットと比較して50%程度にまで減少する場合がある。
 酸化物半導体230は、結晶性を有することが好ましい。結晶性を有する酸化物半導体として、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、nc−OS(nanocrystalline oxide semiconductor)、多結晶酸化物半導体、単結晶酸化物半導体等が挙げられる。酸化物半導体230として、CAAC−OS又はnc−OSを用いることが好ましく、CAAC−OSを用いることが特に好ましい。
 CAAC−OSは、複数の層状の結晶領域を有し、c軸が被形成面の法線方向に配向していることが好ましい。例えば、酸化物半導体230は、開口部290の側壁、特に絶縁体280の側面に対して、概略平行な層状の結晶を有することが好ましい。このような構成にすることで、トランジスタ200のチャネル長方向に対して、酸化物半導体230の層状の結晶が概略平行に形成されるため、トランジスタのオン電流を大きくすることができる。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物および欠陥(例えば、酸素欠損など)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 また、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 また、酸化物半導体230としてCAAC−OSなどの結晶性を有する酸化物を用いることで、ソース電極またはドレイン電極による、酸化物半導体230からの酸素の引き抜きを抑制できる。これにより、熱処理を行なっても、酸化物半導体230から酸素が引き抜かれることを抑制できるため、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 酸化物半導体230の結晶性は、例えば、X線回折(XRD:XRay Diffraction)、透過型電子顕微鏡(TEM:Transmission Electron Microscope)、または電子線回折(ED:Electron Diffraction)により解析できる。または、これらの手法を複数組み合わせて分析を行ってもよい。
 なお、図2B及び図2Dでは、酸化物半導体230を単層で示したが、本発明はこれに限られるものではない。酸化物半導体230は、化学組成が異なる複数の酸化物層の積層構造を有してもよい。例えば、上記金属酸化物から選ばれる複数種を適宜積層する構造にしてもよい。
 例えば、図9A及び図9Bに示すように、酸化物半導体230は、酸化物半導体230aと、酸化物半導体230a上の酸化物半導体230bとの積層構造を有してもよい。
 酸化物半導体230aに用いる材料の導電率は、酸化物半導体230bに用いる材料の導電率と異なることが好ましい。
 例えば、酸化物半導体230aには、酸化物半導体230bより導電率の高い材料を用いることができる。ソース電極又はドレイン電極として機能する導電体120及び導電体240と接する酸化物半導体230aに導電率の高い材料を用いることにより、酸化物半導体230と導電体120との接触抵抗、及び酸化物半導体230と導電体240との接触抵抗を低くすることができ、オン電流が大きいトランジスタとすることができる。
 ここで、ゲート電極として機能する導電体260側に設けられる酸化物半導体230bに導電率の高い材料を用いる場合、トランジスタのしきい値電圧がシフトし、ゲート電圧が0V時に流れるドレイン電流(以下、カットオフ電流とも記す)が大きくなってしまう場合がある。具体的には、トランジスタ200がnチャネル型のトランジスタである場合、しきい値電圧が低くなってしまう場合がある。したがって、酸化物半導体230bには、酸化物半導体230aより導電率の低い材料を用いることが好ましい。これにより、トランジスタ200がnチャネル型のトランジスタである場合はしきい値電圧を高くすることができ、カットオフ電流が小さいトランジスタとすることができる。なお、カットオフ電流が小さいことをノーマリオフと記す場合がある。
 前述したように酸化物半導体230を積層構造とし、酸化物半導体230aには、酸化物半導体230bより導電率の高い材料を用いることにより、ノーマリオフ、かつオン電流が大きいトランジスタとすることができる。したがって、低い消費電力と高い性能を両立した記憶装置とすることができる。
 なお、酸化物半導体230aのキャリア濃度は、酸化物半導体230bのキャリア濃度より高いことが好ましい。酸化物半導体230aのキャリア濃度を高くすることにより導電率が高くなり、酸化物半導体230と導電体120との接触抵抗、及び酸化物半導体230と導電体240との接触抵抗を低くすることができ、オン電流が大きいトランジスタとすることができる。酸化物半導体230bのキャリア濃度を低くすることにより導電率が低くなり、ノーマリオフのトランジスタとすることができる。
 ここでは、酸化物半導体230aに酸化物半導体230bより導電率の高い材料を用いる例を示したが、本発明の一態様はこれに限られない。酸化物半導体230aに、酸化物半導体230bより導電率の低い材料を用いてもよい。酸化物半導体230aのキャリア濃度が、酸化物半導体230bのキャリア濃度より低い構成とすることができる。
 酸化物半導体230aに用いる第1の金属酸化物のバンドギャップは、酸化物半導体230bに用いる第2の金属酸化物のバンドギャップと異なることが好ましい。例えば、第1の金属酸化物のバンドギャップと第2の金属酸化物のバンドギャップの差は、0.1eV以上が好ましく、さらには0.2eV以上が好ましく、さらには0.3eV以上が好ましい。
 酸化物半導体230aに用いる第1の金属酸化物のバンドギャップは、酸化物半導体230bに用いる第2の金属酸化物のバンドギャップより小さい構成とすることができる。これにより、酸化物半導体230と導電体120との接触抵抗、及び酸化物半導体230と導電体240との接触抵抗を低くすることができ、オン電流が大きいトランジスタとすることができる。また、トランジスタ200がnチャネル型のトランジスタである場合はしきい値電圧を高くすることができ、ノーマリオフのトランジスタとすることができる。
 ここでは、第1の金属酸化物のバンドギャップが、第2の金属酸化物のバンドギャップより小さい例を示したが、本発明の一態様はこれに限られない。第1の金属酸化物のバンドギャップが、第2の金属酸化物のバンドギャップより大きい構成とすることができる。
 前述したように、酸化物半導体230aに用いる第1の金属酸化物のバンドギャップは、酸化物半導体230bに用いる第2の金属酸化物のバンドギャップより小さい構成とすることができる。第1の金属酸化物の組成は、第2の金属酸化物の組成と異なることが好ましい。第1の金属酸化物と第2の金属酸化物の組成を異ならせることで、バンドギャップを制御できる。例えば、第1の金属酸化物の元素Mの含有率は、第2の金属酸化物の元素Mの含有率より低いことが好ましい。具体的には、第1の金属酸化物及び第2の金属酸化物をIn−M−Zn酸化物とする場合、第1の金属酸化物はIn:M:Zn=1:1:1[原子数比]またはその近傍の組成、第2の金属酸化物はIn:M:Zn=1:3:2[原子数比]またはその近傍とすることができる。元素Mとして、ガリウム、アルミニウム、及びスズの一または複数を用いることが特に好ましい。
 第1の金属酸化物が元素Mを含まない構成としてもよい。例えば、酸化物半導体230aに用いる第1の金属酸化物をIn−Zn酸化物とし、酸化物半導体230bに用いる第2の金属酸化物をIn−M−Zn酸化物とすることができる。具体的には、第1の金属酸化物をIn−Zn酸化物とし、第2の金属酸化物をIn−Ga−Zn酸化物とすることができる。さらに具体的には、第1の金属酸化物はIn:Zn=1:1[原子数比]またはその近傍の組成、もしくはIn:Zn=4:1[原子数比]またはその近傍の組成とし、第2の金属酸化物はIn:Ga:Zn=1:1:1[原子数比]またはその近傍の組成とすることができる。
 ここでは、第1の金属酸化物の元素Mの含有率は、第2の金属酸化物の元素Mの含有率より低い例を示したが、本発明の一態様はこれに限られない。第1の金属酸化物の元素Mの含有率は、第2の金属酸化物の元素Mの含有率より高い構成としてもよい。なお、第1の金属酸化物と第2の金属酸化物で組成が異なればよく、元素M以外の元素の含有率が異なってもよい。
 酸化物半導体230の膜厚は、1nm以上、3nm以上、または5nm以上であって、20nm以下、15nm以下、12nm以下、または10nm以下であることが好ましい。
 酸化物半導体230を構成する各層(ここでは、酸化物半導体230a及び酸化物半導体230b)の膜厚は、酸化物半導体230の膜厚が前述の範囲となるように決めればよい。酸化物半導体230aと導電体120との接触抵抗、及び酸化物半導体230aと導電体240との接触抵抗が求められる範囲になるように、酸化物半導体230aの膜厚を決めることができる。また、トランジスタのしきい値電圧が求められる範囲になるように、酸化物半導体230bの膜厚を決めることができる。なお、酸化物半導体230aの膜厚は、酸化物半導体230bの膜厚と同じであってもよく、異なってもよい。
 図9A及び図9Bには、酸化物半導体230が、酸化物半導体230aと酸化物半導体230bの2層の積層構造である構成を示しているが、本発明はこれに限られるものではない。酸化物半導体230は、3層以上の積層構造としてもよい。
 酸化物半導体230を3層積層構造とする場合、例えば、導電体120側から順に、In:Ga:Zn=1:1:1[原子数比]またはその近傍の組成である金属酸化物、In:Zn=1:1[原子数比]またはその近傍の組成、もしくはIn:Zn=4:1[原子数比]またはその近傍の組成である金属酸化物、In:Ga:Zn=1:1:1[原子数比]またはその近傍の組成である金属酸化物が設けられた構成としてもよい。このような構成にすることで、トランジスタ200のオン電流を大きくし、且つ、ばらつきが少なく信頼性の高いトランジスタ構造とすることができる。
 絶縁体250としては、後述する[絶縁体]の項目に記載の絶縁体を、単層または積層で用いることができる。例えば、絶縁体250として、酸化シリコン又は酸化窒化シリコンを用いることができる。酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
 また、絶縁体250として、後述する[絶縁体]の項目に記載の比誘電率が高い材料、所謂high−k材料を用いてもよい。例えば、酸化ハフニウムまたは酸化アルミニウムなどを用いてもよい。
 絶縁体250の膜厚は、0.5nm以上15nm以下とすることが好ましく、0.5nm以上12nm以下とすることがより好ましく、0.5nm以上10nm以下とすることがさらに好ましい。絶縁体250は、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 絶縁体250中の水、水素などの不純物濃度は低減されていることが好ましい。これにより、酸化物半導体230のチャネル形成領域への、水、水素などの不純物の混入を抑制できる。
 図2B及び図2Dに示すように、絶縁体250の一部は、開口部290の外、つまり、導電体240及び絶縁体280の上に位置する。このとき、絶縁体250は、酸化物半導体230の側端部を覆うことが好ましい。これにより、導電体260と酸化物半導体230がショートすることを防ぐことができる。また、絶縁体250は、導電体240の側端部を覆うことが好ましい。これにより、導電体260と導電体240がショートすることを防ぐことができる。
 なお、図2B及び図2Dでは、絶縁体250を単層で示したが、本発明はこれに限られるものではない。絶縁体250は、積層構造であってもよい。
 例えば、図9A及び図9Bに示すように、絶縁体250は、絶縁体250aと、絶縁体250a上の絶縁体250bと、絶縁体250b上の絶縁体250cとの積層構造を有してもよい。
 絶縁体250bは、上述した比誘電率が低い材料を用いることが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。これにより、導電体260と導電体240の間の寄生容量を低減できる。また、絶縁体250b中の、水、水素などの不純物の濃度は低減されていることが好ましい。
 絶縁体250aは、上述した酸素に対するバリア性を有する絶縁体を用いることが好ましい。絶縁体250aは、酸化物半導体230と接するため、酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物半導体230から酸素が脱離することを抑制し、酸化物半導体230に酸素欠損が形成されることを抑制できる。これにより、トランジスタ200の電気特性を良好にし、信頼性を向上させることができる。絶縁体250aとして、例えば、酸化アルミニウムを用いるとよい。この場合、絶縁体250aは、少なくとも酸素と、アルミニウムと、を有する。
 絶縁体250cは、上述した水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、導電体260に含まれる不純物の、酸化物半導体230への拡散を抑制できる。特に窒化シリコンは水素バリア性が高いため、絶縁体250cとして好適である。
 絶縁体250cは、さらに酸素に対するバリア性を有してもよい。絶縁体250cは、絶縁体250bと導電体260の間に設けられている。したがって、絶縁体250bに含まれる酸素の導電体260への拡散を防ぎ、導電体260の酸化を抑制できる。また、領域230iへ供給する酸素量の減少を抑制できる。
 また、絶縁体250bと絶縁体250cの間に絶縁体を設けてもよい。当該絶縁体は、上述の水素を捕獲する又は固着する機能を有する絶縁体を用いることが好ましい。これにより、酸化物半導体230に含まれる水素を捕獲させる又は固着し、酸化物半導体230中の水素濃度を低減できる。
 トランジスタ200の微細化を図るにあたって、絶縁体250a乃至絶縁体250cの膜厚は薄いことが好ましく、前述の範囲内にすることが好ましい。代表的には、絶縁体250a、絶縁体250b、水素を捕獲する又は固着する機能を有する絶縁体、及び絶縁体250cの膜厚をそれぞれ、1nm、2nm、2nm、及び1nmとする。このような構成にすることで、トランジスタ200を微細化または高集積化しても良好な電気特性を有することができる。
 図9A及び図9Bには、絶縁体250が、絶縁体250a乃至絶縁体250cの3層の積層構造である構成を示しているが、本発明はこれに限られるものではない。絶縁体250は、2層、又は4層以上の積層構造としてもよい。このとき、絶縁体250に含まれる各層は、絶縁体250a乃至絶縁体250c及び水素を捕獲する又は固着する機能を有する絶縁体から適宜選択するとよい。
 導電体260としては、後述する[導電体]の項目に記載の導電体を、単層または積層で用いることができる。例えば、導電体260として、タングステンなどの導電性が高い導電性材料を用いることができる。
 また、導電体260として、酸化しにくい導電性材料、または、酸素が拡散しにくい導電性材料などを用いることが好ましい。当該導電性材料として、窒素を含む導電性材料(例えば、窒化チタンまたは窒化タンタルなど)、および酸素を含む導電性材料(例えば、酸化ルテニウムなど)などが挙げられる。これにより、導電体260の導電率が低下するのを抑制できる。
 なお、図2B及び図2Dでは、導電体260を単層で示したが、本発明はこれに限られるものではない。導電体260は、積層構造であってもよい。例えば、図9A及び図9Bに示すように、導電体260は、導電体260aと、導電体260a上の導電体260bとの積層構造を有してもよい。このとき、例えば、導電体260aとして窒化チタンを用い、導電体260bとしてタングステンを用いてもよい。このようにタングステンを積層して設けることで、導電体260の導電性を向上させ、配線WLとして十分に機能させることができる。
 図9A及び図9Bには、導電体260が、導電体260aと導電体260bの2層の積層構造である構成を示しているが、本発明はこれに限られるものではない。導電体260は、3層以上の積層構造としてもよい。
 図2B及び図2Dでは、導電体260が開口部290を埋め込むように設けられているが、本発明はこれに限られるものではない。例えば、導電体260の中央部に、開口部290の形状を反映した凹部が形成され、当該凹部の一部が開口部290に位置する場合がある。このとき、当該凹部を無機絶縁材料などで充填する構成にしてもよい。
 また、図2B及び図2Dに示すように、導電体260の一部は、開口部290の外、つまり、導電体240及び絶縁体280の上に位置する。このとき、図2Bに示すように、導電体260の側端部は、酸化物半導体230の側端部より内側に位置することが好ましい。これにより、導電体260と酸化物半導体230がショートすることを防ぐことができる。なお、導電体260の側端部は、酸化物半導体230の側端部と一致してもよいし、酸化物半導体230の側端部より外側に位置してもよい。
 また、図2B及び図2Dでは、導電体120の上面が平坦である構成を示しているが、本発明はこれに限られるものではない。例えば、導電体120の上面に、開口部290と重なる凹部が形成される構成にしてもよい。当該凹部を埋め込むように、酸化物半導体230、絶縁体250、及び導電体260の少なくとも一部が形成される構成にすることで、酸化物半導体230の導電体120近傍まで、導電体260のゲート電界を印加しやすくすることができる。
 導電体240としては、後述する[導電体]の項目に記載の導電体を、単層または積層で用いることができる。例えば、導電体240として、タングステンなどの、導電性が高い導電性材料を用いることができる。
 導電体240も導電体260と同様に、酸化しにくい導電性材料、または、酸素が拡散しにくい導電性材料などを用いることが好ましい。例えば、窒化チタンまたは窒化タンタルなどを用いることができる。このような構成にすることで、酸化物半導体230によって導電体240が過剰に酸化されるのを抑制できる。また、例えば、窒化チタンの上にタングステンを積層した構造にしてもよい。このようにタングステンを積層して設けることで、導電体240の導電性を向上させ、配線BLとして十分に機能させることができる。
