WO2024075630A1 - 冷媒検知装置 - Google Patents

冷媒検知装置 Download PDF

Info

Publication number
WO2024075630A1
WO2024075630A1 PCT/JP2023/035408 JP2023035408W WO2024075630A1 WO 2024075630 A1 WO2024075630 A1 WO 2024075630A1 JP 2023035408 W JP2023035408 W JP 2023035408W WO 2024075630 A1 WO2024075630 A1 WO 2024075630A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
power supply
supply unit
sensor
Prior art date
Application number
PCT/JP2023/035408
Other languages
English (en)
French (fr)
Inventor
浩史 石塚
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024075630A1 publication Critical patent/WO2024075630A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • F24F2110/32Velocity of the outside air

Definitions

  • the present invention relates to a refrigerant detection device.
  • This disclosure claims priority to Japanese Patent Application No. 2022-159655, filed on October 3, 2022, the contents of which are incorporated herein by reference.
  • Refrigerant sensors are used as protective devices to detect the leakage of flammable refrigerants from air conditioners. To maintain the detection performance of refrigerant sensors, international standards and Japanese law require periodic replacement. Refrigerant sensors generally run on the same power source as the air conditioner. For this reason, when replacing a refrigerant sensor, the power to the air conditioner must be turned off for the safety of workers. This can result in the following inconveniences: (1) when replacing one refrigerant sensor, the operation of all air conditioners that share the power circuit breaker must be stopped, and (2) because the location where the refrigerant sensor is installed is often far away from the location where the power circuit breaker is installed, it takes time and effort to shut off the power, replace the refrigerant sensor, and restore the power.
  • Patent Document 1 discloses an air conditioner that is configured so that a switch is provided between the air conditioner's power supply and a refrigerant sensor provided in the air conditioner, allowing the power supply to the refrigerant sensor to be cut off.
  • the refrigerant sensor can be replaced without turning off the air conditioner's power by flipping the switch to cut off the power supply to the refrigerant sensor.
  • the refrigerant sensor may also be provided outside the air conditioner as a separate refrigerant detection device.
  • This disclosure provides a refrigerant detection device that can solve the above problems.
  • the refrigerant detection device includes a refrigerant sensor, a power supply unit that supplies power to the refrigerant sensor, a switching unit that switches the electrical connection state between the power supply unit and the refrigerant sensor, an operating unit for operating the switching unit, and a power supply unit protective cover that covers the power supply unit, and the operating unit is arranged so that it can be operated without removing the power supply unit protective cover.
  • the above-mentioned refrigerant detection device allows the refrigerant sensor to be replaced safely without turning off the power to the air conditioner.
  • FIG. 1 is a schematic diagram of an air conditioner and a refrigerant detection device according to a first embodiment.
  • FIG. 2 is a diagram showing an example of a protective cover for the refrigerant detection device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of an erroneous operation prevention cover of the refrigerant detection device according to the first embodiment.
  • FIG. 4 is a diagram showing another example of the refrigerant detection device according to the first embodiment.
  • 5A to 5C are diagrams illustrating another example of the protective cover of the refrigerant detection device according to the first embodiment. 4 is a flowchart showing an example of the operation of the refrigerant detection device according to the first embodiment.
  • FIG. 5 is a flowchart showing an example of switch control of the refrigerant detection device according to the first embodiment.
  • FIG. 11 is a first diagram illustrating an example of a refrigerant detection device according to a second embodiment.
  • FIG. 11 is a second diagram showing the example of the refrigerant detection device according to the second embodiment.
  • FIG. 1 is a schematic diagram of an air conditioner and a refrigerant detection device according to a first embodiment.
  • the air conditioner includes an indoor unit 10, an outdoor unit, a remote control, and the like (not shown).
  • the indoor unit 10 is connected to a commercial AC power source 1.
  • the indoor unit 10 has a power conversion unit 11.
  • the power conversion unit 11 converts power supplied from the AC power source 1 into DC power of a predetermined voltage, and supplies the converted DC power to each device of the indoor unit 10.
  • the indoor unit 10 and the refrigerant detection device 100 are connected by a power line L, and DC power is supplied from the power conversion unit 11 to the refrigerant detection device 100.
  • the refrigerant detection device 100 is disposed near the floor of a room in which the indoor unit 10 is installed, and detects the refrigerant in the room. If a refrigerant leaks from the indoor unit 10, it can be detected by the refrigerant detection device 100.
  • the refrigerant detection device 100 includes a control board 110 and a refrigerant sensor 120.
  • the control board 110 and the refrigerant sensor 120 are housed in a housing 101 of the refrigerant detection device 100.
  • the control board 110 and the refrigerant sensor 120 are electrically connected and communicatively connected.
  • the control board 110 supplies power to the refrigerant sensor 120, and the refrigerant sensor 120 outputs detected information to the control board 110.
  • the control board 110 has a power supply unit 111, a processing unit 112, a switch 113, and an operation unit 114. Specifically, the power supply unit 111, the processing unit 112, and the switch 113 are mounted on the control board 110.
  • the power supply unit 111 receives power from the power conversion unit 11 and supplies the power to each unit of the refrigerant detection device 100 (for example, the refrigerant sensor 120).
  • the processing unit 112 acquires a refrigerant detection signal output from the refrigerant sensor 120 and transmits it to the indoor unit 10.
  • the processing unit 112 If the processing unit 112 cannot acquire a refrigerant detection signal from the refrigerant sensor 120, it determines that the refrigerant sensor 120 has failed, and notifies the indoor unit 10 of the failure and displays a failure on a display unit (not shown).
  • the processing unit 112 is a function realized by a processor such as a CPU, for example.
  • the circuit through which the power supply unit 111 supplies power to the refrigerant sensor 120 is provided with a switch 113 for switching the electrical connection state between the power supply unit 111 and the refrigerant sensor 120.
  • the switch 113 When the switch 113 is ON, the power supply unit 111 and the refrigerant sensor 120 are electrically connected, and power is supplied from the power supply unit 111 to the refrigerant sensor 120.
  • the switch 113 When the switch 113 is OFF, the power supply unit 111 and the refrigerant sensor 120 are electrically disconnected, and power is no longer supplied to the refrigerant sensor 120.
  • the switch 113 is provided with an operating unit 114, and the switch 113 can be switched between ON and OFF by operating the operating unit 114.
  • the surface of the operating unit 114 is covered with an insulator.
  • the operating unit 114 is, for example, a toggle switch or a push-button switch.
  • the switch 113 may have an automatic return function. In other words, when the switch 113 is switched from ON to OFF by the operation unit 114, the OFF state is maintained for a predetermined time (e.g., 5 minutes), and then the switch automatically returns to ON. This makes it possible to prevent the switch from being switched OFF and then forgotten to be switched back to ON.
  • a predetermined time e.g. 5 minutes
  • the refrigerant sensor 120 is powered by power supplied from the control board 110 and detects the refrigerant in the room.
  • the refrigerant sensor 120 has a detection unit 121, which is an element that detects the refrigerant, and an electronic board 122.
  • the detection unit 121 is installed so that it comes into contact with the indoor air so that it can detect the refrigerant in the room.
