WO2024058384A1 - 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 - Google Patents

폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 Download PDF

Info

Publication number
WO2024058384A1
WO2024058384A1 PCT/KR2023/009651 KR2023009651W WO2024058384A1 WO 2024058384 A1 WO2024058384 A1 WO 2024058384A1 KR 2023009651 W KR2023009651 W KR 2023009651W WO 2024058384 A1 WO2024058384 A1 WO 2024058384A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
weight
resin composition
silica
terephthalate resin
Prior art date
Application number
PCT/KR2023/009651
Other languages
English (en)
French (fr)
Inventor
이지현
박원석
권태훈
박재찬
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230087762A external-priority patent/KR20240038576A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP23844057.2A priority Critical patent/EP4365226A1/en
Priority to CN202380012303.2A priority patent/CN118055970A/zh
Publication of WO2024058384A1 publication Critical patent/WO2024058384A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition, a manufacturing method thereof, and a molded article manufactured therefrom, and more specifically, to polybutylene terephthalate that does not contain a halogen-based flame retardant and has an excellent balance of mechanical properties and flame retardancy. It relates to a resin composition, a manufacturing method thereof, and a molded article manufactured therefrom.
  • polyester resin is widely used as a material for automobile parts, and is evaluated as having the potential to replace aluminum or steel. Accordingly, among polyester resins as automotive parts materials, polybutylene terephthalate resin has excellent high rigidity and heat resistance, and research is being actively conducted to apply it to various automobile parts.
  • Metal salt phosphorus-based flame retardants are mainly used as non-halogen-based flame retardants used in polybutylene terephthalate resin composite materials. However, it is difficult to achieve the same level of mechanical rigidity and flame retardancy compared to using halogen-based flame retardants, so non-halogen-based flame retardants are used. There is a need to develop a polybutylene terephthalate resin composition that contains a flame retardant and has excellent mechanical rigidity and flame retardancy.
  • the purpose of the present invention is to provide a polybutylene terephthalate resin composition and a manufacturing method thereof that achieve a balance of physical properties of mechanical strength and flame retardancy at a level suitable for automobile parts materials.
  • the present invention aims to provide a molded article manufactured from the polybutylene terephthalate resin composition.
  • the present invention includes I) polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent, and satisfies the following equation 1: A polybutylene terephthalate resin composition is provided.
  • Equation 1 a is the tensile strength (MPa) of the polybutylene terephthalate resin composition measured by ISO 527, and b is the ISO tensile strength (MPa) of the polybutylene terephthalate resin composition for a load of 2.16 kg at 265°C. This is the flow index (g/10min) measured using 1133.)
  • the silica-containing reinforcing agent may contain 50% by weight or more of silica in the reinforcing agent, for example, 50 to 70% by weight, and preferably 50 to 65% by weight, , more preferably 50 to 60% by weight.
  • the content may mean weight percent based on a total of 100 weight percent of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcement, and if necessary, melamine cyanurate, polyethylene , means a weight percent based on a total of 100 weight percent, including one or more selected from among processability improvers and heat resistance additives.
  • the polybutylene terephthalate is 15 to 65% by weight based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent. included within its scope;
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive, and the polybutylene terephthalate has a processability effect on polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent. It may be included in the range of 15 to 65% by weight based on a total of 100% by weight of the improver and heat resistance additive.
  • the polybutylene terephthalate may have an intrinsic viscosity ( ⁇ ) of 0.5 to 1.25 dl/g as measured according to ASTM D2857.
  • the silica-containing reinforcing agent is polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent in the range of 10 to 50% by weight based on a total of 100% by weight.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the silica-containing reinforcement is polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement, a processability improver, and It may be included in the range of 10 to 50% by weight out of the total 100% by weight of heat resistance additives.
  • the aluminum salt of diethylphosphinic acid is present in an amount of 5 to 5% based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent. Contained within the range of 35% by weight;
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the aluminum salt of diethylphosphinic acid is polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement agent. It may be included in the range of 5 to 35% by weight based on a total of 100% by weight of the processability improver and heat resistance additive.
  • the melamine polyphosphate is in the range of 0.1 to 10% by weight based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the melamine polyphosphate includes polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement, a processability improver, and It may be included in the range of 0.1 to 10 wt% of the total 100 wt% of heat resistance additives.
  • the resin composition contains melamine cyanurate, and this melamine cyanurate is mixed with polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive, and a processability improver and heat resistance additive to polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, a silica-containing reinforcing agent, and melamine cyanurate. It may be included in the range of 0.1 to 10 wt% of the total 100 wt% of additives.
  • the resin composition comprises a workability improving agent, which combines the workability improvement in the polybutylene terephthalate, the aluminum salt of the diethylphosphine, the melamine polyphosphate, and the silica -containing reinforcement agent. It may be included in the range of 0.001 to 3% by weight out of 100% by weight.
  • the present invention includes the step of kneading and extruding XII) polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent, and satisfies the following equation 1: A method for producing a polybutylene terephthalate resin composition is provided.
  • Equation 1 a is the tensile strength (MPa) of the polybutylene terephthalate resin composition measured by ISO 527, and b is the ISO tensile strength (MPa) of the polybutylene terephthalate resin composition for a load of 2.16 kg at 265°C. This is the flow index (g/10min) measured using 1133.)
  • the present invention includes a molded article characterized by XIII) comprising the above-described polybutylene terephthalate resin composition.
  • the molded product may be an automobile electrical component.
  • the polybutylene terephthalate resin composition according to the present invention provides an excellent physical property balance between mechanical strength and flame retardancy at a level equivalent to or higher than that of a polyester resin composite material containing a halogen-based flame retardant, and has excellent flowability and excellent processability.
  • it can be provided as a material for automotive electrical components.
  • the molded article manufactured with the polybutylene terephthalate resin composition according to the present invention has the effect of realizing a high level of physical property balance between mechanical properties such as tensile strength and flame retardancy.
  • the polybutylene terephthalate resin composition according to the present invention and molded products manufactured therefrom can be widely applied in the field of automobile parts that require it.
  • the present inventors confirmed that it was possible to achieve a balance of mechanical strength and flame retardancy at a level suitable for automobile parts materials by controlling the type and content of the non-halogen-based flame retardant, and completed the present invention.
  • the polybutylene terephthalate resin composition according to the present invention includes polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition has a tensile strength (MPa) measured by ISO 527, and b is a flow index (g/10min) measured using ISO 1133 for a load of 2.16 kg at 265°C.
  • a/b may satisfy the range of, for example, 7.76 to 45, specifically 7.76 to 40, and preferably 7.77 to 40. If the above-mentioned range is satisfied, a balance of physical properties of rigidity, flame retardancy, and processability can be provided.
  • a may be 130 or more, or 130 to 165, and b may be 4 to 20, or 4 to 18.
  • polybutylene terephthalate obtained by condensation polymerization by directly esterifying or transesterifying 1,4-butanediol and terephthalic acid or dimethyl terephthalate is used. You can.
  • polybutylene terephthalate such as polytetramethylene glycol, polyethylene glycol, polypropylene glycol, aliphatic polyester, aliphatic polyamide, etc.
  • a copolymer copolymerized with an impact improving compound, or a modified polybutylene terephthalate mixed with the impact improving compound may be used as the polybutylene terephthalate.
  • the intrinsic viscosity ⁇ of polybutylene terephthalate measured according to ASTM D2857 is, for example, 0.5 to 1.25 dl/g, preferably 0.5 to 1.25 dl/g, more preferably 0.52 to 1. It is dl/g.
  • a polybutylene terephthalate resin composition with excellent balance between mechanical properties and moldability can be secured.
  • the polybutylene terephthalate is 15 to 65% by weight, 25% based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive, and the polybutylene terephthalate has a processability effect on polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent. 15 to 65% by weight, 25 to 58% by weight, preferably 40 to 58% by weight, more preferably 40 to 55% by weight, even more preferably 45 to 55% by weight, based on a total of 100% by weight of the improver and heat resistance additive. It may be included within the weight percent range. When the polybutylene terephthalate is included in the above range, a polybutylene terephthalate resin composition with excellent physical property balance of processability, specific gravity, and mechanical properties can be provided.
  • the reinforcing agent may be glass fiber, for example, and the reinforcing agent may be used together with other inorganic fibers.
  • the inorganic fiber may be, for example, one or more selected from natural fibers such as carbon fiber, basalt fiber, sheep hemp, or hemp.
  • the cross-section of the reinforcing agent may have a shape such as a circular, rectangular, oval, dumbbell, or diamond shape, and the average diameter is 8 to 20 ⁇ m, or 10 to 15 ⁇ m, and the average length is 2 to 15 ⁇ m. It may be 6 mm, or 2 to 4 mm.
  • the average diameter and average length of the reinforcing agent can be measured by methods commonly used in this technical field.
  • the reinforcer can be observed with a scanning electron microscope (SEM), and the average diameter and average length of 10 to 30 strands can be measured from this.
  • the reinforcing agent may be treated with sizing compositions during fiber manufacturing or post-treatment.
  • the sizing agents include processing improvers, coupling agents, surfactants, etc.
  • the processing improver is mainly used to form good strands, and the coupling agent enables good adhesion between the reinforcing agent and the polybutylene terephthalate resin, and is appropriate considering the types of polybutylene terephthalate resin and the reinforcing agent. When appropriately selected and used, excellent physical properties can be imparted to the polybutylene terephthalate resin composition.
  • Methods of using the coupling agent include directly treating the reinforcing agent and adding it to an organic matrix. In order to fully demonstrate the performance of the coupling agent, its content must be appropriately selected.
  • Examples of the coupling agent include amine-based, acrylic-based and ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-(beta-aminoethyl) ⁇ -aminopropyltriethoxysilane, and ⁇ -methacryl.
  • silane systems such as oxypropyl triethoxysilane, ⁇ -glycidoxypropyl trimethoxysilane, and ⁇ (3,4-epoxyethyl) ⁇ -aminopropyl trimethoxysilane.
  • the reinforcing agent of the present substrate contains silica because it can provide rigidity and mechanical properties.
  • the silica may be included in the reinforcing agent in an amount of 50% by weight or more, specifically 50 to 70% by weight, preferably 50 to 65% by weight, and more preferably 50 to 60% by weight. If the above-mentioned range is satisfied, excellent balance of rigidity and mechanical properties can be provided.
  • the silica content in the reinforcing agent can be measured or confirmed using XRF (X-Ray Fluorescence spectrometry).
  • the silica-containing reinforcing agent is 10 to 50% by weight, preferably, based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the silica-containing reinforcement is polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement, a processability improver, and It may be included in a range of 10 to 50% by weight, preferably 15 to 50% by weight, and more preferably 20 to 50% by weight, based on a total of 100% by weight of the heat resistance additive.
  • the non-halogen-based flame retardant according to the present invention may include an aluminum salt of diethylphosphinic acid and melamine polyphosphate, and not only provides a flame retardant effect during pressure injection processing of the polybutylene terephthalate resin composition, but also provides a flame retardant effect during pressure injection processing of the polybutylene terephthalate resin composition. Even when stored for a long time, the terephthalate resin composition can provide sufficient flame retardant effect.
  • the aluminum salt of diethylphosphinic acid can improve the flame retardancy of the composition by forming char on the surface of the polymer.
  • a commercially available product as the aluminum salt of diethylphosphinic acid can be used.
  • the aluminum salt of diethylphosphinic acid is, for example, 5 to 35% by weight, 10 to 30% by weight based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • specific examples include 10 to 25% by weight, preferably 10 to 20% by weight;
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the aluminum salt of diethylphosphinic acid is polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement agent.
  • the flame retardancy of the composition can be improved by forming char on the polymer surface.
  • the melamine polyphosphate When used simultaneously with the aluminum salt of diethylphosphinic acid, it can form char on the surface of the polymer together with the aluminum salt of diethylphosphinic acid, thereby improving the effect of protecting against combustion.
  • a commercially available product as the melamine polyphosphate may be used.
  • the melamine polyphosphate is, for example, 0.1 to 10% by weight, specifically 0.1 to 5% by weight, preferably 0.1 to 5% by weight, based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive
  • the melamine polyphosphate includes polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcement, a processability improver, and Among the total 100% by weight of heat resistance additives, for example, 0.1 to 10% by weight, specifically 0.1 to 5% by weight, preferably 1 to 5% by weight, more preferably 2 to 4% by weight; You can. If the above-mentioned range is satisfied, char can be sufficiently formed on the polymer surface to improve the flame retardancy of the composition.
