WO2023065723A1 - 一种用于oled封装的油墨组合物及其应用 - Google Patents

一种用于oled封装的油墨组合物及其应用 Download PDF

Info

Publication number
WO2023065723A1
WO2023065723A1 PCT/CN2022/103410 CN2022103410W WO2023065723A1 WO 2023065723 A1 WO2023065723 A1 WO 2023065723A1 CN 2022103410 W CN2022103410 W CN 2022103410W WO 2023065723 A1 WO2023065723 A1 WO 2023065723A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oled
monomer
ink composition
encapsulation
Prior art date
Application number
PCT/CN2022/103410
Other languages
English (en)
French (fr)
Inventor
洪海兵
沈馨
杨楚峰
王士昊
Original Assignee
杭州福斯特电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特电子材料有限公司 filed Critical 杭州福斯特电子材料有限公司
Publication of WO2023065723A1 publication Critical patent/WO2023065723A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of thin film packaging of semiconductor display devices, in particular to an ink composition containing a POSS structure and an application thereof.
  • Organic light-emitting diodes (Organic Light-Emitting Diodes, referred to as OLED) have all-solid-state, active light-emitting, high brightness, high contrast, ultra-thin and ultra-light, low cost, low power consumption, no viewing angle limitation, wide operating temperature range, etc. characteristics, and can be fabricated on a flexible, lightweight, and durable plastic substrate, which can realize a truly flexible display. It is a technology that best meets people's requirements for future displays.
  • organic electroluminescent device Compared with liquid crystal display (LCD), organic electroluminescent device (OLED) has low driving voltage, high luminous brightness and luminous efficiency, wide luminous viewing angle, and fast response speed; in addition, it is ultra-thin and can be fabricated on flexible panels, etc. Advantages, known as the third generation of flat panel display technology.
  • OLED the biggest problem of OLED at this stage is that its lifespan is shorter than that of LCD, and its lifespan is only about 5,000 hours, which is obviously inferior to that of LCD.
  • the service life of OLED devices is currently a key issue that plagues many OLED experts and scholars, and it is a bottleneck restricting the development of the OLED industry.
  • OLED displays may fully replace LCD displays and other types of displays, and become mainstream displays for TVs, computers, telephones, advertising billboards, and various instruments and meters.
  • OLED devices There are many factors that affect the service life of OLED devices, including physical factors such as device structure and circuit driving mode, and chemical factors such as oxidation of metal cathodes and crystallization of organic materials. Although the failure mechanism of OLEDs is not fully understood, many research results have shown that the existence of water vapor and oxygen inside OLED devices is the main factor affecting the life of OLEDs.
  • the water vapor transmission rate (WVTR) of the device must be less than 10 -6 g/m 2 /day, and the oxygen transmission rate (OTR) must be less than 10 -5 g/ m 2 /day, which is a great challenge to the sealing structure of the display device, so it is necessary to study a suitable OLED packaging technology.
  • OLED packaging The purpose of OLED packaging is to isolate the light-emitting device from the environment, prevent the intrusion of moisture, oxygen and other undesirable substances, and prevent external damage, stabilize various parameters of the device, and thereby improve the service life of the OLED.
  • OLED packaging mainly includes several methods such as cover plate packaging, filler packaging, laser packaging, and thin film packaging.
  • the traditional cover plate packaging is to bond the prepared substrate and cover plate with epoxy resin in a glove box filled with inert gas to form a closed space to isolate the device from the external environment, and the components such as water and oxygen in the air It can only penetrate into the device through epoxy resin, which effectively prevents the contact of water and oxygen in the air of each functional layer of OLED.
  • the material of the package cover is generally made of glass or metal, but the opacity of the metal cover limits its application in device packaging. Although the glass cover package has no problem of light transmission, its toughness is poor ,fragile.
  • Laser encapsulation, filler encapsulation, and thin-film encapsulation do not require the use of desiccant and can be used in top-emitting OLED devices.
  • the advantage of laser packaging is that it has a good sealing effect and can well block the entry of water vapor.
  • the disadvantage is that the glass powder material formula is complicated. The process control of laser encapsulation is difficult, and after laser curing, the black thread will seriously affect the appearance.
  • the filler is packaged, due to the viscosity of the liquid filler, often when it is poured into the sealing strip, bubbles that are not easy to get rid of will remain in the packaging layer, and the bubbles contain water and oxygen, which will affect the life and performance of the OLED device. .
  • Thin-film encapsulation is to grow a single-layer or multi-layer thin film on the prepared OLED device substrate to achieve the barrier effect on water vapor.
  • the research on OLED thin films usually adopts the method of organic-inorganic composite thin films.
  • Inorganic thin films can effectively block water vapor and oxygen, but have poor film-forming properties and interface matching and are prone to defects; organic thin films have good flexibility, good film-forming properties, and smoothness due to their large free volume and average degree of freedom of chain segments.
  • High density the function of the organic film can cover the defects of the inorganic film. Utilizing the high barrier of water vapor and oxygen of the inorganic film and the good surface morphology of the organic film, the method of alternate film formation of the organic film and the inorganic film can be used for encapsulation to obtain a satisfactory effect.
  • Thin-film packaging is represented by a three-layer structure (PECVD-Flatness-PECVD), and its excellent performance has become the mainstream method of flexible OLED packaging.
  • the three-layer stack is that the first inorganic layer (SiN x ) is a smooth substrate, the organic polymer buffer layer is obtained by inkjet printing on this substrate and then cured, and the third inorganic layer (SiN x ) is the last inorganic layer.
  • Organic polymer buffer layer (organic UV-curable resin) is considered as a conventional and effective encapsulation material because of its good curing characteristics, stability, bond strength, light transmittance and high purity.
  • Commonly used organic polymer buffer layers include acrylic resins, methacrylic resins, isoprene resins, vinyl resins, epoxy resins, polyurethane resins, cellulose resins, perylene resins, imides Resin or two or more mixtures (CN201410009204).
  • the heat resistance of the organic layer of thin-film packaging must be maintained above 100°C (application number: 201410009204) and high temperature and high humidity conditions Under (85% humidity and 85°C temperature) reliability life is more than 400 hours.
  • the existing thin-film encapsulation organic layer will peel off the organic layer and the inorganic layer during long-term high-temperature exposure.
  • Kateeva proposed a di- and monomethacrylate ink composition in TW201723104, but did not see relevant data reported in its OLED devices, such as water and oxygen resistance stability data.
  • the present invention aims to overcome the defects in the prior art that the organic film used for OLED encapsulation has poor water and oxygen resistance stability and is difficult to apply to the existing inkjet process for film formation, and provides an ink composition containing POSS structure and Its application to overcome the above defects.
  • An ink composition for OLED encapsulation, calculated by weight percentage, comprising:
  • Described monomer containing POSS structure comprises the repeating unit shown in general formula (R-SiO 1.5 ) n ;
  • Described monomer containing POSS structure comprises the repeating unit shown in general formula (R-SiO 1.5 ) n ;
  • each R group is independently selected from vinyl group, epoxy group, allyl group, carboxyl group, methacrylate group, amino group, alkyl group, alkylene group, aryl group or The aryl group of the base or the active group with an alkyl group or an alkylene group;
  • At least one R group is selected from structures with acryloyloxy or methacryloyloxy.
  • the selection of the encapsulation film used to manufacture OLED usually needs to consider the following three issues: first, the encapsulation film needs to have good heat resistance and thermal stability; second, the encapsulation film needs to have good resistance to water vapor and oxygen. Barrier property; third, on the basis of satisfying the actual encapsulation effect, the cost and process control in the preparation process of OLED encapsulation film.
  • the encapsulation film needs to have good heat resistance and thermal stability
  • the encapsulation film needs to have good resistance to water vapor and oxygen. Barrier property
  • third on the basis of satisfying the actual encapsulation effect, the cost and process control in the preparation process of OLED encapsulation film.
  • Each component in the ink composition of the present invention is mainly selected on the basis of how to overcome the above technical problems at the same time.
  • cage polysilsesquioxane polyhedral oligomeric silsesquioxane, POSS
  • POSS polyhedral oligomeric silsesquioxane
  • cage polysilsesquioxane is a compound with a cage structure of nanometer molecular size, and its inorganic core is a cage frame composed of silicon-oxygen skeletons connected alternately by Si-O-Si, so its It can inhibit the chain movement of polymer molecules and endow hybrid materials with good mechanical strength, optical properties, heat resistance stability and low dielectric constant.
  • the POSS used in the present invention is modified by (meth)acryloyloxypropyl, so it has the ability to cure and form a chemical crosslinked network under the irradiation of ultraviolet light. Therefore, as the POSS structure is introduced into the whole system, due to its highly symmetrical cage structure and abundant silicon-oxygen bond framework, as well as the chemical crosslinking between acryloxy groups and photocurable monomers, the cured The organic encapsulation layer has excellent performance.
  • the stability and heat resistance (Tg>100°C) of the barrier layer after photocuring have been significantly improved; on the other hand, the volume shrinkage rate of the ink composition during curing has also been significantly reduced, effectively solving the problem of the organic barrier layer.
  • the problem of easy shedding between the inorganic barrier layer and the POSS structure restricts the chain movement of polymer molecules makes it difficult for water vapor and oxygen to enter the organic encapsulation layer, thereby effectively blocking the penetration of oxygen and water vapor into the OLED device. Therefore, the service life of the OLED device can be effectively extended.
  • POSS materials have the above advantages, there is no relevant precedent for their use in flexible OLED devices. Tracing it to its cause is, the use of POSS material is limited by following two points material characteristics: the first POSS material is because of its larger rigidity and huge steric hindrance effect, although it has higher mechanical strength, optics Performance, heat resistance stability and low dielectric constant, but its flexibility is not good, brittle, so the POSS material added too high in the composition may be broken under impact, resulting in failure to achieve the encapsulation Effect.
  • the present invention accidentally finds in the actual production process that when the POSS structural monomer content in the ink composition exceeds 40%, its viscosity will increase greatly, causing its inkjet printing and spin coating performance to reduce greatly, and here The quality of the encapsulation film formed under the viscosity is poor, which is not conducive to the encapsulation of OLED devices.
  • the POSS structural monomer content is less than 20%, although its inkjet printing and spin coating performance is better, the overall performance improvement of the final packaging film is not obvious.
