WO2022095792A1 - 一种紫外光固化组合物胶水及其使用方法和应用 - Google Patents

一种紫外光固化组合物胶水及其使用方法和应用 Download PDF

Info

Publication number
WO2022095792A1
WO2022095792A1 PCT/CN2021/127207 CN2021127207W WO2022095792A1 WO 2022095792 A1 WO2022095792 A1 WO 2022095792A1 CN 2021127207 W CN2021127207 W CN 2021127207W WO 2022095792 A1 WO2022095792 A1 WO 2022095792A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
aromatic ring
composition glue
chain length
carbon chain
Prior art date
Application number
PCT/CN2021/127207
Other languages
English (en)
French (fr)
Inventor
吴朝新
雷霆
杨晓龙
周桂江
刘育红
Original Assignee
西安思摩威新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安思摩威新材料有限公司 filed Critical 西安思摩威新材料有限公司
Publication of WO2022095792A1 publication Critical patent/WO2022095792A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of organic thin films, and in particular relates to a UV-curable composition glue for encapsulating electronic devices and a use method and application thereof.
  • the working stability of flexible display devices requires more attention than rigid devices.
  • the lifespan of display devices is related to the stability of the materials composing the device and the external packaging of the device.
  • Traditional rigid devices can be packaged using rigid materials (glass, sub-g force, ceramics), etc.
  • the traditional cover plate package uses epoxy resin to bond the substrate and cover plate together in a nitrogen glove box to isolate the device from the external environment (water and oxygen molecules in the air can only penetrate through epoxy resin) into the inside of the device), thereby preventing the functional layers in the electronic device from contacting water and oxygen molecules and failing.
  • the rigid package cover plate is generally made of glass or metal, but the metal cover plate is opaque, which greatly limits its application in device packaging. In addition, these types of materials do not easily bend and fold, and thus cannot be used to encapsulate flexible display-type devices.
  • thin film packaging technology In the field of flexible packaging, thin film packaging technology has been developed in recent years, which can be applied to the packaging of flexible electronic devices.
  • This packaging technology generally adopts a sandwich structure in which organic and inorganic material films alternate with each other, that is, Barix's thin-film packaging technology.
  • the inorganic thin film can effectively isolate the erosion of water and oxygen, and has a good encapsulation effect.
  • the inorganic film is too thick, it is not conducive to bending and cannot be applied to flexible electronic devices, while the organic film has the characteristics of bending resistance and flexibility, which is conducive to the application of flexible electronic devices.
  • the technical method of alternately depositing inorganic and organic thin films can effectively isolate the erosion of water and oxygen, and ensure the stability of the device.
  • Inorganic materials commonly used in Barix thin film packaging technology generally include SiO 2 , SiN x , Al, SiO x N y , etc.
  • the organic thin film is generally a polymer thin film formed by thermal curing or photocuring.
  • UV curing technology has obvious advantages: high curing efficiency, low energy consumption, environmental friendliness, high cost performance and wide applicability.
  • Both acrylic resin and epoxy resin are widely used in organic encapsulation films.
  • Epoxy resin has the properties of oxygen-free polymerization inhibition, low volume shrinkage, high adhesion, excellent mechanical properties and thermal conductivity.
  • inkjet printers commonly used in actual production, it is rarely used in actual packaging of flexible electronic devices.
  • Acrylic resin has the advantages of fast curing speed, easy to spread on inorganic substrates, and good flexibility, and is widely used in flexible electronic device packaging.
  • the current UV-curable glue is difficult to take into account both the improvement of the curing speed and the transmittance within 400-800 nm. It is well known that the higher the concentration of chemically reactive active sites, the faster the reaction speed.
  • the technical problem to be solved by the present invention is that, aiming at the above-mentioned deficiencies in the prior art, based on the characteristic that the aromatic ring has a relatively large conjugated structure, the ⁇ * transition characteristics can be used to improve the light-absorbing ability of the monomer to the curing and cross-linking light source, providing An ultraviolet-curable composition glue for encapsulating electronic devices and its use method and application provide the ultraviolet-curable composition glue with fast curing speed and high light transmittance of the cured film.
  • the present invention adopts following technical scheme:
  • An ultraviolet curing composition glue comprising a photocurable monomer, a photocurable aromatic ring monomer and a photocrosslinking initiator, and the general structural formula of the photocurable aromatic ring monomer is as formula (1) or formula (2) shows:
  • X 1 is a hydrogen atom, an alkyl chain with a mono-substituted carbon chain length of 6-12 or an alkoxy chain with a mono-substituted carbon chain length of 6-12;
  • L 1 is an alkyl chain with a carbon chain length of 6-12 Or an alkoxy chain with a carbon chain length of 6 to 12;
  • H 1 is an unsubstituted aromatic ring compound substituted by an alkyl chain with a carbon chain length of 1 to 12 or an alkoxy chain with a carbon chain length of 1 to 12 ;
  • X 2 is a hydrogen atom, an alkyl chain with a mono-substituted carbon chain length of 6-12 or an alkoxy chain with a mono-substituted carbon chain length of 6-12;
  • L 2 is an alkyl chain or carbon chain with a carbon chain length of 6-12 An alkoxy chain with a chain length of 6-12;
  • H 2 is a silane substituted by an aromatic ring compound.
  • the aromatic rings in H 1 include: fluoroanisole, fluorodianisole, 2,2-diphenylpropane, 2,2-diyldiphenylbutane, biphenyl, 1,1 ':4',1"-triphenyl, 4'-phenyl-1,1':2',1"-triphenyl, 2-methylfuran, 2-methylthiophene, 2-methylbenzene Thiophenol, 2-methylnaphthalene, 2-methylpyridine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, 1,1':2',1"-terphenyl, 2,6 - Dimethyl-1,1'-biphenyl, 2-phenylfuran or 2-phenylthiazole.
  • the aromatic rings in H 2 include: fluoroanisole, fluorodianisole, 2,2-diphenylpropane, 2,2-diyldiphenylbutane, biphenyl, 1,1 ':4',1"-triphenyl, 4'-phenyl-1,1':2',1"-triphenyl, 2-methylfuran, 2-methylthiophene, 2-methylbenzene Thiophenol, 2-methylnaphthalene, 2-methylpyridine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, 1,1':2',1"-terphenyl, 2,6 - Dimethyl-1,1'-biphenyl, 2-phenylfuran or 2-phenylthiazole.
  • the photocurable monomers include at least one of the following: monofunctional (meth)acrylates of C 1 to C 30 monohydric alcohols, C 2 to C 30 dihydric alcohols, trihydric alcohols, tetrahydric alcohols Di(meth)acrylates of polyhydric or pentahydric alcohols, tri(meth)acrylates of C3 to C30 trihydric , tetrahydric or pentahydric alcohols.
  • the photocrosslinking initiator is bisbenzoyl phenyl phosphine oxide, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(dimethylamino)benzophenone, One or more of 4'-dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone, and benzoyldiphenylphosphine oxide.
  • the photocurable monomer is 5% to 85%
  • the initiator is 0.1% to 10%
  • the photocurable aromatic ring monomer is present in the ultraviolet light curing in a total amount of 5% to 85%. Composition in glue.
  • Another technical solution of the present invention is, a method of using ultraviolet light-curing composition glue, which adopts the method of inkjet printing, spin coating, screen printing or blade coating to cure the packaged electronic device of claim 1 with ultraviolet light
