WO2024066249A1 - 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用 - Google Patents

一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用 Download PDF

Info

Publication number
WO2024066249A1
WO2024066249A1 PCT/CN2023/083665 CN2023083665W WO2024066249A1 WO 2024066249 A1 WO2024066249 A1 WO 2024066249A1 CN 2023083665 W CN2023083665 W CN 2023083665W WO 2024066249 A1 WO2024066249 A1 WO 2024066249A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
raffinate
polyphosphoric acid
phosphoric acid
content
Prior art date
Application number
PCT/CN2023/083665
Other languages
English (en)
French (fr)
Inventor
王丁丁
李长东
王皓
唐盛贺
王致富
Original Assignee
宜昌邦普宜化新材料有限公司
宜昌邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜昌邦普宜化新材料有限公司, 宜昌邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 宜昌邦普宜化新材料有限公司
Publication of WO2024066249A1 publication Critical patent/WO2024066249A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/24Condensed phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • C01B25/405Polyphosphates of ammonium

Definitions

  • the invention belongs to the technical field of wet-process phosphoric acid, and particularly relates to a method for preparing polyphosphoric acid using raffinate of wet-process phosphoric acid and application thereof.
  • Phosphoric acid produced by decomposing phosphate rock with sulfuric acid, nitric acid or hydrochloric acid is collectively referred to as wet-process phosphoric acid. Due to the high production cost and high energy consumption of thermal phosphoric acid, the wet process is used to replace thermal phosphoric acid under the current requirements of countries around the world to save energy and reduce carbon emissions.
  • the extraction method is a commonly used method for purifying wet-process phosphoric acid.
  • the phosphoric acid purification rate is generally around 65%.
  • the raffinate acid produced during the extraction process contains a high concentration of P2O5 and impurities. How to efficiently utilize the raffinate acid has always been a technical problem in the field of phosphorus chemical industry.
  • the P2O5 content of raffinate acid is generally 35%-42%, while the ammonium polyphosphate used as a flame retardant material for extinguishing forest and mountain fires requires a P2O5 content of 30%-37% and a nitrogen content of 11%-16%, so theoretically raffinate acid can be used to prepare ammonium polyphosphate products.
  • the impurity content has changed, especially the large amount of MgO in the raffinate acid, which makes the solution viscosity very large, which brings great obstacles to the subsequent treatment of the raffinate acid.
  • the fluorine content in the raffinate acid is relatively high, making it difficult to use as a flame retardant material. Therefore, it is urgent to study a process for treating raffinate acid so that its derivative products are suitable for the synthesis and application of ammonium polyphosphate.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention provides a method for preparing polyphosphoric acid from wet phosphoric acid raffinate and its application.
  • a method for preparing polyphosphoric acid from raffinate of wet phosphoric acid comprising the following steps:
  • the vacuum degree of the reduced pressure concentration is 18-21 kPa.
  • the vacuum degree mainly affects the degree of concentration. A high vacuum degree is conducive to achieving the target acid concentration, but a too high vacuum degree will increase the cost and damage the equipment.
  • the present invention controls the vacuum degree at 18-21 kPa to achieve a good concentration effect without damaging the equipment.
  • the content of organic solvent in the primary concentrated solution is less than 200 ppm, and the acid concentration P 2 O 5 content is 46 wt %-50 wt %.
  • the content of organic solvent in the primary concentrated solution is less than 50 ppm.
  • the reaction temperature is 70-80°C.
  • the amount of chlorine gas introduced is 2-4 times the volume of the primary concentrated solution. Controlling the amount of chlorine gas introduced to 2-4 times the volume of the primary concentrated solution can ensure that MgO is fully converted into Mg 2+ , and the concentrated solution changes from a highly viscous state to a liquid with good fluidity, which is conducive to the raffinate acid after the primary concentration entering the secondary concentration device to synthesize polyphosphoric acid.
  • step S3 the vacuum degree of the reduced pressure concentration is 18-21 kPa.
  • step S3 the content of organic solvent in the polyphosphoric acid is ⁇ 10 ppm, and the content of P 2 O 5 is ⁇ 68 wt %. Furthermore, the content of fluorine in the polyphosphoric acid is 50-60 ppm.
  • step S3 further comprises: adding hydrogen peroxide to the polyphosphoric acid for reaction, and concentrating the obtained reaction product under reduced pressure at 160-170° C. Adding hydrogen peroxide can further remove residual hypochlorite and organic matter in the polyphosphoric acid.
  • step S3 the mass ratio of the polyphosphoric acid to hydrogen peroxide is 1:(25-35).
