WO2024088358A1 - 一种高柔韧性紫外光固化油墨及其封装层 - Google Patents

一种高柔韧性紫外光固化油墨及其封装层 Download PDF

Info

Publication number
WO2024088358A1
WO2024088358A1 PCT/CN2023/126933 CN2023126933W WO2024088358A1 WO 2024088358 A1 WO2024088358 A1 WO 2024088358A1 CN 2023126933 W CN2023126933 W CN 2023126933W WO 2024088358 A1 WO2024088358 A1 WO 2024088358A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable
silicon
monomer
curable ink
unsubstituted
Prior art date
Application number
PCT/CN2023/126933
Other languages
English (en)
French (fr)
Inventor
何鑫
姚新波
毋妍妍
Original Assignee
西安思摩威新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安思摩威新材料有限公司 filed Critical 西安思摩威新材料有限公司
Publication of WO2024088358A1 publication Critical patent/WO2024088358A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of ultraviolet light curing inks and relates to a highly flexible ultraviolet light curing ink and a packaging layer thereof.
  • Optoelectronic devices such as organic light-emitting diodes, organic solar cells, and perovskite solar cells are critical to energy transformation and the development of information technology.
  • the stability, reliability, and life of various new optoelectronic devices under various conditions of use have attracted much attention.
  • the core organic and inorganic materials in various new optoelectronic devices are more susceptible to degradation and deterioration by water and oxygen at the micro-nano scale, which seriously reduces the performance and even service life of related devices and components. Therefore, it is very important to avoid the damage of water and oxygen to related devices and components in practical applications.
  • the effective way to prevent water and oxygen from damaging various new optoelectronic devices is to use appropriate methods to encapsulate them.
  • Traditional encapsulation methods use rigid glass or metal cover plates, but the metal cover plates are opaque and the glass cover plates are tough and fragile, so traditional encapsulation methods are not suitable for flexible electronic device packaging.
  • the Barix encapsulation technology of organic layer-inorganic layer multilayer composite is usually used for the encapsulation of flexible electronic devices.
  • the inorganic layer and the organic layer are formed in sequence.
  • the inorganic layer is formed by plasma deposition, and the organic layer may be etched by plasma, which may damage the encapsulation function of the organic barrier layer.
  • Patent application TW201538596A provides a composition for encapsulating light-emitting diodes and a display manufactured using the same.
  • This patent uses a photocurable monomer, a silicon-containing monomer, and an initiator.
  • the invention discloses a composition for encapsulating organic light-emitting diodes, which has a lower plasma etching rate, higher light transmittance and photocuring rate after curing.
  • the substituent of the silicon-containing monomer in the patent contains an aromatic ring, which causes the cured product to have a certain rigidity, poor flexibility and poor yellowing resistance.
  • Patent application CN111826024A discloses an ink composition, a packaging structure and a semiconductor device.
  • the ink composition includes a photocurable silicon-containing monomer component, a reactive diluent component and a photoinitiator component.
  • the prepared ink composition has a high photocuring rate and a low curing shrinkage rate after curing.
  • its free radical-cationic mixed curing system will cause the cured film to have poor flexibility after curing, which is not conducive to the packaging of flexible electronic devices.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art and to provide a highly flexible UV-curable ink and its encapsulation layer, which solves the problems of poor flexibility, easy yellowing and high plasma etching rate of the ink composition after curing in the prior art.
  • a highly flexible ultraviolet curable ink characterized in that, in parts by weight, the raw materials at least include: 50 to 90 parts of a photocurable silicon-containing monomer, 10 to 40 parts of a photocurable non-silicon monomer, and 0.01 to 10 parts of a photoinitiator.
  • the photocurable silicon-containing monomer does not contain an aromatic ring structure.
  • R 1 and R 2 are each independently selected from hydrogen, substituted or unsubstituted C1-C50 Any one of an alkyl group, a substituted or unsubstituted C1-C50 alkyl ether group;
  • X 1 and X 2 are each independently selected from any one of a single bond, a substituted or unsubstituted C1-C50 alkylene group, and a substituted or unsubstituted C1-C50 alkylene ether group;
  • X 1 and X 2 are each independently selected from any one of a substituted or unsubstituted C5-C12 alkylene group and a substituted or unsubstituted C5-C12 alkylene ether group.
  • Y1 is a group of formula 2
  • Y2 is hydrogen, a substituted or unsubstituted C1-C50 alkyl group, a substituted or unsubstituted C1-C50 alkyl ether group, or any one of the groups of formula 2
  • m is an integer of 1 to 10
  • Formula 2 is as follows:
  • * represents the connection site on the compound Si, and R 3 is hydrogen or methyl.
  • the photocurable silicon-containing monomer may be represented by at least one of Chemical Formula 1-1 and Chemical Formula 1-2.
  • the photocurable non-silicon monomer is a mixture of a photocurable monofunctional non-silicon monomer and a photocurable multifunctional non-silicon monomer.
  • the mass ratio of the photocurable monofunctional non-silicon monomer to the photocurable multifunctional non-silicon monomer is (10-20):(2-8).
  • the photocurable monofunctional non-silicon monomer is a mono(meth)acrylate monomer containing an alicyclic group.