 また、導電体240を第1の導電体と第2の導電体とを積層する構成とする場合、例えば、第1の導電体を導電性が高い導電性材料を用いて形成し、第2の導電体を酸素を含む導電性材料を用いて形成してもよい。絶縁体250と接する導電体240の第2の導電体として酸素を含む導電性材料を用いることで、絶縁体250中の酸素が導電体240の第1の導電体に拡散するのを抑制できる。例えば、導電体240の第1の導電体としてタングステンを用い、導電体240の第2の導電体として酸化物導電体を用いることができる。酸化物導電体としては、ITO、ITSO、IZO(登録商標)などを単層または積層で用いることができる。
 酸化物半導体230と導電体120とが接することで、金属化合物、または酸素欠損が形成され、酸化物半導体230の領域230naが低抵抗化する。導電体120と接する酸化物半導体230が低抵抗化することで、酸化物半導体230と導電体120との接触抵抗を低減できる。同様に、酸化物半導体230と導電体240とが接することで、酸化物半導体230の領域230nbが低抵抗化する。したがって、酸化物半導体230と導電体240との接触抵抗を低減できる。
 絶縁体140及び絶縁体280は層間膜として機能するため、比誘電率が低いことが好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。絶縁体140及び絶縁体280としては、上述の比誘電率が低い材料を含む絶縁体を、単層または積層で用いることができる。酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。
 また、絶縁体140及び絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。これにより、酸化物半導体230のチャネル形成領域への、水、水素などの不純物の混入を抑制できる。
 また、チャネル形成領域近傍に配置される絶縁体280は、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある)を含む絶縁体を用いることが好ましい。過剰酸素を含む絶縁体280に熱処理を行うことで、絶縁体280から酸化物半導体230のチャネル形成領域に酸素を供給し、酸素欠損及びVHの低減を図ることができる。これにより、トランジスタ200の電気特性を安定にし、信頼性の向上を図ることができる。
 また、絶縁体280として、上述の水素を捕獲するまたは水素を固着する機能を有する絶縁体を用いてもよい。このような構成にすることで、酸化物半導体230の水素を捕獲または固着し、酸化物半導体230の水素濃度を低減できる。絶縁体280としては、酸化マグネシウム、又は酸化アルミニウムなどを用いることができる。
 なお、図2B及び図2Dでは、絶縁体280を単層で示したが、本発明はこれに限られるものではない。絶縁体280は、積層構造であってもよい。
 例えば、図10A及び図10Bに示すように、絶縁体280は、絶縁体280aと、絶縁体280a上の絶縁体280bと、絶縁体280b上の絶縁体280cとの積層構造を有してもよい。
 絶縁体280bには、酸素を含む絶縁体を用いることが好ましい。絶縁体280bは、絶縁体280a及び絶縁体280cの少なくとも一つと比べて、酸素の含有量が多い領域を有することが好ましい。特に、絶縁体280bは、絶縁体280a及び絶縁体280cのそれぞれと比べて、酸素の含有量が多い領域を有することが好ましい。絶縁体280bの酸素の含有量を多くすることにより、酸化物半導体230における絶縁体280bと接する領域とその近傍に、i型の領域を形成することが容易となる。
 絶縁体280bには、加熱により酸素を放出する膜を用いるとより好ましい。トランジスタ200の作製工程中にかかる熱により、絶縁体280bが酸素を放出することで、酸化物半導体230に酸素を供給することができる。絶縁体280bから酸化物半導体230、特に酸化物半導体230のチャネル形成領域に酸素を供給することで、酸化物半導体230中の酸素欠損及びVHの低減を図ることができ、良好な電気特性を示し、かつ信頼性の高いトランジスタとすることができる。
 例えば、酸素を含む雰囲気下における加熱処理、または、酸素を含む雰囲気下におけるプラズマ処理を行うことで、絶縁体280bに酸素を供給することができる。また、絶縁体280bの上面に、スパッタリング法により、酸素雰囲気下で酸化物膜を成膜することで酸素を供給してもよい。その後、当該酸化物膜を除去してもよい。
 絶縁体280bは、スパッタリング法、またはプラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法などの成膜方法で形成することが好ましい。特に、スパッタリング法を用い、成膜ガスに水素ガスを用いない成膜方法で成膜することで、水素の含有量の極めて少ない膜とすることができる。そのため、酸化物半導体230に水素が供給されることを抑制し、トランジスタ200の電気特性の安定化を図ることができる。
 トランジスタ200のチャネル長が短い場合、チャネル形成領域の酸素欠損及びVHの電気特性及び信頼性への影響が特に大きくなる。絶縁体280bから酸化物半導体230に酸素を供給することにより、少なくとも酸化物半導体230の絶縁体280bと接する領域で酸素欠損及びVHが増加することを抑制できる。したがって、良好な電気特性及び高い信頼性を有するチャネル長の短いトランジスタを実現できる。
 絶縁体280a及び絶縁体280cにはそれぞれ、後述する[絶縁体]の項目に記載の、酸素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、絶縁体280bに含まれる酸素が、加熱により絶縁体280aを介して基板側に拡散すること、及び、絶縁体280cを介して絶縁体250側に拡散することを抑制できる。言い換えると、酸素が拡散しにくい絶縁体280a及び絶縁体280cで絶縁体280bの上下を挟持することで、絶縁体280bに含まれる酸素を閉じ込めることができる。これにより、酸化物半導体230に効果的に酸素を供給することができる。
 また、絶縁体280bに含まれる酸素によって、導電体120、及び導電体240が酸化され、抵抗が高くなってしまう場合がある。絶縁体280bと導電体120との間に絶縁体280aを設けることにより、導電体120が酸化され、抵抗が高くなることを抑制できる。また、絶縁体280bと導電体240との間に絶縁体280cを設けることにより、導電体240が酸化され、抵抗が高くなることを抑制できる。それとともに、絶縁体280bから酸化物半導体230へ供給される酸素の量が増え、酸化物半導体230中の酸素欠損を低減できる。
 また、酸化物半導体230の、絶縁体280aに接する領域、及び絶縁体280cに接する領域は、絶縁体280bに接する領域と比較して、供給される酸素の量が少ない。よって、酸化物半導体230の、絶縁体280aに接する領域、及び絶縁体280cに接する領域は、低抵抗化する場合がある。つまり、絶縁体280aの膜厚を調整することで、ソース領域及びドレイン領域の一方として機能する領域230naの範囲を制御できる。同様に、絶縁体280cの膜厚を調整することで、ソース領域及びドレイン領域の他方として機能する領域230nbの範囲を制御できる。
 上述のように、ソース領域及びドレイン領域は、絶縁体280a及び絶縁体280cの膜厚で制御可能であるため、絶縁体280a及び絶縁体280cの膜厚は、トランジスタ200に求める特性に合わせて、適宜設定すればよい。
 例えば、図10A及び図10Bに示すように、絶縁体280cの膜厚と、絶縁体280aの膜厚とは、概略同じであってもよい。又は、例えば、図10C及び図10Dに示すように、絶縁体280cの膜厚が、絶縁体280aの膜厚よりも小さくてもよい。図10C及び図10Dに示す構成にすることで、領域230naを、開口部290における導電体260の底部に近づけることができる。このとき、領域230iの範囲が狭まる構成ともいえる。これにより、トランジスタ200のオン電流を向上させることができる。
 また、図10C及び図10Dでは、平坦化された絶縁体280b上に、絶縁体280cを設ける構成を示しているが、本発明はこれに限られるものではない。例えば、絶縁体280bの平坦化処理を行うことなく、絶縁体280cを成膜してもよい。平坦化処理を行わないことにより、製造コストを低くできるとともに、生産歩留まりを高めることができる。また、絶縁体280a、絶縁体280b、及び絶縁体280cを、大気環境に曝さずに連続して成膜することができる。大気開放せずに成膜することで、絶縁体280a乃至絶縁体280c上に大気環境からの不純物または水分が付着することを防ぐことができ、絶縁体280aと絶縁体280bとの界面近傍、及び絶縁体280bと絶縁体280cとの界面近傍を清浄に保つことができる。
 絶縁体280a及び絶縁体280cにはそれぞれ、上述の水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、トランジスタの外から絶縁体280a又は絶縁体280cを介して、酸化物半導体230に水素が拡散することを抑制できる。窒化シリコン膜、及び窒化酸化シリコン膜は、それぞれ、自身からの不純物(例えば、水及び水素)の放出が少なく、酸素及び水素が透過しにくい特徴を有するため、絶縁体280a及び絶縁体280cに好適に用いることができる。なお、絶縁体280a及び絶縁体280cは、互いに同じ材料を用いてもよく、異なる材料を用いてもよい。
 また、絶縁体280aとして、上述の水素を捕獲するまたは水素を固着する機能を有する絶縁体を用いることが好ましい。これにより、絶縁体280aの下方から酸化物半導体230に水素が拡散することを抑制し、さらに酸化物半導体230の水素を捕獲または固着し、酸化物半導体230の水素濃度を低減できる。また、絶縁体280aの上方から絶縁体130に水素が拡散することを抑制し、さらに絶縁体130の水素を捕獲または固着し、絶縁体130の水素濃度を低減できる。絶縁体280aとしては、酸化マグネシウム、酸化アルミニウム、又は酸化ハフニウムなどを用いることができる。また、例えば、絶縁体280aとして、酸化アルミニウムと、当該酸化アルミニウム上の窒化シリコンの積層膜を用いてもよい。
 絶縁体280aの膜厚は、絶縁体280bの膜厚より小さいことが好ましい。また、絶縁体280cの膜厚は、絶縁体280bの膜厚より小さいことが好ましい。絶縁体280a及び絶縁体280cの膜厚はそれぞれ、1nm以上15nm以下が好ましく、2nm以上10nm以下がより好ましく、3nm以上7nm以下がより好ましく、さらには3nm以上5nm以下が好ましい。絶縁体280bの膜厚は、3nm以上30nm以下が好ましく、5nm以上20nm以下がより好ましく、7nm以上15nm以下がより好ましい。絶縁体280a乃至絶縁体280cの膜厚を前述の範囲とすることで、酸化物半導体230中、特にチャネル形成領域の酸素欠損を低減できる。
 例えば、絶縁体280a及び絶縁体280cに窒化シリコンを用い、絶縁体280bに酸化シリコンを用いることが好ましい。このとき、絶縁体280a及び絶縁体280cのそれぞれは、少なくともシリコンと、窒素と、を有する。また、絶縁体280bは、少なくともシリコンと、酸素と、を有する。
 なお、図10A及び図10Bでは絶縁体280が3層の積層構造である構成を示しているが、本発明の一態様はこれに限られない。絶縁体280は、2層、または4層以上の積層構造であってもよい。
 絶縁体283には、上述の水素に対するバリア性を有する絶縁体を用いることが好ましい。これにより、トランジスタの外から絶縁体250を介して、酸化物半導体230に水素が拡散することを抑制できる。
 また、絶縁体283として、上述の水素を捕獲するまたは水素を固着する機能を有する絶縁体を用いることが好ましい。このような構成にすることで、絶縁体283の上方から酸化物半導体230に水素が拡散することを抑制し、さらに酸化物半導体230の水素を捕獲または固着し、酸化物半導体230の水素濃度を低減できる。
 図2B及び図2Dには、導電体120の上面と酸化物半導体230の下面とが接する領域を有する構成を示しているが、本発明はこれに限られるものではない。例えば、導電体120と酸化物半導体230との間に導電体を設けてもよい。
 例えば、図11A及び図11Bに示すように、導電体120と酸化物半導体230との間に導電体125を設ける構成にしてもよい。導電体125として、上述の酸素を含む導電性材料を用いることが好ましい。導電体125として酸素を含む導電性材料を用いることで、導電体125が酸素を吸収しても導電性を維持することができる。また、酸化物半導体230中の酸素が導電体120に拡散するのを抑制できる。導電体125として、例えば、インジウム錫酸化物、シリコンを添加したインジウム錫酸化物、インジウム亜鉛酸化物などを単層または積層で用いることができる。
 図2B及び図2Dでは、導電体240が、絶縁体280上に設けられる構成を示している。また、絶縁体250の導電体240と重ならない領域が、絶縁体280の上面と接する領域を有する構成を示している。なお、本発明はこれに限られるものではない。
 例えば、導電体240は、絶縁体に埋め込まれるように設ける構成にしてもよい。このとき、導電体240の上面の高さは、絶縁体の上面の高さと一致することが好ましい。このような構成にすることで、導電体260から導電体240(特に導電体240の側端部)までの物理距離を大きくでき、導電体260と導電体240のショートを防ぐことができる。
 当該絶縁体は、層間膜として機能するため、比誘電率が低い材料を用いることが好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。絶縁体としては、上述の比誘電率が低い材料を含む絶縁体を、単層または積層で用いることができる。
<記憶装置の構成材料>
 以下では、記憶装置に用いることができる構成材料について説明する。
[基板]
 トランジスタ200及び容量素子100を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
[絶縁体]
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減できる。したがって、絶縁体の機能に応じて、材料を選択するとよい。なお、比誘電率が低い材料は、絶縁耐力が大きい材料でもある。
 比誘電率が高い(high−k)材料としては、例えば、酸化アルミニウム、酸化ガリウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、ハフニウムジルコニウム酸化物、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、並びに、シリコン及びハフニウムを有する窒化物などが挙げられる。
 比誘電率が低い材料としては、例えば、酸化シリコン、酸化窒化シリコン、及び窒化酸化シリコンなどの無機絶縁材料、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、及びアクリルなどの樹脂が挙げられる。また、比誘電率が低い他の無機絶縁材料として、例えば、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、並びに、炭素及び窒素を添加した酸化シリコンなどが挙げられる。また、例えば、空孔を有する酸化シリコンが挙げられる。なお、これらの酸化シリコンは、窒素を含んでもよい。
 また、金属酸化物を用いたトランジスタは、不純物及び酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。不純物及び酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いることができる。具体的には、不純物及び酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体などの、半導体と接する絶縁体、または半導体層の近傍に設ける絶縁体は、過剰酸素を含む領域を有する絶縁体であることが好ましい。例えば、過剰酸素を含む領域を有する絶縁体を半導体層と接する、または半導体層の近傍に設ける構造とすることで、半導体層が有する酸素欠損を低減することができる。過剰酸素を含む領域を形成しやすい絶縁体として、酸化シリコン、酸化窒化シリコン、または空孔を有する酸化シリコンなどが挙げられる。
 また、酸素に対するバリア性を有する絶縁体としては、アルミニウム及びハフニウムの一方または両方を含む酸化物、ハフニウム及びシリコンを含む酸化物(ハフニウムシリケート)、酸化マグネシウム、または酸化ガリウム、ガリウム亜鉛酸化物、窒化シリコン、並びに、窒化酸化シリコンなどが挙げられる。また、アルミニウム及びハフニウムの一方また両方を含む酸化物として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、などが挙げられる。
 また、水素に対するバリア性を有する絶縁体としては、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、窒化シリコンまたは窒化酸化シリコン等が挙げられる。
 酸素に対するバリア性を有する絶縁体、及び水素に対するバリア性を有する絶縁体は、酸素及び水素の一方または両方に対するバリア性を有する絶縁体といえる。
 また、水素を捕獲するまたは固着する機能を有する絶縁体として、マグネシウムを含む酸化物、またはアルミニウム及びハフニウムの一方または両方を含む酸化物が挙げられる。また、これらの酸化物は、アモルファス構造を有することがより好ましい。アモルファス構造を有する酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲するまたは固着する性質を有する場合がある。なお、これらの金属酸化物は、アモルファス構造であることが好ましいが、一部に結晶領域が形成されていてもよい。
