WO2024007741A1 - 墨水组合物、封装结构和半导体器件 - Google Patents

墨水组合物、封装结构和半导体器件 Download PDF

Info

Publication number
WO2024007741A1
WO2024007741A1 PCT/CN2023/094582 CN2023094582W WO2024007741A1 WO 2024007741 A1 WO2024007741 A1 WO 2024007741A1 CN 2023094582 W CN2023094582 W CN 2023094582W WO 2024007741 A1 WO2024007741 A1 WO 2024007741A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
ink composition
composition according
Prior art date
Application number
PCT/CN2023/094582
Other languages
English (en)
French (fr)
Inventor
洪海兵
杨楚峰
沈馨
王士昊
邓伟
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Publication of WO2024007741A1 publication Critical patent/WO2024007741A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the technical field of organic packaging materials, and specifically, to an ink composition, packaging structure and semiconductor device.
  • OLED Organic Light-Emitting Diodes
  • OLED have active light-emitting properties, low driving voltage, high luminous brightness, high luminous efficiency, wide luminous viewing angle, fast response speed, ultra-thin and light weight, low cost, and low power consumption.
  • wide operating temperature range simple structure and can be used in flexible panels and other excellent characteristics, it has become the mainstream of new generation display technology and the development direction of future displays. It has huge application potential in various intelligent terminal fields.
  • OLED device packaging has placed increasingly stringent requirements on the materials used in them.
  • the requirements for polymer materials used in encapsulation are becoming increasingly stringent.
  • organic polymer films used in optical devices as adhesives, protective layers, interlayers, etc. are developing towards the needs of light weight, thin thickness and miniaturization.
  • existing thin-film packaging spacers with a thickness of 1 micron need to be planarized and free of gaps and holes to provide proper spacing. Due to the thinning between layers, the thickness between each layer and its forming process are more precise, which requires precise and consistent inkjet printing to deposit the organic layer.
  • an additional function performed by thin spacers in multilayer optical and electronic devices is electrical insulation to electrically isolate one layer or series of layers from other nearby layers.
  • the Chinese patent application with publication number CN113004808A also discloses an ink composition that can obtain low dielectric materials, using a low boiling point fluorine-containing monomer as the main functional monomer of the ink. However, due to its low boiling point, It is easy to block the ink holes when the ink is sprayed at high temperature.
  • the main purpose of the present invention is to provide an ink composition, a packaging structure and a semiconductor device to solve the problems in the prior art that the dielectric constant of the packaging material is relatively high and the nozzle is easily blocked during the printing process.
  • an ink composition includes: a photocurable silicon-containing monomer component, a reactive diluent component and a photoinitiator component.
  • the ink composition is photocurable.
  • the silicon-containing monomer component includes any one or more compounds represented by the following structural formula I:
  • n is any integer from 0 to 50;
  • R 1 and R 2 are the same or different, and each is independently selected from a single bond, a substituted or unsubstituted C 1 to C 50 alkylene group, a substituted or unsubstituted C 3 to C 50 cycloalkylene group, substituted or unsubstituted C 1 to C 50 alkylene ether group, substituted or unsubstituted C 6 to C 50 arylene group, substituted or unsubstituted C Any one of 7 to C 50 aryl alkylene; X 1 , X 2 , X 3 , X 4 , X 5 , and C 1 to C 50 alkyl group, substituted or unsubstituted C 1 to C 50 alkyl ether group, substituted or unsubstituted C 1 to C 50 cycloalkyl group, substituted or unsubstituted C 1 to C 50 Alkyl sulfide group, substituted or unsubsti
  • * represents the binding position
  • R 3 is each independently selected from one of -F and -CF 3 .
  • R 1 and R 2 are each independently selected from: substituted or unsubstituted C 1 to C 10 alkylene and substituted or unsubstituted C 1 to C 10 Any one of the alkylene ether groups;
  • X 1 , X 2 , X 3 , X 4 , X 5 and Any one of 10 aryl groups and substituted or unsubstituted C 7 to C 11 aralkyl groups;
  • the photocurable silicon-containing monomer component is a combination of multiple compounds represented by structural formula I.
  • photocurable silicon-containing monomer component is selected from the compound structure shown below:
  • the reactive diluent component includes any one or more structures represented by structural formula V,
  • Y is selected from a single bond, a substituted or unsubstituted C 1 to C 50 alkylene group, a substituted or unsubstituted C 3 to C 50 cycloalkylene group, a substituted or unsubstituted C 1 to C 50 alkylene ether group, substituted or unsubstituted C 6 to C 50 arylene group, substituted or unsubstituted C 7 to C 50 aryl alkylene group, -N(R 11 )-R 12 - Any one; wherein, R 11 is any one of hydrogen, substituted or unsubstituted C 1 to C 50 alkyl, and R 12 is any one of substituted or unsubstituted C 1 to C 50 alkylene.
  • Z 1 and Z 2 are each independently selected from hydrogen, substituted or unsubstituted C 1 to C 50 alkyl group, substituted or unsubstituted C 1 to C 60 alkyl ether group, substituted or unsubstituted acrylic acid Any one of ester groups and substituted or unsubstituted C 2 to C 60 alkenyl ether groups, and at least one of Z 1 and Z 2 is represented by any one of structural formula VI,
  • R 4 is selected from any one of hydrogen and substituted or unsubstituted C 1 to C 50 alkyl groups
  • Y is selected from a substituted or unsubstituted C 1 to C 10 alkylene group, a substituted or unsubstituted C 1 to C 10 alkylene ether group, a substituted or unsubstituted C 6 to C 10 arylene group and Any one of substituted or unsubstituted C 7 to C 11 aryl alkylene.
  • the reactive diluent component includes any one or more selected from monofunctional reactive diluents, bifunctional reactive diluents and multifunctional reactive diluents;
  • the monofunctional reactive diluent includes selected from lauryl acrylate, ethoxyethoxyethyl acrylate, butyl acrylate, hydroxyethyl acrylate and isobornyl acrylate, ethoxylated tetrahydrofuran acrylate, methacrylate Any one or more of phosphate, 2-methyl-2-adamantyl acrylate and isobornyl methacrylate;
  • the bifunctional reactive diluent includes any one or more selected from ethylene glycol diacrylates, propylene glycol diacrylates and other glycol diacrylates;
  • the multifunctional reactive diluent includes selected from trimethylolpropane triacrylate, pentaerythritol triacrylate, trihydroxymethylpropane triol triacrylate, propoxylated trimethylolpropane triacrylate, Propoxylated pentaerythritol acrylate, di(trimethylolpropane)tetraacrylate, triethylene glycol dimethacrylate, long-chain aliphatic hydrocarbon glycidyl ether acrylate, dipentaerythritol hexaacrylate, diacetyl tripropylene glycol diacrylate, diethanol phthalate diacrylate, ethoxylated trihydroxymethylpropanetriol triacrylate, propoxylated trihydroxymethylpropanetriol triacrylate, propoxylated Any one or more of glycerol triacrylate, tris(2-hydroxyethyl)isocyanurate triacrylate, and ethoxylated neopentyl glycol
  • the photoinitiator component includes an initiator selected from the group consisting of benzoin and its derivatives, benzil and its derivatives, acetophenone derivatives, and ⁇ -hydroxyketone derivatives.
  • initiators selected from the group consisting of benzoin and its derivatives, benzil and its derivatives, acetophenone derivatives, and ⁇ -hydroxyketone derivatives.
  • initiators ⁇ -aminoketone derivative initiators, benzoylformate initiators, acylphosphorus oxide initiators, benzophenone initiators, thioxanthone initiators and anthraquinones and their derivatives Any one or more types of initiators.
  • the ink composition includes: 0.01 to 50% of a photocurable silicon-containing monomer component, 30 to 80% of a reactive diluent component, and 0.01 to 20% of a photoinitiator component;
  • the content of the photocurable silicon-containing monomer component is 15 to 50%
  • the content of the reactive diluent component is 40 to 80%
  • the content of the photoinitiator component is 1 to 10%.
  • the ink composition also includes an auxiliary component.
  • the auxiliary component is selected from any one or more of polymerization inhibitors, surfactants, antioxidants, defoaming agents, and leveling agents, and more Preferably, the content of auxiliary components is 0.01 to 5 wt%.
  • the viscosity of the ink composition at 25°C is 1 to 50 mPa ⁇ s.
  • an encapsulation structure includes an organic layer, and the organic layer is formed by photocuring using any of the above ink compositions.
  • a semiconductor device includes a functional structure and a packaging structure, wherein the packaging structure is the above-mentioned packaging structure.
  • the semiconductor device is any one of an electroluminescent device, a photoluminescent device, a lighting device, a light emitting diode, a solar cell, a thin film transistor and a photodetector.
  • the photocurable silicon-containing monomer component with the above structural formula I is used as the polymerized monomer.
  • the photocurable silicon-containing monomer component at least one of A 1 and A 2 is composed of Any one of the structural formulas II represents that the photocurable monomer component is a fluorine-substituted photocurable silicon-containing monomer.
  • This application uses fluorine-substituted silicon-containing monomers and reactive diluent-containing components in combination to form a free radical curing system.
  • This free radical curing system can effectively reduce the dielectric constant and increase the curing speed, and due to the application's
  • the fluorine-substituted silicon-containing monomer in the ink composition has a higher boiling point and is less volatile, thus avoiding clogging of ink holes during use, and can better meet the requirements for inkjet printing in the prior art.
  • the fluorine-substituted silicon-containing monomer of the present application is simple to prepare, the raw materials are cheap and easily available, and the production cost is low, making it easy to promote and apply.
  • substituted or unsubstituted refers to substitution by one or more substituents selected from: deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; Imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkylthio group; arylthio group; alkylsulfonyl group; silyl group; boron group; alkyl group; cycloalkyl group; alkenyl group ; Aryl; aralkyl; arylalkenyl; alkylaryl; alkylamino; aralkylamine; heteroarylamino; arylamine; arylphosphine; or containing N, O and At least one heterocyclic group of S may have no substituent, may be substituted by a substituent connected by two or more substituents among the exemplified substituents, or may have