  • the alicyclic group-containing mono(meth)acrylate monomer is one or more of 4-tert-butylcyclohexyl acrylate, dicyclopentenyl acrylate, dicyclopentyl methacrylate, dicyclopentenyl ethoxylated acrylate, dicyclopentenyl ethoxylated methacrylate, 3,3,5-trimethylcyclohexyl acrylate, cyclotrimethylolpropane methyl acrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, isobornyl methacrylate, and cyclohexyl methacrylate.
  • the photocurable multifunctional non-silicon monomer is one or more of trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, propoxylated glycerol triacrylate, trimethylolpropane trimethacrylate, ditrimethylolpropane tetraacrylate, polydipentaerythritol pentaacrylate, sorbitol pentaacrylate, and dipentaerythritol hexaacrylate.
  • the mass ratio of the photocurable silicon-containing monomer to the photocurable non-silicon monomer is (55-85):(20-30).
  • monomer refers to a monomer containing one photocurable functional group
  • difunctional refers to a monomer containing two photocurable functional groups
  • polyfunctional refers to a monomer containing three or more photocurable functional groups.
  • the photoinitiator is a free radical initiator.
  • the free radical initiator is at least one of a triazine-based photoinitiator, an acetophenone-based photoinitiator, a benzophenone-based photoinitiator, a thioxanthone-based photoinitiator, a benzoin-based photoinitiator, a phosphorus-based photoinitiator and an oxime-based photoinitiator.
  • a triazine-based photoinitiator an acetophenone-based photoinitiator, a benzophenone-based photoinitiator, a thioxanthone-based photoinitiator, a benzoin-based photoinitiator, a phosphorus-based photoinitiator and an oxime-based photoinitiator.
  • a triazine-based photoinitiator an acetophenone-based photoinitiator
  • a benzophenone-based photoinitiator a thiox
  • the photoinitiator is a phosphorus-based photoinitiator.
  • the phosphorus-based photoinitiator is one or more of photoinitiator TPO, photoinitiator TEPO, and photoinitiator BAPO.
  • the high-flexibility UV-curable ink has a viscosity of 15 to 45 mPa ⁇ S at 25° C. and a surface tension of 20 to 38 mN/m.
  • a packaging layer is obtained by photocuring the high-flexibility ultraviolet curing ink according to any one of claims 1 to 9, wherein the thickness of the packaging layer is 1 to 20 ⁇ m.
  • the present invention has the following beneficial effects:
  • the present invention uses a photocurable silicon-containing monomer that does not contain an aromatic ring structure and utilizes its own Si-O-Si chain segment's strong deformation ability to disperse stress when subjected to external force, thereby improving the plasma etching resistance of the encapsulation layer.
  • the structure does not contain aromatic rigid groups and limits the length of the alkyl chain in the structure, so it has higher flexibility and yellowing resistance than UV-curable inks containing benzene rings.
  • the present invention uses a photocurable silicon-containing monomer without an aromatic ring structure in combination with a mono(meth)acrylate monomer containing an alicyclic group, which effectively reduces the plasma etching rate and flexibility of the encapsulation layer while also reducing the number of free small molecules, thereby reducing impurity emissions and water vapor permeability.
  • the encapsulation layer obtained by the UV-curable ink of the present invention has extremely low water vapor permeability and oxygen permeability, thereby being able to extend the service life of existing electronic components.
  • the present invention can effectively improve the crosslinking density of the UV-curable ink and the light transmittance of the packaging layer, reduce the plasma etching rate, and thus meet the packaging requirements of electronic components in the prior art by using a specific ratio of photocurable monofunctional non-silicon monomers and photocurable multifunctional non-silicon monomers.
  • This embodiment provides a highly flexible UV-curable ink, wherein the raw materials include, by weight: 70 parts of a photocurable silicon-containing monomer, 25 parts of a photocurable non-silicon monomer, and 5 parts of a photoinitiator.
  • the photocurable silicon-containing monomer is Formula 1-1 of Preparation Example 1;
  • the photocurable non-silicon monomer is a mixture of a photocurable monofunctional non-silicon monomer and a photocurable multifunctional non-silicon monomer, and the weight ratio of the photocurable monofunctional non-silicon monomer to the photocurable multifunctional non-silicon monomer is 15:5.
  • the monofunctional non-silicon monomer is dicyclopentenyl acrylate, and the photocurable multifunctional non-silicon monomer is pentaerythritol triacrylate, both of which were purchased from Shanghai MacLean Biochemical Technology Co., Ltd.
  • the photoinitiator was photoinitiator TPO, which was purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.
  • This embodiment provides a highly flexible UV-curable ink, wherein the raw materials include, by weight: 50 parts of a photocurable silicon-containing monomer, 10 parts of a photocurable non-silicon monomer, and 2 parts of a photoinitiator.
  • the photocurable silicon-containing monomer is Formula 1-1 of Preparation Example 1;
  • the photocurable non-silicon monomer is a mixture of a photocurable monofunctional non-silicon monomer and a photocurable multifunctional non-silicon monomer, wherein the weight ratio of the photocurable monofunctional non-silicon monomer to the photocurable multifunctional non-silicon monomer is 20:2.