  • the present invention also provides application of the polyphosphoric acid prepared by the method in preparing ammonium polyphosphate.
  • the present invention first concentrates the raffinate acid once to reduce the content of organic solvent in the raffinate acid.
  • the organic solvent is mainly the extractant residual in the front-end extraction process, such as MIBK.
  • the concentration process will evaporate and bring out part of the water.
  • the raffinate acid after the first concentration has a high MgO content and too large viscosity, so the subsequent process cannot be carried out.
  • MgO is converted into Mg 2+ , the viscosity of the material is reduced, and it is convenient for subsequent treatment; finally, it is heated to 160-170°C for reduced pressure concentration.
  • This process synthesizes polyphosphoric acid, and at the same time, the organic solvent content is further reduced, fluorine is volatilized as HF, and hypochlorous acid is decomposed, so that the TOC and fluorine content of the finished polyphosphoric acid reach the industrial grade standard, and the obtained polyphosphoric acid can be directly used as a synthetic raw material for ammonium polyphosphate, which meets the use requirements of flame retardant materials.
  • the present invention uses wet phosphoric acid raffinate acid as a raw material to produce polyphosphoric acid, breaking through the bottleneck restricting the development of phosphoric acid, and has a huge cost advantage.
  • a polyphosphoric acid is prepared by using wet phosphoric acid raffinate, and the specific process is as follows:
  • the raffinate acid (main chemical components: 35.12wt% P2O5 , 3.5wt% Mg, 0.39wt% Fe, 0.30wt% Al, 0.82wt% F, 400ppm organic solvent) from the front-end wet phosphoric acid extraction process is sent to a shell-and-tube heat exchanger through a primary concentration tower via a graphite circulating axial flow pump, and the raffinate acid is heated to 90°C by a heat exchange medium.
  • the vacuum degree during the concentration process is controlled to be 18-21kPa, and the acid is concentrated to a P2O5 content of 46wt%.
  • the organic solvent concentration is measured to be 189.5ppm, thereby obtaining a primary concentrated solution;
  • step (3) The reaction liquid in step (2) is pumped into a secondary concentrated graphite bubble tower and heated to 165°C for reaction, and the vacuum degree in the tower is controlled to be 18-21 kPa.
  • the obtained polyphosphoric acid is sent to a polyphosphoric acid tank through a pipeline to obtain a polyphosphoric acid product with an organic matter content of 10 ppm, a P2O5 content of 68.8 wt%, and a F content of 55 ppm.
  • a polyphosphoric acid is prepared by using wet phosphoric acid raffinate, and the specific process is as follows:
  • a polyphosphoric acid is prepared by using wet phosphoric acid raffinate, and the specific process is as follows:
  • the raffinate acid (main chemical components: 35.12wt% P2O5 , 3.5wt% Mg, 0.39wt% Fe, 0.30wt% Al, 0.82wt% F, 400ppm organic solvent) from the front-end wet phosphoric acid extraction process is sent to a shell-and-tube heat exchanger through a primary concentration tower via a graphite circulating axial flow pump, and the raffinate acid is heated to 85°C by a heat exchange medium.
  • the vacuum degree during the concentration process is controlled to be 18-21kPa, and the acid is concentrated to a P2O5 content of 46.5wt%.
  • the organic solvent concentration is measured to be 185ppm, thereby obtaining a primary concentrated solution;
  • step (3) The reaction liquid of step (2) is pumped into a secondary concentrated graphite bubble tower and heated to 170°C for reaction, and the vacuum degree in the tower is controlled to be 18-21 kPa.
  • the obtained polyphosphoric acid is sent to a polyphosphoric acid tank through a pipeline to obtain a polyphosphoric acid product with an organic matter content of 12 ppm and a P2O5 content of 68.1 wt %.
  • a polyphosphoric acid is prepared by using wet phosphoric acid raffinate, and the specific process is as follows:
  • the raffinate acid (main chemical components: 35.12wt% P2O5 , 3.5wt% Mg, 0.39wt% Fe, 0.30wt% Al, 0.82wt% F, 400ppm organic solvent) from the front-end wet phosphoric acid extraction process is sent to a shell-and-tube heat exchanger through a primary concentration tower via a graphite circulating axial flow pump, and the raffinate acid is heated to 90°C by a heat exchange medium.
  • the vacuum degree of the concentration process is controlled at 18-21kPa, and the acid is concentrated to a P2O5 content of 49.5wt%.
  • the organic solvent concentration is measured to be 35ppm, thereby obtaining a primary concentrated solution;
  • step (3) The reaction liquid of step (2) is pumped into a secondary concentrated graphite bubble tower and heated to 160°C for reaction, and the vacuum degree in the tower is controlled to be 18-21 kPa.
  • the obtained polyphosphoric acid is sent to a polyphosphoric acid tank through a pipeline to obtain a polyphosphoric acid product with an organic matter content of 11 ppm and a P2O5 content of 68.5 wt%.