  • the composition glue is attached to the surface of the electronic device to be encapsulated, and then cured by ultraviolet light or blue light with a wavelength of 200-450 nm to form an organic thin film barrier layer with a thickness of 0.1-30 ⁇ m, and the irradiation time is 1-300s.
  • the light transmittance of the organic thin film barrier layer within 400-800 nm is 94.6%-98.4%, and the curing rate is 93.4%-96.2%.
  • Another technical solution of the present invention is the application of the UV-curable composition glue in the waterproof and oxygen barrier packaging of organic light-emitting diodes, organic solar cells, perovskite solar cells or integrated circuit boards.
  • the present invention at least has the following beneficial effects:
  • the invention is a UV-curable composition glue for encapsulating electronic devices.
  • the photo-curable aromatic ring-based monomer used has high light absorption capacity for cross-linking curing light sources, and at the same time, it has high light transmittance to visible light, that is, it has fast
  • the UV curing rate can effectively adjust the compatibility between monomers by changing the substituent of the aromatic ring, improve the aggregation behavior between molecules in the film after photocuring and crosslinking, and promote the entanglement and winding of molecular chains in the film to form a dense film;
  • the photocurable aromatic ring-based monomer also has good inkjet printing and screen printing characteristics, which is conducive to the use of inkjet printing or screen printing for organic light emitting diodes, organic solar cells, perovskite solar cells or Electronic equipment such as integrated circuit boards can be quickly packaged to achieve excellent packaging effects.
  • the photocurable aromatic ring-based monomer in H 1 is easy to synthesize, has low cost, and has a strong absorption capacity for ultraviolet light or blue light with a wavelength of 200-450 nm, and the curing speed is fast.
  • the aromatic ring in H2 can utilize its ⁇ * transition characteristics to effectively improve the light absorption capability of the monomer for wavelengths of 200-450 nm, thereby improving its curing efficiency.
  • the functional group is conducive to the formation of a more compact and complex cross-linked network structure during photocuring and cross-linking, and enhances the barrier effect of the cross-linked film on water and oxygen.
  • the silicon atom of the photocurable aromatic ring monomer can effectively break the conjugation between the aromatic rings, and promote the blue shift of the absorption spectrum of the photocurable aromatic ring monomer, thereby increasing its transmittance to visible light.
  • adding a photo-crosslinking initiator can accelerate the photo-curing cross-linking rate and reduce the operation time, which is one of the keys to efficiently complete the photo-curing cross-linking to form a dense film.
  • a method of using ultraviolet light curing composition glue the operation of configuring the glue is simple, the cross-linking curing light source used is easy to obtain, and the cost is low; by improving the light absorption capacity of 200-450 nm wavelength, it does not affect the high transmittance of visible light. , which can improve the performance of related electronic devices and achieve the purpose of not affecting the observation and viewing of human eyes.
  • the UV-curable composition prepared by the invention is cross-linked and cured, the water and oxygen tolerance of electronic devices such as organic light-emitting diodes, organic solar cells, and perovskite solar cells can be effectively improved, and the use performance of the electronic devices can be enhanced.
  • the present invention can realize the controllability of ink droplets in the process of inkjet printing, and form a printing pattern with regular boundaries; it has the advantages of fast curing speed and high light transmittance of the cured film.
  • the invention is a UV-curable composition glue for encapsulating electronic devices, the components of which include photo-curable monomers, photo-curable aromatic ring monomers and photo-crosslinking initiators; based on photo-curable monomers, photo-curable
  • the total weight of the aromatic ring monomer and the photo-crosslinking initiator, the photo-curable monomer is present in the glue of the UV-curable composition in an amount of 5% to 85%, and the photo-crosslinking initiator is in an amount of 0.1% to 10%.
  • the amount of the photocurable aromatic ring-based monomer is present in the UV-curable composition glue in an amount of 5% to 85%.
  • the photocurable monomers include at least one of the following: monofunctional (meth)acrylates of C1 to C30 monohydric alcohols, C2 to C30 dihydric, trihydric, tetrahydric alcohols or Di(meth)acrylates of pentahydric alcohols, tri(meth)acrylates of C3 to C30 trihydric , tetrahydric or pentahydric alcohols.
  • the photocurable aromatic ring monomer contains an aromatic ring group and can be photocured and crosslinked.
  • the general structural formula is represented by formula (1) or formula (2):
  • X 1 is a hydrogen atom, an alkyl chain with a mono-substituted carbon chain length of 6-12 or an alkoxy chain with a mono-substituted carbon chain length of 6-12;
  • L 1 is an alkyl chain with a carbon chain length of 6-12 Or an alkoxy chain with a carbon chain length of 6 to 12;
  • H 1 is an unsubstituted aromatic ring compound substituted by an alkyl chain with a carbon chain length of 1 to 12 or an alkoxy chain with a carbon chain length of 1 to 12 ;
  • X 2 is a hydrogen atom, an alkyl chain with a mono-substituted carbon chain length of 6-12 or an alkoxy chain with a mono-substituted carbon chain length of 6-12;
  • L 2 is an alkyl chain or carbon chain with a carbon chain length of 6-12 An alkoxy chain with a chain length of 6-12;
  • H 2 is a silane substituted by an aromatic ring compound.
  • Aromatic rings in H 1 include: fluoroanisole, fluorodianisole, 2,2-diphenylpropane, 2,2-diyldiphenylbutane, biphenyl, 1,1':4 ',1"-triphenyl, 4'-phenyl-1,1':2',1"-triphenyl, 2-methylfuran, 2-methylthiophene, 2-methylthiophenol, 2-methylnaphthalene, 2-methylpyridine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, 1,1':2',1"-terphenyl, 2,6-dimethylbenzene 1,1'-biphenyl, 2-phenylfuran or 2-phenylthiazole.
  • Aromatic rings in H 2 include: fluoroanisole, fluorodianisole, 2,2-diphenylpropane, 2,2-diyldiphenylbutane, biphenyl, 1,1':4 ',1"-triphenyl, 4'-phenyl-1,1':2',1"-triphenyl, 2-methylfuran, 2-methylthiophene, 2-methylthiophenol, 2-methylnaphthalene, 2-methylpyridine, benzofuran, benzothiophene, dibenzofuran, dibenzothiophene, 1,1':2',1"-terphenyl, 2,6-dimethylbenzene 1,1'-biphenyl, 2-phenylfuran or 2-phenylthiazole.
  • the photocurable aromatic ring-based monomer of formula 1 can be obtained in various ways, wherein a representative synthesis method starts with a mono-bromo cyclic compound H 1 -Br or a mono-iodine cyclic compound H 1 -I as the starting material, and the route As follows:
  • the photocurable aromatic ring-based monomer of formula 2 can be obtained in a variety of ways, and the representative synthetic method route is as follows:
  • Photocrosslinking initiators are bisbenzoyl phenyl phosphine oxide, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'- One or more of dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone, and benzoyldiphenylphosphine oxide.
  • the photo-crosslinking photoinitiator is bisbenzoyl phenyl phosphine oxide.
  • bisbenzoyl phenyl phosphine oxide is used as the initiator, the photo-crosslinking curing speed is the fastest, and the curing rate can reach 93.4 within 300s. % ⁇ 96.2%.