  • the monofunctional non-silicon monomer is dicyclopentenyl acrylate, and the photocurable multifunctional non-silicon monomer is pentaerythritol triacrylate, both of which were purchased from Shanghai MacLean Biochemical Technology Co., Ltd.
  • the photoinitiator was photoinitiator TPO, which was purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.
  • This embodiment provides a highly flexible UV-curable ink, wherein the raw materials include, by weight: 90 parts of a photocurable silicon-containing monomer, 40 parts of a photocurable non-silicon monomer, and 9 parts of a photoinitiator.
  • the photocurable silicon-containing monomer is Formula 1-3 of Preparation Example 3;
  • the photocurable non-silicon monomer is a mixture of a photocurable monofunctional non-silicon monomer and a photocurable multifunctional non-silicon monomer, wherein the weight ratio of the photocurable monofunctional non-silicon monomer to the photocurable multifunctional non-silicon monomer is 15:5.
  • the monofunctional non-silicon monomer is dicyclopentenyl acrylate, and the photocurable multifunctional non-silicon monomer is pentaerythritol triacrylate, both of which are purchased from Shanghai MacLean Biochemical Technology Co., Ltd.
  • the photoinitiator is photoinitiator TPO, which is purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.
  • Comparative Example 1 The specific implementation of Comparative Example 1 is the same as that of Example 1; the difference from Example 1 is that in Comparative Example 1, the photocurable silicon-containing monomer is
  • Comparative Example 2 is the same as that of Example 1; the difference from Example 1 is that the added amount of the photocurable silicon-containing monomer is 10 parts.
  • Comparative Example 3 The specific implementation of Comparative Example 3 is the same as that of Example 1; the difference from Example 1 is that the photocurable non-silicon monomer in Comparative Example 3 is a photocurable monofunctional non-silicon monomer.
  • Comparative Example 4 The specific implementation of Comparative Example 4 is the same as that of Example 1; the difference from Example 1 is that the photocurable non-silicon monomer in Comparative Example 4 is a photocurable multifunctional non-silicon monomer.
  • Examples 1 to 3 and Comparative Examples 1 to 4 are mixed evenly to obtain UV-curable ink, which is then sprayed on the surface of the encapsulation object with an inkjet printer to a thickness of 10 ⁇ m, and then cured with 30 mW/cm 2 UV light for 60 seconds to form an encapsulation layer.
  • Water vapor transmission rate Using a water vapor transmission rate tester (PERMATRAN-W3/33, manufactured by MOCON), the water vapor transmission rate was measured at 85° C. and 85% relative humidity for 24 hours.
  • Plasma etching rate The compound for thin film encapsulation is coated on a silicon wafer and cured, and then the initial coating height of the encapsulation layer (T 1 , unit: ⁇ m) is measured.
  • the encapsulation layer is subjected to plasma treatment under the conditions of ICP power: 2500 W; RE power: 300 W; DC bias: 200 V; Ar flow rate: 50 sccm; etching time: 1 minute; pressure: 10 mTorr, and then the height of the encapsulation layer (T 2 , unit: ⁇ m) is measured.
  • T1 is the initial height of the encapsulation layer and T2 is the height of the encapsulation layer after plasma treatment.
  • Fracture toughness (K IC ): A microcomputer-controlled electronic universal testing machine from Shenzhen Wance Company was used to conduct bending performance tests in accordance with GB/T 9341-2008, with a loading speed of 10 mm ⁇ min -1 .
  • the specimen size was 60 mm ⁇ 10 mm ⁇ 3 mm, the notch depth was 1 mm, and the span was 40 mm.
  • ⁇ E represents the comprehensive deviation
  • ⁇ L represents the black and white deviation
  • ⁇ a represents the red and green deviation Difference
  • ⁇ b represents the yellow-blue deviation.
  • the encapsulation layer formed after curing of the high-flexibility UV-curable ink prepared by the present invention has lower water vapor permeability, lower plasma etching rate, higher fracture toughness and excellent yellowing resistance.
  • Comparative Example 1 when the substituent of the photocurable silicon-containing monomer is connected to an aromatic ring (benzene ring), the fracture toughness is significantly reduced, its flexibility is poor, and the yellowing resistance is also significantly deteriorated.
  • the amount of the photocurable silicon-containing monomer added is small, the plasma etching rate is significantly increased, the water vapor permeability becomes larger, and the fracture toughness becomes smaller.
  • the photocurable non-silicon monomer is a photocurable monofunctional non-silicon monomer or a photocurable multifunctional non-silicon monomer, and its water vapor permeability, plasma etching rate, fracture toughness and yellowing resistance are not good. Effect.
  • the inventors have found that the types and amounts of components contained in the highly flexible UV-curable ink affect the properties of the ink and the film layer after curing. Although each component may have different functions, they coexist in the composition and interact with each other. Therefore, it is not easy to find a composition with all the desired properties.
  • the inventors After extensive research, the inventors have proposed the aforementioned highly flexible UV-curable ink, which has lower water vapor permeability, lower plasma etching rate, higher fracture toughness and excellent yellowing resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种高柔韧性紫外光固化油墨及其封装层,油墨按重量份计,原料至少包括:光可固化含硅单体50~90份,光可固化非硅单体10~40份,光引发剂0.01~10份。通过不含芳香环结构的光可固化含硅单体,利用自身的Si-O-Si链段较强的变形能力,在受到外力的作用时,能够起到应力分散的作用,因此提高了封装层的耐等离子体蚀刻性能,相比于含苯环的紫外光固化油墨具有更高的柔韧性和耐黄变性能。