 なお、本明細書等において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを指す。また、バリア性とは、対応する物質が拡散し難い性質(対応する物質が透過し難い性質、対応する物質の透過性が低い性質、または、対応する物質の拡散を抑制する機能ともいう)とする。なお、対応する物質を捕獲するまたは固着する(ゲッタリングともいう)機能を、バリア性と言い換えることができる。なお、対応する物質として記載される場合の水素は、例えば、水素原子、水素分子、並びに、水分子及びOHなどの水素と結合した物質などの少なくとも一を指す。また、対応する物質として記載される場合の不純物は、特段の明示が無い限り、チャネル形成領域または半導体層における不純物を指し、例えば、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの少なくとも一を指す。また、対応する物質として記載される場合の酸素は、例えば、酸素原子、酸素分子などの少なくとも一を指す。具体的には、酸素に対するバリア性とは、酸素原子、酸素分子等の少なくとも一が拡散し難い性質を指す。
[導電体]
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または前述した金属元素を成分とする合金か、前述した金属元素を組み合わせた合金等を用いることが好ましい。前述した金属元素を成分とする合金として、当該合金の窒化物、または当該合金の酸化物を用いてもよい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、ルテニウムを含む窒化物、タンタル及びアルミニウムを含む窒化物、またはチタン及びアルミニウムを含む窒化物などの窒素を含む導電性材料、酸化ルテニウム、ストロンチウム及びルテニウムを含む酸化物、またはランタン及びニッケルを含む酸化物などの酸素を含む導電性材料、チタン、タンタル、またはルテニウムなどの金属元素を含む材料は、酸化しにくい導電性材料、酸素が拡散しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。なお、酸素を含む導電性材料として、酸化タングステンを含むインジウム酸化物、酸化チタンを含むインジウム酸化物、インジウム錫酸化物、酸化チタンを含むインジウム錫酸化物、シリコンを添加したインジウム錫酸化物、インジウム亜鉛酸化物、及び、酸化タングステンを含むインジウム亜鉛酸化物などが挙げられる。本明細書等では、酸素を含む導電性材料を用いて成膜される導電膜を、酸化物導電膜と呼ぶことがある。
 また、タングステン、銅、またはアルミニウムを主成分とする導電性材料は、導電性が高いため、好ましい。
 また、上記の材料で形成される導電体を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に金属酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から脱離した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、及び、シリコンを添加したインジウム錫酸化物のうち一つまたは複数を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
[金属酸化物]
 金属酸化物は、格子欠陥を有する場合がある。格子欠陥としては、原子空孔、異種原子などの点欠陥、転位などの線欠陥、結晶粒界などの面欠陥、空隙などの体積欠陥がある。また、格子欠陥の生成の要因としては、構成元素の原子数の比率のずれ(構成原子の過不足)、及び不純物などがある。
 金属酸化物をトランジスタの半導体層に用いる場合、金属酸化物中の格子欠陥は、キャリアの生成または捕獲などを引き起こす要因となりうる。よって、格子欠陥が多い金属酸化物をトランジスタの半導体層に用いると、当該トランジスタの電気特性が不安定となる恐れがある。よって、トランジスタの半導体層に用いる金属酸化物は、格子欠陥が少ないことが好ましい。
 金属酸化物を用いたトランジスタは、特に、金属酸化物中のチャネル形成領域に酸素欠損(V)及び不純物が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(VH)を形成し、キャリアとなる電子を生成する場合がある。このため、金属酸化物中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。したがって、金属酸化物中のチャネル形成領域では、酸素欠損及び不純物はできる限り低減されていることが好ましい。言い換えると、金属酸化物中のチャネル形成領域は、キャリア濃度が低減され、i型化(真性化)または実質的にi型化されていることが好ましい。
 金属酸化物中に存在しやすい格子欠陥の種類、及び格子欠陥の存在量は、金属酸化物の構造または金属酸化物の成膜方法などによって異なる。
 金属酸化物の構造は、単結晶構造と、それ以外の構造(非単結晶の構造)と、に分けられる。非単結晶の構造としては、例えば、CAAC構造、多結晶(polycrystalline)構造、nc構造、擬似非晶質(a−like:amorphous−like)構造、及び非晶質構造などがある。a−like構造は、nc構造と非晶質構造との間の構造を有する。なお、結晶構造の分類については、後述する。
 また、a−like構造を有する金属酸化物、及び非晶質構造を有する金属酸化物は、鬆または低密度領域を有する。すなわち、a−like構造を有する金属酸化物、及び非晶質構造を有する金属酸化物は、nc構造を有する金属酸化物及びCAAC構造を有する金属酸化物と比べて、結晶性が低い。また、a−like構造を有する金属酸化物は、nc構造を有する金属酸化物及びCAAC構造を有する金属酸化物と比べて、金属酸化物中の水素濃度が高い。よって、a−like構造を有する金属酸化物、及び非晶質構造を有する金属酸化物では、格子欠陥が生成されやすい。
 よって、トランジスタの半導体層には、結晶性の高い金属酸化物を用いることが好ましい。例えば、CAAC構造を有する金属酸化物、または単結晶構造の金属酸化物を用いることが好ましい。当該金属酸化物をトランジスタに用いることで、良好な電気特性を有するトランジスタを実現できる。また、信頼性の高いトランジスタを実現できる。
 また、トランジスタのチャネル形成領域には、当該トランジスタのオン電流が大きくなる金属酸化物を用いることが好ましい。当該トランジスタのオン電流を大きくするには、当該トランジスタに用いる金属酸化物のキャリア移動度を高くするとよい。金属酸化物のキャリア移動度を高くするには、キャリア(nチャネル型トランジスタの場合は、電子)の伝送を向上させる、または、キャリアの伝送に寄与する散乱因子を低減する必要がある。なお、キャリアは、チャネル形成領域を介して、ソースからドレインに流れる。よって、キャリアがチャネル長方向に流れやすいチャネル形成領域を設けることで、トランジスタのオン電流を大きくすることができる。
 ここで、チャネル形成領域を含む金属酸化物に、結晶性の高い金属酸化物を用いることが好ましい。さらに、当該結晶は、複数の層(例えば、第1の層と、第2の層と、第3の層)が積層された結晶構造を有することが好ましい。つまり、当該結晶は、層状の結晶構造(層状結晶、層状構造ともいう)を有する。このとき、当該結晶のc軸の向きは、複数の層が積層される方向となる。当該結晶を有する金属酸化物には、例えば、単結晶酸化物半導体、CAAC−OSなどが含まれる。
 また、上記結晶のc軸を、金属酸化物の被形成面または膜表面に対する法線方向に配向することが好ましい。これにより、複数の層は、金属酸化物の被形成面または膜表面に対して、平行または概略平行に配置される。つまり、複数の層は、チャネル長方向に広がる。
 例えば、上記のような3層の層状の結晶構造は、以下のような構造になる。第1の層は、当該第1の層が有する金属が中心に存在する酸素の八面体形の、原子の配位構造を有する。また、第2の層は、当該第2の層が有する金属が中心に存在する酸素の三方両錐形または四面体形の、原子の配位構造を有する。また、第3の層は、当該第3の層が有する金属が中心に存在する酸素の三方両錐形または四面体形の、原子の配位構造を有する。
 上記結晶の結晶構造として、例えば、YbFe型構造、YbFe型構造、これらの変形型構造などがある。
 さらに、第1の層乃至第3の層のそれぞれは、一の金属元素、または、価数が同じである複数の金属元素と、酸素とで構成されることが好ましい。なお、第1の層を構成する一または複数の金属元素の価数と、第2の層を構成する一または複数の金属元素の価数と、は同じであることが好ましい。また、第1の層と、第2の層とは、同じ金属元素を有してもよい。また、第1の層を構成する一または複数の金属元素の価数と、第3の層を構成する一または複数の金属元素の価数と、は異なることが好ましい。
 上記構成にすることで、金属酸化物の結晶性を向上し、当該金属酸化物のキャリア移動度を高くすることができる。よって、当該金属酸化物をトランジスタのチャネル形成領域に用いることで、トランジスタのオン電流が大きくなり、当該トランジスタの電気特性を向上させることができる。
 本発明の一態様の金属酸化物として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。本発明の一態様の金属酸化物は、少なくともインジウム(In)または亜鉛(Zn)を含むことが好ましい。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素又は半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素又は半金属元素である。元素Mとして、具体的には、アルミニウム、ガリウム、スズ、イットリウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、モリブデン、ハフニウム、タンタル、タングステン、ランタン、セリウム、ネオジム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、シリコン、ゲルマニウム、及びアンチモンなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、アルミニウム、ガリウム、スズ、及びイットリウムから選ばれた一種または複数種であることがより好ましく、ガリウムがさらに好ましい。金属酸化物が有する元素Mがガリウムである場合、本発明の一態様の金属酸化物は、インジウム、ガリウム、及び亜鉛の中から選ばれるいずれか一または複数を有することが好ましい。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。
 本発明の一態様の金属酸化物半導体として、例えば、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムガリウム酸化物(In−Ga酸化物)、インジウムガリウムアルミニウム酸化物(In−Ga−Al酸化物)、インジウムガリウムスズ酸化物(In−Ga−Sn酸化物)、ガリウム亜鉛酸化物(Ga−Zn酸化物、GZOとも記す)、アルミニウム亜鉛酸化物(Al−Zn酸化物、AZOとも記す)、インジウムアルミニウム亜鉛酸化物(In−Al−Zn酸化物、IAZOとも記す)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも記す)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物、IGZTOとも記す)、インジウムガリウムアルミニウム亜鉛酸化物(In−Ga−Al−Zn酸化物、IGAZOまたはIAGZOとも記す)などを用いることができる。または、シリコンを含むインジウムスズ酸化物、ガリウムスズ酸化物(Ga−Sn酸化物)、アルミニウムスズ酸化物(Al−Sn酸化物)などが挙げられる。
 金属酸化物に含まれる全ての金属元素の原子数の和に対するインジウムの原子数の割合を高くすることにより、トランジスタの電界効果移動度を高めることができる。
 なお、金属酸化物は、インジウムに代えて、元素周期表における周期番号が大きい金属元素の一種または複数種を有してもよい。又は、金属酸化物は、インジウムに加えて、周期番号が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期番号が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期番号が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、イットリウム、ジルコニウム、銀、カドミウム、スズ、アンチモン、バリウム、鉛、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムなどが挙げられる。なお、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、及びユウロピウムは、軽希土類元素と呼ばれる。
 また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する亜鉛の原子数の割合を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対する元素Mの原子数の割合を高くすることにより、金属酸化物に酸素欠損が形成されるのを抑制できる。したがって、酸素欠損に起因するキャリア生成が抑制され、オフ電流の小さいトランジスタとすることができる。また、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 また、金属酸化物に含まれる全ての金属元素の原子数の和に対するInの原子数の割合を高くすることにより、トランジスタは大きいオン電流、及び高い周波数特性を得ることができる。
 本実施の形態では、金属酸化物として、In−Ga−Zn酸化物を例に挙げて説明する場合がある。
 上記の層状の結晶構造を有する金属酸化物を形成するためには、一層ずつ原子を堆積することが好ましい。本発明の一態様の金属酸化物の成膜方法では、ALD法を用いるため、上記の層状の結晶構造を有する金属酸化物を形成することが容易である。
 ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、及び、プラズマ励起されたリアクタントを用いるプラズマALD(PEALD:Plasma Enhanced ALD)法などが挙げられる。
 ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、及び低温での成膜が可能、などの効果がある。また、PEALD法は、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素または塩素などの元素を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素または塩素などの元素を多く含む場合がある。なお、これらの元素の定量は、XPSまたは二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を用いて行うことができる。なお、本発明の一態様の金属酸化物の成膜方法では、ALD法を用いるが、成膜時の基板温度が高い条件の採用、及び、不純物除去処理の実施の一方または双方を適用するため、これらを適用せずにALD法を用いる場合に比べて、膜中に含まれる炭素及び塩素の量が少ないことがある。
 ALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いスパッタリング法、またはCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。例えば、スパッタリング法を用いて、第1の金属酸化物を成膜し、当該第1の金属酸化物上にALD法を用いて、第2の金属酸化物を成膜する方法などが挙げられる。例えば、上記第1の金属酸化物が結晶部を有する場合、上記第2の金属酸化物が当該結晶部を核として、結晶成長する場合がある。
 ALD法は、原料ガスの導入量によって、得られる膜の組成を制御することができる。例えば、ALD法では、原料ガスの導入量、導入回数(パルス回数ともいう)、1パルスに要する時間(パルス時間ともいう)などを調節することによって、任意の組成の膜を成膜することができる。また、例えば、ALD法では、成膜しながら原料ガスを変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスを変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送及び圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、記憶装置の生産性を高めることができる場合がある。
[[金属酸化物を有するトランジスタ]]
 続いて、金属酸化物(酸化物半導体)をトランジスタに用いる場合について説明する。以下では、半導体層に酸化物半導体を用いたトランジスタをOSトランジスタと記し、半導体層にシリコンを用いたトランジスタをSiトランジスタと記す場合がある。
 本発明の一態様の金属酸化物(酸化物半導体)をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現できる。また、信頼性の高いトランジスタを実現できる。また、微細化または高集積化されたトランジスタを実現できる。例えば、チャネル長が2nm以上30nm以下のトランジスタを作製しうる。
 トランジスタのチャネル形成領域には、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1018cm−3以下、好ましくは1×1017cm−3以下、より好ましくは1×1015cm−3以下、より好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、炭素、窒素などが挙げられる。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1atomic%未満の元素は不純物といえる。