  • FIG. 1 The control board 110 and refrigerant sensor 120 shown in FIG. 1 are covered with a protective cover to ensure safety. This protects the electronic boards 122 of the control board 110 and refrigerant sensor 120, and prevents electric shock to workers replacing the refrigerant sensor 120.
  • FIG. 2 shows the control board 110 covered with protective cover 210, and the refrigerant sensor 120 covered with protective cover 220.
  • the protective cover 210 is configured to cover the entire control board 110 using an insulating material such as resin.
  • the protective cover 210 has openings 211 at positions and in ranges required for operating the operation unit 114 so that the operation unit 114 can be operated while still covered by the protective cover 210.
  • Protective cover 220 is configured to cover the entire refrigerant sensor 120 using an insulating material such as resin.
  • Protective cover 220 is provided with an opening 221 so that detection unit 121 can detect the refrigerant in the room (so that it can come into contact with the air in the room) while being covered by protective cover 220.
  • Opening 221 may be a hole that matches the shape and size of detection unit 121 as shown in the figure, or may have a slit-shaped opening structure.
  • Protective covers 210 and 220 ensure that refrigerant detection device 100 is electrically safe no matter where it is touched.
  • FIG. 3 shows the refrigerant detection device 100 (housing 101) covered with an erroneous operation prevention cover 300.
  • the erroneous operation prevention cover 300 has an opening 301 so that the detection unit 121 can detect the refrigerant in the room (so that it can come into contact with the air in the room) while still covered with the erroneous operation prevention cover 300.
  • the opening 301 may be a hole that matches the shape and size of the detection unit 121, or may have a slit-shaped opening structure as shown in the figure.
  • FIG 4 shows another example of the configuration of the refrigerant detection device.
  • the switching unit 113 and the operation unit 114 are provided outside the control board 110, rather than on the control board 110.
  • the switching unit 113 is connected to the power supply unit 111 and the refrigerant sensor 120, and is provided between them.
  • the operation unit 114 can be operated without providing an opening in the protective cover 210A of the control board 110, as shown in Figure 5.
  • a protective cover may be provided to cover the switching unit 113.
  • This protective cover may be provided with an opening for operating the operation unit 114.
  • the protective cover may be configured to be easily attached and detached without providing an opening and also serve as an erroneous operation prevention cover.
  • Step 1 First, the worker operates the operation unit 114 to switch the switch 113 from ON to OFF. This cuts off the power to the refrigerant sensor 120.
  • Step 2 Next, the worker removes the protective cover 220.
  • Step 3 Next, the worker removes the refrigerant sensor 120 and installs a new refrigerant sensor 120.
  • Step 4) Next, the worker installs the protective cover 220.
  • Step 5 Next, the worker operates the operation unit 114 to switch the switch 113 from OFF to ON.
  • the switch 113 has an automatic return function, it will return to ON after a predetermined time even if the switch operation from OFF to ON is forgotten. This allows the refrigerant sensor 120 to be easily replaced by simply operating the operation unit 114 at hand, without turning off the power to the target air conditioner or other air conditioners sharing the power breaker. Since the power supplying board is not touched during the replacement work, the worker can safely replace the refrigerant sensor 120. The protective cover 210 is not removed when replacing the refrigerant sensor 120.
  • the refrigerant sensor 120 When replacing the refrigerant sensor 120 in accordance with international standards and laws, in order to ensure safety, the refrigerant sensor 120 must be replaced with the power supply to it cut off.
  • the switch 113 and the operation unit 114 are not provided, so the power supply to the air conditioner must be cut off before replacing the refrigerant sensor.
  • the power supply to the refrigerant sensor 120 can be cut off by operating the operation unit 114 to switch the switch 113 to OFF. Therefore, the refrigerant sensor 120 can be replaced without stopping the operation of the air conditioner.
  • the refrigerant sensor 120 can be replaced safely and easily.
  • the protective covers 210 and 220 are provided separately, but the protective covers may be configured to cover both the control board 110 and the refrigerant sensor 120.
  • the misoperation prevention cover 300 may be omitted.
  • FIG. 6 is a flow chart showing an example of the operation of the refrigerant detection device.
  • the refrigerant sensor 120 detects the refrigerant in the indoor air at a predetermined control period and outputs the detection result as a refrigerant detection signal.
  • the refrigerant detection signal includes, for example, the amount of refrigerant detected from the indoor air or information indicating whether or not refrigerant has been detected.
  • the processing unit 112 can grasp whether the switch 113 is ON or OFF. The processing unit 112 repeatedly executes the following process at a predetermined control period while the refrigerant detection device 100 is operating.
  • the processing unit 112 determines whether the switch 113 is ON (step S1). If the switch 113 is ON (step S1; Yes), the processing unit 112 determines whether a refrigerant detection signal can be acquired from the refrigerant sensor 120 (step S2). If a refrigerant detection signal can be acquired (step S2; Yes), the processing unit 112 outputs the acquired refrigerant detection signal (step S3). For example, the processing unit 112 displays the contents of the refrigerant detection signal on a display unit (not shown) of the refrigerant detection device 100. For example, an alarm is displayed when a refrigerant is detected. For example, the processing unit 112 transmits the acquired refrigerant detection signal to the indoor unit 10.
  • the indoor unit 10 When the indoor unit 10 acquires a refrigerant detection signal indicating that a refrigerant has been detected indoors, it performs various controls required in the event of a refrigerant leak. For example, the indoor unit 10 executes protective control such as promoting ventilation in the room, or instructs a remote control (not shown) to issue an alarm.
  • protective control such as promoting ventilation in the room, or instructs a remote control (not shown) to issue an alarm.
  • the processing unit 112 determines that an abnormality has occurred in the refrigerant sensor 120 and outputs an error signal (step S4). For example, the processing unit 112 displays the refrigerant sensor malfunction on a display unit (not shown) of the refrigerant detection device 100. For example, the processing unit 112 transmits an error signal to the indoor unit 10. When the indoor unit 10 receives the error signal, it instructs the remote control to notify the user of the malfunction of the refrigerant sensor 120. This allows the refrigerant sensor 120 to be replaced quickly even if it malfunctions.
  • the processing unit 112 when the switch 113 is OFF (step S1; No), the processing unit 112 outputs a refrigerant detection stop signal indicating that the switch 113 is OFF (step S5). For example, the processing unit 112 displays on a display unit (not shown) of the refrigerant detection device 100 that the refrigerant sensor is being replaced. For example, the processing unit 112 transmits a refrigerant detection stop signal to the indoor unit 10.
  • the switch 113 is OFF, the refrigerant detection signal output from the refrigerant sensor 120 is discontinued, but to distinguish this from when the switch 113 is ON, the processing unit 112 outputs a refrigerant detection stop signal instead of an error signal. This makes it possible to prevent an error signal from being output even when the refrigerant sensor 120 is not malfunctioning, and to prevent the user from being notified of a malfunction of the refrigerant sensor 120.
  • the switch 113 includes a timer relay circuit, and the following control is executed by this circuit.
  • the switch 113 detects that the circuit has been switched OFF by the operation of the operation unit 114 (step S11).
  • the switch 113 measures the time since the switch 113 was switched OFF and waits until a predetermined time has elapsed (step S12).
  • the predetermined time is the time required for replacing the refrigerant sensor 120 (for example, 5 minutes).