Description

一种高柔韧性紫外光固化油墨及其封装层 技术领域
本发明属于紫外光固化油墨技术领域,涉及一种高柔韧性紫外光固化油墨及其封装层。
背景技术
有机发光二极管、有机太阳能电池、钙钛矿太阳能电池等光电器件对能源变革及信息技术发展非常关键。各种新型光电器件在各种使用条件下的稳定可靠性寿命备受关注。各种新型光电器件中的核心有机及无机材料在微纳米尺度下更容易受到水氧作用而退化变质,严重降低相关器件及元件的性能甚至使用寿命,因此在实际应用如何避免水氧对相关器件及元件的侵害非常关键。
有效阻隔水氧对各种新型光电器件侵害的办法是利用适当的方式进行封装。传统的封装方法采用刚性玻璃或金属盖板,但是金属盖板的不透光性以及玻璃盖板的韧性较差,易碎,因此传统的封装方法并不适用柔性电子器件封装。目前,对于柔性电子器件的封装通常采用的是有机层-无机层多层复合的Barix封装技术,在所述多层结构中,无机层和有机层依序形成。无机层通过等离子体沉积形成,且有机层可能受等离子体刻蚀,这种刻蚀可能损害有机阻挡层的封装功能。
专利申请TW201538596A提供了封装发光二极管用的组成物和使用其制造的显示器,此专利通过光可固化单体,含硅单体以及引发 剂制备了用于封装有机发光二极管的组成物,其在固化之后较低的等离子蚀刻率,较高的透光率和光固化率,但是专利中的含硅单体的取代基含有芳香环,因此会造成固化物具有一定刚性,柔韧性较差,同时耐黄变性能不佳。
专利申请CN111826024A公开了墨水组合物,封装结构及半导体器件,该墨水组合物包括可光固化含硅单体组分、活性稀释剂组分和光引发剂组分,制备的墨水组合物在固化之后具有较高光固化率、较低固化收缩率,但是其自由基-阳离子混杂固化体系,在固化之后,会造成固化膜的柔韧性不佳,不利于对柔性电子器件的封装。
发明内容
本发明的目的在于克服上述现有技术的缺点,提出一种高柔韧性紫外光固化油墨及其封装层,解决了现有技术中墨水组合物在固化后柔韧性差、易黄变以及较高的等离子体蚀刻率的问题。
为了实现上述目的,本发明采用了如下技术方案:
一种高柔韧性紫外光固化油墨,其特征在于,按重量份计,原料至少包括:光可固化含硅单体50~90份,光可固化非硅单体10~40份,光引发剂0.01~10份。
进一步地,所述光可固化含硅单体不含芳香环结构。
进一步地,所述光可固化含硅单体的结构式如下:
其中,R1,R2各自独立地选自氢、经取代或未经取代的C1~C50 的烷基、经取代或未经取代的C1~C50的烷基醚基中的任意一种;
X1,X2各自独立地选自单键,经取代或未经取代的C1~C50的亚烷基、经取代或未经取代的C1~C50的亚烷基醚基的任意一种;
为了提高紫外光固化油墨的柔韧性,X1,X2各自独立地选自取代或未取代的C5~C12的亚烷基、取代或未取代的C5~C12的亚烷基醚基的任意一种。
Y1为式2的基团,Y2为氢,经取代或未经取代的C1~C50的烷基,经取代或未经取代的C1~C50的烷基醚基,式2的基团中的任意一种;m为1~10的整数;式2如下:
式2中*表示化合物Si上的连接位点,R3为氢或甲基。
具体的,所述光可固化含硅单体的可以由化学式1-1和化学式1-2中的至少一种表示。
进一步地,所述光可固化非硅单体为光可固化单官能度非硅单体和光可固化多官能度非硅单体的混合物。
进一步,所述光可固化单官能度非硅单体与光可固化多官能度非硅单体的质量比为(10~20):(2~8)。
进一步地,所述光可固化单官能度非硅单体为含脂环基的单(甲基)丙烯酸酯单体。
进一步地,所述含脂环基的单(甲基)丙烯酸酯单体为4-叔丁基环己基丙烯酸酯,双环戊烯基丙烯酸酯,双环戊烷基甲丙烯酸酯,双环戊烯基乙氧化丙烯酸酯,双环戊烯基乙氧化甲基丙烯酸酯,3,3,5-三甲基环己基丙烯酸酯,环三羟甲基丙烷甲缩醛丙烯酸酯,四氢化糠基丙烯酸酯,四氢化糠基甲基丙烯酸酯,异冰片基甲基丙烯酸酯,甲基丙烯酸环己酯中的一种或多种。
进一步,所述光可固化多官能度非硅单体为三羟甲基丙烷三丙烯酸酯,季戊四醇三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、丙氧化三羟甲基丙烷三丙烯酸酯、丙氧化甘油三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、双三羟甲基丙烷四丙烯酸酯、聚二季戊四醇五丙烯酸酯、山梨糖醇五丙烯酸酯、二季戊四醇六丙烯酸酯中的一种或多种。
进一步地,所述光可固化含硅单体与光可固化非硅单体的质量比为(55~85):(20~30)。