Abstract

本发明提供一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用,将湿法磷酸萃取后的萃余酸在85-90℃下进行减压浓缩,得到一级浓缩液,向一级浓缩液中通入氯气进行反应,得到反应后液,反应后液在160-170℃下进行减压浓缩,即得多聚磷酸。本发明首先对萃余酸进行一次浓缩,降低萃余酸中有机溶剂的含量,该浓缩过程会蒸发带出部分水,通过向溶液中通入氯气生成盐酸和次氯酸,降低物料粘度,最后加热进行减压浓缩合成得到多聚磷酸,成品多聚磷酸的TOC和氟含量达到工业级标准,能够直接作为聚磷酸铵的合成原料,符合阻燃材料的使用要求,本发明将湿法磷酸萃余酸作为原料生产多聚磷酸突破了制约磷酸发展的瓶颈,具有巨大的成本优势。

Description

一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用 技术领域
本发明属于湿法磷酸技术领域,具体涉及一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用。
背景技术
用硫酸、硝酸或盐酸分解磷矿制得的磷酸统称为湿法磷酸,由于热法磷酸生产成本高,而且能耗高,在当前世界各国节约能源、减少碳排放量的要求下,采用湿法工艺代替热法磷酸是大势和潮流。萃取法是净化湿法磷酸时普遍使用的方法,磷酸净化率一般在65%左右,萃取过程中产生的萃余酸含有较高浓度的P2O5和杂质,如何高效利用萃余酸一直都是磷化工领域的技术难题。近几年来中国肥料市场的饱和与新兴的新能源行业的兴起,净化磷酸需求量将会更大,而生产1吨净化磷酸会产生0.5吨的渣酸,进而限制了磷酸的产量。
据分析,萃余酸P2O5含量一般为35%-42%,而用作扑灭森林和山火灾等阻燃材料的聚磷酸铵需要P2O5含量一般为30%-37%,含氮量为11%-16%,所以理论上萃余酸可用来制备聚磷酸铵产品。但由于萃余酸与湿法磷酸的物性差异较大,其杂质含量发生了变化,特别是萃余酸中含有大量的MgO,使得溶液黏度非常大,为萃余酸的后续处理带来较大阻碍。此外,萃余酸中氟含量较高,使其难以作为阻燃材料。因此,亟需研究一种处理萃余酸的工艺使其衍生产品适用于聚磷酸铵的合成与应用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用。
根据本发明的一个方面,提出了一种湿法磷酸萃余酸制备多聚磷酸的方法,包括以下步骤:
S1:将湿法磷酸萃取后的萃余酸在85-90℃下进行减压浓缩,得到一级浓缩液;
S2:向所述一级浓缩液中通入氯气进行反应,得到反应后液;
S3:将所述反应后液在160-170℃下进行减压浓缩,即得多聚磷酸。
在本发明的一些实施方式中,步骤S1中,所述减压浓缩的真空度为18-21kPa。真空度的高低主要影响浓缩程度,高真空度有利于达到目标酸浓度,但真空度过高会增加成本及损坏设备,本发明将真空度控制在18-21kPa能够达到很好的浓缩效果,且不损坏设备。
在本发明的一些实施方式中,步骤S1中,所述一级浓缩液中有机溶剂的含量低于200ppm,酸浓度P2O5含量为46wt%-50wt%。优选的,所述一级浓缩液中有机溶剂的含量低于50ppm。
在本发明的一些实施方式中,步骤S2中,所述反应的温度为70-80℃。
在本发明的一些实施方式中,步骤S2中,所述氯气的通入量为所述一级浓缩液体积的2-4倍。氯气通入量控制在一级浓缩液体积的2-4倍,能够保证MgO充分转化为Mg2+,浓缩液从高粘稠态变成流动性好的液体,有利于一级浓缩后的萃余酸进入二级浓缩设备以合成多聚磷酸。
在本发明的一些实施方式中,步骤S3中,所述减压浓缩的真空度为18-21kPa。
在本发明的一些实施方式中,步骤S3中,所述多聚磷酸中有机溶剂的含量≤10ppm,P2O5含量≥68wt%。进一步地,所述多聚磷酸中氟的含量为50-60ppm。