  • the switch 113 switches the circuit from OFF to ON (step S13). According to the process of FIG.
  • the boards (control board 110, refrigerant sensor 120) of the refrigerant detection device 100 are covered with a protective cover, and the power supply to the refrigerant sensor 120 can be switched ON and OFF by operating the operation unit 114, so the refrigerant sensor 120 can be replaced electrically safely and with good workability.
  • FIG. 8 A refrigerant detection device 100B according to a second embodiment of the present disclosure will be described below with reference to Figures 8 and 9.
  • the refrigerant detection devices 100, 100A were provided as separate devices outside the indoor unit 10.
  • the refrigerant detection devices 100B, 100C are provided inside the indoor unit 10.
  • FIG. 8 is a diagram showing an example of a refrigerant detection device 100B according to the second embodiment.
  • the refrigerant detection device 100B is provided in an indoor unit 10.
  • the control board 110 and the refrigerant sensor 120 are provided at separate positions.
  • the refrigerant sensor 120 is provided near the indoor air inlet 12 or the indoor heat exchanger 13.
  • the control board 110 is provided at a predetermined position, for example, near the power conversion unit 11 or the controller (not shown) of the indoor unit 10.
  • the configurations of the control board 110 and the refrigerant sensor 120 are the same as those of the first embodiment.
  • the control board 110 has a power supply unit 111, a processing unit 112, a switch 113, and an operation unit 114.
  • the refrigerant sensor 120 has a detection unit 121 and an electronic board 122.
  • the control board 110 and the refrigerant sensor 120 are electrically connected and communicatively connected.
  • the control board 110 is covered with a protective cover 210, and has a structure that is electrically safe no matter where it is touched.
  • the protective cover 210 has an opening 211 so that the operation unit 114 can be operated while covered with the protective cover 210.
  • the refrigerant sensor 120 is covered with a protective cover 220, and has a structure that is electrically safe no matter where it is touched.
  • the protective cover 220 has an opening 221 so that the detection unit 121 can detect refrigerant in the air drawn into the indoor unit 10 and refrigerant leaking from the indoor heat exchanger 13 while covered with the protective cover 220.
  • the protective cover 220 for the refrigerant sensor 120 can be omitted ( FIG. 9 ).
  • FIG. 9 is a diagram showing an example of a refrigerant detection device 100C according to the second embodiment.
  • the switch 113 and the operation unit 114 can be provided outside the control board 110. With this configuration, there is no need to provide an opening in the protective cover 210A.
  • the switch 113 and the operation unit 114 can be placed in a position that is highly convenient when replacing the refrigerant sensor 120.
  • a protective cover that covers the switching unit 113 and a protective cover that covers the refrigerant sensor 120 may be provided.
  • the refrigerant sensor 120 can be replaced by following steps 1 to 5 described above. In other words, an operator can replace the refrigerant sensor 120 without risking electric shock by simply operating the operation unit 114.
  • the refrigerant sensor 120 can be replaced electrically safely and with good workability.
  • an additional cover may be provided on the outside of the protective cover 210, 220.
  • the refrigerant detection device 100 to 100C of the first aspect comprises a refrigerant sensor 120, a power supply unit 111 that supplies power to the refrigerant sensor 120, a switching unit (switch 113) that switches the electrical connection state between the power supply unit 111 and the refrigerant sensor 120, an operation unit 114 for operating the switching unit, and a power supply unit protective cover 210 made of an insulating material that covers the power supply unit 111, and the operation unit 114 is arranged to be operable without removing the power supply unit protective cover 210. This makes it possible to replace the refrigerant sensor 120 electrically safe and with good workability.
  • the refrigerant detection devices 100 to 100C are the refrigerant detection devices of (1), further comprising a sensor portion protective cover 220 made of an insulating material that covers the refrigerant sensor 120, and an opening 221 is provided in the sensor portion protective cover 220. This protects the refrigerant sensor 120, and by exposing the detection portion 121 of the refrigerant sensor 120 to air, it is possible to detect the refrigerant in the room.
  • the refrigerant detection devices 100 to 100C of the third aspect are the refrigerant detection devices of (1) to (2), wherein the switching unit 113 automatically switches the power supply unit 111 and the refrigerant sensor 120 to an electrically connected state after a predetermined time has elapsed since the power supply unit 111 and the refrigerant sensor 120 were switched from an electrically connected state to an unconnected state. Even if the user forgets to turn on the switch 113 after replacing the refrigerant sensor 120, the switch 113 can be automatically turned on. This makes it possible to reliably perform refrigerant detection.
  • the refrigerant detection devices 100 to 100C of the fourth aspect are the refrigerant detection devices of (1) to (3), and further include a failure detection unit (processing unit 112) that determines a failure of the refrigerant sensor based on the presence or absence of a detection signal output by the refrigerant sensor 120, and a notification unit (processing unit 112) that notifies the determination result of the failure detection unit, and when the switching unit 113 causes the power supply unit 111 and the refrigerant sensor 120 to become electrically disconnected, the failure detection unit does not determine that the refrigerant sensor has failed. This makes it possible to prevent an erroneous determination that the refrigerant sensor 120 is broken when the refrigerant sensor 120 is replaced.
  • a failure detection unit processing unit 112 that determines a failure of the refrigerant sensor based on the presence or absence of a detection signal output by the refrigerant sensor 120
  • a notification unit processing unit 112 that notifies the determination result of the failure detection unit
  • the refrigerant detection devices 100 to 100A of the fifth aspect are the refrigerant detection devices of (1) to (4), and include a housing, and the refrigerant sensor, the power supply unit, the switching unit, and the operation unit, which are installed within the housing, wherein the power supply unit 111 receives power from an air conditioner (power supply conversion unit 11 of the indoor unit 10), and the housing is provided outside the air conditioner.
  • a configuration similar to that of the refrigerant detection device of the first aspect can be applied to a refrigerant detection device that is separate from an air conditioner.
  • the sixth aspect of the refrigerant detection devices 100B to 100C is the refrigerant detection device of (1) to (5), wherein the refrigerant sensor, the power supply unit, the switching unit, the operation unit, and the power supply unit protective cover are provided in an air conditioner, and the power supply unit receives power from the air conditioner.
  • the refrigerant detection device is provided inside an air conditioner, a configuration like that of the refrigerant detection device of the first aspect can be applied.
  • the seventh aspect of the refrigerant detection device 100, 100A is a refrigerant detection device of any one of (1) to (6), wherein the power supply unit 111 and the switching unit 113 are provided on a single base, the power supply unit protective cover covers the single base, and an opening is provided on the power supply unit protective cover at a position corresponding to the switching unit.
  • the switch 113 may be mounted on the control board 110 .
  • the refrigerant detection devices 100A, 100C of an eighth aspect are the refrigerant detection devices of (1) to (7), in which the power supply unit and the switching unit are provided on different bases, and the switching unit is provided outside the power supply unit protective cover.
  • the switch 113 may be configured to be mounted outside the control board 110 .
  • the above-mentioned refrigerant detection device allows the refrigerant sensor to be replaced safely without turning off the power to the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