  • the present invention limits the content of POSS-containing structural monomers to 20-40%, so as to obtain an OLED encapsulating film with good inkjet printing and spin coating performance and good performance.
  • At least one of the R1-R6 groups is selected from the structure shown in general formula (3):
  • * is the binding position of the element;
  • A is selected from a hydrogen atom or a methyl group;
  • M is selected from a straight-chain or branched alkyl group, a side hydroxyalkyl group, an ether-based alkyl group, and a sulfane group with a carbon number less than or equal to 30
  • r is selected from the integer of 0-4.
  • the preferred POSS structural monomer among the present invention is the monomer that polymerization degree is 6, and it has following advantage compared with the larger POSS structural monomer of polymerization degree, the first its volume is less, thus after participating in curing The cross-linking density of the OLED encapsulation film obtained after curing can be increased, so that the oxygen resistance and water vapor resistance effects of the OLED encapsulation film are more obvious.
  • the POSS structural monomer with a polymerization degree of 6 has a smaller molecular weight, its viscosity is smaller under the same addition amount, and it is more suitable for inkjet printing and spin coating molding.
  • the POSS-containing monomers include but are not limited to compounds represented by the following formulas (2-1) to (2-8):
  • the photocurable monomer is a combination of one or more of monofunctional monomers, difunctional monomers, and polyfunctional monomers with acrylic or methacrylic structures.
  • the photocurable monomer is C1 to C30 monohydric or polyhydric alcohol monofunctional (meth)acrylate, C2 to C30 monohydric or polyhydric alcohol difunctional (meth)acrylate, C3 to C30 A composition of one or more polyfunctional (meth)acrylates of C30 monohydric or polyhydric alcohols.
  • monofunctional photocurable monomers can generally be divided into alkyl acrylates, hydroxy (meth) acrylates, (meth) acrylates with ring structures or benzene rings and vinyl monomers according to structural differences. Specifically, there are: lauryl acrylate (LA), ethoxyethoxyethyl acrylate (EOEOEA)-KPX A007, butyl acrylate (BA), hydroxyethyl acrylate and isobornyl acrylate, ethoxylated tetrahydrofuran acrylic acid Ester (THF(EO)A)-KPX A015, Methacrylate Phosphate and Isobornyl Methacrylate.
  • LA lauryl acrylate
  • EEOEA ethoxyethoxyethyl acrylate
  • BA butyl acrylate
  • THF(EO)A)-KPX A015 Methacrylate Phosphate and Isobornyl Methacrylate
  • bifunctional monomers are diol structures, mainly including ethylene glycol diacrylate, propylene glycol diacrylate and other glycol diacrylates.
  • the specific structures are: diethylene glycol diacrylate (DEGDA), triethylene glycol diacrylate (TEGDA), ethylene glycol diacrylate, polyethylene glycol (200) diacrylate [PEG (200) DA] , polyethylene glycol (400) diacrylate [PEG (400) DA], polyethylene glycol (600) diacrylate [PEG (600) DA], neopentyl glycol diacrylate and propoxy neopentyl Diol diacrylate, 1,6-hexanediol diacrylate (HDDA), 1,4-butanediol diacrylate (BDDA), 20 (ethoxylated) bisphenol A diacrylate [BPA(EO ) 20 DA], glycerol diacrylate (TPGDA).
  • DEGDA diethylene glycol diacrylate
  • TAGDA
  • Multifunctional monomers include: Trimethylolpropane Triacrylate (TMPTA), Pentaerythritol Triacrylate (PETA), Trimethylolpropane Triol Triacrylate (TMPTMA), Trimethylolpropane Triacrylate, Propoxy Hydroxylated trimethylpropane triacrylate, pentaerythritol tripropenyl alcohol ester and propoxylated pentaerythritol propenyl alcohol ester, di(trimethylolpropane) tetraacrylate, triethylene glycol dimethacrylate, Long-chain aliphatic hydrocarbon glycidyl ether acrylate, dipentaerythritol hexaacrylate, tripropylene glycol diacrylate, phthalic acid diethanol diacrylate (PDDA), ethoxylated trihydroxymethylpropanetriol triacrylate Ester [TMP(EO)TMA], Propoxylated Trihydroxymethylpropane Triol Triacrylate [TMP(PO)
  • the photoinitiator can be a type I or type II photoinitiator.
  • Type I photoinitiators undergo radiation-induced cleavage to generate two free radicals, one of which is reactive and initiates polymerization.
  • Type II photoinitiators undergo a radiation-induced transition to an excited triplet state. Molecules in the excited triplet state then react with ground state molecules to generate free radicals that initiate polymerization.
  • Photoinitiators may include triazines, acetophenones, benzophenones, phosphorus initiators, and mixtures thereof.
  • triazine initiators examples include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4 '-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl) base)-s-triazine, 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis( Trichloromethyl)-s-triazine, 2-biphenyl-4,6-bis(trichloromethyl)-s-triazine, bis(trichloromethyl)-6-styryl-s- Triazine, 2-(naphthalen-1-yl)-4,6-bis(trichloromethyl)
  • acetophenone initiators examples include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, p-tert-butyltri Chloroacetophenone, p-tert-butyldichloroacetophenone, 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-( Methylthio)phenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one and their mixture.
  • benzophenone initiators include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone and their mixture.
  • Examples of phosphorus initiators include dibenzoylphenylphosphine oxide, benzoyldiphenylphosphine oxide, and mixtures thereof.
  • the first step is to ensure that the photoinitiator activates at a wavelength that does not damage the OLED material.
  • various photoinitiators commonly used in ink compositions are compounds having primary absorbing capabilities with peaks in the range of about 368 to about 420 nm.
  • the absorption range of the photoinitiator selected for activation matches or overlaps with the output of the light source as much as possible, so that the absorption of light can generate free radicals that initiate polymerization, and the purpose of using the light source to the maximum can be achieved.
  • Commonly used light sources can choose mercury arc lamps and UV light emitting diodes.
  • acylphosphine oxide photoinitiators such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO) are light yellow transparent solids with good solubility in monomers and absorption wavelength Can reach 430nm, suitable for photocuring of colored systems.
  • the absorption wavelength of the photolysis product can shift to short wavelength, which has the effect of photobleaching, which is conducive to the transmission of ultraviolet light and is suitable for thick coating curing.
  • it has good thermal stability and storability, and it is light yellow in itself, and it is colorless after photolysis and will not turn yellow.
  • acylphosphine photoinitiators such as TPO can use compounds with absorption characteristics of 370-380nm, and emit at standard wavelengths in the range of 350nm to 430nm when used.
  • a light source is used to light-cure the photocurable composition to form an organic barrier layer.
  • TPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • UV ultraviolet light
  • the TPO series photoinitiator will not affect the light transmittance of the organic layer after curing;
  • the heat resistance of TPO can reach 180°C, which avoids yellowing and film damage caused by small molecule by-products for the organic barrier layer.
  • An organic encapsulation layer for OLED encapsulation which is obtained by curing the above-mentioned ink composition with ultraviolet light, its water vapor transmission rate is less than 4g/m 2 /day, the light transmittance is greater than 95%, and the glass transition temperature is greater than 170 °C.
  • the organic encapsulation layer used for OLED encapsulation in the prior art usually has a high water vapor transmission rate, so after it is applied in the encapsulation process of OLED devices, its water vapor transmission rate and oxygen permeability (OTR) Can not meet the use requirements.
  • the water vapor transmission rate of the organic packaging layer of the OLED package in the present invention is less than 4g/m 2 /day, and then applied to the OLED device can ensure that the water vapor transmission rate (WVTR) of the overall device is less than 10 - 6 g/m 2 /day, oxygen permeability (OTR) is less than 10 -5 g/m 2 /day, thus prolonging the service life of OLED devices.
  • WVTR water vapor transmission rate
  • OTR oxygen permeability
  • the preparation method of the organic encapsulation layer is as follows: the photocurable ink composition is printed with a thickness of 0.1 ⁇ m to 20 ⁇ m by spin coating or inkjet printing, and then irradiated at about 10 to 500 mW/cm 2 It is cured for about 1 second to about 300 seconds to obtain an organic encapsulation layer.
  • the photocurable ink component of this application can be prepared by spin coating, inkjet printing, etc., but considering cost and process control, inkjet printing is preferred.
  • a flexible OLED device comprising an OLED device and a flexible encapsulation layer encapsulated outside the OLED device; wherein, the flexible encapsulation layer is obtained by alternately stacking an inorganic encapsulation layer and the above-mentioned organic encapsulation layer.
  • the inorganic encapsulation layer can be prepared by depositing a layer of SiNx by PECVD, with a thickness ranging from 0.1 ⁇ m to 20 ⁇ m.
  • the OLED device device includes a substrate ITO, an OLED device (organic light emitting diode) for the device formed on the substrate, and a flexible encapsulation layer formed on the encapsulation member.
  • the flexible packaging layer is formed by stacking an inorganic barrier layer SiNx, an organic barrier layer, and an inorganic barrier layer SiNx .
  • the basic structure of an organic light-emitting diode is a thin and transparent indium tin oxide (ITO) with semiconducting properties, which is connected to the positive electrode of electricity, and another metal cathode LiF is added to form a sandwich structure.
  • the entire structural layer includes: a hole transport layer (HTL), a light emitting layer (EL) and an electron transport layer (ETL), and the light emitting layer contains RGB three primary colors and matching three primary color toning layers.
  • the flexible encapsulation layer in the present invention is alternately deposited by inorganic encapsulation layers and organic encapsulation layers, the smoothness of the inorganic encapsulation layer can be ensured.
  • the organic encapsulation layer can prevent the defects of the inorganic encapsulation layer from diffusing to other inorganic encapsulation layers.
  • the present invention has the following beneficial effects:
  • the organic encapsulation layer prepared by the ink has good extremely low water vapor transmission rate and oxygen transmission rate, thereby effectively prolonging the service life of the OLED device;
  • the ink composition in the present invention can effectively reduce the preparation cost and process difficulty of the OLED encapsulation film by selecting a reasonable component distribution ratio.
  • Figure 1 shows the microscope images of Example 1 of the present application before and after high-temperature aging, wherein: a is the image before high-temperature aging, and b is the image after aging at 100°C for 1 hour;
  • Figure 2 shows the microscope images of Comparative Example 4 of the present application before and after high-temperature aging, wherein: c is the image before high-temperature aging, and d is the image after aging at 100°C for 1 hour;
  • Fig. 3 shows a schematic structural view of the flexible OLED device of the present application.
  • silanetriol intermediate prepared by hydrolyzing 3-trimethoxysilane propyl acrylate under the catalysis of tetramethylammonium hydroxide (TMAH) is condensed with methylsilanetriol at a high temperature of 85°C to generate water and finally Product 1-1.
  • TMAH tetramethylammonium hydroxide
  • HPLC assay has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.43(d, 1H), ⁇ 6.05(d, 1H), ⁇ 5.58(d, 1H), ⁇ 4.15(t ,2H), ⁇ 1.6(m,2H), ⁇ 0.58(t,2H), ⁇ 0.19(s,15H).
  • silanetriol intermediate prepared by hydrolyzing 3-(methacryloyloxy)propyltrimethoxysilane (KH570) under the catalysis of tetramethylammonium hydroxide (TMAH) and methylsilanetriol at 85°C Condensation at high temperature produces water and the final product 1-2.