在本发明的一些实施方式中,步骤S3中,还包括:向所述多聚磷酸加入双氧水反应,所得反应产物在160-170℃下进行减压浓缩。加入双氧水能进一步除去多聚磷酸中残留的次氯酸根和有机物。
在本发明的一些实施方式中,步骤S3中,所述多聚磷酸和双氧水的质量比为1:(25-35)。
本发明还提供所述的方法制得的所述多聚磷酸在制备聚磷酸铵中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明首先对萃余酸进行一次浓缩,降低萃余酸中有机溶剂的含量,该有机溶剂主要为前端萃取工艺残留的萃取剂,如MIBK,此外该浓缩过程会蒸发带出部分水,经一次浓缩后的萃余酸由于MgO含量高,粘度过大,后续工序无法进行,通过向溶液中通入氯气生成盐酸和次氯酸,将MgO转化为Mg2+,降低物料粘度,便于后续处理;最后加热至160-170℃进行减压浓缩,此过程合成得到多聚磷酸,同时有机溶剂含量进一步降低,氟以HF挥发,次氯酸分解,使得成品多聚磷酸的TOC和氟含量达到工业级标准,所制得的多聚磷酸能够直接作为聚磷酸铵的合成原料,符合阻燃材料的使用要求。本发明将湿法磷酸萃余酸作为原料生产多聚磷酸突破了制约磷酸发展的瓶颈,具有巨大的成本优势。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例利用湿法磷酸萃余酸制备一种多聚磷酸,具体过程为:
(1)将来自前端湿法磷酸萃取工序的萃余酸(主要化学成分:35.12wt%P2O5、3.5wt%Mg、0.39wt%Fe、0.30wt%Al、0.82wt%F、有机溶剂400ppm)通过一级浓缩塔经石墨循环轴流泵送入列管换热器中,通过热交换介质将萃余酸加热至90℃,浓缩过程控制真空度为18-21kPa,浓缩至P2O5含量为46wt%,此时测得有机溶剂浓度为189.5ppm,得到一级浓缩液;
(2)将一级浓缩液送入带有搅拌的萃余酸槽中,控制搅拌器的转速为80r/min,通入一定量的氯气进行反应,通入量是一级浓缩液体积的3倍,得到反应后液;
(3)将步骤(2)反应后液经泵送入二级浓缩石墨泡罩塔中加热至165℃进行反应,并控制塔内真空度为18-21kPa,将得到的多聚磷酸通过管道送至多聚磷酸槽中,得到多聚磷酸成品,其有机物含量为10ppm,P2O5含量为68.8wt%,F含量为55ppm。
实施例2
本实施例利用湿法磷酸萃余酸制备一种多聚磷酸,具体过程为:
(1)与实施例1的步骤(1)相同;
(2)与实施例1的步骤(2)相同;
(3)与实施例1的步骤(3)相同;
(4)向多聚磷酸槽中加入双氧水反应,多聚磷酸和双氧水的质量比为1:30,进一步脱出多聚磷酸中残留的次氯酸根和有机物,再将所得反应产物在170℃下、真空度为18-21kPa下进行减压浓缩,浓缩至与加入双氧水前的多聚磷酸体积相同,得到多聚磷酸成品,其有机物含量为6ppm,P2O5含量为68.5wt%,F含量为51ppm。
实施例3
本实施例利用湿法磷酸萃余酸制备一种多聚磷酸,具体过程为:
(1)将来自前端湿法磷酸萃取工序的萃余酸(主要化学成分:35.12wt%P2O5、3.5wt%Mg、0.39wt%Fe、0.30wt%Al、0.82wt%F、有机溶剂400ppm)通过一级浓缩塔经石墨循环轴流泵送入列管换热器中,通过热交换介质将萃余酸加热至85℃,浓缩过程控制真空度为18-21kPa,浓缩至P2O5含量为46.5wt%,此时测得有机溶剂浓度为185ppm,得到一级浓缩液;
(2)将一级浓缩液送入带有搅拌的萃余酸槽中,控制搅拌器的转速为85r/min,通入一定量的氯气进行反应,通入量是一级浓缩液体积的2倍,得到反应后液;
(3)将步骤(2)反应后液经泵送入二级浓缩石墨泡罩塔中加热至170℃进行反应,并控制塔内真空度为18-21kPa,将得到的多聚磷酸通过管道送至多聚磷酸槽中,得到多聚磷酸成品,其有机物含量为12ppm,P2O5含量为68.1wt%。
