WO2023242665A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023242665A1
WO2023242665A1 PCT/IB2023/055669 IB2023055669W WO2023242665A1 WO 2023242665 A1 WO2023242665 A1 WO 2023242665A1 IB 2023055669 W IB2023055669 W IB 2023055669W WO 2023242665 A1 WO2023242665 A1 WO 2023242665A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
conductor
layer
insulator
circuit
Prior art date
Application number
PCT/IB2023/055669
Other languages
English (en)
French (fr)
Inventor
松嵜隆徳
齋藤利彦
岡本佑樹
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023242665A1 publication Critical patent/WO2023242665A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/04Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects

Definitions

  • One embodiment of the present invention relates to a semiconductor device and the like.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to products, methods, or manufacturing methods.
  • one aspect of the present invention relates to a process, machine, manufacture, or composition of matter. Therefore, more specifically, the technical fields of one embodiment of the present invention disclosed in this specification include semiconductor devices, display devices, light-emitting devices, power storage devices, storage devices, driving methods thereof, or manufacturing methods thereof; can be cited as an example.
  • Patent Document 1 discloses a configuration in which a layer having a plurality of OS transistors is three-dimensionally stacked on a die having a Si transistor.
  • each layer having a plurality of OS transistors has a different temperature, for example, an upper layer and a lower layer have different temperatures. becomes. Therefore, there is a possibility that the amount of variation in the electrical characteristics of the transistors differs for each layer having a plurality of OS transistors.
  • One embodiment of the present invention includes a first element layer provided with a temperature detection circuit and a voltage generation circuit, and a plurality of second element layers provided with memory cells, and the plurality of second element layers include:
  • the memory cell is provided in a stacked manner on the first element layer, the semiconductor layer having a channel formation region has a transistor including an oxide semiconductor, the transistor has a back gate, and the voltage generation circuit has a back gate.
  • the temperature detection circuit has the function of controlling the back gate voltage according to the detected temperature, and the voltage generation circuit has the function of generating the back gate voltage to be supplied to the This is a semiconductor device that has a function of supplying different voltages to each of two element layers.
  • a semiconductor device in which a back gate voltage supplied to a transistor included in a second element layer provided in an upper layer is higher than a back gate voltage supplied to a transistor included in a second element layer provided in a lower layer. is preferred.
  • a semiconductor device is preferable in which the first element layer has an arithmetic circuit, and the stacked second element layer is provided to overlap a region where the arithmetic circuit is provided.
  • the oxide semiconductor is preferably a semiconductor device containing In, Ga, and Zn.
  • a semiconductor device in which a back gate voltage supplied to a transistor included in a second element layer provided in an upper layer is higher than a back gate voltage supplied to a transistor included in a second element layer provided in a lower layer. is preferred.
  • a semiconductor device is preferable in which the first element layer has an arithmetic circuit, and the stacked second element layer is provided to overlap a region where the arithmetic circuit is provided.
  • the oxide semiconductor is preferably a semiconductor device containing In, Ga, and Zn.
  • the temperature detection circuit is a semiconductor device including a transistor in which a semiconductor layer including a channel formation region includes an oxide semiconductor.
  • One embodiment of the present invention includes a first element layer provided with a temperature detection circuit and a voltage generation circuit, a second element layer provided with an amplifier circuit, and a plurality of third element layers provided with memory cells.
  • the plurality of second element layers are provided in a stacked manner on the first element layer
  • the plurality of third element layers are provided in a stacked manner on the second element layer
  • the amplification circuit receives a signal from the memory cell.
  • the amplifier circuit and the memory cell each include a transistor in which a semiconductor layer including a channel formation region includes an oxide semiconductor, the transistor has a back gate, and a voltage generation circuit is connected to the back gate.
  • the temperature detection circuit has a function of generating the back gate voltage to be supplied, the temperature detection circuit has the function of controlling the back gate voltage according to the detected temperature, and the voltage generation circuit generates the back gate voltage of the second element layer. and a semiconductor device having a function of supplying different voltages to each of a plurality of third element layers.
  • the back gate voltage supplied to the transistor included in the second element layer provided in the upper layer is supplied to the transistor included in the second element layer provided in the lower layer.
  • the semiconductor device has a voltage higher than the back gate voltage.
  • the oxide semiconductor is preferably a semiconductor device containing In, Ga, and Zn.
  • the first element layer includes an arithmetic circuit having a scan flip-flop, and the scan flip-flop is electrically connected to a backup circuit having a function of holding data of the scan flip-flop.
  • the circuit is a semiconductor device provided in a region of the second element layer overlapping a region in which the scan flip-flop is provided.
  • One embodiment of the present invention can provide a semiconductor device in which the influence of variations in electrical characteristics of transistors is reduced. Alternatively, one embodiment of the present invention can provide a semiconductor device with excellent reduction in power consumption. Alternatively, one embodiment of the present invention can provide a semiconductor device with excellent storage density. Alternatively, one embodiment of the present invention can provide a semiconductor device with a novel configuration.
  • FIG. 1A and 1B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 2 is a diagram illustrating a configuration example of a semiconductor device.
  • 3A and 3B are diagrams illustrating a semiconductor device.
  • 4A to 4C are diagrams illustrating a semiconductor device.
  • 5A and 5B are diagrams illustrating a semiconductor device.
  • FIG. 6 is a diagram illustrating a configuration example of a semiconductor device.
  • 7A and 7B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 8 is a diagram illustrating a configuration example of a semiconductor device.
  • 9A to 9C are diagrams illustrating a configuration example of a semiconductor device.
  • 10A to 10D are diagrams illustrating configuration examples of a semiconductor device.
  • FIG. 11A to 11E are diagrams illustrating configuration examples of a semiconductor device.
  • FIG. 12 is a diagram illustrating a configuration example of a semiconductor device.
  • 13A and 13B are diagrams illustrating a configuration example of a semiconductor device.
  • 14A and 14B are diagrams illustrating a configuration example of a semiconductor device.
  • 15A to 15D are diagrams illustrating configuration examples of a semiconductor device.
  • 16A and 16B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 17 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 18 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 19 is a diagram illustrating a configuration example of a semiconductor device.
  • 20A and 20B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 21A and 21B are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 22 is a diagram illustrating a configuration example of a semiconductor device.
  • 23A to 23C are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 24 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 25 is a diagram illustrating an example of the configuration of the storage unit.
  • FIG. 26A is a diagram illustrating a configuration example of a storage layer.
  • FIG. 26B is a diagram illustrating an equivalent circuit of the storage layer.
  • 27A to 27D are diagrams illustrating a configuration example of a semiconductor device.
  • FIG. 28 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 28 is a diagram illustrating a configuration example of a semiconductor device.
  • FIG. 29 is a diagram illustrating an example of the configuration of the storage unit.
  • FIG. 30A is a diagram illustrating a configuration example of a storage layer.
  • FIG. 30B is a diagram illustrating an equivalent circuit of the storage layer.
  • FIG. 31 is a diagram illustrating a configuration example of a semiconductor device.
  • 32A and 32B are diagrams showing an example of an electronic component.
  • 33A and 33B are diagrams showing an example of an electronic device
  • FIGS. 33C to 33E are diagrams showing an example of a large-sized computer.
  • FIG. 34 is a diagram showing an example of space equipment.
  • FIG. 35 is a diagram illustrating an example of a storage system applicable to a data center.
  • FIG. 36 is a diagram illustrating a cross-sectional configuration of a semiconductor device.
  • FIG. 37 is a diagram illustrating the layout of a semiconductor chip.
  • FIGS. 38A to 38D are diagrams illustrating an operation simulation of a semiconductor chip.
  • metal oxide refers to a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OS), and the like. For example, when a metal oxide is used in the active layer of a transistor, the metal oxide is sometimes called an oxide semiconductor. That is, when describing an OS transistor, it can be referred to as a transistor including a metal oxide or an oxide semiconductor.
  • a semiconductor device described as one embodiment of the present invention has a function as a system on a chip (SoC) that includes a CPU, a cache memory, and a plurality of synchronous circuits such as memory or peripheral circuits.
  • SoC system on a chip
  • FIG. 1A is a schematic perspective view of a semiconductor device according to one embodiment of the present invention.
  • the semiconductor device 10 shown in FIG. 1A includes an element layer 20 and a plurality of element layers (eg, element layers 30_1 to 30_4 in FIG. 1A).
  • FIG. 1B is a perspective view showing the element layer 20 and a plurality of element layers 30_1 to 30_4 separated from each other in the configuration of FIG. 1A.
  • FIG. 2 is a block diagram for explaining the configuration shown in FIGS. 1A and 1B.
  • the voltage control circuit 21 has a function of supplying a voltage (back gate voltage) to be applied to the back gate of the transistor 37 included in the memory cell array 31 for each of the element layers 30_1 to 30_4.
  • the back gate voltage is a different voltage for each of the element layers 30_1 to 30_4. Further, the back gate voltage is controlled according to the temperature detected by the voltage control circuit 21. With this configuration, different back gate voltages can be supplied to the element layer 30_1 close to the element layer 20 and the element layer 30_4 far from the element layer 20, so that the electrical characteristics of the transistors differ for each of the element layers 30_1 to 30_4. The influence of variations can be reduced.
  • the peripheral circuit 22 has a function of controlling writing or reading of data into or from the memory cells 32 of the memory cell array 31 provided in each of the element layers 30_1 to 30_4.
  • the peripheral circuit 22 includes a plurality of drive circuits and control circuits for driving signal lines such as word lines and bit lines connected to the memory cells 32.
  • n drive circuits are provided for driving word lines and bit lines connected to the memory cells 32.
  • the arithmetic circuit 23 has a function of performing arithmetic processing using data stored in the memory cells 32 of the stacked memory cell array 31. For example, the operation in the arithmetic circuit 23 is executed using data read from all memory cell arrays 31, when executed using data read from one memory cell array 31, or when executed using data read from multiple memory cell arrays 31. The calculation is possible in either case, when executed using the data obtained.
  • the arithmetic circuit 23 will be described as an example, it may be a circuit having other functions such as a cache memory or a controller circuit.
  • the element layer 20 having Si transistors in the configurations of FIGS. 1A, 1B, and 2 can be configured to form a CMOS circuit (Si CMOS circuit).
  • the voltage control circuit 21, the peripheral circuit 22, and the arithmetic circuit 23 can be formed with CMOS circuits, so high-speed operation is possible.
  • the semiconductor layer having the channel formation region of the Si transistor a single crystal semiconductor, a polycrystalline semiconductor, a microcrystalline semiconductor, an amorphous semiconductor, or the like can be used alone or in combination.
  • the semiconductor material is not limited to silicon, and for example, germanium or the like can be used. Further, a compound semiconductor such as silicon germanium, silicon carbide, gallium arsenide, or a nitride semiconductor may be used.
  • the path from the memory cell array 31 of the element layers 30_1 to 30_4 to the arithmetic circuit 23, or the path from the amplification circuit of data output by the memory cell array 31 to the arithmetic circuit 23 is connected to the memory
  • the cell array 31 can be made shorter than the case where a plurality of cell arrays 31 are arranged side by side in the element layer 20. In other words, in the configurations of FIGS.
  • the difference in path length between the memory cell array 31 and the arithmetic circuit 23 results in a difference in parasitic capacitance and parasitic resistance, resulting in a difference in signal delay and a difference in power consumption. Therefore, in the configurations of FIG. 1A, FIG. 1B, and FIG. 2, data can be read out with the same signal delay and power consumption regardless of which memory cell array 31 in each of the element layers 30_1 to 30_4 is read out. Therefore, no matter which memory cell array 31 data is stored in, there is little difference in arithmetic performance, power consumption, and arithmetic efficiency, which increases the degree of freedom when storing data.
  • the semiconductor device 10 shown in FIGS. 1A, 1B, and 2 illustrates a state in which element layers 30_1 to 30_4 having a memory cell array 31 are stacked on the element layer 20.
  • the area occupied by the semiconductor device 10 can be reduced.
  • the storage capacity per unit area can be increased.
  • the memory cell 32 is preferably a DOSRAM, which is a memory circuit (sometimes referred to as "OS memory") having an OS transistor, for example.
  • DOSRAM registered trademark
  • DOSRAM refers to a RAM having 1T (transistor) and 1C (capacitance) type memory cells.
  • DOSRAM is a DRAM formed using OS transistors, and DOSRAM is a memory that temporarily stores information sent from the outside.
  • DOSRAM is a memory that takes advantage of the low off-state current of an OS transistor.
  • DOSRAM is capable of retaining charge corresponding to the data held in a capacitor (sometimes called “cell capacitance") for a long period of time by turning off (non-conducting) the access transistor. be. Therefore, DOSRAM can reduce the frequency of refresh operations compared to DRAM configured with a transistor having silicon in a channel formation region (hereinafter also referred to as "Si transistor"). As a result, it is possible to reduce power consumption.
  • the memory cell 32 can be provided by stacking the element layers 30_1 to 30_4 having the memory cell array 31 by stacking and arranging OS transistors.
  • the element layers 30_1 to 30_4 of the element layer 30 in a direction perpendicular to the surface of the substrate on which the element layer 20 is provided, it is possible to improve the storage density of the memory cell 32.
  • the element layer 30 can be manufactured using the same manufacturing process repeatedly in the vertical direction. The semiconductor device 10 can reduce the manufacturing cost of the element layer 30.
  • a DOSRAM will be described as an example of a configuration applicable to the memory cell 32, but other configurations may be used as long as a storage layer that can be stacked on the element layer 20 can be formed.
  • it may be a NOSRAM which is a memory circuit having an OS transistor.
  • NOSRAM registered trademark
  • RAM Nonvolatile Oxide Semiconductor Random Access Memory
  • the memory cell is a two-transistor type (2T) or a three-transistor type (3T) gain cell.
  • the first element layer 30 is referred to as an element layer 30_1, the second element layer 30 is referred to as an element layer 30_2, and the third element layer 30 is referred to as an element layer 30_3. It shows. Further, the k-th element layer 30 (k is an integer from 1 to n) is referred to as an element layer 30_k, and the n-th element layer 30 is referred to as an element layer 30_n. Note that in this embodiment, etc., when describing matters related to the entire n-layer element layer 30, or when indicating matters common to each layer of the n-layer element layer 30, the term "element layer 30" is simply used. There are cases where
  • the voltage control circuit 21 illustrated in FIGS. 1A, 1B, and 2 includes a temperature detection circuit 15 and a plurality of voltage generation circuits 16_1 to 16_4.
  • the transistor 37 included in the memory cell 32 illustrated in FIG. 2 is a transistor having a first gate (also referred to as a "front gate” or simply “gate”) and a second gate (also referred to as a "back gate”). .
  • the first gate and the second gate have regions that overlap each other with the semiconductor layer interposed therebetween.
  • the second gate has a function of controlling the threshold voltage of the transistor 37, for example.
  • the temperature detection circuit 15 shown in FIG. 2 has a function of outputting a signal T 20 according to the temperature of the element layer 20.
  • the temperature detection circuit 15 includes, for example, a temperature sensor.
  • a temperature sensor for example, a resistance temperature detector made of platinum, nickel, or copper, a thermistor, a thermocouple, an IC temperature sensor, etc. can be used.
  • the temperature detection circuit 15 may include an analog-to-digital conversion circuit. By converting the temperature information of the analog signal into a digital signal in the temperature detection circuit 15 and outputting the digital signal, signal attenuation due to wiring resistance and parasitic capacitance or the influence of noise can be reduced. Therefore, even if the temperature detection circuit 15 is provided at a location apart from the voltage generation circuits 16_1 to 16_4, temperature information can be accurately transmitted to the voltage generation circuits 16_1 to 16_4.
  • the voltage generation circuits 16_1 to 16_4 shown in FIG. 2 have a function of generating back gate voltages VBG_1 to VBG_4 that are supplied to the back gates of the transistors 37 in the memory cells 32 included in the element layers 30_1 to 30_4.
  • the voltage generation circuits 16_1 to 16_4 may be circuits that generate a desired back gate voltage by combining a reference voltage generation circuit and a step-down (or step-up) charge pump.
  • the back gate voltages VBG_1 to VBG_4 generated by the voltage generation circuits 16_1 to 16_4 are generated according to changes in electrical characteristics due to temperature changes in the element layers 30_1 to 30_4. For example, when the element layer 20 is at a high temperature due to driving of the arithmetic circuit 23, the lower element layer 30_1 is at a high temperature equivalent to that of the element layer 20, and the upper element layer 30_4 is located away from the element layer 20. , the temperature is lower than that of the element layer 30_1. That is, the back gate voltages VBG_1 to VBG_4 are generated so as to reduce variations in electrical characteristics that occur depending on the temperature gradient of the element layers 30_1 to 30_4 that occurs depending on the temperature of the element layer 20.
  • the temperature detection circuit 15 and the plurality of voltages are The voltage control circuit 21 having the generation circuits 16_1 to 16_4 applies a back gate voltage of VBG_1 to the back gate of the transistor 37 included in the element layer 30_1 in the lower layer, and applies a back gate voltage of VBG_1 to the back gate of the transistor 37 included in the element layer 30_4 in the upper layer.
  • a back gate voltage of VBG_4 (>VBG_1) can be applied to the gate and controlled to reduce variations in electrical characteristics.
  • the back gate voltages VBG_1 to VBG_4 are preferably supplied to the transistors 37 of each element layer so that VBG_4>VBG_3>VBG_2>VBG_1.
  • the electrical characteristics of the transistor 37 in the upper element layer 30_4 can be brought close to the electrical characteristics of the transistor 37 in the lower element layer 30_1, thereby reducing variations in electrical characteristics. Can be done.
  • examples of metal oxides that can be applied to OS transistors include indium oxide, gallium oxide, and zinc oxide.
  • the metal oxide has two or three selected from indium, element M, and zinc.
  • Element M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • an oxide also referred to as IAGZO
  • IAGZO indium (In), aluminum (Al), gallium (Ga), and zinc (Zn).
  • oxide also referred to as IGZTO
  • IGZTO oxide containing indium (In), gallium (Ga), zinc (Zn), and tin (Sn).
  • the metal oxide applied to the OS transistor may have two or more metal oxide layers having different compositions.
  • a first metal oxide layer having a composition of In:M:Zn 1:3:4 [atomic ratio] or a composition close to that, and In:M:Zn provided on the first metal oxide layer.
  • a laminated structure with a second metal oxide layer having an atomic ratio of 1:1:1 or a composition close to this can be suitably used.
  • a laminated structure of one selected from indium oxide, indium gallium oxide, and IGZO and one selected from IAZO, IAGZO, and ITZO may be used.
  • the metal oxide used in the OS transistor preferably has crystallinity.
  • the oxide semiconductor having crystallinity include CAAC (c-axis-aligned crystalline)-OS, nc (nanocrystalline)-OS, and the like. When an oxide semiconductor with crystallinity is used, a highly reliable semiconductor device can be provided.
  • OS transistors operate stably even in high-temperature environments and have little variation in characteristics.
  • the off-state current hardly increases even in a high-temperature environment.
  • the off-state current hardly increases even under an environmental temperature of room temperature or higher and 200° C. or lower.
  • the on-state current is less likely to decrease even in a high-temperature environment. Therefore, a memory cell including an OS transistor operates stably even in a high-temperature environment and has high reliability.
  • FIG. 3A shows the Id-Vg characteristics of the OS transistor (OS-FET).
  • FIG. 3B shows the Id-Vg characteristics of a Si transistor (Si-FET). Note that both FIGS. 3A and 3B show Id-Vg characteristics of an n-channel transistor.
  • the Id-Vg characteristic indicates a change in drain current (Id) with respect to a change in gate voltage (Vg).
  • the horizontal axes in FIGS. 3A and 3B indicate Vg on a linear scale.
  • the vertical axis of FIG. 3A and FIG. 3B shows Id on a log scale.
  • the off-state current of the OS transistor does not easily increase even when operating at high temperatures. Further, in the OS transistor, Vth shifts in the negative direction as the operating temperature rises, and the on-current at the operating voltage VG increases as the operating temperature rises. On the other hand, as shown in FIG. 3B, the off-state current of a Si transistor increases as the operating temperature increases. Further, in the Si transistor, Vth shifts in the positive direction as the operating temperature rises, and the on-current at the operating voltage VG decreases as the operating temperature rises.
  • an OS transistor as the transistor 37 included in the stacked element layer 30
  • a low off-state current can be achieved even in high-temperature operation. Even when operating at high temperatures, the power consumption of the entire semiconductor device including the transistor 37 can be reduced.
  • FIG. 4A is a diagram showing the relationship of the on-current Ion (drain current Id flowing at the operating voltage VG) with respect to temperature change, based on the temperature change of the Id-Vg characteristic of the OS transistor shown in FIG. 3A. As shown in FIG. 4A, since the on-current Ion differs depending on the temperature, the electrical characteristics change due to the temperature change in the element layers 30_1 to 30_4 described above.
  • the voltage control circuit 21 described above is supplied to the back gate of the transistor 37 in the memory cell 32 included in the element layers 30_1 to 30_4 so as to reduce changes in electrical characteristics due to changes in electrical characteristics due to temperature changes in the element layers 30_1 to 30_4.
  • the back gate voltages VBG_1 to VBG_4 are generated. Specifically, as illustrated in FIG. 4B, when the temperature distribution of the element layers 30_1 to 30_4 is higher in the lower layers, the back gate voltages VBG_1 to VBG_4 are set to lower voltages in the lower layers.
  • FIG. 6 shows an example of an integrated circuit (referred to as an IC chip) having the semiconductor device 10 described above.
  • the semiconductor device 10 can be made into one IC chip by mounting a plurality of element layers on a package substrate.
  • FIG. 6 shows an example of the configuration.
  • a schematic cross-sectional view of the IC chip 100 shown in FIG. 6 is a semiconductor device having an element layer 20 serving as a base die on a package substrate 101, and in which four element layers 30_1 to 30_4 are stacked on the element layer 20, as an example. 10 is illustrated.
  • the package substrate 101 is provided with a solder ball 102 for connecting the IC chip 100 to a printed circuit board, etc.
  • the electrode 39 for connecting the element layer 20 and the element layers 30_1 to 30_4 is a transistor 49 which is a Si transistor. Alternatively, it can be provided in the process of manufacturing the transistor 37, which is an OS transistor.
  • connection between the element layer 20 having the transistor 49 and the element layers 30_1 to 30_4 having the transistor 37 is achieved by a technique using a through electrode such as TSV (Through Silicon Via) or by direct Cu-Cu.
  • TSV Through Silicon Via
  • a monolithic configuration can be achieved without using bonding techniques.
  • the element layers 30_1 to 30_4 on the element layer 20 can have a structure in which wiring provided together with the transistors 37 included in the element layers 30_1 to 30_4 is used as an electrode 39 for connecting to an upper or lower element layer.
  • the spacing between the wirings provided together with the transistor 37 can be finely processed compared to the through electrodes used in TSV or Cu-Cu direct bonding technology. Therefore, in the configuration of the semiconductor device 10 shown in FIG. 6, the number of electrodes for connection to the upper or lower element layer can be increased. Therefore, the number of wiring lines (the number of signal lines) between the memory circuit having memory cells provided in the element layers 30_1 to 30_4 and the arithmetic circuit 23 provided in the element layer 20 can be increased. In other words, the number of channels between the arithmetic circuit and the memory circuit can be increased. Therefore, the amount of signal transfer (bandwidth) transmitted and received between the element layer 20 and the element layer 30 can be expanded. By expanding the bandwidth, the amount of data transferred per unit time can be increased.
  • FIG. 7A is a schematic perspective view of a semiconductor device for explaining a configuration example different from the semiconductor device of one embodiment of the present invention described in FIG. 1A.
  • the semiconductor device 10A shown in FIG. 7A includes an element layer 20 and a plurality of element layers (eg, element layers 30_1 to 30_4 in FIG. 7A).
  • FIG. 7B is a perspective view showing the element layer 20 and a plurality of element layers 30_1 to 30_4 separated from each other in the configuration of FIG. 7A.
  • FIG. 8 is a block diagram for explaining the configuration shown in FIGS. 7A and 7B. Note that in the following description of FIGS. 7A, 7B, and 8, parts that are common to the description of FIGS. 1A, 1B, and 2 will be designated by common reference numerals, and the description thereof will be omitted.
  • each of the element layers 30_1 to 30_4 includes a temperature detection circuit 15 and a voltage generation circuit 16. be.
  • each element layer 30 has a temperature detection circuit 15 and a voltage generation circuit 16.
  • the voltage generation circuit 16 may be provided in the element layer 20.
  • temperature detection circuits 15_1 to 15_4 provided for each layer have a function of outputting signals T 30_1 to T 30_4 according to the temperatures of element layers 30_1 to 30_4.
  • the temperature detection circuits 15_1 to 15_4 each include a temperature sensor including an OS transistor, for example.
  • the voltage generation circuits 16_1 to 16_4 provided in each layer are configured such that the transistors 37 provided in the same layer respond to changes in electrical characteristics due to temperature changes in the element layers 30_1 to 30_4.
  • the back gate voltages VBG_1 to VBG_4 having the following values are generated.
  • the back gate voltages VBG_1 to VBG_4 generated by the voltage generation circuits 16_1 to 16_4 are generated according to changes in electrical characteristics due to temperature changes in the element layers 30_1 to 30_4. For example, when the element layer 20 is at a high temperature due to driving of the arithmetic circuit 23, the lower element layer 30_1 is at a high temperature equivalent to that of the element layer 20, and the upper element layer 30_4 is located away from the element layer 20. , the temperature is lower than that of the element layer 30_1. That is, the back gate voltages VBG_1 to VBG_4 are generated so as to reduce variations in electrical characteristics that occur depending on the temperature gradient of the element layers 30_1 to 30_4 that occurs depending on the temperature of the element layer 20.
  • a back gate voltage of VBG_1 is applied to the back gate of the transistor 37 included in the element layer 30_1 in the lower layer, and the back gate voltage of VBG_1 is applied to the back gate of the transistor 37 included in the element layer 30_4 in the upper layer.
  • VBG_4 higher voltage
  • the back gate voltages VBG_1 to VBG_4 are preferably supplied to the transistors 37 in each element layer so that VBG_4>VBG_3>VBG_2>VBG_1.
  • FIG. 9A shows a configuration example of the temperature detection circuit 15 including transistors 18A and 18B, which are OS transistors.
  • a potential of V1 is applied to the gate and drain of the transistor 18A, and 0V is applied to the gate of the transistor 18B.
  • the source and drain of the transistor 18A are in a conductive state (on), and the source and drain of the transistor 18B are in a non-conductive state (off).
  • the potential of the output VOUT increases from 0V to V1 (>0V) when the transistor 18A becomes conductive. This potential rise stops at V1-VTH, where the threshold voltage of the transistor 18A is VTH.
  • Temperature detection is performed using the fact that the threshold voltage VTH of the transistor 18A varies depending on the temperature. Since the output VOUT is a value including VTH, the output can be made in accordance with the temperature. Note that the output VOUT can be reset (0V) by setting the gate of the transistor 18B to V1 and turning on the transistor 18B. The output VOUT can be output as a digital signal via an analog-to-digital conversion circuit.
  • FIG. 9B shows a configuration example of a temperature detection circuit 15A configured with a transistor 18A, which is an OS transistor, and a constant current source 19. Constant current source 19 can be configured with an OS transistor.
  • temperature detection is performed using the fact that the threshold voltage VTH of the transistor 18A varies depending on the temperature. Since the output VOUT is a value including VTH, the output can be made in accordance with the temperature.
  • the voltage generation circuit 16 includes a logic circuit 34, a plurality of buffers (BF1 to BF4 are illustrated in FIG. 9C), and a plurality of capacitive elements (C1, C2, C4, and C8 are illustrated in FIG. 9C).
  • the logic circuit 34 has a function of supplying voltage to the buffers BF1 to BF4 based on the output signal (temperature information) supplied from the temperature detection circuit 15. For example, the serial signal supplied from the temperature detection circuit 15 is converted into a parallel signal and supplied to the buffers BF1 to BF4.
  • One electrode of the capacitive element C1 is connected to the output of the buffer BF1, and the other electrode is connected to the wiring that supplies the back gate voltage VBG to the back gate of the transistor 37.
  • One electrode of the capacitive element C2 is connected to the output of the buffer BF2, and the other electrode is connected to the wiring that supplies the back gate voltage VBG to the back gate of the transistor 37.
  • One electrode of the capacitive element C4 is connected to the output of the buffer BF3, and the other electrode is connected to a wiring that supplies the back gate voltage VBG to the back gate of the transistor 37.
  • One electrode of the capacitive element C8 is connected to the output of the buffer BF4, and the other electrode is connected to a wiring that supplies the back gate voltage VBG to the back gate of the transistor 37.
  • the voltage applied to the wiring that supplies the back gate voltage VBG from the voltage generation circuit 16 to the back gate of the transistor 37 is determined by the combined capacitance of the capacitive element C1, capacitive element C2, capacitive element C4, and capacitive element C8, and the back gate voltage VBG. is determined by the ratio of parasitic capacitances generated in the wiring that supplies the back gate of the transistor 37. It is preferable that the capacitance value of the capacitive element C1 is sufficiently larger than the capacitance value of the parasitic capacitance. Specifically, the capacitance value of the capacitive element C1 is preferably 5 times or more, more preferably 10 times or more, the capacitance value of the parasitic capacitance. In this way, by arranging the temperature detection circuit 15 and the voltage generation circuit 16 in each element layer having the memory cells 32, the back gate voltage VBG can be changed in accordance with the temperature change in each element layer.
  • the configuration of the voltage generation circuit 16 is not limited to the configuration illustrated in FIG. 9C, and other configurations may be used. For example, a configuration using a charge pump circuit or the like may be used.
  • the voltage holding circuit 35 has a function of turning on the transistor 36 and supplying the voltage VBG0 generated by the voltage generating circuit 16 to the wiring that supplies the back gate voltage VBG to the back gate of the transistor 37. Assuming that the threshold voltage of the transistor 36 is Vth1, it is preferable to apply a voltage equal to or higher than VBG0+Vth1 to the gate of the transistor 36 when turning on the transistor 36. Further, the voltage holding circuit 35 has a function of turning off the transistor 36 and holding the voltage of the wiring that supplies the back gate voltage VBG to the back gate of the transistor 37. By adopting a configuration in which the back gate voltage VBG is held, the voltage generation circuit 16 can be stopped intermittently, and power consumption can be reduced.
  • transistor 36 When supplying a negative potential as the voltage VBG0, a transistor having a first gate and a second gate may be used as the transistor 36, and the first gate and the second gate may be connected to the second terminal (see FIG. 10B).
  • transistor 36A can function as a diode.
  • the negative potential written in the wiring that supplies the back gate voltage VBG to the back gate of the transistor 37 can be held.
  • the channel length of the transistor 36A is preferably longer than the channel length of the transistor 37.
  • the channel length of the transistor 36A is 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more.
  • the transistor 36A can have a high breakdown voltage between the source and drain. It is preferable that the withstand voltage between the source and drain of the transistor 36A is high because even if the voltage generated by the voltage generation circuit 16 is a high voltage, connection with the transistor 37 can be facilitated.
  • the OS transistor has a small cutoff current and a high breakdown voltage between the source and drain.
  • the voltage holding circuit 35 can have the configuration of the voltage holding circuits 35B and 35C as shown in FIGS. 10C and 10D.
  • 10C and 10D illustrate a configuration in which a voltage holding circuit is formed using a plurality of transistors 36B and 36C connected in series.
  • FIG. 11E shows another configuration example of a 3T type gain cell.
  • the memory cell 32D shown in FIG. 11E differs from the memory cell 32A shown in FIG. 11B in that the read transistor and the selection transistor are configured with OS transistors that do not have back gates.
  • Embodiment 2 In this embodiment mode, a data potential held in a memory cell is amplified between element layers having stacked memory cells in a structure in which a DOSRAM is applied as a memory cell included in the semiconductor device described in the above embodiment mode.
  • a configuration example in which an element layer having an amplifier circuit having an output function is provided will be described.
  • FIG. 12 shows an example in which the element layers 30[1] to 30[m] have a plurality of memory cells 32 arranged in a matrix of m rows and n columns (m and n are integers of 2 or more). . Further, the amplifier circuit 51 is provided for each wiring BL functioning as a bit line, for example. FIG. 12 shows an example in which a plurality of amplifier circuits 51 (amplifier circuits 51[1] to 51[n]) are provided corresponding to n wires BL.
  • the element layers 30[1] to 30[m] include m wirings WL extending in the row direction, m wirings PL extending in the row direction, and n wirings extending in the column direction.
  • a wiring BL is provided.
  • the wiring WL provided in the first (first row) is referred to as wiring WL[1]
  • the wiring WL provided in m-th (m-th row) is referred to as wiring WL[m].
  • the first wiring PL (first row) is designated as wiring PL[1]
  • the mth wiring PL (mth row) is designated as wiring PL[m].
  • the wiring BL provided in the first (first column) is referred to as wiring BL[1]
  • the wiring BL provided in the nth (nth column) is referred to as wiring BL[n].
  • the amplifier circuit 51 has a function of amplifying the data potential held in the memory cell 32 and outputting it to the sense amplifier 66 included in the element layer 20 via a wiring GBL (not shown), which will be described later. With this configuration, a slight potential difference in the wiring BL can be amplified when reading data.
  • the wiring GBL can be arranged in a direction perpendicular to the surface of the substrate on which the element layer 20 is provided.
  • the wiring BL is provided in contact with the semiconductor layer of the transistor included in the memory cell 32.
  • the wiring BL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 32.
  • the wiring BL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the memory cell 32.
  • the wiring BL can be said to be a wiring for vertically connecting one of the sources and drains of the transistors included in the memory cells 32 in each layer of the element layer 30 and the amplifier circuit 51.
  • the amplifier circuit 51 is formed of an OS transistor like the transistor included in the memory cell 32 of a DOSRAM, and can be freely mounted on a circuit using Si transistors in the same way as the element layers 30 [1] to 30 [m]. Since it can be arranged, integration can be easily performed. By using the configuration in which the signal is amplified by the amplifier circuit 51, circuits such as the sense amplifier 66, which is a subsequent circuit, can be downsized, so that the semiconductor device 10D can be downsized.
  • each circuit, each signal, and each voltage can be removed or removed as necessary. Alternatively, other circuits or other signals may be added.
  • Signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signal PON1 and signal PON2 are power gating control signals. Note that the signal PON1 and the signal PON2 may be generated by the control circuit 73.
  • the drive circuit 61 is a circuit for writing and reading data to and from the memory cells 32. Further, the drive circuit 61 is a circuit that outputs various signals for controlling the amplifier circuit 51.
  • the drive circuit 61 includes a row decoder 62, a column decoder 64, a row driver 63, a column driver 65, an input circuit 67, and an output circuit 68. Output Cir.) and a sense amplifier 66.
  • the row decoder 62 and column decoder 64 have the function of decoding signal ADDR.
  • the row decoder 62 is a circuit for specifying a row to be accessed