  • TMAH tetramethylammonium hydroxide
  • HPLC has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.15(d, 2H), ⁇ 5.58(d, 2H), ⁇ 4.15(t, 4H), ⁇ 1.93(t ,6H), ⁇ 1.6(m,4H), ⁇ 0.58(t,4H), ⁇ 0.19(s,12H).
  • the silicon triol intermediate prepared by hydrolyzing 3-trimethoxysilane propyl acrylate under the catalysis of tetramethylammonium hydroxide (TMAH) is condensed with isooctyl silane triol at a high temperature of 85°C to generate water and Final products 1-3.
  • TMAH tetramethylammonium hydroxide
  • HPLC assay has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.43(d, 1H), ⁇ 6.05(d, 1H), ⁇ 5.80(d, 1H), ⁇ 4.15(t ,2H), ⁇ 1.6(m,2H), ⁇ 1.5(m,5H), ⁇ 1.33(m,10H), ⁇ 1.29(m,20H), ⁇ 1.25(m,10H), ⁇ 0 .96(t,30H), ⁇ 0.54(d,12H).
  • the silicon triol intermediate prepared by hydrolyzing 3-trimethoxysilanepropyl acrylate under the catalysis of tetramethylammonium hydroxide (TMAH) and 2-(3,4-epoxycyclohexane) ethyltrimethoxy
  • TMAH tetramethylammonium hydroxide
  • 2-(3,4-epoxycyclohexane) ethyltrimethoxy The condensation of methylsilanetriol and methylsilanetriol at 85°C produces water and final products 1-4.
  • HPLC assay has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.43(d, 1H), ⁇ 6.05(d, 1H), ⁇ 5.80(d, 1H), ⁇ 4.15(t ,2H), ⁇ 2.87(m,2H), ⁇ 1.6(m,2H), ⁇ 1.57(m,2H), ⁇ 1.53(t,2H), ⁇ 1.43(t,1H), ⁇ 1 .40(m,2H), ⁇ 1.3(m,2H), ⁇ 0.58(t,4H), ⁇ 0.19(s,12H).
  • silanetriol intermediate prepared by hydrolyzing 3-trimethoxysilane propyl acrylate under the catalysis of tetramethylammonium hydroxide (TMAH) is condensed with methylsilanetriol at a high temperature of 85°C to generate water and finally Products 1-5.
  • TMAH tetramethylammonium hydroxide
  • HPLC assay has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.43(d, 3H), ⁇ 6.05(d, 3H), ⁇ 5.80(d, 3H), ⁇ 4.15(t ,6H), ⁇ 1.6(m,6H), ⁇ 0.58(t,6H), ⁇ 0.19(s,15H).
  • silanetriol intermediate prepared by hydrolyzing 3-(methacryloyloxy)propyltrimethoxysilane (KH570) under the catalysis of tetramethylammonium hydroxide (TMAH) and methylsilanetriol at 85°C Condensation at high temperature produces water and final products 1-6.
  • TMAH tetramethylammonium hydroxide
  • HPLC has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.15(d, 2H), ⁇ 5.58(d, 2H), ⁇ 4.15(t, 4H), ⁇ 1.93(t ,6H), ⁇ 1.6(m,4H), ⁇ 0.58(t,4H), ⁇ 0.19(s,18H).
  • silanetriol intermediate prepared by hydrolyzing 3-trimethoxysilane propyl acrylate under the catalysis of tetramethylammonium hydroxide (TMAH) is condensed with methylsilanetriol at a high temperature of 85°C to generate water and finally Products 1-7.
  • TMAH tetramethylammonium hydroxide
  • HPLC assay has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.43(d, 1H), ⁇ 6.05(d, 1H), ⁇ 5.80(d, 1H), ⁇ 4.15(t ,2H), ⁇ 1.6(m,2H), ⁇ 0.58(t,2H), ⁇ 0.19(s,27H).
  • silanetriol intermediate prepared by hydrolyzing 3-(methacryloyloxy)propyltrimethoxysilane (KH570) under the catalysis of tetramethylammonium hydroxide (TMAH) and methylsilanetriol at 85°C Condensation at high temperature produces water and final products 1-8.
  • TMAH tetramethylammonium hydroxide
  • HPLC has a purity of 95%; 1 HNMR (400MHz, Chloroform-d): ⁇ 6.15(d, 1H), ⁇ 5.58(d, 1H), ⁇ 4.15(t, 2H), ⁇ 1.93(t ,3H), ⁇ 1.6(m,2H), ⁇ 0.58(t,2H), ⁇ 0.19(s,33H).
  • Photocurable monomer (A1) lauryl methacrylate, (A2) glycerol diacrylate (TPGDA), (A3) propoxylated glycerol triacrylate [G(PO)TA] ;
  • (A) photocurable monomer, (B) containing POSS structure monomer and reference compound Ref.1 and (C) initiator are placed in 250mL brown polypropylene with the amount (unit: weight percent) listed in Table 2 bottle, followed by ultrasonic mixing for 0.5 hours to prepare the composition.
  • An organic encapsulation film which is printed with a thickness of 0.1 ⁇ m to 20 ⁇ m by spin coating or inkjet printing from the photocurable encapsulation composition described in Examples 1 to 14, and then irradiated by about 10 to 500 mW/cm 1 second to about 300 seconds to cure it.
  • a flexible OLED device including an OLED device and a flexible encapsulation layer encapsulated outside the OLED device, wherein the flexible encapsulation layer is obtained by alternately stacking three layers of an inorganic encapsulation layer, an organic encapsulation film and an inorganic encapsulation layer .
  • the preparation of the inorganic encapsulation layer can deposit a layer of SiNx by PECVD, with a thickness ranging from 0.1 ⁇ m to 20 ⁇ m.
  • the OLED device device includes a substrate ITO, an OLED device (organic light emitting diode) for the device formed on the substrate, and a flexible encapsulation layer formed on the encapsulation member.
  • the flexible encapsulation layer is formed by laminating an inorganic encapsulation layer SiNx, an organic encapsulation film, and an inorganic encapsulation layer SiNx .
  • the basic structure of an organic light-emitting diode is a thin and transparent indium tin oxide (ITO) with semiconducting properties, which is connected to the positive electrode of electricity, and another metal cathode LiF is added to form a sandwich structure.
  • the entire structural layer includes: a hole transport layer (HTL), a light emitting layer (EL) and an electron transport layer (ETL), and the light emitting layer contains RGB three primary colors and matching three primary color toning layers.
  • the polymer film formed by the photocurable encapsulation composition of the present application has higher heat resistance, higher light transmittance, lower curing volume shrinkage and lower plasma etching as an organic barrier layer Speed, so that the optical requirements and curing requirements of the packaging structure can be well met.
  • the flexible encapsulation layer in the present invention is alternately deposited by inorganic encapsulation layers and organic encapsulation films, which can ensure the smoothness of the inorganic encapsulation layer.
  • the inorganic barrier layer when it is deposited alternately with the inorganic barrier layer to form an inorganic-organic-inorganic thin film encapsulation structure, it can withstand the etching of the plasma when the inorganic layer is formed, and at the same time prevent the inorganic barrier layer from diffusing to other inorganic barrier layer defects, thereby A good encapsulation effect is maintained.
  • Water vapor transmission rate apply the water vapor transmission rate test system (PERMATRAN-W3/33, manufactured by MOCON, USA).
  • the photocurable composition was spray-coated or inkjet-printed on a glass substrate and subjected to UV curing by UV irradiation at 200 mW/cm 2 for 180 seconds to produce a cured sample with a 5 ⁇ m thick layer.
  • the water vapor transmission rate was measured at a layer thickness of 5 ⁇ m at 40° C. and 100% relative humidity for 24 hours using a water vapor transmission rate tester (PERMATRAN-W3/33, manufactured by MOCON).
  • Light transmittance test a UV-Vis spectrophotometer test system (Carry 5000, manufactured by Agilent Technologies Co., Ltd., USA) was used.
  • the photocurable composition was spray-coated or inkjet-printed on a glass substrate and subjected to UV curing by UV irradiation at 200 mW/cm 2 for 180 seconds to produce a cured sample having a 10 ⁇ m thick layer.
  • the light transmittance of the film was measured in the visible range of 550 nm using an ultraviolet-visible spectrophotometer test system (Carry 5000, manufactured by Agilent Technologies, Inc., USA).
  • the photocurable composition was spray-coated or ink-jet printed on a glass substrate and subjected to UV curing for 180 seconds by UV irradiation at 200mW/cm to manufacture a glass substrate with a size of 20cm x 20cm x 3 ⁇ m (width x length x thickness). sample.
  • A is the ratio of the absorption peak intensity of the cured film around 1635 cm -1 to the absorption peak intensity around 1720 cm -1
  • B is the ratio of the absorption peak intensity of the photocurable composition around 1635 cm -1 to that at 1720 cm -1
  • Heat resistance test After heating to a constant temperature and time in a simple blast constant temperature oven, the heat resistance of the film is evaluated by the physical properties or surface changes of the film (refer to GB/T, 1735-89 ⁇ Paint film heat resistance Sex determination method>).
  • the photocurable composition was spray coated or inkjet printed on a glass substrate and subjected to UV curing by UV irradiation at 200 mW/cm 2 for 180 seconds to make 2 cured samples with a 10 ⁇ m thick layer.
  • One of the samples was heated to 100°C for 1 hour in a forced air constant temperature oven, then cooled to 25°C, and compared with the standard version left in advance to check its discoloration, shedding, wrinkling, etc.
  • the present invention shows low water vapor transmission rate, higher light transmittance and similar curing rate after adding POSS-containing structural monomers in the composition .
  • the photocurable composition of the present invention shows quite high heat resistance, compared with the photocurable composition not containing POSS structural monomer, by the photocurable composition containing POSS structural monomer The prepared film did not appear wrinkled and peeled off in the optical microscope image after high-temperature aging, as shown in FIGS. 1 and 2 .
  • the photocurable composition of the present invention when the photocurable composition of the present invention has the monomer containing POSS structure as the organic encapsulation layer of OLED device, can show the effect of excellent insulation water and oxygen, have good heat resistance and stability, well Protect the performance of the device and improve the service life of the device, and have a more excellent packaging effect on the OLED device.
  • the addition amount of monomer containing POSS structure is not as high as possible, along with the increase of the addition amount of monomer containing POSS structure, can cause the viscosity of whole composition to have relatively large rise, so the addition of monomer containing POSS structure
  • the amount is 40%, it is another watershed of the overall performance parameters.
  • the addition amount of the monomer containing POSS structure is between 20% and 40%, the viscosity of the composition is small, which can be well adapted to the inkjet printing process. .
  • the system viscosity of the composition increased sharply to 24.5mPa ⁇ s and 26.2mPa ⁇ s, so that the final inkjet printing step could not be realized.
  • the addition amount of the POSS structural monomer has a significant impact on the performance of the overall composition.
  • the addition amount is in the range of 20% to 40%, and various performances can be obtained.
  • the OLED encapsulation ink composition also has good printing effect.
  • Embodiment 2 embodiment 7, embodiment 11, embodiment 12, embodiment 13 are compared, and we find that, under the premise of the addition amount of identical POSS structure monomer, the structure containing POSS structure monomer is important for ink combination There is a certain influence on the performance of the material.
  • the degree of polymerization of the POSS structural monomers in the five examples of embodiment 2, embodiment 7, embodiment 11, embodiment 12, and embodiment 13 is respectively 6, 6, 8, 10, 12, and we find that, As the degree of polymerization of POSS-containing monomers increases, performance parameters such as water vapor transmission rate will decrease to a certain extent.
  • the monomer with a smaller degree of polymerization has a smaller volume, so after participating in curing, it can make the crosslinking density of the OLED encapsulation film obtained after curing larger, thereby This makes the oxygen resistance and water vapor resistance of the OLED encapsulation film more obvious.
  • the thin film made of the encapsulating ink composition containing POSS structural monomer of the present invention through ultraviolet light curing has an excellent encapsulating effect, and can well meet the requirements of the existing thin film encapsulation of OLED devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种含POSS结构的油墨组合物及其应用,油墨组合物按照重量百分比计算,包括含POSS结构单体20-40%、光固化单体50-70%、光引发剂1-10%;含POSS结构单体包含如通式(R-SiO 1.5) n所示的重复单元;其中,至少有一个R基团选自带有丙烯酰氧基或甲基丙烯酰氧基的结构。通过将POSS结构引入到用于OLED封装的油墨组合物中,使其拥有更好的封装效果,通过该油墨所制备得到的有机封装层具有良好的极低的水蒸气透过率以及氧气渗透率,从而能够有效延长OLED器件的使用寿命,此外该油墨组合物通过合理化组分配比,能够有效降低OLED封装薄膜的制备成本和工艺难度。