  • it may contain melamine cyanurate, and in this case, flame retardancy can be improved by generating an inert gas.
  • the melamine cyanurate is, for example, polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcing agent and melamine cyanurate in an amount of 0.1 to 10% by weight, specific examples, 0.1 to 10% by weight based on a total of 100% by weight of melamine cyanurate.
  • the polybutylene terephthalate resin composition includes a processability improver and a heat resistance additive, and a processability improver and heat resistance additive to polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, a silica-containing reinforcing agent, and melamine cyanurate.
  • the additives may be included in a range of 0.1 to 10% by weight, specifically 0.1 to 4.5% by weight, preferably 0.1 to 3.5% by weight, more preferably 1 to 3.5% by weight, based on the total 100% by weight of the additives. there is.
  • the processability improver according to the present invention may be an olefin-based wax, and serves to maintain excellent release properties and injection properties in the polybutylene terephthalate resin composition.
  • the olefin-based wax is a polymer with a low melt viscosity and may be an oily solid with slipperiness and plasticity.
  • it may be one or more types selected from polyethylene wax and polypropylene wax, and commercially available products may be used.
  • the processability improver may use polyethylene, and as a specific example, the drop point is 100 to 120°C, the melting point (mp) is 95 to 115°C, and the density (23°C) is 0.9 to 1.0 g/ cm3, and polyethylene with an absolute viscosity (120°C) of 350 to 450 mm2/s can be used. In this case, release properties and injection properties can be effectively provided.
  • the drop point is expressed as the lowest temperature at which the lubricant changes to a liquid phase due to a rise in temperature according to the test method according to ASTM D566 and KS M 2033. More specifically, the drop point is expressed as the lowest temperature at which the lubricant changes to the liquid phase by increasing temperature. It can be expressed by measuring the temperature when grease is added and heated under the conditions specified above.
  • the melting point can be measured using a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 2920) manufactured by TA.
  • DSC Differential Scanning Calorimeter 2920
  • the melting point is determined by bringing the DSC to equilibrium at a temperature of 0°C, then increasing it by 20°C per minute to raise it to 180°C, then decreasing it by 20°C per minute to -60°C, and then increasing it by 10°C per minute. It can be measured by increasing the temperature to 180°C.
  • the melting point is obtained by taking the area at the top of the endothermic curve during the second temperature rise.
  • density can be measured according to the measurement method of ASTM D1505, for example.
  • absolute viscosity can be measured using an absolute viscometer from Brookfield.
  • absolute viscosity can be measured by the method of ASTM D1986-14 using Brookfield's absolute viscometer LVT 230.
  • the processability improver has a temperature of 105 to 115°C, a melting point (mp) of 100 to 110°C, a density (23°C) of 0.95 to 1.0 g/cm3, and an absolute viscosity (120°C) of 380 to 420 mm2/ s polyethylene can be used.
  • the processability improver has a temperature of 108 to 112°C, a melting point (mp) of 102 to 106°C, a density (23°C) of 0.95 to 0.98 g/cm3, and an absolute viscosity (120°C) of 400 to 420 mm2/ s polyethylene wax can be used.
  • a commercially available product may be used as the processability improver.
  • products such as LC102N can be used.
  • the processability improver is, for example, 0.001 to 3% by weight based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcement and processability improver, preferably in the range of 0.05 to 3% by weight, more preferably in the range of 0.01 to 3% by weight, and most preferably in the range of 0.01 to 1% by weight;
  • the polybutylene terephthalate resin composition includes melamine cyanurate, polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, polyethylene, a silica-containing reinforcing agent, and a processability improver to melamine cyanurate.
  • the resin composition includes polyethylene, and the polyethylene is mixed with polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcing agent, and polyethylene in an amount of, for example, 0.001 to 3 weight% based on a total of 100% by weight.
  • the polybutylene terephthalate resin composition includes polyethylene, melamine cyanurate, and a heat resistance additive, and polyethylene to polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, polyethylene, and a silica-containing reinforcing agent. , for example, 0.001 to 3% by weight, preferably 0.05 to 3% by weight, more preferably 0.01 to 3% by weight, and most preferably 0.01 to 1% by weight, based on a total of 100% by weight of melamine cyanurate and heat resistance additives. Included within %; may be.
  • the heat resistance additive according to the present invention can provide an antioxidant effect to the polybutylene terephthalate resin composition at high temperatures during pressure injection processing.
  • the heat resistance additive may be selected from two or more types of hindered phenol-based compounds, phosphite-based compounds, and phosphonite-based compounds.
  • hindered phenolic compound examples include octadyl-3-(4-hydroxy-3,5-ditert-butylphenyl) propionate (Octadeeyl-3-(4-hydroxy-3,5-ditert-butylphenyl) propionate), tetrabis[methylene-3-(3,5-di-tert-butyl-4- hydroxyphenyl) propionate]methane), 1,3,5-tri-methyl-2,4,6,-tri(3,5-ditertibutyl-4-hydroxybenzyl)benzene(1,3,5-Tri- methyl-2,4,6-tris(3,5-di-tertbutyl-4-hydroxybenzyl)benzene), pentaerythritol tetrakis(3-(3,5-ditertbutyl-4-hydroxyphenyl) propionate (Pentaerythritol tetrakis(3-(3,5-ditertbutyl
  • phosphite-based compounds triphenyl phosphite, tris(monyl phenyl) phosphite, triisodecyl phosphite, and diphenyl isooctyl-phosphite ( diphenyl-isooctyl-phosphite), Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite), Tris(2, Tris(2,4-di-tert-butylphenyl) phosphite and the like are used, and tris(2,4-di-tert-butylphenyl) phosphite is preferably used.
  • a compound represented by the following formula (1) may be used.
  • R 1 or R 2 are each independently alkyl, aryl, alkylaryl, specific examples include C 1 -C 30 alkyl, C 6 -C 30 aryl, or alkylaryl, and Ar is phenyl, naphthyl, biphenyl. It is an aryl group such as , terphenyl, etc.
  • the heat resistance additive may be a mixture of a compound represented by the following formula (2) and a compound represented by the formula (3).
  • the density is 530 g/l or more, for example, 530 to 630 g/l, to provide an antioxidant effect at high temperatures. .
  • the density may be a value measured using methods and equipment commonly used in this technical field.
  • commercially available products can be used.
  • products such as B-225 can be used.
  • the heat resistance additive is, for example, 0.001 to 3 weight percent of the total 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent plus the heat resistance additive. %, preferably 0.05 to 2% by weight, more preferably 0.01 to 2% by weight, and even more preferably 0.1 to 2% by weight. If the above-mentioned range is satisfied, thermal stability can be provided during high temperature processing.
  • the heat resistance additive is preferably 0.001 to 3% by weight, based on a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcing agent, and melamine cyanurate plus heat resistance additives. It may be included in the range of 0.05 to 2% by weight, more preferably 0.01 to 2% by weight, and even more preferably 0.1 to 2% by weight.
  • the heat resistance additive is, for example, 0.001 to 3% by weight of a total of 100% by weight of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcing agent, melamine cyanurate, and heat resistance additives in polyethylene, Preferably, it may be included in the range of 0.05 to 2% by weight, more preferably in the range of 0.01 to 2% by weight, and even more preferably in the range of 0.1 to 2% by weight.
  • the polybutylene terephthalate resin composition according to the present invention includes polybutylene terephthalate, an aluminum salt of diethylphosphinic acid, melamine polyphosphate, and a silica-containing reinforcing agent, and the content of the polybutylene terephthalate is set to c.
  • the content of the silica-containing reinforcing agent is d
  • the correlation of 0.5d ⁇ c ⁇ 2d specifically the correlation of d ⁇ c ⁇ 2d, preferably the correlation of 1.3d ⁇ c ⁇ 1.8d is satisfied. You can. If the above-mentioned range is satisfied, excellent physical property balance between rigidity, mechanical properties, and flame retardancy can be provided.
  • content used in this description may refer to weight percent units, unless otherwise specified. Specifically, the content of c and d may be the weight percent contained in a total of 100 weight percent of polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, silica-containing reinforcing agent, processability improver, and heat resistance additive. there is.
  • c may be, for example, an integer of 35 to 58, preferably an integer of 40 to 58, more preferably an integer of 40 to 55, and even more preferably an integer of 45 to 50. If the above-mentioned range is satisfied, excellent physical property balance between rigidity, mechanical properties, and flame retardancy can be provided.
  • d may be, for example, an integer of 10 to 50, preferably an integer of 15 to 50, and more preferably an integer of 20 to 50. Satisfying the above-mentioned range can provide excellent physical property balance between rigidity, mechanical properties, and flame retardancy.
  • the polybutylene terephthalate resin composition contains 15 to 65% by weight of polybutylene terephthalate; 10 to 50% by weight of silica-containing reinforcing agent; 5 to 35% by weight of aluminum salt of diethylphosphinic acid; 0.1 to 10% by weight of melamine polyphosphate; 0 to 10% by weight of melamine cyanurate; 0.001 to 3% by weight of heat resistance additive; and 0.001 to 3% by weight of a processability improver.
  • the polybutylene terephthalate resin composition contains 35 to 58% by weight of polybutylene terephthalate; 15 to 50% by weight of silica-containing reinforcing agent; 10 to 25% by weight of aluminum salt of diethylphosphinic acid; 0.1 to 5% by weight of melamine polyphosphate; 0 to 4.5% by weight of melamine cyanurate; 0.001 to 3% by weight of heat resistance additive; and 0.001 to 3% by weight of a processability improver.
  • the polybutylene terephthalate resin composition includes 40 to 58% by weight of polybutylene terephthalate; 20 to 50% by weight of silica-containing reinforcing agent; 10 to 20% by weight of aluminum salt of diethylphosphinic acid; 1 to 5% by weight of melamine polyphosphate; 0.1 to 10% by weight of melamine cyanurate; 0.05 to 2% by weight of heat resistance additive; And a processability improver may be included in an amount of 0.05 to 3% by weight. Satisfying the above-mentioned range can provide excellent physical property balance between rigidity, mechanical properties, and flame retardancy.
  • the polybutylene terephthalate resin composition may include, for example, 0.01 to 5 parts by weight of one or more additives selected from UV stabilizers, pigments, and colorants, based on 100 parts by weight of the polybutylene terephthalate resin composition. , preferably 0.5 to 2 parts by weight, more preferably 1 to 2 parts by weight. Within the above range, the natural properties of the additive are expressed without affecting the physical properties of the resin composition.
  • the polybutylene terephthalate resin composition according to the present invention can be prepared by methods known in the art.
  • the polybutylene terephthalate resin composition can be manufactured in the form of pellets by melting and extruding a mixture of each component and other additives in an extruder, and the pellets can be used in injection and extrusion molded products. You can.
  • the pellets are extruded at a temperature of 240 to 280°C, and the temperature of the mold during injection is preferably in the range of 80 to 120°C. If the mold temperature is less than 80°C, the appearance characteristics may deteriorate, and if it exceeds 120°C, the pellets may stick to the mold, which may reduce release properties and increase the cooling rate.
  • the method for producing the polybutylene terephthalate resin composition of the present invention may include, for example, the steps of mixing and extruding polybutylene terephthalate, aluminum salt of diethylphosphinic acid, melamine polyphosphate, and silica-containing reinforcing agent. and, if necessary, may include the above-mentioned melanin cyanurate.
  • the screw rotation speed of the extruder may be, for example, 150 to 330 rpm, 150 to 300 rpm, or 200 to 250 rpm. The lower the value while satisfying the above-mentioned range, the improved rigidity and processability can be.
  • the hourly feed rate (F/R) of the polybutylene terephthalate resin composition fed into the extruder is 70 kg/hr or less, preferably 60 kg/hr or less, more preferably 50 kg/hr or less, even more preferably It is characterized by being 45 to 55 kg/hr, and in this case, it is possible to achieve physical property balance of rigidity, processability, and specific gravity.
  • a molded article manufactured from the above-described polybutylene terephthalate resin composition is provided.
  • the molded product may be an automobile electrical component.
  • the molded product may be an automobile connector as a specific example.
  • the molded article may have a tensile strength of 130 MPa or more, or 135 to 165 MPa, as measured according to ISO 527.
  • the molded article may have a flow index of 4 to 20 g/10 min, or 4 to 18 g/min, as measured under a load of 2.16 kg at 265°C according to ISO 1133.
  • the molded product may have a flame resistance (Burning time/5 units) of 50 seconds or less for a 0.8 mm specimen measured in accordance with UL 94.
  • each component used to prepare the polybutylene terephthalate resin composition is as follows.
  • (B) Silica-containing reinforcing agent Glass fiber with an average diameter of 10 ⁇ m and an average length of 3mm.
  • the mixture was supplied at 50 kg/hr, and the screw rotation speed of the extruder was 250 rpm. At this time, it was extruded at a temperature of 250°C using a twin-screw extruder with a screw diameter of 45 mm, and this extrudate was manufactured in the form of pellets.
  • the manufactured pellets were dried at 100°C for more than 4 hours and then injected at a temperature of 80°C to prepare specimens measuring 2.5 mm x 50 mm x 90 mm.
  • the physical properties of the manufactured specimens were measured in the following manner and are shown in Table 1 below.
  • Examples 1 to 3 which include all the components according to the present invention, have a flow index of 4 to 18 g/10 min, a tensile strength of 135 to 160 MPa, and a flame resistance of V-0.
  • the time was within the range of 13.9 to 34 seconds, and the balance of physical properties of rigidity, processability, and flame resistance could be confirmed.
  • the a/b calculated value was confirmed to be within an appropriate range of 7.77 to 40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 폴리부틸렌 테레프탈레이트 수지 조성물과 이의 제조방법 및 이로부터 제조된 성형품에 관한 것으로, 할로겐계 난연제를 포함하는 폴리에스테르 수지 복합소재에 상응하거나 그 이상의 수준으로 기계적 강도와 난연성간 우수한 물성 균형이 제공되고, 유동성이 우수하여 가공성이 뛰어나며, 특히 자동차 전장 부품 소재로서 적합하다.