  • the column decoder 64 is a circuit for specifying a column to be accessed.
  • the row driver 63 has a function of selecting the wiring WL specified by the row decoder 62.
  • the column driver 65 has a function of writing data into the memory cell 32, a function of reading data from the memory cell 32, a function of holding the read data, and the like.
  • the input circuit 67 has a function of holding the signal WDA.
  • the data held by the input circuit 67 is output to the column driver 65.
  • the output data of the input circuit 67 is the data (Din) to be written into the memory cell 32.
  • the data (Dout) read from the memory cell 32 by the column driver 65 is output to the output circuit 68.
  • the output circuit 68 has a function of holding Dout. Further, the output circuit 68 has a function of outputting Dout to the outside of the semiconductor device 10D. Data output from output circuit 68 is signal RDA.
  • the PSW 71 has a function of controlling the supply of VDD to the peripheral circuit 22.
  • the PSW 72 has a function of controlling the supply of VHM to the row driver 63.
  • the high power supply voltage of the semiconductor device 10D is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to bring the word line to a high level, and is higher than VDD.
  • the signal PON1 controls on/off of the PSW 71
  • the signal PON2 controls the on/off of the PSW 72.
  • the number of power domains to which VDD is supplied in the peripheral circuit 22 is one, but the number may be plural. In this case, a power switch may be provided for each power domain.
  • the element layer 30 provided as the first layer is shown as an element layer 30[1]
  • the element layer 30 provided as the second layer is shown as an element layer 30[2]
  • the element layer 30 provided as the fifth layer is shown as an element layer 30[2].
  • the element layer 30 is shown as an element layer 30[5].
  • wiring WL, wiring PL, and wiring CL provided extending in the X direction, and wiring BL provided extending in the Z direction (direction perpendicular to the surface of the substrate on which the drive circuit is provided) are illustrated. There is. Note that, in order to make the drawing easier to read, some descriptions of the wiring WL and the wiring PL included in each of the element layers 30 are omitted.
  • FIG. 13B is a schematic diagram illustrating a configuration example of the amplifier circuit 51 connected to the wiring BL illustrated in FIG. 13A and the memory cell 32 included in the element layers 30[1] to 30[5] connected to the wiring BL. shows. Further, FIG. 13B illustrates a wiring GBL provided between the amplifier circuit 51 and the drive circuit 61. Note that a configuration in which a plurality of memory cells (memory cells 32) are connected to one wiring BL is also referred to as a "memory string.” Note that in the drawings, the wiring GBL may be illustrated with thick lines to improve visibility.
  • one of the source and drain of the transistor 37 is connected to the wiring BL.
  • the other of the source and drain of the transistor 37 is connected to one electrode of the capacitive element 38.
  • the other electrode of the capacitive element 38 is connected to the wiring PL.
  • the gate of the transistor 37 is connected to the wiring WL.
  • the back gate of the transistor 37 is connected to the wiring CL.
  • FIG. 14A shows a schematic diagram of a semiconductor device 10D having an amplifier circuit 51 and a stacked element layer 70 having element layers 30[1] to 30[m] as repeating units. Note that although one wiring GBL is shown in FIG. 14A, the wiring GBL may be provided as appropriate depending on the number of amplifier circuits 51 provided in the element layer 50.
  • the wiring GBL is provided in contact with the semiconductor layer of the transistor included in the amplifier circuit 51.
  • the wiring GBL is provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the amplifier circuit 51.
  • the wiring GBL is provided in contact with a conductor provided in contact with a region functioning as a source or drain of a semiconductor layer of a transistor included in the amplifier circuit 51.
  • the wiring GBL can be said to be a wiring for vertically connecting one of the source or drain of the transistor included in the amplifier circuit 51 in the element layer 50 and the element layer 20.
  • the laminated element layer 70 having the amplifier circuit 51 and the element layers 30 [1] to 30 [m] may be further laminated.
  • a semiconductor device 10D_A of one embodiment of the present invention can have element layers 70[1] to 70[p] (p is an integer of 2 or more) stacked as illustrated in FIG. 14B.
  • the wiring GBL is connected to the element layer 50 included in the stacked element layers 70.
  • the wiring GBL may be provided as appropriate depending on the number of amplifier circuits 51.
  • FIGS. 15C and 15D show a circuit diagram corresponding to the element layer 50 having the amplifier circuit 51 described in FIG. 12 etc., and a diagram illustrating a circuit block corresponding to the circuit diagram.
  • the amplifier circuit 51 having transistors 52 to 55 may be represented as a block of the amplifier circuit 51 in the drawings and the like.
  • the amplifier circuit 51 has a function of amplifying the potential of the wiring LBL and transmitting it to the wiring GBL. Further, by providing a correction period, the amplifier circuit 51 can perform an operation in which fluctuations in the threshold voltage of the transistor 52 are corrected.
  • the wiring GBL can be expressed as a wiring GBL functioning as a global bit line to distinguish it from other wiring functioning as a bit line.
  • signals WE, RE, and MUX are control signals for controlling the amplifier circuit 51.
  • the wiring SL is a wiring that provides a constant potential.
  • the precharge circuit 83 is composed of n-channel transistors 83_1 to 83_3, as shown in FIG. 16A.
  • the precharge circuit 83 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE corresponding to the potential VDD/2 in response to the signal EQ.
  • the precharge circuit 84 is composed of p-channel transistors 84_1 to 84_3, as shown in FIG. 16A.
  • the precharge circuit 84 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE corresponding to the potential VDD/2 in response to the signal EQB.
  • the sense amplifier 66 includes p-channel transistors 85_1 and 85_2 and n-channel transistors 85_3 and 85_4, which are connected to the wiring SAP or the wiring SAN.
  • the wiring SAP or the wiring SAN is a wiring that has a function of providing VDD or VSS.
  • Transistors 85_1 to 85_4 are transistors forming an inverter loop.
  • FIG. 16B shows a diagram illustrating a circuit block corresponding to the control circuit 81 described in FIG. 16A and the like. As illustrated in FIG. 16B, the control circuit 81 may be represented as a block in drawings or the like.
  • FIG. 17 is a circuit diagram for explaining an example of the operation of the semiconductor device 10D of FIG. 12.
  • FIG. 17 is illustrated using the circuit blocks described in FIGS. 15A to 15D, and FIGS. 16A and 16B.
  • the stacked element layer 70 including the element layer 30 [m] has a memory cell 32.
  • the memory cell 32 is connected to a pair of wiring LBL and wiring LBL_pre.
  • the memory cell 32 connected to the wiring LBL is a memory cell into which data is written or read.
  • the wiring LBL_pre is a local bit line that is precharged, and the memory cells 32 connected to the wiring LBL_pre continue to hold data.
  • the transistor 98 functions as a switch for switching the conduction state between the wiring GBL and the wiring SA_GBL on the control circuit 81 side. Transistor 98 is turned on or off by signal SW1.
  • the transistor 99 functions as a switch for switching the conduction state between the wiring GBLB and the wiring SA_GBLB on the control circuit 81 side. Transistor 99 is turned on or off by signal SW2.
  • the potential of the wiring WL is set to L level. Data is held in memory cell 32.
  • both the wirings SAP and SAN are set to VDD, the signals EQ and EQB are inverted, and both the wiring pair of the wiring SA_GBL and the wiring SA_GBLB and the wiring pair of the wiring GBL and the wiring GBLB are set to H level.
  • the wiring LBL_pre is precharged to an H level potential.
  • the signal MUX is set to L level.
  • the signal WE may also be set to low level.
  • both signal WE and signal RE are set to L level.
  • a potential corresponding to the threshold voltage of the transistor 52 is held in the wiring LBL and the wiring LBL_pre.
  • Signals EQ and EQB are inverted again and precharging is stopped. That is, the wiring pair of the wiring SA_GBL and the wiring SA_GBLB and the wiring pair of the wiring GBL and the wiring GBLB are in an electrically floating state.
  • the wiring WL is set to H level and charge sharing is performed.
  • the potential of the wiring LBL changes depending on the data written into the memory cell 32.
  • H level data is written to the memory cell 32
  • the potential of the wiring LBL increases, and when L level data is written to the memory cell 32, the potential of the wiring LBL decreases.
  • the wiring LBL_pre charge sharing is not performed by the operation of the wiring WL, so the potential does not change.
  • the signal RE is set to L level. Then, by applying power supply voltages (VDD, VSS) to the wirings SAP and SAN, the sense amplifier 66 is operated. By operating the sense amplifier 66, the potentials of the wiring pair of the wiring SA_GBL and the wiring SA_GBLB and the wiring pair of the wiring GBL and the wiring GBLB are determined.
  • VDD, VSS power supply voltages
  • the signal SW0 is set to the L level
  • the signal SW1 is set to the H level
  • the potentials of the wiring pair of the wiring GBL and the wiring GBLB are switched according to the read data. Specifically, when the data is at H level, the potentials of the wiring pair of wiring GBL and wiring GBLB are both switched to H level. Further, when the data is at L level, the potentials of the wiring pair of wiring GBL and wiring GBLB are both switched to L level.
  • a voltage corresponding to the logic of the read data can be written back into the memory cell 32.
  • the signal MUX, the wiring WL, and the signal WE are set to L level.
  • data can be refreshed according to the logic of the read data.
  • the semiconductor device 10 of one embodiment of the present invention has a structure in which element layers 30 having memory cells 32 are stacked. With this configuration, the wiring LBL can be shortened and the capacitance of the capacitive element 38 of the memory cell 32 can be reduced.
  • a semiconductor device uses an OS transistor with an extremely low off-state current as a transistor provided in the element layer 30.
  • the OS transistor can be provided in a stacked manner on the substrate on which the element layer 20 on which the Si transistor is provided is provided. Therefore, the same manufacturing process can be repeated in the vertical direction to reduce manufacturing costs.
  • the transistors forming the memory cell 32 are arranged not in a planar direction but in a vertical direction, so that memory density can be improved, and the semiconductor device can be miniaturized.
  • one embodiment of the present invention includes an element layer 50 having an amplifier circuit 51. Since the functional circuit connects the wiring LBL to the gate of the transistor 52, the transistor 52 can function as an amplifier. With this configuration, it is possible to amplify a slight potential difference in the wiring LBL during reading and drive the sense amplifier 66 using a Si transistor. Since circuits such as the sense amplifier 66 using Si transistors can be miniaturized, the semiconductor device can be miniaturized. Further, even if the capacitance of the capacitive element 38 included in the memory cell 32 is reduced, the memory cell 32 can be operated.
  • the NoffCPU can stop supplying power to circuits within the NoffCPU that do not need to operate, and put the circuits in a standby state. When the power supply is stopped and the circuit is in standby mode, no power is consumed. Therefore, NoffCPU can minimize power usage.
  • FIG. 19 shows a block diagram in which the CPU 41 and the memory circuit 48 are connected via a bus BUL.
  • the CPU 41 has a function of performing calculations for executing programs.
  • the CPU 41 shown in FIG. 19 indicates the CPU core 42.
  • Each CPU core 42 has a register section 43 and an arithmetic section 44.
  • the register section 43 includes a flip-flop 47 (Flip-flop).
  • the flip-flop 47 includes a scan flip-flop 45 and a backup circuit 46.
  • the memory circuit 48 shown in FIG. 19 includes a memory cell array 31 having memory cells 32, an amplifier circuit 51, and a drive circuit 61.
  • FIG. 20A shows an example of the circuit configuration of the flip-flop 47.
  • the scan flip-flop 45 has nodes D1, Q1, SD, SE, RT, CK, and a clock buffer circuit 45A.
  • the node D1 is a data input node
  • the node Q1 is a data output node
  • the node SD is an input node for scan test data.
  • Node SE is an input node for signal SCE.
  • Node CK is an input node for clock signal GCLK1.
  • Clock signal GCLK1 is input to clock buffer circuit 45A.
  • the analog switch of the scan flip-flop 45 is connected to nodes CK1 and CKB1 of the clock buffer circuit 45A.
  • Node RT is an input node for a reset signal.
  • Node SE is an input node for a scan enable signal.
  • the circuit configuration of the scan flip-flop 45 is not limited to that shown in FIG. 20A. Flip-flops available in standard circuit libraries can be applied.
  • the backup circuit 46 includes nodes SD_IN, SN11, transistors M11 to M13, and a capacitor C11.
  • the node SD_IN is an input node for scan test data, and is connected to the node Q1 of the scan flip-flop 45.
  • Node SN11 is a holding node of backup circuit 46.
  • Capacitor C11 is a holding capacitor for holding the voltage of node SN11.
  • Transistor M11 controls the conduction state between node Q1 and node SN11.
  • Transistor M12 controls the conduction state between node SN11 and node SD.
  • Transistor M13 controls the conduction state between node SD_IN and node SD. On/off of transistors M11 and M13 is controlled by signal BKH, and on/off of transistor M12 is controlled by signal RCH.
  • the transistors M11 to M13 are OS transistors like the transistors included in the memory cell 32 and the amplifier circuit 51.
  • the transistors M11 to M13 are shown having back gates. An example is shown in which the back gates of the transistors M11 to M13 are connected to a power supply line that supplies voltage VBG1.
  • the transistors M11 and M12 are OS transistors.
  • the backup circuit 46 has nonvolatile characteristics because the OS transistor has an extremely small off-state current, which suppresses a voltage drop at the node SN11, and consumes almost no power to hold data. Since data is rewritten by charging and discharging the capacitor C11, the backup circuit 46 has no restrictions on the number of rewrites in principle and can write and read data with low energy.
  • the backup circuit 46 Since the backup circuit 46 has a very small number of elements compared to the scan flip-flop 45, there is no need to change the circuit configuration and layout of the scan flip-flop 45 in order to stack the backup circuit 46. In other words, the backup circuit 46 is a highly versatile backup circuit. Further, since the backup circuit 46 can be provided so as to overlap the area where the scan flip-flop 45 is formed, even if the backup circuit 46 is incorporated, the area overhead of the flip-flop 47 can be made zero. Therefore, by providing the backup circuit 46 in the flip-flop 47, power gating of the CPU core 42 becomes possible. Since less energy is required for power gating, it is possible to power gating the CPU core 42 with high efficiency.
  • the backup circuit 46 By providing the backup circuit 46, parasitic capacitance due to the transistor M11 is added to the node Q1, but since it is small compared to the parasitic capacitance due to the logic circuit connected to the node Q1, the operation of the scan flip-flop 45 is affected. There is no impact. In other words, even if the backup circuit 46 is provided, the performance of the flip-flop 47 does not substantially deteriorate.
  • a clock gating state for example, a clock gating state, a power gating state, or a hibernation state can be set. For example, when transitioning from the normal operating state to the clock gating state, the supply of the clock signal GCLK1 is stopped.
  • the CPU 41 and the memory circuit 48 shown in FIG. 19 use the transistors included in the backup circuit 46, the amplifier circuit 51, and the memory cell 32 as OS transistors, so that the CPU 41 and the memory circuit 48 shown in FIG. A layer having an OS transistor can be laminated and provided in the MOS transistor.
  • FIG. 21A is a cross-sectional schematic diagram in which a layer having a Si transistor and a layer having an OS transistor are laminated, and is a diagram schematically representing the arrangement of the structure shown in FIG. 19.
  • a layer SIL having a Si transistor and a layer OSL having an OS transistor are stacked in the z direction.
  • the layer OSL having an OS transistor can be provided by laminating a plurality of layers having OS transistors, and for example, the above-described element layer 50 and element layer 30 are illustrated. Note that a wiring layer or the like can be provided as appropriate between each layer having transistors.
  • an element layer 50 having a backup circuit 46 included in the CPU 41 and an amplifier circuit 51 included in the memory circuit 48 is provided on a layer SIL in which a SiCMOS circuit can be provided, and a memory cell 32 is provided thereon. It is possible to have a structure in which the element layers 30 having the above elements are stacked. In other words, it is possible to have a configuration in which a memory circuit 48 such as a DOSRAM is monolithically stacked on top of the CPU 41 (on-chip memory). By using an on-chip memory configuration, it is possible to speed up the operation of the interface between the CPU and the memory.
  • connection wiring etc.
  • connection pins By increasing the number of connection pins, parallel operation becomes possible, thereby making it possible to improve the memory bandwidth (also referred to as memory bandwidth).
  • FIG. 22 shows a part of the cross-sectional structure of the semiconductor device.
  • the semiconductor device shown in FIG. 22 includes a transistor 550, a transistor 500, and a capacitor 600.
  • 23A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 23B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 23C is a cross-sectional view of the transistor 550 in the channel width direction.
  • the transistor 500 corresponds to the Si transistor described in the above embodiment mode
  • the transistor 550 corresponds to an OS transistor.
  • the transistor 550 As shown in FIG. 23C, in the transistor 550, the upper surface of the semiconductor region 313 and the side surfaces in the channel width direction are covered with a conductor 316 via an insulator 315. In this way, by making the transistor 550 a Fin type transistor, the effective channel width increases, so that the on-characteristics of the transistor 550 can be improved. Further, since the contribution of the electric field of the gate electrode can be increased, the off-state characteristics of the transistor 550 can be improved.
  • a semiconductor such as a silicon-based semiconductor be included in the region where a channel is formed in the semiconductor region 313, the region in the vicinity thereof, the low resistance region 314a serving as a source region or a drain region, and the low resistance region 314b.
  • it contains crystalline silicon.
  • it may be formed of a material containing Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like.
  • a structure using silicon may be used in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing.
  • the transistor 550 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • the low resistance region 314a and the low resistance region 314b are made of an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron. Contains elements that
  • the conductor 316 that functions as a gate electrode is made of a semiconductor material such as silicon, a metal material, or an alloy containing an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • conductive materials such as metal oxide materials or metal oxide materials.
  • silicon nitride formed by a CVD method can be used, for example.
  • silicon nitride formed by a CVD method when hydrogen diffuses into a semiconductor element including an oxide semiconductor such as the transistor 500, the characteristics of the semiconductor element may deteriorate. Therefore, a film that suppresses hydrogen diffusion is preferably used between the transistor 500 and the transistor 550.
  • the membrane that suppresses hydrogen diffusion is a membrane that releases a small amount of hydrogen.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324.
  • the dielectric constant of the insulator 326 is preferably less than 4, more preferably less than 3.
  • the dielectric constant of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, the dielectric constant of the insulator 324.
  • a capacitor 600 or a conductor 328 connected to the transistor 500, a conductor 330, and the like are embedded in the insulator 320, the insulator 322, the insulator 324, and the insulator 326.
  • the conductor 328 and the conductor 330 have a function as a plug or wiring.
  • a conductor having a function as a plug or a wiring a plurality of structures may be collectively given the same reference numeral.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used in a single layer or in a stacked manner. be able to. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferable to use a low resistance conductive material such as aluminum or copper. Wiring resistance can be lowered by using a low resistance conductive material.
  • the conductor 356 preferably includes a conductor having barrier properties against hydrogen.
  • a conductor having hydrogen barrier properties is formed in the opening of the insulator 350 having hydrogen barrier properties.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • an insulator 360, an insulator 362, and an insulator 364 are stacked in this order.
  • a conductor 366 is formed on the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 functions as a plug or wiring. Note that the conductor 366 can be provided using the same material as the conductor 328 and the conductor 330.
  • the conductor 386 preferably includes a conductor having barrier properties against hydrogen.
  • a conductor having hydrogen barrier properties is formed in the opening of the insulator 380 having hydrogen barrier properties.
  • a film having barrier properties that prevents hydrogen, impurities, etc. from diffusing from the substrate 311 or the region where the transistor 550 is provided to the region where the transistor 500 is provided is used. It is preferable. Therefore, the same material as the insulator 324 can be used.
  • the same material as the insulator 320 can be used for the insulator 512 and the insulator 516. Furthermore, by using materials with relatively low dielectric constants as these insulators, parasitic capacitance occurring between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 512 and the insulator 516.
  • the conductor 518 in the region in contact with the insulator 510 and the insulator 514 is a conductor having barrier properties against oxygen, hydrogen, and water.
  • the transistor 550 and the transistor 500 can be separated by a layer having barrier properties against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • the transistor 500 includes a conductor 503 disposed to be embedded in an insulator 514 and an insulator 516, and an insulator 520 disposed over the insulator 516 and the conductor 503. , an insulator 522 disposed on the insulator 520, an insulator 524 disposed on the insulator 522, an oxide 530a disposed on the insulator 524, and an oxide 530a disposed on the oxide 530a.
  • the insulator 580 has an overlapping opening formed therein, an insulator 545 placed on the bottom and side surfaces of the opening, and a conductor 560 placed on the surface where the insulator 545 is formed.
  • an insulator 544 be disposed between the oxide 530a, the oxide 530b, the conductor 542a, and the insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 545, and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have.
  • an insulator 574 is preferably disposed over the insulator 580, the conductor 560, and the insulator 545.
  • oxide 530a and the oxide 530b may be collectively referred to as the oxide 530.
  • the transistor 500 shows a structure in which two layers, an oxide 530a and an oxide 530b, are stacked in a region where a channel is formed and in the vicinity thereof, the present invention is not limited to this.
  • a single layer of the oxide 530b or a stacked structure of three or more layers may be used.
  • the conductor 560 is shown as having a two-layer stacked structure, but the present invention is not limited to this.
  • the conductor 560 may have a single layer structure or a laminated structure of three or more layers.
  • the transistor 500 shown in FIGS. 22 and 23A is an example, and the structure is not limited to this, and an appropriate transistor may be used depending on the circuit structure, driving method, etc.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductor 542a and the conductor 542b function as a source electrode or a drain electrode, respectively.
  • the conductor 560 is formed to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.
  • the arrangement of conductor 560, conductor 542a, and conductor 542b is selected in a self-aligned manner with respect to the opening in insulator 580. That is, in the transistor 500, the gate electrode can be disposed between the source electrode and the drain electrode in a self-aligned manner. Therefore, since the conductor 560 can be formed without providing a margin for alignment, the area occupied by the transistor 500 can be reduced. Thereby, miniaturization and high integration of semiconductor devices can be achieved.
  • the conductor 560 is formed in a self-aligned manner in the region between the conductor 542a and the conductor 542b, the conductor 560 does not have a region overlapping with the conductor 542a or the conductor 542b. Thereby, the parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and the transistor 500 can have high frequency characteristics.
  • the conductor 560 may function as a first gate (also referred to as top gate) electrode. Further, the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 without interlocking with the potential applied to the conductor 560. In particular, by applying a negative potential to the conductor 503, the threshold voltage of the transistor 500 can be made larger than 0 V, and the off-state current can be reduced. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when no negative potential is applied.
  • the conductor 503 is arranged to overlap the oxide 530 and the conductor 560. As a result, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to cover the channel formation region formed in the oxide 530. Can be done.
  • the channel formation region can be electrically surrounded.
  • the S-channel structure is a structure that electrically surrounds the channel formation region, it is substantially equivalent to a GAA (Gate All Around) structure or an LGAA (Lateral Gate All Around) structure. You can say that.
  • the channel formation region formed at or near the interface between the oxide 530 and the gate insulator can be formed in the entire bulk of the oxide 530. can. Therefore, it is possible to improve the current density flowing through the transistor, and thus it is expected that the on-state current of the transistor or the field effect mobility of the transistor will be increased.
  • the conductor 503 has the same configuration as the conductor 518, and a conductor 503a is formed in contact with the inner wall of the opening of the insulator 514 and the insulator 516, and a conductor 503a is formed on the conductor 503a so as to fill the opening.
  • a conductor 503b is formed. Note that although the transistor 500 has a structure in which the conductor 503a and the conductor 503b are stacked, the present invention is not limited to this.
  • the conductor 503 may be provided as a single layer or a laminated structure of three or more layers.
  • a conductive material as the conductor 503a, which has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the impurities are difficult to pass through).
  • a conductive material that has a function of suppressing the diffusion of oxygen for example, at least one of oxygen atoms, oxygen molecules, etc.
  • the function of suppressing the diffusion of impurities or oxygen refers to the function of suppressing the diffusion of any one or all of the impurities or the oxygen.
  • the conductor 503a since the conductor 503a has a function of suppressing oxygen diffusion, it is possible to suppress the conductivity from decreasing due to oxidation of the conductor 503b.
  • the conductor 503 also serves as a wiring
  • the conductor 503 is illustrated as a stack of the conductor 503a and the conductor 503b in this embodiment, the conductor 503 may have a single-layer structure.
  • the insulator 520, the insulator 522, and the insulator 524 have a function as a second gate insulating film.
  • the insulator having the excess oxygen region and the oxide 530 may be brought into contact with each other and subjected to one or more of heat treatment, microwave treatment, and RF treatment. By performing this treatment, water or hydrogen in the oxide 530 can be removed.
  • a reaction occurs in which the bond of VoH is broken, or in other words, a reaction “V O H ⁇ Vo+H” occurs, resulting in dehydrogenation.
  • a part of the hydrogen generated at this time may combine with oxygen and be removed from the oxide 530 or the insulator near the oxide 530 as H 2 O. Further, some of the hydrogen may be gettered to the conductors 542a and 542b.
  • the microwave processing it is preferable to use, for example, an apparatus having a power source for generating high-density plasma or an apparatus having a power source for applying RF to the substrate side.
  • an apparatus having a power source for generating high-density plasma or an apparatus having a power source for applying RF to the substrate side.
  • a gas containing oxygen and using high-density plasma high-density oxygen radicals can be generated, and by applying RF to the substrate side, the oxygen radicals generated by the high-density plasma can be generated.
  • the microwave treatment may be performed at a pressure of 133 Pa or higher, preferably 200 Pa or higher, and more preferably 400 Pa or higher.
  • the gas introduced into the apparatus for performing microwave processing for example, oxygen and argon are used, and the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 50% or less, preferably 10% or more. % or less.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas in order to compensate for the desorbed oxygen after heat treatment in a nitrogen gas or inert gas atmosphere. good.
  • heat treatment may be performed continuously in an atmosphere of nitrogen gas or inert gas.
  • the oxygen vacancies in the oxide 530 can be repaired by the supplied oxygen, or in other words, the reaction "Vo+O ⁇ null" can be promoted. Further, by reacting the supplied oxygen with the hydrogen remaining in the oxide 530, the hydrogen can be removed as H 2 O (dehydrated). This can suppress hydrogen remaining in the oxide 530 from recombining with oxygen vacancies and forming V OH .
  • the insulator 524 has an excess oxygen region, it is preferable that the insulator 522 has a function of suppressing the diffusion of oxygen (for example, oxygen atoms, oxygen molecules, etc.) (the oxygen is difficult to permeate).
  • oxygen for example, oxygen atoms, oxygen molecules, etc.
  • the insulator 522 is made of, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba,Sr)TiO 3 (BST) in a single layer or in a stacked layer. As transistors become smaller and more highly integrated, problems such as off-current may occur due to thinning of gate insulating films. By using a high-k material for the insulator that functions as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a so-called high-k material such as (Ba,Sr)TiO 3 (BST)
  • an insulator containing an oxide of one or both of aluminum and hafnium which is an insulating material that has the function of suppressing the diffusion of impurities and oxygen (the oxygen is difficult to permeate).
  • the insulator containing an oxide of one or both of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like.
  • the insulator 522 is formed using such a material, the insulator 522 suppresses the release of oxygen from the oxide 530 or the incorporation of impurities such as hydrogen into the oxide 530 from the periphery of the transistor 500. Acts as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked on the above insulator.
  • the insulator 520 is thermally stable.
  • silicon oxide and silicon oxynitride are suitable because they are thermally stable.
  • the insulator 520 having a stacked layer structure that is thermally stable and has a high dielectric constant can be obtained.
  • an insulator 520, an insulator 522, and an insulator 524 are illustrated as the second gate insulating film having a three-layer stacked structure;
  • the insulating film may have a single layer, two layers, or a stacked structure of four or more layers.
  • the structure is not limited to a laminated structure made of the same material, but may be a laminated structure made of different materials.
  • the transistor 500 uses a metal oxide that functions as an oxide semiconductor for the oxide 530 including the channel formation region.
  • the metal oxide that functions as an oxide semiconductor may be formed by a sputtering method or by an ALD (Atomic Layer Deposition) method. Note that a metal oxide that functions as an oxide semiconductor will be described in detail in other embodiments.
  • the oxide 530 can suppress diffusion of impurities from a component formed below the oxide 530a to the oxide 530b.
  • the oxide 530 preferably has a structure of a plurality of oxide layers in which the atomic ratio of each metal atom is different.
  • the atomic ratio of the element M among the constituent elements is larger than the atomic ratio of the element M among the constituent elements in the metal oxide used for the oxide 530b. It is preferable.
  • the atomic ratio of the element M to In is preferably larger than the atomic ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic ratio of In to the element M is preferably larger than the atomic ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the energy at the bottom of the conduction band of the oxide 530a is higher than the energy at the bottom of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a is smaller than the electron affinity of the oxide 530b.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction between the oxide 530a and the oxide 530b changes continuously or forms a continuous junction.
  • the oxide 530a and the oxide 530b having a common element other than oxygen (main component) a mixed layer with a low defect level density can be formed.
  • the oxide 530b is an In-Ga-Zn oxide
  • an In-Ga-Zn oxide, a Ga-Zn oxide, a gallium oxide, or the like may be used as the oxide 530a.
  • the main path of carriers is the oxide 530b.
  • the oxide 530a the above structure, the density of defect levels at the interface between the oxide 530a and the oxide 530b can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-current.
  • a conductor 542a and a conductor 542b functioning as a source electrode and a drain electrode are provided on the oxide 530b.
  • the conductors 542a and 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium. It is preferable to use a metal element selected from , iridium, strontium, and lanthanum, an alloy containing the above-mentioned metal elements, or an alloy that is a combination of the above-mentioned metal elements.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even if it absorbs oxygen.
  • a metal nitride film such as tantalum nitride is preferable because it has barrier properties against hydrogen or oxygen.
  • the conductor 542a and the conductor 542b are shown as having a single layer structure, but they may have a laminated structure of two or more layers.
  • a tantalum nitride film and a tungsten film may be laminated.
  • a titanium film and an aluminum film may be laminated.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, and a two-layer structure in which a copper film is laminated on a titanium film.
  • a two-layer structure in which copper films are laminated may be used.
  • a three-layer structure in which a titanium film or titanium nitride film is laminated, an aluminum film or a copper film is stacked on top of the titanium film or titanium nitride film, and a titanium film or titanium nitride film is further formed on top of the titanium film or titanium nitride film, a molybdenum film or
  • a molybdenum nitride film, an aluminum film or a copper film is laminated on the molybdenum film or the molybdenum nitride film, and a molybdenum film or molybdenum nitride film is further formed thereon.
  • a transparent conductive material containing indium oxide, tin oxide, or zinc oxide may be used.
  • a region 543a and a region 543b may be formed as low resistance regions at and near the interface between the oxide 530 and the conductor 542a (conductor 542b).
  • the region 543a functions as either a source region or a drain region
  • the region 543b functions as the other source region or drain region.
  • a channel formation region is formed in a region sandwiched between the region 543a and the region 543b.
  • the oxygen concentration in the region 543a (region 543b) may be reduced.
  • a metal compound layer containing a metal included in the conductor 542a (conductor 542b) and a component of the oxide 530 may be formed in the region 543a (region 543b). In such a case, the carrier concentration of the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided to cover the conductor 542a and the conductor 542b, and suppresses oxidation of the conductor 542a and the conductor 542b. At this time, the insulator 544 may be provided to cover the side surface of the oxide 530 and be in contact with the insulator 524.
  • insulator 544 a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, etc. Can be used. Further, as the insulator 544, silicon nitride oxide, silicon nitride, or the like can be used.
  • hafnium oxide aluminum
  • an oxide containing hafnium hafnium (hafnium aluminate) which are insulators containing oxides of one or both of aluminum and hafnium, as the insulator 544.
  • hafnium aluminate has higher heat resistance than hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize during heat treatment in a later step.
  • the conductor 542a and the conductor 542b are made of an oxidation-resistant material or a material whose conductivity does not significantly decrease even if it absorbs oxygen, the insulator 544 is not an essential component. It may be designed as appropriate depending on the desired transistor characteristics.
  • the insulator 545 functions as a first gate insulating film. Like the insulator 524 described above, the insulator 545 is preferably formed using an insulator that contains excess oxygen and releases oxygen when heated.
  • silicon oxide with excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, silicon oxide with carbon and nitrogen added, and silicon oxide with vacancies. It is possible to use silicon oxide having the following properties. In particular, silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the insulator 545 By providing an insulator containing excess oxygen as the insulator 545, oxygen can be effectively supplied from the insulator 545 to the channel formation region of the oxide 530b. Further, similarly to the insulator 524, it is preferable that the concentration of impurities such as water or hydrogen in the insulator 545 is reduced.
  • the thickness of the insulator 545 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 545 and the conductor 560 in order to efficiently supply excess oxygen contained in the insulator 545 to the oxide 530.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 545 to the conductor 560.
  • diffusion of excess oxygen from the insulator 545 to the conductor 560 is suppressed.
  • a decrease in the amount of excess oxygen supplied to the oxide 530 can be suppressed.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 545 may have a laminated structure similarly to the second gate insulating film. As transistors become smaller and more highly integrated, problems such as off-current may occur due to the thinning of the gate insulating film. By forming a stacked structure using physically stable materials, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. Furthermore, a laminated structure that is thermally stable and has a high dielectric constant can be achieved.
  • the conductor 560 functioning as the first gate electrode is shown as having a two-layer structure in FIGS. 23A and 23B, it may have a single-layer structure or a laminated structure of three or more layers.
  • the conductor 560a is a conductive material that has the function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2, etc.), and copper atoms.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules ( N2O , NO, NO2, etc.), and copper atoms.
  • the material is used.
  • the conductive material having the function of suppressing oxygen diffusion it is preferable to use, for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like.
  • an oxide semiconductor that can be used as the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b by a sputtering method, the electrical resistance value of the conductor 560a can be reduced and the conductor 560a can be made into a conductor. This can be called an OC (Oxide Conductor) electrode.