术语“单官能度”单体是指含有一个光可固化官能团的单体;“双官能度”单体是指含有两个光可固化官能团的单体,“多官能度”单体是指含有三个或三个以上光可固化官能团的单体。
进一步,所述光引发剂为自由基引发剂。
优选的,所述自由基引发剂为基于三嗪的光引发剂,基于苯乙酮的光引发剂,基于二苯甲酮的光引发剂,基于噻吨酮的光引发剂,基于苯偶姻的光引发剂,基于磷的光引发剂和基于肟的光引发剂中的至 少一种。
进一步优选的,所述光引发剂为基于磷的光引发剂。
进一步优选的,所述基于磷的光引发剂为光引发剂TPO,光引发剂TEPO,光引发剂BAPO的一种或多种。
为了得到性能优良的高柔韧性紫外光固化油墨,从而满足喷墨打印的工艺要求。
进一步地,所述高柔韧性紫外光固化油墨在25℃下的粘度为15~45mPa·S,表面张力为20~38mN/m。
一种封装层,由权利要求1~9中任一项所述的高柔韧性紫外光固化油墨光固化后得到,所述封装层的厚度为1~20μm。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过不含芳香环结构的光可固化含硅单体,利用自身的Si-O-Si链段较强的变形能力,在受到外力的作用时,能够起到应力分散的作用,因此提高了封装层的耐等离子体蚀刻性能,此外,结构中不含有刚性基团的芳香并限定结构中烷基链的长度,相比于含苯环的紫外光固化油墨具有更高的柔韧性和耐黄变性能。
2.本发明通过采用不含芳香环结构的光可固化含硅单体与含脂环基的单(甲基)丙烯酸酯单体配合使用,有效地降低了封装层的等离子体蚀刻率和柔韧性的同时也减少了游离小分子的数量,从而降低杂气排放和水汽透过率。
3.本发明通过紫外光固化油墨得到的封装层具有极低的水蒸气透过率,以及氧气渗透率,从而能够延长现有电子元器件的使用寿命。
4.本发明通过使用特定比例的光可固化单官能度非硅单体和光可固化多官能度非硅单体,可有效地提高紫外光固化油墨的交联密度和封装层的光透过率,降低等离子体刻蚀速率,从而满足现有技术中电子元器件的封装要求。
具体实施方式
这里将详细地对示例性实施例进行说明,以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与所附权利要求书中所详述的、本发明的一些方面相一致的装置的例子。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合实施例对本发明作进一步详细描述。
制备例1
式1-1的合成路线如下:
在反应瓶中加入354.5g的1,6-己二醇、273.2g的三乙胺、1000mL的THF,置于0℃的冰浴中,氮气置换体系3次,将277.4g的1,5-二氯六甲基三硅氧烷溶于160mL的THF中,缓慢滴加进入体系,保证体系处于0~5摄氏度,3h左右滴加完毕,之后可缓慢升温至回流,反应20个小时,TLC监测反应至原料反应完毕,加入EA稀释有机 相,用稀HCl和Na2CO3水溶液洗有机相,之后水洗一次,饱和食盐水洗一次,硫酸钠干燥,减压蒸馏除去溶剂,柱层析分离得中间体1-A,产率78%。
在反应瓶中加入440.8g中间体1-A、189.4g甲基丙烯酸、1.96g浓硫酸、1.1g对苯二酚和200mL甲苯,110℃回流分水,TLC监测至中间体消耗完毕,冷却至室温后加入300mL乙醚稀释反应液,用0.2N NaOH溶液洗一次,水洗一次,无水硫酸镁干燥有机相,减压蒸馏去除溶剂后,柱层析分离得目标产物,产率90%。
制备例2
式1-2的合成路线如下:
在配置有回流分水装置的反应瓶中加入200.3g的5-己烯-1-醇、86g的甲基丙烯酸、2.5g的对苯二酚、10g的对甲苯磺酸、800mL的甲苯,加热回流分水8h,不断除水至分水器中基本无水分层时停止反应,冷却。用无水乙酸钠中和反应至混合溶液pH至6左右,过滤,滤液减压蒸馏,弃去无机盐残余物,馏出液加4g对苯二酚,减压蒸馏得到中间体2-A,产率83%。
在氮气保护条件下,在反应瓶中加入168.2g中间体2-A、1.5g的PTZ、3.8g卡斯特催化剂,加热体系至40±2℃条件下,将208.5g的1,1,3,3,5,5-六甲基三硅氧烷缓慢滴加进入体系中,反应8h,TLC监测 至中间体消耗完毕,冷却至室温后减压蒸馏得到目标产物,产率93%。
实施例1
本实施例提供了一种高柔韧性紫外光固化油墨,按重量份计,原料包括:光可固化含硅单体70份,光可固化非硅单体25份,光引发剂5份。