  • substituted in which two or more substituents are attached may be a biphenyl group. That is, the biphenyl group can be an aryl group, or it can be interpreted as a substituent connecting two phenyl groups.
  • the dielectric constant of packaging materials commonly used in the prior art is relatively high, and it is difficult to meet the update and iteration needs of semiconductor devices.
  • some low dielectric constant ink compositions have also been disclosed, It still has various defects and is difficult to popularize and use.
  • the present application provides an ink composition, a packaging structure and a semiconductor device.
  • an ink composition includes: a photocurable silicon-containing monomer component, a reactive diluent component and a photoinitiator component.
  • the photocurable composition contains The silicon monomer component includes any one or more compounds represented by the following structural formula I:
  • n is any integer from 0 to 50;
  • R 1 and R 2 are the same or different, and each is independently selected from a single bond, a substituted or unsubstituted C 1 to C 50 alkylene group, a substituted or unsubstituted C 3 to C 50 cycloalkylene group, substituted or unsubstituted C 1 to C 50 alkylene ether group, substituted or unsubstituted C 6 to C 50 arylene group, substituted or unsubstituted C Any one of 7 to C 50 aryl alkylene; X 1 , X 2 , X 3 , X 4 , X 5 , and C 1 to C 50 alkyl group, substituted or unsubstituted C 1 to C 50 alkyl ether group, substituted or unsubstituted C 1 to C 50 cycloalkyl group, substituted or unsubstituted C 1 to C 50 Alkyl sulfide group, substituted or unsubsti
  • * represents the binding position
  • R 3 is each independently selected from one of -F and -CF 3 .
  • This application uses the photocurable silicon-containing monomer component with the above structural formula I as the polymerized monomer.
  • the photocurable silicon-containing monomer component at least one of A1 and A2 is composed of any of the structural formula II.
  • the photocurable monomer component is a fluorine-substituted photocurable silicon-containing monomer.
  • This application uses fluorine-substituted silicon-containing monomers and reactive diluent-containing components in combination to form a free radical curing system.
  • This free radical curing system can effectively reduce the dielectric constant and increase the curing speed, and due to the application's
  • the fluorine-substituted silicon-containing monomer in the ink composition has a higher boiling point and is less volatile, thus avoiding the need for Medium-blocking ink holes can better meet the requirements of inkjet printing in the existing technology.
  • the fluorine-substituted silicon-containing monomer of the present application is simple to prepare, the raw materials are cheap and easily available, and the production cost is low, making it easy to promote and apply.
  • n in structural formula I is any integer from 1 to 10
  • the obtained photocurable silicon-containing monomer component is relatively easy to prepare, and is more conducive to improving the photocuring rate and curing shrinkage of the ink composition.
  • the electrical constant is lower, which improves the overall performance of the ink composition.
  • R 1 and R 2 in structural formula I are each independently selected from: substituted or unsubstituted C 1 to C 10 alkylene and substituted or unsubstituted C 1 to C Any one of 10 alkylene ether groups, wherein the substituted or unsubstituted alkylene ether group is -OR 5 -, and R 5 is a substituted or unsubstituted C 1 to C 10 alkylene group A kind that can further improve the overall performance of the ink composition containing the photocurable monomer component.
  • X 1 , X 2 , X 3 , X 4 , X 5 , and X 6 in structural formula I are each independently selected from hydrogen, substituted or unsubstituted C 1 to C 10 Any one of an alkyl group, a substituted or unsubstituted C 6 to C 10 aryl group, and a substituted or unsubstituted C 7 to C 11 aralkyl group is beneficial to improving the photocuring rate and curing shrinkage of the ink composition. It has properties such as efficiency, light transmittance and power saving loss, and the source of compounds is relatively abundant.
  • a 1 and A 2 in the above structural formula I may be the same or different, and at least one of them is selected from the group represented in the following structural formula III or structural formula IV, that is, one of A 1 and A 2 is selected from the following structural formula III or The group represented in Structural Formula IV, or A 1 and A 2 are selected from any one or two of the groups represented in Structural Formula III or Structural Formula IV below:
  • a 1 and A 2 in structural formula I are selected from any one or two of the groups represented in structural formula III or structural formula IV, and the corresponding ink composition is It performs particularly well in terms of electrical constants and has good overall performance.
  • the above-mentioned photocurable silicon-containing monomer component may be a compound having the structure shown in Structural Formula I, or a combination of multiple compounds having the above-mentioned structures, or one or more compounds having the structure shown in Structural Formula I.
  • the photocurable silicon-containing monomer is selected from the compound structure shown below:
  • the above-mentioned reactive diluent component can be selected from photo-curable monomers in the prior art.
  • the reactive diluent component includes any one or more of the structures shown in structural formula V. ,
  • Y is selected from a single bond, a substituted or unsubstituted C 1 to C 50 alkylene group, a substituted or unsubstituted C 3 to C 50 cycloalkylene group, a substituted or unsubstituted C 1 to C 50 alkylene ether group, substituted or unsubstituted C 6 to C 50 arylene group, substituted or unsubstituted C 7 to C 50 aryl alkylene group, -N(R 11 )-R 12 - Any one; wherein, R 11 is any one of hydrogen, substituted or unsubstituted C 1 to C 50 alkyl, and R 12 is any one of substituted or unsubstituted C 1 to C 50 alkylene.
  • Z 1 and Z 2 are each independently selected from hydrogen, substituted or unsubstituted C 1 to C 50 alkyl group, substituted or unsubstituted C 1 to C 60 alkyl ether group, substituted or unsubstituted Any one of an acrylate group and a substituted or unsubstituted C 2 to C 60 alkenyl ether group, and at least one of Z 1 and Z 2 is represented by any one of the structural formula VI,
  • R 4 is selected from any one of hydrogen and substituted or unsubstituted C 1 to C 50 alkyl groups.
  • Y in structural formula V is selected from substituted or unsubstituted C 1 to C 10 alkylene groups, substituted or unsubstituted C 1 to C 10 alkylene ether groups, Any one of substituted or unsubstituted C 6 to C 10 arylene groups and substituted or unsubstituted C 7 to C 11 aryl alkylene groups is beneficial to further improving the photocuring performance of the ink composition.
  • the reactive diluent free radical monomer can be a monofunctional monomer, a bifunctional monomer, a multifunctional monomer or a mixture.
  • the "monofunctional” monomer refers to a monomer containing a photocurable functional group.
  • bifunctional monomers refer to monomers containing two photocurable functional groups
  • multifunctional monomers refer to monomers containing three or more photocurable functional groups.
  • the photocurable reactive diluent is a monomer containing two to four photocurable functional groups.
  • the reactive diluent may also be a mixture of monofunctional, difunctional, and multifunctional curable monomers.
  • the monofunctional reactive diluent monomer and the bifunctional reactive diluent monomer or the multifunctional reactive diluent monomer can be in a ratio of 1:0.1 to 1:10. Mixing within the range can better synergize with the photocurable silicon-containing monomer in the composition, and the photocuring effect is particularly good.
  • the above-mentioned monofunctional reactive diluent monomer can be a monofunctional (meth)acrylate of a monohydric alcohol or a polyhydric alcohol from C 1 to C 30 ; the bifunctional reactive diluent monomer can be from C 2 to C 30 .
  • Bifunctional (meth)acrylate of monohydric alcohol or polyhydric alcohol; the multifunctional reactive diluent monomer can be a multifunctional (meth)acrylate of monohydric alcohol or polyhydric alcohol from C 3 to C 30 .
  • the monofunctional reactive diluent includes alkyl acrylate, hydroxyl (meth)acrylate, (meth)acrylate with a cyclic structure or benzene ring, vinyl monomer, etc.
  • alkyl acrylate hydroxyl (meth)acrylate, (meth)acrylate with a cyclic structure or benzene ring, vinyl monomer, etc.
  • Specific examples include: lauryl acrylate (LA), ethoxyethoxyethyl acrylate (EOEOEA), butyl acrylate (BA), hydroxyethyl acrylate and isobornyl acrylate, ethoxylated tetrahydrofuran acrylate (THF(EO) )A) Any one or more of methacrylate phosphate, 2-methyl-2-adamantyl acrylate and isobornyl methacrylate.
  • LA lauryl acrylate
  • EEOEA ethoxyethoxyethyl acrylate
  • the bifunctional reactive diluent includes any one or more selected from ethylene glycol diacrylates, propylene glycol diacrylates and other glycol diacrylates, and the specific structure can be Examples: diethylene glycol diacrylate (DEGDA), triethylene glycol diacrylate (TEGDA), ethylene glycol diacrylate, polyethylene glycol (200) diacrylate [PEG (200) DA], polyethylene glycol diacrylate Ethylene glycol (400) diacrylate [PEG(400)DA], polyethylene glycol (600) diacrylate [PEG(600)DA], neopentyl glycol diacrylate, and propoxyneopentyl glycol Diacrylates, 1,6-hexanediol diacrylate (HDDA), 1,4-butanediol diacrylate (BDDA), 20 (ethoxy) bisphenol A diacrylate [BPA (EO) 20 DA], glycerol diacrylate (TPGDA) and decane
  • DEGDA diethylene glyco
  • the multifunctional reactive diluent includes trimethylolpropane triacrylate (TMPTA), pentaerythritol triacrylate (PETA), trihydroxymethylpropanetriol triacrylate (TMPTMA) , propoxylated trimethylolpropane triacrylate, propoxylated pentaerythritol acrylate, di(trimethylolpropane) tetraacrylate, triethylene glycol dimethacrylate, long-chain aliphatic hydrocarbons Glycidyl ether acrylate, dipentaerythritol hexaacrylate, tripropylene glycol diacrylate, diethanol diacrylate phthalate (PDDA), ethoxylated trihydroxymethylpropanetriol triacrylate [TMP( EO)TMA], propoxylated trihydroxymethylpropanetriol triacrylate [TMP(PO)TMA], Propoxylated glycerol triacrylate [G(PO)TA], tris
  • the photoinitiator components can be selected from the prior art.
  • the photoinitiator components include initiators selected from benzoin and its derivatives, benzil and its derivatives. initiators, acetophenone derivative initiators, ⁇ -hydroxyketone derivative initiators, ⁇ -aminoketone derivative initiators, benzoylformate initiators, acylphosphorus oxide initiators, Any one or more of benzophenone initiators, thioxanthone initiators, and anthraquinone and its derivatives initiators.