  • a conductive material containing tungsten, copper, or aluminum as a main component for the conductor 560b.
  • the conductor 560b also functions as a wiring, it is preferable to use a conductor with high conductivity.
  • a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 560b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the above conductive material.
  • the insulator 580 is provided on the conductor 542a and the conductor 542b via the insulator 544.
  • insulator 580 has regions of excess oxygen.
  • silicone, resin, or the like it is preferable to use silicone, resin, or the like.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide with vacancies are preferable because an excess oxygen region can be easily formed in a later step.
  • the opening of the insulator 580 is formed to overlap the region between the conductor 542a and the conductor 542b. Thereby, the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.
  • the insulator 574 is preferably provided in contact with the top surface of the insulator 580, the top surface of the conductor 560, and the top surface of the insulator 545.
  • an excess oxygen region can be provided in the insulator 545 and the insulator 580. Thereby, oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • aluminum oxide has high barrier properties, and even if it is a thin film of 0.5 nm or more and 3.0 nm or less, it can suppress the diffusion of hydrogen and nitrogen. Therefore, aluminum oxide formed by sputtering can function as an oxygen supply source as well as a barrier film for impurities such as hydrogen.
  • the insulator 581 that functions as an interlayer film on the insulator 574.
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • An insulator 582 is provided on the insulator 581.
  • the insulator 582 is preferably made of a substance that has barrier properties against oxygen, hydrogen, and the like. Therefore, the same material as the insulator 514 can be used for the insulator 582.
  • the insulator 582 is preferably made of a metal oxide such as aluminum oxide, hafnium oxide, tantalum oxide, or the like.
  • aluminum oxide has a high blocking effect that prevents the membrane from permeating both oxygen and impurities such as hydrogen and moisture that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the transistor manufacturing process. Further, release of oxygen from the oxide forming the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500.
  • an insulator 586 is provided on the insulator 582.
  • the same material as the insulator 320 can be used for the insulator 586.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 586.
  • the conductor 546 and the conductor 548 have a function as a plug or wiring connected to the capacitor 600, the transistor 500, or the transistor 550.
  • the conductor 546 and the conductor 548 can be provided using the same material as the conductor 328 and the conductor 330.
  • the transistor that can be used in the present invention is not limited to the transistor 500 shown in FIGS. 23A and 23B.
  • a transistor 500 having the structure shown in FIG. 24 may be used.
  • an insulator 555 is used, and the conductors 542a (conductors 542a1 and 542a2) and conductors 542b (conductors 542b1 and 542b2) have a stacked structure. This is different from the transistors shown in FIGS. 23A and 23B in this point.
  • the conductor 542a has a laminated structure of a conductor 542a1 and a conductor 542a2 on the conductor 542a
  • the conductor 542b has a laminated structure of a conductor 542b1 and a conductor 542b2 on the conductor 542b1.
  • the conductor 542a1 and the conductor 542b1 in contact with the oxide 530b are preferably conductors that are difficult to oxidize, such as metal nitride. Thereby, the conductor 542a and the conductor 542b can be prevented from being excessively oxidized by oxygen contained in the oxide 530b.
  • the conductor 542a2 and the conductor 542b2 have higher conductivity than the conductor 542a1 and the conductor 542b1.
  • the thickness of the conductor 542a2 and the conductor 542b2 be larger than the thickness of the conductor 542a1 and the conductor 542b1.
  • a conductor that can be used for the conductor 560b may be used. With the above structure, the resistance of the conductor 542a2 and the conductor 542b2 can be reduced.
  • tantalum nitride or titanium nitride can be used as the conductor 542a1 and the conductor 542b1, and tungsten can be used as the conductor 542a2 and the conductor 542b2.
  • openings are formed in an insulator 580 and an insulator 544, an insulator 555 is formed in contact with the sidewall of the opening, and a conductor 542a1 and a conductor 542b1 are separated using a mask. By doing so, it is formed.
  • the opening overlaps with a region between the conductor 542a2 and the conductor 542b2. Further, a portion of the conductor 542a1 and the conductor 542b1 are formed to protrude into the opening.
  • the insulator 555 contacts the top surface of the conductor 542a1, the top surface of the conductor 542b1, the side surface of the conductor 542a2, and the side surface of the conductor 542b2 within the opening. Further, the insulator 545 is in contact with the upper surface of the oxide 530 in a region between the conductor 542a1 and the conductor 542b1.
  • the conductor 542a1 and the conductor 542b1 and before forming the insulator 545 it is preferable to perform heat treatment in an atmosphere containing oxygen.
  • oxygen can be supplied to the oxide 530a and the oxide 530b, and oxygen vacancies can be reduced.
  • the insulator 555 is formed in contact with the side surface of the conductor 542a2 and the side surface of the conductor 542b2, excessive oxidation of the conductor 542a2 and the conductor 542b2 can be prevented.
  • the electrical characteristics and reliability of the transistor can be improved. Further, variations in electrical characteristics of a plurality of transistors formed over the same substrate can be suppressed.
  • the insulator 524 may be formed in an island shape.
  • the insulator 524 may be formed so that its side end portions approximately coincide with the oxide 530.
  • a conductor 612 may be provided on the conductor 546 and the conductor 548.
  • the conductor 612 functions as a plug or a wiring connected to the transistor 500.
  • the conductor 610 functions as an electrode of the capacitor 600. Note that the conductor 612 and the conductor 610 can be formed at the same time.
  • the conductor 612 and the conductor 610 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements.
  • a metal nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film), etc. can be used.
  • Conductive materials such as indium tin oxide can also be applied.
  • the conductor 612 and the conductor 610 are shown as having a single-layer structure, but are not limited to this structure, and may have a laminated structure of two or more layers.
  • a conductor having barrier properties and a conductor having high adhesiveness to the conductor having high conductivity may be formed between a conductor having barrier properties and a conductor having high conductivity.
  • a conductor 620 is provided so as to overlap the conductor 610 with an insulator 630 in between.
  • the conductor 620 can be made of a conductive material such as a metal material, an alloy material, or a metal oxide material. It is preferable to use a high melting point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten.
  • low resistance metal materials such as Cu (copper) and Al (aluminum) may be used.
  • An insulator 640 is provided on the conductor 620 and the insulator 630.
  • Insulator 640 can be provided using the same material as insulator 320. Further, the insulator 640 may function as a flattening film that covers the uneven shape underneath.
  • Substrates that can be used in the semiconductor device of one embodiment of the present invention include glass substrates, quartz substrates, sapphire substrates, ceramic substrates, and metal substrates (for example, stainless steel substrates, substrates with stainless steel foil, tungsten substrates). , a substrate having a tungsten foil, etc.), a semiconductor substrate (such as a single crystal semiconductor substrate, a polycrystalline semiconductor substrate, or a compound semiconductor substrate), an SOI (Silicon on Insulator) substrate, and the like. Further, a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment may be used.
  • glass substrates include barium borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, and the like. Besides, crystallized glass or the like can be used.
  • transistors using semiconductor substrates, single crystal substrates, SOI substrates, etc.
  • the power consumption of the circuit can be reduced or the circuit can be highly integrated.
  • release layer for example, a structure in which an inorganic film of a tungsten film and a silicon oxide film is laminated, a structure in which an organic resin film such as polyimide is formed on a substrate, a silicon film containing hydrogen, etc. are used. be able to.
  • a semiconductor device may be formed on one substrate, and then transferred to another substrate.
  • substrates on which semiconductor devices are transferred include, in addition to the above-mentioned substrates on which transistors can be formed, paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, stone substrates, wood substrates, cloth substrates (natural Examples include fibers (silk, cotton, linen), synthetic fibers (nylon, polyurethane, polyester), recycled fibers (acetate, cupro, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • fibers silk, cotton, linen
  • synthetic fibers rayon, polyurethane, polyester
  • recycled fibers acetate, cupro, rayon, recycled polyester
  • leather substrates rubber substrates, and the like.
  • the transistor 550 shown in FIG. 22 is an example, and the structure is not limited to this, and an appropriate transistor may be used depending on the circuit structure, driving method, etc.
  • the transistor 550 may have the same structure as the transistor 500.
  • a wiring layer including an interlayer film, wiring, plugs, etc. is provided between the drive circuit layer 701 and the memory layer 700, or between the k-th memory layer 700 and the (k+1)-th memory layer 700. You can leave it there.
  • the k-th storage layer 700 may be referred to as a storage layer 700[k]
  • the k+1-th storage layer 700 may be referred to as a storage layer 700[k+1].
  • k is an integer greater than or equal to 1 and less than or equal to N.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked and provided as interlayer films on the transistor 550. Further, a conductor 328 and the like are embedded in the insulator 320 and the insulator 322. Further, a conductor 330 and the like are embedded in the insulator 324 and the insulator 326. Note that the conductor 328 and the conductor 330 function as a contact plug or a wiring.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape underneath.
  • the upper surface of the insulator 320 may be planarized by a planarization process using a CMP method or the like to improve flatness.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 357, an insulator 352, and an insulator 354 are sequentially stacked on an insulator 326 and a conductor 330.
  • a conductor 356 is formed on the insulator 350, the insulator 357, and the insulator 352. The conductor 356 functions as a contact plug or wiring.
  • the insulator 514 included in the memory layer 700[1] is provided on the insulator 354. Further, a conductor 358 is embedded in the insulator 514 and the insulator 354. The conductor 358 functions as a contact plug or wiring. For example, the wiring BL and the transistor 550 are connected via a conductor 358, a conductor 356, a conductor 330, and the like.
  • FIG. 26A shows an example of the cross-sectional structure of the memory layer 700[k]. Further, FIG. 26B shows an equivalent circuit diagram of FIG. 26A. FIG. 26A shows an example in which two memory cells MC are connected to one wiring BL.
  • the memory cell MC shown in FIGS. 25 and 26A includes a transistor M1 and a capacitive element C.
  • the transistor 500 described in the above embodiment can be used as the transistor M1.
  • the transistor M1 is different from the transistor 500 in that the conductor 542a and the conductor 542b extend beyond the ends of the metal oxide 531 (metal oxide 531a and metal oxide 531b). different.
  • the memory cell MC shown in FIGS. 25 and 26A includes a conductor 156 that functions as one terminal of the capacitor C, an insulator 153 that functions as a dielectric, and a conductor 153 that functions as the other terminal of the capacitor C. body 160 (conductor 160a and conductor 160b).
  • the conductor 156 is connected to a portion of the conductor 542b. Further, the conductor 160 is connected to a wiring PL (not shown in FIG. 26A).
  • the capacitive element C is formed in an opening provided by removing a portion of the insulator 574, the insulator 580, and the insulator 554. Since the conductor 156, the insulator 580, and the insulator 554 are formed along the side surfaces of the opening, it is preferable that they be formed using an ALD method, a CVD method, or the like.
  • a conductor that can be used for the conductor 505 or the conductor 560 may be used.
  • titanium nitride formed using an ALD method may be used as the conductor 156.
  • titanium nitride formed using an ALD method may be used as the conductor 160a, and tungsten formed using a CVD method may be used as the conductor 160b. Note that if the adhesion of tungsten to the insulator 153 is sufficiently high, a single layer film of tungsten formed using a CVD method may be used as the conductor 160.
  • an insulator made of a high dielectric constant (high-k) material (a material with a high relative dielectric constant).
  • high-k high dielectric constant
  • an oxide, oxynitride, nitride oxide, or nitride containing one or more metal elements selected from aluminum, hafnium, zirconium, gallium, etc. can be used as an insulator of a high dielectric constant material.
  • the oxide, oxynitride, nitride oxide, or nitride may contain silicon.
  • insulating layers made of the above-mentioned materials can be laminated and used.
  • Examples of the insulator 153 include a three-layer stacked structure of zirconium oxide, aluminum oxide, and zirconium oxide. Note that the three-layer stacked structure may be referred to as ZrO xa ⁇ AlO xb ⁇ ZrO xc (ZAZ). Note that the above-mentioned xa, xb, and xc are each arbitrary units.
  • insulators of high dielectric constant materials aluminum oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, oxides containing silicon and hafnium Oxynitrides, oxides containing silicon and zirconium, oxynitrides containing silicon and zirconium, oxides containing hafnium and zirconium, oxynitrides containing hafnium and zirconium, and the like can be used.
  • the insulator 153 can be made thick enough to suppress off-current, and the capacitance element C can have sufficient capacitance.
  • a laminated insulating layer made of the above-mentioned materials it is preferable to use a laminated structure of a high dielectric constant material and a material having a higher dielectric strength than the high dielectric constant material.
  • a laminated structure of a high dielectric constant material and a material having a higher dielectric strength than the high dielectric constant material for example, as the insulator 153, an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used. Furthermore, for example, an insulating film in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulating film in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulator having a relatively high dielectric strength, such as aluminum oxide the dielectric strength is improved and electrostatic breakdown of the capacitive element C can be suppressed.
  • Capacitive element C1 shown in FIG. 27A is a modification of capacitive element C shown in FIG. 26A.
  • the capacitive element C1 shown in FIG. 27A is different from the capacitive element C shown in FIG. 26A in the shapes of the conductor 156, the insulator 153, and the conductor 160. With the configuration of the capacitive element C1 shown in FIG. 27A, the overlapping area of the conductor 156, the insulator 153, and the conductor 160 can be increased, so that the capacitance can be increased.
  • the insulator 153 contacts the inside of the recessed portion of the conductor 156 and the upper surface of the conductor 156. Further, the insulator 153 has a region in contact with a part of the outer side surface of the conductor 156. Further, the insulator 153 has a region in contact with the insulator 574.
  • the conductor 160 is provided so as to fill the opening that the conductor 156 has. Further, the conductor 160 has a region that overlaps a part of the outer side surface of the conductor 156 with the insulator 153 in between.
  • the capacitance per unit area can be further increased.
  • Capacitive element C2 shown in FIG. 27B is a modification of capacitive element C shown in FIG. 26A.
  • the conductor 156 includes a conductor 156a on the conductor 542b and a conductor 156b on the conductor 156a.
  • the conductor 156b has a cylindrical shape with a hollow portion.
  • the capacitance per unit area can be further increased.
  • the conductor 156 includes a conductor 156a on the conductor 542b and a conductor 156b on the conductor 156a.
  • the conductor 156b has a cylindrical shape.
  • the capacitance per unit area can be further increased.
  • FIG. 25 shows a configuration in which the transistor M1 and the capacitive element C in the stacked memory layer 700 overlap, that is, the transistors M1 and the capacitive elements C overlap
  • other configurations may be used.
  • the electrode of the capacitive element C in the stacked memory layer 700 may be arranged at a position overlapping the conductor functioning as the back gate of the transistor M1.
  • FIG. 29 shows an example of a cross-sectional configuration when the circuit configuration of a NOSRAM memory cell is used. Note that FIG. 29 is also a modification of FIG. 25. Further, FIG. 30A shows an example of the cross-sectional structure of the memory layer 700[k]. Further, FIG. 30B shows an equivalent circuit diagram of FIG. 30A.
  • the transistor M2 and the transistor M3 shown in FIGS. 29 and 30A share one island-shaped metal oxide 531.
  • a part of one island-shaped metal oxide 531 functions as a channel formation region of transistor M2, and another part functions as a channel formation region of transistor M3.
  • the source of the transistor M2 and the drain of the transistor M3, or the drain of the transistor M2 and the source of the transistor M3 are shared. Therefore, the area occupied by the transistors is smaller than when the transistors M2 and M3 are provided independently.
  • an insulator 287 is provided on an insulator 581, and a conductor 161 is embedded in the insulator 287. Further, the insulator 514 of the memory layer 700[k+1] is provided on the insulator 287 and the conductor 161.
  • the conductor 215 of the storage layer 700[k+1] functions as one terminal of the capacitive element C
  • the insulator 514 of the storage layer 700[k+1] functions as the dielectric of the capacitive element C
  • the conductor 161 functions as the other terminal of the capacitive element C.
  • the other of the source and drain of the transistor M1 is connected to the conductor 161 through a contact plug
  • the gate of the transistor M2 is connected to the conductor 161 through another contact plug.
  • FIG. 29 shows an example in which the conductor functioning as a back gate of the transistors M1 to M3 in the stacked memory layer 700 and the conductor functioning as one terminal of the capacitive element C have different configurations. Although shown, other configurations may be used. For example, as shown in FIG. 31, the conductor 215 corresponding to one terminal of the capacitive element C in the stacked memory layer 700 and the conductor functioning as the back gate of the conductors of the transistors M1 to M3 have the same potential. It is also possible to connect conductor verbs so that With the configuration shown in FIG. 28, the conductor 215 of the capacitive element C can be made large, and the capacitance of the capacitive element C can be increased.
  • the carrier concentration in the channel formation region of the oxide semiconductor is 1 ⁇ 10 18 cm ⁇ 3 or less, preferably less than 1 ⁇ 10 17 cm ⁇ 3 , more preferably less than 1 ⁇ 10 16 cm ⁇ 3 , and even more preferably 1 ⁇ It is less than 10 13 cm ⁇ 3 , more preferably less than 1 ⁇ 10 10 cm ⁇ 3 , and more than 1 ⁇ 10 ⁇ 9 cm ⁇ 3 . Note that in the case of lowering the carrier concentration of the oxide semiconductor film, the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • low impurity concentration and low defect level density are referred to as high purity intrinsic or substantially high purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a high-purity intrinsic or a substantially high-purity intrinsic oxide semiconductor.
  • the impurity in the oxide semiconductor refers to, for example, a substance other than the main component that constitutes the oxide semiconductor.
  • an element having a concentration of less than 0.1 atomic % can be considered an impurity.
  • V OH oxygen vacancy in an oxide semiconductor
  • the donor concentration in the channel formation region may increase.
  • the threshold voltage may vary. Therefore, if the channel formation region in the oxide semiconductor contains oxygen vacancies, the transistor exhibits normally-on characteristics (a channel exists even when no voltage is applied to the gate electrode, and current flows through the transistor). It's easy to become. Therefore, impurities, oxygen vacancies, and V OH are preferably reduced as much as possible in the channel formation region in the oxide semiconductor.
  • the band gap of the oxide semiconductor is preferably larger than the band gap of silicon (typically 1.1 eV), preferably 2 eV or more, more preferably 2.5 eV or more, and even more preferably 3.0 eV or more. It is.
  • off-state current also referred to as Ioff
  • Ioff off-state current
  • Si transistors As transistors become smaller, a short channel effect (also referred to as SCE) occurs. Therefore, it is difficult to miniaturize Si transistors.
  • SCE short channel effect
  • silicon has a small band gap.
  • an OS transistor uses an oxide semiconductor, which is a semiconductor material with a large band gap, short channel effects can be suppressed. In other words, an OS transistor is a transistor that has no short channel effect or has very little short channel effect.
  • characteristic length is widely used as an index of resistance to short channel effects.
  • the characteristic length is an index of the bendability of the potential in the channel forming region. The smaller the characteristic length, the more steeply the potential rises, so it can be said to be resistant to short channel effects.
  • the OS transistor is an accumulation type transistor, and the Si transistor is an inversion type transistor. Therefore, compared to a Si transistor, an OS transistor has a smaller characteristic length between the source region and the channel forming region and a smaller characteristic length between the drain region and the channel forming region. Therefore, OS transistors are more resistant to short channel effects than Si transistors. That is, when it is desired to manufacture a transistor with a short channel length, an OS transistor is more suitable than a Si transistor.
  • the carrier concentration of the oxide semiconductor is lowered until the channel formation region becomes i-type or substantially i-type, conduction in the channel formation region decreases due to the conduction-band-lowering (CBL) effect in short-channel transistors. Since the lower end of the conduction band is lowered, the energy difference at the lower end of the conduction band between the source region or the drain region and the channel formation region may be reduced to 0.1 eV or more and 0.2 eV or less.
  • the OS transistor By making the OS transistor have the above structure, it can have good electrical characteristics even if the semiconductor device is miniaturized or highly integrated. For example, even if the gate length of the OS transistor is 20 nm or less, 15 nm or less, 10 nm or less, 7 nm or less, or 6 nm or less, and it is 1 nm or more, 3 nm or more, or 5 nm or more, good electrical characteristics cannot be obtained. can. On the other hand, since a Si transistor exhibits a short channel effect, it may be difficult to set the gate length to 20 nm or less or 15 nm or less. Therefore, the OS transistor can be suitably used as a transistor having a shorter channel length than a Si transistor. Note that the gate length is the length of the gate electrode in the direction in which carriers move inside the channel formation region during transistor operation, and refers to the width of the bottom surface of the gate electrode in a plan view of the transistor.
  • the high frequency characteristics of the transistor can be improved.
  • the cutoff frequency of the transistor can be improved.
  • the cutoff frequency of the transistor can be set to 50 GHz or more, preferably 100 GHz or more, more preferably 150 GHz or more, for example in a room temperature environment.
  • OS transistors have superior effects compared to Si transistors, such as lower off-state current and the ability to manufacture transistors with shorter channel lengths.
  • FIG. 32A A perspective view of a board (mounted board 704) on which electronic components 709 are mounted is shown in FIG. 32A.
  • An electronic component 709 shown in FIG. 32A has a semiconductor device 710 inside a mold 711. In FIG. 32A, some descriptions are omitted to show the inside of the electronic component 709.
  • the electronic component 709 has a land 712 on the outside of the mold 711. The land 712 is connected to an electrode pad 713, and the electrode pad 713 is connected to the semiconductor device 710 via a wire 714.
  • the electronic component 709 is mounted on the printed circuit board 702, for example.
  • a mounting board 704 is completed by combining a plurality of such electronic components and connecting them on the printed circuit board 702.
  • the semiconductor device 710 includes a drive circuit layer 715 and a memory layer 716.
  • the storage layer 716 has a structure in which a plurality of memory cell arrays are stacked.
  • the structure in which the drive circuit layer 715 and the memory layer 716 are stacked can be a monolithic stacked structure.
  • each layer can be connected without using a through electrode technology such as TSV (Through Silicon Via) or a bonding technology such as Cu-Cu direct bonding.
  • connection wiring etc.
  • connection wiring etc.
  • TSV through silicon vias
  • connection pins By increasing the number of connection pins, parallel operation becomes possible, thereby making it possible to improve the memory bandwidth (also referred to as memory bandwidth).
  • the plurality of memory cell arrays included in the storage layer 716 be formed using OS transistors, and the plurality of memory cell arrays be monolithically stacked.
  • OS transistors the plurality of memory cell arrays be monolithically stacked.
  • bandwidth is the amount of data transferred per unit time
  • access latency is the time from access to the start of data exchange.
  • the semiconductor device 710 may be referred to as a die.
  • a die refers to a chip piece obtained by forming a circuit pattern on, for example, a disk-shaped substrate (also referred to as a wafer) and cutting it into dice in the semiconductor chip manufacturing process.
  • semiconductor materials that can be used for the die include silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also referred to as a silicon wafer
  • a silicon die is sometimes referred to as a silicon die.
  • the electronic component 730 is an example of SiP (System in Package) or MCM (Multi Chip Module).
  • an interposer 731 is provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of semiconductor devices 710 are provided on the interposer 731.
  • the semiconductor device 710 is used as a high bandwidth memory (HBM).
  • the semiconductor device 735 is an integrated circuit such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an FPGA (Field Programmable Gate Array). Can be used.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • a ceramic substrate, a plastic substrate, or a glass epoxy substrate can be used as the package substrate 732.
  • the interposer 731 for example, a silicon interposer or a resin interposer can be used.
  • the interposer 731 has a plurality of wirings and has a function of connecting a plurality of integrated circuits with different terminal pitches.
  • the plurality of wirings are provided in a single layer or in multiple layers.
  • the interposer 731 has a function of connecting an integrated circuit provided on the interposer 731 to an electrode provided on the package substrate 732.
  • the interposer is sometimes called a "rewiring board” or an "intermediate board.”
  • a through electrode is provided in the interposer 731 and the integrated circuit and the package substrate 732 are connected using the through electrode.
  • TSV can also be used as the through electrode.
  • HBM In HBM, it is necessary to connect many wires to achieve a wide memory bandwidth. For this reason, an interposer mounting an HBM is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer for mounting the HBM.
  • a silicon interposer in SiP, MCM, etc. using a silicon interposer, reliability is less likely to deteriorate due to the difference in expansion coefficient between the integrated circuit and the interposer. Furthermore, since the silicon interposer has a highly flat surface, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is less likely to occur. In particular, it is preferable to use a silicon interposer in a 2.5D package (2.5-dimensional packaging) in which a plurality of integrated circuits are arranged side by side on an interposer.
  • 2.5D package 2.5-dimensional packaging
  • a space corresponding to the width of the terminal pitch is required. Therefore, when trying to reduce the size of the electronic component 730, the above-mentioned terminal pitch width becomes a problem, and it may become difficult to provide the many wirings necessary to achieve a wide memory bandwidth. . Therefore, as described above, a monolithic stacked structure using OS transistors is suitable. It may also be a composite structure in which a memory cell array stacked using TSVs and a memory cell array stacked monolithically are combined.
  • An electronic device 6600 shown in FIG. 33B is an information terminal that can be used as a notebook personal computer.
  • the electronic device 6600 includes a housing 6611, a keyboard 6612, a pointing device 6613, an external connection port 6614, a display portion 6615, a control device 6616, and the like.
  • the control device 6616 includes, for example, one or more selected from a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6615, the control device 6616, and the like. Note that it is preferable to use the semiconductor device of one embodiment of the present invention for the above-described control device 6509 and control device 6616 because power consumption can be reduced.
  • the computer 5620 can have the configuration shown in the perspective view shown in FIG. 33D.
  • a computer 5620 has a motherboard 5630, and the motherboard 5630 has a plurality of slots 5631 and a plurality of connection terminals.
  • a PC card 5621 is inserted into the slot 5631.
  • the PC card 5621 has a connection terminal 5623, a connection terminal 5624, and a connection terminal 5625, each of which is connected to the motherboard 5630.
  • a PC card 5621 shown in FIG. 33E is an example of a processing board that includes a CPU, a GPU, a storage device, and the like.
  • PC card 5621 has a board 5622.
  • the board 5622 includes a connection terminal 5623, a connection terminal 5624, a connection terminal 5625, a semiconductor device 5626, a semiconductor device 5627, a semiconductor device 5628, and a connection terminal 5629.
  • semiconductor devices other than the semiconductor device 5626, semiconductor device 5627, and semiconductor device 5628 are illustrated in FIG. Please refer to the description of semiconductor device 5628.
  • connection terminal 5629 has a shape that can be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • Examples of the standard of the connection terminal 5629 include PCIe.
  • the semiconductor device 5627 has a plurality of terminals, and the semiconductor device 5627 and the board 5622 can be connected by, for example, reflow soldering the terminals to wiring provided on the board 5622.
  • Examples of the semiconductor device 5627 include an FPGA, a GPU, and a CPU.
  • an electronic component 730 can be used as the semiconductor device 5627.
  • the semiconductor device 5628 has a plurality of terminals, and the semiconductor device 5628 and the board 5622 can be connected by, for example, reflow soldering the terminals to the wiring provided on the board 5622.
  • Examples of the semiconductor device 5628 include a storage device.
  • an electronic component 709 can be used as the semiconductor device 5628.
  • the large computer 5600 can also function as a parallel computer. By using the large-scale computer 5600 as a parallel computer, it is possible to perform large-scale calculations necessary for, for example, artificial intelligence learning and inference.
  • FIG. 34 shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 includes a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807.
  • a planet 6804 is illustrated in outer space.
  • outer space refers to, for example, an altitude of 100 km or more, but outer space described in this specification may include the thermosphere, mesosphere, and stratosphere.
  • outer space is an environment with more than 100 times higher radiation levels than on the ground.
  • radiation include electromagnetic waves (electromagnetic radiation) represented by X-rays and gamma rays, and particle radiation represented by alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, meson rays, etc. It will be done.
  • the artificial satellite 6800 can be configured to include a sensor.
  • the artificial satellite 6800 can have a function of detecting sunlight reflected by hitting an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface.
  • the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is illustrated as an example of space equipment, but the present invention is not limited to this.
  • the semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as a spacecraft, a space capsule, and a space probe.
  • the semiconductor device of one embodiment of the present invention in a storage system applied to a data center, the power required to hold data can be reduced and the semiconductor device that holds data can be made smaller. Therefore, it is possible to downsize the storage system, downsize the power supply for holding data, and downsize the cooling equipment. Therefore, it is possible to save space in the data center.
  • the host 7001 corresponds to a computer that accesses data stored in the storage 7003.
  • the hosts 7001 may be connected to each other via a network.
  • the cache memory described above is used in the storage control circuit 7002 and the storage 7003. Data exchanged between the host 7001 and the storage 7003 is stored in the storage control circuit 7002 and the cache memory in the storage 7003, and then output to the host 7001 or the storage 7003.
  • an OS transistor as a transistor for storing data in the cache memory described above and maintaining a potential according to the data, the frequency of refreshing can be reduced and power consumption can be reduced. Further, size reduction is possible by using a structure in which memory cell arrays are stacked.
  • the semiconductor device of one embodiment of the present invention by applying the semiconductor device of one embodiment of the present invention to one or more selected from electronic components, electronic devices, large computers, space equipment, and data centers, power consumption can be reduced. There is expected. Therefore, as energy demand is expected to increase due to higher performance or higher integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention will reduce the greenhouse effect typified by carbon dioxide (CO 2 ). It also becomes possible to reduce the amount of gas discharged. Further, since the semiconductor device of one embodiment of the present invention has low power consumption, it is effective as a countermeasure against global warming.
  • CO 2 carbon dioxide
  • each embodiment can be appropriately combined with the structure shown in other embodiments to form one aspect of the present invention. Further, when a plurality of configuration examples are shown in one embodiment, it is possible to combine the configuration examples as appropriate.
  • figure (which may be a part) described in one embodiment may refer to another part of that figure, another figure (which may be a part) described in that embodiment, and/or one or more figures.
  • figures (or even some of them) described in the other embodiments more figures can be constructed.
  • electrode and “wiring” do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the term “electrode” or “wiring” includes cases where a plurality of “electrodes” or “wirings” are formed integrally.
  • a switch refers to a switch that is in a conductive state (on state) or a non-conductive state (off state) and has the function of controlling whether or not current flows.
  • switch refers to something that has the function of selecting and switching a path through which current flows.
  • channel length refers to, for example, the region where the semiconductor (or the part of the semiconductor through which current flows when the transistor is on) and the gate overlap in a top view of a transistor, or the region where a channel is formed.
  • the channel width refers to, for example, the region where the semiconductor (or the part of the semiconductor where current flows when the transistor is on) and the gate electrode overlap, or the region where the channel is formed. This is the length of the part where the drain and the drain face each other.
  • a node can be translated as a terminal, wiring, electrode, conductive layer, conductor, impurity region, etc., depending on the circuit configuration, device structure, etc. Furthermore, terminals, wiring, etc. can be referred to as nodes.
  • a and B are connected means that A and B are electrically connected.
  • a and B when A and B are electrically connected, it refers to an object between A and B (an element such as a switch, a transistor element, or a diode, or a circuit including the element and wiring).
  • a connection that allows transmission of electrical signals between A and B.
  • a connection that is possible.
  • direct connection refers to a connection that can be viewed as the same circuit diagram when expressed as an equivalent circuit.
  • FIG. 36 shows a cross-sectional STEM (Scanning Transmission Electron Microscope) observation result of a semiconductor device.
  • a DOSRAM having an OS transistor is shown separately in a state without temperature correction (initial state) and a state with temperature correction (temperature correction). Temperature correction in the DOSRAM can be performed by controlling the back gate voltage of the OS transistor described in the first embodiment and the like. Further, the DOSRAM was estimated using the structure shown in FIG. 25 (a structure in which four element layers each having an OS transistor are stacked on an element layer having an Si transistor), with an OS transistor manufactured using a 20 nm design rule. Also, in DOSRAM, the cell capacity was estimated at 1.5 fF. Further, as shown in Table 1, the DRAM having Si transistors was estimated based on the design rule of 14 nm for Si transistors.
  • DOSRAM is refreshed more than once every 6.4s, while DRAM is configured to refresh the data of all memory cells once every 64ms. As a result, it was found that DOSRAM has the possibility of reducing the power consumption required for refreshing DRAM to 1/100.
  • NOSRAMs having OS transistors are shown separately in a state without temperature correction (initial state) and a state with temperature correction (temperature correction). Temperature correction in the NOSRAM can be performed by controlling the back gate voltage of the OS transistor as described in the first embodiment and the like. Further, the NOSRAM was estimated using the structure shown in FIG. 29 (a structure in which four element layers each having an OS transistor are laminated on an element layer having an Si transistor), with an OS transistor manufactured using a 20 nm design rule. Further, in NOSRAM, the cell capacity was estimated at 0.4 fF. Further, as shown in Table 2, the SRAM having Si transistors was estimated based on a design rule of 5 nm for Si transistors.
  • NOSRAM has 45 cells/ ⁇ m 2 per layer compared to 47.6 cells/ ⁇ m 2 for SRAM, so it is possible to achieve the same level as SRAM even without multilayering. Understood. As a result, it was found that NOSRAM has the potential to exceed the performance of current SRAM by increasing the number of layers.
  • NOSRAM has the possibility of reducing power consumption to 1/100 of the electrodes involved in refreshing DRAM.
  • a region 801 is provided with three layers of memory cells, one layer of amplifier circuits, and one layer of sense amplifiers having Si transistors.
  • drive circuits such as word line drivers and OS circuit drivers are provided.
  • a sense amplifier including a Si transistor is provided in region 803.
  • a column driver is provided in area 804.
  • a controller is provided in area 805.
  • the write time and read time of the DOSRAM memory cells provided in the second to fourth layers were estimated by simulation.
  • Table 3 shows the write time and read time of a memory using OS transistors (OSFETs) in the second to fourth layers. Note that since the first layer OS transistor is an OS transistor of an amplifier circuit, there is no estimate of write time and read time.
  • OSFETs OS transistors