 また、酸化物半導体のバンドギャップは、シリコンのバンドギャップ(代表的には1.1eV)よりも大きいことが好ましく、好ましくは2eV以上、より好ましくは2.5eV以上、さらに好ましくは3.0eV以上である。シリコンよりも、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流(Ioffとも呼称する)を低減できる。
 また、Siトランジスタでは、トランジスタの微細化が進むにつれて、短チャネル効果(Short Channel Effect:SCEともいう)が発現する。そのため、Siトランジスタでは、微細化が困難となる。短チャネル効果が発現する要因の一つとして、シリコンのバンドギャップが小さいことが挙げられる。一方、OSトランジスタは、バンドギャップの大きい半導体材料である、酸化物半導体を用いるため、短チャネル効果の抑制を図ることができる。別言すると、OSトランジスタは、短チャネル効果がない、または短チャネル効果が極めて少ないトランジスタである。
 なお、短チャネル効果とは、トランジスタの微細化(チャネル長の縮小)に伴って顕在化する電気特性の劣化である。短チャネル効果の具体例としては、しきい値電圧の低下、サブスレッショルドスイング値(S値と表記することがある)の増大、漏れ電流の増大などがある。ここで、S値とは、ドレイン電圧一定にてドレイン電流を1桁変化させるサブスレッショルド領域でのゲート電圧の変化量をいう。
 また、短チャネル効果に対する耐性の指標として、特性長(Characteristic Length)が広く用いられている。特性長とは、チャネル形成領域のポテンシャルの曲がりやすさの指標である。特性長が小さいほどポテンシャルが急峻に立ち上がるため、短チャネル効果に強いといえる。
 OSトランジスタは蓄積型のトランジスタであり、Siトランジスタは反転型のトランジスタである。したがって、Siトランジスタと比較して、OSトランジスタは、ソース領域−チャネル形成領域間の特性長、及びドレイン領域−チャネル形成領域間の特性長が小さい。したがって、OSトランジスタは、Siトランジスタよりも短チャネル効果に強い。すなわち、チャネル長の短いトランジスタを作製したい場合においては、OSトランジスタは、Siトランジスタよりも好適である。
 チャネル形成領域がi型または実質的にi型となるまで、酸化物半導体のキャリア濃度を下げた場合においても、短チャネルのトランジスタではConduction−Band−Lowering(CBL)効果により、チャネル形成領域の伝導帯下端が下がるため、ソース領域またはドレイン領域と、チャネル形成領域との間の伝導帯下端のエネルギー差は、0.1eV以上0.2eV以下まで小さくなる可能性がある。これにより、OSトランジスタは、チャネル形成領域がn型の領域となり、ソース領域及びドレイン領域がn型の領域となる、n/n/nの蓄積型junction−lessトランジスタ構造、または、n/n/nの蓄積型non−junctionトランジスタ構造と、捉えることもできる。
 OSトランジスタを、上記の構造とすることで、OSトランジスタを微細化または高集積化しても良好な電気特性を有することができる。例えば、OSトランジスタのチャネル長又はゲート長が、20nm以下、15nm以下、10nm以下、7nm以下、または6nm以下であって、1nm以上、3nm以上、または5nm以上であっても、良好な電気特性を得ることができる。一方で、Siトランジスタは、短チャネル効果が発現するため、20nm以下、または15nm以下のゲート長とすることが困難な場合がある。したがって、OSトランジスタは、Siトランジスタと比較してチャネル長の短いトランジスタに好適に用いることができる。なお、ゲート長とは、トランジスタ動作時にキャリアがチャネル形成領域内部を移動する方向における、ゲート電極の長さである。
 また、OSトランジスタを微細化することで、トランジスタの高周波特性を向上させることができる。具体的には、トランジスタの遮断周波数を向上させることができる。OSトランジスタのゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、好ましくは100GHz以上、さらに好ましくは150GHz以上とすることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、オフ電流が小さいこと、チャネル長の短いトランジスタの作製が可能なこと、といった優れた効果を有する。
[[金属酸化物中の不純物]]
 ここで、金属酸化物(酸化物半導体)中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、SIMSにより得られる酸化物半導体のチャネル形成領域における炭素の濃度は、1×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは3×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、より好ましくは3×1018atoms/cm以下、さらに好ましくは1×1018atoms/cm以下とする。また、SIMSにより得られる酸化物半導体のチャネル形成領域におけるシリコンの濃度は、1×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは3×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、より好ましくは3×1018atoms/cm以下、さらに好ましくは1×1018atoms/cm以下とする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体のチャネル形成領域における窒素濃度は、1×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、より好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体のチャネル形成領域における水素はできる限り低減されていることが好ましい。具体的には、SIMSにより得られる酸化物半導体のチャネル形成領域における水素濃度は、1×1020atoms/cm未満、好ましくは5×1019atoms/cm未満、より好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
[その他の半導体材料]
 酸化物半導体230は、トランジスタのチャネル形成領域を含む半導体層と言い換えることができる。半導体層に用いることができる半導体材料は、上述の金属酸化物に限られない。半導体層として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、単体元素の半導体、化合物半導体、又は層状物質(原子層物質、2次元材料などともいう)などを半導体材料に用いることが好ましい。
 ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス結合のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供できる。
 半導体材料に用いることができる単体元素の半導体として、シリコン、及びゲルマニウムなどが挙げられる。半導体層に用いることができるシリコンとして、単結晶シリコン、多結晶シリコン、微結晶シリコン、及び非晶質シリコンが挙げられる。多結晶シリコンとして、例えば、低温ポリシリコン(LTPS:Low Temperature Poly Silicon)が挙げられる。
 半導体材料に用いることができる化合物半導体として、炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、窒化ホウ素、及びヒ化ホウ素などが挙げられる。半導体層に用いることができる窒化ホウ素は、アモルファス構造を含むことが好ましい。半導体層に用いることができるヒ化ホウ素は、立方晶構造の結晶を含むことが好ましい。
 層状物質として、グラフェン、シリセン、炭窒化ホウ素、カルコゲン化物などがある。層状物質としての炭窒化ホウ素は、炭素原子、窒素原子、及びホウ素原子が平面上に六角形格子構造で配列している。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
 半導体層として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。半導体層として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。上述の遷移金属カルコゲナイドを、半導体層に適用することで、オン電流が大きい記憶装置を提供できる。
<記憶装置の作製方法例>
 次に、図2A乃至図2Dに示す、本発明の一態様である記憶装置の作製方法を、図12A乃至図22Cを用いて説明する。
 各図のAは、メモリセル150を有する領域の平面図を示す。また、各図のBはそれぞれ図2Bに対応し、各図のAにA1−A2の一点鎖線で示す部位に対応する断面図である。また、各図のCはそれぞれ、図2Dに対応する機能素子155の断面図である。なお、各図のAの平面図では、図の明瞭化のために一部の要素を省いている。また図2Cに対応する機能素子155の平面図は、メモリセル150と同様であり、これを参照できるため省略する。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、記憶装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、記憶装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、記憶装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、記憶装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体140を形成する(図12A乃至図12C参照)。絶縁体140には、上述の絶縁性材料を適宜用いればよい。絶縁体140の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。
 次に、絶縁体140上に導電体110を形成する。導電体110には、上述の導電性材料を適宜用いればよい。導電体110の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。例えば、導電体110として、CVD法を用いて、タングステン、窒化チタンの順に成膜された積層膜を形成すればよい。
 なお、導電体110を加工して、X方向またはY方向に伸長する形状にしてもよい。導電体110の加工は、リソグラフィー法を用いて行えばよい。上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。当該加工を行うことで、導電体110の側端部は、後に形成する絶縁体130によって覆われる。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 また、ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 次に、導電体110上に絶縁体180を形成する(図12A乃至図12C参照)。絶縁体180には、上述の絶縁性材料を適宜用いればよい。絶縁体180の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。例えば、絶縁体180として、スパッタリング法を用いて酸化シリコン膜を成膜すればよい。なお、絶縁体180は、成膜後にCMP処理を行なって、上面を平坦化させることが好ましい。なお、CMP処理を行わなくてもよい場合がある。このとき、絶縁体180の上面は、上に凸の曲面形状を有する。平坦化処理を行わないことにより、製造コストを低くできるとともに、生産歩留まりを高めることができる。
 ここで、絶縁体180の膜厚は、容量素子100の静電容量に対応するため、容量素子100の静電容量の設計値に合わせて、絶縁体180の膜厚を適宜設定すればよい。
 また、絶縁体180を、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体180中の水素濃度を低減できる。
 次に、絶縁体180の一部を加工して、導電体120に達する開口部190を形成する(図13A乃至図13C参照)。開口部190の形成は、リソグラフィー法を用いて行えばよい。なお、開口部190の形状は、平面視において円形状にしているが、これに限られるものではない。例えば、開口部190の形状は、平面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 前述したように、開口部190の側壁は、導電体110の上面に対して垂直であることが好ましい。このような構成にすることで、記憶装置の微細化または高集積化を図ることができる。なお、開口部190の側壁は、テーパー形状であってもよい。開口部190の側壁をテーパー形状にすることで、後述する導電体115となる導電膜などの被覆性が向上し、鬆などの欠陥を低減できる。
 開口部190の最大幅(平面視において開口部190が円形である場合は直径)の大きさは、微細であることが好ましい。例えば、開口部190の最大幅は、60nm以下、50nm以下、40nm以下、30nm以下、又は20nm以下であって、1nm以上、又は5nm以上であることが好ましい。このように、開口部190を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。
 開口部190はアスペクト比が大きいため、異方性エッチングを用いて、絶縁体280の一部を加工することが好ましい。特に、ドライエッチング法による加工は、微細加工に適しているため好ましい。
 次に、開口部190の底部及び側壁、並びに絶縁体180の上面の少なくとも一部に接して、導電体115となる導電膜を成膜する。当該導電膜には、上述の導電体115に適用可能な導電体を適宜用いればよい。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。ここで、当該導電膜は、アスペクト比の大きい開口部190の底部及び側壁に接して形成されることが好ましい。よって、当該導電膜の成膜は、被覆性が良好な成膜方法を用いることが好ましく、CVD法またはALD法などを用いることがより好ましい。例えば、当該導電膜として、CVD法を用いて、窒化チタン膜を成膜すればよい。
 次に、導電体115となる導電膜を、リソグラフィー法を用いて加工し、導電体115を形成する(図14A乃至図14C参照)。これにより、導電体115の一部が、開口部190に形成される。また、導電体115は、絶縁体180の側面及び上面の一部に接する。
 次に、導電体115、及び絶縁体180の上に、絶縁体130を成膜する(図15A乃至図15C参照)。絶縁体130には、上述のHigh−k材料又は強誘電性を示す材料を適宜用いればよい。絶縁体130の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。例えば、絶縁体130として、ALD法を用いて、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順に成膜された積層膜を形成すればよい。
 次に、絶縁体130上にレジストマスク145を形成する(図15A乃至図15C参照)。レジストマスク145は、機能素子155となる領域における開口部190と重なる部分に開口146が設けられるように形成する(図15C参照)一方、メモリセル150となる領域では、レジストマスク145は開口部190を覆うように形成する。
 レジストマスク145の開口146は、平面視において開口部190を包含すればよく、形状は問わない。開口部190の形状を円形とした場合であっても、開口146の形状は必ずしも円形とする必要はなく、例えば矩形などとしてもよい。
 続いて、絶縁体130のレジストマスク145に覆われない部分をエッチングにより除去する(図16A乃至図16C参照)。ここでは、異方性のエッチングを用いて加工する例を示す。異方性のエッチングを用いることで、開口部190内に絶縁体131が残存する。なお、等方性のエッチングを用いると、絶縁体131が残存しない構成とすることもできる。
 ここで、開口部190のアスペクト比が高い(例えば2以上)場合、開口部190内の絶縁体130を全て除去しようとすると、開口部190の底部に位置する絶縁体130よりも、開口部190の内壁に位置する絶縁体130の方がエッチングに時間がかかる。そのため、開口部190の底部では先に絶縁体130が消失し、導電体115がエッチングに曝され、ダメージを受ける場合がある。一方、本発明の一態様では、少なくとも開口部190の底部に位置する絶縁体130を除去する程度にエッチングを行うことができるため、導電体115へのダメージを緩和することができる。またさらに、絶縁体131が残存することにより、その上に形成される導電体120の密着性が向上する場合もある。
 次に、導電膜120Aを成膜する(図17A乃至図17C参照)。導電膜120Aには、上述の導電性材料を用いればよい。導電膜120Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。例えば、導電膜120Aとして、CVD法を用いて、窒化チタン、窒化タンタルの順に成膜された積層膜を形成すればよい。又は、例えば、導電膜120Aとして、CVD法を用いて、窒化チタン、タングステンの順に成膜された積層膜を形成すればよい。
 次に、導電膜120Aを加工して、導電体120を形成する(図18A乃至図18C参照)。導電体120の形成は、リソグラフィー法を用いて行えばよい。導電膜120Aの加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 以上のようにして、導電体115、絶縁体130、及び導電体120を有する容量素子100と、接続部101を作り分けることができる。