光可固化含硅单体为制备例1的式1-1;
光可固化非硅单体为光可固化单官能度非硅单体和光可固化多官能度非硅单体的混合物,光可固化单官能度非硅单体和光可固化多官能度非硅单体的重量比为15:5。
单官能度非硅单体为双环戊烯基丙烯酸酯,所述光可固化多官能度非硅单体为季戊四醇三丙烯酸酯,均购买自上海麦克林生化科技有限公司。
光引发剂为光引发剂TPO,购买自Sigma-Aldrich西格玛奥德里奇(上海)贸易有限公司。
实施例2
本实施例提供了一种高柔韧性紫外光固化油墨,按重量份计,原料包括:光可固化含硅单体50份,光可固化非硅单体10份,光引发剂2份。
光可固化含硅单体为制备例1的式1-1;
光可固化非硅单体为光可固化单官能度非硅单体和光可固化多官能度非硅单体的混合物。所述光可固化单官能度非硅单体和光可固化多官能度非硅单体的重量比为20:2。
单官能度非硅单体为双环戊烯基丙烯酸酯,所述光可固化多官能度非硅单体为季戊四醇三丙烯酸酯,均购买自上海麦克林生化科技有限公司。
光引发剂为光引发剂TPO,购买自Sigma-Aldrich西格玛奥德里奇(上海)贸易有限公司。
实施例3
本实施例提供了一种高柔韧性紫外光固化油墨,按重量份计,原料包括:光可固化含硅单体90份,光可固化非硅单体40份,光引发剂9份。
光可固化含硅单体为制备例3的式1-3;
光可固化非硅单体为光可固化单官能度非硅单体和光可固化多官能度非硅单体的混合物。所述光可固化单官能度非硅单体和光可固化多官能度非硅单体的重量比为15:5。
所述单官能度非硅单体为双环戊烯基丙烯酸酯,所述光可固化多官能度非硅单体为季戊四醇三丙烯酸酯,均购买自上海麦克林生化科技有限公司。
所述光引发剂为光引发剂TPO,购买自Sigma-Aldrich西格玛奥德里奇(上海)贸易有限公司。
对比例1
对比例1的具体实施方式同实施例1;与实施例1不同之处在于,对比例1中,所述光可固化含硅单体为
将300mL乙酸乙酯,21g 3,3-二苯基-1,1,5,5-四甲基三硅氧烷,43g烯丙醇加入反应器中,氮气置换三次,然后加入72ppm碳黑负载Pt粉,加热至80℃,并将组份搅拌6h,蒸馏出溶剂,然后将68g所得化合物,37.1g三乙胺以及300mL二氯甲烷,在0℃下进行缓慢搅拌的同时添加28.7g甲基丙烯酰氯,反应1h,蒸馏出溶剂,得到目标产物。
对比例2
对比例2的具体实施方式同实施例1;与实施例1不同之处在于,所述光可固化含硅单体的添加量为10份。
对比例3
对比例3的具体实施方式同实施例1;与实施例1不同之处在于,对比例3中光可固化非硅单体为光可固化单官能度非硅单体。
对比例4
对比例4的具体实施方式同实施例1;与实施例1不同之处在于,对比例4中光可固化非硅单体为光可固化多官能度非硅单体。
性能测试:
将上述实施例1~3和对比例1~4的原料各自混合均匀即可得到紫外光固化油墨,然后用喷墨打印机对封装物进行表面喷涂,厚度为10μm,然后用30mW/cm2的紫外光进行固化60s,形成封装层。
(1)水蒸气透过率:使用水蒸气透过率测试仪(PERMATRAN-W3/33,由MOCON制造),在85℃和85%相对湿度下持续24小时,测定水蒸气透过率。
(2)等离子体蚀刻率:将用于薄膜封装的化合物涂布到硅晶片上进行固化,接着测量封装层的初始涂布高度(T1,单位:μm)。使封装层在ICP功率:2500W;RE功率:300W;直流偏压:200V;Ar流速:50sccm;蚀刻时间:1分钟;压力:10毫托的条件下经等离子体处理,接着测量封装层的高度(T2,单位:μm)。通过以下方程式计算封装层的等离子体蚀刻率:
等离子体蚀刻率(%)=(T1-T2)/T1×100%
其中T1是封装层的初始高度,T2是在等离子体处理之后的封装层的高度。
(3)断裂韧性(KIC):用深圳万测公司的微机控制电子万能试验机。按照GB/T 9341-2008进行弯曲性能实验,加载速度为10mm·min-1。试样尺寸规格为60mm×10mm×3mm,缺口深度1mm,跨距40mm。
(4)耐黄变性:将得到的封装层置于温度保持在(100±3)℃的烘箱72h,然后使用色差仪对其黄度进行测试,测定其白度和L、a、b(L代表明暗度,a代表红绿色,b代表黄蓝色值)。按下式计算黄变前后薄膜的色差:
式中:ΔE表示综合偏差量;ΔL表示黑白偏差量;Δa表示红绿偏 差量;Δb表示黄蓝偏差量。
性能测试结果见表1。
表1