  • each component in the ink composition including the photocurable silicon-containing monomer component, the reactive diluent component and the photoinitiator component, can be determined according to the prior art.
  • the ink composition includes: 0.01 to 50% of the photocurable silicon-containing monomer component, 30 to 80% of the reactive diluent component, and 0.01 to 20% of the photoinitiator component, with this content
  • the ink composition has good comprehensive performance and is beneficial to cost control.
  • the content of the photocurable silicon-containing monomer component is 15% to 50%
  • the content of the reactive diluent component is 40% to 80%
  • the photoinitiator component is
  • the content of the agent component is 1 to 10%
  • the performance of the ink composition is better, especially the encapsulation structure formed has a lower dielectric constant, smaller dielectric loss, and more guaranteed encapsulation performance.
  • the ink composition of the present application can also selectively add organic and/or inorganic additives commonly used in the art, including (but not (limited to this) polymerization inhibitors, surfactants, antioxidants, defoaming agents, leveling agents, etc., which are easy for those skilled in the art to select according to their own product needs, and will not be described in detail here.
  • the content of the additive component is 0.01 to 5 wt%, which can exert the performance of the additive with better overall properties such as better dielectric constant, photo-curing efficiency, and light transmittance.
  • the ink composition includes 5 to 10 parts by weight of photocurable silicon-containing monomer components and 70 to 80 parts by weight of bifunctional active Diluent component, 5-10 parts by weight of photoinitiator and 1-5 parts by weight of auxiliary agent; alternatively, the ink composition includes 10-20 parts by weight of photo-curable silicon-containing monomer component, 60-70 parts by weight 20 to 30 parts by weight of a photocurable silicon-containing monomer component; , 50 to 60 parts by weight of a bifunctional reactive diluent component, 5 to 10 parts by weight of a photoinitiator and 1 to 5 parts by weight of an auxiliary agent; alternatively, the ink composition includes 30 to 40 parts by weight of a photocurable component.
  • Silicon monomer component 40-50 parts by weight of bifunctional reactive diluent component, 5-10 parts by weight of photoinitiator and 1-5 parts by weight of auxiliaries; alternatively, the ink composition includes 40-50 parts by weight The photocurable silicon-containing monomer component, 30 to 40 parts by weight of the bifunctional reactive diluent component, 5 to 10 parts by weight of the photoinitiator and 1 to 5 parts by weight of the auxiliary agent; alternatively, the ink composition includes 30 to 40 parts by weight of the photocurable silicon-containing monomer component, 40 to 50 parts by weight of the bifunctional reactive diluent component, and 10 to 15 parts by weight of the photoinitiator.
  • the above-mentioned ink composition has a relatively suitable viscosity.
  • the viscosity of the above-mentioned ink composition at 25°C is 1 to 50 mPa ⁇ s.
  • an encapsulation structure including an organic layer formed by photo-curing using any of the above-mentioned ink compositions.
  • the above-mentioned packaging structure uses an ink composition containing the above-mentioned photo-curable silicon-containing monomer component, the photo-curing rate is high and the curing shrinkage is low.
  • the formed organic layer not only has high light transmittance and reliable performance, but also has The very low dielectric constant can reduce the dielectric loss of the packaging structure and has excellent overall performance.
  • a semiconductor device including a functional structure and a packaging structure, wherein the packaging structure is the above-mentioned packaging structure.
  • the packaging structure of the semiconductor device provided by this application is formed by photo-curing the above-mentioned ink composition.
  • the photo-curing rate is high, the curing shrinkage rate is low, and the dielectric constant is low. Therefore, the packaging effect is more stable and reliable, and better Protecting the functional structures within the semiconductor device from water vapor and oxygen corrosion improves the reliability and service life of the OLED device.
  • the dielectric consumption is reduced, further improving the safety of the semiconductor device.
  • the above-mentioned semiconductor device is any one of an electroluminescent device, a photoluminescent device, a lighting device, a light-emitting diode, a solar cell, a thin film transistor, and a photodetector
  • the above-mentioned packaging structure is more effective.
  • the compound represented by formula 2 was thus prepared, denoted as A2, with a purity of 97% measured by HPLC, m/e: 464.16; elemental analysis: C 26 H 29 O 3 FSi 2 , calculated value C: 67.20, Si : 12.09, F: 4.09, O: 10.33, H: 6.29, measured value C: 67.33, Si: 12.05, F: 4.04, O: 10.29, H: 6.29.
  • the organic phase was collected and concentrated to obtain 178 g of the product, with a yield of 72%.
  • the compound represented by formula 3, designated A3 was prepared and had a purity of 92% as determined by HPLC. m/e: 494.14; elemental analysis: C 18 H 28 O 5 F 6 Si 2 , calculated value C: 43.71, Si: 11.36, F: 23.05, O: 16.17, H: 5.71, measured value C: 43.83, Si: 11.26, F: 23.04, O: 16.17, H: 5.70.
  • the residual solvent was removed by distillation, and 156g of the obtained compound was introduced into another 1L reaction vessel, and 200mL of toluene and After 200mL of n-heptane, add 175g of trifluoromethacrylic acid, 0.75g of p-methoxyphenol and 1.8g of cuprous chloride, then add 9.5g of catalyst p-toluenesulfonic acid, raise the temperature to 105°C and reflux for 16 hours.
  • the water produced by the reaction is fractionated through a water trap. The experiment monitored the reaction progress by detecting the acid value.
  • the compound represented by formula 3 was obtained, designated as A6, and had a purity of 96% as determined by HPLC. m/e: 556.15; elemental analysis: C 23 H 30 O 5 F 6 Si 2 , calculated value C: 49.63, Si: 10.09, F: 20.48, O: 14.37, H: 5.43, measured value C: 49.47, Si: 10.22, F: 20.63, O: 14.46, H: 5.52.
  • C is the length of the mold before curing
  • D is the length of the sample after UV curing.
  • the composition was applied to the glass substrate using a sprayer, followed by UV curing by irradiating 395 nm UV at 1000 mW/cm for 10 seconds, followed by placing in a 60°C oven for 1 h to completely cure the sample, thereby obtaining a size of 20 cm ⁇ 20 cm ⁇ 3 ⁇ m (width ⁇ length ⁇ thickness) sample.
  • A is the ratio of the intensity of the absorption peak near 1635 cm ⁇ 1 measured for the cured film to the intensity of the absorption peak near 1720 cm ⁇ 1
  • B is the ratio of the intensity of the absorption peak near 1635 cm ⁇ 1 measured for the composition for encapsulation.
  • the photocurable composition is inkjet printed on the substrate, and then irradiated under 395nm UV light of 50-300mW/ cm2 for 60s and placed in an 80°C oven for 30min to form a film with a uniform thickness of about 10 ⁇ m. .
  • a capacitor is formed by inserting a film sample between two electrodes (silver), then measuring its capacitance, and calculating the dielectric constant based on the measurement results.
  • two electrodes are mounted on a test fixture that holds a dielectric material.
  • C p is the equivalent parallel capacitance (F) of the test film
  • D is the loss tangent
  • t m is the average thickness of the test film sample (m)
  • A is the surface area of the electrode (m 2 )
  • d is the diameter of the electrode.
  • the photocurable composition was inkjet printed on the substrate, and then irradiated under 395nm UV light of 50-300mW/ cm2 for 60s and placed in an 80°C oven for 30min to make a 10cm ⁇ 10cm ⁇ 5 ⁇ m (width ⁇ length ⁇ thickness) film.
  • a UV-visible spectrophotometer test system (Carry 5000, manufactured by Agilent Technologies Co., Ltd., USA) was used to test the light transmittance of the organic encapsulation film in the visible light range of 380-780 nm.
  • Inkjet heads are based on piezoelectric material (PZT), which can be caused to move by the application of an electric field.
  • PZT piezoelectric material
  • Ink channels composed of piezoelectric walls can eject small droplets of ink based on electrical signals applied to electrodes on the walls. Images of the droplets were captured using a JetXPert ink-viewing instrument at fixed time intervals of 10 microseconds ( ⁇ sec).
  • the viscosity of the sample was measured using a plate rheometer at a temperature of 25°C and a shear rate of 10 r/s.
  • the organic encapsulated ink composition made from the photocurable composition incorporating the fluorine-containing silicon-containing monomer in Examples A to E has significant differences in water vapor transmittance, cured volume shrinkage, light transmittance, and glass transition temperature. Excellent performance in properties such as heat resistance and dielectric constant, especially the dielectric constant surpasses the fluorine-free ink composition (test comparative examples 1-3); Comparative Examples 4 and 5 due to the addition of low boiling point monomers, Although the dielectric constant is low, it is easy to volatilize during the inkjet process and cause hole blocking.
  • the photocurable monomer component used in this application is a fluorine-substituted photocurable silicon-containing monomer
  • the fluorine-substituted photocurable silicon-containing monomer is Silicon monomers and reactive diluent-containing components are used together to form a free radical curing system.
  • This free radical curing system can effectively reduce the dielectric constant and increase the curing speed, and due to the fluorine substitution in the ink composition of the present application,
  • the silicon-containing monomer has a higher boiling point and is less volatile, which avoids clogging of ink holes during use and can better meet the requirements for inkjet printing in the existing technology.
  • the fluorine-substituted silicon-containing monomer of the present application is simple to prepare, has cheap and easily available raw materials, and has low production cost, and can well meet the packaging requirements of existing electronic devices such as OLED devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明提供了一种墨水组合物、封装结构和半导体器件。该墨水组合物包括:可光固化含硅单体组分、活性稀释剂组分和光引发剂组分,可光固化含硅单体组分包括具有如下结构式(I)所示化合物中的任意一种或者多种:应用本发明的技术方案,将氟取代的含硅单体与含活性稀释剂组分进行配合使用,可以形成自由基固化体系,该自由基固化体系可以有效地降低介电常数,提高固化速度,并且由于本申请的墨水组合物中该氟取代的含硅单体沸点较高,不易挥发,避免了在使用过程中堵塞墨孔,可更好地满足现有技术中对喷墨打印的要求。另外,本申请的氟取代的含硅单体制备简单,且原料廉价易得,生产成本较低,便于推广应用。