 次に、絶縁体130及び導電体120上に絶縁体280を形成する(図19A乃至図19C参照)。絶縁体280には、上述の絶縁性材料を適宜用いればよい。絶縁体280の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。例えば、絶縁体280として、スパッタリング法を用いて酸化シリコン膜を成膜すればよい。なお、絶縁体280は、成膜後にCMP(Chemical Mechanical Polishing)処理を行なって、上面を平坦化させることが好ましい。絶縁体280の平坦化処理を行うことで、配線として機能する導電体240を好適に形成することができる。また、絶縁体280上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜した後、絶縁体280に達するまで、CMP処理を行ってもよい。当該CMP処理を行うことで絶縁体280表面の平坦化および平滑化を行うことができる。当該酸化アルミニウムを絶縁体280上に配置してCMP処理を行うことで、CMP処理の終点検出が容易となる。
 なお、CMP処理を行わなくてもよい場合がある。このとき、絶縁体280の上面は、上に凸の曲面形状を有する。平坦化処理を行わないことにより、製造コストを低くできるとともに、生産歩留まりを高めることができる。
 ここで、導電体120上の絶縁体280の膜厚が、トランジスタ200のチャネル長に対応するため、トランジスタ200のチャネル長の設計値に合わせて、絶縁体280の膜厚を適宜設定すればよい。
 また、絶縁体280を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減できる。このように、絶縁体280を成膜することで、絶縁体280から酸化物半導体230のチャネル形成領域に酸素を供給し、酸素欠損及びVHの低減を図ることができる。
 次に、絶縁体280上に導電膜240Aを成膜する(図19A乃至図19C参照)。導電膜240Aには、上述の導電性材料を適宜用いればよい。導電膜240Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。
 次に、導電膜240Aの一部、及び絶縁体280の一部を加工して、導電体120に達する開口部290を形成する(図20A乃至図20C参照)。開口部290の形成は、リソグラフィー法を用いて行えばよい。なお、図20Aに示す開口部290の形状は、平面視において円形状にしているが、これに限られるものではない。例えば、開口部290の形状は、平面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 前述したように、開口部290の側壁は、導電体110の上面に対して垂直であることが好ましい。このような構成にすることで、記憶装置の微細化または高集積化を図ることができる。また、開口部290の側壁は、テーパー形状であってもよい。開口部290の側壁をテーパー形状にすることで、後述する酸化物半導体230となる酸化物半導体膜などの被覆性が向上し、鬆などの欠陥を低減できる。
 開口部290の最大幅(平面視において開口部290が円形である場合は最大径)の大きさは、微細であることが好ましい。例えば、開口部290の最大幅は、60nm以下、50nm以下、40nm以下、30nm以下、又は20nm以下であって、1nm以上、又は5nm以上であることが好ましい。このように、開口部290を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。
 開口部290はアスペクト比が大きいため、異方性エッチングを用いて、導電膜240Aの一部、及び絶縁体280の一部を加工することが好ましい。特に、ドライエッチング法による加工は、微細加工に適しているため好ましい。また、当該加工は、それぞれ異なる条件で行なってもよい。なお、導電膜240Aの一部、及び絶縁体280の一部の加工を行う条件によっては、前述したように、開口部290における導電体240の側面の傾きと、開口部290における絶縁体280の側面の傾きとが互いに異なることがある。
 続いて、加熱処理を行なってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行なってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行なってもよい。以上のような加熱処理を行うことで、後述する酸化物半導体230となる酸化物半導体膜の成膜前に、絶縁体280などに含まれる、水などの不純物を低減できる。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、絶縁体280などに水分等が取り込まれることを可能な限り防ぐことができる。
 次に、開口部290の底部及び側壁、並びに導電膜240Aの上面の少なくとも一部に接して、酸化物半導体230となる酸化物半導体膜を成膜する。当該酸化物半導体膜には、上述の酸化物半導体230に適用可能な金属酸化物を適宜用いればよい。当該酸化物半導体膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。ここで、当該酸化物半導体膜は、アスペクト比の大きい開口部290の底部及び側壁に接して形成されることが好ましい。よって、当該酸化物半導体膜の成膜は、被覆性が良好な成膜方法を用いることが好ましく、CVD法またはALD法などを用いることがより好ましい。例えば、当該酸化物半導体膜として、ALD法を用いて、In−Ga−Zn酸化物を成膜すればよい。なお、ALD法を用いた、金属酸化物の成膜方法の詳細については、後述の実施の形態で説明する。
 なお、開口部290の側壁がテーパー形状である場合、酸化物半導体230となる酸化物半導体膜の成膜は、CVD法又はALD法を用いる場合に限られない。例えば、スパッタリング法を用いてもよい。
 また、酸化物半導体膜の成膜中、または成膜後に、酸素を含む雰囲気でマイクロ波処理を行うことで、当該酸化物半導体膜中の不純物濃度を低減させる処理を行うと好ましい。なお、不純物としては、特に、水素、及び炭素が挙げられる。また、マイクロ波処理を行うことで、酸化物半導体膜の結晶性を高めることができる場合がある。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。また、酸化物半導体に作用する酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、酸化物半導体に作用する酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。
 また、上述の酸素を含む雰囲気でマイクロ波処理を行う際に、基板を加熱することで、酸化物半導体中の不純物濃度を、さらに低減させることができるため好適である。上述の基板を加熱する温度としては、100℃以上650℃以下、好ましくは200℃以上600℃以下、さらに好ましくは300℃以上450℃以下で行えばよい。
 上述の酸素を含む雰囲気でマイクロ波処理を行う際に基板を加熱することで、SIMSにより得られる酸化物半導体中の炭素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とすることができる。
 なお、上記においては、酸化物半導体に対して、酸素を含む雰囲気でマイクロ波処理を行う構成について例示したが、これに限定されない。例えば、酸化物半導体近傍に位置する、絶縁膜、より具体的には酸化シリコン膜に対して、酸素を含む雰囲気でマイクロ波処理を行なってもよい。これにより、当該酸化シリコン膜中に含まれる水素をHOとして、外部に放出させることができる。酸化物半導体近傍に位置する、酸化シリコン膜から水素を放出させることで、信頼性の高い記憶装置を提供することができる。
 また、図9A及び図9Bに示すように、酸化物半導体230を積層構造とする場合、酸化物半導体230に含まれる各層の成膜方法は同じであってもよいし、異なってもよい。例えば、酸化物半導体230を2層の積層構造とする場合、酸化物半導体膜の下層をスパッタリング法で成膜し、酸化物半導体膜の上層をALD法で成膜してもよい。スパッタリング法を用いて成膜された酸化物半導体膜は結晶性を有しやすい。そこで、結晶性を有する酸化物半導体膜を酸化物半導体膜の下層として設けることで、酸化物半導体膜の上層の結晶性を高めることができる。また、スパッタリング法で成膜した酸化物半導体膜の下層にピンホールまたは段切れなどが形成されたとしても、それらと重畳する部分を、被覆性の良好なALD法で成膜した酸化物半導体膜の上層で塞ぐことができる。
 ここで、酸化物半導体230となる酸化物半導体膜は、開口部290における導電体120の上面、開口部290における絶縁体280の側面、開口部290における導電体240の側面、及び導電体240の上面に接して形成されることが好ましい。当該酸化物半導体膜を導電体120と接して形成することで、導電体120は、トランジスタ200のソース電極及びドレイン電極の一方として機能する。また、当該酸化物半導体膜を導電体240と接して形成することで、導電体240は、トランジスタ200のソース電極及びドレイン電極の他方として機能する。
 次に、加熱処理を行うことが好ましい。加熱処理は、上記酸化物半導体膜が多結晶化しない温度範囲で行えばよく、250℃以上650℃以下、好ましくは400℃以上600℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行なってもよい。または、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行なってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、上記酸化物半導体膜などに水分等が取り込まれることを可能な限り防ぐことができる。
 ここで、上記酸化物半導体膜に、過剰酸素を含む絶縁体280を接して設けた状態で、上記加熱処理を行うことが好ましい。このように加熱処理を行うことで、絶縁体280から酸化物半導体230のチャネル形成領域に酸素を供給し、酸素欠損及びVoHの低減を図ることができる。
 なお、上記においては、上記酸化物半導体膜の成膜後に加熱処理を行ったが、本発明はこれに限られるものではない。さらに後の工程で加熱処理を行う構成にしてもよい。
 次に、酸化物半導体230となる酸化物半導体膜を、リソグラフィー法を用いて加工し、酸化物半導体230を形成する(図21A乃至図21C参照)。これにより、酸化物半導体230の一部が、開口部290に形成される。また、酸化物半導体230は、導電体240の側面及び上面の一部に接する。したがって、酸化物半導体230と導電体240が接する領域の面積を大きくすることができる。
 次に、導電膜240Aを加工して、導電体240を形成する。導電体240の形成は、リソグラフィー法を用いて行えばよい。導電膜240Aの加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 なお、ここでは酸化物半導体230を加工した後に、導電膜240Aを加工して導電体240を形成する方法を説明したが、導電膜240Aの加工を先に行ってもよい。すなわち、絶縁体280上に導電膜240Aを成膜した後に導電膜240Aを加工して導電体240を形成し、続いて導電体240と絶縁体280に開口部290を形成し、その後酸化物半導体膜を成膜し、これを加工して酸化物半導体230を形成してもよい。
 次に、酸化物半導体230、導電体240、及び絶縁体280の上に、絶縁体250を成膜する(図22A乃至図22C参照)。絶縁体250には、上述の絶縁性材料を適宜用いればよい。絶縁体250の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。ここで、絶縁体250は、アスペクト比の大きい開口部290に設けられた酸化物半導体230に接して形成されることが好ましい。よって、絶縁体250の成膜は、被覆性が良好な成膜方法を用いることが好ましく、CVD法またはALD法などを用いることがより好ましい。例えば、絶縁体250として、ALD法を用いて、酸化シリコンを成膜すればよい。
 なお、開口部290の側壁がテーパー形状である場合、絶縁体250の成膜は、CVD法又はALD法を用いる場合に限られない。例えば、スパッタリング法を用いてもよい。
 酸化物半導体230を形成した後で、絶縁体250を成膜する構成にすることで、酸化物半導体230の側端部が絶縁体250で覆われる。したがって、酸化物半導体230と導電体260のショートを防ぐことができる。また、上記構成にすることで、導電体240の側端部が絶縁体250で覆われる。したがって、導電体240と導電体260のショートを防ぐことができる。
 次に、絶縁体250の凹部を埋めるように、導電膜260Aを成膜する(図22A乃至図22C参照)。導電膜260Aには、上述の導電性材料を適宜用いればよい。導電膜260Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。ここで、導電膜260Aは、アスペクト比の大きい開口部290に設けられた絶縁体250に接して形成されることが好ましい。よって、導電膜260Aの成膜は、被覆性または埋め込み性が良好な成膜方法を用いることが好ましく、CVD法またはALD法などを用いることがより好ましい。例えば、導電膜260Aとして、CVD法またはALD法を用いて、窒化チタンを成膜すればよい。
 なお、CVD法を用いて導電膜260Aを成膜した場合、導電膜260Aの上面の平均面粗さが大きくなることがある。この場合、CMP法を用いて、導電膜260Aを平坦化することが好ましい。このとき、CMP処理を行う前に、導電膜260A上に酸化シリコン膜または酸化窒化シリコン膜を成膜し、当該酸化シリコン膜または酸化窒化シリコン膜を除去するまで、CMP処理を行なってもよい。
 また、上記においては、導電膜260Aが開口部290を埋め込むように設けられているが、本発明はこれに限られるものではない。例えば、導電膜260Aの中央部に、開口部290の形状を反映した凹部が形成される場合がある。また、当該凹部を無機絶縁材料などで充填する構成にしてもよい。
 次に、導電膜260Aを加工して、導電体260を形成する(図23A乃至図23C参照)。導電体260の形成は、リソグラフィー法を用いて行えばよい。上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
 ここで、図2A及び図2Bに示すように、導電体260の側端部が、平面視において、酸化物半導体230の側端部より内側に位置することが好ましい。これにより、導電体260と酸化物半導体230がショートすることを防ぐことができる。
 以上のようにして、導電体120、導電体240、酸化物半導体230、絶縁体250、及び導電体260を有するトランジスタ200を形成することができる。
 次に、導電体260及び絶縁体250を覆って、絶縁体283を成膜する。絶縁体283は、上述の絶縁性材料を適宜用いればよい。絶縁体283の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。
 以上により、図2A乃至図2Dに示すメモリセル150及び機能素子155を有する記憶装置を作製できる。
 本発明の一態様により、新規のトランジスタ、新規の半導体装置、及び新規の記憶装置を提供できる。または、微細化または高集積化が可能な記憶装置を提供できる。または、周波数特性が良好な記憶装置を提供できる。または、動作速度が速い記憶装置を提供できる。または、信頼性が良好な記憶装置を提供できる。または、低消費電力の記憶装置を提供できる。または、オン電流が大きいトランジスタを有する記憶装置を提供できる。または、トランジスタ特性のばらつきが少ない記憶装置を提供できる。または、良好な電気特性を有する記憶装置を提供できる。
 本実施の形態に示す、トランジスタ200及び容量素子100を有するメモリセル150は、記憶装置のメモリセルとして用いることができる。またトランジスタ200及び接続部101を有する機能素子は、記憶装置の周辺回路として用いることができる。トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、または、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減できる。また、トランジスタ200の周波数特性が高いため、記憶装置の読み出し、および書き込みを高速に行うことができる。
 2個のメモリセル150(以下、メモリセル150a及びメモリセル150bと呼ぶ)を共通の配線に接続する記憶装置の例について、図24A及び図24Bを用いて説明する。図24Aは、記憶装置の平面図である。また、図24Bは、図24AにA1−A2の一点鎖線で示す部位の断面図である。なお、図24Aの平面図では、図の明瞭化のために一部の要素を省いている。
 ここで、図24A及び図24Bに示すメモリセル150a及びメモリセル150bのそれぞれは、メモリセル150と同様の構成を有する。メモリセル150aは容量素子100aとトランジスタ200aを有し、メモリセル150bは容量素子100bとトランジスタ200bを有する。
 図24A及び図24Bに示すように、配線WLとして機能する導電体260は、メモリセル150a及びメモリセル150bに、それぞれ設けられる。また、配線BLの一部として機能する導電体240は、メモリセル150a及びメモリセル150bに、共通に設けられる。つまり、導電体240は、メモリセル150aの酸化物半導体230と、メモリセル150bの酸化物半導体230に接する。