如表1所示,本发明制备的高柔韧性紫外光固化油墨固化之后形成的封装层具有更低的水蒸气透过率,更低的等离子蚀刻率,更高的断裂韧性和优异的耐黄变性能。反之,在对比例1中,当光可固化含硅单体的取代基连接有芳香环(苯环)时,断裂韧性有着明显的降低,其柔韧性较差,同时耐黄变性能也明显变差。在对比例2中,所述光可固化含硅单体添加量较少,等离子蚀刻率明显的增加,水蒸气透过率变大,断裂韧性变小。在对比例3和对比例4中,其光可固化非硅单体为光可固化单官能度非硅单体或者光可固化多官能度非硅单体,其水蒸气透过率,等离子蚀刻率,断裂韧性和耐黄变性能均有不佳的 效果。
本发明人发现,高柔韧性紫外光固化油墨所含组分种类及其用量影响油墨及其固化后膜层的特性,各组分虽可能具有不同的作用,但是并存于组合物中,交互影响彼此的作用,因此,要寻求兼具所有期望性质的组合物并非易事。本发明人经广泛地研究后,进而提出前述的高柔韧性紫外光固化油墨,该高柔韧性紫外光固化油墨具有更低的水蒸气透过率,更低的等离子蚀刻率,更高的断裂韧性和优异的耐黄变性能。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。
应当理解的是,本发明并不局限于上述已经描述的内容,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种高柔韧性紫外光固化油墨,其特征在于,按重量份计,原料至少包括:光可固化含硅单体50~90份,光可固化非硅单体10~40份,光引发剂0.01~10份。
  2. 根据权利要求1所述的一种高柔韧性紫外光固化油墨,其特征在于,所述光可固化含硅单体不含芳香环结构。
  3. 根据权利要求2所述的一种高柔韧性紫外光固化油墨,其特征在于,所述光可固化含硅单体的结构式如下:
    其中,R1,R2各自独立地选自氢、经取代或未经取代的C1~C50的烷基、经取代或未经取代的C1~C50的烷基醚基中的任意一种;
    X1、X2各自独立地选自单键、经取代或未经取代的C1~C50的亚烷基、经取代或未经取代的C1~C50的亚烷基醚基的任意一种;
    Y1为式2的基团、Y2为氢、经取代或未经取代的C1~C50的烷基、经取代或未经取代的C1~C50的烷基醚基、式2的基团中的任意一种;m为1~10的整数;式2如下:
    其中,式2中*表示化合物Si上的连接位点,R3为氢或甲基。
  4. 根据权利要求3所述的一种高柔韧性紫外光固化油墨,其特征在于,所述X1、X2各自独立地选自取代或未取代的C5~C12的亚烷基、取代或未取代的C5~C12的亚烷基醚基的任意一种。
  5. 根据权利要求1所述的一种高柔韧性紫外光固化油墨,其特征在于,所述 光可固化非硅单体为光可固化单官能度非硅单体和光可固化多官能度非硅单体的混合物。
  6. 根据权利要求5所述的一种高柔韧性紫外光固化油墨,其特征在于,所述光可固化单官能度非硅单体为含脂环基的单(甲基)丙烯酸酯单体。
  7. 根据权利要求1所述的一种高柔韧性紫外光固化油墨,其特征在于,所述含脂环基的单(甲基)丙烯酸酯单体为4-叔丁基环己基丙烯酸酯、双环戊烯基丙烯酸酯、双环戊烷基甲丙烯酸酯、双环戊烯基乙氧化丙烯酸酯、双环戊烯基乙氧化甲基丙烯酸酯、3,3,5-三甲基环己基丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯、四氢化糠基丙烯酸酯、四氢化糠基甲基丙烯酸酯、异冰片基甲基丙烯酸酯、甲基丙烯酸环己酯中的一种或多种。
  8. 根据权利要求1所述的一种高柔韧性紫外光固化油墨,其特征在于,所述光可固化含硅单体与光可固化非硅单体的质量比为(55~85):(20~30)。
  9. 根据权利要求1所述的一种高柔韧性紫外光固化油墨,其特征在于,所述高柔韧性紫外光固化油墨在25℃下的粘度为15~45mPa·S,表面张力为20~38mN/m。
  10. 一种封装层,由权利要求1~9中任一项所述的高柔韧性紫外光固化油墨光固化后得到,其特征在于,所述封装层的厚度为1~20μm。
PCT/CN2023/126933 2022-10-26 2023-10-26 一种高柔韧性紫外光固化油墨及其封装层 WO2024088358A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211317763.X 2022-10-26
CN202211317763.XA CN115595014B (zh) 2022-10-26 2022-10-26 一种高柔韧性紫外光固化油墨及其封装层