Description

폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2022.09.16일자 한국특허출원 제 10-2022-0117051호 및 그를 토대로 2023.07.06일자로 재출원한 한국특허출원 제 10-2023-0087762호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 폴리부틸렌 테레프탈레이트 수지 조성물과 이의 제조방법 및 이로부터 제조된 성형품에 관한 것으로, 보다 상세하게는 할로겐계 난연제를 포함하지 않으면서도 기계적 물성과 난연성의 물성 균형이 우수한 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품에 관한 것이다.
경량화 및 제조 원가 절감을 위하여 자동차 분야에서는 부품 소재를 플라스틱으로 대체하고자 하는 연구가 활발히 진행되고 있다.
플라스틱 중에서도 폴리에스테르 수지가 자동차 부품 소재로 널리 사용되고 있으며, 알루미늄이나 스틸을 대체할 수 있는 가능성을 가진 것으로 평가되고 있다. 이에 자동차용 부품 소재로서 폴리에스테르 수지 중에서도 폴리부틸렌 테레프탈레이트 수지가 고강성과 내열성 등이 우수하여 이를 다양한 자동차 부품에 적용하는 연구가 활발히 진행되고 있다.
그러나, 폴리부틸렌 테레프탈레이트 수지를 전장 부품, 특히 커넥터 부품 소재로 적용하기 위해서는 비할로겐계 난연제를 포함시킨 난연 복합소재로의 개발이 필요하다.
폴리부틸렌 테레프탈레이트 수지 복합소재에 사용되는 비할로겐계 난연제로는 주로 금속염 인계 난연제가 사용되고 있으나, 할로겐계 난연제를 사용했을 때와 비교하여 동일한 정도의 기계적 강성 및 난연성을 구현하기 어려워, 비할로겐계 난연제를 포함하면서도 기계적 강성 및 난연성이 우수한 폴리부틸렌 테레프탈레이트 수지 조성물 등의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개특허 제2011-0072828호
본 발명의 목적은 자동차 부품 소재에 적합한 수준의 기계적 강도와 난연성의 물성 균형을 구현한 폴리부틸렌 테레프탈레이트 수지 조성물 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명은 상기 폴리부틸렌 테레프탈레이트 수지 조성물로부터 제조되는 성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 I) 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하고, 하기 수학식 1을 만족하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물을 제공한다.
[수학식 1]
7.76 ≤ a/b ≤ 45
(상기 수학식 1에서, a는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 ISO 527로 측정한 인장강도(MPa)이고, b는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 265℃에서 2.16 kg 하중에 대해 ISO 1133를 사용하여 측정한 유동지수(g/10min)이다.)
II) 상기 I)에 있어서, 상기 실리카 함유 강화제는, 상기 강화제 중에 실리카를 50 중량% 이상, 구체적인 예로 50 내지 70 중량%로 포함할 수 있고, 바람직하게는 50 내지 65 중량%로 포함할 수 있고, 보다 바람직하게는 50 내지 60 중량%로 포함할 수 있다.
III) 상기 I) 또는 II)에서, 상기 폴리부틸렌 테레프탈레이트의 함량을 c라 하고, 상기 실리카 함유 강화제의 함량을 d라 할 때, 0.5d ≤ c ≤ 2d의 상관관계를 만족할 수 있다.
여기에서 함량은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%를 기준으로 하는 중량%를 의미할 수 있으며, 필요한 경우 멜라민 시아누레이트, 폴리에틸렌, 가공성 개선제 및 내열성 첨가제 중에서 선택된 1종 이상을 더 포함하여 총 100 중량%를 기준으로 하는 중량%를 의미한다.
IV) 상기 I) 내지 III)에서, 상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 15 내지 65 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 15 내지 65 중량% 범위 내로 포함되는 것;일 수 있다.
V) 상기 I) 내지 IV)에서, 상기 폴리부틸렌 테레프탈레이트는 ASTM D2857에 따라 측정한 고유점도(η)가 0.5 내지 1.25 dl/g일 수 있다.
VI) 상기 I) 내지 V)에서, 상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 10 내지 50 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 10 내지 50 중량% 범위 내로 포함되는 것;일 수 있다.
VII) 상기 I) 내지 VI)에 있어서, 상기 디에틸포스핀산의 알루미늄염은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 5 내지 35 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 디에틸포스핀산의 알루미늄염은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 5 내지 35 중량% 범위 내로 포함되는 것;일 수 있다.
VIII) 상기 I) 내지 VII)에 있어서, 상기 멜라민 폴리포스페이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 0.1 내지 10 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 멜라민 폴리포스페이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 0.1 내지 10 중량% 범위 내로 포함되는 것;일 수 있다.
IX) 상기 I) 내지 VIII)에 있어서, 상기 수지 조성물은 멜라민 시아누레이트를 포함하고, 이 멜라민 시아누레이트를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트 총 100 중량%에 대하여 0.1 내지 10 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 0.1 내지 10 중량% 범위 내로 포함하는 것;일 수 있다.
X) 상기 I) 내지 IX)에 있어서, 상기 수지 조성물은 가공성 개선제를 포함하고, 이를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제를 합한 총 100 중량% 중에 0.001 내지 3 중량% 범위 내로 포함하는 것일 수 있다.
XI) 상기 I) 내지 X)에 있어서, 상기 수지 조성물은 내열성 첨가제를 포함하고, 이를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 내열성 첨가제를 합한 총 100 중량% 중에 0.001 내지 3 중량% 범위 내로 포함하는 것일 수 있다.
또한, 본 발명은 XII) 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하여 혼련 및 압출하는 단계를 포함하되, 하기 수학식 1을 만족하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물의 제조방법을 제공한다.
[수학식 1]
7.76 ≤ a/b ≤ 45
(상기 수학식 1에서, a는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 ISO 527로 측정한 인장강도(MPa)이고, b는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 265℃에서 2.16 kg 하중에 대해 ISO 1133를 사용하여 측정한 유동지수(g/10min)이다.)
또한, 본 발명은 XIII) 전술한 폴리부틸렌 테레프탈레이트 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 포함한다.
XIV) 상기 XIII)에 있어서, 상기 성형품은 자동차 전장 부품일 수 있다.
본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물은 할로겐계 난연제를 포함하는 폴리에스테르 수지 복합소재에 상응하거나 그 이상의 수준으로 기계적 강도와 난연성간 우수한 물성 균형이 제공되고, 유동성이 우수하여 가공성이 뛰어나며, 특히 자동차 전장 부품 소재로 제공될 수 있다.
즉, 본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물로 제조된 성형품은 인장강도 등의 기계적 물성과 난연성간 높은 수준의 물성 균형이 구현되는 효과가 있다.
따라서, 본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물 및 이로부터 제조된 성형품은 이를 필요로 하는 자동차 부품분야에 널리 적용될 수 있다.
이하 본 발명에 대한 이해를 돕기 위하여 본 발명을 보다 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 점을 감안하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명자들은 비할로겐계 난연제를 구성하는 종류와 함량을 조절하여 자동차 부품 소재에 적합한 수준의 기계적 강도와 난연성의 물성 균형을 구현할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.
본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물은, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함한다.
상기 폴리부틸렌 테레프탈레이트 수지 조성물은 ISO 527로 측정한 인장강도(MPa)를 a라 하고, 265℃에서 2.16 kg 하중에 대해 ISO 1133를 사용하여 측정한 유동지수(g/10min)를 b라 할 때, a/b가 일례로 7.76 내지 45, 구체적으로는 7.76 내지 40, 바람직하게는 7.77 내지 40의 범위를 만족할 수 있다. 상술한 범위를 만족하면, 강성, 난연성 및 가공성의 물성 균형을 제공할 수 있다.
본 발명의 일 실시예에서, 상기 a는 130 이상, 또는 130 내지 165일 수 있고, 상기 b는 4 내지 20, 또는 4 내지 18일 수 있다.