 ここで、図24A及び図24Bに示す記憶装置は、メモリセル150a及びメモリセル150bと電気的に接続してプラグ(接続電極とよぶこともできる)として機能する、導電体245及び導電体246を有する。導電体245は、絶縁体180、絶縁層130、絶縁体280、及び絶縁体140に形成された開口内に配置され、導電体240の下面に接する。また、導電体246は、絶縁体287、絶縁体283、及び絶縁体250に形成された開口内に配置され、導電体240の上面に接する。なお、導電体245及び導電体246は、導電体240に適用可能な導電性材料などを用いることができる。
 絶縁体287は、層間膜として機能するため、比誘電率が低いことが好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。絶縁体287としては、上述の比誘電率が低い材料含む絶縁体を、単層または積層で用いることができる。また、絶縁体287中の水、水素などの不純物濃度は低減されていることが好ましい。これにより、酸化物半導体230のチャネル形成領域に、水、水素などの不純物が混入するのを抑制できる。
 導電体245は、例えば図24Bに示す記憶装置の下に設けられたセンスアンプ(図示せず)に電気的に接続され、導電体246が、図24Bに示す記憶装置の上に設けられた同様の記憶装置(図示せず)と電気的に接続される構成にすることができる。この場合、導電体245及び導電体246は、配線BLの一部として機能する。このように、図24Bに示す記憶装置の上または下に記憶装置などを設けることで、単位面積当たりの記憶容量を大きくすることができる。
 また、メモリセル150aとメモリセル150bは、導電体245及び導電体246を挟んで、線対称の位置に配置される。また、トランジスタ200a及びトランジスタ200bは、プラグとして機能する導電体245及び導電体246を共有する。このように、2つのトランジスタと、プラグとの接続を上述の構成とすることで、微細化または高集積化が可能な記憶装置を提供できる。
 なお、配線PLとして機能する導電体110は、メモリセル150a及びメモリセル150bに、それぞれ設けてもよいし、メモリセル150a及びメモリセル150bに、共通に設けてもよい。ただし、図24Bに示すように、導電体110は、導電体245と離隔して設け、導電体110と導電体245がショートしないようにする。
 また、メモリセル150を3次元的にマトリクス状に配置することで、メモリセルアレイを構成することができる。メモリセルアレイの一例として、図25A及び図25Bに、X方向、Y方向、及びZ方向に、4個×2個×4個のメモリセル150を配置した記憶装置の例を示す。図25Aは、記憶装置の平面図である。また、図25Bは、図25AにA1−A2の一点鎖線で示す部位の断面図である。なお、図25Aの平面図では、図の明瞭化のために一部の要素を省いている。
 ここで、図25A及び図25Bに示すメモリセル150a乃至メモリセル150dのそれぞれは、メモリセル150と同様の構成を有する。メモリセル150cは容量素子100cとトランジスタ200cを有し、メモリセル150dは容量素子100dとトランジスタ200dを有する。
 以下において、メモリセル150a乃至メモリセル150dからなる記憶装置をメモリユニットと呼ぶ。図25A及び図25Bでは、記憶装置が有するメモリユニットのうち、メモリユニット160[1,1]乃至メモリユニット160[2,4]を示している。なお、以下において、各メモリユニットに共通する事項を説明する場合にはメモリユニット160と呼ぶ場合がある。メモリユニット160[a,b](a、bはそれぞれ正の整数)において、aはY方向のアドレスを、bはZ方向のアドレスをそれぞれ示している。
 メモリユニット160は、図25Bに示すように、導電体245を中心にして、メモリセル150aの外側にメモリセル150cが配置され、メモリセル150bの外側にメモリセル150dが配置されている。つまり、図24A、図24Bに示す記憶装置において、メモリセル150aに隣接してメモリセル150cを設け、メモリセル150bに隣接してメモリセル150dを設けた、記憶装置ともいえる。
 図25A及び図25Bに示すように、配線WLとして機能する導電体260は、Y方向に隣接するメモリセル150同士で共有されている。また、配線BLの一部として機能する導電体240は、同一メモリユニット内で共有されている。つまり、導電体240は、メモリセル150a乃至メモリセル150dの、それぞれの酸化物半導体230に接する。
 Z方向に隣接するメモリユニット160が有する導電体240の間に導電体245が設けられる。各メモリユニット160に設けられた、導電体240と導電体245によって、配線BLが形成される。導電体245は、図25A、図25Bに示す記憶装置の下に設けられたセンスアンプ(図示せず)に電気的に接続される。このように、図25A、図25Bに示す記憶装置において、複数のメモリユニットを積層することで、単位面積当たりの記憶容量を大きくすることができる。
 また、メモリセル150a及びメモリセル150cと、メモリセル150b及びメモリセル150dとは、導電体245を挟んで、線対称の位置に配置される。このように、4つのトランジスタと、プラグとの接続を上述の構成とすることで、微細化または高集積化が可能な記憶装置を提供できる。
 図25Bに示すように、複数のメモリセルを積層することにより、メモリセルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dメモリセルアレイを構成することができる。なお、図25Bでは、2つのメモリユニットを有する層を4層積層する構成を例示したが、本発明はこれに限られるものではない。記憶装置は、少なくとも一つのメモリセル150を有する層を1層有してもよいし、2層以上積層してもよい。
 図25Bでは、プラグとして機能する導電体245がメモリセル150間に配置される構成を示している。別言すると、プラグとして機能する導電体245がメモリユニット160の内側に配置される構成を示している。なお、本発明はこれに限られるものではない。導電体245は、メモリユニットの外側に配置されてもよい。
 メモリセルアレイの一例として、図26A及び図26Bに、X方向、Y方向、及びZ方向に、3個×3個×4個のメモリセル150を配置した記憶装置の例を示す。図26Aは、記憶装置の平面図である。また、図26Bは、図26AにA1−A2の一点鎖線で示す部位の断面図である。なお、図26Aの平面図では、図の明瞭化のために一部の要素を省いている。
 図26A及び図26Bに示す記憶装置は、メモリセル150を含む層がm(mは2以上の整数である)層積層された構成を有する。ここで、1層目(一番下)に設けられた上記層を層170[1]とし、m層目(一番上)に設けられた上記層を層170[m]として、図26Bに図示している。つまり、本発明の一態様の記憶装置は、メモリセル150を含む層を複数有し、複数の層が積層されている構成を有してもよい。
 図26A及び図26Bに示すように、導電体245は、メモリユニットの外側に設けられてもよい。また、導電体245は、当該導電体245を含む層の上層に設けられた配線と電気的に接続されてもよい。例えば、層170[1]に設けられている導電体245は、層170[2]に設けられている配線と電気的に接続されている。なお、層170[2]に設けられている当該配線は、層170[2]に含まれるメモリセル150の下部電極(導電体110)と同じ層に設けられている。つまり、当該配線は、導電体110と同じ工程で形成することができる。
 なお、図26Bでは、導電体245が、当該導電体245を含む層の上層に設けられた配線と電気的に接続される構成を示しているが、本発明はこれに限られるものではない。例えば、導電体245は、当該導電体245を含む層に設けられた配線と電気的に接続されてもよい。例えば、層170[1]に設けられている導電体245は、層170[1]に設けられている配線と電気的に接続されてもよい。なお、層170[1]に設けられている当該配線は、層170[1]に含まれるメモリセル150の下部電極(導電体110)と同じ層に設けられている。つまり、当該配線は、導電体110と同じ工程で形成することができる。
 図27A、図27Bには、周辺回路の一つであるセレクタ回路として機能する機能素子155を設けた場合の例を示している。ここでは、機能素子155が、各層170に一つずつ設けられている。図27Aは、一つの層170に対応した回路図を示している。
 トランジスタTr1はメモリセル150が有するトランジスタ200に対応し、容量素子Cは容量素子100に対応する。トランジスタTr2は機能素子155、及び機能素子155が有するトランジスタ200に対応する。
 各トランジスタTr1のゲートにはワード線として機能する配線WLが接続される。ここではWL[1]乃至WL[n](nは正の整数)のいずれか一つがトランジスタTr1と接続する例を示している。トランジスタTr1のソース電極及びドレイン電極の一方は容量素子Cと接続し、他方は配線BL1と接続する。配線BL1は第1のビット線として機能し、導電体240に対応する。
 トランジスタTr2は、ゲートが選択信号線として機能する配線Sと接続され、ソース電極及びドレイン電極の一方が配線BL1と接続され、他方が配線BL2と接続される。配線BL2は、第2のビット線として機能し、例えば図27Bの記憶装置の下に設けられたセンスアンプ(図示せず)に電気的に接続される。
 トランジスタTr2は配線Sに与えられる信号によって制御され、第1のビット線と、第2のビット線との導通または非導通を制御するためのスイッチとして機能する。第2のビット線は、積層された全ての層170が有する第1のビット線とトランジスタTr2を介して電気的に接続されている。
 このような構成とすることで、ある一つの層170に対してアクセス(読み出し、書き込み、またはリフレッシュ)を行う場合に、その層170の第1のビット線と第2のビット線とを導通させ、他の全ての層170の第2のビット線を第1のビット線と非導通とすることで、第2のビット線の負荷を大幅に低減することができる。そのため、アクセスに要する時間を大幅に短縮することができる。
 続いて、平面レイアウトの他の例について説明する。まず、図26Aに対応する記憶装置の平面レイアウトを図28Aに示す。図28Aには、4個×4個のメモリセル150を含む領域を示している。また、配線WLとして機能する導電体260、配線BLとして機能する導電体240、及び開口部290を図示している。導電体260、導電体240、及び開口部290が重なる領域(交差する領域)にメモリセル150が設けられている。
 図28Aでは、メモリセル150が直交した格子の交点に配置されている構成を示している。導電体260はY方向に延在し、導電体240はX方向に延在する。隣接する2つのメモリセル150の距離は、X方向とY方向とで等しい。また、X方向における導電体260の幅が一様であり、Y方向における導電体240の幅が一様である構成を示している。なお、本発明はこれに限られるものではない。
 図28Bは、記憶装置の平面レイアウトの別の一例である。図28Bの平面レイアウトでは、図28Aと同様に、導電体260、導電体240、メモリセル150、及び開口部290を図示している。図28Bに示す記憶装置は、メモリセル150(開口部290)の配置、導電体240の形状、及び、導電体260が延在する方向が、図28Aに示す記憶装置と主に異なる。
 図28Bに示すように、メモリセル150(開口部290)は、Y方向においてジグザグに配置されてもよい。図28Bにおいて、第1のメモリセルとX方向に隣接するメモリセルを第2のメモリセルとし、第1のメモリセル及び第2のメモリセルとY方向に隣接するメモリセルを、第3のメモリセルとする。例えば、第1のメモリセルと第2のメモリセルの中間を通り、Y方向に平行な直線上に、第3のメモリセルの中心が位置するとよい。このとき、第3のメモリセルは、第1のメモリセル及び第2のメモリセルとX方向に半分ずれた位置に位置するともいえる。
 また、図28Bに示すように、導電体240は、X方向に幅の広い第1の領域と、幅の狭い第2の領域と、を有する。第1の領域は、開口部290及びその近傍の領域である。平面視において第1の領域は、四角形の角部を丸めた形状といえる。また、第2の領域は、1つの導電体240において隣接する開口部290の間の領域である。このような構成にすることで、メモリセル150(開口部290)がY方向においてジグザグに配置される場合、導電体240間の物理距離を小さくすることができる。よって、記憶装置の微細化及び高集積化を図ることができる。
 また、図28Bでは、導電体260の延伸方向が、Y方向に対して傾けて配置されている。つまり、メモリセル150(開口部290)の配置によっては、導電体260の延伸方向は、導電体240の延伸方向と直交していない。
 図28Cは、記憶装置の平面レイアウトの別の一例である。図28Cに示す記憶装置は、導電体240の第1の領域の形状が、図28Bに示す記憶装置と主に異なる。
 図28Bに示す導電体240の第1の領域は、平面視において四角形の角部を丸めた形状であり、当該四角形の一辺がX方向又はY方向に平行となっている。一方、図28Cに示す導電体240の第1の領域は、平面視において四角形の角部を丸めた形状であり、当該四角形の対角線がX方向又はY方向に平行となっている。このような構成にすることで、メモリセル150(開口部290)がY方向においてジグザグに配置される場合、導電体240間の物理距離を小さくすることができる。よって、記憶装置の微細化及び高集積化を図ることができる。
 図28B及び図28Cでは、導電体240の第1の領域が、平面視において四角形の角部を丸めた形状である例を示しているが、本発明はこれに限られるものではない。
 図29Aは、記憶装置の平面レイアウトの別の一例である。図29Aに示す記憶装置は、導電体240の第1の領域の形状が、図28B及び図28Cに示す記憶装置と主に異なる。
 図29Bに示す導電体240の第1の領域は、平面視において円形状である。このような構成にすることで、メモリセル150(開口部290)がY方向においてジグザグに配置される場合、導電体240間の物理距離を小さくすることができる。よって、記憶装置の微細化及び高集積化を図ることができる。
 なお、平面視における導電体240の第1の領域は、前述した形状に限定されない。例えば、平面視における導電体240の第1の領域は、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 また、図28Aでは、導電体260が延在する方向と垂直な方向における導電体260の幅が一様である構成を示しているが、本発明はこれに限られるものではない。
 図29Bは、記憶装置の平面レイアウトの別の一例である。図29Bに示す記憶装置は、導電体260の形状が、図29Aに示す記憶装置と主に異なる。
 図29Bに示す導電体260は、導電体240と同様に、第1の領域と、第2の領域と、を有する。第1の領域は平面視において円形状である。なお、導電体260の第1の領域は、導電体240の第1の領域と重なる。このような構成にすることで、メモリセル150(開口部290)がY方向においてジグザグに配置される場合、導電体240間の物理距離を小さくすることができる。よって、記憶装置の微細化及び高集積化を図ることができる。
 図29Cは、記憶装置の平面レイアウトの別の一例である。図29Cに示す記憶装置は、導電体260の形状及び延伸方向が、図29Aに示す記憶装置と主に異なる。
 図29Cに示す導電体260は、平面視において三角波のような蛇行形状であり、Y方向に延在して設けられている。このような構成にすることで、メモリセル150(開口部290)がY方向においてジグザグに配置される場合、導電体240間の物理距離を小さくすることができる。よって、記憶装置の微細化及び高集積化を図ることができる。なお、平面視における導電体260は上記に限られず、ミアンダ形状などであってもよい。
 上記の構成にすることで、導電体260間の物理距離、及び導電体240間の物理距離の一方又は両方を小さくし、記憶装置の微細化及び高集積化を図ることができる。
 図30に、センスアンプを含む駆動回路が設けられる層上に、メモリセルを有する層が積層して設けられた記憶装置の断面構成例を示す。
 図30では、トランジスタ300の上方に容量素子100が設けられ、トランジスタ300及び容量素子100の上方にトランジスタ200が設けられている。トランジスタ300は、センスアンプが有するトランジスタの一つである。
 図30に示すメモリセル150(トランジスタ200及び容量素子100)の構成は、上述の通りである。
 図30に示すように、メモリセル150と重なるように、センスアンプを設ける構成にすることで、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
 また、トランジスタ200を容量素子100の上方に設けることで、トランジスタ200は、容量素子100の作製時の熱履歴を受けない。したがって、トランジスタ200において、しきい値電圧の変動、及び寄生抵抗の増大などの電気特性の劣化、並びに電気特性の劣化に伴う電気特性のばらつきの増大などを抑制することができる。
 図30に示す記憶装置は、以降で説明する記憶装置80と対応させることができる。具体的には、トランジスタ300は、記憶装置80におけるセンスアンプ46が有するトランジスタに相当する。また、メモリセル150は、メモリセル32と対応し、トランジスタ200は、トランジスタ37に相当し、容量素子100は、容量素子38に相当する。
 トランジスタ300は、基板311上に設けられ、ゲートとして機能する導電体316と、ゲート絶縁体として機能する絶縁体315と、基板311の一部からなる半導体領域313と、ソース領域またはドレイン領域として機能する低抵抗領域314a及び低抵抗領域314bと、を有する。トランジスタ300は、pチャネル型またはnチャネル型のいずれでもよい。
 ここで、図30に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面及び上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図30に示すトランジスタ300は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いることができる。