Publications (1)

Publication Number Publication Date
WO2024088358A1 true WO2024088358A1 (zh) 2024-05-02

Family

ID=84851139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126933 WO2024088358A1 (zh) 2022-10-26 2023-10-26 一种高柔韧性紫外光固化油墨及其封装层

Country Status (2)

Country Link
CN (1) CN115595014B (zh)
WO (1) WO2024088358A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595014B (zh) * 2022-10-26 2023-11-24 西安思摩威新材料有限公司 一种高柔韧性紫外光固化油墨及其封装层

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067656A (ja) * 2013-09-27 2015-04-13 セーレン株式会社 紫外線硬化型インクジェットインク、記録方法、記録物、および成型物
JP2018177904A (ja) * 2017-04-07 2018-11-15 Jnc株式会社 光学シート用光硬化性インク
CN110294961A (zh) * 2019-08-08 2019-10-01 佛山市高明绿色德化工有限公司 一种uv固化玻璃保护油墨及其制备方法
CN111826024A (zh) * 2020-07-29 2020-10-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构及半导体器件
CN113563808A (zh) * 2021-07-23 2021-10-29 西安思摩威新材料有限公司 一种具有高附着力的封装组合物及其使用方法和应用
CN115260226A (zh) * 2022-08-11 2022-11-01 西安思摩威新材料有限公司 封装薄膜用化合物及基于该化合物的紫外光固化油墨
CN115595014A (zh) * 2022-10-26 2023-01-13 西安思摩威新材料有限公司(Cn) 一种高柔韧性紫外光固化油墨及其封装层

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067656A (ja) * 2013-09-27 2015-04-13 セーレン株式会社 紫外線硬化型インクジェットインク、記録方法、記録物、および成型物
JP2018177904A (ja) * 2017-04-07 2018-11-15 Jnc株式会社 光学シート用光硬化性インク
CN110294961A (zh) * 2019-08-08 2019-10-01 佛山市高明绿色德化工有限公司 一种uv固化玻璃保护油墨及其制备方法
CN111826024A (zh) * 2020-07-29 2020-10-27 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构及半导体器件
CN113563808A (zh) * 2021-07-23 2021-10-29 西安思摩威新材料有限公司 一种具有高附着力的封装组合物及其使用方法和应用
CN115260226A (zh) * 2022-08-11 2022-11-01 西安思摩威新材料有限公司 封装薄膜用化合物及基于该化合物的紫外光固化油墨
CN115595014A (zh) * 2022-10-26 2023-01-13 西安思摩威新材料有限公司(Cn) 一种高柔韧性紫外光固化油墨及其封装层

Also Published As

Publication number Publication date
CN115595014A (zh) 2023-01-13
CN115595014B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6196363B2 (ja) 新規なβ‐オキシムエステルフルオレン化合物、それを含む光重合開始剤及びフォトレジスト組成物
EP2845845B1 (en) Novel oximester fluorine compound, and photopolymerization initiator and photoresist composition comprising same
CN103732689B (zh) 光固化型有机无机杂化树脂组合物
WO2024088358A1 (zh) 一种高柔韧性紫外光固化油墨及其封装层
US20160334707A1 (en) Negative photosensitive resin composition, cured resin film, partition walls and optical element
KR20200018280A (ko) 경화성 조성물 및 화합물
CN110982346A (zh) 墨水组合物、封装结构及半导体器件
CN103091986A (zh) 正型感光性树脂组成物、硬化膜及其形成方法、液晶显示装置及有机电致发光显示装置
TW202130677A (zh) 封裝有機發光裝置的組成物以及有機發光裝置顯示設備
KR20180067588A (ko) 액정 표시 장치 및 액정 표시 장치의 제조 방법
CN106054532B (zh) 负型感光性聚硅氧烷组合物
TWI603949B (zh) 新穎肟酯聯苯基化合物、及含彼之光起始劑與光敏樹脂組合物
WO2024007741A1 (zh) 墨水组合物、封装结构和半导体器件
CN111018745B (zh) 一种封装薄膜用化合物、有机薄膜封装材料及封装膜
CN115044244B (zh) 一种低固化收缩率的封装用墨水组合物及其制备方法
CN115260835A (zh) 一种基于对称硫代酰胺结构的高折射率墨水及其制备方法
JP2016183305A (ja) 硬化膜形成用組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法、表示素子及び表示素子の製造方法
TWI552981B (zh) 新穎之二肟酯化合物以及包括彼之光聚合初始劑及光阻組合物
CN114015277A (zh) 一种用于oled封装的油墨组合物及其应用
CN113189841A (zh) 聚合物组合物、硬化膜及有机电致发光元件
TW201600500A (zh) 肟酯化合物以及包括該肟酯化合物的光聚合性組合物
CN114853799B (zh) 一种用于薄膜封装的化合物、组合物及封装薄膜
CN116082888A (zh) 一种光可固化喷墨墨水组合物、使用方法及其应用
CN115433145B (zh) 封装薄膜用化合物、有机薄膜封装组合物、封装膜及应用
CN108628097A (zh) 感光性组合物、硬化膜、彩色滤光片、显示元件、固体摄像元件及发光二极管发光体