  • the photocrosslinking initiator is 0.2% to 4%, which can well balance the crosslinking curing time and the visible light transmittance of the film; too little crosslinking agent, the crosslinking time will exceed 300s; too much crosslinking agent , the light transmittance of the film to visible light is reduced due to the darker color of the crosslinking agent itself.
  • UV-curable composition glue The preparation method of UV-curable composition glue is as follows:
  • the photocurable monomer, the photocurable aromatic ring monomer and the photocrosslinking initiator are placed in a brown glass container, and stirred and mixed at room temperature until the photoinitiator is dissolved.
  • UV-curable composition glue is as follows:
  • the method of inkjet printing is used to print the UV-curable composition glue into a liquid film of a set shape, and then the power of the UV lamp is adjusted at 10-500 mW/cm 2 and light-cured for 1-300 s to obtain a
  • the organic thin film barrier layer with a layer thickness of 6-20 ⁇ m has been tested, and the UV curable composition glue has a curing rate of 93.4% to 96.2% after curing with ultraviolet light or blue light at a wavelength of 200 to 450 nm to form an organic thin film barrier layer. 94.6% ⁇ 98.4% transmittance.
  • the invention relates to a UV-curable composition glue for encapsulating electronic devices.
  • the surface tension of the glue is 23.7-48.4 dyne/cm
  • the viscosity is 11.8-130.8 cps
  • the light transmittance of the organic thin film barrier layer after photo-curing It is 94.6%-98.4%
  • the curing rate is 93.4%-96.2%.
  • As a UV-curable material for the packaging layer of electronic devices it can be applied to electronic products such as organic light-emitting diodes, organic solar cells, perovskite solar cells or integrated circuit boards. waterproof and oxygen barrier package.
  • the organic layer was dried over anhydrous sodium sulfate, concentrated to remove dichloromethane, and the residue was purified by silica gel column to obtain 14.5 g of 2-(4-(4-fluorophenoxy)phenoxy)ethane-1-ol; then The obtained 2-(4-(4-fluorophenoxy)phenoxy)ethane-1-ol and 9.8 g of methacryloyl chloride were dissolved in 200 mL of pyridine, stirred at room temperature for 24 h in a nitrogen atmosphere, and concentrated. The residue was washed with silica gel Column purification gave 10.5 g of 2-(4-(4-fluorophenoxy)phenoxy)ethyl methacrylate in a yield of 56.4%.
  • UV-curable composition glue 1 In a brown glass bottle, add 3.0g glycerol diacrylate, 9.9g 2-(4-(4-fluorophenoxy)phenoxy)ethyl methacrylate and 0.1g bisbenzoylphenyl oxide phosphine, and after stirring for 1 h at room temperature in the dark, a UV-curable composition glue 1 was obtained. At 25°C, the UV-curable composition glue 1 had a surface tension of 40.4 dyne/cm and a viscosity of 14.2 cps.
  • the surface of the substrate is coated by inkjet printing, and then cured by 10mW/ cm2 UV lamp irradiation for 300s to form an organic encapsulation barrier film with a film thickness of 10 ⁇ m; the film curing rate is 95.4%, and the light transmittance is 95.2%.
  • a UV-curable composition glue 2 was obtained after stirring for 1 h at room temperature in the dark; at 25° C., the surface tension of the UV-curable composition glue 2 was 36.5 dyne/cm, and the viscosity was 15.5 cps.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by irradiating a 50mW/ cm2 UV lamp for 250s to form an organic encapsulation barrier film with a film thickness of 12 ⁇ m; the curing rate was 93.4%, and the light transmittance was 98.4%.
  • UV-curable composition glue 3 In a brown glass bottle, add 16.0g decanediol diacrylate, 9.5g 2-(benzofuran-6yloxy)ethyl methacrylate and 0.5g bisbenzoylphenylphosphine oxide, avoid at room temperature After light stirring for 1 h, a UV-curable composition glue 3 was obtained. At 25°C, the UV-curable composition glue 3 had a surface tension of 36.5 dyne/cm and a viscosity of 110.5 cps.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 100mW/ cm2 UV lamp irradiation for 100s to form an organic encapsulation barrier film with a film thickness of 18 ⁇ m; the curing rate was 96.7%, and the light transmittance was 95.2%.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 500mW/ cm2 UV lamp irradiation for 20s to form an organic encapsulation barrier film with a film thickness of 19 ⁇ m; the curing rate was 94.6%, and the light transmittance was 97.5%.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 300mW/ cm2 UV lamp irradiation for 20s to form an organic encapsulation barrier film with a film thickness of 17 ⁇ m; the curing rate was 95.6%, and the light transmittance was 95.5%.
  • Examples 1 to 5 are the single use of formula 1 or formula 2 photo-curable aromatic ring monomers, photo-curable monomers, and photo-initiators to form a UV-curable composition glue. It is also possible to use formula 1 or formula 2 photocurable aromatic ring monomers at the same time to form a mixture, and then add a suitable quality of photocurable monomers and photoinitiators to prepare the UV-curable composition glue.
  • the R group is a substituent such as phenyl and biphenyl.
  • 1 equivalent of diphenyl, terphenyl bromide, 1.5 equivalents of ethylene glycol, 5 equivalents of potassium carbonate and 0.1 equivalents of copper acetate were added to the reaction flask, heated to 130°C and stirred for 24h, and the reaction mixture was cooled to room temperature , washed with water and extracted with dichloromethane to obtain an organic layer.
  • the organic layer was dried with anhydrous sodium sulfate, concentrated to remove dichloromethane, and the residue was purified by silica gel column to obtain the corresponding diphenyl and terphenyl 1-alcohols; Methacryloyl chloride was dissolved in 200 mL of pyridine in a molar ratio of 1:1.1, stirred at room temperature for 24 h in a nitrogen atmosphere, and concentrated. The residue was purified with a silica gel column to obtain the corresponding diphenyl and terphenyl methacrylates in a yield of 55 % ⁇ 72%.
  • the ink-jet printed material is coated on the surface of the substrate, and then cured by a 200mW/ cm2 UV lamp for 40s to form an organic encapsulation barrier film with a film thickness of 8-17 ⁇ m; its curing rate is 93.5%-96.2%, light transmittance The rate is 95.1% to 97.8%.
  • the inkjet printing material is applied on the surface of the substrate, and then cured by 150mW/cm 2 ultraviolet lamp irradiation for 60s to form an organic encapsulation barrier film with a film thickness of 7 ⁇ m; the curing rate is 94.5%, and the light transmittance is within 400-800nm. was 96.4%.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 100mW/ cm2 UV lamp irradiation for 60s to form an organic encapsulation barrier film with a film thickness of 10 ⁇ m; the curing rate was 94.1%, and the light transmittance was 95.2%.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 100mW/ cm2 UV lamp irradiation for 200s to form an organic encapsulation barrier film with a film thickness of 12 ⁇ m; the curing rate was 93.5%, and the light transmittance was 98.4%.
  • the inkjet printed material was coated on the surface of the substrate, and then cured by 120s of UV lamp irradiation at 100mW/ cm2 to form an organic encapsulation barrier film with a film thickness of 9 ⁇ m; the curing rate was 94.3%, and the light transmittance was 94.6%.
  • the UV-curable composition glue of the present invention and its using method and application have few monomer synthesis steps and high yield; It has good optical properties and can be well applied to the packaging of electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开了一种紫外光固化组合物胶水及其使用方法和应用,组分包括光可固化单体,光可固化芳香环基单体以及光交联引发剂,光可固化芳香环基单体含有芳香环基团且可光固化交联的化合物。本发明具有合适的物理性能参数,可实现喷墨打印过程中墨滴的可控性,形成边界规整的打印图案;具有固化速度快、固化薄膜透光率高等优点。