이하, 본 발명의 폴리부틸렌 테레프탈레이트 수지 조성물을 각 성분별로 상세하게 살펴본다.
폴리부틸렌 테레프탈레이트
본 발명의 일 실시예에서, 상기 폴리부틸렌 테레프탈레이트로서, 1,4-부탄디올과, 테레프탈산 또는 디메틸테레프탈레이트를 직접 에스터화 반응시키거나 또는 에스터 교환반응시켜 축중합한 폴리부틸렌 테레프탈레이트가 사용될 수 있다.
본 발명의 일 실시예에서, 폴리부틸렌 테레프탈레이트 수지 조성물의 충격 강도를 높이기 위해서, 상기 폴리부틸렌 테레프탈레이트로서 폴리테트라메틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 지방족 폴리에스터, 지방족 폴리아미드 등과 같은 충격개선 화합물과 공중합한 공중합체, 또는 상기 폴리부틸렌 테레프탈레이트로서 상기 충격개선 화합물과 혼합한 변성 폴리부틸렌 테레프탈레이트가 사용될 수 있다.
본 발명의 일 실시예에서, ASTM D2857에 따라 측정한 폴리부틸렌 테레프탈레이트의 고유점도 η는 일례로 0.5 내지 1.25 dl/g, 바람직하게는 0.5 내지 1.25 dl/g, 보다 바람직하게는 0.52 내지 1 dl/g인 것이다. 상기 폴리부틸렌 테레프탈레이트의 고유점도가 상기 범위를 만족하는 경우에 기계적 특성과 성형성의 물성 균형이 우수한 폴리부틸렌 테레프탈레이트 수지 조성물을 확보할 수 있다.
본 발명의 일 실시예에서, 상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 15 내지 65 중량%, 25 내지 58 중량%, 바람직하게는 40 내지 58 중량%, 보다 바람직하게는 40 내지 55 중량%, 보다 더 바람직하게는 45 내지 55 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 15 내지 65 중량%, 25 내지 58 중량%, 바람직하게는 40 내지 58 중량%, 보다 바람직하게는 40 내지 55 중량%, 보다 더 바람직하게는 45 내지 55 중량% 범위 내로 포함되는 것;일 수 있다. 상기 폴리부틸렌 테레프탈레이트가 상기 범위로 포함되는 경우에 가공성, 비중, 기계적 특성의 물성 균형이 우수한 폴리부틸렌 테레프탈레이트 수지 조성물을 제공할 수 있다.
강화제
본 발명의 일 실시예에서 상기 강화제는 일례로 유리섬유일 수 있고, 상기 강화제는 다른 무기질 섬유들과 함께 사용될 수도 있다.
이때 상기 무기질 섬유는 일례로 탄소섬유, 현무암섬유, 양마 또는 대마 등의 천연섬유 중에서 선택된 하나 이상일 수 있다.
본 발명의 일 실시예에서, 상기 강화제의 단면은 원형, 직사각형, 타원형, 아령, 마름모 등의 형상을 가질 수 있고, 평균직경이 8 내지 20㎛, 또는 10 내지 15㎛이고, 평균길이가 2 내지 6mm, 또는 2 내지 4mm일 수 있다.
이때, 상기 강화제의 평균직경 및 평균길이는 이 기술분야에서 일반적으로 사용되는 방법에 의해 측정될 수 있다. 예를 들면, 해당 강화제를 주사전자현미경(Scanning Electron Microscope: SEM)으로 관찰하고 이로부터 10 내지 30개의 스트랜드의 평균직경과 평균길이를 각각 측정할 수 있다.
상기 강화제는 섬유 제조시 또는 후처리 공정시 사이징제(sizing compositions)에 의해 처리될 수 있는데, 해당 사이징제로는 가공개선제, 커플링제, 계면활성제 등이 있다.
상기 가공개선제는 주로 양호한 스트랜드를 형성하기 위해 사용되며, 상기 커플링제는 강화제와 폴리부틸렌 테레프탈레이트 수지 사이의 양호한 접착을 가능하게 하는 것으로, 폴리부틸렌 테레프탈레이트 수지와 강화제의 종류를 고려하여 적절하게 선택하여 사용할 경우, 폴리부틸렌 테레프탈레이트 수지 조성물에 우수한 물성을 부여할 수 있다.
상기 커플링제의 사용방법으로는 강화제에 직접 처리하는 방법, 유기 매트릭스에 첨가하는 방법 등이 있으며, 커플링제의 성능을 충분히 발휘하기 위해서는 그 함량을 적절히 선택하여야 한다.
상기 커플링제의 예로는 아민계, 아크릴계 및 γ-아미노프로필트리에톡시실란, γ-아미노프로필트리메톡시실란, N-(베타-아미노에틸) γ-아미노프로필트리에톡시실란, γ-메타크릴옥시프로필 트리에톡시실란, γ-글리시독시프로필 트리메톡시실란, β(3,4-에폭시에틸) γ-아미노프로필 트리메톡시실란 등의 실란계가 있다.
특히, 본 기재의 강화제는 실리카를 함유하는 것이 강성 및 기계적 물성을 제공할 수 있어 바람직하다.
상기 실리카는 강화제 중에 일례로 50 중량% 이상, 구체적인 예로 50 내지 70 중량%, 바람직하게는 50 내지 65 중량%, 보다 바람직하게는 50 내지 60 중량%로 포함될 수 있다. 상술한 범위를 만족하면 우수한 강성 및 기계적 물성 균형을 제공할 수 있다.
구체적으로, 아래의 실시예 및 비교예에서 확인되는 바와 같이, 실리카가 적절하지 않은 함량, 예를 들어 48중량%인 강화제를 대체 투입한 경우 난연도는 탁월하였으나 인장강도와 유동지수가 불량하여 물성 균형을 제공하지 못하는 것을 확인할 수 있었다(비교예 4 참조).
본 발명에서 강화제내 실리카 함량은 XRF(X-Ray Fluorescence spectrometry: X선 형광분석)를 이용하여 측정 또는 확인할 수 있다.
본 발명의 일 실시예에서, 상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 10 내지 50 중량%, 바람직하게는 15 내지 50 중량%, 보다 바람직하게는 20 내지 50 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 10 내지 50 중량%, 바람직하게는 15 내지 50 중량%, 보다 바람직하게는 20 내지 50 중량% 범위 내로 포함되는 것;일 수 있다.
비할로겐계 난연제
본 발명에 따른 비할로겐계 난연제는 디에틸포스핀산의 알루미늄염과 멜라민 폴리포스페이트를 포함할 수 있고, 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 압사출 가공 도중 난연 효과를 제공할 뿐 아니라 상기 폴리부틸렌 테레프탈레이트 수지 조성물의 장시간 보관시에도 난연 효과를 충분하게 제공할 수 있다.
상기 디에틸포스핀산의 알루미늄염은 고분자 표면에 차르를 형성하여 조성물의 난연성을 향상시킬 수 있다.
본 발명의 일 실시예에서, 상기 디에틸포스핀산의 알루미늄염으로서 시판되는 제품이 사용될 수 있다.
상기 디에틸포스핀산의 알루미늄염은 일례로 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 5 내지 35 중량%, 10 내지 30 중량%, 구체적인 예로 10 내지 25 중량%, 바람직하게는 10 내지 20 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 디에틸포스핀산의 알루미늄염은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 5 내지 35 중량%, 10 내지 30 중량%, 구체적인 예로 10 내지 25 중량%, 바람직하게는 10 내지 20 중량% 범위 내로 포함되는 것;일 수 있다. 상술한 범위를 만족하면 고분자 표면에 차르를 형성하여 조성물의 난연성을 향상시킬 수 있다.
상기 멜라민 폴리포스페이트는 전술한 디에틸포스핀산의 알루미늄염과 동시에 사용되는 경우에 디에틸포스핀산의 알루미늄염과 함께 고분자 표면에 차르를 형성하여 연소로부터 보호하는 효과를 향상시킬 수 있다.
본 발명의 일 실시예에서, 상기 멜라민 폴리포스페이트로서 시판되는 제품이 사용될 수 있다.
상기 멜라민 폴리포스페이트는 일례로 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 0.1 내지 10 중량%, 구체적인 예로 0.1 내지 5 중량%, 바람직하게는 1 내지 5 중량%, 보다 바람직하게는 2 내지 4 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 멜라민 폴리포스페이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.1 내지 10 중량%, 구체적인 예로 0.1 내지 5 중량%, 바람직하게는 1 내지 5 중량%, 보다 바람직하게는 2 내지 4 중량% 범위 내로 포함되는 것;일 수 있다. 상술한 범위를 만족하면 고분자 표면에 차르를 충분하게 형성하여 조성물의 난연성을 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 멜라민 시아누레이트를 포함할 수 있으며, 이 경우 불활성 기체를 발생시켜 난연성을 향상시킬 수 있다.
상기 멜라민 시아누레이트는 일례로 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트 총 100 중량%에 대하여 0.1 내지 10 중량%, 구체적인 예로 0.1 내지 4.5 중량%, 바람직하게는 0.1 내지 3.5 중량%, 보다 바람직하게는 1 내지 3.5 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.1 내지 10 중량%, 구체적인 예로 0.1 내지 4.5 중량%, 바람직하게는 0.1 내지 3.5 중량%, 보다 바람직하게는 1 내지 3.5 중량% 범위 내로 포함되는 것;일 수 있다.
가공성 개선제
본 발명에 따른 가공성 개선제는 올레핀계 왁스일 수 있고, 상기 폴리부틸렌 테레프탈레이트 수지 조성물에 우수한 이형성 및 사출성을 유지할 수 있도록 하는 역할을 제공한다.
상기 올레핀계 왁스는 용융점도가 낮은 중합체로 미끄럼성과 가소성을 갖는 유질상의 고체일 수 있고, 일례로 폴리에틸렌 왁스 및 폴리프로필렌 왁스 중에서 선택되는 1종 이상일 수 있으며 시판되는 제품을 사용할 수도 있다.
일례로, 상기 가공성 개선제는 폴리에틸렌을 사용할 수 있고, 구체적인 예로 드롭 포인트(drop point)가 100 내지 120℃이고, 융점(mp)이 95 내지 115℃이며, 밀도(23℃)가 0.9 내지 1.0 g/cm3이고, 절대점도(120℃)가 350 내지 450 mm2/s인 폴리에틸렌을 사용할 수 있다. 이러한 경우에 이형성과 사출성을 효과적으로 제공할 수 있다.
본 기재에서 드롭 포인트는 ASTM D566, KS M 2033에 따른 실험방법에 의하여 활제가 온도 상승에 의해서 액상으 로 변화하는 최저 온도로 나타내는 것으로서, 보다 구체적으로는 직경 100mm인 규정된 컵(cup)에 시료를 넣고 상기 규정된 조건으로 가열하여 그리스가 적하할 때의 온도를 측정하여 나타낼 수 있다.