Abstract

新規な構成の半導体装置の提供。 第1素子層と、温度検知回路、電圧生成回路、およびメモリセルが各層に設けられた複数の第2素 子層と、を有する。複数の第2素子層は、第1素子層上に積層して設けられる。メモリセルは、チ ャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有する。トランジスタは、 バックゲートを有する。各層に設けられた電圧生成回路は、同層に設けられるメモリセルが有する トランジスタのバックゲートに供給されるバックゲート電圧を生成する機能を有する。温度検知回 路は、検知した温度に応じてバックゲート電圧を制御する機能を有する。第2素子層において、上 層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧は、下層に設けら れる第2素子層が有するトランジスタに供給されるバックゲート電圧より大きい。

Description

半導体装置
 本発明の一態様は、半導体装置等に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
 近年、SRAMセルまたはDRAMセルといった異なる機能を有する回路が設けられた複数のダイ(例えばシリコンダイ)を3次元的に積層して設ける構成について研究開発が活発である(例えば非特許文献1および非特許文献2)。
 また近年、酸化物半導体をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることで、データに応じた電荷を保持できる半導体装置の技術開発が進んでいる。OSトランジスタを有する層は、シリコンをチャネル形成領域に用いたトランジスタ(以下、Siトランジスタ)を有するダイ上に積層して設けることができる。特許文献1では、複数のOSトランジスタを有する層を、Siトランジスタを有するダイ上に3次元的に積層して設ける構成について開示している。
国際公開第2020/152522号
W.Gomes et al.,ISSCC Dig.Tech.Papers、pp.42−43、2022. M.Park et al.,ISSCC Dig.Tech.Papers、pp.444−445、2022.
 Siトランジスタを有するダイ(素子層)が回路動作することにより発熱する場合、熱によって上層の素子層が有するトランジスタの電気特性が変動する。複数のOSトランジスタを有する素子層を、Siトランジスタを有する素子層上に3次元的に積層して設ける構成では、複数のOSトランジスタを有する層ごとに異なる温度、例えば上層と下層とで異なる温度、となる。そのため、複数のOSトランジスタを有する層ごとに、トランジスタの電気特性の変動量が異なる虞がある。つまり複数のOSトランジスタを有する層を積層してトランジスタ密度を高める構成では、層ごとのOSトランジスタのしきい値電圧などの電気特性がばらつく虞がある。その結果、消費電力の増加、またはトランジスタの電気特性のばらつきに伴う半導体装置の信頼性が損なわれる、といった虞がある。
 本発明の一態様は、トランジスタの電気特性のばらつきの影響が低減された半導体装置を提供することを課題の一とする。または、本発明の一態様は、消費電力の低減に優れた半導体装置を提供することを課題の一とする。または、本発明の一態様は、記憶密度に向上に優れた半導体装置を提供することを課題の一とする。または、本発明の一態様は、新規な構成の半導体装置を提供することを課題の一とする。
 なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。
 本発明の一態様は、温度検知回路および電圧生成回路が設けられた第1素子層と、メモリセルが設けられた複数の第2素子層と、を有し、複数の第2素子層は、第1素子層上に積層して設けられ、メモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、トランジスタは、バックゲートを有し、電圧生成回路は、バックゲートに供給されるバックゲート電圧を生成する機能を有し、温度検知回路は、検知した温度に応じてバックゲート電圧を制御する機能を有し、電圧生成回路は、バックゲート電圧を、複数の第2素子層ごとに異なる電圧として供給する機能を有する、半導体装置である。
 本発明の一態様において、上層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧は、下層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧より大きい、半導体装置が好ましい。
 本発明の一態様において、第1素子層は、演算回路を有し、積層された第2素子層は、演算回路が設けられる領域に重ねて設けられる、半導体装置が好ましい。
 本発明の一態様において、酸化物半導体は、In、Ga、及びZnを有する、半導体装置が好ましい。
 本発明の一態様は、第1素子層と、温度検知回路、電圧生成回路、およびメモリセルが各層に設けられた複数の第2素子層と、を有し、複数の第2素子層は、第1素子層上に積層して設けられ、メモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、トランジスタは、バックゲートを有し、各層に設けられた電圧生成回路は、同層に設けられるメモリセルが有するトランジスタのバックゲートに供給されるバックゲート電圧を生成する機能を有し、温度検知回路は、検知した温度に応じてバックゲート電圧を制御する機能を有する、半導体装置である。
 本発明の一態様において、上層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧は、下層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧より大きい、半導体装置が好ましい。
 本発明の一態様において、第1素子層は、演算回路を有し、積層された第2素子層は、演算回路が設けられる領域に重ねて設けられる、半導体装置が好ましい。
 本発明の一態様において、酸化物半導体は、In、Ga、及びZnを有する、半導体装置が好ましい。
 本発明の一態様において、温度検知回路は、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有する、半導体装置である。
 本発明の一態様は、温度検知回路および電圧生成回路が設けられた第1素子層と、増幅回路を有する第2素子層と、メモリセルが設けられた複数の第3素子層と、を有し、複数の第2素子層は、第1素子層上に積層して設けられ、複数の第3素子層は、第2素子層上に積層して設けられ、増幅回路は、メモリセルの信号を増幅する機能を有し、増幅回路およびメモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、トランジスタは、バックゲートを有し、電圧生成回路は、バックゲートに供給されるバックゲート電圧を生成する機能を有し、温度検知回路は、検知した温度に応じてバックゲート電圧を制御する機能を有し、電圧生成回路は、バックゲート電圧を、第2素子層および複数の第3素子層ごとに異なる電圧として供給する機能を有する、半導体装置である。
 本発明の一態様において、複数の第2素子層において、上層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧は、下層に設けられる第2素子層が有するトランジスタに供給されるバックゲート電圧より大きい、半導体装置が好ましい。
 本発明の一態様において、酸化物半導体は、In、Ga、及びZnを有する、半導体装置が好ましい。
 本発明の一態様において、第1素子層は、スキャンフリップフロップを有する演算回路を有し、スキャンフリップフロップは、スキャンフリップフロップのデータを保持する機能を有するバックアップ回路に電気的に接続され、バックアップ回路は、スキャンフリップフロップが設けられる領域に重なる第2素子層の領域に設けられる、半導体装置が好ましい。
 なおその他の本発明の一態様については、以下で述べる実施の形態における説明、及び図面に記載されている。
 本発明の一態様は、トランジスタの電気特性のばらつきの影響が低減された半導体装置を提供することができる。または、本発明の一態様は、消費電力の低減に優れた半導体装置を提供することができる。または、本発明の一態様は、記憶密度に向上に優れた半導体装置を提供することができる。または、本発明の一態様は、新規な構成の半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aおよび図1Bは、半導体装置の構成例を説明する図である。
図2は、半導体装置の構成例を説明する図である。
図3Aおよび図3Bは、半導体装置を説明する図である。
図4A乃至図4Cは、半導体装置を説明する図である。
図5Aおよび図5Bは、半導体装置を説明する図である。
図6は、半導体装置の構成例を説明する図である。
図7Aおよび図7Bは、半導体装置の構成例を説明する図である。
図8は、半導体装置の構成例を説明する図である。
図9A乃至図9Cは、半導体装置の構成例を説明する図である。
図10A乃至図10Dは、半導体装置の構成例を説明する図である。
図11A乃至図11Eは、半導体装置の構成例を説明する図である。
図12は、半導体装置の構成例を説明する図である。
図13Aおよび図13Bは、半導体装置の構成例を説明する図である。
図14Aおよび図14Bは、半導体装置の構成例を説明する図である。
図15A乃至図15Dは、半導体装置の構成例を説明する図である。
図16Aおよび図16Bは、半導体装置の構成例を説明する図である。
図17は、半導体装置の構成例を説明する図である。
図18は、半導体装置の構成例を説明する図である。
図19は、半導体装置の構成例を説明する図である。
図20Aおよび図20Bは、半導体装置の構成例を説明する図である。
図21Aおよび図21Bは、半導体装置の構成例を説明する図である。
図22は、半導体装置の構成例を説明する図である。
図23A乃至図23Cは、半導体装置の構成例を説明する図である。
図24は、半導体装置の構成例を説明する図である。
図25は、記憶部の構成例を説明する図である。
図26Aは、記憶層の構成例を説明する図である。図26Bは、記憶層の等価回路を説明する図である。
図27A乃至図27Dは、半導体装置の構成例を説明する図である。
図28は、半導体装置の構成例を説明する図である。
図29は、記憶部の構成例を説明する図である。
図30Aは、記憶層の構成例を説明する図である。図30Bは、記憶層の等価回路を説明する図である。
図31は、半導体装置の構成例を説明する図である。
図32A及び図32Bは、電子部品の一例を示す図である。
図33A及び図33Bは、電子機器の一例を示す図であり、図33C乃至図33Eは、大型計算機の一例を示す図である。
図34は、宇宙用機器の一例を示す図である。
図35は、データセンターに適用可能なストレージシステムの一例を示す図である。
図36は、半導体装置の断面の構成を説明する図である。
図37は、半導体チップのレイアウトを説明する図である。
図38A乃至図38Dは、半導体チップの動作シミュレーションを説明する図である。
図39A乃至図39Dは、半導体チップの動作シミュレーションを説明する図である。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
 また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)等に分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
(実施の形態1)
 本実施の形態では、半導体装置の構成例について説明する。本発明の一態様で説明する半導体装置は、CPUおよびキャッシュメモリの他、メモリまたは周辺回路などの複数の同期回路を有するSoC(System on a chip)としての機能を有する。
 図1Aは、本発明の一態様の半導体装置の斜視概略図である。図1Aに示す半導体装置10は、素子層20、および複数の素子層(図1Aでは一例として素子層30_1乃至30_4)を有する。また図1Bは、図1Aの構成において、素子層20、および複数の素子層30_1乃至30_4を離隔して図示した斜視図である。また図2は、図1A、図1Bで示す構成を説明するためのブロック図である。
 素子層20は、チャネル形成領域を有する半導体層がシリコンを有するトランジスタ(Siトランジスタ)を有する層である。素子層20は一例として、電圧制御回路21、周辺回路22、および演算回路23を有する。素子層30_1乃至30_4はそれぞれ、メモリセルアレイ31を有する。メモリセルアレイ31は、メモリセル32を有する。メモリセル32は、バックゲートを有するトランジスタ37を有する。
 電圧制御回路21は、素子層30_1乃至30_4の各層毎に、メモリセルアレイ31が有するトランジスタ37のバックゲートに印加する電圧(バックゲート電圧)を供給する機能を有する。バックゲート電圧は、素子層30_1乃至30_4の各層毎に異なる電圧である。またバックゲート電圧は、電圧制御回路21で検知した温度に応じて制御される。当該構成とすることで、素子層20に近い素子層30_1と素子層20から遠い素子層30_4とで異なるバックゲート電圧を供給できるため、素子層30_1乃至30_4の各層毎に異なるトランジスタの電気特性のばらつきの影響が低減することができる。
 周辺回路22は、素子層30_1乃至30_4の各層毎に設けられたメモリセルアレイ31が有するメモリセル32へのデータの書き込みまたは読み出しを制御する機能を有する。周辺回路22は、メモリセル32に接続されるワード線およびビット線等の信号線を駆動するための複数の駆動回路および制御回路を有する。例えばn層(nは2以上の整数。)の素子層30の場合、メモリセル32に接続されるワード線およびビット線を駆動するための駆動回路は、n個ずつ設けられる構成が好ましい。
 演算回路23は、積層されたメモリセルアレイ31のメモリセル32に格納されたデータを用いた演算処理を行う機能を有する。例えば、演算回路23における演算は、全てのメモリセルアレイ31から読み出したデータを用いて実行する場合、1つのメモリセルアレイ31から読み出したデータを用いて実行する場合、または、複数のメモリセルアレイ31から読み出したデータを用いて実行する場合、のいずれの場合でも演算可能である。なお演算回路23を一例として説明するが、キャッシュメモリあるいはコントローラ回路など、他の機能を有する回路であってもよい。
 図1A、図1Bおよび図2の構成でSiトランジスタを有する素子層20は、CMOS回路(Si CMOS回路)を形成する構成が可能である。電圧制御回路21、周辺回路22、および演算回路23は、CMOS回路で形成可能であるため、高速動作が可能となる。
 なおSiトランジスタのチャネル形成領域を有する半導体層は、単結晶半導体、多結晶半導体、微結晶半導体、又は非晶質半導体等を、単体で又は組み合わせて用いることができる。半導体材料としてはシリコンに限らず、例えばゲルマニウム等を用いることができる。また、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、又は窒化物半導体等の化合物半導体を用いてもよい。
 図1A、図1Bおよび図2の構成では、素子層30_1乃至30_4のメモリセルアレイ31から演算回路23に至る経路、あるいはメモリセルアレイ31が出力するデータの増幅回路から演算回路23に至る経路を、メモリセルアレイ31を素子層20に複数並べて配置する場合と比べて、短くすることができる。換言すれば図1A、図1Bおよび図2の構成では、素子層20の近傍にある素子層30_1にあるメモリセルアレイ31(最下層の素子層にあるメモリセルアレイ31)と、素子層20の表面から離れて設けられている素子層30_4にあるメモリセルアレイ31(最上層の記憶層にあるメモリセルアレイ)と、において、演算回路23に至る経路の差を小さくすることができる。
 メモリセルアレイ31と演算回路23との間の経路の長さの違いは、寄生容量および寄生抵抗の違いになり、信号遅延の差および消費電力の差となる。したがって、図1A、図1Bおよび図2の構成では、各素子層30_1乃至30_4の何れのメモリセルアレイ31からデータを読み出しても同程度の信号遅延および消費電力でデータの読み出しが可能となる。したがって、データをどのメモリセルアレイ31に格納しても、演算性能、消費電力、および演算効率には違いが少ないため、データを格納する際の自由度が増すことになる。
 なお、演算回路23と素子層30_1乃至30_4を重ねて配置することで、演算回路23の駆動による熱が素子層30_1乃至30_4に伝わる。その結果、素子層30_1乃至30_4が有するOSトランジスタの電界効果移動を高めることができる。素子層30_1乃至30_4の高速動作を可能にすることができる。
 素子層30_1乃至30_4は、酸化物半導体をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を有する素子層である。素子層30_1乃至30_4は、素子層20上に積層して設けられる。図1A、図1B中のZ方向は、素子層20が設けられる基板の表面(X方向−Y方向で表される面)に垂直な方向、または素子層30_1乃至30_4が素子層20上に積層して設けられる方向を表している。
 図1A、図1Bおよび図2に示す半導体装置10は、メモリセルアレイ31を有する素子層30_1乃至30_4が、素子層20上に積層して設けられる様子を図示している。メモリセルアレイ31を有する素子層30を素子層20上に設けることで、半導体装置10が占める占有面積を低減できる。またメモリセルアレイ31を有する素子層30を積層して設けることで、単位面積当たりの記憶容量を高めることができる。
 メモリセル32は、例えば、OSトランジスタを有するメモリ回路(「OSメモリ」という場合もある)であるDOSRAMが好ましい。DOSRAM(登録商標)とは、「Dynamic Oxide Semiconductor Random Access Memory」の略称である。DOSRAMは、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。DOSRAMは、OSトランジスタを用いて形成されたDRAMであり、DOSRAMは、外部から送られてくる情報を一時的に格納するメモリである。DOSRAMは、OSトランジスタのオフ電流が低いことを利用したメモリである。
 OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりオフ電流が極めて小さい。DOSRAMは、アクセストランジスタをオフ(非導通状態)にすることで、容量(キャパシタ)(「セル容量」という場合もある)に保持しているデータに応じた電荷を長時間保持することが可能である。そのためDOSRAMは、チャネル形成領域にシリコンを有するトランジスタ(以下、「Siトランジスタ」とも呼ぶ。)で構成されるDRAMと比較して、リフレッシュ動作の頻度を低減できる。その結果、低消費電力化を図ることができる。
 また、メモリセル32は、OSトランジスタを積層して配置することで、メモリセルアレイ31を有する素子層30_1乃至30_4を積層して設けることができる。素子層30が有する素子層30_1乃至30_4は、素子層20が設けられる基板表面の垂直方向に配置することで、メモリセル32の記憶密度の向上を図ることができる。また素子層30は、垂直方向に繰り返し同じ製造工程を用いて作製することができる。半導体装置10は、素子層30の製造コストの低減を図ることができる。
 なお本実施の形態ではメモリセル32に適用可能な構成として、DOSRAMを一例として挙げて説明するが、素子層20上に積層可能な記憶層を形成可能な構成であれば他の構成でもよい。例えば、OSトランジスタを有するメモリ回路であるNOSRAMであってもよい。NOSRAM(登録商標)とは、「Nonvolatile Oxide Semiconductor Random Access Memory(RAM)」の略称である。NOSRAMは、メモリセルが2トランジスタ型(2T)、又は3トランジスタ型(3T)ゲインセルである。
 なおメモリセル32が有するトランジスタは、全てOSトランジスタであることが好ましい。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりオフ電流が極めて小さい。NOSRAMは、オフ電流が極めて小さい特性を用いてデータに応じた電荷をメモリセル32内に保持することで、不揮発性メモリとして用いることができる。特にNOSRAMは保持しているデータを破壊することなく読み出しすること(非破壊読み出し)が可能なため、データ読み出し動作のみを大量に繰り返す、演算処理に適している。
 なお図1A、図1Bおよび図2では、1層目の素子層30を素子層30_1と示し、2層目の素子層30を素子層30_2と示し、3層目の素子層30を素子層30_3と示す。また、k層目(kは1以上n以下の整数。)の素子層30を素子層30_kと示し、n層目の素子層30を素子層30_nと示す。なお、本実施の形態等において、n層の素子層30全体に係る事柄を説明する場合、又はn層ある素子層30の各層に共通の事柄を示す場合に、単に「素子層30」と表記する場合がある。
 図1A、図1Bおよび図2に図示する電圧制御回路21は、温度検知回路15および複数の電圧生成回路16_1乃至16_4を有する。また図2に図示するメモリセル32が有するトランジスタ37は、第1ゲート(「フロントゲート」または単に「ゲート」ともいう。)と第2ゲート(「バックゲート」ともいう。)を有するトランジスタである。第1ゲートと第2ゲートは、半導体層を介して互いに重なる領域を有する。第2ゲートは、例えばトランジスタ37のしきい値電圧を制御する機能を有する。
 図2に示す温度検知回路15は、素子層20の温度に応じた信号T20を出力する機能を有する。温度検知回路15は、一例としては温度センサを有する。温度センサとしては、例えば、白金、ニッケルまたは銅などの測温抵抗体、サーミスタ、熱電対、IC温度センサなどを用いることができる。
 温度検知回路15は、アナログデジタル変換回路を有していてもよい。温度検知回路15においてアナログ信号の温度情報をデジタル信号に変換して出力することで、配線抵抗および寄生容量による信号の減衰、またはノイズの影響を低減することができる。よって、温度検知回路15が電圧生成回路16_1乃至16_4から離れた位置に設けられている場合であっても、温度情報を電圧生成回路16_1乃至16_4に正確に伝えることができる。
 素子層20の温度変化に応じて、素子層30_1乃至30_4におけるトランジスタのしきい値電圧といった電気特性が変化する。例えば素子層20における演算回路23の駆動に応じて電流が流れることで発熱し、演算回路23の上層にある素子層30_1乃至30_4における温度が変動する。温度検知回路15では、素子層20での温度変化を測定することで、素子層30_1乃至30_4での温度変化における電気特性の変化に応じた制御を行うための信号を出力する。
 図2に示す電圧生成回路16_1乃至16_4は、素子層30_1乃至30_4が有するメモリセル32におけるトランジスタ37のバックゲートに供給されるバックゲート電圧VBG_1乃至VBG_4を生成する機能を有する。電圧生成回路16_1乃至16_4は、一例としては、基準電圧生成回路および降圧型(または昇圧型)のチャージポンプを組み合わせて所望のバックゲート電圧を生成する回路とすればよい。
 電圧生成回路16_1乃至16_4で生成されるバックゲート電圧VBG_1乃至VBG_4は、素子層30_1乃至30_4での温度変化における電気特性の変化に応じて生成される。例えば、演算回路23の駆動によって素子層20が高温の場合、下層にある素子層30_1は素子層20と同等の高温であり、上層にある素子層30_4は素子層20から離れた位置にあるため、素子層30_1より低温である。つまり、素子層20の温度に応じて生じる素子層30_1乃至30_4の温度勾配に応じて生じる電気特性のばらつきを低減するようバックゲート電圧VBG_1乃至VBG_4を生成する。
 上述した演算回路23の駆動によって素子層20が高温となる場合、下層にある素子層30_1と上層にある素子層30_4とでトランジスタの電気特性が異なることとなるため温度検知回路15および複数の電圧生成回路16_1乃至16_4を有する電圧制御回路21は、下層にある素子層30_1が有するトランジスタ37のバックゲートには、VBG_1のバックゲート電圧を印加し、上層にある素子層30_4が有するトランジスタ37のバックゲートには、VBG_4(>VBG_1)のバックゲート電圧を印加し、電気特性のばらつきを低減するよう制御することができる。
 なおバックゲート電圧VBG_1乃至VBG_4は、VBG_4>VBG_3>VBG_2>VBG_1となるよう各素子層のトランジスタ37に供給することが好ましい。当該構成とすることで、上層にある素子層30_4が有するトランジスタ37の電気特性を、下層にある素子層30_1が有するトランジスタ37の電気特性に近づけることができるため、電気特性のばらつきを低減することができる。
 なおOSトランジスタに適用される金属酸化物は、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物が挙げられる。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種である。特に、元素Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
 特に、金属酸化物として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、及び亜鉛を含む酸化物(ITZO(登録商標)とも記す)を用いることが好ましい。または、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いることが好ましい。または、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZOとも記す)を用いることが好ましい。または、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及びスズ(Sn)を含む酸化物(IGZTOとも記す)を用いることが好ましい。
 また、OSトランジスタに適用される金属酸化物は、組成が異なる2層以上の金属酸化物層を有していてもよい。例えば、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造を好適に用いることができる。
 また、例えば、インジウム酸化物、インジウムガリウム酸化物、及びIGZOの中から選ばれるいずれか一と、IAZO、IAGZO、及びITZOの中から選ばれるいずれか一と、の積層構造などを用いてもよい。
 なお、OSトランジスタに適用される金属酸化物は、結晶性を有すると好ましい。結晶性を有する酸化物半導体としては、CAAC(c−axis−aligned crystalline)−OS、nc(nanocrystalline)−OS等が挙げられる。結晶性を有する酸化物半導体を用いると、信頼性が高い半導体装置を提供することができる。
 また、OSトランジスタは高温環境下においても動作が安定し、特性変動が少ない。例えば、高温環境下でもオフ電流がほとんど増加しない。具体的には、室温以上200℃以下の環境温度下でもオフ電流がほとんど増加しない。また、高温環境下でもオン電流が低下しにくい。よって、OSトランジスタを含むメモリセルは、高温環境下においても動作が安定し、高い信頼性が得られる。
 ここで、トランジスタの電気特性の1つであるId−Vg特性の温度依存性について説明しておく。図3Aには、OSトランジスタ(OS−FET)のId−Vg特性を示している。図3Bには、Siトランジスタ(Si−FET)のId−Vg特性を示している。なお、図3Aおよび図3Bは、どちらもnチャネル型トランジスタのId−Vg特性である。Id−Vg特性は、ゲート電圧(Vg)の変化に対するドレイン電流(Id)の変化を示す。図3Aおよび図3Bの横軸は、Vgをリニアスケールで示している。また、図3Aおよび図3Bの縦軸は、Idをログスケールで示している。
 図3Aに示すように、OSトランジスタは高温下の動作においてもオフ電流が増加しにくい。また、OSトランジスタは、動作温度の上昇と共にVthがマイナス方向にシフトし、動作電圧VGにおけるオン電流が動作温度の上昇に応じて増加する。一方で、図3Bに示すように、Siトランジスタは、動作温度の上昇と共に、オフ電流が増加する。また、Siトランジスタは、動作温度の上昇と共にVthがプラス方向にシフトし、動作電圧VGにおけるオン電流が動作温度の上昇に応じて低下する。
 積層して設けられる素子層30が有するトランジスタ37としてOSトランジスタを適用することで、高温化の動作であっても低いオフ電流とすることができる。高温下の動作においてもトランジスタ37を含む半導体装置全体の消費電力を下げることができる。
 図4Aには、図3Aで示したOSトランジスタのId−Vg特性の温度変化をもとにした、温度変化に対するオン電流Ion(動作電圧VGで流れるドレイン電流Id)の関係を示す図である。図4Aに示すように温度の違いによってオン電流Ionが異なるため、上述した素子層30_1乃至30_4での温度変化における電気特性の変化が生じることとなる。
 上述した電圧制御回路21は、素子層30_1乃至30_4での温度変化における電気特性の変化による電気特性の変化を小さくするよう、素子層30_1乃至30_4が有するメモリセル32におけるトランジスタ37のバックゲートに供給されるバックゲート電圧VBG_1乃至VBG_4を生成する。具体的には図4Bに図示するように、素子層30_1乃至30_4の温度分布が、下層ほど高温の場合、バックゲート電圧VBG_1乃至VBG_4は、下層ほど低い電圧とする。すなわち、T30_4、T30_3、T30_2、T30_1の順に温度が高くなる場合、VBG1、VBG2、VBG3、VBG4の順に電圧を高く供給する構成とすればよい。当該構成とすることで、例えば図4Cに図示するId−Vg特性のように、素子層30_1乃至30_4における温度変化のばらつきに応じた電気特性のばらつきを緩和することができる。
 なお図4Bに図示するように低温側の素子層の補正する構成では、図5Aに示すように、上層の素子層(低温側)にあるトランジスタのオン電流を大きくするように補正する構成(点線の電気特性を実線の電気特性に補正)となるが、他の構成でもよい。例えば図5Bに示す図のように、下層の素子層(高温側)にあるトランジスタのオン電流を小さくするように補正する構成(点線の電気特性を実線の電気特性に補正)としてもよい。当該構成とすることで、上層と下層の素子層30間におけるオン電流のばらつきを低減することができる。
 図6は、上述した半導体装置10を有する集積回路(ICチップという)の一例を示す。半導体装置10は、複数の素子層をパッケージ用の基板上に実装することで、1つのICチップとすることができる。図6に、その構成の一例を示す。
 図6に図示するICチップ100の断面模式図は、パッケージ基板101上にベースダイとなる素子層20を有し、一例として4層の素子層30_1乃至30_4が素子層20上に積層された半導体装置10を図示している。パッケージ基板101には、ICチップ100をプリント基板等と接続するためのソルダーボール102が設けられている素子層20および素子層30_1乃至30_4を接続するための電極39は、Siトランジスタであるトランジスタ49またはOSトランジスタであるトランジスタ37を作製する工程にて設けることができる。
 図6の構成は、トランジスタ49を有する素子層20と、トランジスタ37を有する素子層30_1乃至30_4と、の間の接続は、TSV(Through Silicon Via)などの貫通電極を用いる技術またはCu−Cu直接接合技術を用いない、モノリシックな構成とすることができる。素子層20上の素子層30_1乃至30_4は、素子層30_1乃至30_4が有するトランジスタ37とともに設けられる配線を、上層または下層の素子層と接続するための電極39として用いる構成とすることができる。
 トランジスタ37とともに設けられる配線の間隔は、TSVまたはCu−Cu直接接合技術で用いられる貫通電極と比べて、微細加工が可能である。そのため、図6に示す半導体装置10の構成では、上層または下層の素子層と接続するための電極の本数を増やすことができる。そのため、素子層30_1乃至30_4に設けられるメモリセルを有する記憶回路と、素子層20に設けられる演算回路23と、の配線数(信号線数)を増やすことができる。換言すれば、演算回路と記憶回路との間のチャネル数を増大させることができる。そのため、素子層20と素子層30との間で送受信される信号の転送量(バンド幅)を拡大することができる。バンド幅を拡大することで、単位時間当たりのデータ転送量を増やすことができる。
 図7Aは、図1Aで説明した、本発明の一態様の半導体装置とは異なる構成例を説明するための半導体装置の斜視概略図である。図7Aに示す半導体装置10Aは、素子層20、および複数の素子層(図7Aでは一例として素子層30_1乃至30_4)を有する。また図7Bは、図7Aの構成において、素子層20、および複数の素子層30_1乃至30_4を離隔して図示した斜視図である。また図8は、図7A、図7Bで示す構成を説明するためのブロック図である。なお以下の図7A、図7Bおよび図8の説明において、図1A、図1Bおよび図2での説明と共通するところは、共通の符号を用いてその説明を省略する。
 図7A、図7Bおよび図8に示す構成において、図1A、図1Bおよび図2と異なる点としては、素子層30_1乃至30_4は各層毎に、温度検知回路15および電圧生成回路16を有する点である。つまり素子層30ごとに、温度検知回路15および電圧生成回路16を有する構成である。なお電圧生成回路16は、素子層20に設ける構成としてもよい。
 図7Bおよび図8に図示するように各層毎に設けられる温度検知回路15_1乃至15_4は、素子層30_1乃至30_4の温度に応じた信号T30_1乃至T30_4を出力する機能を有する。温度検知回路15_1乃至15_4は、一例としてはOSトランジスタを有する温度センサを有する。
 図7Bおよび図8に図示するように各層毎に設けられる電圧生成回路16_1乃至16_4は、素子層30_1乃至30_4での温度変化による電気特性の変化に応じて、同じ層に設けられたトランジスタ37が有するバックゲート電圧VBG_1乃至VBG_4を生成する。
 電圧生成回路16_1乃至16_4で生成されるバックゲート電圧VBG_1乃至VBG_4は、素子層30_1乃至30_4での温度変化における電気特性の変化に応じて生成される。例えば、演算回路23の駆動によって素子層20が高温の場合、下層にある素子層30_1は素子層20と同等の高温であり、上層にある素子層30_4は素子層20から離れた位置にあるため、素子層30_1より低温である。つまり、素子層20の温度に応じて生じる素子層30_1乃至30_4の温度勾配に応じて生じる電気特性のばらつきを低減するようバックゲート電圧VBG_1乃至VBG_4を生成する。
 上述した演算回路23の駆動によって素子層20が高温の場合、下層にある素子層30_1が有するトランジスタ37のバックゲートには、VBG_1のバックゲート電圧を印加し、上層にある素子層30_4が有するトランジスタ37のバックゲートには、VBG_4(>VBG_1)のバックゲート電圧を印加することで、電気特性のばらつきを低減する。なおバックゲート電圧VBG_1乃至VBG_4は、VBG_4>VBG_3>VBG_2>VBG_1となるよう各素子層のトランジスタ37に供給することが好ましい。当該構成とすることで、上層にある素子層30_4が有するトランジスタ37の電気特性を、下層にある素子層30_1が有するトランジスタ37の電気特性に近づけることができるため、電気特性のばらつきを低減することができる。