实施例4
本实施例利用湿法磷酸萃余酸制备一种多聚磷酸,具体过程为:
(1)将来自前端湿法磷酸萃取工序的萃余酸(主要化学成分:35.12wt%P2O5、3.5wt%Mg、0.39wt%Fe、0.30wt%Al、0.82wt%F、有机溶剂400ppm)通过一级浓缩塔经石墨循环轴流泵送入列管换热器中,通过热交换介质将萃余酸加热至90℃,浓缩过程控制真空度为18-21kPa,浓缩至P2O5含量为49.5wt%,此时测得有机溶剂浓度为35ppm,得到一级浓缩液;
(2)将一级浓缩液送入带有搅拌的萃余酸槽中,控制搅拌器的转速为80r/min,通入一定量的氯气进行反应,通入量是一级浓缩液体积的4倍,得到反应后液;
(3)将步骤(2)反应后液经泵送入二级浓缩石墨泡罩塔中加热至160℃进行反应,并控制塔内真空度为18-21kPa,将得到的多聚磷酸通过管道送至多聚磷酸槽中,得到多聚磷酸成品,其有机物含量为11ppm,P2O5含量为68.5wt%。
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种湿法磷酸萃余酸制备多聚磷酸的方法,其特征在于,包括以下步骤:
    S1:将湿法磷酸萃取后的萃余酸在85-90℃下进行减压浓缩,得到一级浓缩液;
    S2:向所述一级浓缩液中通入氯气进行反应,得到反应后液;
    S3:将所述反应后液在160-170℃下进行减压浓缩,即得多聚磷酸。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述减压浓缩的真空度为18-21kPa。
  3. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述一级浓缩液中有机溶剂的含量低于200ppm,酸浓度P2O5含量为46wt%-50wt%。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述反应的温度为70-80℃。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述氯气的通入量为所述一级浓缩液体积的2-4倍。
  6. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述减压浓缩的真空度为18-21kPa。
  7. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述多聚磷酸中有机溶剂的含量≤10ppm,P2O5含量≥68wt%。
  8. 根据权利要求1所述的方法,其特征在于,步骤S3中,还包括:向所述多聚磷酸加入双氧水反应,所得反应产物在160-170℃下进行减压浓缩。
  9. 根据权利要求8所述的方法,其特征在于,步骤S3中,所述多聚磷酸和双氧水的质量比为1:(25-35)。
  10. 如权利要求1-9任一项所述的方法制得的所述多聚磷酸在制备聚磷酸铵中的应用。
PCT/CN2023/083665 2022-09-27 2023-03-24 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用 WO2024066249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211179218.9A CN115432679B (zh) 2022-09-27 2022-09-27 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用
CN202211179218.9 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066249A1 true WO2024066249A1 (zh) 2024-04-04