본 기재에서 융점은 TA 사에서 제조한 시차 주사 열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 측정할 수 있다. 구체적인 측정예로, 융점은 DSC를 온도 0℃에서 평형에 이르게 한 후, 분당 20℃씩 증가시켜 180℃까지 올린 후, 분당 20℃씩 감소시켜 -60℃까지 내린 후, 분당 10℃씩 증가시켜 180℃까지 온도를 증가시키는 방법으로 측정할 수 있다. 여기에서 융점은 두 번째 온도가 상승하는 동안 흡열 곡선의 꼭대기 영역을 취해 얻어진다.
본 기재에서 밀도는 일례로 ASTM D1505의 측정법에 따라 측정할 수 있다.
본 기재에서 절대점도는 Brookfield 사의 절대점도계를 사용하여 측정할 수 있다. 구체적인 측정예로, 절대점도는 Brookfield 사의 절대점도계 LVT 230을 사용하여 ASTM D1986-14의 방법으로 측정할 수 있다.
구체적인 예로, 상기 가공성 개선제는 105 내지 115℃이고, 융점(mp)이 100 내지 110℃이며, 밀도(23℃)가 0.95 내지 1.0 g/cm3이고, 절대점도(120℃)가 380 내지 420 mm2/s인 폴리에틸렌을 사용할 수 있다.
구체적인 예로, 상기 가공성 개선제는 108 내지 112℃이고, 융점(mp)이 102 내지 106℃이며, 밀도(23℃)가 0.95 내지 0.98 g/cm3이고, 절대점도(120℃)가 400 내지 420 mm2/s인 폴리에틸렌 왁스를 사용할 수 있다.
본 발명의 일 실시예에서, 상기 가공성 개선제로서 시판되는 제품이 사용될 수 있다. 예를 들어 LC102N 등의 제품을 사용할 수 있다.
본 발명의 일 실시예에서, 상기 가공성 개선제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 가공성 개선제 총 100 중량%에 대하여 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 3 중량%, 보다 바람직하게는 0.01 내지 3 중량%, 가장 바람직하게는 0.01 내지 1 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 멜라민 시아누레이트를 포함하고, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 폴리에틸렌, 실리카 함유 강화제 및 멜라민 시아누레이트에 가공성 개선제를 합한 총 100 중량% 중에 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 3 중량%, 보다 바람직하게는 0.01 내지 3 중량%, 가장 바람직하게는 0.01 내지 1 중량% 범위 내로 포함되는 것;일 수 있다. 상술한 범위를 만족하면, 우수한 이형성 및 사출성을 충분하게 제공할 수 있다.
구체적인 예로, 상기 수지 조성물은 폴리에틸렌을 포함하고, 이 폴리에틸렌을 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 폴리에틸렌 총 100 중량%에 대하여 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 3 중량%, 보다 바람직하게는 0.01 내지 3 중량%, 가장 바람직하게는 0.01 내지 1 중량% 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 폴리에틸렌, 멜라민 시아누레이트, 및 내열성 첨가제를 포함하고, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 폴리에틸렌, 및 실리카 함유 강화제에 폴리에틸렌, 멜라민 시아누레이트 및 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 3 중량%, 보다 바람직하게는 0.01 내지 3 중량%, 가장 바람직하게는 0.01 내지 1 중량% 내로 포함하는 것;일 수 있다.
내열성 첨가제
본 발명에 따른 내열성 첨가제는 상기 폴리부틸렌 테레프탈레이트 수지 조성물에 압사출 가공 도중 고온에서 산화방지 효과를 제공할 수 있다.
상기 내열성 첨가제는 일례로 힌더드 페놀계 화합물, 포스파이트계 화합물 및 포스포나이트계 화합물 중에서 2종 이상 선택될 수 있다.
상기 힌더드 페놀계 화합물로서 시판되는 제품이 사용될 수 있다.
상기 힌더드 페놀계 화합물의 예로는 옥타딜-3-(4-히드록시-3,5-디터셔리부틸페닐) 프로피오네이트(Octadeeyl-3-(4-hydroxy-3,5-ditert-butylphenyl) propionate), 테트라비스[메틸렌-3-(3,5-디터셔리부틸-4-히드록시페닐) 프로 피오네이트]메탄(Tetrabis[methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate]methane), 1,3,5-트리-메틸-2,4,6,-트리(3,5-디터셔리부틸-4-히드록시벤질)벤젠(1,3,5-Tri-methyl-2,4,6-tris(3,5-di-tertbutyl-4-hydroxybenzyl)benzene), 펜타에리스리톨 테트라키스(3-(3,5-디터셔리부틸-4-히드록시페닐) 프로피오네이트(Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) 등이 있으며, 펜타에리스리톨 테트라키스(3-(3,5-디터셔리부틸-4-히드록시페닐) 프로피오네이트를 사용하는 것이 바람직하다.
상기 포스파이트계 화합물로서, 트리페닐 포스파이트(Triphenyl phosphite), 트리스(모닐페닐)포스파이트(Tris(monyl phenyl) phosphite), 트리이소데실 포스파이트(Triisodecyl phosphite), 디페닐 이소옥틸-포스파이트(diphenyl-isooctyl-phosphite), 비스(2,6-디터셔리부틸-4-메틸페닐)펜타에리스리톨 디포스파이트(Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite), 트리스(2,4-디터셔리부틸페닐) 포스파이트(Tris(2,4-di-tert-butylphenyl) phosphite 등이 사용되며, 트리스(2,4-디터셔리부틸페닐) 포스파이트가 사용되는 것이 바람직하다.
상기 포스포나이트계 화합물로서 하기 화학식 1로 표시되는 화합물이 사용될 수 있다.
[화학식 1]
Figure PCTKR2023009651-appb-img-000001
상기 화학식 1에서, R1 또는 R2는 각각 독립적으로 알킬, 아릴, 알킬아릴, 구체적인 예로 C1-C30 알킬, C6-C30 아릴 또는 알킬아릴이며, Ar은 페닐, 나프틸, 바이페닐, 터페닐 등과 같은 아릴기이다.
다른 예로, 상기 내열성 첨가제는 하기 화학식 2로 표시되는 화합물과 화학식 3으로 표시되는 화합물을 혼합한 것을 사용할 수 있다.
하기 화학식 2로 표시되는 화합물과 화학식 3으로 표시되는 화합물을 혼합된 경우, 밀도가 일례로 530 g/l 이상, 구체적인 예로 530~630 g/l인 것이 고온에서 산화방지 효과를 제공하기에 바람직하다.
여기서 밀도는 이 기술분야에서 통상 측정되는 방식 및 장비를 사용하여 측정된 값일 수 있다.
본 발명의 일 실시예에서, 시판되는 제품이 사용될 수 있다. 예를 들어 B-225 등의 제품을 사용할 수 있다.
[화학식 2]
Figure PCTKR2023009651-appb-img-000002
[화학식 3]
Figure PCTKR2023009651-appb-img-000003
본 발명의 일 실시예에서, 상기 내열성 첨가제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 2 중량%, 보다 바람직하게는 0.01 내지 2 중량%, 보다 더 바람직하게는 0.1 내지 2 중량% 범위 내로 포함될 수 있다. 상술한 범위를 만족하면, 고온 가공시 열안정성을 제공할 수 있다.
상기 내열성 첨가제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트에 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 2 중량%, 보다 바람직하게는 0.01 내지 2 중량%, 보다 더 바람직하게는 0.1 내지 2 중량% 범위 내로 포함될 수 있다.
상기 내열성 첨가제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제, 멜라민 시아누레이트 및 폴리에틸렌에 내열성 첨가제를 합한 총 100 중량% 중에 일례로 0.001 내지 3 중량%, 바람직하게는 0.05 내지 2 중량%, 보다 바람직하게는 0.01 내지 2 중량%, 보다 더 바람직하게는 0.1 내지 2 중량% 범위 내로 포함될 수 있다.
<폴리부틸렌 테레프탈레이트 수지 조성물>
본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하며, 상기 폴리부틸렌 테레프탈레이트의 함량을 c라 하고, 상기 실리카 함유 강화제의 함량을 d라 할 때, 0.5d ≤ c ≤ 2d의 상관관계, 구체적으로는 d ≤ c ≤ 2d의 상관관계, 바람직하게는 1.3d ≤ c ≤ 1.8d의 상관관계를 만족할 수 있다. 상술한 범위를 만족하면 강성 및 기계적 물성과 난연성간 우수한 물성 균형을 제공할 수 있다.
본 기재에서 사용하는 용어 "함량"은 달리 특정하지 않는 한, 중량% 단위를 지칭할 수 있다. 구체적으로, c와 d의 함량은 각각 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제, 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 포함되는 중량%일 수 있다.
여기서 c는 일례로 35 내지 58의 정수, 바람직하게는 40 내지 58의 정수, 보다 바람직하게는 40 내지 55의 정수, 보다 더 바람직하게는 45 내지 50의 정수일 수 있다. 상술한 범위를 만족하면 강성 및 기계적 물성과 난연성간 우수한 물성 균형을 제공할 수 있다.
또한, 상기 d는 일례로 10 내지 50의 정수, 바람직하게는 15 내지 50의 정수, 보다 바람직하게는 20 내지 50의 정수일 수 있다. 상술한 범위를 만족하면 강성 및 기계적 물성과 난연성간 우수한 물성 균형을 제공할 수 있다.
본 발명의 일 실시예에서, 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 폴리부틸렌 테레프탈레이트 15 내지 65 중량%; 실리카 함유 강화제 10 내지 50 중량%; 디에틸포스핀산의 알루미늄염 5 내지 35 중량%; 멜라민 폴리포스페이트 0.1 내지 10 중량%; 멜라민 시아누레이트 0 내지 10 중량%; 내열성 첨가제 0.001 내지 3 중량%; 및 가공성 개선제 0.001 내지 3 중량%를 포함하는 것일 수 있다.