安全に冷媒センサを交換することができる冷媒検知装置を提供する。冷媒検知装置は、冷媒センサと、前記冷媒センサに電力を供給する電源部と、前記電源部と前記冷媒センサの電気的な接続状態を切り替える切替部と、前記切替部を操作するための操作部と、前記電源部を覆う電源部保護カバーと、を備え、前記操作部が、電源部保護カバーを取り外すことなく操作可能に設けられている。

Description

冷媒検知装置
 本発明は、冷媒検知装置に関する。本開示は、2022年10月3日に、日本に出願された特願2022-159655号に基づき優先権を主張し、その内容をここに援用する。
 空調機からの可燃性冷媒の漏洩を検知するための保護装置として冷媒センサが使用される。冷媒センサの検知性能を適切に保つため、国際規格および日本の法律により定期的な交換が義務付けられている。一般に冷媒センサは空調機と同じ電源で動作する。その為、冷媒センサを交換するときには、作業員の安全のために空調機の電源を落とす必要がある。すると、(1)1台の冷媒センサを交換しようとすると、電源遮断器を共有している空調機の運転をすべて停止しなければならない、(2)冷媒センサが設置される場所と電源遮断器の設置場所は遠く離れていることが多いため、電源を遮断し、冷媒センサを交換し、電源を復旧するという作業には時間や労力がかかる、といった不都合が生じる場合がある。
 これに対し、特許文献1には、空調機の電源と空調機に設けられた冷媒センサとの間にスイッチを設け、冷媒センサへの電力の供給を遮断できるように構成した空調機が開示されている。このような空調機であれば、スイッチを切り換えて冷媒センサへの電力供給を遮断することによって、空調機の電源を落とすことなく冷媒センサを交換することができる。しかし、冷媒センサへの通電を切り替えるスイッチを空調機に設けることは、必ずしも可能ではない場合がある。冷媒センサは、空調機の外部に、別体の冷媒検知装置として設けられる場合もある。
特開2018-54142号公報
 冷媒センサへの通電を自由に切り替えることができる冷媒検知装置が求められている。
 本開示は、上述の課題を解決することのできる冷媒検知装置を提供する。
 本開示の一態様によれば、冷媒検知装置は、冷媒センサと、前記冷媒センサに電力を供給する電源部と、前記電源部と前記冷媒センサの電気的な接続状態を切り替える切替部と、前記切替部を操作するための操作部と、前記電源部を覆う電源部保護カバーと、を備え、前記操作部が、電源部保護カバーを取り外すことなく操作可能に設けられている。
 上記した冷媒検知装置によれば、空調機の電源を落とすことなく、安全に冷媒センサを交換することができる。
第一実施形態に係る空調機および冷媒検知装置の概略図である。 第一実施形態に係る冷媒検知装置の保護カバーの一例を示す図である。 第一実施形態に係る冷媒検知装置の誤操作防止カバーの一例を示す図である。 第一実施形態に係る冷媒検知装置の他の一例を示す図である。 第一実施形態に係る冷媒検知装置の保護カバーの他の例を示す図である。 第一実施形態に係る冷媒検知装置の動作の一例を示すフローチャートである。 第一実施形態に係る冷媒検知装置のスイッチ制御の一例を示すフローチャートである。 第二実施形態に係る冷媒検知装置の一例を示す第1の図である。 第二実施形態に係る冷媒検知装置の一例を示す第2の図である。
<第一実施形態>
 以下、本開示の第一実施形態に係る冷媒検知装置について図1~図7を参照して説明する。
(構成)
 図1は、第一実施形態に係る空調機および冷媒検知装置の概略図である。空調機は室内機10と、図示しない室外機およびリモコンなどを備えている。室内機10は、商用の交流電源1と接続されている。室内機10は、電源変換部11を有している。電源変換部11は、交流電源1から供給された電力を、所定の電圧の直流電力に変換し、変換後の直流電力を室内機10の各機器に供給する。室内機10と冷媒検知装置100は、電力線Lで接続されており、電源変換部11から冷媒検知装置100へ直流電力が供給される。冷媒検知装置100は、室内機10が設置された室内の床近傍に配置され、室内の冷媒を検知する。室内機10から冷媒が漏洩すると、冷媒検知装置100によって検知することができる。
 冷媒検知装置100は、制御基盤110と、冷媒センサ120とを備えている。制御基盤110と冷媒センサ120は、冷媒検知装置100の筐体101内に収められている。制御基盤110と冷媒センサ120は、電気的に接続され、通信可能に接続されている。例えば、制御基盤110は、冷媒センサ120へ電力を供給し、冷媒センサ120は検知した情報を制御基盤110へ出力する。
 制御基盤110は、電源部111と、処理部112と、スイッチ113と、操作部114と、を有している。具体的には、電源部111と、処理部112と、スイッチ113が制御基盤110上に実装されている。
 電源部111は、電源変換部11から電力を受電し、冷媒検知装置100の各部(例えば、冷媒センサ120)へ電力を供給する。
 処理部112は、冷媒センサ120から出力される冷媒検知信号を取得し、室内機10へ送信する。処理部112は、冷媒センサ120から冷媒検知信号が取得できない場合には、冷媒センサ120が故障したと判定し、室内機10へ故障を通知したり、図示しない表示部に故障表示を行ったりする。処理部112は、例えば、CPU等のプロセッサによって実現される機能である。
 電源部111が冷媒センサ120へ電力を供給する回路には、電源部111と冷媒センサ120の電気的な接続状態を切り替えるためのスイッチ113が設けられている。スイッチ113がONとなると、電源部111と冷媒センサ120の電気的に接続され、電源部111から冷媒センサ120へ電力が供給される。スイッチ113がOFFとなると、電源部111と冷媒センサ120の電気的に遮断され、冷媒センサ120へ電力が供給されなくなる。