Description

一种紫外光固化组合物胶水及其使用方法和应用 技术领域
本发明属于有机薄膜技术领域,具体涉及一种封装电子器件用紫外光固化组合物胶水及其使用方法和应用。
背景技术
近些年,柔性电子学正在蓬勃发展。显示相关的电子器件如有机发光二极管、太阳能电池等也向着柔性,轻质,可折叠弯曲,可穿戴的方向发展。而柔性显示器件的工作稳定性相对于刚性器件更加需要关注。显示类器件的寿命与组成器件的材料的稳定性和器件的外封装情况有关。传统的刚性器件可以使用刚性材料(玻璃,亚g力,陶瓷)等进行封装。例如传统的盖板封装,它是在氮气手套箱内使用环氧树脂将基板与盖板粘合在一起,将器件与外界环境隔绝起来(空气中的水、氧分子只能经由环氧树脂渗透进器件内部),从而防止电子器件中的各功能层接触水、氧分子而失效。刚性封装盖板一般采用玻璃或者金属,但是金属盖板是不透光的,这使其在器件封装中的应用受到极大限制。另外,这些类型的材料不易弯曲折叠,因而不能用于封装柔性显示类器件。
在柔性封装领域,近年来发展起来了薄膜封装技术,可以应用于柔性电子器件的封装。这种封装技术普遍采用有机和无机材料薄膜相互交替形成的三明治结构,即Barix的薄膜封装技术。无机物薄膜可以有效地隔绝水氧的侵蚀,起到良好的封装效果。但是无机物薄膜如果太厚不利于弯折,无法实现柔性电子器件应用,而有机物薄膜具有耐弯折和柔性特点,有利于实现柔性电子器件应用。通过交替沉积无机物和有机物薄膜封装的技术方式能够有效的隔绝水氧的侵蚀,保证了器件的稳定性。
Barix薄膜封装技术中常用无机物一般有SiO 2、SiN x,Al,SiO xN y等,其中的有机物薄膜 则一般是通过热固化或光固化的方式形成的聚合物薄膜。其中,紫外光固化技术具有明显优势:固化效率高,能耗低,环境友好,性价比高和适用性广等。丙烯酸树脂和环氧树脂都广泛的应用于有机封装薄膜中,环氧树脂具有无氧阻聚特性,体积收缩率低,附着力高,优异的机械性能和导热性能。然而由于其不兼容实际生产常用的喷墨打印机的缺点,因而在实际封装柔性电子器件中应用较少。丙烯酸树脂具有固化速度快,易于在无机衬底上铺展,柔性好的优点广泛应用于柔性电子器件封装中。但是,目前的可紫外光固化胶水在提升固化速度以及400~800nm内透光率方面难以同时兼顾,众所周知,化学反应活性位点浓度越大,反应速度越快。为了提升光固化速率,则需要显著增加丙烯酸酯共轭端基的数量,将导致胶水粘度急剧增加,光固化所得薄膜浑浊度高而导致透光率不佳;若是需要获得高透光率固化薄膜,则需要减少丙烯酸酯端基比例,如此又将降低光固化速率。因此,目前可紫外光固化胶水面临的困境导致封装产品的良品率不高,急需开发新的紫外光固化胶水实现对电子器件的快速高性能封装。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,基于芳香环具有较大共轭结构的特点,能够利用π→π*跃迁特性提高单体对固化交联光源的吸光能力,提供一种封装电子器件用紫外光固化组合物胶水及其使用方法和应用,提供固化速度快、固化薄膜透光率高的紫外光固化组合物胶水。
本发明采用以下技术方案:
一种紫外光固化组合物胶水,包括光可固化单体,光可固化芳香环基单体以及光交联引发剂,光可固化芳香环基单体的结构通式如式(1)或式(2)所示:
Figure PCTCN2021127207-appb-000001
其中,X 1为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度在6~12烷氧基链;L 1为碳链长度在6~12的烷基链或碳链长度在6~12烷氧基链;H 1为未被取代,被碳链长度1~12的烷基链取代或被碳链长度1~12的烷氧基链取代的芳香环化合物;X 2为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度6~12的烷氧基链;L 2为碳链长度6~12的烷基链或碳链长度6~12的烷氧基链;H 2为芳香环化合物取代的硅烷。
具体的,H 1中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
具体的,H 2中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
具体的,光可固化单体包括以下所列中的至少一种:C 1到C 30一元醇的单官能(甲基)丙烯酸酯,C 2到C 30的二元醇、三元醇、四元醇或五元醇的二(甲基)丙烯酸酯,C 3到C 30的三元醇、四元醇或五元醇的三(甲基)丙烯酸酯。
具体的,光交联引发剂为双苯甲酰基苯基氧化膦、羟基二苯甲酮、丙烯酸化二苯甲酮、4,4'-双(二甲基氨基)二苯甲酮、4,4'-二氯二苯甲酮、3,3'-二甲基-2-甲氧基二苯甲酮和苯甲酰基二苯基氧化膦中的一种或多种。
具体的,以重量计,光可固化单体为5%~85%,引发剂为0.1%~10%,光可固化芳香环基单体以5%~85%的总量存在于紫外光固化组合物胶水中。
本发明的另一个技术方案是,一种紫外光固化组合物胶水的使用方法,采用喷墨打印、旋 涂、丝网印刷或刮涂方式将权利要求1所述的封装电子器件用紫外光固化组合物胶水附着在待封装电子器件的表面,然后通过200~450nm波长的紫外光或蓝光照射固化形成厚度为0.1~30μm的有机薄膜阻隔层,照射时间为1~300s。
具体的,所述有机薄膜阻隔层在400~800nm内的透光率为94.6%~98.4%,固化率为93.4%~96.2%。
本发明的另一个技术方案是,紫外光固化组合物胶水在有机发光二极管、有机太阳能电池、钙钛矿太阳能电池或集成电路板的防水阻氧封装中的应用。
与现有技术相比,本发明至少具有以下有益效果:
本发明一种封装电子器件用紫外光固化组合物胶水,采用的光可固化芳香环基单体对交联固化光源具有很高的吸光能力,同时对可见光具有高透光性,即具备快的紫外固化速率,通过改变芳香环的取代基,能够有效调节单体间的相容性,改善光固化交联后薄膜内分子之间的聚集行为,促进薄膜内分子链纠缠盘绕,形成致密膜;同时,光可固化芳香环基单体也具有良好的喷墨打印与丝网印刷特性,有利于采用喷墨打印或丝网印刷的方式对有机发光二极管、有机太阳能电池、钙钛矿太阳能电池或集成电路板等电子设备快速封装,实现优异的封装效果。
进一步的,H 1中的光可固化芳香环基单体易合成、成本低,且对200~450nm波长紫外光或蓝光的吸收能力强,固化速度快。
进一步的,H 2中的芳香环可利用其π→π*跃迁特性有效提升单体的对200~450nm波长的吸光能力,进而提高其固化效率,向光可固化芳香环基单体中引入双官能团在光固化交联时有利于形成更为紧密复杂的交联网状结构,增强交联后薄膜对水氧等的阻隔效果。
进一步的,光可固化芳香环基单体的硅原子可以有效打断芳香环之间的共轭,促使光可固化芳香环基单体吸收光谱蓝移,进而增加其对可见光的透过率。
进一步的,加入光交联引发剂能够促进光固化交联速率,减少操作时间,是高效完成光固 化交联形成致密薄膜的关键之一。
一种紫外光固化组合物胶水的使用方法,配置胶水操作简单,所用交联固化光源易得、成本低;通过提升对200~450nm波长的吸光能力,同时却不影响对可见光的高透过率,能够改善相关电子器件的使用性能,达到不影响人眼观测查看的目的。
采用本发明制备的紫外光固化组合物胶水交联固化后,能够有效提升有机发光二极管、有机太阳能电池、钙钛矿太阳能电池等电子器件的水氧耐受性,增强电子器件的使用性能。
综上所述,本发明可实现喷墨打印过程中墨滴的可控性,形成边界规整的打印图案;具有固化速度快、固化膜透光度高等优点。
下面通过实施例,对本发明的技术方案做进一步的详细描述。
具体实施方式
本发明一种封装电子器件用紫外光固化组合物胶水,其组分包括光可固化单体,光可固化芳香环基单体以及光交联引发剂;基于光可固化单体,光可固化芳香环基单体以及光交联引发剂的总重量,光可固化单体以5%~85%的量存在与紫外光固化组合物胶水中,光交联引发剂以0.1%~10%的量存在于紫外光固化组合物胶水中,光可固化芳香环基单体以5%~85%的量存在于紫外光固化组合物胶水中。