다른 예로, 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 폴리부틸렌 테레프탈레이트 35 내지 58 중량%; 실리카 함유 강화제 15 내지 50 중량%; 디에틸포스핀산의 알루미늄염 10 내지 25 중량%; 멜라민 폴리포스페이트 0.1 내지 5 중량%; 멜라민 시아누레이트 0 내지 4.5 중량%; 내열성 첨가제 0.001 내지 3 중량%; 및 가공성 개선제 0.001 내지 3 중량%를 포함하는 것일 수 있다.
다른 예로, 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 폴리부틸렌 테레프탈레이트 40 내지 58 중량%; 실리카 함유 강화제 20 내지 50 중량%; 디에틸포스핀산의 알루미늄염 10 내지 20 중량%; 멜라민 폴리포스페이트 1 내지 5 중량%; 멜라민 시아누레이트 0.1 내지 10 중량%; 내열성 첨가제 0.05 내지 2 중량%; 및 가공성 개선제 0.05 내지 3 중량%로 포함할 수 있다. 상술한 범위를 만족하면 강성 및 기계적 물성과 난연성간 우수한 물성 균형을 제공할 수 있다.
상기 폴리부틸렌 테레프탈레이트 수지 조성물은 일례로 UV 안정제, 안료 및 착색제 중에서 선택된 1종 이상의 첨가제를, 일례로 상기 폴리부틸렌 테레프탈레이트 수지 조성물 100 중량부를 기준으로 각각 0.01 내지 5 중량부로 포함할 수 있고, 바람직하게는 0.5 내지 2 중량부, 보다 바람직하게는 1 내지 2 중량부로 포함할 수 있다. 상기 범위 내에서 수지 조성물의 물성에 영향을 주지 않으면서 첨가제 본연의 특성이 발현되는 효과가 있다.
<폴리부틸렌 테레프탈레이트 수지 조성물의 제조방법>
본 발명에 따른 폴리부틸렌 테레프탈레이트 수지 조성물은 당업계에서 공지된 방법으로 제조될 수 있다. 예를 들어, 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 각 구성성분과 기타 첨가제들의 혼합물을 압출기 내에서 용융 압출하는 방법에 의해 펠렛의 형태로 제조될 수 있으며, 상기 펠렛은 사출 및 압출 성형품에 이용될 수 있다.
본 발명의 일 실시예에서, 상기 펠렛은 240 내지 280℃의 온도에서 압출되고, 사출 시 금형의 온도는 80 내지 120℃의 범위를 가지는 것이 바람직하다. 상기 금형 온도가 80℃ 미만일 경우 외관 특성이 저하될 수 있고, 120℃를 초과할 경우 펠렛이 금형에 달라붙게 되어 이형성이 저하되고 냉각 속도가 증가될 수 있다.
본 발명의 폴리부틸렌 테레프탈레이트 수지 조성물의 제조방법은 일례로 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하여 혼련 및 압출하는 단계를 포함할 수 있고, 필요에 따라 전술한 멜라닌 시아누레이트를 포함할 수 있다.
상기 혼련 및 압출하는 단계에서, 압출기의 스크류 회전수는 일례로 150 내지 330 rpm, 150 내지 300 rpm, 또는 200 내지 250 rpm일 수 있다. 상술한 범위를 만족하면서 값이 낮을수록, 강성과 가공성이 개선될 수 있다.
상기 압출기에 투입하는 상기 폴리부틸렌 테레프탈레이트 수지 조성물의 시간당 이송량(F/R)은 70 kg/hr 이하, 바람직하게는 60 kg/hr 이하, 보다 바람직하게는 50 kg/hr 이하, 보다 더 바람직하게는 45 내지 55 kg/hr인 것을 특징으로 하며, 이 경우에 강성 및 가공성, 비중의 물성 균형을 구현할 수 있다.
<성형품>
본 발명의 다른 실시예에 따르면, 전술한 폴리부틸렌 테레프탈레이트 수지 조성물로 제조된 성형품을 제공한다.
상기 성형품은 일례로 자동차 전장 부품일 수 있다.
상기 성형품은 구체적인 예로 자동차 커넥터일 수 있다.
상기 성형품은 ISO 527에 의거하여 측정한 인장강도가 130 MPa 이상, 또는 135 내지 165 MPa일 수 있다.
상기 성형품은 ISO 1133에 의거하여 265℃에서 2.16 kg 하중 하에 측정한 유동지수가 4 내지 20 g/10min, 또는 4 내지 18 g/min일 수 있다.
상기 성형품은 UL 94에 의거하여 측정한 0.8mm 시편에 대한 난연도(Burning time/5개)가 50초 이하일 수 있다.
본 기재의 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정하는 것은 아니다.
[실시예]
본 발명의 일 실시예에서, 폴리부틸렌 테레프탈레이트 수지 조성물의 제조에 사용되는 각 구성성분은 다음과 같다.
(A)폴리부틸렌 테레프탈레이트(PBT: 고유점도 0.5~1 dl/g)
(B)실리카 함유 강화제: 평균직경이 10㎛이고 평균길이가 3mm인 유리섬유
(B-1)유리섬유 1: 실리카 55 중량% 포함
(B-2)유리섬유 2: 실리카 48 중량% 포함
(C)디에틸포스핀산의 알루미늄염
(D)멜라민 폴리포스페이트
(E)멜라민 시아누레이트
(F)방향족 포스페이트: 제품명 PX200
(G)내열성 첨가제: 제품명 B-225
(H)가공성 개선제: 드롭 포인트(drop point)가 110℃이고, 융점(mp)이 104℃이며, 밀도(23℃)가 0.97 g/cm3이고, 절대점도(120℃)가 410 mm2/s인 폴리에틸렌
(I) 드롭방지제: 테프론(제품명 JF-4A)
실시예 1 내지 3 및 비교예 1 내지 6
상기 각 구성성분을 하기 표 1에 기재된 함량대로 혼합하였다. 제조된 조성물에 대하여 하기와 같은 방법으로 물성을 측정하고 하기 표 1에 나타내었다.
*유동지수(g/10min): ISO 1133에 의거하여 측정하였다.
그런 다음 상기 혼합물을 50 kg/hr로 공급하고, 압출기의 스크류 회전수는 250 rpm을 적용하였다. 이때 스크류의 직경은 45 mm인 이축 압출기를 사용하여 250℃의 온도로 압출하였으며, 이 압출물을 펠렛 형태로 제조하였다.
제조된 펠렛을 100℃에서 4시간 이상 건조시킨 후 80℃의 온도에서 사출하여 2.5mm x 50 mm x 90 mm 크기의 시편을 제조하였다. 제조된 시편에 대하여 하기와 같은 방법으로 물성을 측정하고 하기 표 1에 나타내었다.
*인장강도(Mpa): ISO 527에 의거하여 측정하였다.
*난연도(Burning time/5ea): 0.8mm 시편을 제작하여 UL94에 의거하여 시편 5개의 연소되는 총 소요시간(sec)을 측정하였다. V-0 등급인 경우 OK로 표기하면서 소요되는 시간을 병기하였고, V-0 등급에 미치지 못한 경우에는 NG로 표기하였다.
*인장강도 값을 a라 하고 유동지수 값을 b라 할 때, a/b 계산값을 하기 표 1에 함께 나타내었다.
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
A 50.1 50.1 33.1 40.9 50.1 53.1 50.1 53.1 50.1
B-1 33 33 50 33 33 33 - 30 33
B-2 - - - - - 33 - -
C 13 10 10 13 16 10 10 10 3
D 3 3 3 - - 3 3 3 3
E - 3 3 6 - - 3 3 10
F - - - 6 - - 3 - -
G 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
H 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
I - - - 0.2 - - - - -
인장강도
(MPa,a)
135 140 160 110 126 148 133 140 147
유동지수(g/10분,b) 10 18 4 21.2 5.9 19.1 20.3 19.1 25
a/b 13.5 7.77 40 5.2 21 7.70 6.6 7.3 5.88
난연도 V-0
(sec)
OK
(34)
OK
(13.9)
OK
(14)
OK
(19.1)
NG
(46.4)
NG:V-2
(측정불가)
OK
(15)
NG:V-2
(측정불가)
NG:V-2
(측정불가)
(상기 표에서 제시된 성분들의 총합은 100중량%이다.)
상기 표 1에서 보듯이, 본 발명에 따른 구성을 모두 포함하는 실시예 1 내지 3은 유동지수가 4 내지 18 g/10분이고, 인장강도가 135 내지 160MPa, 난연도 V-0로 연소되는 총 소요시간이 13.9 내지 34초 범위 내로서, 강성, 가공성, 난연도의 물성 균형을 확인할 수 있었다. 이때 a/b 계산값은 7.77 내지 40으로서 적절한 범위 내로 확인되었다.
반면, 방향족 포스페이트 및 테프론을 함께 사용한 비교예 1의 경우, 인장강도와 유동지수가 저하된 것을 확인할 수 있었다. 이 경우 a/b 계산값 또한 7.76에 미달하는 값을 나타내는 것을 알 수 있다.
인장강도가 불량하였고 유동지수는 측정되지 못한 것으로 확인되어 a/b 계산값 또한 계산되지 못하였다.
또한, 디에틸포스핀산의 알루미늄염을 단독 투입하고 멜라민 폴리포스페이트와 멜라민 시아누레이트를 미투입한 비교예 2의 경우, 인장강도와 유동지수가 저하된 것을 확인할 수 있었다.
또한, 상기 실시예 1의 조성에서 디에틸포스핀산의 알루미늄염의 함량을 줄인 만큼 폴리부틸렌 테레프탈레이트를 추가 투입한 비교예 3의 경우, 인장강도와 유동지수는 탁월하였으나 난연도가 측정 불가로 확인되었다.
또한, 상기 실시예 2의 조성에서 실리카 함량이 적절한 범위에 미달하는 강화제를 대체 투입한 비교예 4의 경우, 난연도는 탁월하였으나 인장강도와 유동지수가 불량한 것을 확인할 수 있었다. 이 경우 a/b 계산값 또한 7.76 미만의 값을 나타내는 것을 알 수 있다.
또한, 상기 실시예 2의 조성에서 강화제 함량을 줄인 만큼 폴리부틸렌 테레프탈레이트를 추가 투입한 비교예 5의 경우, 유동지수는 탁월하였으나 인장강도와 난연도가 불량한 것을 확인할 수 있었다. 이 경우 a/b 계산값 또한 7.76 미만의 값을 나타내는 것을 알 수 있다.
또한, 상기 실시예 2의 조성에서 디에틸포스핀산의 알루미늄염 함량과 멜라민 시아누레이트 함량을 바꿔 투입한 비교예 6의 경우, 난연도가 불량한 것을 확인할 수 있었다. 이 경우 a/b 계산값 또한 7.76 미만의 값을 나타내는 것을 알 수 있다.
결론적으로, 본 발명에 개시된 폴리부틸렌 테레프탈레이트에 실리카 함유 강화제를 사용하여 보강하면서 특정 조성의 난연 성분과 내열 성분 등을 포함함으로써 가공성, 비중, 강성 및 난연도간 물성 균형을 구현하여 할로겐계 난연제를 포함하는 폴리에스테르 수지 복합소재의 대체 소재로서 자동차 부품분야에 사용하기 적절함을 확인할 수 있었다.