Description

墨水组合物、封装结构和半导体器件 技术领域
本发明涉及有机封装材料技术领域,具体而言,涉及一种墨水组合物、封装结构和半导体器件。
背景技术
有机电致发光器件(Organic Light-Emitting Diodes,OLED)因具有主动发光、驱动电压低、发光亮度高、发光效率高、发光视角宽、响应速度快、超薄超轻、低成本、低功耗、工作温度范围广、构造简单和可用于挠曲性面板等优异特性,而成为新一代显示技术的主流和未来显示的发展方向,其在各类智能终端领域的应用潜力巨大。
目前OLED器件的产业化发展及应用受到稳定性不足、可靠性欠缺和使用寿命短等问题的制约,主要是因为OLED器件中的材料和结构对水汽和氧气较为敏感,一旦接触水氧,器件的发光效率、工作性能、稳定性和使用寿命都会迅速下降。薄膜封装通过在OLED器件基板上堆叠沉积致密薄膜的方式将其封装,能够有效阻隔水汽和氧气的侵入,确保了OLED器件的可靠性和使用寿命。
OLED器件封装的复杂性增加对它们所使用的材料的要求越来越苛刻。具体地讲,对于应用于封装的聚合物材料的要求越来越严格。例如,应用于光学器件中作为粘合剂、保护层、隔层等的有机聚合物膜材是朝着重量轻、厚度薄和小型化的需求发展。同时,由于成品结构变得更加复杂,对这些层的物理需求相应地有增加。现有的薄膜封装厚度为1微米的隔层不仅需要平坦化功能并且不能含间隙和孔洞,以便提供适当的间隔功能。由于层与层之间减薄,各层之间的厚度及其成型工艺更精确,这需要精确且一致的喷墨打印方式沉积有机层。另外,薄隔层在多层光学和电子器件中履行的另外一个功能是电绝缘,以便将一层或一系列层与其他附近的层电隔离。
5G通讯时代的到来和各类电子终端应用的更新迭代,对于半导体显示器件的封装材料的功能特性和封装效果也提出了更加严苛和全面的要求,具有优异的介电性能如低介电常数和低介电损耗的有机薄膜封装材料正逐渐成为发展趋势。
3M公司申请号为CN201880082492.X的专利描述了利用单体包含具有12个或更多个碳原子的支链(甲基)丙烯酸烷基酯单体在固化时,形成在1兆赫兹下具有小于或等于3.0的介电常数的非晶态光学清晰层,但全烷链的丙烯酸酯化合物固化成膜时呈现的硬度往往不够。
SDI公司在申请号为TW202130677A的专利中描述了利用环戊二聚体改性的(甲基)丙烯酸单体和含苯基硅烷的(甲基)丙烯酸功能单体加上其他辅料复配INK组合物得到了较低介电常数的材料,但含苯基硅烷往往粘度较大且颜色不容易做到无色透明。
LG公司在申请号为US20220002569的专利中描述了利用二环和三环结构的(甲基)丙烯酸单体加上其他辅料复配INK组合物得到了较低介电常数的材料,但其专利除了报道介电常数数据之外,未报道其他数据。
申请号为CN20200109954.X的专利中描述了利用(甲基)丙烯酯单体衍生物添加低介电的PIB胶低聚物的形式,得到在1兆赫兹下具有小于或等于3.0的介电常数的聚合物层。由于其粘度较大,无法使用喷墨打印工艺方式形成有机层。
此外,公开号为CN113004808A的中国专利申请也披露了一种可得到低介电材料的墨水组合物,采用低沸点含氟单体作为墨水的主要功能单体的形式,但由于其沸点较低,在墨水进行高温喷墨时易堵塞墨孔。
发明内容
本发明的主要目的在于提供一种墨水组合物、封装结构和半导体器件,以解决现有技术中封装材料介电常数偏高和印刷过程中易堵塞喷头的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种墨水组合物,该墨水组合物包括:可光固化含硅单体组分、活性稀释剂组分和光引发剂组分,可光固化含硅单体组分包括具有如下结构式I所示化合物中的任意一种或者多种:
式中,n是0~50的任意一个整数;R1和R2相同或不同,且各自独立地选自单键、取代或未取代的C1~C50的亚烷基、取代或未取代的C3~C50的亚环烷基、取代或未取代的C1~C50的亚烷基醚基、取代或未取代的C6~C50的亚芳基、取代或未取代的C7~C50的芳基亚烷基中的任意一种;X1、X2、X3、X4、X5、X6相同或不同,且各自独立地选自氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C50的烷基醚基、取代或未取代的C1~C50的环烷基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C3~C50的杂芳基、取代或未取代的C7~C50的芳烷基、-NR6R7中的任意一种,R6、R7为C1~C50的烷基;A1和A2相同或不同,且各自独立地选自:氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C7~C50的芳烷基、-NR8R9、取代或未取代的丙烯酸酯基、取代或未取代的C3~C60环氧基烷基、取代或未取代的C2~C60环氧基、取代或未取代的C2~C60的烯基醚基中的任意一种,R8、R9为C1~C50的烷基;并且可光固化含硅单体组分中,A1和A2中至少有一个由结构式II中的任意一种表示:
其中,*表示结合位置,R3各自独立地选自-F、-CF3中的一种。
进一步地,n是1~10的任意一个整数,优选R1和R2各自独立地选自:取代或未取代的C1~C10的亚烷基和取代或未取代的C1~C10的亚烷基醚基中的任意一种;
优选的,X1、X2、X3、X4、X5、X6各自独立地选自氢、取代或未取代的C1~C10的烷基、取代或未取代的C6~C10的芳基和取代或未取代的C7~C11的芳烷基中的任意一种;
更优选的,可光固化含硅单体组分为多种具有结构式I所示化合物的组合。
进一步地,可光固化含硅单体组分选自如下所示的化合物结构:
进一步地,活性稀释剂组分包括具有结构式V所示结构中的任意一种或多种,
式中,Y选自单键、取代或未取代的C1到C50的亚烷基、取代或未取代的C3到C50的亚环烷基、取代或未取代的C1到C50的亚烷基醚基、取代或未取代的C6到C50的亚芳基、取代或未取代的C7到C50的芳基亚烷基、-N(R11)-R12-中的任意一种;其中,R11是氢、取代或未取代的C1到C50烷基中的任意一种,R12是取代或未取代的C1到C50亚烷基中的任意一种;Z1、Z2各自独立地选自氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的丙烯酸酯基、取代或未取代的C2~C60的烯基醚基中的任意一种,并且Z1、Z2中的至少一个由结构式VI中的任意一个表示,
其中,R4选自氢、取代或未取代的C1~C50的烷基中的任意一种;
优选的,Y选自取代或未取代的C1到C10亚烷基、取代或未取代的C1到C10亚烷基醚基、取代或未取代的C6到C10亚芳基和取代或未取代的C7到C11芳基亚烷基中的任意一种。
进一步地,活性稀释剂组分包括选自单官能活性稀释剂、双官能活性稀释剂和多官能活性稀释剂中的任意一种或者多种;
可选的,单官能活性稀释剂包括选自丙烯酸月桂酯、丙烯酸乙氧基乙氧基乙酯、丙烯酸丁酯、丙烯酸羟乙酯和丙烯酸异冰片酯、乙氧化四氢呋喃丙烯酸酯、甲基丙烯酸酯磷酸酯、2-甲基-2-金刚烷基丙烯酸酯和甲基丙烯酸异冰片酯中的任意一种或者多种;
可选的,双官能活性稀释剂包括选自乙二醇类二丙烯酸酯、丙二醇类二丙烯酸酯和其他二醇类二丙烯酸酯中的任意一种或者多种;
可选的,多官能活性稀释剂包括选自三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化三羟甲基丙烷三丙烯酸酯、丙氧基化季戊四醇丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、二缩三乙二醇双甲基丙烯酸酯、长链脂肪烃缩水甘油醚丙烯酸酯、双季戊四醇六丙烯酸酯、二缩三丙二醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯、乙氧基化三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化丙三醇三丙烯酸酯、三(2-羟乙基)异氰脲酸三丙烯酸酯、乙氧基化新戊二醇甲氧基单丙烯酸酯中的任意一种或者多种。
进一步地,光引发剂组分包括选自苯偶姻及其衍生物类引发剂、苯偶酰及其衍生物类引发剂、苯乙酮衍生物类引发剂、α-羟基酮衍生物类引发剂、α-氨基酮衍生物类引发剂、苯甲酰甲酸酯类引发剂、酰基磷氧化物类引发剂、二苯甲酮类引发剂、硫杂蒽酮类引发剂和蒽醌及其衍生物类引发剂中的任意一种或者多种。
进一步地,以重量百分比计,墨水组合物包括:0.01~50%的可光固化含硅单体组分,30~80%的活性稀释剂组分,0.01~20%的光引发剂组分;优选地,以重量百分比计,可光固化含硅单体组分的含量为15~50%,活性稀释剂组分的含量为40~80%,光引发剂组分的含量为1~10%。
进一步地,墨水组合物还包括助剂组分,优选的,助剂组分选自阻聚剂、表面活性剂、抗氧化剂、消泡剂、流平剂中的任意一种或多种,更优选的,助剂组分的含量为0.01~5wt%。
进一步地,墨水组合物在25℃下的粘度为1~50mPa·s。
根据本发明的另一个方面,提供了一种封装结构,该封装结构包括有机层,有机层采用上述任一种的墨水组合物经光固化形成。
根据本发明的又一个方面,提供了一种半导体器件,该半导体器件包括功能结构和封装结构,其中,封装结构为上述的封装结构。
进一步地,半导体器件为电致发光器件、光致发光器件、照明设备、发光二极管、太阳能电池、薄膜晶体管和光探测器中的任意一种。
应用本发明的技术方案,采用具有上述结构式I的可光固化含硅单体组分作为聚合的单体,该可光固化含硅单体组分中,A1和A2中至少有一个由结构式II中的任意一种表示,即可光固化单体组分为氟取代的可光固化含硅单体。本申请将氟取代的含硅单体与含活性稀释剂组分进行配合使用,可以形成自由基固化体系,该自由基固化体系可以有效地降低介电常数,提高固化速度,并且由于本申请的墨水组合物中该氟取代的含硅单体沸点较高,不易挥发,避免了在使用过程中堵塞墨孔,可更好地满足现有技术中对喷墨打印的要求。另外,本申请的氟取代的含硅单体制备简单,且原料廉价易得,生产成本较低,便于推广应用。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
在本申请中,术语“取代或非取代的”指的是通过选自以下的一个或更多个取代基进行取代:氘;卤素基团;腈基;硝基;羟基;羰基;酯基;酰亚胺基;氨基;氧化膦基;烷氧基;芳氧基;烷基硫基;芳基硫基;烷基磺酰基;甲硅烷基;硼基;烷基;环烷基;烯基;芳基;芳烷基;芳烯基;烷基芳基;烷基胺基;芳烷基胺基;杂芳基胺基;芳基胺基;芳基膦基;或包含N、O和S的至少一者的杂环基,或者没有取代基,或者通过所例示的取代基中的两个或更多个取代基相连接的取代基进行取代,或者没有取代基。例如,术语“两个或更多个取代基相连接的取代基”可以为联苯基。即联苯基可以为芳基,或者可以解释为两个苯基相连接的取代基。