光可固化单体包括以下所列中的至少一种:C 1到C 30一元醇的单官能(甲基)丙烯酸酯,C 2到C 30的二元醇、三元醇、四元醇或五元醇的二(甲基)丙烯酸酯,C 3到C 30的三元醇、四元醇或五元醇的三(甲基)丙烯酸酯。
光可固化芳香环基单体含有芳香环基团且可光固化交联的化合物,结构通式由式(1)或式(2)表示:
Figure PCTCN2021127207-appb-000002
Figure PCTCN2021127207-appb-000003
其中,X 1为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度在6~12烷氧基链;L 1为碳链长度在6~12的烷基链或碳链长度在6~12烷氧基链;H 1为未被取代,被碳链长度1~12的烷基链取代或被碳链长度1~12的烷氧基链取代的芳香环化合物;X 2为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度6~12的烷氧基链;L 2为碳链长度6~12的烷基链或碳链长度6~12的烷氧基链;H 2为芳香环化合物取代的硅烷。
H 1中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
H 2中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
式1光可固化芳香环基单体由多种方式获得,其中代表性合成方法以单溴代环状化合物H 1-Br或者单碘代环状化合物H 1-I为起始物开始,路线如下所示:
Figure PCTCN2021127207-appb-000004
式2光可固化芳香环基单体由多种方式获得,其中代表性合成方法路线如下所示:
Figure PCTCN2021127207-appb-000005
光交联引发剂为双苯甲酰基苯基氧化膦、羟基二苯甲酮、丙烯酸化二苯甲酮、4,4'-双(二甲 基氨基)二苯甲酮、4,4'-二氯二苯甲酮、3,3'-二甲基-2-甲氧基二苯甲酮和苯甲酰基二苯基氧化膦中的一种或多种。
优选地,光交联光引发剂为双苯甲酰基苯基氧化膦,双苯甲酰基苯基氧化膦作为引发剂时,光交联固化速度最快,在300s之内能使固化率达到93.4%~96.2%。
优选地,光交联引发剂为0.2%~4%,能够很好地平衡交联固化时间与薄膜可见光透光率;交联剂太少,则交联时间将超过300s;交联剂太多,则因交联剂自身颜色较深而降低薄膜对可见光的透光率。
紫外光固化组合物胶水的制备方法具体如下:
按照质量百分比,将光可固化单体,光可固化芳香环基单体以及光交联引发剂盛于在棕色玻璃容器中,在室温下搅拌混合至光引发剂溶解。
紫外光固化组合物胶水的使用方法具体如下:
通过喷墨打印、旋涂、丝网印刷或刮涂中的一种方式,均匀地附着在需要封装的电子器件表面,然后通过紫外灯照射来促进形成有机阻隔薄膜。本发明采用喷墨打印的方式,将紫外光固化组合物胶水打印成设定形状的液膜,然后通过调节紫外灯的功率在10~500mW/cm 2,照射1~300s进行光固化,得到一层厚度为6~20μm的有机薄膜阻隔层,经测试,紫外光固化组合物胶水在200~450nm波长的紫外光或蓝光照射固化形成有机薄膜阻隔层后,具有93.4%~96.2%的固化率和94.6%~98.4%的透光率。
本发明一种封装电子器件用紫外光固化组合物胶水,在25℃时,胶水的表面张力为23.7~48.4dyne/cm,粘度为11.8~130.8cps,光固化后有机薄膜阻隔层的透光率为94.6%~98.4%,固化率为93.4%~96.2%,作为电子器件封装层的紫外可固化材料,能够应用于有机发光二极管、有机太阳能电池、钙钛矿太阳能电池或集成电路板等电子产品的防水阻氧封装。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
甲基丙烯酸2-(4-(4-氟苯氧基)苯氧基)乙酯的合成
Figure PCTCN2021127207-appb-000006
氮气氛围中,向反应瓶中加入26.7g 4-溴-2-氟-甲氧基苯、6.2g乙二醇、27.6g碳酸钾以及1.0g醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得14.5g 2-(4-(4-氟苯氧基)苯氧基)乙烷-1-醇;接着将所得2-(4-(4-氟苯氧基)苯氧基)乙烷-1-醇与9.8g甲基丙烯酰氯溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得10.5g甲基丙烯酸2-(4-(4-氟苯氧基)苯氧基)乙酯,产率56.4%。
在棕色玻璃瓶中,加入3.0g丙三醇二丙烯酸酯,9.9g甲基丙烯酸2-(4-(4-氟苯氧基)苯氧基)乙酯和0.1g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水1。在25℃时,紫外光固化组合物胶水1的表面张力为40.4dyne/cm,粘度为14.2cps。
然后,通过喷墨打印物涂在基板表面,接着通过10mW/cm 2的紫外灯照射300s进行固化,形成有机封装阻隔膜,薄膜厚度10μm;薄膜固化率为95.4%,透光率为95.2%。
实施例2
甲基丙烯酸2-(3-氟-4-甲氧基苯氧基)乙酯的合成
Figure PCTCN2021127207-appb-000007
氮气氛围中,向反应瓶中加入20.3g 4-溴-2-氟-甲氧基苯、6.2g乙二醇、27.6g碳酸钾以及1.0g醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得12.5g 2-(3-氟-4-甲氧基苯氧基)乙基-1-醇。接着将所得2-(3-氟-4-甲氧基苯氧基)乙基-1-醇与7.8g甲基丙烯酰氯溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得11.5g甲基丙烯酸2-(3-氟-4-甲氧基苯氧基)乙酯,产率67.4%。
在棕色玻璃瓶中,加入3.0g丙三醇二丙烯酸酯,9.7g的甲基丙烯酸2-(3-氟-4-甲氧基苯氧基)乙酯和0.3g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水2;在25℃时,紫外光固化组合物胶水2的表面张力为36.5dyne/cm,粘度为15.5cps。
然后,通过喷墨打印物涂在基板表面,接着通过50mW/cm 2的紫外灯照射250s进行固化,形成有机封装阻隔膜,薄膜厚度12μm;固化率为93.4%,透光率98.4%。
实施例3
甲基丙烯酸2-(苯并呋喃-6基氧基)乙酯合成
Figure PCTCN2021127207-appb-000008
氮气氛围中,向反应瓶中加入19.5g 6-溴苯并呋喃、6.2g乙二醇、27.6g碳酸钾以及1.0g醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得10.3g 2-(苯并呋喃-6-烷氧基)乙烷-1-醇。接着将所得2-(苯并呋喃-6-烷氧基)乙烷-1-醇与5.8g甲基丙烯酰氯溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得8.2g甲基丙烯酸2-(苯并呋喃-6基氧基)乙酯,产率33.3%。
在棕色玻璃瓶中,加入16.0g癸二醇二丙烯酸酯,9.5g甲基丙烯酸2-(苯并呋喃-6基氧基)乙酯和0.5g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水3。在25℃时,紫外光固化组合物胶水3的表面张力为36.5dyne/cm,粘度为110.5cps。
然后,通过喷墨打印物涂在基板表面,接着通过100mW/cm 2的紫外灯照射100s进行固化,形成有机封装阻隔膜,薄膜厚度18μm;固化率为96.7%,透光率为95.2%。
实施例4
(((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)合成
Figure PCTCN2021127207-appb-000009