Family

ID=84248941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083665 WO2024066249A1 (zh) 2022-09-27 2023-03-24 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用

Country Status (2)

Country Link
CN (1) CN115432679B (zh)
WO (1) WO2024066249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432679B (zh) * 2022-09-27 2023-10-17 宜昌邦普宜化新材料有限公司 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230690A (ja) * 1986-03-20 1987-10-09 アメリカン・ペトロ・マ−ト・インコ−ポレイテツド 商業用等級のリン酸から製造された安定なポリリン酸アンモニウム液体肥料
CN101269805A (zh) * 2008-05-07 2008-09-24 瓮福(集团)有限责任公司 一种多聚磷酸的生产方法
CN103373717A (zh) * 2012-04-23 2013-10-30 防城港博森化工有限公司 一种低聚合度聚磷酸铵水溶液的制备方法
CN103832986A (zh) * 2014-02-08 2014-06-04 绵阳启明星磷化工有限公司 一种制备多聚磷酸的方法
CN107089649A (zh) * 2016-02-18 2017-08-25 姚鼎文 盐酸分解中低品位磷矿制造多聚磷酸和聚磷酸铵的方法
CN114031057A (zh) * 2021-12-17 2022-02-11 四川大学 湿法磷酸生产工业磷酸及联产聚磷酸铵或固体磷酸的方法
CN115432679A (zh) * 2022-09-27 2022-12-06 宜昌邦普宜化新材料有限公司 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770410A (en) * 1971-09-10 1973-11-06 Occidental Petroleum Corp Production of potassium polyphosphates from phosphate acid sludges
JP3845901B2 (ja) * 1996-06-07 2006-11-15 東ソー株式会社 燐酸液中の有機物を分解除去する方法
JP4362976B2 (ja) * 1998-12-28 2009-11-11 東洋紡績株式会社 リン酸の精製方法および高純度ポリリン酸
JP3882547B2 (ja) * 2001-08-01 2007-02-21 セイコーエプソン株式会社 4−フタロニトリル誘導体の製造方法
CN101817514B (zh) * 2010-04-30 2012-02-01 四川川恒化工股份有限公司 磷酸的净化方法
US9611217B2 (en) * 2015-05-06 2017-04-04 Chemwerth, Inc. Synthetic processes of carprofen
CN107879321B (zh) * 2017-11-13 2020-12-22 贵阳开磷化肥有限公司 一种磷矿脱镁并联产氟硅酸钠和硫酸镁的方法
CN110759324B (zh) * 2019-11-07 2023-03-21 中化重庆涪陵化工有限公司 一种利用磷酸与尿素生产聚磷酸铵的方法
CN111086977B (zh) * 2019-12-31 2021-07-06 贵州新东浩化工材料科技有限公司 一种利用萃余酸制备mcp、mdcp的方法
CN111268659A (zh) * 2020-03-18 2020-06-12 四川大学 湿法磷酸萃取液的电解还原再生方法及湿法磷酸萃取工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230690A (ja) * 1986-03-20 1987-10-09 アメリカン・ペトロ・マ−ト・インコ−ポレイテツド 商業用等級のリン酸から製造された安定なポリリン酸アンモニウム液体肥料
CN101269805A (zh) * 2008-05-07 2008-09-24 瓮福(集团)有限责任公司 一种多聚磷酸的生产方法
CN103373717A (zh) * 2012-04-23 2013-10-30 防城港博森化工有限公司 一种低聚合度聚磷酸铵水溶液的制备方法
CN103832986A (zh) * 2014-02-08 2014-06-04 绵阳启明星磷化工有限公司 一种制备多聚磷酸的方法
CN107089649A (zh) * 2016-02-18 2017-08-25 姚鼎文 盐酸分解中低品位磷矿制造多聚磷酸和聚磷酸铵的方法
CN114031057A (zh) * 2021-12-17 2022-02-11 四川大学 湿法磷酸生产工业磷酸及联产聚磷酸铵或固体磷酸的方法
CN115432679A (zh) * 2022-09-27 2022-12-06 宜昌邦普宜化新材料有限公司 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用