 OSトランジスタを有する温度センサの構成例について説明する。図9Aは、OSトランジスタであるトランジスタ18A、18Bで構成される温度検知回路15の構成例を示す。
 図9Aに図示する温度検知回路15では、トランジスタ18AのゲートおよびドレインにV1の電位を与え、トランジスタ18Bのゲートに0Vを与える。トランジスタ18Aのソースとドレインとの間が導通状態(オン)、トランジスタ18Bのソースとドレインとの間が非導通状態(オフ)となる。出力VOUTは、トランジスタ18Aが導通状態となることで、0VからV1(>0V)に電位が上昇する。この電位の上昇は、トランジスタ18Aのしきい値電圧をVTHとすると、出力VOUTがV1−VTHで止まる。
 温度検知は、トランジスタ18Aのしきい値電圧VTHが温度によって変動することを利用して行われる。出力VOUTがVTHを含む値であるため、温度に応じた出力とすることができる。なお出力VOUTは、トランジスタ18BのゲートをV1とし、トランジスタ18Bをオンにすることでリセット(0V)することができる。出力VOUTは、アナログデジタル変換回路を介してデジタル信号として出力することができる。
 また別の温度検知回路15の構成として、図9Bでは、OSトランジスタであるトランジスタ18A、および定電流源19で構成される温度検知回路15Aの構成例を示す。定電流源19は、OSトランジスタで構成することができる。図9Bに示す構成において温度検知は、トランジスタ18Aのしきい値電圧VTHが温度によって変動することを利用して行われる。出力VOUTがVTHを含む値であるため、温度に応じた出力とすることができる。
 また図9Cでは、電圧生成回路の構成について説明する。電圧生成回路16は、ロジック回路34、複数のバッファ(図9CではBF1乃至BF4を例示)、および複数の容量素子(図9CではC1、C2、C4、C8を例示)を有する。ロジック回路34は、温度検知回路15から供給された出力信号(温度情報)をもとにバッファBF1乃至BF4に電圧を供給する機能を有する。例えば、温度検知回路15から供給されたシリアル信号をパラレル信号に変換してバッファBF1乃至BF4に供給する。
 容量素子C1の一方の電極はバッファBF1の出力と接続され、他方の電極はバックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と接続される。容量素子C2の一方の電極はバッファBF2の出力と接続され、他方の電極はバックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と接続される。容量素子C4の一方の電極はバッファBF3の出力と接続され、他方の電極はバックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と接続される。容量素子C8の一方の電極はバッファBF4の出力と接続され、他方の電極はバックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と接続される。
 電圧生成回路16からバックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に印加する電圧は、容量素子C1、容量素子C2、容量素子C4、および容量素子C8の合成容量と、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に生じる寄生容量の比で決定される。容量素子C1の容量値は、該寄生容量の容量値より十分大きいことが好ましい。具体的には、容量素子C1の容量値は、該寄生容量の容量値の5倍以上が好ましく、10倍以上がより好ましい。このように、温度検知回路15および電圧生成回路16を、メモリセル32を有する各素子層に配置することで、各素子層での温度変化に応じてバックゲート電圧VBGを変化させることが出来る。
 なお電圧生成回路16の構成としては図9Cに例示した構成に限らず、他の構成でもよい。例えば、チャージポンプ回路などを用いる構成でもよい。
 なお電圧生成回路16と、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と、の間にバックゲート電圧VBGを保持する機能を有する電圧保持回路を有する構成があってもよい。電圧保持回路の構成例について、図10A乃至図10Dを参照して説明する。
 図10Aには、電圧生成回路16と、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線と、の間に電圧保持回路35を有する構成例を図示している。電圧保持回路35は、トランジスタ36を有する。トランジスタ36の第1端子(ソースまたはドレインの一方)は電圧生成回路16に接続され、トランジスタ36の第2端子(ソースまたはドレインの他方)は、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に接続されている。
 電圧保持回路35は、トランジスタ36をオン状態にして、電圧生成回路16が生成した電圧VBG0を、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に供給する機能を有する。トランジスタ36のしきい値電圧をVth1とすると、トランジスタ36をオン状態にする場合は、トランジスタ36のゲートに、VBG0+Vth1以上の電圧を印加することが好ましい。また、電圧保持回路35は、トランジスタ36をオフ状態にして、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線の電圧を保持する機能を有する。バックゲート電圧VBGを保持する構成とすることで電圧生成回路16を間欠的に停止することができ、低消費電力化を図ることができる。
 電圧VBG0として負電位を供給する場合、トランジスタ36に第1ゲートおよび第2ゲートを有するトランジスタを用いて、第1ゲートおよび第2ゲートを第2端子と接続してもよい(図10B参照)。この場合、トランジスタ36Aはダイオードとして機能できる。また、トランジスタ36Aから出力される電圧を電圧VBG1とすると、VBG1=VBG+Vth1の関係が成り立つ。トランジスタ36Aの第1端子をGNDにすることで、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に書き込まれた負電位を保持することができる。
 図10Bに示すトランジスタ36Aでは、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に負電位を供給した後第1端子をGNDにするとゲート電圧(Vg)が0Vとなる。よって、Vgが0Vの時のId(「カットオフ電流」ともいう。)が小さいことが好ましい。カットオフ電流を十分小さくすることで、バックゲート電圧VBGをトランジスタ37のバックゲートに供給する配線に書き込まれた負電位を長期間保持することができる。
 トランジスタ36Aのチャネル長は、トランジスタ37のチャネル長よりも長いことが好ましい。例えば、トランジスタ37のチャネル長を1μm未満とした場合、トランジスタ36Aのチャネル長は1μm以上、さらに好ましくは3μm以上、さらに好ましくは5μm以上、さらに好ましくは10μm以上である。トランジスタ36Aのチャネル長を長くすることで、トランジスタ36Aは短チャネル効果の影響を受けず、カットオフ電流を低く抑えることができる。また、トランジスタ36Aはソースとドレイン間の耐圧を高くすることができる。トランジスタ36Aのソースとドレイン間の耐圧が高いと、電圧生成回路16が生成した電圧が高電圧であってもトランジスタ37との接続を容易にすることができて好ましい。
 トランジスタ36Aには、OSトランジスタを用いることが好ましい。OSトランジスタは、カットオフ電流が小さく、ソースとドレイン間の耐圧が高い。
 また電圧保持回路35は、図10C、図10Dに図示するように電圧保持回路35B、35Cの構成を適用することができる。図10C、図10Dでは、直列に接続された複数のトランジスタ36B、36Cを用いて電圧保持回路とする構成を図示している。
 図11A乃至図11Eでは、上述したメモリセル32に適用可能なOSトランジスタを有するメモリセルの構成例について説明する。OSトランジスタを有するメモリセルの構成としては、上述したようにDOSRAMまたはNOSRAMを一例として挙げることができる。
 図11Aには、メモリセル32に適用可能な1T1C(容量)型のDOSRAMのメモリセルの例を示す。図11Aに示すメモリセル32は、ワード線として機能する配線WL、ビット線として機能する配線BL、容量線として機能する配線CDL、バックゲート電圧を供給する配線として機能する配線BGLに接続されている。メモリセル32は、トランジスタ37、容量素子38を有する。トランジスタ37のバックゲートは配線BGLに接続されている。
 トランジスタ37は、OSトランジスタである。OSトランジスタは、オフ電流が極めて低い。そのためメモリセル32は、データのリフレッシュの頻度を低減することができる。そのため、データ保持に要する電力を低減することができる。
 図11Bには、メモリセル32に適用可能な2トランジスタ型(2T)ゲインセルのNOSRAMのメモリセルの例を示す。図11Bに示すメモリセル32Aは、トランジスタ37A、37B、容量素子38を有する。なおNOSRAMのメモリセルが有する容量素子38は、トランジスタのゲート容量などの寄生容量を利用することで省略することも可能である。トランジスタ37Aは書き込みトランジスタであり、トランジスタ37Bは読み出しトランジスタである。トランジスタ37A、37Bのバックゲートは配線BGLに接続されている。
 OSトランジスタで書き込みトランジスタを構成しているため書き込みトランジスタをオフにすることでデータに応じた電荷を保持し続けることができる。そのためメモリセル32Aは、データ保持に電力を消費しない。従って、メモリセル32Aは長期間データを保持可能な低消費電力なメモリセルとして機能させることができる。
 図11C乃至図11Eを参照して、NOSRAMに適用されるメモリセルの他の構成例を説明する。
 図11Cに示すメモリセル32Bは、3T型ゲインセルであり、トランジスタ37A、37B、37C、および容量素子38を有する。トランジスタ37A、37B、37Cはそれぞれ、書き込みトランジスタ、読み出しトランジスタ、選択トランジスタである。トランジスタ37A、37B、37Cのバックゲートは配線BGLに接続されている。メモリセル32Bは、配線RWL、WWL、配線RBL、WBL、配線CDL、電源線PL2に接続されている。例えば、配線CDL、配線PL2には、電圧GND(低レベル側電源電圧)が入力される。
 図11Dに2T型ゲインセルの他の構成例を示す。図11Dに示すメモリセル32Cでは、読み出しトランジスタがバックゲートを有しないOSトランジスタで構成されている点が、図11Bに示すメモリセル32Aと異なる。
 図11Eに3T型ゲインセルの他の構成例を示す。図11Eに示すメモリセル32Dでは、読み出しトランジスタ、選択トランジスタとしてバックゲートを有しないOSトランジスタで構成されている点が、図11Bに示すメモリセル32Aと異なる。
 上掲のゲインセルにおいて、配線RBL、配線WBLを兼ねるビット線を設けてもよい。
 メモリセル32がDOSRAM、NOSRAMの場合、アクセストランジスタであるトランジスタ(図11A乃至図11Eのトランジスタ37、37A)のゲートに接続された配線(図11A乃至図11Eの配線WL、WWL)に、当該トランジスタがオフとなる電圧を印加した状態とし、その他の部分をパワーゲーティングすることができる。当該構成とすることで、メモリセル32にデータを格納した状態で電源電圧の供給の停止を行うことができる。
 本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、上記実施の形態で説明した半導体装置が有するメモリセルとしてDOSRAMを適用する構成において積層されたメモリセルを有する素子層の間に、メモリセルに保持したデータ電位を増幅して出力する機能を有する増幅回路を有する素子層が設けられた構成例について説明する。
[半導体装置の構成例]
 図12に、本発明の一態様に係る半導体装置10Dの構成例を示すブロック図を示す。図12に示す半導体装置10Dは、素子層20と、積層された素子層70と、を有する。積層された素子層70は、積層された素子層30[1]乃至30[m]の他、増幅回路51を有する素子層50を有する。
 図12では、素子層30[1]乃至30[m]がm行n列(mおよびnは2以上の整数。)のマトリクス状に配置された複数のメモリセル32を有する例を示している。また増幅回路51は、一例としてビット線として機能する配線BLごとに設けられる。図12では、n本の配線BLに対応して設けられた複数の増幅回路51(増幅回路51[1]乃至増幅回路51[n])を有する例を示している。
 図12では、1行1列目のメモリセル32をメモリセル32[1,1]と示し、m行n列目のメモリセル32をメモリセル32[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル32をメモリセル32[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また、素子層30[1]乃至30[m]は、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を備える。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。
 i行目に設けられた複数のメモリセル32は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に接続される。j列目に設けられた複数のメモリセル32は、j列目の配線BL(配線BL[j])と接続される。
 配線BLは、データの書き込みおよび読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、キャパシタに接続される定電位線としての機能の他、アクセストランジスタであるOSトランジスタのバックゲートにバックゲート電位を伝える機能を有する。なおバックゲート電位を伝える配線としては、配線CL(図示せず)を別途設けることができる。
 素子層30[1]乃至30[m]がそれぞれ有するメモリセル32は、配線BLを介して増幅回路51に接続される。配線BLは、素子層20が設けられる基板表面の垂直方向に配置することができる。素子層30[1]乃至30[m]が有するメモリセル32から延びて設けられる配線BLを基板表面の垂直方向に設けることで、素子層30と増幅回路51との間の配線の長さを短くできる。そのため、ビット線に接続される2つの回路の間の信号伝搬距離を短くでき、ビット線の抵抗および寄生容量が大幅に削減されるため、消費電力および信号遅延の低減が実現できる。またメモリセル32が有するキャパシタの容量を小さくしても動作させることが可能となる。
 増幅回路51は、メモリセル32に保持したデータ電位を増幅し、後述する配線GBL(図示せず)を介して素子層20が有するセンスアンプ66に出力する機能を有する。当該構成にすることで、データ読み出し時に配線BLのわずかな電位差を増幅することができる。配線GBLは、配線BLと同様に素子層20が設けられる基板表面の垂直方向に配置することができる。素子層30[1]乃至30[m]が有するメモリセル32から延びて設けられる配線BLおよび配線GBLを基板表面の垂直方向に設けることで、増幅回路51とセンスアンプ66との間の配線の長さを短くできる。そのため、配線GBLに接続される2つの回路の間の信号伝搬距離を短くでき、配線GBLの抵抗および寄生容量が大幅に削減されるため、消費電力および信号遅延の低減が実現できる。
 なお配線BLは、メモリセル32が有するトランジスタの半導体層に接して設けられる。あるいは配線BLは、メモリセル32が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線BLは、メモリセル32が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線BLは、素子層30の各層におけるメモリセル32が有するトランジスタのソースまたはドレインの一方のそれぞれと、増幅回路51と、を垂直方向で接続するための配線であるといえる。
 積層された素子層70は、素子層20上に重ねて設けることができる。素子層20と積層された素子層70を重ねて設けることで、素子層30と素子層50、および素子層20と素子層50の間の信号伝搬距離を短くすることができる。よって、素子層間の抵抗および寄生容量が低減され、消費電力および信号遅延の低減が実現できる。また、半導体装置10Dの小型化が実現できる。
 増幅回路51は、DOSRAMのメモリセル32が有するトランジスタと同様にOSトランジスタで構成することで、素子層30[1]乃至30[m]と同様にしてSiトランジスタを用いた回路上などに自由に配置可能であるため、集積化を容易に行うことができる。増幅回路51で信号を増幅する構成とすることで後段の回路であるセンスアンプ66等の回路を小型化できるため、半導体装置10Dの小型化を図ることができる。
 素子層20は、PSW71(パワースイッチ)、PSW72、および周辺回路22を有する。周辺回路22は、駆動回路61、コントロール回路73(Control Circuit)、および電圧生成回路74を有する。
 半導体装置10Dにおいて、各回路、各信号および各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、および信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路73で生成してもよい。
 コントロール回路73は、半導体装置10Dの動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GWおよび信号BWを論理演算して、半導体装置10Dの動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路73は、この動作モードが実行されるように、駆動回路61の制御信号を生成する。
 電圧生成回路74は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路74への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路74へ入力され、電圧生成回路74は負電圧を生成する。
 駆動回路61は、メモリセル32に対するデータの書き込みおよび読み出しをするための回路である。また駆動回路61は、増幅回路51を制御するための各種信号を出力する回路である。駆動回路61は、行デコーダ62(Row Decoder)、列デコーダ64(Column Decoder)、行ドライバ63(Row Driver)、列ドライバ65(Column Driver)、入力回路67(Input Cir.)、出力回路68(Output Cir.)、センスアンプ66(Sense Amplifier)を有する。
 行デコーダ62および列デコーダ64は、信号ADDRをデコードする機能を有する。行デコーダ62は、アクセスする行を指定するための回路であり、列デコーダ64は、アクセスする列を指定するための回路である。行ドライバ63は、行デコーダ62が指定する配線WLを選択する機能を有する。列ドライバ65は、データをメモリセル32に書き込む機能、メモリセル32からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路67は、信号WDAを保持する機能を有する。入力回路67が保持するデータは、列ドライバ65に出力される。入力回路67の出力データが、メモリセル32に書き込むデータ(Din)である。列ドライバ65がメモリセル32から読み出したデータ(Dout)は、出力回路68に出力される。出力回路68は、Doutを保持する機能を有する。また、出力回路68は、Doutを半導体装置10Dの外部に出力する機能を有する。出力回路68から出力されるデータが信号RDAである。
 PSW71は周辺回路22へのVDDの供給を制御する機能を有する。PSW72は、行ドライバ63へのVHMの供給を制御する機能を有する。ここでは、半導体装置10Dの高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW71のオン・オフが制御され、信号PON2によってPSW72のオン・オフが制御される。図12では、周辺回路22において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 素子層30[1]乃至30[m]および素子層50は、素子層20上に重ねて設けることができる。図13Aに、素子層20上に5層(m=5)の素子層30[1]乃至30[5]および素子層50を重ねて設けられる様子を示す半導体装置10Dの斜視図を示している。
 図13Aでは、1層目に設けられた素子層30を素子層30[1]と示し、2層目に設けられた素子層30を素子層30[2]と示し、5層目に設けられた素子層30を素子層30[5]と示している。また図13Aにおいて、X方向に延びて設けられる配線WL、配線PLおよび配線CLと、Z方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BLと、を図示している。なお、図面を見やすくするため、素子層30それぞれが有する配線WLおよび配線PLの記載を一部省略している。
 図13Bに、図13Aで図示した配線BLに接続された増幅回路51、および配線BLに接続された素子層30[1]乃至30[5]が有するメモリセル32の構成例を説明する模式図を示す。また図13Bでは、増幅回路51と駆動回路61との間に設けられる配線GBLを図示している。なお、1つの配線BLに複数のメモリセル(メモリセル32)が接続される構成を「メモリストリング」ともいう。なお図面において、配線GBLは、視認性を高めるため、太線で図示する場合がある。
 図13Bでは、配線BLに接続されるメモリセル32の回路構成の一例を図示している。メモリセル32は、トランジスタ37および容量素子38を有する。トランジスタ37、容量素子38、および各配線(BL、およびWLなど)についても、例えば配線BL[1]および配線WL[1]を配線BLおよび配線WLなどのようにいう場合がある。
 メモリセル32において、トランジスタ37のソースまたはドレインの一方は配線BLに接続される。トランジスタ37のソースまたはドレインの他方は容量素子38の一方の電極に接続される。容量素子38の他方の電極は、配線PLに接続される。トランジスタ37のゲートは配線WLに接続される。トランジスタ37のバックゲートは配線CLに接続される。
 配線PLは、容量素子38の電位を保持するための定電位を与える配線である。配線CLは、トランジスタ37のしきい値電圧を制御するための定電位である。配線PLと配線CLは、同じ電位でもよい。この場合、2つの配線を接続することで、メモリセル32に接続される配線数を削減することができる。
 図13Bに図示する配線GBLは、増幅回路51と駆動回路61との間を接続するように設けられる。図14Aでは、増幅回路51、および素子層30[1]乃至30[m]を繰り返し単位とする積層された素子層70を有する半導体装置10Dの模式図を図示している。なお図14Aでは、配線GBLを1本図示しているが、配線GBLは素子層50に設けられる増幅回路51の数に応じて適宜設ければよい。
 なお配線GBLは、増幅回路51が有するトランジスタの半導体層に接して設けられる。あるいは配線GBLは、増幅回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線GBLは、増幅回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線GBLは、素子層50における増幅回路51が有するトランジスタのソースまたはドレインの一方と、素子層20と、を垂直方向で接続するための配線であるといえる。
 また増幅回路51、および素子層30[1]乃至30[m]を有する積層された素子層70は、さらに積層する構成としてもよい。本発明の一態様の半導体装置10D_Aは、図14Bに図示するように積層された素子層70[1]乃至70[p](pは2以上の整数)とすることができる。配線GBLは積層された素子層70が有する素子層50に接続される。配線GBLは、増幅回路51の数に応じて適宜設ければよい。
 本発明の一形態では、OSトランジスタは積層して設けるとともに。ビット線として機能する配線を、素子層20が設けられる基板表面の垂直方向に配置される。素子層30から延びて設けられるビット線として機能する配線を基板表面の垂直方向に設けることで、素子層30と素子層20との間の配線の長さを短くできる。そのため、ビット線の寄生容量を大幅に削減できる。
 また本発明の一形態は、素子層30が設けられる層において、メモリセル32に保持したデータ電位を増幅して出力する機能を有する増幅回路51を有する素子層50を備えている。当該構成にすることで、データ読み出し時にビット線として機能する配線BLのわずかな電位差を増幅して、素子層20が有するセンスアンプ66を駆動することができる。センスアンプ等の回路を小型化できるため、半導体装置10Dの小型化を図ることができる。またメモリセル32が有する容量素子の容量を小さくしても動作させることが可能となる。
[メモリセル32、増幅回路51および制御回路81の構成例]
 図15A、図15Bには、図13B等で説明したメモリセル32に対応する回路図、および当該回路図に対応する回路ブロックの説明する図を示す。図15A、図15Bに図示するように、メモリセル32は図面等においてブロックとして表す場合がある。なお図15A、図15Bに図示するようにメモリセル32に接続される配線LBLは、ビット線として機能する他の配線との区別のため、ローカルビット線として機能する配線LBLとして表すことができる。また配線WLは、他の配線との区別のためワード線として機能する配線WLと表すことができる。
 また、図15C、図15Dには、図12等で説明した増幅回路51を有する素子層50に対応する回路図、および当該回路図に対応する回路ブロックの説明する図を示す。図15C、図15Dに図示するように、トランジスタ52乃至55を有する増幅回路51は、図面等において増幅回路51のブロックとして表す場合がある。増幅回路51は、配線LBLの電位を増幅して配線GBLに伝える機能を有する。また増幅回路51は、補正期間を設けることでトランジスタ52のしきい値電圧分の変動を補正した動作を行うことができる。配線GBLは、ビット線として機能する他の配線との区別のため、グローバルビット線として機能する配線GBLとして表すことができる。また信号WE、RE、MUXは、増幅回路51を制御するための制御信号である。配線SLは、定電位を与える配線である。
 また図16Aには、図12等で説明したセンスアンプ66を含む制御回路81の回路構成例を示す。制御回路81は、スイッチ回路82、プリチャージ回路83、プリチャージ回路84、センスアンプ66、制御回路81に接続される配線SA_GBL、配線SA_GBLB、配線BL、BLBを図示している。
 スイッチ回路82は、図16Aに図示するように、例えばnチャネル型のトランジスタ82_1、82_2を有する。トランジスタ82_1、82_2は、信号CSELに応じて、配線SA_GBL、配線SA_GBLBの配線対と、配線BL、配線BLBの配線対と、の導通状態を切り替える。
 プリチャージ回路83は、図16Aに図示するように、nチャネル型のトランジスタ83_1乃至83_3で構成される。プリチャージ回路83は、信号EQに応じて、配線BLおよび配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 プリチャージ回路84は、図16Aに図示するように、pチャネル型のトランジスタ84_1乃至84_3で構成される。プリチャージ回路84は、信号EQBに応じて、配線BLおよび配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 センスアンプ66は、図16Aに図示するように、配線SAPまたは配線SANに接続された、pチャネル型のトランジスタ85_1、85_2およびnチャネル型のトランジスタ85_3、85_4で構成される。配線SAPまたは配線SANは、VDDまたはVSSを与える機能を有する配線である。トランジスタ85_1乃至85_4は、インバータループを構成するトランジスタである。
 また、図16Bには図16A等で説明した制御回路81に対応する回路ブロックの説明する図を示す。図16Bに図示するように、制御回路81は図面等においてブロックとして表す場合がある。
 図17は、図12の半導体装置10Dの動作例を説明するための回路図である。図17では、図15A乃至図15D、および図16A、図16Bで説明した回路ブロックを用いて図示している。
 図17に図示するように素子層30[m]を含む積層された素子層70は、メモリセル32を有する。メモリセル32は、対になる配線LBLおよび配線LBL_preに接続される。配線LBLに接続されるメモリセル32は、データの書き込みまたは読み出しがされるメモリセルである。配線LBL_preはプリチャージされるローカルビット線であり、当該配線LBL_preに接続されるメモリセル32では、データを保持し続ける。
 配線LBLは、増幅回路51を介して配線GBLに接続される。配線LBL_preは、増幅回路51_preを介して配線GBLBに接続される。
 トランジスタ97は、配線GBLと配線GBLBとの間の導通状態を切り替えるためのスイッチとして機能する。トランジスタ97は、信号SW0でオンまたはオフが切り替えられる。
 トランジスタ98は、配線GBLと、制御回路81側にある配線SA_GBLとの間の導通状態を切り替えるためのスイッチとして機能する。トランジスタ98は、信号SW1でオンまたはオフが切り替えられる。
 トランジスタ99は、配線GBLBと、制御回路81側にある配線SA_GBLBとの間の導通状態を切り替えるためのスイッチとして機能する。トランジスタ99は、信号SW2でオンまたはオフが切り替えられる。
 図17に図示するように、メモリセル32は、増幅回路51と、制御回路81と、を最短距離である垂直方向に設けられる配線LBLおよび配線GBLを介して接続する構成とすることができる。増幅回路51を構成するトランジスタを有する素子層50が増えるものの、配線LBLの負荷が低減されることで、書き込み時間の短縮、あるいはデータを読み出しやすくすること、ができる。
 また図17に図示するように増幅回路51、51_preが有する各トランジスタは、信号WE、RE、およびMUXに応じて制御される。各トランジスタは、各信号に応じて、配線を介して配線LBLの電位を制御回路81に出力することができる。増幅回路51、51_preは、OSトランジスタで構成されるセンスアンプとして機能させることができる。当該構成にすることで、読み出し時に配線LBLのわずかな電位差を増幅して、センスアンプ66を駆動することができる。
[メモリセル32、増幅回路51および制御回路81の動作例]
 図18では、図17に示す回路図の動作を説明するためのタイミングチャートを示し、メモリセル32、増幅回路51および制御回路81の動作例について説明する。なお図18にタイミングチャートにおいては、配線SA_GBL、配線SA_GBLBの配線対、配線GBL、配線GBLBの配線対について、データがHレベルの場合(data=H)、データがLレベルの場合(data=L)の場合に分けて図示している。
 図18に示すタイミングチャートにおいて、時刻T11乃至時刻T13はデータ書き込みの期間に相当する。時刻T13乃至時刻T16は補正期間に相当する。時刻T16乃至時刻T18はデータ読出しの期間に相当する。なお信号CSELは、時刻T11乃至T20において、Hレベルとする。
 時刻T11では、信号MUX、信号WEをHレベルとする。信号SW1、SW2はHレベル、信号SW0はLレベルとする。その後、配線SAP、SANに電源電圧(VDD、VSS)を与えることで、配線SA_GBLまたは配線SA_GBLBの配線対の一方、配線GBLまたは配線GBLBの配線対の一方が充電される。配線LBLの電位が上昇する。配線WLの電位をHレベルとして、配線LBLに与えられた電位(図18の場合Hレベル)をメモリセル32に書き込む。
 時刻T12では、配線WLの電位をLレベルとする。メモリセル32にデータが保持される。
 時刻T13では、配線SAP、SANをともにVDDとし、信号EQ、EQBを反転させて、配線SA_GBLおよび配線SA_GBLBの配線対、配線GBLおよび配線GBLBの配線対を共にHレベルとする。配線LBL_preがHレベルの電位にプリチャージされる。その後、信号MUXをLレベルとする。信号WEも併せてローレベルとしてもよい。
 時刻T14では、信号RE、信号WEをHレベルとする。配線LBLの電位および配線LBL_preの電位は、トランジスタ52を介した放電により下降する。この放電は、トランジスタ52のゲートとソースの間の電圧が、トランジスタ52のしきい値電圧となったところで止まる。
 時刻T15では、信号WEおよび信号REを共にLレベルとする。配線LBLおよび配線LBL_preには、トランジスタ52のしきい値電圧に応じた電位が保持される。信号EQ,EQBは、再度反転させ、プリチャージを停止しておく。つまり、配線SA_GBLおよび配線SA_GBLBの配線対、配線GBLおよび配線GBLBの配線対は、電気的に浮遊状態、フローティング状態となる。
 時刻T16では、配線WLをHレベルとし、チャージシェアリングを行う。配線LBLの電位がメモリセル32に書き込んだデータに応じて変化する。Hレベルのデータをメモリセル32に書き込んだ場合、配線LBLの電位が上昇し、Lレベルのデータをメモリセル32に書き込んだ場合、配線LBLの電位が下降する。一方、配線LBL_preでは、配線WLの動作によるチャージシェアリングを行わないため、電位が変化しない。
 時刻T17では、信号RE、信号MUXをHレベルとすることで、配線LBLと配線LBL_preの電位に応じて、増幅回路51が有するトランジスタ52と、増幅回路51_preが有するトランジスタ52とに電流が流れる。配線LBLと配線LBL_preの電位が異なるため、増幅回路51が有するトランジスタ52と、増幅回路51_preが有するトランジスタ52と、で流れる電流に差が生じる。この電流の差は、チャージシェアリングによって変化する配線LBLの電位、すなわちメモリセル32から読み出されるデータに応じたものとなる。そのため、メモリセル32のデータは、図18に図示するように、配線SA_GBL、配線SA_GBLBの配線対、配線GBL、配線GBLBの配線対の電位の変化量に変換することができる。
 時刻T18では、信号REをLレベルとする。そして配線SAP、SANに電源電圧(VDD、VSS)を与えることで、センスアンプ66を動作させる。センスアンプ66が動作することで、配線SA_GBLおよび配線SA_GBLBの配線対、配線GBLおよび配線GBLBの配線対の電位が確定する。