氮气氛围中,向反应瓶中加入36.8g双(3-溴苯基)二甲基硅烷、6.2g乙二醇、27.6g碳酸钾以及1.0g醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得23.8g2,2'-(((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-1-醇);接着将所得2,2'-(((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-1-醇)与7.5g甲基丙烯酰氯溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得18.5g((((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯),产率39.5%。
在棕色玻璃瓶中,加入25.0g癸二醇二丙烯酸酯,9.0g((((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯),1.0g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水4。在25℃时,紫外光固化组合物胶水4的表面张力为36.5dyne/cm,粘度为122.8cps。
然后,通过喷墨打印物涂在基板表面,接着通过500mW/cm 2的紫外灯照射20s进行固化,形成有机封装阻隔膜,薄膜厚度19μm;固化率为94.6%,透光率为97.5%。
实施例5
(((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)合成
Figure PCTCN2021127207-appb-000010
氮气氛围中,向反应瓶中加入30.6g(3,5-二溴苯基)三甲基硅烷、6.2g乙二醇、27.6g碳酸钾以及1.0g醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得17.8g2,2'-((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-1-醇);接着将所得2,2'-((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-1-醇)与6.9g甲基丙烯酰氯溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得11.5g(((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯),产率28.3%。
在棕色玻璃瓶中,加入7.0g癸二醇二丙烯酸酯,9.4g(((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)和0.6g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水5。在25℃时,紫外光固化组合物胶水5的表面张力为39.7dyne/cm,粘度为25.8cps。
然后,通过喷墨打印物涂在基板表面,接着通过300mW/cm 2的紫外灯照射20s进行固化,形成有机封装阻隔膜,薄膜厚度17μm;固化率为95.6%,透光率为95.5%。
实施例1至实施例5为单一使用式1或式2光可固化芳香环基单体与光可固化单体、光引发剂混合形成紫外光固化组合物胶水。也可以同时使用式1或式2光可固化芳香环基单体形成 混合物,再加入合适质量的光可固化单体与光引发剂制备得到紫外光固化组合物胶水。
实施例6
二联苯、三联苯类甲基丙烯酸脂的合成
Figure PCTCN2021127207-appb-000011
上式中,R基为苯基、联苯等取代基。氮气氛围中,向反应瓶中加入1当量二联苯、三联苯类溴代物、1.5当量乙二醇、5当量碳酸钾以及0.1当量醋酸铜,加热至130℃搅拌24h后将反应混合物冷至室温,水洗并用二氯甲烷萃取获得有机层。用无水硫酸钠干燥有机层后浓缩除去二氯甲烷,残留物用硅胶柱提纯,获得相应的二联苯、三联苯类1-醇;接着将所得二联苯、三联苯类1-醇与甲基丙烯酰氯按照摩尔比1:1.1的比例溶于200mL吡啶,氮气氛围中室温搅拌24h后浓缩,残留物用硅胶柱提纯,获得相应二联苯、三联苯类甲基丙烯酸脂,产率55%~72%。
在棕色玻璃瓶中,加入3.0g丙三醇二丙烯酸酯,6.4g二联苯、三联苯类甲基丙烯酸脂和0.6g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水6。在25℃时,紫外光固化组合物胶水6的表面张力为34.2~66dyne/cm,粘度为11.8~38cps。
然后,通过喷墨打印物涂在基板表面,接着通过200mW/cm 2的紫外灯照射40s进行固化,形成有机封装阻隔膜,薄膜厚度8~17μm;其固化率为93.5%~96.2%,透光率为95.1%~97.8%。
实施例7
在棕色玻璃瓶中,加入3.0g丙三醇二丙烯酸酯,0.8g甲基丙烯酸2-(苯并呋喃-6基氧基)乙酯,8.8g(((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)和0.4g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水7。在25℃时,紫外光固化组合物胶水7的表面张力为33.7dyne/cm,粘度为29.8cps。
然后,通过喷墨打印物涂在基板表面,接着通过150mW/cm 2的紫外灯照射60s进行固化, 形成有机封装阻隔膜,薄膜厚度7μm;固化率为94.5%,在400~800nm内透光率为96.4%。
实施例8
在棕色玻璃瓶中,加入7.0g四乙二醇二丙烯酸酯,1.0g甲基丙烯酸2-(4-甲氧基苯氧基)乙酯,8.7g(((5-(三甲基甲硅烷基)-1,3-亚苯基)双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)和0.3g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水8。在25℃时,紫外光固化组合物胶水8的表面张力为33.7dyne/cm,粘度为19.1cps。
然后,通过喷墨打印物涂在基板表面,接着通过100mW/cm 2的紫外灯照射60s进行固化,形成有机封装阻隔膜,薄膜厚度10μm;固化率为94.1%,透光率为95.2%。
实施例9
在棕色玻璃瓶中,加入7.0g四乙二醇二丙烯酸酯,7.0g甲基丙烯酸2-(苯并呋喃-6基氧基)乙酯,2.75g((((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)和0.15g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水9。在25℃时,紫外光固化组合物胶水9的表面张力为34.6dyne/cm,粘度为19.5cps。
然后,通过喷墨打印物涂在基板表面,接着通过100mW/cm 2的紫外灯照射200s进行固化,形成有机封装阻隔膜,薄膜厚度12μm;固化率为93.5%,透光率为98.4%。
实施例10
在棕色玻璃瓶中,加入5.0g四乙二醇二丙烯酸酯,3.0g间苯氧基苯甲基丙烯酸酯,6.7g((((二甲基硅烷二基)双(3,1-亚苯基))双(氧基))双(乙烷-2,1-二基)双(2-甲基丙烯酸酯)和0.3g双苯甲酰基苯基氧化膦,在室温避光搅拌1h后,得到一种紫外光固化组合物胶水10;在25℃时,紫外光固化组合物胶水10的表面张力为36.6dyne/cm,粘度为18.7cps。
然后,通过喷墨打印物涂在基板表面,接着通过100mW/cm 2的紫外灯照射120s进行固化,形成有机封装阻隔膜,薄膜厚度9μm;固化率为94.3%,透光率为94.6%。
综上所述,本发明一种紫外光固化组合物胶水及其使用方法和应用,单体合成步骤少、产率高;配置好的紫外光固化组合物胶水固化速度快、固化率高、透光性好,能够很好地应用于电子器件封装方面。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (9)