Claims (14)

  1. 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하고,
    하기 수학식 1을 만족하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
    [수학식 1]
    7.76 ≤ a/b ≤ 45
    (상기 수학식 1에서, a는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 ISO 527로 측정한 인장강도(MPa)이고, b는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 265℃에서 2.16 kg 하중에 대해 ISO 1133을 사용하여 측정한 유동지수(g/10min)이다.)
  2. 제1항에 있어서,
    상기 실리카 함유 강화제는, 상기 강화제 중에 실리카를 50 중량% 이상으로 포함하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  3. 제1항에 있어서,
    상기 폴리부틸렌 테레프탈레이트의 함량을 c라 하고, 상기 실리카 함유 강화제의 함량을 d라 할 때, 0.5d ≤ c ≤ 2d의 상관관계를 만족하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  4. 제1항에 있어서,
    상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 15 내지 65 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 폴리부틸렌 테레프탈레이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 15 내지 65 중량% 범위 내로 포함되는 것;을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  5. 제1항에 있어서,
    상기 폴리부틸렌 테레프탈레이트는 ASTM D2857에 따라 측정한 상기 폴리부틸렌 테레프탈레이트의 고유점도(η)가 0.5 내지 1.25 dl/g인 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  6. 제1항에 있어서,
    상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 10 내지 50 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 실리카 함유 강화제는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 10 내지 50 중량% 범위 내로 포함되는 것;을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  7. 제1항에 있어서,
    상기 디에틸포스핀산의 알루미늄염은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 5 내지 35 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 디에틸포스핀산의 알루미늄염은 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 5 내지 35 중량% 범위 내로 포함되는 것;을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  8. 제1항에 있어서,
    상기 멜라민 폴리포스페이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제 총 100 중량%에 대하여 0.1 내지 10 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 상기 멜라민 폴리포스페이트는 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 0.1 내지 10 중량% 범위 내로 포함되는 것;을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  9. 제1항에 있어서,
    상기 수지 조성물은 멜라민 시아누레이트를 포함하고, 이 멜라민 시아누레이트를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트 총 100 중량%에 대하여 0.1 내지 10 중량% 범위 내로 포함되거나; 또는 상기 폴리부틸렌 테레프탈레이트 수지 조성물은 가공성 개선제 및 내열성 첨가제를 포함하고, 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 실리카 함유 강화제 및 멜라민 시아누레이트에 가공성 개선제 및 내열성 첨가제를 합한 총 100 중량% 중에 0.1 내지 10 중량% 범위 내로 포함하는 것;을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  10. 제1항에 있어서,
    상기 수지 조성물은 가공성 개선제를 포함하고, 이를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 가공성 개선제를 합한 총 100 중량% 중에 0.001 내지 3 중량% 범위 내로 포함하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  11. 제1항에 있어서,
    상기 수지 조성물은 내열성 첨가제를 포함하고, 이를 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제에 내열성 첨가제를 합한 총 100 중량% 중에 0.001 내지 3 중량% 범위 내로 포함하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물.
  12. 폴리부틸렌 테레프탈레이트, 디에틸포스핀산의 알루미늄염, 멜라민 폴리포스페이트, 및 실리카 함유 강화제를 포함하여 혼련 및 압출하는 단계를 포함하되, 하기 수학식 1을 만족하는 것을 특징으로 하는 폴리부틸렌 테레프탈레이트 수지 조성물의 제조방법.
    [수학식 1]
    7.76 ≤ a/b ≤ 45
    (상기 수학식 1에서, a는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 ISO 527로 측정한 인장강도(MPa)이고, b는 상기 폴리부틸렌 테레프탈레이트 수지 조성물을 265℃에서 2.16 kg 하중에 대해 ISO 1133을 사용하여 측정한 유동지수(g/10min)이다.)
  13. 제1항 내지 제11항 중 어느 한 항의 폴리부틸렌 테레프탈레이트 수지 조성물을 포함하는 것을 특징으로 하는 성형품.
  14. 제13항에 있어서,
    상기 성형품은 자동차 전장 부품인 것을 특징으로 하는 성형품.
PCT/KR2023/009651 2022-09-16 2023-07-07 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품 WO2024058384A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23844057.2A EP4365226A1 (en) 2022-09-16 2023-07-07 Polybutylene terephthalate resin composition, method for manufacturing same, and molded product manufactured therefrom
CN202380012303.2A CN118055970A (zh) 2022-09-16 2023-07-07 聚对苯二甲酸丁二醇酯树脂组合物、制备其的方法和包括其的模制品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220117051 2022-09-16
KR10-2022-0117051 2022-09-16
KR10-2023-0087762 2023-07-06
KR1020230087762A KR20240038576A (ko) 2022-09-16 2023-07-06 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Publications (1)