 スイッチ113には、操作部114が設けられており、操作部114を操作することにより、スイッチ113のONとOFFを切り替えることができる。作業員の安全のため、操作部114の表面は絶縁体で覆われている。操作部114は、例えば、トグルスイッチや押しボタン式のスイッチである。操作部114の操作によりスイッチ113が切り替わると、スイッチ113の状態(ON又はOFF)は処理部112へ通知される。
 スイッチ113は、自動復帰機能を有していてもよい。つまり、操作部114によって、スイッチ113をONからOFFに切り替えると、所定の時間(例えば、5分間)だけOFFの状態が維持され、その後、ONへ自動的に復帰する。これにより、OFFに切り替えたまま、ONに戻し忘れることを防止することができる。
 冷媒センサ120は、制御基盤110からの電力供給によって駆動し、室内の冷媒を検知する。冷媒センサ120は、冷媒を検知する素子である検知部121と、電子基板122を有している。検知部121は、室内の冷媒を検知できるよう室内空気と触れるように設置される。
 図1に示す制御基盤110と冷媒センサ120は、安全性を確保するために保護カバーで覆われている。これにより、制御基盤110と冷媒センサ120の電子基板122を保護するとともに冷媒センサ120の交換作業を行う作業員の感電を防ぐことができる。図2に制御基盤110が保護カバー210で覆われ、冷媒センサ120が保護カバー220で覆われている様子を示す。
 保護カバー210は、樹脂などの絶縁性を有する部材を用いて、制御基盤110の全体を覆うよう構成されている。保護カバー210には、保護カバー210で覆われた状態のまま、操作部114を操作することができるように操作部114の操作に必要な位置および範囲に開口部211が設けられている。
 保護カバー220は、樹脂などの絶縁性を有する部材を用いて、冷媒センサ120の全体を覆うよう構成されている。保護カバー220には、保護カバー220で覆われた状態のまま、検知部121が室内の冷媒を検知できるように(室内の空気と接触するように)、開口部221が設けられている。開口部221は、図示するように検知部121の形状や大きさに合わせた穴であってもよいし、スリット状の開口構造であってもよい。
 保護カバー210、220により、冷媒検知装置100のどこに触れても電気的に安全な構造となっている。
 更に、ユーザによる操作部114の誤操作を防止するために、冷媒検知装置100の全体が誤操作防止カバーで覆われていてもよい。図3に冷媒検知装置100(筐体101)が誤操作防止カバー300で覆われている様子を示す。誤操作防止カバー300には、誤操作防止カバー300で覆われた状態のまま、検知部121が室内の冷媒を検知できるように(室内の空気と接触するように)、開口部301が設けられている。開口部301は、検知部121の形状や大きさに合わせた穴であってもよいし、図示するような、スリット状の開口構造であってもよい。
 図4に冷媒検知装置の他の構成例を示す。冷媒検知装置100Aでは、切替部113および操作部114が制御基盤110上ではなく、制御基盤110の外部に設けられている。切替部113は、電源部111および冷媒センサ120と接続され、両者の中間に設けられる。このように構成することで、図5に示すように制御基盤110の保護カバー210Aに開口部を設けることなく、操作部114を操作することができる。図5において、切替部113を覆う保護カバーを設けてもよい。この保護カバーには操作部114の操作用に開口部が設けられていてもよい。あるいは、開口部を設けずに着脱が容易なように構成された誤操作防止カバーを兼ねる保護カバーであってもよい。
(冷媒センサの交換手順)
 次に図2~図5の構成を前提として、冷媒センサ120の交換作業の手順を説明する。(手順1)まず、作業員は、操作部114を操作して、スイッチ113をONからOFFに切り替える。これによって、冷媒センサ120への通電が遮断される。(手順2)次に、作業員は、保護カバー220を外す。(手順3)次に、作業員は、冷媒センサ120を取り外して、新しい冷媒センサ120を取り付ける。(手順4)次に、作業員は、保護カバー220を取り付ける。(手順5)次に、作業員は、操作部114を操作して、スイッチ113をOFFからONに切り替える。スイッチ113が自動復帰機能を有している場合には、OFFからONへの切り替え操作を忘れても所定時間後にONに復帰する。これにより、対象とする空調機や電源遮断器を共有する他の空調機の電源を落とすことなく、手許の操作部114を操作するだけで簡単に冷媒センサ120を交換することができる。交換作業の間、電力が供給されている基盤には触れることが無いので、作業員は、安全に冷媒センサ120を交換することができる。冷媒センサ120の交換時に保護カバー210が取り外されることはない。
 国際規格や法律に従って冷媒センサ120を交換する場合、安全性を確保するためには、冷媒センサ120への電力供給を遮断した状態で交換しなければならない。一般的な冷媒検知装置では、スイッチ113および操作部114が設けられていない為、空調機への電力供給を遮断して冷媒センサを交換しなければならない。これに対し、本実施形態の冷媒検知装置100,100Aによれば、操作部114を操作してスイッチ113をOFFに切り替えることにより、冷媒センサ120への電力供給を遮断することができる。従って、空調機の運転を停止することなく、冷媒センサ120を交換することができる。制御基盤110(110A)を保護カバー210(210A)で覆い、操作部114のみに触れることで電力供給を遮断することができるので、安全かつ簡単に冷媒センサ120を交換することができる。制御基盤110(110A)、冷媒センサ120をそれぞれ、保護カバー210(210A)、保護カバー220で保護することにより、電子基板の故障を防ぐことができる。図2では、保護カバー210,220を別々に設けることとしたが、保護カバーは、制御基盤110と冷媒センサ120の両方を覆うように構成してもよい。誤操作防止カバー300を省略した構成としてもよい。
 (動作)