 各構造体の間には、層間膜、配線、及びプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線として機能する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。また、絶縁体320及び絶縁体322には導電体328が埋め込まれ、絶縁体324及び絶縁体326には導電体330が埋め込まれている。なお、導電体328及び導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるためにCMP法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326及び導電体330上に、配線層を設けてもよい。例えば、図30において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
 層間膜として機能する、絶縁体352、及び絶縁体354等は、前述の、記憶装置に用いることができる絶縁体を用いることができる。
 プラグ、または配線として機能する導電体、例えば、導電体328、導電体330、及び導電体356等としては、上述の導電体を用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 トランジスタ200が有する導電体240は、導電体643、導電体642、導電体644、導電体645、導電体646、導電体356、導電体330、及び、導電体328を介して、トランジスタ300のソース領域またはドレイン領域として機能する低抵抗領域314bと、電気的に接続されている。
 導電体643は、絶縁体280に埋め込まれている。導電体642は、絶縁体130上に設けられ、絶縁体641に埋め込まれている。導電体642は、導電体120と同一の材料、及び、同一の工程で作製することができる。導電体644は、絶縁体180及び絶縁体130に埋め込まれている。導電体645は、絶縁体647に埋め込まれている。導電体645は、導電体110と同一の材料、及び、同一の工程で作製することができる。導電体646は、絶縁体648に埋め込まれている。絶縁体648によって、トランジスタ300と、導電体110と、が電気的に絶縁されている。
 図31には、図30における導電体642、導電体643、及び導電体644に代えて、周辺回路として機能する機能素子155を設けた場合の例を示す。具体的には機能素子155が有するトランジスタ200は、トランジスタ300のソースまたはドレインの一方に電気的に接続される導電体645と、ビット線として機能する導電体240との導通、非導通を制御するスイッチとして機能する。
 本発明の一態様により、新規のトランジスタ、半導体装置、及び記憶装置を提供できる。または、微細化または高集積化が可能なトランジスタ、半導体装置、及び、記憶装置を提供できる。または、信頼性が良好なトランジスタ、半導体装置、及び、記憶装置を提供できる。または、オン電流が大きいトランジスタと、当該トランジスタを有する半導体装置、及び、記憶装置を提供できる。または、トランジスタ特性のばらつきが少ない半導体装置及び記憶装置を提供できる。または、電気特性が良好なトランジスタと、当該トランジスタを有する半導体装置及び記憶装置を提供できる。または、消費電力の低い半導体装置及び記憶装置を提供できる。または、周波数特性が良好な記憶装置を提供できる。または、動作速度が速い記憶装置を提供できる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の記憶装置について図32乃至図35を用いて説明する。本実施の形態では、センスアンプを含む駆動回路が設けられる層上に、メモリセルを有する層が積層して設けられた記憶装置の構成例について説明する。
<記憶装置の構成例>
 図32に、本発明の一態様に係る記憶装置80の構成例を示すブロック図を示す。図32に示す記憶装置80は、層20と、積層された層70と、を有する。
 層20は、Siトランジスタを有する層である。積層された層70では、素子層30[1]乃至30[m](mは2以上の整数。)が積層して設けられる。素子層30[1]乃至30[m]は、OSトランジスタを有する層である。OSトランジスタを有する層が積層して設けられる層70は、層20上に積層して設けることができる。
 素子層30[1]乃至30[m]が有するOSトランジスタ及び容量素子といった素子は、メモリセルを構成する。図32では、素子層30[1]乃至30[m]において、m行n列(nは2以上の整数)のマトリクス状に配置された複数のメモリセル32を有する例を示している。
 図32では、1行1列目のメモリセル32をメモリセル32[1,1]と示し、m行n列目のメモリセル32をメモリセル32[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル32をメモリセル32[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また図32では、一例として、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を図示している。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。なお素子層30[1]乃至30[m]の層数と、配線WL(及び配線PL)の本数は、同じでなくてもよい。
 i行目に設けられた複数のメモリセル32は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル32は、j列目の配線BL(配線BL[j])と電気的に接続される。
 配線BLは、データの書き込み及び読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、キャパシタに接続される定電位線としての機能を有する。なおバックゲート電位を伝える配線としては、配線CL(図示せず)を別途設けることができる。
 素子層30[1]乃至30[m]がそれぞれ有するメモリセル32は、配線BLを介してセンスアンプ46に接続される。配線BLは、層20が設けられる基板表面の水平方向及び垂直方向に配置することができる。素子層30[1]乃至30[m]が有するメモリセル32から延びて設けられる配線BLを、基板表面の水平方向に配置される配線に加え、垂直方向に配置される配線で構成することで、素子層30とセンスアンプ46との間の配線の長さを短くできる。メモリセルとセンスアンプとの間の信号伝搬距離を短くでき、ビット線の抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。そのため、記憶装置80の消費電力及び信号遅延の低減が実現できる。またメモリセル32が有するキャパシタの容量を小さくしても動作させることが可能となる。そのため、記憶装置80の小型化が実現できる。
 層20は、PSW71(パワースイッチ)、PSW72、及び周辺回路22を有する。周辺回路22は、駆動回路40、コントロール回路73、及び電圧生成回路74を有する。なお層20が有する各回路は、Siトランジスタを有する回路である。
 記憶装置80において、各回路、各信号及び各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、及び信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路73で生成してもよい。
 コントロール回路73は、記憶装置80の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GW及び信号BWを論理演算して、記憶装置80の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路73は、この動作モードが実行されるように、駆動回路40の制御信号を生成する。
 電圧生成回路74は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路74への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路74へ入力され、電圧生成回路74は負電圧を生成する。
 駆動回路40は、メモリセル32に対するデータの書き込み及び読み出しをするための回路である。駆動回路40は、行デコーダ42、列デコーダ44、行ドライバ43、列ドライバ45、入力回路47、出力回路48に加え、前述したセンスアンプ46を有する。
 行デコーダ42及び列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線WLを選択する機能を有する。列ドライバ45は、データをメモリセル32に書き込む機能、メモリセル32からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、メモリセル32に書き込むデータ(Din)である。列ドライバ45がメモリセル32から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置80の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。
 PSW71は周辺回路22へのVDDの供給を制御する機能を有する。PSW72は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置80の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW71のオン・オフが制御され、信号PON2によってPSW72のオン・オフが制御される。図32では、周辺回路22において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 なお、層70に実施の形態1で例示したセレクタ回路を設けることができる。これにより、ビット線の負荷を軽減することが可能となり、動作速度(書込み速度、および読み出し速度)の極めて高い記憶装置を実現することができる。
 素子層30[1]乃至30[m]は、層20上に重ねて設けることができる。図33Aに、層20上に5層(m=5)の素子層30[1]乃至30[5]を重ねて設けられる様子を示す記憶装置80の斜視図を示している。
 図33Aでは、1層目に設けられた素子層30を素子層30[1]と示し、2層目に設けられた素子層30を素子層30[2]と示し、5層目に設けられた素子層30を素子層30[5]と示している。また図33Aにおいて、X方向に延びて設けられる配線WL、及び配線PLと、Y方向及びZ方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BL及び配線BLBと、を図示している。配線BLBは、反転ビット線である。なお、図面を見やすくするため、素子層30それぞれが有する配線WL及び配線PLの記載を一部省略している。
 図33Bに、図33Aで図示した配線BL及び配線BLBに接続されたセンスアンプ46、及び配線BL及び配線BLBに接続された素子層30[1]乃至30[5]が有するメモリセル32の構成例を説明する模式図を示す。なお、1つの配線BL及び配線BLBに複数のメモリセル(メモリセル32)が電気的に接続される構成を「メモリストリング」ともいう。
 図33Bでは、配線BLBに接続されるメモリセル32の回路構成の一例を図示している。メモリセル32は、トランジスタ37及び容量素子38を有する。トランジスタ37、容量素子38、及び各配線(BL、及びWLなど)についても、例えば配線BL[1]及び配線WL[1]を配線BL及び配線WLなどのようにいう場合がある。メモリセル32には、例えば、先の実施の形態で例示したメモリセル150を適用することができる。つまり、トランジスタ37として、トランジスタ200を用い、容量素子38として、容量素子100を用いることができる。また、センスアンプ46が有するトランジスタとしては、トランジスタ300(図30参照)を用いることができる。
 メモリセル32において、トランジスタ37のソースまたはドレインの一方は配線BLに接続される。トランジスタ37のソースまたはドレインの他方は容量素子38の一方の電極に接続される。容量素子38の他方の電極は、配線PLに接続される。トランジスタ37のゲートは配線WLに接続される。
 なお、実施の形態1で例示したセレクタ回路を適用する場合には配線BLとメモリセル32との間に、上述した機能素子155を接続すればよい。
 配線PLは、容量素子38の電位を保持するための定電位を与える配線である。複数の配線PL同士は、1つの配線として接続して設けることで配線数を削減することができる。
 本発明の一態様では、OSトランジスタは積層して設けるとともに、ビット線として機能する配線を、層20が設けられる基板表面の垂直方向に配置する。加えて、メモリセル32が有するトランジスタ37及び容量素子38を、層20が設けられる基板表面の垂直方向に並べて配置する。各素子及び各配線を基板表面の垂直方向に設けることで、素子層間の配線の長さを短くできるとともに、単位面積当たりに設けられる素子の密度を高めることができる。そのため、記憶容量及び消費電力の低減に優れた記憶装置とすることができる。
[メモリセル32、センスアンプ46の構成例]
 図34A及び図34Bには、上述したメモリセル32に対応する回路図、及び当該回路図に対応する回路ブロックの説明する図を示す。図34A及び図34Bに図示するように、メモリセル32は図面等においてブロックとして表す場合がある。なお図34A及び図34Bに図示する配線BLは、配線BLBに置き換えた場合も同様に表すことができる。
 また、図34C及び図34Dには、上述したセンスアンプ46に対応する回路図、及び当該回路図に対応する回路ブロックの説明する図を示す。センスアンプ46は、スイッチ回路82、プリチャージ回路83、プリチャージ回路84、増幅回路85を図示している。また、配線BL、配線BLBの他、読み出される信号を出力する配線SA_OUT、配線SA_OUTBを図示している。
 スイッチ回路82は、図34Cに図示するように、例えばnチャネル型のトランジスタ82_1、82_2を有する。トランジスタ82_1、82_2は、信号CSELに応じて、配線SA_OUT、配線SA_OUTBの配線対と、配線BL、配線BLBの配線対と、の導通状態を切り替える。
 プリチャージ回路83は、図34Cに図示するように、nチャネル型のトランジスタ83_1乃至83_3で構成される。プリチャージ回路83は、信号EQに応じて、配線BL及び配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 プリチャージ回路84は、図34Cに図示するように、pチャネル型のトランジスタ84_1乃至84_3で構成される。プリチャージ回路84は、信号EQBに応じて、配線BL及び配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 増幅回路85は、図34Cに図示するように、配線SAPまたは配線SANに接続された、pチャネル型のトランジスタ85_1、85_2及びnチャネル型のトランジスタ85_3、85_4で構成される。配線SAPまたは配線SANは、VDDまたはVSSを与える機能を有する配線である。トランジスタ85_1乃至85_4は、インバータループを構成するトランジスタである。
 また、図34Dには図34C等で説明したセンスアンプ46に対応する回路ブロックの説明する図を示す。図34Dに図示するように、センスアンプ46は図面等においてブロックとして表す場合がある。
 図35は、図32の記憶装置80の回路図である。図35では、図34A乃至図34Dで説明した回路ブロックを用いて図示している。
 図35に図示するように素子層30[m]を含む層70は、メモリセル32を有する。図35に図示するメモリセル32は、一例として、対になる配線BL[1]及び配線BLB[1]、または配線BL[2]及び配線BLB[2]に接続される。配線BLに接続されるメモリセル32は、データの書き込みまたは読み出しがされるメモリセルである。
 配線BL[1]及び配線BLB[1]は、センスアンプ46[1]に接続され、配線BL[2]及び配線BLB[2]は、センスアンプ46[2]に接続される。センスアンプ46[1]及びセンスアンプ46[2]は、図34Cで説明した各種信号に応じてデータの読み出しを行うことができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の半導体装置の応用例について説明する。本発明の一態様の半導体装置は、例えば、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンター(Data Center:DCとも呼称する)に用いることができる。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンターは、低消費電力化といった高性能化に有効である。
[電子部品]