如本申请背景技术所分析的,现有技术中常用的的封装材料的介电常数偏高,已难以满足半导体器件的更新迭代需求,虽然也披露了一些低介电常数的墨水组合物,但是仍然具有各种各样的缺陷,难以推广使用,针对这种情况,本申请提供了一种墨水组合物、封装结构和半导体器件。
根据本申请的一种典型的实施方式,提供了一种墨水组合物,该墨水组合物包括:可光固化含硅单体组分、活性稀释剂组分和光引发剂组分,可光固化含硅单体组分包括具有如下结构式I所示化合物中的任意一种或者多种:
式中,n是0~50的任意一个整数;R1和R2相同或不同,且各自独立地选自单键、取代或未取代的C1~C50的亚烷基、取代或未取代的C3~C50的亚环烷基、取代或未取代的C1~C50的亚烷基醚基、取代或未取代的C6~C50的亚芳基、取代或未取代的C7~C50的芳基亚烷基中的任意一种;X1、X2、X3、X4、X5、X6相同或不同,且各自独立地选自氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C50的烷基醚基、取代或未取代的C1~C50的环烷基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C3~C50的杂芳基、取代或未取代的C7~C50的芳烷基、-NR6R7中的任意一种,R6、R7为C1~C50的烷基;A1和A2相同或不同,且各自独立地选自:氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C7~C50的芳烷基、-NR8R9、取代或未取代的丙烯酸酯基、取代或未取代的C3~C60环氧基烷基、取代或未取代的C2~C60环氧基、取代或未取代的C2~C60的烯基醚基中的任意一种,R8、R9为C1~C50的烷基;并且可光固化含硅单体组分中,A1和A2中至少有一个由结构式II中的任意一种表示:
其中,*表示结合位置,R3各自独立地选自-F、-CF3中的一种。
本申请采用具有上述结构式I的可光固化含硅单体组分作为聚合的单体,该可光固化含硅单体组分中,A1和A2中至少有一个由结构式II中的任意一种表示,即可光固化单体组分为氟取代的可光固化含硅单体。本申请将氟取代的含硅单体与含活性稀释剂组分进行配合使用,可以形成自由基固化体系,该自由基固化体系可以有效地降低介电常数,提高固化速度,并且由于本申请的墨水组合物中该氟取代的含硅单体沸点较高,不易挥发,避免了在使用过程 中堵塞墨孔,可更好地满足现有技术中对喷墨打印的要求。另外,本申请的氟取代的含硅单体制备简单,且原料廉价易得,生产成本较低,便于推广应用。
当结构式I中的n是1~10的任意一个整数时,得到的可光固化含硅单体组分,制备相对容易,且更有利于改善墨水组合物的光固化速率和固化收缩率,介电常数较低,提高墨水组合物的综合性能。
在本申请的一些优选的实施例中,结构式I中的R1和R2各自独立地选自:取代或未取代的C1~C10的亚烷基和取代或未取代的C1~C10的亚烷基醚基中的任意一种,其中取代或未取代的亚烷基醚基,即-O-R5-,且R5是取代或未取代的C1~C10的亚烷基中的一种,能够进一步改善含有该可光固化单体组分的墨水组合物的综合性能。
在本申请的一些优选的实施例中,结构式I中的X1、X2、X3、X4、X5、X6各自独立地选自氢、取代或未取代的C1~C10的烷基、取代或未取代的C6~C10的芳基和取代或未取代的C7~C11的芳烷基中的任意一种,有利于提高墨水组合物的光固化速率、固化收缩率、透光率和节电损耗等性能,且化合物来源较为丰富。
上述结构式I中的A1和A2可以相同也可以不同,且至少有一个选自如下结构式III或者结构式IV中所表示的基团,即A1和A2中的一个选自如下结构式III或者结构式IV中所表示的基团,或者A1和A2均选自如下结构式III或者结构式IV中所表示的基团中的任意一种或者两种:
在本申请的一些优选的实施例中,结构式I中的A1和A2均选自结构式III或者结构式IV中所表示的基团中的任意一种或者两种,相应的墨水组合物在介电常数方面表现尤佳,且具有较好的综合性能。
上述可光固化含硅单体组分可以是具有结构式I所示结构的一种化合物,也可以是具有上述结构的多种化合物的组合,还可以是具有结构式I所示结构的一种或多种化合物与现有技术中光固化含硅单体组分的组合。
在本申请的一些实施例中,为了进一步降低墨水组合物的介电常数,提高其综合性能,可光固化含硅单体选自如下所示的化合物结构:
上述活性稀释剂组分可以从现有技术中的光固化单体中进行选择,在本申请的一些实施例中,活性稀释剂组分包括具有结构式V所示结构中的任意一种或多种,
式中,Y选自单键、取代或未取代的C1到C50的亚烷基、取代或未取代的C3到C50的亚环烷基、取代或未取代的C1到C50的亚烷基醚基、取代或未取代的C6到C50的亚芳基、取代或未取代的C7到C50的芳基亚烷基、-N(R11)-R12-中的任意一种;其中,R11是氢、取代或未取代的C1到C50烷基中的任意一种,R12是取代或未取代的C1到C50亚烷基中的任意一种;Z1、Z2各自独立地选自氢、取代或未经取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的丙烯酸酯基、取代或未取代的C2~C60的烯基醚基中的任意一种,并且Z1、Z2中的至少一个由结构式VI中的任意一个表示,
其中,R4选自氢、取代或未取代的C1~C50的烷基中的任意一种。
在一些优选的实施例中,结构式V中的Y选自经取代或未经取代的C1到C10亚烷基、经取代或未经取代的C1到C10亚烷基醚基、经取代或未经取代的C6到C10亚芳基和经取代或未经取代的C7到C11芳基亚烷基中的任意一种,有利于进一步改善墨水组合物的光固化性能。
具体来讲,活性稀释剂自由基单体可以是单官能单体、双官能单体、多官能单体或者混合物,所述的“单官能”单体是指含有一个可光固化官能团的单体,同理,“双官能”单体是指含有两个可光固化官能团的单体,“多官能”单体是指含有三个或三个以上可光固化官能团的单体。在本申请的一些优选的实施例中,光固化活性稀释剂为含有两个到四个可光固化官能团的单体。活性稀释剂也可以是单官能团可固化单体、双官能团可固化单体和多官能团可固化单体的混合物。示例性的,但不构成对本申请的限制,在墨水组合物中,单官能活性稀释剂单体和双官能活性稀释剂单体或者多官能活性稀释剂单体可以按1∶0.1至1∶10的范围内混合,可更好的与组合物中的可光固化含硅单体发生协同作用,光固化效果尤佳。
举例而言,上述单官能活性稀释剂单体可以是C1到C30的一元醇或多元醇的单官能(甲基)丙烯酸酯;双官能活性稀释剂单体可以是C2到C30的一元醇或多元醇的双官能(甲基)丙烯酸酯;多官能活性稀释剂单体可以是C3到C30的一元醇或多元醇的多官能(甲基)丙烯酸酯。
在本申请的一些实施例中,单官能活性稀释剂包括丙烯酸烷基酯,(甲基)丙烯酸羟基酯,带有环状结构或苯环的(甲基)丙烯酸酯和乙烯基单体等,具体的可以列举:丙烯酸月桂酯(LA)、丙烯酸乙氧基乙氧基乙酯(EOEOEA)丙烯酸丁酯(BA)、丙烯酸羟乙酯和丙烯酸异冰片酯、乙氧化四氢呋喃丙烯酸酯(THF(EO)A)甲基丙烯酸酯磷酸酯、2-甲基-2-金刚烷基丙烯酸酯和甲基丙烯酸异冰片酯中的任意一种或者多种。
在本申请的一些实施例中,双官能活性稀释剂包括选自乙二醇类二丙烯酸酯、丙二醇类二丙烯酸酯和其他二醇类二丙烯酸酯中的任意一种或者多种,具体结构可以列举:二乙二醇二丙烯酸酯(DEGDA)、三乙二醇二丙烯酸酯(TEGDA)、乙二醇二丙烯酸酯、聚乙二醇(200)二丙烯酸酯[PEG(200)DA]、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、聚乙二醇(600)二丙烯酸酯[PEG(600)DA]、新戊二醇二丙烯酸酯和丙氧基新戊二醇二丙烯酸酯,1,6-己二醇二丙烯酸酯(HDDA)、1,4-丁二醇二丙烯酸酯(BDDA)、20(乙氧基)双酚A二丙烯酸酯[BPA(EO)20DA]、丙三醇二丙烯酸酯(TPGDA)和癸二醇二丙烯酸酯。
在本申请的一些实施例中,多官能活性稀释剂包括选自三羟甲基丙烷三丙烯酸酯(TMPTA)、季戊四醇三丙烯酸酯(PETA)、三羟基甲基丙烷三醇三丙烯酸酯(TMPTMA)、丙氧基化三羟甲基丙烷三丙烯酸酯、丙氧基化季戊四醇丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、二缩三乙二醇双甲基丙烯酸酯、长链脂肪烃缩水甘油醚丙烯酸酯、双季戊四醇六丙烯酸酯、二缩三丙二醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯(PDDA)、乙氧基化三羟基甲基丙烷三醇三丙烯酸酯[TMP(EO)TMA]、丙氧基化三羟基甲基丙烷三醇三丙烯酸酯[TMP(PO)TMA]、 丙氧基化丙三醇三丙烯酸酯[G(PO)TA]、三(2-羟乙基)异氰脲酸三丙烯酸酯和乙氧基化新戊二醇甲氧基单丙烯酸酯[TMP(PO)MEDA]中的任意一种或者多种。
上述光引发剂组分可以从现有技术中进行选择,在本申请的一些实施例中,光引发剂组分包括选自苯偶姻及其衍生物类引发剂、苯偶酰及其衍生物类引发剂、苯乙酮衍生物类引发剂、α-羟基酮衍生物类引发剂、α-氨基酮衍生物类引发剂、苯甲酰甲酸酯类引发剂、酰基磷氧化物类引发剂、二苯甲酮类引发剂、硫杂蒽酮类引发剂和蒽醌及其衍生物类引发剂中的任意一种或者多种。
墨水组合物中包括可光固化含硅单体组分、活性稀释剂组分和光引发剂组分在内的各个组分的含量可以根据现有技术来确定,在本申请的一些实施例中,以重量百分比计,墨水组合物包括:0.01~50%的可光固化含硅单体组分,30~80%的活性稀释剂组分,0.01~20%的光引发剂组分,具有该含量组成的墨水组合物综合性能较好,且有利于成本的控制。在一些优选的实施例中,墨水组合物中,以重量百分比计,可光固化含硅单体组分的含量为15~50%,活性稀释剂组分的含量为40~80%,光引发剂组分的含量为1~10%,墨水组合物的性能更佳,尤其是形成的封装结构的介电常数更低,介电损耗较小,封装性能更有保障。
在一种优选的实施方式中,除了上述组分外,根据产品应用环境的需要,本申请的墨水组合物还可以选择性的添加本领域常用的有机和/或无机助剂,包括(但不限于此)阻聚剂、表面活性剂、抗氧化剂、消泡剂、流平剂等,这对本领域技术人员而言是容易根据自身产品需求进行选择的,在此不多赘述。作为优选,助剂组分的含量为0.01~5wt%,可以在更好的介电常数、光固化效率、透光率等综合性能较优的情况下,发挥助剂的性能。