Description

一种用于OLED封装的油墨组合物及其应用 技术领域
本发明涉及半导体显示器件薄膜封装领域,尤其涉及一种含POSS结构的油墨组合物及其应用。
背景技术
有机电致发光二极管(Organic Light-Emitting Diodes,简称OLED)具有的全固态、主动发光、高亮度、高对比度、超薄超轻、低成本、低功耗、无视角限制、工作温度范围广等特性,而且可以制作在柔性、轻便、耐用的塑料基板上,能够实现真正意义上的柔性显示,是最能符合人们对未来显示器要求的一项技术。
与液晶显示(LCD)相比,有机电致发光器件(OLED)具有驱动电压低,发光亮度和发光效率高,发光视角宽,响应速度快;另外还有超薄,可制作在柔性面板上等优点,被誉为第三代平板显示技术。
但是,现阶段OLED最大的问题就是寿命比LCD要短,其使用寿命只有约5000小时,要明显逊色于LCD的寿命。OLED器件的使用寿命是目前困扰OLED众多专家学者关键问题,是制约OLED产业发展的瓶颈。要想在技术层面上彻底解决这个问题仍存在一定的困难,而要缩短两者寿命之间的差距,也还需要一定时间。所以,目前的OLED产品只适合用于制作一些小型设备,如车载DVD播放器、掌上电脑、数码相机、手机屏幕等。相信随着OLED技术的飞速发展,这个问题终将会解决。在21世纪,OLED显示器有可能全面取代LCD显示器和其它种类的显示器,成为电视、电脑、电话、广告看板以及各种仪器仪表等的主流显示器。
影响OLED器件使用寿命的因素很多,有物理性因素如器件结构、电路驱动方式等;也有化学因素如金属阴极的氧化、有机材料的晶化等。尽管人们对OLED的失效机理还不完全清楚,但有许多研究结果表明了OLED器件内部水汽和氧气的存在是影响OLED的寿命主要因素。
根据柯达公司对OLED寿命改善方法的研究,各种方法的预期增益如下表1:
表1.各种改善OLED寿命方法的预期增益效果
方法 预期增益(倍数)
封装 ~20
干燥无氧生产环境 1.1-1.5
选择更稳定的发光材料 1.1-10
光物理、光化学劣化机制 3
电极和异质界面化学 <1.5
回馈控制、补偿控制 1.5-5
从上表中可见,在解决器件寿命问题上,改善封装工艺是最直接、效果最明显的方法。
对于OLED器件来说,若寿命正常工作达到1万小时以上,器件的水汽透过率(WVTR)需小于10 -6g/m 2/day,氧气渗透率(OTR)需小于10 -5g/m 2/day,这对显示器件的密封结构是个很大的挑战,因此需要研究出合适的OLED封装技术。
OLED封装的目的是将发光器件与环境隔离,以防水分、氧气等不良物质的侵入,并防外力损伤,稳定器件的各项参数,进而提高OLED的使用寿命。OLED的封装主要包括盖板封装、填充物封装、激光封装、薄膜封装等几种方式。
传统的盖板封装是在充满惰性气体的手套箱内用环氧树脂将制备好的基板与盖板粘接起来,形成一个密闭的空间把器件与外界环境隔离,空气中的水、氧等成分只能通过环氧树脂向器件内部渗透,比较有效地防止了OLED各功能层空气中的水、氧接触。封装盖板的材料一般采用玻璃或者金属,但是金属盖板的不透光性使其在器件封装中的应用受到了一定的限制,而玻璃盖板封装虽然没有透光性问题,但韧性较差、易碎。
激光封装、填充物封装、薄膜封装三种封装方法不需要使用干燥剂,可以在顶发射OLED器件中使用。激光封装的优点是具有很好的密封效果,能够很好的阻挡水汽的进入。缺点是玻璃粉材料配方复杂。激光封装的工艺控制较难,并且在激光固化之后呈黑丝严重影响美观。而填充物封装时,由于液态填充胶具有黏稠性,常常在倒入密封条内时会产生不易排除的气泡存留在封装层中,而气泡中含有水和氧,进而影响OLED器件的寿命和性能。
薄膜封装是在制备完成的OLED器件基板上生长单层或者多层薄膜,以实现对水汽的阻挡效果。对OLED薄膜的研究,通常采用的是有机无机复合薄膜的方法。无机薄膜能有效地阻挡水汽和氧气,但是成膜性、界面匹配性差且容易形成缺陷;有机薄膜由于本身自由体积和链段平均自由度较大决定了其柔韧性好、成膜性好、平整度高,有机薄膜的作用可以遮住无机薄膜的缺陷。利用无机膜对水汽和氧气的高阻隔性和有机膜的良好的表面形态,采用有机膜和无机膜交替成膜的方法来封装能够获得较为满意的效果。
薄膜封装以三叠层结构(PECVD-Flatness-PECVD)为代表,其优异的性能已成为柔性OLED封装的主流方式。三叠层是第一无机层(SiN X)为光滑的基底,有机聚合物缓冲层在此基底上通过喷墨打印然后固化得到,第三无机层(SiN X)为最后一层无机层。
有机聚合物缓冲层(有机紫外光固化树脂)因其具有良好的固化特性、稳定性、粘结强度、透光度和高纯度等特点被认为是一种常规的、有效的封装材料。常用的有机聚合物缓冲层包括丙烯酸树脂、甲基丙烯酸类树脂、异戊二烯类树脂、乙烯类树脂、环氧类树脂、聚氨酯类树脂、纤维素类树脂、苝类树脂、酰亚胺类树脂或两种多种混合物(CN201410009204)。随着柔性显示在苛刻环境如车载显示等的普及使用,为了保证有机发光装置的可靠性,通常薄膜 封装有机层的耐热性必须维持在100℃以上(申请号:201410009204)和高温高湿条件下(85%湿度和85℃温度)可靠性寿命在400小时以上。然而,现有的薄膜封装有机层在长时间的高温暴露期间,会出现有机层和无机层剥离的现象。
Kateeva公司在TW201723104中提出了一种二和单甲基丙烯酸酯的墨水组合物,但未看到在其OLED器件中的相关数据报道如耐水氧的稳定性数据。
三星SDI股份有限公司在TW201538596中提出了一种有机硅改性丙烯酸酯类的墨水组合物。相比于不含有机硅的丙烯酸酯墨水组合物,有机硅改性丙烯酸酯类的墨水组合物呈现出更高的光固化率、高透光率和低的蚀刻率。但是,目前的墨水组合物还难以同时满足薄膜封装日渐增长所需要的高耐热性和高可靠性等的性能指标要求。
和辉光电公司在CN111785845A中提出了一种薄膜封装层引入POSS结构引入有机封层中旨在提高热稳定性和高透光性,但其薄膜封装材料是采用含POSS结构化合物和光引发剂直接混合方法制备而得,而含POSS结构单体由于其分子量较大刚性较大的缘故,导致其粘度较大,从而无法采用现有喷墨工艺方式进行成膜;另外,也没有看到详细的耐热性和透光率数据报道。
发明内容
本发明是为了克服现有技术中用于OLED封装的有机薄膜的耐水氧的稳定性较差,同时难以适用现有喷墨工艺成膜的缺陷,提供了一种含POSS结构的油墨组合物及其应用以克服上述缺陷。
一种用于OLED封装的油墨组合物,按照重量百分比计算,包括:
含POSS结构单体20-40%;
光固化单体50-70%;
光引发剂1-10%;
所述含POSS结构单体包含如通式(R-SiO 1.5) n所示的重复单元;
所述含POSS结构单体包含如通式(R-SiO 1.5) n所示的重复单元;
其中,每个R基团分别独立地选自乙烯基、环氧基、烯丙基、羧基、甲基丙烯酸酯基、氨基、烷基、亚烷基、芳基或者带有烷基、亚烷基的芳基或者带有烷基、亚烷基的活性基团;
且至少有一个R基团选自带有丙烯酰氧基或甲基丙烯酰氧基的结构。
现有技术中用于制造OLED封装薄膜的选择通常需要考以下三个问题:第一,封装薄膜需要具有良好的耐热性以及热稳定性;第二,封装薄膜需要对水汽以及氧气具有良好的阻隔性;第三,在满足实际的封装效果的基础上,OLED封装薄膜的制备过程中的成本和对工艺的控制。但是,对于能够同时解决以上三个问题的技术方案,目前却寥寥无几。
本发明中的油墨组合物中的各个组分主要是在考虑如何同时克服以上技术问题的基础上进行选择的。
首先,本发明在组分中添加有一定量的(甲基)丙烯酰氧丙基改性的笼型聚倍半硅氧烷,其中笼型聚倍半硅氧烷(polyhedral oligomeric silsesquioxane,POSS)这一有机无机杂化结构,其通式为(RSiO 1.5) n,n=6、8、10和12等,结构式如下式(1)所示:
Figure PCTCN2022103410-appb-000001
其中,笼型聚倍半硅氧烷(POSS)是一种具有纳米分子尺寸笼型结构的化合物,其无机内核是由Si-O-Si交替连接的硅氧骨架构成的笼型框架,因此其能抑制聚合物分子的链运动而赋予杂化材料良好的机械强度、光学性能、耐热稳定性和低介电性常数。
同时,为了保证封装材料的稳定性,本发明中使用的POSS通过(甲基)丙烯酰氧丙基改性,因此其具备了在紫外光的照射下固化形成化学交联网络的能力。从而随着将POSS结构引入到整个体系中,由于其高度对称的笼状结构和丰富的硅氧键框架,以及丙烯酰氧基与光固化单体之间的化学交联作用,使得固化后的有机封装层具有了优异的性能。一方面光固化后的阻挡层的稳定性和耐热性(Tg>100℃)得到了明显提高;另一方面油墨组合物在固化时的体积收缩率也显著降低了,有效解决了有机阻挡层和无机阻挡层之间易脱落的问题,且由于POSS结构限制了聚合物分子的链运动导致水汽以及氧气难以进入到有机封装层中,从而能够有效隔绝氧气以及水汽对于OLED器件内部的渗透。因而能够有效延长OLED器件的使用寿命。
POSS材料虽然具有上述优点,但是其在柔性OLED器件中的使用却并无相关先例。究其原因在于,POSS材料的使用受到以下两点材料特性所限制:第一POSS材料由于其较大的刚性以及巨大的位阻效应,导致其在固化后的虽然具有较高的机械强度、光学性能、耐热稳定性和低介电性常数,但是其柔韧性不佳,脆性较大,因此在组合物中过高的添加POSS材料有可能在受冲击状态下破碎,导致起不到封装的效果。第二,POSS材料在添加量过大的情况下,会导致整个油墨的粘度过大以及产生不匹配的表面张力,因而会影响喷墨打印以及旋涂性能,导致OLED封装薄膜难以成型的问题。