Also Published As

Publication number Publication date
CN115432679A (zh) 2022-12-06
CN115432679B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2024066249A1 (zh) 一种湿法磷酸萃余酸制备多聚磷酸的方法及其应用
CN114031056B (zh) 一种聚合磷酸盐制备五氟化磷的方法
CN114906829B (zh) 一种采用农业级湿法磷酸制备电池级磷酸铁的方法
CN103991882A (zh) 利用湿法磷酸液相中的氟制备氟化钾的方法
CN103373717B (zh) 一种低聚合度聚磷酸铵水溶液的制备方法
CN112320803B (zh) 一种利用磷酸中氟硅酸生产固体氟硅酸铵的方法
CN110642282A (zh) 一种利用二氧化碳制备氟化钙与碳酸氢钾的方法
CN114572948A (zh) 一种降低磷酸铁生产原料磷铵中杂质金属含量的方法
CN102515134B (zh) 食品级磷酸的盐酸法生产工艺
CN101531353B (zh) 一种用黄磷直接制取电子级磷酸的方法
US3367738A (en) Process for purifying wet process phosphoric acid with ethyl ether
CN107265486B (zh) 利用含锂铝质岩制备碳酸锂的方法
CN108383097A (zh) 一种利用萃取湿法磷酸生产水溶性多聚磷酸铵的方法
CN116654954A (zh) 一种氟化钠的制备方法
CN101734634A (zh) 一种生产磷酸二氢钾的方法
CN106629644A (zh) 一种用化肥级磷酸一铵生产工业一级及电池级磷酸一铵的方法
CN103466583A (zh) 一种磷铁氧化渣制取磷酸铁的方法
CN111252750A (zh) 由磷铝矿渣制备磷酸铁和氧化铝的方法
CN113955733B (zh) 一种利用含铁废盐酸制备磷酸铁的方法
CN116254547A (zh) 一种三氟化氮的制备方法
CN115403019A (zh) 一种磷酸铁的制备方法
CN111960393A (zh) 一种无黄烟的硝酸的制备方法
CN106673017A (zh) 一种硫磺还原废硫酸制备亚硫酸钠的环保生产方法
CN113830745A (zh) O,o’-二甲基硫代磷酰氯浓缩母液的处理方法
CN113149082A (zh) 一种利用废酸生产高纯硫酸亚铁水和七水硫酸亚铁的方法