 時刻T19では、信号SW0をLレベル、信号SW1をHレベルとし、配線GBLおよび配線GBLBの配線対の電位を、読み出したデータに応じて切り替える。具体的には、データがHレベルの場合、配線GBLおよび配線GBLBの配線対の電位がともにHレベルに切り替えられる。またデータがLレベルの場合、配線GBLおよび配線GBLBの配線対の電位がともにLレベルに切り替えられる。この状態で配線WLをHレベルとすることで読み出されたデータの論理に応じた電圧を再びメモリセル32に書き戻すことができる。
 時刻T20では、信号MUX、配線WL、信号WEをLレベルとする。メモリセル32では、読み出したデータの論理に応じたデータをリフレッシュすることができる。
 なお本発明の一態様の半導体装置10では、メモリセル32を有する素子層30を積層する構成となる。当該構成は、配線LBLを短くし、メモリセル32の容量素子38の容量を小さくすることができる。
 本発明の一形態の半導体装置は、素子層30に設けられるトランジスタとして、オフ電流が極めて低いOSトランジスを用いる。OSトランジスタは、Siトランジスタが設けられる素子層20が設けられる基板上に積層して設けることができる。そのため、垂直方向に繰り返し同じ製造工程を用いて作製することができ、製造コストの低減を図ることができる。また本発明の一形態は、メモリセル32を構成するトランジスタを平面方向でなく、垂直方向に配置してメモリ密度の向上を図ることができ、半導体装置の小型化を図ることができる。
 加えて本発明の一形態は、増幅回路51を有する素子層50を備えている。機能回路は、配線LBLをトランジスタ52のゲートに接続するため、トランジスタ52を増幅器として機能させることができる。当該構成にすることで、読み出し時に配線LBLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ66を駆動することができる。Siトランジスタを用いたセンスアンプ66等の回路を小型化できるため、半導体装置の小型化を図ることができる。またメモリセル32が有する容量素子38の容量を小さくしても動作させることが可能となる。
[半導体装置の変形例]
 次いで、半導体装置10の変形例として、演算回路23として、バックアップ回路を有するCPUを適用した場合について説明する。CPUのレジスタなどにOSトランジスタを有するバックアップ回路を組み合わせることで、ノーマリーオフCPU(NoffCPU(登録商標))を実現できる。
 NoffCPUは、NoffCPU内の動作不要な回路への電力供給を停止し、当該回路を待機状態にすることができる。電力供給が停止され、待機状態になった回路では電力が消費されない。よって、NoffCPUは、電力使用量を最小限にすることができる。
 図19には、CPU41、メモリ回路48が、バスBULを介して接続されているブロック図を示す。CPU41は、プログラムを実行するための演算を行う機能を有する。
 図19に示すCPU41は、CPUコア42を示している。CPUコア42はそれぞれ、レジスタ部43および演算部44を有する。レジスタ部43は、フリップフロップ47(Flip−flop)を有する。フリップフロップ47はスキャンフリップフロップ(Scan Flip−flop)45、バックアップ回路(Backup Circuit)46を有する。
 図19に示すメモリ回路48は、メモリセル32を有するメモリセルアレイ31、増幅回路51、および駆動回路61を有する。
 図20Aにフリップフロップ47の回路構成例を示す。
 スキャンフリップフロップ45は、ノードD1、Q1、SD、SE、RT、CK、クロックバッファ回路45Aを有する。
 ノードD1はデータ(data)入力ノードであり、ノードQ1はデータ出力ノードであり、ノードSDはスキャンテスト用データの入力ノードである。ノードSEは信号SCEの入力ノードである。ノードCKはクロック信号GCLK1の入力ノードである。クロック信号GCLK1はクロックバッファ回路45Aに入力される。スキャンフリップフロップ45のアナログスイッチは、クロックバッファ回路45AのノードCK1、CKB1に接続される。ノードRTはリセット信号(reset signal)の入力ノードである。ノードSEは、スキャンイネーブル信号の入力ノードである。
 スキャンフリップフロップ45の回路構成は、図20Aに限定されない。標準的な回路ライブラリに用意されているフリップフロップを適用することができる。
 バックアップ回路46は、ノードSD_IN、SN11、トランジスタM11乃至M13、容量C11を有する。
 ノードSD_INは、スキャンテストデータの入力ノードであり、スキャンフリップフロップ45のノードQ1に接続される。ノードSN11は、バックアップ回路46の保持ノードである。容量C11はノードSN11の電圧を保持するための保持容量である。
 トランジスタM11はノードQ1とノードSN11間の導通状態を制御する。トランジスタM12はノードSN11とノードSD間の導通状態を制御する。トランジスタM13はノードSD_INとノードSD間の導通状態を制御する。トランジスタM11、M13のオンオフは信号BKHで制御され、トランジスタM12のオンオフは信号RCHで制御される。
 トランジスタM11乃至M13は、メモリセル32および増幅回路51が有するトランジスタと同様に、OSトランジスタである。トランジスタM11乃至M13はバックゲート有する構成を図示している。トランジスタM11乃至M13のバックゲートは、電圧VBG1を供給する電源線に接続されている例を示している。
 少なくともトランジスタM11、M12がOSトランジスタであることが好ましい。オフ電流が極めて小さいというOSトランジスタの特長によって、ノードSN11の電圧の低下を抑えることができること、データの保持に電力を殆んど消費しないことから、バックアップ回路46は不揮発性の特性をもつ。容量C11の充放電によってデータを書き換えるため、バックアップ回路46は原理的には書き換え回数に制約はなく、低エネルギーで、データの書き込みおよび読み出しが可能である。
 バックアップ回路46の全てのトランジスタはOSトランジスタであることが非常に好ましい。図20Bに示すように、シリコンCMOS回路で構成されるスキャンフリップフロップ45上にバックアップ回路46を積層することができる。
 バックアップ回路46は、スキャンフリップフロップ45と比較して素子数が非常に少ないので、バックアップ回路46を積層するためにスキャンフリップフロップ45の回路構成およびレイアウトの変更が必要ない。つまり、バックアップ回路46は、汎用性が非常に高いバックアップ回路である。また、スキャンフリップフロップ45が形成されている領域内に重なるようにバックアップ回路46を設けることができるので、バックアップ回路46を組み込んでも、フリップフロップ47の面積オーバーヘッドはゼロにすることが可能である。よって、バックアップ回路46をフリップフロップ47に設けることで、CPUコア42のパワーゲーティングが可能となる。パワーゲーティングに必要なエネルギーが少ないため、CPUコア42を高効率にパワーゲーティングすることが可能である。
 バックアップ回路46を設けることによって、トランジスタM11による寄生容量がノードQ1に付加されることになるが、ノードQ1に接続される論理回路による寄生容量と比較して小さいので、スキャンフリップフロップ45の動作に影響はない。つまり、バックアップ回路46を設けても、フリップフロップ47の性能は実質的に低下しない。
 CPUコア42の低消費電力状態(非動作状態)として、例えば、クロックゲーティング状態、パワーゲーティング状態、休止状態を設定することができる。例えば、通常動作状態からクロックゲーティング状態に移行する場合、クロック信号GCLK1の供給が停止される。
 CPUコア42を通常動作状態からパワーゲーティング状態に移行する場合には、スキャンフリップフロップ45のデータをバックアップ回路46にバックアップする動作が行われる。CPUコア42をパワーゲーティング状態から通常動作状態に復帰する際には、バックアップ回路46のデータをスキャンフリップフロップ45に書き戻すリカバリ動作が行われる。
 図19に示す、CPU41およびメモリ回路48は、バックアップ回路46、増幅回路51、およびメモリセル32が有するトランジスタをOSトランジスタとすることで、Siトランジスタが設けられる基板表面に垂直な方向(z方向ともいう)にOSトランジスタを有する層を積層して設けることができる。
 図21Aは、Siトランジスタを有する層と、OSトランジスタを有する層と、を積層した断面模式図において、図19に示す構成の配置を模式的に表す図である。図21Aにおいて、Siトランジスタを有する層SILと、OSトランジスタを有する層OSLと、が、z方向に積層して設けられている。OSトランジスタを有する層OSLは、OSトランジスタを有する複数の層を積層して設けることができ、例えば上記説明した素子層50および素子層30を図示している。なおトランジスタを有する各層の間には、配線層などを適宜設けることができる。
 図21Aに示す断面模式図では、層SILにおいて、図19で説明したCPU41が有する演算部44およびスキャンフリップフロップ45、並びにメモリ回路48が有する駆動回路61を設けることができる。また、層SILの上に設けられる素子層50には、スキャンフリップフロップ45に接続されるバックアップ回路46、並びにメモリ回路48が有する増幅回路51を設けることができる。また、素子層50の上に設けられる素子層30には、メモリセルアレイ31を設けることができる。メモリセルアレイ31が有するメモリセル32は、複数の層を積層して設けることができるため、単位面積当たりのメモリセル32を高密度に配置することが可能である。
 図21Aに示すように、SiCMOS回路を設けることができる層SIL上に、CPU41が有するバックアップ回路46、およびメモリ回路48が有する増幅回路51を有する素子層50を設け、その上にメモリセル32を有する素子層30を積層して設ける構成とすることができる。つまりCPU41の上にDOSRAMといったメモリ回路48をモノリシック積層した構成(オンチップメモリ)とすることができる。オンチップメモリの構成とすることで、CPUと、メモリとのインターフェース部分の動作を高速にすることが可能となる。またオンチップメモリの構成とすることで、接続配線などのサイズを小さくすることが可能であるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また図21Bに示す半導体装置10Eは、上記図13Aで図示した斜視図において、素子層20に設けられるスキャンフリップフロップ45、および素子層50に設けられるバックアップ回路46の一例である。素子層50において、増幅回路51とバックアップ回路46と、を共通の層に設けることで、OSトランジスタを設ける素子層を削減することができる。図21Bに図示するようにバックアップ回路46をスキャンフリップフロップ45の直上に配置することが可能となるとともに、素子層50において、増幅回路51が設けられない領域を有効に利用する構成とすることができる。
 図21Aおよび図21Bに図示するように三次元方向において回路を集積化して配置する構成とすることによって、シリコン貫通電極(Through Silicon Via:TSV)などを用いた積層構造などと比較して各層の回路同士を接続する配線を短くできるため、当該配線の寄生容量を小さくすることができる。各配線の充放電に要する消費電力を削減することができる。そのため、演算処理効率の向上を図ることができる。また図21Aおよび図21Bに図示する構成では、回路面積を縮小することが可能である。そのため、回路面積の小型化による低消費電力化を図ることが可能である。
 本実施の形態は、本明細書で示す他の実施の形態などと適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で説明した半導体装置に適用可能なトランジスタの構成について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
 半導体装置の断面構造の一部を図22に示す。図22に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量600と、を有している。図23Aはトランジスタ500のチャネル長方向の断面図であり、図23Bはトランジスタ500のチャネル幅方向の断面図であり、図23Cはトランジスタ550のチャネル幅方向の断面図である。例えば、トランジスタ500は上記実施の形態に示したSiトランジスタに相当し、トランジスタ550はOSトランジスタに相当する。
 図22では、トランジスタ500はトランジスタ550の上方に設けられ、容量600はトランジスタ550、およびトランジスタ500の上方に設けられている。
 トランジスタ550は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
 図23Cに示すように、トランジスタ550は、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
 なお、トランジスタ550は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ヒ化ガリウム)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 トランジスタ550は、SOI(Silicon on Insulator)基板などを用いて形成してもよい。
 また、SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板、または水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
 トランジスタ550を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、1×1016atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図22では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
 絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図22では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図22では、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図22では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素、水素などに対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜または酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図23Aおよび図23Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
 また、図23Aおよび図23Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図23Aおよび図23Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図23Aおよび図23Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
 なお、本明細書などにおいて、酸化物530a、および酸化物530bをまとめて酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、または3層以上の積層構成を設ける構成にしてもよい。
 また、トランジスタ500では、導電体560を2層の積層構成として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構成であってもよい。また、図22、および図23Aに示すトランジスタ500は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるため、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるため、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
 本明細書等において、第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、およびS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 トランジスタを、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタをS−channel構造、GAA構造、又はLGAA構造とすることで、酸化物530とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、酸化物530のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに当該開口を埋め込むように導電体503a上に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構成として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
 絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう。)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう。)と、酸化物半導体に酸素を供給して酸素欠損を補償すること(「加酸素化処理」ともいう。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542aおよび542bにゲッタリングされる場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素、不純物などの拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524、酸化物530などが有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、オフ電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出、またはトランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構成の絶縁体520を得ることができる。
 なお、図23Aおよび図23Bのトランジスタ500では、3層の積層構成からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構成を有していてもよい。その場合、同じ材料からなる積層構成に限定されず、異なる材料からなる積層構成でもよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いる。
 酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行ってもよいし、ALD(Atomic Layer Deposition)法で行ってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
 また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構成物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の構成を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物530aの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
 ここで、酸化物530aおよび酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530aおよび酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530aを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
 また、図23Aでは、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構成としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
 また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図23Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない材料である場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体542aおよび542bが酸化するのを抑制することができる。
 絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体545が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構成としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、オフ電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構成とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構成とすることができる。
 第1のゲート電極として機能する導電体560は、図23Aおよび図23Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構成であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構成としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構成としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素、水素などに対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜、酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
 導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
 なお、本発明に用いることができるトランジスタは、図23A及び図23Bに示すトランジスタ500に限られるものではない。例えば、図24に示す構造のトランジスタ500を用いてもよい。図24に示すトランジスタ500は、絶縁体555が用いられている点、ならびに導電体542a(導電体542a1および導電体542a2)及び導電体542b(導電体542b1および導電体542b2)が、積層構造である点において、図23A及び図23Bに示すトランジスタと異なる。
 導電体542aは、導電体542a1と、導電体542a1上の導電体542a2の積層構造であり、導電体542bは、導電体542b1と、導電体542b1上の導電体542b2の積層構造である。酸化物530bに接する導電体542a1及び導電体542b1は、金属窒化物などの酸化しにくい導電体であることが好ましい。これにより、酸化物530bに含まれる酸素によって、導電体542a及び導電体542bが過剰に酸化されるのを防ぐことができる。また、導電体542a2及び導電体542b2は、導電体542a1及び導電体542b1より導電性が高い、金属層などの導電体であることが好ましい。これにより、導電体542a及び導電体542bを、導電性が高い配線または電極として機能させることができる。このようにして、活性層として機能する酸化物530の上面に接して、配線または電極として機能する導電体542a及び導電体542bが設けられた、半導体装置を提供することができる。
 導電体542a1、542b1としては、金属窒化物を用いることが好ましく、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタル及びアルミニウムを含む窒化物、チタン及びアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 また、導電体542a2及び導電体542b2は、導電体542a1及び導電体542b1よりも、導電性が高いことが好ましい。例えば、導電体542a2及び導電体542b2の膜厚を、導電体542a1及び導電体542b1の膜厚より大きくすることが好ましい。導電体542a2及び導電体542b2としては、上記導電体560bに用いることが可能な導電体を用いればよい。上記のような構造にすることで、導電体542a2及び導電体542b2の抵抗を低減することができる。
 例えば、導電体542a1及び導電体542b1として、窒化タンタルまたは窒化チタンを用い、導電体542a2及び導電体542b2として、タングステンを用いることができる。
 図24に示すように、トランジスタ500のチャネル長方向の断面視において、導電体542a1と導電体542b1の間の距離は、導電体542a2と導電体542b2の間の距離より小さい。このような構成にすることで、ソースとドレインの間の距離をより短くし、それに応じてチャネル長を短くすることが可能になる。よって、トランジスタ500の周波数特性を向上させることができる。このように、半導体装置の微細化を図ることで、動作速度の向上した半導体装置を提供することができる。
 絶縁体555は、窒化物などの酸化しにくい絶縁体であることが好ましい。絶縁体555は、導電体542a2の側面、及び導電体542b2の側面に接して形成されており、導電体542a2、及び導電体542b2を保護する機能を有する。絶縁体555は、酸化雰囲気に曝されるため、酸化されにくい無機絶縁体が好ましい。また、絶縁体555は、導電体542a2及び導電体542b2に接するため、導電体542a2、542b2を酸化させにくい、無機絶縁体であることが好ましい。よって、絶縁体555は、酸素に対するバリア性を有する絶縁性材料を用いることが好ましい。例えば、絶縁体555として、窒化シリコンを用いることができる。
 図24に示すトランジスタ500は、絶縁体580及び絶縁体544に開口を形成し、当該開口の側壁に接して絶縁体555を形成し、さらにマスクを用いて、導電体542a1と導電体542b1を分断することで、形成される。ここで、上記開口は、導電体542a2と導電体542b2の間の領域と重畳する。また、導電体542a1及び導電体542b1の一部は、上記開口内に突出するように形成されている。よって、絶縁体555は、上記開口内で、導電体542a1の上面、導電体542b1の上面、導電体542a2の側面、及び導電体542b2の側面に接する。また、絶縁体545は、導電体542a1と導電体542b1の間の領域において、酸化物530の上面と接する。
 導電体542a1と導電体542b1を分断した後で、絶縁体545を成膜する前に、酸素を含む雰囲気で熱処理を行うことが好ましい。これにより、酸化物530a及び酸化物530bに酸素を供給して、酸素欠損の低減を図ることができる。さらに、絶縁体555が、導電体542a2の側面、及び導電体542b2の側面に接して形成されていることで、導電体542a2及び導電体542b2が過剰に酸化されるのを防ぐことができる。以上により、トランジスタの電気特性、及び信頼性を向上させることができる。また、同一基板上に複数形成されるトランジスタの電気特性のばらつきを抑制することができる。
 また、トランジスタ500において、図24に示すように、絶縁体524を島状に形成してもよい。ここで、絶縁体524は、酸化物530と側端部が概略一致するように形成してもよい。
 また、トランジスタ500において、図24に示すように、絶縁体522が絶縁体516及び導電体503と接する構成にしてもよい。言い換えると、図23A及び図23Bに示す絶縁体520を設けない構成にしてもよい。
 続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
 また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
 導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構成でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)、Al(アルミニウム)等を用いればよい。
 導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
 本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミックス基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
 または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板、可撓性の基板などにも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構成の構成、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
 つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
 可撓性を有する基板上に半導体装置を設けることで、重量の増加を抑え、且つ破損しにくい半導体装置を提供することができる。
 なお、図22に示すトランジスタ550は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、トランジスタ550の構成を、トランジスタ500と同様の構成にすればよい。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、DOSRAMおよびNOSRAMといった、上記実施の形態で説明したOSトランジスタを有するメモリ装置の断面構成例について説明する。
 図25に、DOSRAMの回路構成を用いた場合の断面構成例を示す。図25では、駆動回路層701の上に記憶層700[1]乃至記憶層700[4]が積層されている場合を例示している。
 また、図25では、駆動回路層701が有するトランジスタ550を例示している。トランジスタ550は、上記実施の形態で説明したトランジスタ550を適用することができる。
 なお、図25に示すトランジスタ550は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いればよい。
 駆動回路層701と記憶層700の間、または、k層目の記憶層700とk+1層目の記憶層700の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。なお、本実施の形態などでは、k層目の記憶層700を記憶層700[k]と示し、k+1層目の記憶層700を記憶層700[k+1]と示す場合がある。ここで、kは1以上N以下の整数である。また、本実施の形態などにおいて「k+α(αは1以上の整数)」または「k−α」と示した場合、「k+α」および「k−α」それぞれの解は1以上N以下の整数とする。
 また、配線層は、設計に応じて複数層設けることができる。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ550上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320および絶縁体322には導電体328などが埋め込まれている。また、絶縁体324および絶縁体326には導電体330などが埋め込まれている。なお、導電体328および導電体330はコンタクトプラグまたは配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体320の上面は、平坦性を高めるためにCMP法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326および導電体330上に、配線層を設けてもよい。例えば、図25において、絶縁体326および導電体330上に、絶縁体350、絶縁体357、絶縁体352、および絶縁体354が順に積層して設けられている。絶縁体350、絶縁体357、および絶縁体352には、導電体356が形成されている。導電体356は、コンタクトプラグまたは配線として機能する。
 絶縁体354の上には記憶層700[1]が有する絶縁体514が設けられている。また、絶縁体514および絶縁体354には導電体358が埋め込まれている。導電体358は、コンタクトプラグまたは配線として機能する。例えば、配線BLとトランジスタ550は、導電体358、導電体356、および導電体330などを介して接続される。
 図26Aに記憶層700[k]の断面構造例を示す。また、図26Bに、図26Aの等価回路図を示す。図26Aでは、1つの配線BLに2つのメモリセルMCが接続する例を示している。
 図25および図26Aに示すメモリセルMCは、トランジスタM1および容量素子Cを有する。トランジスタM1として、例えば、上記実施の形態に示したトランジスタ500を用いることができる。
 なお、本実施の形態では、トランジスタM1としてトランジスタ500の変形例を示している。具体的には、トランジスタM1では、導電体542aおよび導電体542bが、金属酸化物531(金属酸化物531aおよび金属酸化物531b)の端部を越えて延在している点が、トランジスタ500と異なる。
 また、図25および図26Aに示すメモリセルMCは、容量素子Cの一方の端子として機能する導電体156と、誘電体として機能する絶縁体153と、容量素子Cの他方の端子として機能する導電体160(導電体160aおよび導電体160b)と、を有する。導電体156は導電体542bの一部と接続される。また、導電体160は配線PL(図26Aに図示せず。)と接続される。
 容量素子Cは、絶縁体574、絶縁体580、および絶縁体554の一部を除去して設けられた開口部に形成されている。導電体156、絶縁体580、および絶縁体554は、該開口部の側面に沿って形成されるため、ALD法またはCVD法などを用いて成膜することが好ましい。
 また、導電体156および導電体160は、導電体505または導電体560に用いることができる導電体を用いればよい。例えば、導電体156として、ALD法を用いて形成した窒化チタンを用いればよい。また、導電体160aとして、ALD法を用いて形成した窒化チタンを用い、導電体160bとして、CVD法を用いて形成したタングステンを用いればよい。なお、絶縁体153に対するタングステンの密着性が十分高い場合は、導電体160として、CVD法を用いて形成したタングステンの単層膜を用いてもよい。