因此,本发明在实际生产过程中偶然发现,当油墨组合物中的POSS结构单体含量在超过40%以后,其粘度会大大增加,导致其喷墨打印和旋涂性能大大降低,且在此粘度下所成的封 装薄膜质量较差,不利于对OLED器件的封装。而在POSS结构单体含量在少于20%以后虽然其喷墨打印和旋涂性能较好,但是最终形成的封装薄膜的整体的性能提升却不明显。
因此,本发明将含POSS结构单体的含量限定在20-40%之间能够得到既具有良好喷墨打印和旋涂性能又具有良好性能的OLED封装薄膜。
作为优选,所述含POSS结构单体的结构如通式(2)所示:
Figure PCTCN2022103410-appb-000002
R1-R6基团中至少1个选自如通式(3)所示结构:
Figure PCTCN2022103410-appb-000003
其中:*为元素的结合位置;A选自氢原子或甲基;M选自碳原子数小于或者等于30的直链或者支链的烷基、侧羟基烷基、醚基烷基、硫烷基、侧(甲基)丙烯酰氧基烷基中的一种;r选自0-4的整数。
本发明中的优选POSS结构单体为聚合度为6的单体,其相较于聚合度更大的POSS结构单体而言,具有以下优点,第一其体积较小,因而在参与固化后能够使得固化后得到的OLED封装薄膜的交联密度更大,从而使得OLED封装薄膜的耐氧气以及耐水汽效果更加明显。同时,由于为聚合度为6的POSS结构单体的分子质量更小,因此在相同添加量的情况下其粘度更小,更加适合喷墨打印和旋涂成型。
进一步优选,所述的含POSS结构单体包含但不限于以下式(2-1)~(2-8)所示的化合物:
Figure PCTCN2022103410-appb-000004
Figure PCTCN2022103410-appb-000005
Figure PCTCN2022103410-appb-000006
作为优选,所述光固化单体为带有丙烯酸结构或者甲基丙烯酸结构的单官能单体、双官能单体、多官能单体中的一种或多种的组合物。
进一步优选,所述光固化单体为C1到C30的一元醇或多元醇的单官能(甲基)丙烯酸酯、C2到C30的一元醇或多元醇的双官能(甲基)丙烯酸酯、C3到C30的一元醇或多元醇的多官能(甲基)丙烯酸酯中的一种或多种的组合物。
进一步优选,单官能光固化单体按结构上的不同一般可分为丙烯酸烷基酯,(甲基)丙烯酸羟基酯,带有环状结构或苯环的(甲基)丙烯酸酯和乙烯基单体等,具体有:丙烯酸月桂酯(LA)、丙烯酸乙氧基乙氧基乙酯(EOEOEA)-KPX A007、丙烯酸丁酯(BA)、丙烯酸羟乙酯和丙烯酸异冰片酯、乙氧化四氢呋喃丙烯酸酯(THF(EO)A)-KPX A015、甲基丙烯酸酯磷酸酯及甲基丙烯酸异冰片酯。
双官能团单体以二元醇结构居多,主要有乙二醇类二丙烯酸酯,丙二醇类二丙烯酸酯和其他二醇类二丙烯酸酯。具体结构有:二乙二醇二丙烯酸酯(DEGDA)、三乙二醇二丙烯酸酯(TEGDA)、乙二醇二丙烯酸酯、聚乙二醇(200)二丙烯酸酯[PEG(200)DA]、聚乙二醇(400)二丙烯酸酯[PEG(400)DA]、聚乙二醇(600)二丙烯酸酯[PEG(600)DA]、新戊二醇二丙烯酸酯和丙氧 基新戊二醇二丙烯酸酯,1,6-己二醇二丙烯酸酯(HDDA)、1,4-丁二醇二丙烯酸酯(BDDA)、20(乙氧基)双酚A二丙烯酸酯[BPA(EO) 20DA]、丙三醇二丙烯酸酯(TPGDA)。
多官能团单体包括:三甲基丙烷三丙烯酸酯(TMPTA)、季戊四醇三丙烯酸酯(PETA)、三羟基甲基丙烷三醇三丙烯酸酯(TMPTMA)、三羟甲基丙烷三丙烯酸酯、丙氧基化三经甲基丙烷三丙烯酸酯、季戊四醇三丙烯醇酯和丙氧基化季戊四醇丙烯醇酯、二(三羟甲基丙烷)四丙烯酸酯、二缩三乙二醇双甲基丙烯酸酯、长链脂肪烃缩水甘油醚丙烯酸酯、双季戊四醇六丙烯酸酯、二缩三丙二醇二丙烯酸酯、邻苯二甲酸二乙醇二丙烯酸酯(PDDA)、乙氧基化三羟基甲基丙烷三醇三丙烯酸酯[TMP(EO)TMA]、丙氧基化三羟基甲基丙烷三醇三丙烯酸酯[TMP(PO)TMA]、丙氧基化丙三醇三丙烯酸酯[G(PO)TA]、三(2-羟乙基)异氰脲酸三丙烯酸酯、乙氧基化新戊二醇甲氧基单丙烯酸酯[TMP(PO)MEDA]等。
作为优选,所述光引发剂可以为I型或II型光引发剂。I型光引发剂经历辐射诱导的裂解以产生两个自由基,其中一个为反应性并引发聚合。II型光引发剂经历辐射诱导的转化变为激发三重态。激发三重态的分子然后与基态分子反应以产生引发聚合的自由基。光引发剂可以包括三嗪、苯乙酮、二苯甲酮、磷引发剂和它们的混合物。
三嗪引发剂的实例包括2,4,6-三氯-s-三嗪、2-苯基-4,6-双(三氯甲基)-s-三嗪、2-(3',4'-二甲氧基苯乙烯基)-4,6-双(三氯甲基)-s-三嗪、2-(4'-甲氧基萘基)-4,6-双(三氯甲基)-s-三嗪、2-(对甲氧基苯基)-4,6-双(三氯甲基)-s-三嗪、2-(对甲苯基)-4,6-双(三氯甲基)-s-三嗪、2-联苯基-4,6-双(三氯甲基)-s-三嗪、双(三氯甲基)-6-苯乙烯基-s-三嗪、2-(萘-1-基)-4,6-双(三氯甲基)-s-三嗪、2-(4-甲氧基萘-1-基)-4,6-双(三氯甲基)-s-三嗪、2,4-三氯甲基(胡椒基)-6-s-三嗪、2,4-(三氯甲基-(4'-甲氧基苯乙烯基)-6-三嗪和它们的混合物。
苯乙酮引发剂的实例包括2,2'-二乙氧基苯乙酮、2,2'-二丁氧基苯乙酮、2-羟基-2-甲基苯丙酮、对叔丁基三氯苯乙酮、对叔丁基二氯苯乙酮、4-氯苯乙酮、2,2'-二氯-4-苯氧基苯乙酮、2-甲基-1-(4-(甲硫基)苯基)-2-吗啉代丙-1-酮、2-苄基-2-二甲基氨基-1-(4-吗啉苯基)-丁-1-酮和它们的混合物。
二苯甲酮引发剂的实例包括二苯甲酮、苯甲酰苯甲酸、苯甲酰苯甲酸甲基、4-苯基二苯甲酮、羟基二苯甲酮、丙烯酸化二苯甲酮、4,4'-双(二甲基氨基)二苯甲酮、4,4'-二氯二苯甲酮、3,3'-二甲基-2-甲氧基二苯甲酮和它们的混合物。
磷引发剂的实例包括二苯甲酰苯基氧化膦、苯甲酰基二苯基氧化膦和它们的混合物。
对于选择用于给定的油墨组合物的具体光引发剂来说,首先要保证光引发剂在不损伤OLED材料的波长前提下活化。因此,通常用于油墨组合物的各种光引发剂是具有峰在约368至约420nm范围内的主吸收能力的化合物。通常来说,选择用于活化的光引发剂吸收范围与光源的输出尽量匹配或重叠,这样既可以使光的吸收产生引发聚合的自由基,又可以达到最大使用光源的目的。常用的光源可选择汞弧灯和UV发光二极管。
在上述的引发剂中,酰基氧化膦光引发剂如2,4,6-三甲基苯甲酰基二苯基氧化膦(TPO)是浅黄色透明固体,与单体的溶解性好,吸收波长可达到430nm,适合有色体系光固化。光解产物吸收波长能够向短波移动,具有光漂白的效果,有利于紫外光透过适用于厚涂层固化。另外热稳定性和存储性良好,自身呈浅黄色,光解后呈无色,不会变黄。
而对于本申请的油墨组合物和印刷方法的各种实施例来说,酰基膦光引发剂如TPO可使用具有370-380nm吸收特性的化合物,使用时在350nm至430nm范围内的标准波长下发射的光源以光固化该光固化组合物形成有机阻挡层。因此,2,4,6-三甲基苯甲酰基二苯基氧化膦(TPO)和2,4,6-三甲基苯甲酰基二苯基亚膦酸酯最符合要求,一方面吸收波长可延长至430nm的特性可使得油墨在紫外光固化(UV)时不会对OLED材料产生破坏;另一方面,TPO系列的光引发剂固化之后不会对有机层的透光率产生影响;再者,TPO的耐热性可达到180℃,对于有机阻挡层来说避免了小分子副产物所产生的黄变和膜层损坏。
一种用于OLED封装的有机封装层,其由上述油墨组合物经过紫外光固化后得到,其水蒸气透过率小于4g/m 2/day,透光率大于95%,玻璃化温度大于170℃。
现有技术中的用于OLED封装的有机封装层通常其水蒸气透过率通常较高,因此将其应用于OLED器件的封装过程中后,导致其水汽透过率以及氧气渗透率(OTR)也无法达到使用要求。
而本发明中的这种OLED封装的有机封装层的水蒸气透过率小于4g/m 2/day,再将其应用到OLED器件后能够保证整体器件的水汽透过率(WVTR)小于10 -6g/m 2/day,氧气渗透率(OTR)小于10 -5g/m 2/day,从而延长了OLED器件的使用寿命。
进一步优选,所述有机封装层的制备方法如下:将可光固化的油墨组合物通过旋涂或喷墨打印的方式打印0.1μm至20μm的厚度,然后通过在约10至500mW/cm 2下照射约1秒至约300秒使其固化得到一层有有机封装层。
作为封装材料来说,其制备方式也至关重要,本申请的光固化油墨组分可通过旋涂、喷墨打印等方式制备,但考虑到成本和工艺的控制,优选喷墨打印。
一种柔性OLED器件,包括OLED器件以及封装在OLED器件外部的柔性封装层;其中,所述柔性封装层由无机封装层以及上述有机封装层交替叠加得到。
作为优选,无机封装层的制备可通过PECVD的方式沉积一层SiNx,厚度范围为0.1μm至20μm的厚度。
OLED器件装置包括基板ITO,形成于基板上的用于装置的OLED器件(有机发光二级管),和形成于封装构件上的柔性封装层。具体的,该柔性封装层由无机阻挡层SiNx、有机阻挡层、无机阻挡层SiN X叠层而成。而有机发光二极管的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极LiF,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL),而发光层中含有RGB三原色及配套的三原色的调色层。
本发明中的柔性封装层由无机封装层和有机封装层交替沉积时,能够确保无机封装层的平滑性质。此外,有机封装层能够防止无机封装层的缺陷扩散到其他无机封装层。
因此,本发明具有以下有益效果:
(1)通过将POSS结构引入到用于OLED封装的油墨组合物中,使其拥有更好的封装效果;
(2)通过该油墨所制备得到的有机封装层具有良好的极低的水蒸气透过率以及氧气渗透率,从而能够有效延长OLED器件的使用寿命;