为了进一步提升墨水组合物的上述性能,在本申请的一些优选的实施例中,墨水组合物包括5~10重量份的可光固化含硅单体组分、70~80重量份的双官能活性稀释剂组分、5~10重量份的光引发剂和1~5重量份的助剂;或者,墨水组合物包括10~20重量份的可光固化含硅单体组分、60~70重量份的双官能活性稀释剂组分、5~10重量份的光引发剂和1~5重量份的助剂;或者,墨水组合物包括20~30重量份的可光固化含硅单体组分、50~60重量份的双官能活性稀释剂组分、5~10重量份的光引发剂和1~5重量份的助剂;或者,墨水组合物包括30~40重量份的可光固化含硅单体组分、40~50重量份的双官能活性稀释剂组分、5~10重量份的光引发剂和1~5重量份的助剂;或者,墨水组合物包括40~50重量份的可光固化含硅单体组分、30~40重量份的双官能活性稀释剂组分、5~10重量份的光引发剂和1~5重量份的助剂;或者,墨水组合物包括30~40重量份的可光固化含硅单体组分、40~50重量份的双官能活性稀释剂组分、10~15重量份的光引发剂。
上述墨水组合物具有较为适宜的粘度,为了更方便的应用,比如典型的喷墨印刷方式,上述墨水组合物在25℃下的粘度为1~50mPa·s。
根据本申请的另一种典型的实施方式,提供了一种封装结构,包括有机层,该有机层采用上述任一种的墨水组合物经光固化形成。
上述封装结构由于采用了含有上述可光固化含硅单体组分的墨水组合物,光固化率高,且固化收缩率较低,形成的有机层不仅透光率较高,性能可靠,而且具有很低的介电常数,能够减少封装结构的介电损耗,综合性能极佳。
根据本申请的又一种典型的实施方式,提供了一种半导体器件,包括功能结构和封装结构,其中的封装结构为上述的封装结构。
本申请提供的半导体器件,其封装结构采用了上述的墨水组合物经光固化形成,光固化率高,且固化收缩率较低,介电常数低,因而封装效果更为稳定可靠,更好的保护半导体器件内的功能结构免遭水汽和氧气的侵蚀,提升了OLED器件的可靠性和使用寿命,同时由于封装结构的介电常数较低,降低介电消耗,进一步提高半导体器件的安全性。
作为优选,上述半导体器件为电致发光器件、光致发光器件、照明设备、发光二极管、太阳能电池、薄膜晶体管和光探测器中的任意一种时,采用上述的封装结构效果更佳。
下面将结合实施例和对比例进一步说明本申请可以实现的有益效果。
制备实施例
实施例1化合物1-1(A1)的制备
在2000mL具有冷却管和搅拌器的烧瓶中,放入800mL甲苯、67g四甲基二硅氧烷以及240g烯丙基醇,接着氮气吹扫60min。在这之后,将0.0063g铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷放入烧瓶中,将烧瓶的温度增加到70℃,接着搅拌5h。通过蒸馏去除残留溶剂,再将125g所得化合物引入到1L反应容器中,加入200mL甲苯和200mL正庚烷之后,向其中添加112.5g 2-氟丙烯酸,加入对甲氧基苯酚0.75g和氯化亚铜1.8g,接着加入催化剂对甲苯磺酸9.5g,升温至105℃回流反应16h,通过分水器分馏反应生成的水。实验通过检测酸值监测反应进程,停止反应后,通过蒸馏去除残留溶剂,500mL 1%NaOH水溶液洗涤,去离子水洗涤三次后收集有机相,浓缩即得到产物147.5g,收率为75%,由此制备出由式1表示的可光固化含硅单体化合物,记为A1,HPLC测定其具有98%的纯度。m/e:394.14;元素分析:C16H28O5F2Si2,计算值C:48.71,Si:14.24,F:9.63,O:20.27,H:7.15,实测值C:48.77,Si:14.26,F:9.62,O:20.21,H:7.14。
[式1]
实施例2化合物1-2(A2)的制备
在500mL具有冷却管和搅拌器的烧瓶中,加入200mL二氯甲烷、三苯基硅醇69g和三乙胺36g,将烧瓶移至低温反应槽中,降温至0℃,缓慢滴加43g二甲基-3-氯丙基氯代硅烷,保 持温度在0-5℃反应16h后停止反应。过滤掉白色固体,收集滤液,浓缩即得第一步中间体。再将103g所得化合物转移至到1000mL三口瓶中,加入阻聚剂氯化亚铜5g、对甲氧基苯酚1.2g和溶剂甲苯500mL,接着加入2-氟丙烯酸钠盐33.6g,升温至110℃回流反应24h。过滤收集有机相,通过蒸馏去除甲苯溶剂,柱色谱分离(流动相-石油醚∶乙酸乙酯=10∶1)得到2-氟丙烯酸酯基封端的含硅化合物83.5g,收率为72%,由此制备出由式2表示的化合物,记为A2,HPLC测得其具有97%的纯度,m/e:464.16;元素分析:C26H29O3FSi2,计算值C:67.20,Si:12.09,F:4.09,O:10.33,H:6.29,实测值C:67.33,Si:12.05,F:4.04,O:10.29,H:6.29。
[式2]
实施例3化合物1-3(A3)的制备
在2000mL具有冷却管和搅拌器的烧瓶中,放入800mL甲苯、67g四甲基二硅氧烷以及240g烯丙基醇,接着氮气吹扫60min。在这之后,将0.0063g铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷放入烧瓶中,将烧瓶的温度增加到70℃,接着搅拌5h。通过蒸馏去除残留溶剂,再将125g所得化合物引入到1L反应容器中,加入200mL甲苯和200mL正庚烷之后,向其中添加175g三氟甲基丙烯酸,加入对甲氧基苯酚0.75g和氯化亚铜1.8g,接着加入催化剂对甲苯磺酸9.5g,升温至105℃回流反应16h,通过分水器分馏反应生成的水。实验通过检测酸值监测反应进程,停止反应后,通过蒸馏去除残留溶剂,500mL 1%NaOH水溶液洗涤,去离子水洗涤三次后收集有机相,浓缩即得到产物178g,收率为72%,由此制备出由式3表示的化合物,记为A3,HPLC测定其具有92%的纯度。m/e:494.14;元素分析:C18H28O5F6Si2,计算值C:43.71,Si:11.36,F:23.05,O:16.17,H:5.71,实测值C:43.83,Si:11.26,F:23.04,O:16.17,H:5.70。
[式3]
实施例4化合物1-4(A4)的制备
在2000mL具有冷却管和搅拌器的烧瓶中,放入800mL甲苯、104g 1,1,5,5-四甲基-3,3-二苯基三硅氧烷(上海石洋化工)以及240g烯丙基醇,接着氮气吹扫60min。在这之后,将0.0092g铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷放入烧瓶中,将烧瓶的温度增加到70℃, 接着搅拌5h。通过蒸馏去除残留溶剂,再将162g所得化合物引入到1L反应容器中,加入200mL甲苯和200mL正庚烷之后,向其中添加112.5g 2-氟丙烯酸,加入对甲氧基苯酚0.75g和氯化亚铜1.8g,接着加入催化剂对甲苯磺酸9.5g,升温至105℃回流反应16h,通过分水器分馏反应生成的水。实验通过检测酸值监测反应进程,停止反应后,通过蒸馏去除残留溶剂,500mL 1%NaOH水溶液洗涤,去离子水洗涤三次后收集有机相,浓缩即得到产物147.4g,收率为63%,由此制备出由式4表示的化合物,记为A4,HPLC测定其具有98%的纯度。m/e:468.16;元素分析:C18H34O6F2Si3,计算值C:46.13,Si:17.98,F:8.11,O:20.48,H:7.31,实测值C:48.77,Si:18.05,F:8.05,O:20.46,H:7.31。
[式4]
实施例5化合物1-8(A5)的制备
在1000mL具有冷却管和搅拌器的烧瓶中,放入800mL甲苯、54.11g 1,1,3,5,5-五甲基-3-苯基三硅氧烷以及100g烯丙基醇,接着氮气吹扫60min。在这之后,将0.0063g铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷放入烧瓶中,将烧瓶的温度增加到70℃,接着搅拌5h。通过蒸馏去除残留溶剂,再将79g所得化合物引入到1L反应容器中,加入200mL甲苯和200mL正庚烷之后,向其中添加45g 2-氟丙烯酸,加入对甲氧基苯酚0.375g和氯化亚铜0.9g,接着加入催化剂对甲苯磺酸4.75g,升温至105℃回流反应16h,通过分水器分馏反应生成的水。实验通过检测酸值监测反应进程,停止反应后,通过蒸馏去除残留溶剂,250mL 1%NaOH水溶液洗涤,去离子水洗涤三次后收集有机相,浓缩即得到产物78.5g,收率为74%,由此制备出由式5表示的化合物,记为A5,HPLC测定其具有97%的纯度,m/e:530.18;元素分析:C23H36O6F2Si3,计算值C:52.05,Si:15.87,F:7.16,O:18.09,H:6.84,实测值C:51.89,Si:15.93,F:7.21,O:18.13,H:6.85。
[式5]
实施例6化合物1-12(A6)的制备
在1000mL具有冷却管和搅拌器的烧瓶中,放入200mL甲苯、91.7g 1,1,3-三甲基-3苯基二硅氧烷以及174g烯丙基醇,接着氮气吹扫60min。在这之后,将0.0049g铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷放入烧瓶中,将烧瓶的温度增加到70℃,接着搅拌5h。通过蒸馏去除残留溶剂,再将156g所得化合物引入到另一个1L反应容器中,加入200mL甲苯和 200mL正庚烷之后,向其中添加175g三氟甲基丙烯酸,加入对甲氧基苯酚0.75g和氯化亚铜1.8g,接着加入催化剂对甲苯磺酸9.5g,升温至105℃回流反应16h,通过分水器分馏反应生成的水。实验通过检测酸值监测反应进程,停止反应后,通过蒸馏去除残留溶剂,500mL1%NaOH水溶液洗涤,去离子水洗涤三次后收集有机相,浓缩即得到产物200g,收率为72%,由此制备出由式3表示的化合物,记为A6,HPLC测定其具有96%的纯度。m/e:556.15;元素分析:C23H30O5F6Si2,计算值C:49.63,Si:10.09,F:20.48,O:14.37,H:5.43,实测值C:49.47,Si:10.22,F:20.63,O:14.46,H:5.52。
[式6]
测试例
测试实施例和测试对比例中所用的组分详情如下,具体含量见表1和表2:
(A)可光固化含硅单体A1-A6,各测试实施例和测试对比例的含硅单体见表1和表2;
(B)活性稀释剂组分:癸二醇二丙烯酸酯(麦克林);
(C)活性稀释剂组分:2-甲基-2-金刚烷基丙烯酸酯(麦克林)
(D)光引发剂:TPO(凯茵化工)
(E)可光固化单体对比化合物