 絶縁体153には、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体を用いることが好ましい。例えば、高誘電率材料の絶縁体として、アルミニウム、ハフニウム、ジルコニウム、及びガリウムなどから選ばれた金属元素を一種以上含む、酸化物、酸化窒化物、窒化酸化物、または窒化物を用いることができる。また、上記酸化物、酸化窒化物、窒化酸化物、または窒化物に、シリコンを含有させてもよい。また、上記の材料からなる絶縁層を積層して用いることもできる。絶縁体153としては、例えば、酸化ジルコニウムと、酸化アルミニウムと、酸化ジルコニウムとの、3層の積層構造などが挙げられる。なお、当該3層の積層構造は、ZrOxa\AlOxb\ZrOxc(ZAZ)と呼称してもよい。なお、上述のxa、xb、及びxcは、それぞれ任意単位である。
 例えば、高誘電率材料の絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、シリコンおよびジルコニウムを有する酸化物、シリコンおよびジルコニウムを有する酸化窒化物、ハフニウムおよびジルコニウムを有する酸化物、ハフニウムおよびジルコニウムを有する酸化窒化物、などを用いることができる。このような高誘電率材料を用いることで、オフ電流を抑制できる程度に絶縁体153を厚くし、かつ、容量素子Cの静電容量を十分確保することができる。
 また、上記の材料からなる絶縁層を積層して用いることが好ましく、高誘電率材料と、当該高誘電率材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体153として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子Cの静電破壊を抑制することができる。
 図27Aに示す容量素子C1は、図26Aに示す容量素子Cの変形例である。
 図27Aに示す容量素子C1は、図26Aに示す容量素子Cとは、導電体156、絶縁体153および導電体160の形状が異なる。図27Aに示す容量素子C1の構成とすることで、導電体156と、絶縁体153と、導電体160と、の重なる面積を増やすことができるため、容量を大きくすることができる。
 絶縁体153は、導電体156が有する凹部の内側、および導電体156の上面と接する。さらに、絶縁体153は、導電体156の外側の側面の一部と接する領域を有する。また、絶縁体153は、絶縁体574と接する領域を有する。
 導電体160は、導電体156が有する開口を埋め込むように設けられている。さらに、導電体160は、絶縁体153を介して、導電体156の外側の側面の一部と重畳する領域を有する。
 上記構成にすることで、単位面積当たりの静電容量をより大きくすることができる。
 図27Bに示す容量素子C2は、図26Aに示す容量素子Cの変形例である。
 図27Bに示す容量素子C2は、図26Aに示す容量素子Cとは、導電体156、絶縁体153および導電体160の形状が異なる。
 導電体156は、導電体542b上の導電体156aと、導電体156a上の導電体156bとを有する。導電体156bは、中空部を有する円筒形状を有する。
 絶縁体153は、導電体156bの側面及び上面、ならびに導電体156aの上面と接するように設けられる。
 導電体160は、絶縁体153を介して、導電体156bの有する中空部を埋め込むように設けられている。
 上記構成にすることで、単位面積当たりの静電容量をより大きくすることができる。
 図27Cに示す容量素子C3は、図26Aに示す容量素子Cの変形例である。
 図27Cに示す容量素子C3は、図26Aに示す容量素子Cとは、導電体156、絶縁体153および導電体160の形状が異なる。
 導電体156は、導電体542b上の導電体156aと、導電体156a上の導電体156bとを有する。導電体156bは、円筒形状を有する。
 絶縁体153は、導電体156bの側面及び上面、ならびに導電体156aの上面と接するように設けられる。
 導電体160は、絶縁体153を介して、導電体156bの上面および側面を覆うように設けられている。
 上記構成にすることで、単位面積当たりの静電容量をより大きくすることができる。
 なお、図27Cでは、導電体156bの側面が、導電体542bに対して垂直となる構成を示しているが、本発明はこれに限られない。例えば、図27Dに示すように、導電体156bの側面は、テーパ形状になっていてもよい。当該開口の側面をテーパ形状にすることで、これより後の工程において、絶縁体153および導電体160の被覆性が向上し、鬆などの欠陥を低減することができる。
 なお図25では、積層された記憶層700にあるトランジスタM1および容量素子Cが重なる、すなわちトランジスタM1同士、および容量素子C同士が重なる構成について示したが他の構成でもよい。例えば、図28に示すように、積層された記憶層700にある容量素子Cの電極をトランジスタM1のバックゲートとして機能する導電体と重なる位置に配置する構成としてもよい。図28の構成とすることで、トランジスタM1のバックゲートとして機能する導電体を形成する工程を簡略化することができる。
 図29に、NOSRAMのメモリセルの回路構成を用いた場合の断面構成例を示す。なお、図29は、図25の変形例でもある。また、図30Aに記憶層700[k]の断面構造例を示す。また、図30Bに、図30Aの等価回路図を示す。
 図29および図30Aに示すメモリセルMCは、絶縁体514の上にトランジスタM1、トランジスタM2、およびトランジスタM3を有する。また、絶縁体514の上に導電体215が設けられている。導電体215は導電体505と同じ材料かつ同じ工程で同時に形成できる。
 また、図29および図30Aに示すトランジスタM2およびトランジスタM3は、1つの島状の金属酸化物531を両者が共用している。言い換えると、1つの島状の金属酸化物531の一部がトランジスタM2のチャネル形成領域として機能し、他の一部がトランジスタM3のチャネル形成領域として機能する。また、トランジスタM2のソースとトランジスタM3のドレイン、もしくは、トランジスタM2のドレインとトランジスタM3のソースが共用される。よって、トランジスタM2とトランジスタM3をそれぞれ独立して設ける場合よりも、トランジスタの占有面積が少ない。
 また、図29および図30Aに示すメモリセルMCは、絶縁体581の上に絶縁体287が設けられ、絶縁体287に導電体161が埋め込まれている。また、絶縁体287および導電体161の上に記憶層700[k+1]の絶縁体514が設けられている。
 図29および図30Aにおいて、記憶層700[k+1]の導電体215が容量素子Cの一方の端子として機能し、記憶層700[k+1]の絶縁体514が容量素子Cの誘電体として機能し、導電体161が容量素子Cの他方の端子として機能する。また、トランジスタM1のソースまたはドレインの他方はコンタクトプラグを介して導電体161と接続され、トランジスタM2のゲートは他のコンタクトプラグを介して導電体161と接続される。
 なお図29では、積層された記憶層700にあるトランジスタM1乃至M3が有するバックゲートとして機能する導電体と、容量素子Cの一方の端子として機能する導電体と、を別の構成とする例について示したが他の構成でもよい。例えば、図31に示すように、積層された記憶層700にある容量素子Cの一方の端子にあたる導電体215と、トランジスタM1乃至M3の導電体のバックゲートとして機能する導電体と、が同電位となるよう導電体動詞を接続する構成としてもよい。図28の構成とすることで、容量素子Cの導電体215を大きくし、容量素子Cの容量を大きくすることができる。
 本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、チャネル形成領域に酸化物半導体を有するトランジスタ(OSトランジスタ)について、説明する。なお、OSトランジスタの説明において、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタともいう)との比較についても簡単に説明する。
[OSトランジスタ]
 OSトランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1018cm−3以下、好ましくは1×1017cm−3未満、より好ましくは1×1016cm−3未満、さらに好ましくは1×1013cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素等が挙げられる。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
 また、OSトランジスタは、酸化物半導体中のチャネル形成領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、OSトランジスタは、酸化物半導体中の酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。また、チャネル形成領域にVHが形成されると、チャネル形成領域中のドナー濃度が増加する場合がある。チャネル形成領域中のドナー濃度が増加するにつれ、しきい値電圧がばらつくことがある。このため、酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネル形成領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。
 また、酸化物半導体のバンドギャップは、シリコンのバンドギャップ(代表的には1.1eV)よりも大きいことが好ましく、好ましくは2eV以上、より好ましくは2.5eV以上、さらに好ましくは3.0eV以上である。シリコンよりも、バンドギャップの大きい酸化物半導体を用いることで、トランジスタのオフ電流(Ioffとも呼称する)を低減することができる。
 また、Siトランジスタでは、トランジスタの微細化が進むにつれて、短チャネル効果(ショートチャネル効果:Short Channel Effect:SCEともいう)が発現する。そのため、Siトランジスタでは、微細化が困難となる。短チャネル効果が発現する要因の一つとして、シリコンのバンドギャップが小さいことが挙げられる。一方、OSトランジスタは、バンドギャップの大きい半導体材料である、酸化物半導体を用いるため、短チャネル効果の抑制を図ることができる。別言すると、OSトランジスタは、短チャネル効果がない、または短チャネル効果が極めて少ないトランジスタである。
 なお、短チャネル効果とは、トランジスタの微細化(チャネル長の縮小)に伴って顕在化する電気特性の劣化である。短チャネル効果の具体例としては、しきい値電圧の低下、サブスレッショルドスイング値(S値と表記することがある)の増大、漏れ電流の増大などがある。ここで、S値とは、ドレイン電圧一定にてドレイン電流を1桁変化させるサブスレッショルド領域でのゲート電圧の変化量をいう。
 また、短チャネル効果に対する耐性の指標として、特性長(Characteristic Length)が広く用いられている。特性長とは、チャネル形成領域のポテンシャルの曲がりやすさの指標である。特性長が小さいほどポテンシャルが急峻に立ち上がるため、短チャネル効果に強いといえる。
 OSトランジスタは蓄積型のトランジスタであり、Siトランジスタは反転型のトランジスタである。したがって、Siトランジスタと比較して、OSトランジスタは、ソース領域−チャネル形成領域間の特性長、及びドレイン領域−チャネル形成領域間の特性長が小さい。したがって、OSトランジスタは、Siトランジスタよりも短チャネル効果に強い。すなわち、チャネル長の短いトランジスタを作製したい場合においては、OSトランジスタは、Siトランジスタよりも好適である。
 チャネル形成領域がi型又は実質的にi型となるまで、酸化物半導体のキャリア濃度を下げた場合においても、短チャネルのトランジスタではConduction−Band−Lowering(CBL)効果により、チャネル形成領域の伝導帯下端が下がるため、ソース領域またはドレイン領域と、チャネル形成領域との間の伝導帯下端のエネルギー差は、0.1eV以上0.2eV以下まで小さくなる可能性がある。これにより、OSトランジスタは、チャネル形成領域がn型の領域となり、ソース領域およびドレイン領域がn型の領域となる、n/n/nの蓄積型junction−lessトランジスタ構造、または、n/n/nの蓄積型non−junctionトランジスタ構造と、捉えることもできる。
 OSトランジスタを、上記の構造とすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。例えば、OSトランジスタのゲート長が、20nm以下、15nm以下、10nm以下、7nm以下、または6nm以下であって、1nm以上、3nm以上、または5nm以上であっても、良好な電気特性を得ることができる。一方で、Siトランジスタは、短チャネル効果が発現するため、20nm以下、または15nm以下のゲート長とすることが困難な場合がある。したがって、OSトランジスタは、Siトランジスタと比較してチャネル長の短いトランジスタに好適に用いることができる。なお、ゲート長とは、トランジスタ動作時にキャリアがチャネル形成領域内部を移動する方向における、ゲート電極の長さであり、トランジスタの平面視における、ゲート電極の底面の幅をいう。
 また、OSトランジスタを微細化することで、トランジスタの高周波特性を向上させることができる。具体的には、トランジスタの遮断周波数を向上させることができる。OSトランジスタのゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、好ましくは100GHz以上、さらに好ましくは150GHz以上とすることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、オフ電流が小さいこと、チャネル長の短いトランジスタの作製が可能なこと、といった優れた効果を有する。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
 本実施の形態では、上記実施の形態で説明した半導体装置を用いることができる、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンター(Data Center:DCとも呼称する)について説明する。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターは、低消費電力化といった高性能化に有効である。
[電子部品]
 電子部品709が実装された基板(実装基板704)の斜視図を、図32Aに示す。図32Aに示す電子部品709は、モールド711内に半導体装置710を有している。図32Aは、電子部品709の内部を示すために、一部の記載を省略している。電子部品709は、モールド711の外側にランド712を有する。ランド712は電極パッド713と接続され、電極パッド713は半導体装置710とワイヤ714を介して接続されている。電子部品709は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、記憶層716と、を有する。なお、記憶層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、記憶層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、および、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、記憶層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくすることが可能であるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、記憶層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシのいずれか一または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、記憶層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図32Bに示す。電子部品730は、SiP(System in Package)又はMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、又はFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、又は、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、又は樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を接続する機能を有する。複数の配線は、単層又は多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と接続する機能を有する。これらのことから、インターポーザを「再配線基板」又は「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、上述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図32Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[電子機器]
 次に、電子機器6500の斜視図を図33Aに示す。図33Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508、及び制御装置6509などを有する。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。
 図33Bに示す電子機器6600は、ノート型パーソナルコンピュータとして用いることのできる情報端末機である。電子機器6600は、筐体6611、キーボード6612、ポインティングデバイス6613、外部接続ポート6614、表示部6615、制御装置6616などを有する。なお、制御装置6616としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6615、制御装置6616などに適用することができる。なお、本発明の一態様の半導体装置を、上述の制御装置6509、及び制御装置6616に用いることで、消費電力を低減させることができるため好適である。
[大型計算機]
 次に、大型計算機5600の斜視図を図33Cに示す。図33Cに示す大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 計算機5620は、例えば、図33Dに示す斜視図の構成とすることができる。図33Dにおいて、計算機5620は、マザーボード5630を有し、マザーボード5630は、複数のスロット5631、複数の接続端子を有する。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図33Eに示すPCカード5621は、CPU、GPU、記憶装置などを備えた処理ボードの一例である。PCカード5621は、ボード5622を有する。また、ボード5622は、接続端子5623と、接続端子5624と、接続端子5625と、半導体装置5626と、半導体装置5627と、半導体装置5628と、接続端子5629と、を有する。なお、図33Eには、半導体装置5626、半導体装置5627、および半導体装置5628以外の半導体装置を図示しているが、それらの半導体装置については、以下に記載する半導体装置5626、半導体装置5627、および半導体装置5628の説明を参照すればよい。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 半導体装置5626は、信号の入出力を行う端子(図示しない。)を有しており、当該端子をボード5622が備えるソケット(図示しない。)に対して差し込むことで、半導体装置5626とボード5622を接続することができる。
 半導体装置5627は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5627とボード5622を接続することができる。半導体装置5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。半導体装置5627として、例えば、電子部品730を用いることができる。
 半導体装置5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、半導体装置5628とボード5622を接続することができる。半導体装置5628としては、例えば、記憶装置などが挙げられる。半導体装置5628として、例えば、電子部品709を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、および推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、情報を処理および記憶する機器などの宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含むことができる。当該OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。
 図34には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図34においては、宇宙空間に惑星6804を例示している。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 また、図34には、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。上述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様である半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。長期的なデータを管理する場合、膨大なデータを記憶するためのストレージおよびサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、およびモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図35にデータセンターに適用可能なストレージシステムを示す。図35に示すストレージシステム7000は、ホスト7001(Host Computerと図示)として複数のサーバ7001sbを有する。また、ストレージ7003(Storageと図示)として複数の記憶装置7003mdを有する。ホスト7001とストレージ7003とは、ストレージエリアネットワーク7004(SAN:Storage Area Networkと図示)およびストレージ制御回路7002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト7001は、ストレージ7003に記憶されたデータにアクセスするコンピュータに相当する。ホスト7001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ7003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ7003のアクセススピードの長さの問題を解決するために、通常ストレージ内にキャッシュメモリを設けてデータの記憶及び出力を短くしている。
 上述のキャッシュメモリは、ストレージ制御回路7002およびストレージ7003内に用いられる。ホスト7001とストレージ7003との間でやり取りされるデータは、ストレージ制御回路7002およびストレージ7003内の当該キャッシュメモリに記憶されたのち、ホスト7001またはストレージ7003に出力される。
 上述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることで小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、およびデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
<本明細書等の記載に関する付記>
 以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
 各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
 また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合、または複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
 また、図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 本明細書等において、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子、またはソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
 また、本明細書等において「電極」または「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
 本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。
 本明細書等において、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
 また本明細書等において、ノードは、回路構成、デバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 本明細書等において、AとBとが接続されている、とは、AとBとが電気的に接続されているものをいう。ここで、AとBとが電気的に接続されているとは、AとBとの間で対象物(スイッチ、トランジスタ素子、またはダイオード等の素子、あるいは当該素子および配線を含む回路等を指す)が存在する場合にAとBとの電気信号の伝達が可能である接続をいう。なおAとBとが電気的に接続されている場合には、AとBとが直接接続されている場合を含む。ここで、AとBとが直接接続されているとは、上記対象物を介することなく、AとBとの間で配線(または電極)等を介してAとBとの電気信号の伝達が可能である接続をいう。換言すれば、直接接続とは、等価回路で表した際に同じ回路図として見なせる接続をいう。
 本実施例では、OSトランジスタを有する層が複数重ねて設けられる半導体装置を作製した。その後、当該半導体装置の断面観察を行った。また設計した半導体装置に基づく書き込み動作および読み出し動作のシミュレーションを行った。
<作製した半導体装置の構成>
 作製した半導体装置では、OSトランジスタを有する素子層を4層積層する構成とし、1層目と2層目の素子層の間に中間層(配線層)を有する構成とした。図36には、半導体装置の断面STEM(Scanning Transmission Electron Microscope)観察結果を示す。
 図36に示す素子層30_1乃至30_4において、作製したOSトランジスタ(トランジスタ37)の断面を確認できた。また、図36に示す素子層30_2乃至30_4において、容量素子38の断面を確認できた。また素子層30_1乃至30_4、および素子層30_1と30_2との間の中間層において、配線として機能する電極39を介してOSトランジスタ(トランジスタ37)および容量素子38がモノリシックに積層して設けられる断面を確認できた。
<積層したOSトランジスタを用いて作製されるOSメモリとDRAM、SRAMとの比較結果>
 積層した素子層に作製されるOSトランジスタを有するOSメモリと、Siトランジスタで作成されるDRAMと、の比較結果について説明する。表1には、OSメモリであるDOSRAMと、Siトランジスタで作成されるDRAMと、の書込時間、読出時間、密度、および保持を比較した結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すようにOSトランジスタを有するDOSRAMでは、温度補正なしの状態(初期状態)、および温度補正ありの状態(温度補正)で分けて示している。DOSRAMにおける温度補正は、上記実施の形態1等で説明したOSトランジスタのバックゲート電圧の制御により行うことが可能である。またDOSRAMは、OSトランジスタを20nmのデザインルールで作製し、図25で図示した構成(Siトランジスタを有する素子層上にOSトランジスタを有する素子層を4層積層した構成)で見積もった。またDOSRAMにおいて、セル容量1.5fFで見積もった。また表1に示すようにSiトランジスタを有するDRAMは、Siトランジスタを14nmのデザインルールとして見積もった。
 その結果、表1に示すようにDRAMの書込時間および読出時間が20nsに対して、DOSRAMは書込期間が短く、読出時間が温度補正を行うことで同程度となることがわかった。つまりDOSRAMは、温度補正を行うことで、DRAMと同等以上の性能である可能性があることがわかった。
 またメモリ密度を比較する密度の項目では、DRAMの383cell/μmに対して、DOSRAMでは1層辺り181cell/μmとなるため、多層化を図ることより3層積層で540cell/μmとなり、10層積層で5000cell/μmを上回ることがわかった。その結果、DOSRAMは、現行のDRAMの性能を上回る可能性があることがわかった。
 またデータの保持時間を比較する保持の項目では、DRAMで64msに1回、全メモリセルのデータをリフレッシュする構成に対して、DOSRAMでは6.4sに1回以上のリフレッシュと見積もられる。この結果、DOSRAMは、DRAMのリフレッシュに係る電力を1/100に省電力化できる可能性があることがわかった。
 また表2には、積層した素子層に作製されるOSトランジスタを有するOSメモリの別の例として、OSメモリであるNOSRAMと、Siトランジスタで作成されるSRAMと、の書込時間、読出時間、密度、および保持を比較した結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すようにOSトランジスタを有するNOSRAMでは、温度補正なしの状態(初期状態)、および温度補正ありの状態(温度補正)で分けて示している。NOSRAMにおける温度補正は、上記実施の形態1等で説明したOSトランジスタのバックゲート電圧の制御により行うことが可能である。またNOSRAMは、OSトランジスタを20nmのデザインルールで作製し、図29で図示した構成(Siトランジスタを有する素子層上にOSトランジスタを有する素子層を4層積層した構成)で見積もった。またNOSRAMにおいて、セル容量0.4fFで見積もった。また表2に示すようにSiトランジスタを有するSRAMは、Siトランジスタを5nmのデザインルールとして見積もった。
 その結果、表2に示すようにSRAMの書込時間および読出時間がL1キャッシュで1ns、ラストレベルキャッシュ(大容量オンチップメモリ)で10nsに対して、NOSRAMは書込期間および読出時間ともにL1キャッシュには及ばないものの、温度補正を行うことでラストレベルキャッシュと同程度となることがわかった。
 またメモリ密度を比較する密度の項目では、SRAMの47.6cell/μmに対して、NOSRAMでは1層辺り45cell/μmとなるため、多層化を図らずともSRAMと同程度であることがわかった。その結果、NOSRAMは、多層化を図ることで、現行のSRAMの性能を上回る可能性があることがわかった。
 またデータの保持時間を比較する保持の項目では、SRAMで電源オン時にはデータ不変であるものの電源オフ時にデータが消えてしまう構成に対して、NOSRAMは6.4sに1回以上のリフレッシュと見積もられる。この結果、NOSRAMは、DRAMのリフレッシュに係る電極を1/100に省電力化できる可能性があることがわかった。
<OSトランジスタ特性の基づくシミュレーション結果>
 作製した半導体装置を適用可能なOSメモリの特性評価を行うため、実施の形態2で説明したDOSRAMの構成に基づいて半導体チップを設計し、シミュレーションを行った。
 設計した半導体チップの平面レイアウトを図37に示す。図37に示す半導体チップは、OSトランジスタ60nmルール、Siトランジスタを130nmルールで設計し、チップサイズは4mm角である。
 図37において、領域801には、メモリセル3層、増幅回路1層、Siトランジスタを有するセンスアンプ1層が設けられる。領域802には、ワード線ドライバ、OS回路ドライバなどの駆動回路が設けられる。領域803には、Siトランジスタを有するセンスアンプが設けられる。領域804には、カラムドライバが設けられる。領域805には、コントローラが設けられる。
 図38A乃至図38Dには、シミュレーションに用いたOSトランジスタのI−V特性を示す。図38Aは、増幅回路が設けられるOSトランジスタを有する素子層(1層目)のOSトランジスタのI−V特性である。また図38B乃至図38Dは、メモリセルが設けられるOSトランジスタを有する素子層(2層目乃至4層目)が有するOSトランジスタのI−V測定結果を示す。なおOSトランジスタのチャネル長(L)、およびチャネル幅(W)は、60nmおよび60nmで見積もった。
 また2層目乃至4層目に設けられるDOSRAMのメモリセルにおいて、書き込み時間(Write time)および読み出し時間(Read time)についてシミュレーションによる見積もりを行った。表3において、2層目乃至4層目のOSトランジスタ(OSFET)を用いたメモリの書き込み時間および読み出し時間を示す。なお1層目のOSトランジスタは増幅回路のOSトランジスタであるため、書き込み時間および読み出し時間の見積もりはない。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、積層されたOSFETを用いたメモリにおいて、書き込み時間および読み出し時間共に良好な結果であった。
 また図39A、図39Bは、書き込み動作におけるビット線(BL)およびメモリセルが有するストレージノード(SN)(容量素子が接続されるノード)の信号のシミュレーション波形を示す図である。図39Aは、ビット線を充電し、ストレージノードの電圧の変化を表す図である。図39Aは、ビット線を放電し、ストレージノードの電圧の変化を表す図である。図39A、図39Bに示すようにビット線の充電及び放電時において、ストレージノードが充放電されることが確認できた。
 また図39C、図39Dは、読み出し動作におけるワード線(WL)、ビット線(BL)および反転ビット線(BLB)の信号のシミュレーション波形を示す図である。ビット線(BL)、反転ビット線(BLB)は、実施の形態2における配線GBL、GBLBに相当する。図39Cは、ワード線をHレベルにしてOSトランジスタをオン状態とし、ストレージノード(SN)に保持された充電されたデータをチャージシェアリングすることによるビット線(BL)、反転ビット線(BLB)の電圧の変化を表す図である。図39Dは、ワード線をHレベルにしてOSトランジスタをオン状態とし、ストレージノード(SN)に保持された充電された反転データをチャージシェアリングすることによるビット線(BL)、反転ビット線(BLB)の電圧の変化を表す図である。図39C、図39Dに示すようにビット線(BL)および反転ビット線(BLB)に電位の変動を確認できた。
 本実施例は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
10:半導体装置、15:温度検知回路、16:電圧生成回路、20:素子層、21:電圧制御回路、22:周辺回路、23:演算回路、30:素子層、31:メモリセルアレイ、32:メモリセル、37:トランジスタ