(3)本发明中的油墨组合物通过选择合理的组分配比,能够有效降低OLED封装薄膜的制备成本和工艺难度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本申请的实施例1经高温老化前后的显微镜图像,其中:a为高温老化前的图像,b为100℃老化1h后的图像;
图2示出了本申请的对比例4经高温老化前后的显微镜图像,其中:c为高温老化前的图像,d为100℃老化1h后的图像;
图3示出了本申请的柔性OLED器件的结构示意图。
具体实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
【含POSS结构单体1-1的制备】
含POSS结构单体1-1的合成过程如下式所示。
将3-三甲氧基硅烷丙烯酸丙脂在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-1。
Figure PCTCN2022103410-appb-000007
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取46.8g的3-三甲氧基硅烷丙烯酸丙脂溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入94.1g的甲基硅烷三醇,再加入120mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-1。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.43(d,1H),δ6.05(d,1H),δ5.58(d,1H),δ4.15(t,2H),δ1.6(m,2H),δ0.58(t,2H),δ0.19(s,15H)。
【含POSS结构单体1-2的制备】
含POSS结构单体1-2的合成过程如下式所示。
将3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-2。
Figure PCTCN2022103410-appb-000008
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取49.7g的3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入37.7g的甲基硅烷三醇,再加入120mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-2。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.15(d,2H),δ5.58(d,2H),δ4.15(t,4H),δ1.93(t,6H),δ1.6(m,4H),δ0.58(t,4H),δ0.19(s,12H)。
【含POSS结构单体1-3的制备】
含POSS结构单体1-3的合成过程如下式所示。
将3-三甲氧基硅烷丙烯酸丙脂在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与异辛基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-3。
Figure PCTCN2022103410-appb-000009
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取46.8g的3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入192.3g的异辛基硅烷三醇,再加入200mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-3。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.43(d,1H),δ6.05(d,1H),δ5.80(d,1H),δ4.15(t,2H),δ1.6(m,2H),δ1.5(m,5H),δ1.33(m,10H),δ1.29(m,20H),δ1.25(m,10H),δ0.96(t,30H),δ0.54(d,12H)。
【含POSS结构单体1-4的制备】
含POSS结构单体1-4的合成过程如下式所示。
将3-三甲氧基硅烷丙烯酸丙脂在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与2-(3,4-环氧环己烷)乙基三甲氧基硅烷三醇和甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-4。
Figure PCTCN2022103410-appb-000010
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取46.8g的3-三甲氧基硅烷丙烯酸丙脂溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入75.3g的甲基硅烷三醇和49.6g的2-(3,4-环氧环己烷)乙基三甲氧基硅烷三醇,再加入180mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-4。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.43(d,1H),δ6.05(d,1H),δ5.80(d,1H),δ4.15(t,2H),δ2.87(m,2H),δ1.6(m,2H),δ1.57(m,2H),δ1.53(t,2H),δ1.43(t,1H),δ1.40(m,2H),δ1.3(m,2H),δ0.58(t,4H),δ0.19(s,12H)。
【含POSS结构单体1-5的制备】
含POSS结构单体1-5的合成过程如下式所示。
将3-三甲氧基硅烷丙烯酸丙脂在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-5。
Figure PCTCN2022103410-appb-000011
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取46.8g的3-三甲氧基硅烷丙烯酸丙脂溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入31.4g的甲基硅烷三醇,再加入60mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-5。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.43(d,3H),δ6.05(d,3H),δ5.80(d,3H),δ4.15(t,6H),δ1.6(m,6H),δ0.58(t,6H),δ0.19(s,15H)。
【含POSS结构单体1-6的制备】
含POSS结构单体1-6的合成过程如下式所示。
将3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-6。
Figure PCTCN2022103410-appb-000012
实验步骤:
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取49.7g的3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入56.5g的甲基硅烷三醇,再加入120mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-6。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.15(d,2H),δ5.58(d,2H),δ4.15(t,4H),δ1.93(t,6H),δ1.6(m,4H),δ0.58(t,4H),δ0.19(s,18H)。
【含POSS结构单体1-7的制备】
含POSS结构单体1-7的合成过程如下式所示。
将3-三甲氧基硅烷丙烯酸丙脂在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-7。
Figure PCTCN2022103410-appb-000013
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温 (25℃)磁力搅拌油浴锅中,取46.8g的3-三甲氧基硅烷丙烯酸丙脂溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入169.5g的甲基硅烷三醇,再加入200mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-7。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.43(d,1H),δ6.05(d,1H),δ5.80(d,1H),δ4.15(t,2H),δ1.6(m,2H),δ0.58(t,2H),δ0.19(s,27H)。
【含POSS结构单体1-8的制备】
含POSS结构单体1-8的合成过程如下式所示。
将3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)在四甲基氢氧化铵(TMAH)的催化下水解制得的硅三醇中间体与甲基硅烷三醇在85℃的高温条件下缩合生成水和最终产物1-8。
Figure PCTCN2022103410-appb-000014