Publication Number Publication Date
WO2024058384A1 true WO2024058384A1 (ko) 2024-03-21

Family

ID=89854585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009651 WO2024058384A1 (ko) 2022-09-16 2023-07-07 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Country Status (2)

Country Link
EP (1) EP4365226A1 (ko)
WO (1) WO2024058384A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150073850A (ko) * 2013-12-20 2015-07-01 이엠에스-패턴트 에이지 플라스틱 몰딩 컴파운드 및 이의 용도
KR20170002370A (ko) * 2014-04-23 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리에스테르 조성물 및 물품
CN112724618A (zh) * 2020-12-29 2021-04-30 金旸(厦门)新材料科技有限公司 一种低成本无卤阻燃增强pbt材料及其制备方法
CN112812366A (zh) * 2020-12-30 2021-05-18 浙江新化化工股份有限公司 阻燃组合物及其应用、pbt复合材料及其制备方法
CN114605789A (zh) * 2022-02-28 2022-06-10 金发科技股份有限公司 一种pbt复合材料及其制备方法和应用
KR20220117051A (ko) 2021-02-16 2022-08-23 이래에이엠에스 주식회사 차량용 교류발전기의 고정자 방열 구조
KR20230087762A (ko) 2021-12-10 2023-06-19 한국에너지기술연구원 태양전지 접촉저항 측정 방법 및 측정 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150073850A (ko) * 2013-12-20 2015-07-01 이엠에스-패턴트 에이지 플라스틱 몰딩 컴파운드 및 이의 용도
KR20170002370A (ko) * 2014-04-23 2017-01-06 사빅 글로벌 테크놀러지스 비.브이. 난연성 폴리에스테르 조성물 및 물품
CN112724618A (zh) * 2020-12-29 2021-04-30 金旸(厦门)新材料科技有限公司 一种低成本无卤阻燃增强pbt材料及其制备方法
CN112812366A (zh) * 2020-12-30 2021-05-18 浙江新化化工股份有限公司 阻燃组合物及其应用、pbt复合材料及其制备方法
KR20220117051A (ko) 2021-02-16 2022-08-23 이래에이엠에스 주식회사 차량용 교류발전기의 고정자 방열 구조
KR20230087762A (ko) 2021-12-10 2023-06-19 한국에너지기술연구원 태양전지 접촉저항 측정 방법 및 측정 장치
CN114605789A (zh) * 2022-02-28 2022-06-10 金发科技股份有限公司 一种pbt复合材料及其制备方法和应用

Also Published As

Publication number Publication date
EP4365226A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2020116769A1 (ko) 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2015088170A1 (ko) 폴리올레핀 난연수지 조성물 및 성형품
WO2012060515A1 (ko) 난연 내스크래치성 폴리카보네이트 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2010067926A1 (ko) 새로운 인계 화합물, 그 제조방법 및 이를 이용한 난연성 열가소성 수지 조성물
WO2024058384A1 (ko) 폴리부틸렌 테레프탈레이트 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023080476A1 (ko) 금속 포스피네이트계 난연제를 포함하는 난연제 조성물 및 난연성 합성 수지 조성물
WO2023229132A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2019194620A1 (ko) 열가소성 수지 조성물
WO2023068481A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022139176A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2024043533A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2021080250A1 (ko) 폴리에스테르계 수지 조성물 및 이의 성형품
WO2013042827A1 (ko) 폴리카보네이트 및 그 제조방법
WO2015016464A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2023146151A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2013100414A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2024005288A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2024071585A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품
WO2020045901A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022092568A1 (ko) 열가소성 수지 조성물 및 성형품
WO2020004830A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023844057

Country of ref document: EP

Effective date: 20240130