 次に図6を参照して、スイッチON又はOFF中の冷媒検知装置100の動作について説明する。図6は、冷媒検知装置の動作の一例を示すフローチャートである。前提として、通常時(スイッチ113がON)、冷媒センサ120は、所定の制御周期で室内空気の冷媒を検知し、その検知結果を冷媒検知信号として出力する。冷媒検知信号には、例えば、室内空気から検知された冷媒量または冷媒が検知されたか否かを示す情報が含まれている。処理部112は、スイッチ113がONかOFFかを把握することができる。処理部112は、冷媒検知装置100の稼働中、以下の処理を所定の制御周期で繰り返し実行する。
 まず、処理部112は、スイッチ113がONかどうかを判定する(ステップS1)。スイッチ113がONの場合(ステップS1;Yes)、処理部112は、冷媒センサ120から冷媒検知信号を取得できるかどうかを判定する(ステップS2)。冷媒検知信号を取得できた場合(ステップS2;Yes)、処理部112は、取得した冷媒検知信号を出力する(ステップS3)。例えば、処理部112は、冷媒検知装置100が有する表示部(図示せず)に冷媒検知信号の内容を表示する。例えば、冷媒が検知されたときには警報が表示される。例えば、処理部112は、取得した冷媒検知信号を室内機10へ送信する。室内機10は、室内で冷媒が検知されたことを示す冷媒検知信号を取得した場合、冷媒漏洩時に必要な各種制御を行う。例えば、室内機10は、室内の換気を促進する等の保護制御を実行したり、図示しないリモコンへ警報の発報を指示したりする。
 冷媒検知信号を取得できない場合(ステップS2;No)、処理部112は、冷媒センサ120に異常が生じたと判定し、エラー信号を出力する(ステップS4)。例えば、処理部112は、冷媒検知装置100が有する表示部(図示せず)に冷媒センサの故障を表示する。例えば、処理部112は、エラー信号を室内機10へ送信する。室内機10は、エラー信号を受信すると、冷媒センサ120の故障をユーザへ通知するようリモコンへ指示する。これにより、冷媒センサ120が故障した場合でも速やかに冷媒センサ120を交換することができる。
 一方、スイッチ113がOFFの場合(ステップS1;No)、処理部112は、スイッチ113がOFFであることを示す冷媒検知停止信号を出力する(ステップS5)。例えば、処理部112は、冷媒検知装置100が有する表示部(図示せず)に冷媒センサを交換中であることを表示する。例えば、処理部112は、冷媒検知停止信号を室内機10へ送信する。スイッチ113がOFFの場合には、冷媒センサ120から出力される冷媒検知信号が途絶えることになるが、スイッチ113がONの場合とは区別して、エラー信号ではなく冷媒検知停止信号を出力する。これにより、冷媒センサ120が故障していないにも関わらず、エラー信号が出力され、ユーザに冷媒センサ120の故障が通知されること等を防止することができる。
 次に、図7を参照して、スイッチ113が自動復帰機能を有する場合の制御について説明する。例えば、スイッチ113は、タイマーリレー回路を備え、この回路により、以下の制御が実行される。
 スイッチ113は、操作部114の操作によって、回路がOFFに切り替えられたことを検知する(ステップS11)。スイッチ113は、OFFとなってからの時間を計測し、所定時間が経過するまで待機する(ステップS12)。所定時間とは、冷媒センサ120の交換に必要な時間である(例えば、5分間)。所定時間が経過すると(ステップS12;Yes)、スイッチ113は、回路をOFFからONに切り替える(ステップS13)。図7の処理によれば、冷媒センサ120の交換後、スイッチ113をONに戻し忘れたとしても所定時間経過後には自動的にOFFからONに切り替えることができるので、室内の冷媒漏洩検知を継続することができる。図7の処理は、処理部112によって実行されてもよい。
 以上、説明したように本実施形態によれば、冷媒検知装置100の基盤(制御基盤110、冷媒センサ120)を保護カバーで覆い、操作部114の操作により冷媒センサ120への電力供給のON、OFFを切り替えることができるので、電気的に安全かつ作業性良く冷媒センサ120を交換することができる。従来、冷媒センサ交換時に生じる(1)電源遮断器を共有している空調機の運転がすべて停止してしまう、(2)冷媒センサの設置場所と電源遮断器の設置場所の往復により交換に時間や労力を要する、といった問題を解消することができる。
<第二実施形態>
 以下、本開示の第二実施形態に係る冷媒検知装置100Bについて、図8~図9を参照して説明する。第一実施形態では、冷媒検知装置100,100Aは、室内機10の外部に別装置として設けられていた。第二実施形態では、冷媒検知装置100B、100Cが、室内機10の内部に設けられる構成について説明する。
(構成)
 図8は、第二実施形態に係る冷媒検知装置100Bの一例を示す図である。図示するように、冷媒検知装置100Bは、室内機10内に設けられる。第一実施形態の冷媒検知装置100、100Aと異なり、制御基盤110と冷媒センサ120は、離れた位置に設けられる。例えば、冷媒センサ120は、室内空気の吸込口12又は室内熱交換器13の近傍に設けられる。制御基盤110は、所定の位置、例えば、電源変換部11や室内機10のコントローラ(図示せず)の近傍に設けられる。制御基盤110および冷媒センサ120の構成は、第一実施形態と同様である。即ち、制御基盤110は、電源部111と、処理部112と、スイッチ113と、操作部114と、を有している。冷媒センサ120は、検知部121と電子基板122を有している。制御基盤110と冷媒センサ120は、電気的に接続され、通信可能に接続されている。制御基盤110は保護カバー210で覆われ、どこに触れても電気的に安全な構造となっている。保護カバー210には、保護カバー210で覆ったまま、操作部114の操作が可能なように開口部211が設けられている。冷媒センサ120は保護カバー220で覆われ、どこに触れても電気的に安全な構造となっている。保護カバー220には、保護カバー220で覆ったまま、検知部121が室内機10に吸入された空気中の冷媒や室内熱交換器13から漏洩した冷媒を検知することができるように開口部221が設けられている。冷媒センサ120の保護カバー220は、省略することができる(図9)。