(1)在装有温度计、恒压滴液漏斗和冷凝管的三口烧瓶中加入1.8g的四甲基氢氧化铵(TMAH,浓度为25%)、10.8g的蒸馏水和120mL的异丙醇溶剂;将三口烧瓶放入恒温(25℃)磁力搅拌油浴锅中,取49.7g的3-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)溶于80mL异丙醇中,通过恒压滴液漏斗缓慢滴加入三口烧瓶中,充分水解后,利用旋转蒸发仪和减压蒸馏除去异丙醇。
(2)向其中加入207.1g的甲基硅烷三醇,再加入240mL甲苯,升温至85℃回流反应4h;饱和食盐水萃取至中性,减压蒸馏除去甲苯后得无色粘稠状液体,通过过滤浓缩,柱色谱分离(流动相为乙酸乙酯:石油醚=40:1-20:1)得到收率为75%的产物即是含POSS结构单体1-8。HPLC测定具有95%的纯度; 1HNMR(400MHz,Chloroform-d):δ6.15(d,1H),δ5.58(d,1H),δ4.15(t,2H),δ1.93(t,3H),δ1.6(m,2H),δ0.58(t,2H),δ0.19(s,33H)。
在实施例和比较例中使用的组分的详细描述如下:
(A)光固化单体:(A1)甲基丙烯酸月桂酯,(A2)丙三醇二丙烯酸酯(TPGDA),(A3)丙氧基化丙三醇三丙烯酸酯[G(PO)TA];
(B)含硅结构单体:(Ref.1)参比化合物,(B1)1-1的单体,(B2)1-2的单体,(B3)1-6的单体,(B4)1-7的单体,(B4)1-8的单体;
Ref.1化合物的结构如式(4)所示
Figure PCTCN2022103410-appb-000015
(C)引发剂:TPO(BASF)。
实施例和比较例
将(A)光固化单体、(B)含POSS结构单体和参比化合物Ref.1和(C)引发剂以表2中列出的量(单位:重量百分比)放置在250mL棕色聚丙烯瓶中,随后使用超声波混合0.5小时以制备组合物。
评估实施例和比较例中制备的组合物的性能结果在下表2中示出。
表2实施例和比较例中制备的组合物的性能结果表
Figure PCTCN2022103410-appb-000016
Figure PCTCN2022103410-appb-000017
应用例1
一种有机封装薄膜,其由实施例1~14所述光固化封装组合物通过旋涂或喷墨打印的方式打印0.1μm至20μm的厚度,然后通过在约10至500mW/cm 2下照射约1秒至约300秒使其固化得到。
应用例2
如图3所示:一种柔性OLED器件,包括OLED器件以及封装在OLED器件外部的柔性封装层,其中,所述柔性封装层由无机封装层、有机封装薄膜以及无机封装层三层交替叠加得到。
无机封装层的制备可通过PECVD的方式沉积一层SiNx,厚度范围为0.1μm至20μm的厚度。
OLED器件装置包括基板ITO,形成于基板上的用于装置的OLED器件(有机发光二级管),和形成于封装构件上的柔性封装层。具体的,该柔性封装层由无机封装层SiNx、有机封装薄膜、无机封装层SiN X叠层而成。而有机发光二极管的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极LiF,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL),而发光层中含有RGB三原色及配套的三原色的调色层。
由于本申请的光固化封装组合物所形成的聚合物薄膜作为有机阻挡层具有更高的耐热性、更高的光透过率、更低的固化体积收缩率以及更低的等离子体刻蚀速率,从而能够很好地满足封装结构的光学要求和固化要求。而本发明中的柔性封装层由无机封装层和有机封装薄膜交替沉积,能够确保无机封装层的平滑性质。此外,当其与无机阻挡层交替沉积形成无机-有机-无机的薄膜封装结构时,能够承受无机层形成时的等离子体的刻蚀,同时防止无机阻挡层扩散到其他无机阻挡层的缺陷,从而维持了较好的封装效果。
性能的评估:
水蒸气透过率:应用水蒸气透过率测试系统(PERMATRAN-W3/33,由美国MOCON制造)。将该光固化组合物喷涂或者喷墨打印在在玻璃基材上并且在200mW/cm 2下通过UV照射使其经受UV固化180秒以制造具有5μm厚的层的固化试样。使用水蒸气透过率测试仪(PERMATRAN-W3/33,由MOCON制造),在40℃和100%相对湿度下持续24小时,以5μm的层厚度,测定水蒸气透过率。
透光率测试:应用紫外可见分光光度计测试系统(Carry 5000,由美国安捷伦科技有限公司制造)。将该光固化组合物喷涂或者喷墨打印在在玻璃基材上并且在200mW/cm 2下通过UV照射使其经受UV固化180秒以制造具有10μm厚的层的固化试样。使用紫外可见分光光度计测试系统(Carry 5000,由美国安捷伦科技有限公司制造),在550nm的可见光范围中测量膜的透光率。
光固化率:使用FT-IR(Nicolet iS10,Thermo)在1635cm-1(C=C)和1720cm-1(C=O)附近测定光固化组合物的吸收峰强度。首先,将该光固化组合物喷涂或者喷墨打印在在玻璃基材上并且在200mW/cm2下通过UV照射使其经受UV固化180秒以制造具有20cm x20cm x3μm(宽x长x厚)尺寸的试样。将已固化的膜切成试样,进而使用FT-IR(Nicolet iS10,通过Thermo)将其用于测定在1635cm-1(C=C)和1720cm-1(C=O)的吸收峰强度。
由公式1计算光固化率:
光固化率(%)=|1-(A/B)|x100……………………………………(公式1)。
其中,A是已固化膜在1635cm -1附近的吸收峰强度与在1720cm -1附近的吸收峰强度的比值,以及B是光固化组合物在1635cm -1附近的吸收峰强度与在1720cm -1附近的吸收峰强度的比值。
耐热性测试:应用简易的鼓风恒温烘箱加热到恒定的温度和时间后,以膜物理性能或者表面变化情况来评估膜的耐热性能(参照GB/T,1735-89<漆膜耐热性测定方法>)。将该光固化组合物喷涂或者喷墨打印在在玻璃基材上并且在200mW/cm 2下通过UV照射使其经受UV固化180秒以制造具有10μm厚的层的2个固化试样。将其中一个样品使用鼓风恒温烘箱升温至100℃保持1h,然后降温至25℃,与预先留下来的标准版进行对比检查其变色、脱落、起皱等情况。
各实施例以及对比例的性能参数如下表3所示:
表3性能参数表
Figure PCTCN2022103410-appb-000018
Figure PCTCN2022103410-appb-000019
将实施例1~14与对比例1~5进行比较,本发明在组合物中添加了含POSS结构单体之后,显示出低水蒸汽透过率、更高的透光率和相似的固化率。此外,与比较例相比,本发明的光固化组合物显示出相当高的耐热性,相比于不含POSS结构单体的光固化组合物,由含POSS结构单体的光固化组合物制备的薄膜在高温老化之后的光学显微镜图像中未出现起皱脱落的现象,如图1以及2所示。因此,本发明的具有含POSS结构单体的光固化组合物在作为OLED器件的有机封装层时,能够表现出优异的隔绝水氧的效果、具有良好的耐热性和稳定性,很好地保护器件的各项性能和提高器件的使用寿命,在OLED器件上具有更加优异的封装效果。
对实施例1~5以及对比例6~10进行比较,我们发现,在组合物中随着含POSS结构单体的添加量的增加,其水蒸汽透过率、透光率以及耐热性也随之提升,这一点在实施例6~10中也可以得知。因此,我们从中可知,在一定的添加量的范围内,提高含POSS结构单体的添加量能够有助于提升组合物的综合性能。其中添加量为20%是整体性能参数的一个分水岭,在含POSS结构的环氧单体添加量小于20%时(对比例6~8),其整体的水蒸气透过率以及耐热性较差,在高温下容易起皱脱落,无法达到实际的使用要求。而在添加量大于等于20%后,其固化体积收缩率、水蒸气透过率以及耐热性方面均具有明显的提升,表明含POSS结构的环氧单体的含量的增加使得封装薄膜的性能更好。
但是,含POSS结构单体的添加量并非越高越好,随着含POSS结构单体添加量的增加,会导致整体组合物的粘度存在较大幅度的上升,因此含POSS结构单体的添加量为40%时,是整体性能参数的一个另一个分水岭,在含POSS结构单体的添加量为20~40%之间时,组合物的粘度较小,能够很好的适应喷墨打印步骤。而在含POSS结构单体的添加量增加到45%以及50%之后,组合物的体系粘度剧增到24.5mPa·s以及26.2mPa·s,从而无法实现最终的喷墨打印步骤。
因此,综上所述,表明含POSS结构单体的添加量对整体组合物的性能存在明显的影响,综合来看,添加量在20%~40%的范围内,能够得到各项性能优异,又具有良好打印效果的OLED封装油墨组合物。
将实施例2、实施例7、实施例11、实施例12、实施例13进行比较,我们发现,在相同含POSS结构单体的添加量的前提下,含POSS结构单体的结构对于油墨组合物的性能存在一定影响。将实施例2、实施例7、实施例11、实施例12、实施例13这五个实施例中的含POSS结构单体的聚合度分别为6、6、8、10、12,我们发现,随着含POSS结构单体的聚合度的提升,水蒸汽透过率等性能参数会存在一定的下降。表明相较于聚合度更大的POSS结构单体而言,聚合度较小的单体的体积较小,因而在参与固化后能够使得固化后得到的OLED封装薄膜的交联密度更大,从而使得OLED封装薄膜的耐氧气以及耐水汽效果更加明显。
因此本发明的含POSS结构单体的封装油墨组合物经紫外光固化制成的薄膜具有优良的封装效果,能够很好地满足现有的OLED器件的薄膜封装要求。
本领域的技术人员应理解,本发明不限制于上述实施例,并且在没有背离本发明的精神与范围的情况下,可以做出各种修改和变更,且所作的任何修改、替换和改进等,均应在本发明的保护范围之内。因此,提供这些实施例仅是为了说明,并且不以任何方式解释为限制本发明。