Claims (13)

  1.  温度検知回路および電圧生成回路が設けられた第1素子層と、
     メモリセルが設けられた複数の第2素子層と、を有し、
     複数の前記第2素子層は、前記第1素子層上に積層して設けられ、
     前記メモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、
     前記トランジスタは、バックゲートを有し、
     前記電圧生成回路は、前記バックゲートに供給されるバックゲート電圧を生成する機能を有し、
     前記温度検知回路は、検知した温度に応じて前記バックゲート電圧を制御する機能を有し、
     前記電圧生成回路は、前記バックゲート電圧を、複数の前記第2素子層ごとに異なる電圧として供給する機能を有する、半導体装置。
  2.  請求項1において、
     複数の前記第2素子層において、上層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧は、下層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧より大きい、半導体装置。
  3.  請求項1において、
     前記第1素子層は、演算回路を有し、
     積層された前記第2素子層は、前記演算回路が設けられる領域に重ねて設けられる、半導体装置。
  4.  請求項1において、
     前記酸化物半導体は、In、Ga、及びZnを有する、半導体装置。
  5.  第1素子層と、
     温度検知回路、電圧生成回路、およびメモリセルが各層に設けられた複数の第2素子層と、を有し、
     複数の前記第2素子層は、前記第1素子層上に積層して設けられ、
     前記メモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、
     前記トランジスタは、バックゲートを有し、
     各層に設けられた前記電圧生成回路は、同層に設けられる前記メモリセルが有する前記トランジスタの前記バックゲートに供給されるバックゲート電圧を生成する機能を有し、
     前記温度検知回路は、検知した温度に応じて前記バックゲート電圧を制御する機能を有する、半導体装置。
  6.  請求項5において、
     複数の前記第2素子層において、上層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧は、下層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧より大きい、半導体装置。
  7.  請求項5において、
     前記第1素子層は、演算回路を有し、
     積層された前記第2素子層は、前記演算回路が設けられる領域に重ねて設けられる、半導体装置。
  8.  請求項5において、
     前記酸化物半導体は、In、Ga、及びZnを有する、半導体装置。
  9.  請求項5において、
     前記温度検知回路は、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有する、半導体装置。
  10.  温度検知回路および電圧生成回路が設けられた第1素子層と、
     増幅回路を有する第2素子層と、
     メモリセルが設けられた複数の第3素子層と、を有し、
     複数の前記第2素子層は、前記第1素子層上に積層して設けられ、
     複数の前記第3素子層は、前記第2素子層上に積層して設けられ、
     前記増幅回路は、前記メモリセルの信号を増幅する機能を有し、
     前記増幅回路および前記メモリセルは、チャネル形成領域を有する半導体層が酸化物半導体を有するトランジスタを有し、
     前記トランジスタは、バックゲートを有し、
     前記電圧生成回路は、前記バックゲートに供給されるバックゲート電圧を生成する機能を有し、
     前記温度検知回路は、検知した温度に応じて前記バックゲート電圧を制御する機能を有し、
     前記電圧生成回路は、前記バックゲート電圧を、前記第2素子層および複数の前記第3素子層ごとに異なる電圧として供給する機能を有する、半導体装置。
  11.  請求項10において、
     複数の前記第2素子層において、上層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧は、下層に設けられる前記第2素子層が有する前記トランジスタに供給されるバックゲート電圧より大きい、半導体装置。
  12.  請求項10において、
     前記酸化物半導体は、In、Ga、及びZnを有する、半導体装置。
  13.  請求項10において、
     前記第1素子層は、スキャンフリップフロップを有する演算回路を有し、
     前記スキャンフリップフロップは、前記スキャンフリップフロップのデータを保持する機能を有するバックアップ回路に電気的に接続され、
     前記バックアップ回路は、前記スキャンフリップフロップが設けられる領域に重なる前記第2素子層の領域に設けられる、半導体装置。
PCT/IB2023/055669 2022-06-16 2023-06-02 半導体装置 WO2023242665A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022097094 2022-06-16
JP2022-097094 2022-06-16
JP2022110147 2022-07-08
JP2022-110147 2022-07-08

Publications (1)

Publication Number Publication Date
WO2023242665A1 true WO2023242665A1 (ja) 2023-12-21

Family

ID=89192400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/055669 WO2023242665A1 (ja) 2022-06-16 2023-06-02 半導体装置

Country Status (2)

Country Link
TW (1) TW202401582A (ja)
WO (1) WO2023242665A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211697A1 (ja) * 2018-05-02 2019-11-07 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019211697A1 (ja) * 2018-05-02 2019-11-07 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
TW202401582A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
JP7160894B2 (ja) 記憶装置
WO2020201865A1 (ja) 半導体装置
CN113330554A (zh) 存储装置
US11462538B2 (en) Semiconductor device
US11968820B2 (en) Semiconductor device and electronic device including the semiconductor device
WO2023242665A1 (ja) 半導体装置
US20220344334A1 (en) Memory device
WO2024052787A1 (ja) 半導体装置
WO2024047454A1 (ja) 半導体装置および半導体装置の駆動方法
WO2024028680A1 (ja) 半導体装置
WO2024079575A1 (ja) 半導体装置
WO2023209491A1 (ja) 半導体装置
WO2023203435A1 (ja) 半導体装置
WO2023218279A1 (ja) 半導体装置
WO2023223126A1 (ja) 半導体装置
WO2024089570A1 (ja) 半導体装置
WO2024013604A1 (ja) 半導体装置
WO2024100467A1 (ja) 半導体装置
WO2023199182A1 (ja) 半導体装置
US20240147687A1 (en) Memory device
WO2024057167A1 (ja) 記憶装置
WO2023209484A1 (ja) 半導体装置
WO2024047486A1 (ja) 記憶装置
WO2023156875A1 (ja) 記憶装置
WO2024069339A1 (ja) 記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823344

Country of ref document: EP

Kind code of ref document: A1