  1. 一种紫外光固化组合物胶水,其特征在于,包括光可固化单体,光可固化芳香环基单体以及光交联引发剂,光可固化芳香环基单体的结构通式如式(1)或式(2)所示:
    Figure PCTCN2021127207-appb-100001
    其中,X 1为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度在6~12烷氧基链;L 1为碳链长度在6~12的烷基链或碳链长度在6~12烷氧基链;H 1为未被取代,被碳链长度1~12的烷基链取代或被碳链长度1~12的烷氧基链取代的芳香环化合物;X 2为氢原子、单取代碳链长度在6~12的烷基链或单取代碳链长度6~12的烷氧基链;L 2为碳链长度6~12的烷基链或碳链长度6~12的烷氧基链;H 2为芳香环化合物取代的硅烷。
  2. 根据权利要求1所述的紫外光固化组合物胶水,其特征在于,H 1中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
  3. 根据权利要求1所述的紫外光固化组合物胶水,其特征在于,H 2中的芳香环包括:氟代苯甲醚、氟代二苯甲醚、2,2-二苯基丙烷、2,2-二基二苯丁烷、联苯、1,1':4',1”-联三苯、4'-苯基-1,1':2',1”-联三苯、2-甲基呋喃、2-甲基噻吩、2-甲基苯硫酚、2-甲基萘、2-甲基吡啶、苯并呋喃、苯并噻吩、二苯并呋喃、二苯并噻吩、1,1':2',1”-三联苯、2,6-二甲基-1,1'-联苯、2-苯基呋喃或2-苯基噻唑。
  4. 根据权利要求1所述的紫外光固化组合物胶水,其特征在于,光可固化单体包括以下所列中的至少一种:C 1到C 30一元醇的单官能(甲基)丙烯酸酯,C 2到C 30的二元醇、三元醇、四 元醇或五元醇的二(甲基)丙烯酸酯,C 3到C 30的三元醇、四元醇或五元醇的三(甲基)丙烯酸酯。
  5. 根据权利要求1所述的紫外光固化组合物胶水,其特征在于,光交联引发剂为双苯甲酰基苯基氧化膦、羟基二苯甲酮、丙烯酸化二苯甲酮、4,4'-双(二甲基氨基)二苯甲酮、4,4'-二氯二苯甲酮、3,3'-二甲基-2-甲氧基二苯甲酮和苯甲酰基二苯基氧化膦中的一种或多种。
  6. 根据权利要求1所述的紫外光固化组合物胶水,其特征在于,以重量计,光可固化单体为5%~85%,引发剂为0.1%~10%,光可固化芳香环基单体以5%~85%的总量存在于紫外光固化组合物胶水中。
  7. 一种紫外光固化组合物胶水的使用方法,其特征在于,采用喷墨打印、旋涂、丝网印刷或刮涂方式将权利要求1所述的封装电子器件用紫外光固化组合物胶水附着在待封装电子器件的表面,然后通过200~450nm波长的紫外光或蓝光照射固化形成厚度为0.1~30μm的有机薄膜阻隔层,照射时间为1~300s。
  8. 根据权利要求7所述的紫外光固化组合物胶水的使用方法,其特征在于,有机薄膜阻隔层在400~800nm内的透光率为94.6%~98.4%,固化率为93.4%~96.2%。
  9. 根据权利要求1所述的紫外光固化组合物胶水在有机发光二极管、有机太阳能电池、钙钛矿太阳能电池或集成电路板的防水阻氧封装中的应用。
PCT/CN2021/127207 2020-11-03 2021-10-29 一种紫外光固化组合物胶水及其使用方法和应用 WO2022095792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011212300.8 2020-11-03
CN202011212300.8A CN112322195B (zh) 2020-11-03 2020-11-03 一种紫外光固化组合物胶水及其使用方法和应用