 図9は、第二実施形態に係る冷媒検知装置100Cの一例を示す図である。図9に示すように、スイッチ113と操作部114は、制御基盤110の外部に設けることができる。このような構成とすることにより、保護カバー210Aには開口部を設ける必要が無い。スイッチ113および操作部114を冷媒センサ120の交換作業を行う際の利便性が高い位置に配置することができる。図9に示す冷媒検知装置100Cにおいて、切替部113を覆う保護カバーや冷媒センサ120を覆う保護カバーを設けてもよい。
 図8、図9に示す構成の場合であっても、上記した手順1~5によって、冷媒センサ120の交換が可能である。つまり、作業員は、操作部114の操作だけで、感電のおそれなく冷媒センサ120を交換することができる。
 以上、説明したように本実施形態によれば、室内機10の内部に冷媒検知装置100B,100Cを設ける構成の場合でも、電気的に安全、かつ、作業性良く冷媒センサ120を交換することができる。冷媒検知装置100B,100Cについても、保護カバー210,220の外側にさらにカバーを設けてもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
<付記>
 各実施形態に記載の冷媒検知装置は、例えば以下のように把握される。
(1)第1の態様の冷媒検知装置100~100Cは、冷媒センサ120と、前記冷媒センサ120に電力を供給する電源部111と、前記電源部111と前記冷媒センサ120の電気的な接続状態を切り替える切替部(スイッチ113)と、前記切替部を操作するための操作部114と、前記電源部111を覆う絶縁部材でできた電源部保護カバー210と、を備え、前記操作部114が、電源部保護カバー210を取り外すことなく操作可能に設けられている。
 これにより、電気的に安全、かつ、作業性良く冷媒センサ120を交換することができる。従来、冷媒センサ交換時に生じる(1)電源遮断器を共有している空調機の運転がすべて停止してしまう、(2)冷媒センサの設置場所と電源遮断器の設置場所の往復により交換に時間がかかる、といった問題を解消することができる。
(2)第2の態様に冷媒検知装置100~100Cは、(1)の冷媒検知装置であって、前記冷媒センサ120を覆う絶縁部材でできたセンサ部保護カバー220、をさらに備え、前記センサ部保護カバー220には開口部221が設けられている。
 これにより、冷媒センサ120を保護するとともに、冷媒センサ120の検知部121を空気に接することにより、室内の冷媒を検知することができる。
(3)第3の態様に係る冷媒検知装置100~100Cは、(1)~(2)の冷媒検知装置であって、前記切替部113は、前記電源部111と前記冷媒センサ120が電気的に接続された状態から接続されていない状態に切り替えてから所定の時間が経過すると、前記電源部111と前記冷媒センサ120が電気的に接続された状態に自動的に切り替える。
 冷媒センサ120を交換した後、スイッチ113をONに切り替えるのを忘れてしまった場合でも、自動的にスイッチ113をONに切り替えることができる。これにより、確実に冷媒検知を実行することができる。
(4)第4の態様に係る冷媒検知装置100~100Cは、(1)~(3)の冷媒検知装置であって、前記冷媒センサ120が出力する検知信号の有無に基づいて、前記冷媒センサの故障を判定する故障検知部(処理部112)と、前記故障検知部の判定結果を通知する通知部(処理部112)と、をさらに備え、前記切替部113によって、前記電源部111と前記冷媒センサ120が電気的に接続されていない状態となった場合、前記故障検知部は、前記冷媒センサが故障したと判定しない。
 これにより、冷媒センサ120の交換時に冷媒センサの故障と誤判定することを防止することができる。
(5)第5の態様に係る冷媒検知装置100~100Aは、(1)~(4)の冷媒検知装置であって、筐体と、前記筐体内に設置された、前記冷媒センサと、前記電源部と、前記切替部と、前記操作部と、を備え、前記電源部111は、空調機(室内機10の電源変換部11)から電力の供給を受け、前記筐体が空調機の外部に設けられる。
 空調機とは別体の冷媒検知装置について、第1の態様の冷媒検知装置のような構成を適用することができる。
(6)第6の態様に係る冷媒検知装置100B~100Cは、(1)~(5)の冷媒検知装置であって、前記冷媒センサと、前記電源部と、前記切替部と、前記操作部と、前記電源部保護カバーと、が空調機に設けられ、前記電源部は、前記空調機から電力の供給を受ける。
 空調機内に冷媒検知装置を設ける場合において、第1の態様の冷媒検知装置のような構成を適用することができる。
(7)第7の態様に係る冷媒検知装置100、100Aは、(1)~(6)の冷媒検知装置であって、前記電源部111と前記切替部113が1つの基盤に設けられ、前記電源部保護カバーが前記1つの基盤を覆い、前記電源部保護カバーの前記切替部に対応する位置には開口部が設けられている。
 制御基盤110上にスイッチ113を実装する構成とすることができる。
(8)第8の態様に係る冷媒検知装置100A、100Cは、(1)~(7)の冷媒検知装置であって、前記電源部と前記切替部が異なる基盤に設けられ、前記切替部が前記電源部保護カバーの外部に設けられている。
 制御基盤110の外部にスイッチ113を実装する構成とすることができる。
 上記した冷媒検知装置によれば、空調機の電源を落とすことなく、安全に冷媒センサを交換することができる。
1・・・交流電源
10・・・室内機
11・・・電源変換部
100,100A,100B,100C・・・冷媒検知装置
101・・・筐体
110・・・制御基盤
111・・・電源部
112・・・処理部
113・・・スイッチ
114・・・操作部
120・・・冷媒センサ
121・・・検知部
210、220、210A・・・保護カバー
211、221・・・開口部
300・・・誤操作防止カバー
301・・・開口部