 電子部品700が実装された基板(実装基板704)の斜視図を、図36Aに示す。図36Aに示す電子部品700は、モールド711内に半導体装置710を有している。図36Aは、電子部品700の内部を示すために、一部の記載を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は半導体装置710とワイヤ714を介して電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、記憶層716と、を有する。なお、記憶層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、記憶層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、及び、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、記憶層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくできるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、記憶層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシの一方または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、記憶層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図36Bに示す。電子部品730は、SiP(System in Package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、またはFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、または、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、または樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を電気的に接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、前述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図36Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[電子機器]
 次に、電子機器6500の斜視図を図37Aに示す。図37Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508、及び制御装置6509などを有する。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。
 図37Bに示す電子機器6600は、ノート型パーソナルコンピュータとして用いることのできる情報端末機である。電子機器6600は、筐体6611、キーボード6612、ポインティングデバイス6613、外部接続ポート6614、表示部6615、制御装置6616などを有する。なお、制御装置6616としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6615、制御装置6616などに適用することができる。なお、本発明の一態様の半導体装置を、前述の制御装置6509、及び制御装置6616に用いることで、消費電力を低減させることができるため好適である。
[大型計算機]
 次に、大型計算機5600の斜視図を図37Cに示す。図37Cに示す大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 計算機5620は、例えば、図37Dに示す斜視図の構成とすることができる。図37Dにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図37Eに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図37Eには、半導体装置5626、半導体装置5627、及び半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、及び半導体装置5628の説明を参照できる。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない)を有しており、当該端子をボード5622が備えるソケット(図示しない)に対して差し込むことで、半導体装置5626とボード5622を電気的に接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を電気的に接続することができる。半導体装置5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を電気的に接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品700を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、及び推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含む。OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。具体的には、OSトランジスタを、スペースシャトル、人工衛星、または、宇宙探査機に設けられる半導体装置を構成するトランジスタに用いることができる。放射線として、例えば、X線、及び中性子線が挙げられる。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏のうち一つまたは複数を含んでもよい。
 図38Aには、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図38Aにおいては、宇宙空間に惑星6804を例示している。
 また、図38Aには、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。前述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、例えば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様であるOSトランジスタを含む半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。例えば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、例えば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。長期的なデータを管理する場合、膨大なデータを記憶するためのストレージ及びサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、及びモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図38Bにデータセンターに適用可能なストレージシステムを示す。図38Bに示すストレージシステム7000は、ホスト7001(Host Computerと図示)として複数のサーバ7001sbを有する。また、ストレージ7003(Storageと図示)として複数の記憶装置7003mdを有する。ホスト7001とストレージ7003とは、ストレージエリアネットワーク7004(SAN:Storage Area Networkと図示)及びストレージ制御回路7002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト7001は、ストレージ7003に記憶されたデータにアクセスするコンピュータに相当する。ホスト7001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ7003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ7003のアクセススピードの長さの問題を解決するために、通常ストレージ内にキャッシュメモリを設けてデータの記憶及び出力に要する時間を短くしている。
 前述のキャッシュメモリは、ストレージ制御回路7002及びストレージ7003内に用いられる。ホスト7001とストレージ7003との間でやり取りされるデータは、ストレージ制御回路7002及びストレージ7003内の当該キャッシュメモリに記憶されたのち、ホスト7001またはストレージ7003に出力される。
 前述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることで小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
100:容量素子、101:接続部、110:導電体、115:導電体、120A:導電膜、120:導電体、125:導電体、130:絶縁体、131:絶縁体、135:絶縁体、140:絶縁体、145:レジストマスク、146:開口、150a:メモリセル、150b:メモリセル、150c:メモリセル、150d:メモリセル、150:メモリセル、155:機能素子、160:メモリユニット、170:層、180a:絶縁体、180b:絶縁体、180:絶縁体、182:絶縁体、185:絶縁体、190:開口部、200a:トランジスタ、200b:トランジスタ、200:トランジスタ、230a:酸化物半導体、230b:酸化物半導体、230i:領域、230na:領域、230nb:領域、230:酸化物半導体、240A:導電膜、240:導電体、245:導電体、246:導電体、250a:絶縁体、250b:絶縁体、250c:絶縁体、250:絶縁体、260a:導電体、260A:導電膜、260b:導電体、260:導電体、280a:絶縁体、280b:絶縁体、280c:絶縁体、280:絶縁体、283:絶縁体、287:絶縁体、290:開口部

Claims (6)

  1.  第1のトランジスタ、接続部、第1の絶縁体、第2の絶縁体、及び第1の配線を有し、
     前記接続部は、第1の電極、及び第2の電極を有し、
     前記第1のトランジスタは、前記第2の電極、第3の電極、第1の半導体、ゲート絶縁体、及び第1のゲート電極を有し、
     前記第1の絶縁体は、前記第1の配線上に設けられ、且つ、前記第1の配線に達する第1の開口を有し、
     前記第1の電極は、前記第1の絶縁体の前記第1の開口内の側面に接する第1の部分、及び前記第1の配線の上面に接する第2の部分を有し、
     前記第2の電極は、前記第1の開口に埋め込まれ、且つ前記第1の電極の前記第2の部分と接し、
     前記第2の絶縁体は、前記第1の絶縁体上に設けられ、且つ、前記第2の電極に達する第2の開口を有し、
     前記第3の電極は、前記第2の絶縁体上に設けられ、
     前記第1の半導体は、前記第3の電極と接する第3の部分、前記第2の絶縁体の前記第2の開口内の側面に接する第4の部分、及び前記第2の電極の上面に接する第5の部分を有し、
     前記ゲート絶縁体は、前記第2の開口内に位置し、且つ、前記第1の半導体の前記第4の部分、及び前記第5の部分と接し、
     前記第1のゲート電極は、前記第2の開口内に位置し、且つ、前記前記ゲート絶縁体を介して、前記第1の半導体の前記第3の部分、前記第4の部分、及び前記第5の部分と対向する、
     半導体装置。
  2.  請求項1において、
     容量素子、及び第2の配線をさらに有し、
     前記容量素子は、第4の電極、第5の電極、及び第3の絶縁体を有し、
     前記第1の絶縁体は、前記第2の配線に達する第3の開口を有し、
     前記第4の電極は、前記第1の絶縁体の前記第3の開口内の側壁に接する第6の部分、及び前記第2の配線の上面に接する第7の部分を有し、
     前記第3の絶縁体は、前記第3の開口内に位置し、且つ、前記第4の電極の前記第6の部分及び前記第7の部分と接し、
     前記第5の電極は、前記第3の開口に埋め込まれ、且つ、前記第3の絶縁体を介して前記第4の電極の前記第6の部分及び前記第7の部分と対向する、
     半導体装置。
  3.  請求項2において、
     前記容量素子上に第2のトランジスタをさらに有し、
     前記第2のトランジスタは、前記第5の電極、第6の電極、第2の半導体、前記ゲート絶縁体、及び第2のゲート電極を有し、
     前記第2の絶縁体は、前記第5の電極に達する第4の開口を有し、
     前記第6の電極は前記第2の絶縁体上に設けられ、
     前記第2の半導体は、前記第6の電極と接する第8の部分、前記第2の絶縁体の前記第4の開口内の側壁に接する第9の部分、及び前記第5の電極の上面に接する第10の部分を有し、
     前記ゲート絶縁体は、前記第4の開口内に位置し、且つ、前記第2の半導体の前記第9の部分、及び前記第10の部分と接し、
     前記第2のゲート電極は、前記第4の開口内に位置し、且つ、前記ゲート絶縁体を介して前記第2の半導体の前記第8の部分、前記第9の部分、及び前記第10の部分と対向する、
     半導体装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第2の電極は、前記第1の電極の前記第1の部分に接する、
     半導体装置。
  5.  請求項1乃至請求項3のいずれか一において、
     第4の絶縁体をさらに有し、
     前記第4の絶縁体は、前記第1の開口内に位置し、且つ、前記第1の電極の前記第1の部分と接し、
     前記第2の電極は、前記第4の絶縁体と接する、
     半導体装置。
  6.  請求項1乃至請求項3のいずれか一において、
     前記第2の電極は、第1の導電体と、前記第1の導電体上の第2の導電体と、を有し、
     前記第1の導電体は、前記第1の開口に埋め込まれ、且つ前記第1の電極の前記第2の部分と接し、
     前記第2の導電体は、前記第1の半導体と接する、
     半導体装置。
PCT/IB2023/058970 2022-09-16 2023-09-11 半導体装置 WO2024057166A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022147541 2022-09-16
JP2022-147541 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057166A1 true WO2024057166A1 (ja) 2024-03-21

Family

ID=90274455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/058970 WO2024057166A1 (ja) 2022-09-16 2023-09-11 半導体装置

Country Status (1)

Country Link
WO (1) WO2024057166A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149552A (ja) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2016174144A (ja) * 2015-02-06 2016-09-29 株式会社半導体エネルギー研究所 装置およびその作製方法、ならびに電子機器
JP2017126763A (ja) * 2012-03-05 2017-07-20 株式会社半導体エネルギー研究所 半導体記憶装置
JP2022049605A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 半導体装置及び半導体記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126763A (ja) * 2012-03-05 2017-07-20 株式会社半導体エネルギー研究所 半導体記憶装置
JP2016174144A (ja) * 2015-02-06 2016-09-29 株式会社半導体エネルギー研究所 装置およびその作製方法、ならびに電子機器
JP2016149552A (ja) * 2015-02-11 2016-08-18 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2022049605A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 半導体装置及び半導体記憶装置

Similar Documents

Publication Publication Date Title
WO2024057166A1 (ja) 半導体装置
WO2024057165A1 (ja) 記憶装置
WO2024052774A1 (ja) 半導体装置の作製方法
WO2024052787A1 (ja) 半導体装置
WO2024095108A1 (ja) 半導体装置、及び記憶装置
WO2024100467A1 (ja) 半導体装置
WO2024084366A1 (ja) 半導体装置、及び、記憶装置
WO2024079586A1 (ja) 半導体装置、及び記憶装置
WO2023242664A1 (ja) 半導体装置、記憶装置
WO2023209484A1 (ja) 半導体装置
WO2024047486A1 (ja) 記憶装置
WO2024069339A1 (ja) 記憶装置
WO2024028681A1 (ja) 半導体装置、及び記憶装置
WO2024047454A1 (ja) 半導体装置および半導体装置の駆動方法
WO2024105497A1 (ja) 記憶装置
WO2024057167A1 (ja) 記憶装置
WO2023209486A1 (ja) 半導体装置、及び記憶装置
US20240147687A1 (en) Memory device
US20240113138A1 (en) Semiconductor device, method for manufacturing semiconductor device, and electronic apparatus
WO2023209491A1 (ja) 半導体装置
WO2024047500A1 (ja) 記憶装置、及び、記憶装置の作製方法
WO2023223126A1 (ja) 半導体装置
WO2023203435A1 (ja) 半導体装置
WO2024047487A1 (ja) 記憶装置
WO2024095110A1 (ja) 半導体装置、及び、半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864874

Country of ref document: EP

Kind code of ref document: A1