Publications (1)

Publication Number Publication Date
WO2022095792A1 true WO2022095792A1 (zh) 2022-05-12

Family

ID=74323343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127207 WO2022095792A1 (zh) 2020-11-03 2021-10-29 一种紫外光固化组合物胶水及其使用方法和应用

Country Status (2)

Country Link
CN (1) CN112322195B (zh)
WO (1) WO2022095792A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322195B (zh) * 2020-11-03 2023-05-16 西安思摩威新材料有限公司 一种紫外光固化组合物胶水及其使用方法和应用
CN113683968B (zh) * 2021-08-09 2023-04-07 西安思摩威新材料有限公司 基于氮杂环丙烯酸酯化合物的紫外光固化胶组合物及其使用方法和应用
CN114133877B (zh) * 2021-12-10 2024-03-29 西安思摩威新材料有限公司 一种含大共轭芳香环丙烯酸化合物单体的光固化组合物胶水及其使用方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251584A (zh) * 2018-09-03 2019-01-22 浙江福斯特新材料研究院有限公司 一种具有高耐热性和高透光率的油墨组合物及用途
CN110121538A (zh) * 2016-12-29 2019-08-13 3M创新有限公司 可固化的高折射率墨组合物和由墨组合物制备的制品
CN110945090A (zh) * 2017-07-26 2020-03-31 3M创新有限公司 可固化的高折射率油墨组合物和由油墨组合物制备的制品
CN112322195A (zh) * 2020-11-03 2021-02-05 西安思摩威新材料有限公司 一种紫外光固化组合物胶水及其使用方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135379A1 (de) * 2001-07-25 2003-02-06 Basf Ag UV-vernetzbare Kaschierklebstoffe
DE102004002279A1 (de) * 2004-01-16 2005-08-04 Tesa Ag Orientierte Acrylathaftklebemassen, Verfahren zu ihrer Herstellung und ihre Verwendung
US8513363B2 (en) * 2010-10-29 2013-08-20 Cheil Industries, Inc. Adhesive composition
WO2013069870A1 (ko) * 2011-11-07 2013-05-16 제일모직 주식회사 광경화형 점착제 조성물, 이를 포함하는 광학 점착제 필름, 이를 포함하는 디스플레이 장치 및 이를 이용한 모듈 조립 방법
US20130236681A1 (en) * 2012-03-06 2013-09-12 Chang Min Lee Photocurable composition, barrier layer including the same, and encapsulated apparatus including the same
KR101542622B1 (ko) * 2013-01-02 2015-08-06 제일모직주식회사 광경화 조성물, 이를 포함하는 장벽층, 및 이를 포함하는 봉지화된 장치
WO2015141979A1 (ko) * 2014-03-18 2015-09-24 (주)휴넷플러스 방사선 경화형 수지 조성물
EP2924085B1 (en) * 2014-03-28 2019-05-08 Samsung SDI Co., Ltd. Composition for encapsulation of organic light emitting diode and organic light emitting diode display manufactured using the same
KR101861893B1 (ko) * 2014-04-23 2018-05-29 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
KR101882560B1 (ko) * 2014-08-01 2018-07-26 삼성에스디아이 주식회사 점착제 조성물, 점착필름, 광학부재 및 점착시트
KR101871549B1 (ko) * 2014-10-29 2018-07-03 삼성에스디아이 주식회사 디스플레이 밀봉재용 조성물, 이를 포함하는 유기보호층, 및 이를 포함하는 디스플레이 장치
WO2017145611A1 (ja) * 2016-02-25 2017-08-31 Jnc株式会社 液晶組成物および液晶表示素子
KR102008177B1 (ko) * 2016-05-24 2019-08-07 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
JPWO2018025974A1 (ja) * 2016-08-03 2019-06-06 Jnc株式会社 液晶表示素子、表示装置
CN110128783A (zh) * 2019-03-26 2019-08-16 西安思摩威新材料有限公司 可uv固化的环氧体系有机封装组成物及其制备和使用方法
CN110117428B (zh) * 2019-03-26 2021-04-20 西安思摩威新材料有限公司 一种柔性有机封装的组成物及其制备和使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121538A (zh) * 2016-12-29 2019-08-13 3M创新有限公司 可固化的高折射率墨组合物和由墨组合物制备的制品
CN110945090A (zh) * 2017-07-26 2020-03-31 3M创新有限公司 可固化的高折射率油墨组合物和由油墨组合物制备的制品
CN109251584A (zh) * 2018-09-03 2019-01-22 浙江福斯特新材料研究院有限公司 一种具有高耐热性和高透光率的油墨组合物及用途
CN112322195A (zh) * 2020-11-03 2021-02-05 西安思摩威新材料有限公司 一种紫外光固化组合物胶水及其使用方法和应用

Also Published As

Publication number Publication date
CN112322195A (zh) 2021-02-05
CN112322195B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022095792A1 (zh) 一种紫外光固化组合物胶水及其使用方法和应用
WO2022105660A1 (zh) 一种基于环烷烃的紫外光固化封装油墨及其使用方法和应用
CN110894361B (zh) 光固化封装组合物、封装结构及半导体器件
TW591048B (en) Photocationic-curable resin composition and uses thereof
CN111933823B (zh) 一种光电子器件封装用组成物、封装结构及光电子器件
JP6104603B2 (ja) ビニルエーテルモノマーを含む混合物から作製されたポリマー
JP7385722B2 (ja) 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法
JP2002105110A (ja) 硬化性組成物、その硬化物および用途
CN115305017B (zh) 一种高折射率光学有机胶水组合物及其制备方法与使用方法
CN115260226B (zh) 封装薄膜用化合物及基于该化合物的紫外光固化油墨
CN111826024A (zh) 墨水组合物、封装结构及半导体器件
CN110982346A (zh) 墨水组合物、封装结构及半导体器件
CN114196357B (zh) 一种环氧胶粘剂、封装层及其应用
WO2006057298A1 (ja) 重合性組成物
CN114133877A (zh) 一种含大共轭芳香环丙烯酸化合物单体的光固化组合物胶水及其使用方法和应用
JP4164885B2 (ja) 有機電界発光素子及びその製造方法
KR20180034937A (ko) 유기 전자 소자 봉지재용 조성물 및 이를 이용하여 형성된 봉지재
CN113980514B (zh) 一种光固化封装组合物、有机封装薄膜及其应用
WO2024007741A1 (zh) 墨水组合物、封装结构和半导体器件
WO2023065723A1 (zh) 一种用于oled封装的油墨组合物及其应用
CN112898827B (zh) 一种基于含硅氧侧链二维丙烯酸酯单体的紫外光固化封装油墨及其使用方法和应用
JP6864949B2 (ja) 有機電子素子封止材用組成物及びこれを用いて形成された封止材
JP6924834B2 (ja) 有機電子素子封止材用組成物及びこれを用いて形成された封止材
CN113773699A (zh) 一种基于含硅氧侧链二维环氧单体的紫外光固化封装油墨、使用方法及其应用
CN115491157B (zh) 光固化封装组合物、封装结构和半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888489

Country of ref document: EP

Kind code of ref document: A1