(Z)流平剂:BYK399
表1
表2

上述材料按照表1和表2中比例混合均匀后UV固化进行如下测试:
<固化收缩率(%)>
将组合物至于聚四氟乙烯模具中,以100mW/cm2的395nm UV照射10秒进行UV固化,之后在60℃烘箱中放置1h以使组合物完全固化。在固化完毕后,使用卡尺测量试样的长度。根据下列方程式计算封装组合物的固化收缩率:
固化收缩率(%)=(|C-D|/C)×100%。
其中,C是固化前模具的长度,D是UV固化后试样的长度。
<光固化率(%)>
在1635cm-1(C=C)和1720cm-1(C=O)附近的吸收峰的强度,使用FT-IR对用于封装的组合物进行测量。使用喷雾器将组合物施加到玻璃衬底,接着通过以1000mW/cm2的395nm UV照射10秒进行UV固化,之后在60℃烘箱中放置1h以使样品完全固化,由此获得大小为20cm×20cm×3μm(宽度×长度×厚度)的样本。随后,使用FT-IR,在1635cm-1(C=C)和1720cm-1(C=O)附近测量固化膜的吸收峰的强度。通过下列方程式计算光固化率:
光固化率(%)=|1-(A/B)|×100%
其中,A是针对固化膜所测量的在1635cm-1附近的吸收峰的强度与在1720cm-1附近的吸收峰的强度的比率,并且B是针对用于封装的组合物所测量的在1635cm-1附近的吸收峰的强度与在1720cm-1附近的吸收峰的强度的比率。
<介电性能>
将所述光固化组合物喷墨打印于基材上,后置于50-300mW/cm2的395nm的UV光下照射60s及在80℃烘箱中放置30min,制成厚度均匀约为10μm的薄膜。依据平行板法(参考国际标准ASTM D150),通过在两个电极(银)之间插入一个薄膜样品组成一个电容器,然后测量其电容,根据测量结果计算介电常数。在实际测试装置中,两个电极配备在夹持介电材料的测试夹具上。阻抗分析仪(4990A LCR,Agilent)将测量电容和耗散的矢量分量,然后由软件程序按下述公式计算出介电常数和损耗角正切:

tanδ=D
其中,Cp为测试薄膜的等效平行电容(F),D为损耗角正切,tm为测试薄膜样品的平均厚度(m),A为电极的表面积(m2),d为电极的直径(m),ε0为自由空间的介电常数=8.854x10-12(F/m)。
<透光率>
将所述光固化组合物喷墨打印于基材上,后置于50-300mW/cm2的395nm的UV光下照射60s及在80℃烘箱中放置30min,制成10cm×10cm×5μm(宽度×长度×厚度)的薄膜。使用紫外可见分光光度计测试系统(Carry 5000,由美国安捷伦科技有限公司制造),在380-780nm的可见光范围中,测试所述有机封装薄膜的透光率。
<喷墨分析>
使用压电式按需滴定(drop-on-demand)打印头(DMC11610),日本喷墨设备DMP2850小型喷墨机进行喷墨打印测试。喷墨头是基于压电材料(PZT),可经由施用电场促使该喷墨头移动。由压电壁构成的油墨通道可根据施用于壁上的电极的电信号来喷射小油墨液滴。使用JetXPert观墨仪器以10微秒(μsec)的固定时间间隔来捕获液滴的图像。
<粘度>
使用平板流变仪在温度为25℃、剪切速率为10r/s的速率下测量样品的粘度。
<硬度>
根据GB/T 6739-2006进行测试。
将上述测试项目和测试结果列于表3和表4。
表3
表4
由实施例A~E中的引入了含氟的含硅单体的光固化组合物制成的有机封装墨水组合物在水蒸汽透过率、固化体积收缩率、透光率、玻璃化转变温度、耐热性和介电常数等性能上表现优异,尤其是介电常数均超越不含氟的墨水组合物(测试对比例1-3);对比例4和5由于加入了低沸点单体,虽然介电常数较低,但是在喷墨过程中容易挥发造成堵孔现象。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:本申请采用的可光固化单体组分为氟取代的可光固化含硅单体,将氟取代的含硅单体与含活性稀释剂组分进行配合使用,可以形成自由基固化体系,该自由基固化体系可以有效地降低介电常数,提高固化速度,并且由于本申请的墨水组合物中该氟取代的含硅单体沸点较高,不易挥发,避免了在使用过程中堵塞墨孔,可更好地满足现有技术中对喷墨打印的要求。另外,本申请的氟取代的含硅单体制备简单,且原料廉价易得,生产成本较低,能够很好地满足现有的OLED器件等电子器件的封装要求。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种墨水组合物,其特征在于,包括:可光固化含硅单体组分、活性稀释剂组分和光引发剂组分,所述可光固化含硅单体组分包括具有如下结构式I所示化合物中的任意一种或者多种:
    式中,n是0~50的任意一个整数;R1和R2相同或不同,且各自独立地选自单键、取代或未取代的C1~C50的亚烷基、取代或未取代的C3~C50的亚环烷基、取代或未取代的C1~C50的亚烷基醚基、取代或未取代的C6~C50的亚芳基、取代或未取代的C7~C50的芳基亚烷基中的任意一种;X1、X2、X3、X4、X5、X6相同或不同,且各自独立地选自氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C50的烷基醚基、取代或未取代的C1~C50的环烷基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C3~C50的杂芳基、取代或未取代的C7~C50的芳烷基、-NR6R7中的任意一种,R6、R7为C1~C50的烷基;A1和A2相同或不同,且各自独立地选自:氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的C1~C50的烷基硫化物基团、取代或未取代的C6~C50的芳基、取代或未取代的C7~C50的芳烷基、-NR8R9、取代或未取代的丙烯酸酯基、取代或未取代的C3~C60环氧基烷基、取代或未取代的C2~C60环氧基、取代或未取代的C2~C60的烯基醚基中的任意一种,R8、R9为C1~C50的烷基;并且可光固化含硅单体组分中,A1和A2中至少有一个由结构式II中的任意一种表示:
    其中,*表示结合位置,R3各自独立地选自-F、-CF3中的一种。
  2. 根据权利要求1所述的墨水组合物,其特征在于,所述n是1~10的任意一个整数。
  3. 根据权利要求2所述的墨水组合物,其特征在于,所述R1和R2各自独立地选自:取代或未取代的C1~C10的亚烷基和取代或未取代的C1~C10的亚烷基醚基中的任意一种。
  4. 根据权利要求2所述的墨水组合物,其特征在于,所述X1、X2、X3、X4、X5、X6各自独立地选自氢、取代或未取代的C1~C10的烷基、取代或未取代的C6~C10的芳基和取代或未取代的C7~C11的芳烷基中的任意一种。
  5. 根据权利要求2所述的墨水组合物,其特征在于,所述可光固化含硅单体组分为多种具有所述结构式I所示化合物的组合。
  6. 根据权利要求2所述的墨水组合物,其特征在于,所述可光固化含硅单体组分选自如下所示的化合物结构:
  7. 根据权利要求1所述的墨水组合物,其特征在于,所述活性稀释剂组分包括具有结构式V所示结构中的任意一种或多种,
    式中,Y选自单键、取代或未取代的C1到C50的亚烷基、取代或未取代的C3到C50的亚环烷基、取代或未取代的C1到C50的亚烷基醚基、取代或未取代的C6到C50的亚芳基、取代或未取代的C7到C50的芳基亚烷基、-N(R11)-R12-中的任意一种;其中,R11是氢、取代或未取代的C1到C50烷基中的任意一种,R12是取代或未取代的C1到C50亚烷基中的任意一种;Z1、Z2各自独立地选自氢、取代或未取代的C1~C50的烷基、取代或未取代的C1~C60的烷基醚基、取代或未取代的丙烯酸酯基、取代或未取代的C2~C60的烯基醚基中的任意一种,并且Z1、Z2中的至少一个由结构式VI中的任意一个表示,
    其中,R4选自氢、取代或未取代的C1~C50的烷基中的任意一种。
  8. 根据权利要求7所述的墨水组合物,其特征在于,所述Y选自取代或未取代的C1到C10亚烷基、取代或未取代的C1到C10亚烷基醚基、取代或未取代的C6到C10亚芳基和取代或未取代的C7到C11芳基亚烷基中的任意一种。
  9. 根据权利要求1所述的墨水组合物,其特征在于,所述活性稀释剂组分包括选自单官能活性稀释剂、双官能活性稀释剂和多官能活性稀释剂中的任意一种或者多种。
  10. 根据权利要求9所述的墨水组合物,其特征在于,所述单官能活性稀释剂包括选自丙烯酸月桂酯、丙烯酸乙氧基乙氧基乙酯、丙烯酸丁酯、丙烯酸羟乙酯和丙烯酸异冰片酯、乙氧化四氢呋喃丙烯酸酯、甲基丙烯酸酯磷酸酯、2-甲基-2-金刚烷基丙烯酸酯和甲基丙烯酸异冰片酯中的任意一种或者多种。
  11. 根据权利要求9所述的墨水组合物,其特征在于,所述双官能活性稀释剂包括选自乙二醇类二丙烯酸酯、丙二醇类二丙烯酸酯和其他二醇类二丙烯酸酯中的任意一种或者多种。
  12. 根据权利要求9所述的墨水组合物,其特征在于,所述多官能活性稀释剂包括选自三羟甲基丙烷三丙烯酸酯、季戊四醇三丙烯酸酯、三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化三羟甲基丙烷三丙烯酸酯、丙氧基化季戊四醇丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、二缩三乙二醇双甲基丙烯酸酯、长链脂肪烃缩水甘油醚丙烯酸酯、双季戊四醇六丙烯酸酯、二缩三丙二醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯、乙氧基化三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化三羟基甲基丙烷三醇三丙烯酸酯、丙氧基化丙三醇三丙烯酸酯、三(2-羟乙基)异氰脲酸三丙烯酸酯和乙氧基化新戊二醇甲氧基单丙烯酸酯中的任意一种或者多种。
  13. 根据权利要求1所述的墨水组合物,其特征在于,所述光引发剂组分包括选自苯偶姻及其衍生物类引发剂、苯偶酰及其衍生物类引发剂、苯乙酮衍生物类引发剂、α-羟基酮衍生物类引发剂、α-氨基酮衍生物类引发剂、苯甲酰甲酸酯类引发剂、酰基磷氧化物类引发剂、二苯甲酮类引发剂、硫杂蒽酮类引发剂和蒽醌及其衍生物类引发剂中的任意一种或者多种。
  14. 根据权利要求1至13任一项所述的墨水组合物,其特征在于,以重量百分比计,所述墨水组合物包括:0.01~50%的所述可光固化含硅单体组分,30~80%的所述活性稀释剂组分,0.01~20%的所述光引发剂组分。
  15. 根据权利要求14所述的墨水组合物,其特征在于,以重量百分比计,所述可光固化含硅单体组分的含量为15~50%,所述活性稀释剂组分的含量为40~80%,所述光引发剂组分的含量为1~10%。
  16. 根据权利要求1至13任一项所述的墨水组合物,其特征在于,所述墨水组合物还包括助剂组分。
  17. 根据权利要求16所述的墨水组合物,其特征在于,所述助剂组分选自阻聚剂、表面活性剂、抗氧化剂、消泡剂、流平剂中的任意一种或多种。
  18. 根据权利要求16所述的墨水组合物,其特征在于,所述助剂组分的含量为0.01~5wt%。
  19. 根据权利要求1至13任一项所述的墨水组合物,其特征在于,所述墨水组合物在25℃下的粘度为1~50mPa·s。
  20. 一种封装结构,包括有机层,其特征在于,所述有机层采用权利要求1~19任一项所述的墨水组合物经光固化形成。
  21. 一种半导体器件,包括功能结构和封装结构,其特征在于,所述封装结构为权利要求20所述的封装结构。
  22. 根据权利要求21所述的半导体器件,其特征在于,所述半导体器件为电致发光器件、光致发光器件、发光二极管、太阳能电池、薄膜晶体管和光探测器中的任意一种。
  23. 根据权利要求21所述的半导体器件,其特征在于,所述半导体器件为照明设备。
PCT/CN2023/094582 2022-07-06 2023-05-16 墨水组合物、封装结构和半导体器件 WO2024007741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210790328.2 2022-07-06
CN202210790328.2A CN115109464B (zh) 2022-07-06 2022-07-06 墨水组合物、封装结构和半导体器件