Claims (8)

  1.  冷媒センサと、
     前記冷媒センサに電力を供給する電源部と、
     前記電源部と前記冷媒センサの電気的な接続状態を切り替える切替部と、
     前記切替部を操作するための操作部と、
     前記電源部を覆う電源部保護カバーと、
     を備え、
     前記操作部が、電源部保護カバーを取り外すことなく操作可能に設けられた、
     冷媒検知装置。
  2.  前記冷媒センサを覆うセンサ部保護カバー、
     をさらに備え、
     前記センサ部保護カバーには開口部が設けられた、
     請求項1に記載の冷媒検知装置。
  3.  前記切替部は、
     前記電源部と前記冷媒センサが電気的に接続された状態から接続されていない状態に切り替えてから所定の時間が経過すると、前記電源部と前記冷媒センサが電気的に接続された状態に自動的に復帰する、
     請求項1又は請求項2に記載の冷媒検知装置。
  4.  前記冷媒センサが出力する検知信号の有無に基づいて、前記冷媒センサの故障を判定する故障検知部と、
     前記故障検知部の判定結果を通知する通知部と、
     をさらに備え、
     前記切替部によって、前記電源部と前記冷媒センサが電気的に接続されていない状態となった場合、前記故障検知部は、前記冷媒センサが故障したと判定しない、
     請求項1又は請求項2に記載の冷媒検知装置。
  5.  筐体と、
     前記筐体内に設置された、前記冷媒センサと、前記電源部と、前記切替部と、前記操作部と、前記電源部保護カバーと、
     を備え、
     前記電源部は、空調機から電力の供給を受け、前記筐体が空調機の外部に設けられる、
     請求項1又は請求項2に記載の冷媒検知装置。
  6.  前記冷媒センサと、前記電源部と、前記切替部と、前記操作部と、前記電源部保護カバーと、が空調機に設けられ、前記電源部は、前記空調機から電力の供給を受ける、
     請求項1又は請求項2に記載の冷媒検知装置。
  7.  前記電源部と前記切替部が1つの基盤に設けられ、前記電源部保護カバーが前記1つの基盤を覆い、前記電源部保護カバーの前記切替部に対応する位置には開口部が設けられている、
     請求項1又は請求項2に記載の冷媒検知装置。
  8.  前記電源部と前記切替部が異なる基盤に設けられ、前記切替部が前記電源部保護カバーの外部に設けられた、
     請求項1又は請求項2に記載の冷媒検知装置。
PCT/JP2023/035408 2022-10-03 2023-09-28 冷媒検知装置 WO2024075630A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159655A JP2024053401A (ja) 2022-10-03 2022-10-03 冷媒検知装置
JP2022-159655 2022-10-03

Publications (1)

Publication Number Publication Date
WO2024075630A1 true WO2024075630A1 (ja) 2024-04-11

Family

ID=90607756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035408 WO2024075630A1 (ja) 2022-10-03 2023-09-28 冷媒検知装置

Country Status (2)

Country Link
JP (1) JP2024053401A (ja)
WO (1) WO2024075630A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032651A (ja) * 1998-07-08 2000-01-28 Tokyo Gas Co Ltd 電源遮断器付ガス漏れ警報器
JP2001306155A (ja) * 2000-04-25 2001-11-02 Matsushita Seiko Co Ltd 制御装置
WO2017149625A1 (ja) * 2016-02-29 2017-09-08 三菱電機株式会社 中継基板及びセンサ装置
JP2018132254A (ja) * 2017-02-15 2018-08-23 三菱電機株式会社 環境監視装置
WO2019097607A1 (ja) * 2017-11-15 2019-05-23 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032651A (ja) * 1998-07-08 2000-01-28 Tokyo Gas Co Ltd 電源遮断器付ガス漏れ警報器
JP2001306155A (ja) * 2000-04-25 2001-11-02 Matsushita Seiko Co Ltd 制御装置
WO2017149625A1 (ja) * 2016-02-29 2017-09-08 三菱電機株式会社 中継基板及びセンサ装置
JP2018132254A (ja) * 2017-02-15 2018-08-23 三菱電機株式会社 環境監視装置
WO2019097607A1 (ja) * 2017-11-15 2019-05-23 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
JP2024053401A (ja) 2024-04-15

Similar Documents

Publication Publication Date Title
US7532810B2 (en) Portable electrical appliance with diagnostic system
WO2024075630A1 (ja) 冷媒検知装置
JP7023261B2 (ja) 遠隔操作可能な地絡回路遮断器
US3816827A (en) Electrical circuit status indicator apparatus
TWI699956B (zh) 家電機器
JPH06319293A (ja) 空気調和機の安全装置
CN112951671A (zh) 具有远程测试能力的接地故障断路器
JPH06257906A (ja) 空気調和機
JP4263383B2 (ja) 火災警報器
GB2310751A (en) Safety system with a gas supply cut-off valve
KR20070072259A (ko) 공기조화기의 오결선 감지장치
JP2020197350A (ja) 空気調和機
JP2011202924A (ja) 空気調和機の運転制御装置
JPH09238433A (ja) 自家発電機の非常用電源供給システム
EP2675532A2 (en) A device, system and method for activation of a plurality of fire extinguishing devices
CN219018691U (zh) 一种激光器及其电源装置
JPH0719679A (ja) 空気調和機
WO2023021882A1 (ja) 空気調和装置
JPH08186923A (ja) 負荷駆動回路の接点保護装置および接点異常診断装置
US20230213582A1 (en) Redundant contactors with data-based preventive maintenance replacement indicators
JPH04161021A (ja) 電子機器装置
KR100680611B1 (ko) 멀티 에어컨의 긴급 운전 제어장치 및 방법
JP2006177607A (ja) 空気調和機
JP2540221B2 (ja) 非常用エレベ―タの管理装置
JP2000044154A (ja) エスカレータ遠隔監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874757

Country of ref document: EP

Kind code of ref document: A1