Publications (1)

Publication Number Publication Date
WO2024007741A1 true WO2024007741A1 (zh) 2024-01-11

Family

ID=83332895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094582 WO2024007741A1 (zh) 2022-07-06 2023-05-16 墨水组合物、封装结构和半导体器件

Country Status (2)

Country Link
CN (1) CN115109464B (zh)
WO (1) WO2024007741A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109464B (zh) * 2022-07-06 2023-07-14 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097443A (ja) * 2003-09-25 2005-04-14 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物および絶縁膜形成用材料
TW201834161A (zh) * 2017-03-09 2018-09-16 矽品精密工業股份有限公司 封裝結構及其製法
CN110982346A (zh) * 2019-12-12 2020-04-10 浙江福斯特新材料研究院有限公司 墨水组合物、封装结构及半导体器件
CN111826024A (zh) * 2020-07-29 2020-10-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构及半导体器件
CN113135951A (zh) * 2021-04-08 2021-07-20 吉林奥来德光电材料股份有限公司 一种含硅单体、光固化组合物、封装结构及半导体器件
CN113166540A (zh) * 2018-10-30 2021-07-23 陶氏东丽株式会社 紫外线固化性聚有机硅氧烷组合物及其用途
CN114616299A (zh) * 2019-10-03 2022-06-10 陶氏东丽株式会社 紫外线固化性聚有机硅氧烷组合物及其用途
CN115109464A (zh) * 2022-07-06 2022-09-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9803481D0 (sv) * 1998-10-13 1998-10-13 Pharmacia & Upjohn Ab Photocurable siloxane polymers
TWI253450B (en) * 2003-01-29 2006-04-21 Eternal Chemical Co Ltd Resin compositions and uses thereof
CN101175780B (zh) * 2005-05-09 2011-02-02 陶氏康宁公司 氨基-巯基官能的有机基聚硅氧烷
JP4709272B2 (ja) * 2008-12-11 2011-06-22 信越化学工業株式会社 含フッ素アクリレート
JP5477160B2 (ja) * 2010-05-20 2014-04-23 信越化学工業株式会社 含フッ素(メタ)アクリル変性有機ケイ素化合物及びこれを含む硬化性組成物
JP5946343B2 (ja) * 2012-07-10 2016-07-06 富士機械製造株式会社 電子部品実装装置
WO2014017396A1 (ja) * 2012-07-24 2014-01-30 日本化薬株式会社 感光性樹脂組成物及び反射防止フィルム
JP6031934B2 (ja) * 2012-10-11 2016-11-24 セイコーエプソン株式会社 インク組成物および画像形成方法
KR101802574B1 (ko) * 2014-03-28 2017-12-01 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
KR101861893B1 (ko) * 2014-04-23 2018-05-29 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
EP3786239B1 (en) * 2019-08-26 2023-11-15 Agfa-Gevaert Nv Radiation curable composition for plating applications
JP2021170450A (ja) * 2020-04-15 2021-10-28 双葉電子工業株式会社 乾燥剤、封止構造体、及び有機el素子
CN111933823B (zh) * 2020-08-21 2022-10-18 西安思摩威新材料有限公司 一种光电子器件封装用组成物、封装结构及光电子器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097443A (ja) * 2003-09-25 2005-04-14 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物および絶縁膜形成用材料
TW201834161A (zh) * 2017-03-09 2018-09-16 矽品精密工業股份有限公司 封裝結構及其製法
CN113166540A (zh) * 2018-10-30 2021-07-23 陶氏东丽株式会社 紫外线固化性聚有机硅氧烷组合物及其用途
CN114616299A (zh) * 2019-10-03 2022-06-10 陶氏东丽株式会社 紫外线固化性聚有机硅氧烷组合物及其用途
CN110982346A (zh) * 2019-12-12 2020-04-10 浙江福斯特新材料研究院有限公司 墨水组合物、封装结构及半导体器件
CN111826024A (zh) * 2020-07-29 2020-10-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构及半导体器件
CN113135951A (zh) * 2021-04-08 2021-07-20 吉林奥来德光电材料股份有限公司 一种含硅单体、光固化组合物、封装结构及半导体器件
CN115109464A (zh) * 2022-07-06 2022-09-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件

Also Published As

Publication number Publication date
CN115109464B (zh) 2023-07-14
CN115109464A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN109251584B (zh) 一种具有高耐热性和高透光率的油墨组合物及用途
KR20190010344A (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
CN110982346A (zh) 墨水组合物、封装结构及半导体器件
CN111826024A (zh) 墨水组合物、封装结构及半导体器件
CN115305017B (zh) 一种高折射率光学有机胶水组合物及其制备方法与使用方法
WO2024007741A1 (zh) 墨水组合物、封装结构和半导体器件
CN110894361A (zh) 光固化封装组合物、封装结构及半导体器件
CN113683968B (zh) 基于氮杂环丙烯酸酯化合物的紫外光固化胶组合物及其使用方法和应用
WO2022095792A1 (zh) 一种紫外光固化组合物胶水及其使用方法和应用
CN115260226A (zh) 封装薄膜用化合物及基于该化合物的紫外光固化油墨
CN114196357B (zh) 一种环氧胶粘剂、封装层及其应用
CN114133877A (zh) 一种含大共轭芳香环丙烯酸化合物单体的光固化组合物胶水及其使用方法和应用
WO2024088358A1 (zh) 一种高柔韧性紫外光固化油墨及其封装层
KR20200025550A (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기층을 포함하는 유기발광소자 표시장치
EP4382578A1 (en) Ink composition for oled packaging and application thereof
CN115044244B (zh) 一种低固化收缩率的封装用墨水组合物及其制备方法
CN115260835A (zh) 一种基于对称硫代酰胺结构的高折射率墨水及其制备方法
CN113980514B (zh) 一种光固化封装组合物、有机封装薄膜及其应用
CN115960490A (zh) 一种可光固化油墨组合物及其制备方法和应用
CN112898827B (zh) 一种基于含硅氧侧链二维丙烯酸酯单体的紫外光固化封装油墨及其使用方法和应用
CN116670589A (zh) 树脂、树脂组合物以及利用其的显示装置
CN115353587B (zh) 环戊烷三聚体取代物的应用、光固化组合物、有机封装薄膜及oled器件
CN115109462B (zh) 光固化组合物、封装方法、封装结构和半导体器件
CN115433145B (zh) 封装薄膜用化合物、有机薄膜封装组合物、封装膜及应用
CN116082888A (zh) 一种光可固化喷墨墨水组合物、使用方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834515

Country of ref document: EP

Kind code of ref document: A1