Claims (9)

  1. 一种用于OLED封装的油墨组合物,其特征在于,按照重量百分比计算,包括:
    含POSS结构单体20-40%;
    光固化单体50-70%;
    光引发剂1-10%;
    所述含POSS结构单体包含如通式(R-SiO 1.5) n所示的重复单元;
    其中,每个R基团分别独立地选自乙烯基、环氧基、烯丙基、羧基、甲基丙烯酸酯基、氨基、烷基、亚烷基、芳基或者带有烷基、亚烷基的芳基或者带有烷基、亚烷基的活性基团;
    且至少有一个R基团选自带有丙烯酰氧基或甲基丙烯酰氧基的结构。
  2. 根据权利要求1所述的一种用于OLED封装的油墨组合物,其特征在于,所述含POSS结构单体的结构如通式(2)所示:
    Figure PCTCN2022103410-appb-100001
    R1-R6基团中至少1个选自如通式(3)所示结构:
    Figure PCTCN2022103410-appb-100002
    其中:*为元素的结合位置;A选自氢原子或甲基;M选自碳原子数小于或者等于30的直链或者支链的烷基、侧羟基烷基、醚基烷基、硫烷基、侧(甲基)丙烯酰氧基烷基中的一种;r选自0-4的整数。
  3. 根据权利要求1所述的一种用于OLED封装的油墨组合物,其特征在于,所述光固化单体为带有丙烯酸结构或者甲基丙烯酸结构的单官能单体、双官能单体、多官能单体中的一种或多种的组合物。
  4. 根据权利要求3所述的一种用于OLED封装的油墨组合物,其特征在于,所述光固化单体为C1到C30的一元醇或多元醇的单官能(甲基)丙烯酸酯、C2到C30的一元醇或多元醇的双官能(甲基)丙烯酸酯、C3到C30的一元醇或多元醇的多官能(甲基)丙烯酸酯中的一种或多种的组合物。
  5. 根据权利要求1所述的一种用于OLED封装的油墨组合物,其特征在于,所述光引发剂为三嗪类引发剂、苯乙酮类引发剂、二苯甲酮类引发剂、磷引发剂中的一种或多种的组合物。
  6. 一种用于OLED封装的有机封装层,其特征在于,其由权利要求1~5中任意一项所述油墨组合物经过紫外光固化后得到,其水蒸气透过率小于4g/m 2/day,透光率大于95%,玻璃化温度大于170℃。
  7. 根据权利要求6所述的一种用于OLED封装的有机封装层,其特征在于,所述有机封装层的厚度为0.1~20μm。
  8. 一种柔性OLED器件,其特征在于,包括OLED器件以及封装在OLED器件外部的柔性封装层;
    其中,所述柔性封装层由无机封装层以及权利要求6或7所述的有机封装层交替叠加得到。
  9. 根据权利要求8所述的一种柔性OLED器件,其特征在于,所述无机阻挡层材料为SiNx,其厚度为0.1~20μm。
PCT/CN2022/103410 2021-10-19 2022-07-01 一种用于oled封装的油墨组合物及其应用 WO2023065723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111213306.1A CN114015277B (zh) 2021-10-19 2021-10-19 一种用于oled封装的油墨组合物及其应用
CN202111213306.1 2021-10-19

Publications (1)

Publication Number Publication Date
WO2023065723A1 true WO2023065723A1 (zh) 2023-04-27

Family

ID=80056669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103410 WO2023065723A1 (zh) 2021-10-19 2022-07-01 一种用于oled封装的油墨组合物及其应用

Country Status (2)

Country Link
CN (1) CN114015277B (zh)
WO (1) WO2023065723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015277B (zh) * 2021-10-19 2023-05-12 杭州福斯特电子材料有限公司 一种用于oled封装的油墨组合物及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040163570A1 (en) * 2003-02-26 2004-08-26 Luc Vanmaele Radiation curable ink compositions suitable for ink-jet printing
CN103391979A (zh) * 2011-02-28 2013-11-13 富士胶片株式会社 油墨组合物、图像形成方法及印相物
TW201538596A (zh) 2014-03-28 2015-10-16 Samsung Sdi Co Ltd 封裝有機發光二極體用的組成物和使用其製造的顯示器
WO2017052186A1 (ko) * 2015-09-24 2017-03-30 주식회사 엘지화학 광경화성 코팅 조성물, 저굴절층 및 반사 방지 필름
TW201723104A (zh) 2015-08-31 2017-07-01 凱特伊夫公司 基於二和單甲基丙烯酸酯的有機薄膜墨水組成物
US20180094161A1 (en) * 2016-09-30 2018-04-05 Dongwoo Fine-Chem Co., Ltd. Hard coating composition and hard coating film using the same
CN109251584A (zh) * 2018-09-03 2019-01-22 浙江福斯特新材料研究院有限公司 一种具有高耐热性和高透光率的油墨组合物及用途
CN111785845A (zh) 2019-04-04 2020-10-16 上海和辉光电有限公司 薄膜封装材料及其制造方法、薄膜封装结构和电子器件
CN114015277A (zh) * 2021-10-19 2022-02-08 杭州福斯特电子材料有限公司 一种用于oled封装的油墨组合物及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040163570A1 (en) * 2003-02-26 2004-08-26 Luc Vanmaele Radiation curable ink compositions suitable for ink-jet printing
CN103391979A (zh) * 2011-02-28 2013-11-13 富士胶片株式会社 油墨组合物、图像形成方法及印相物
TW201538596A (zh) 2014-03-28 2015-10-16 Samsung Sdi Co Ltd 封裝有機發光二極體用的組成物和使用其製造的顯示器
TW201723104A (zh) 2015-08-31 2017-07-01 凱特伊夫公司 基於二和單甲基丙烯酸酯的有機薄膜墨水組成物
WO2017052186A1 (ko) * 2015-09-24 2017-03-30 주식회사 엘지화학 광경화성 코팅 조성물, 저굴절층 및 반사 방지 필름
US20180094161A1 (en) * 2016-09-30 2018-04-05 Dongwoo Fine-Chem Co., Ltd. Hard coating composition and hard coating film using the same
CN109251584A (zh) * 2018-09-03 2019-01-22 浙江福斯特新材料研究院有限公司 一种具有高耐热性和高透光率的油墨组合物及用途
CN111785845A (zh) 2019-04-04 2020-10-16 上海和辉光电有限公司 薄膜封装材料及其制造方法、薄膜封装结构和电子器件
CN114015277A (zh) * 2021-10-19 2022-02-08 杭州福斯特电子材料有限公司 一种用于oled封装的油墨组合物及其应用

Also Published As

Publication number Publication date
CN114015277A (zh) 2022-02-08
CN114015277B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN109251584B (zh) 一种具有高耐热性和高透光率的油墨组合物及用途
CN105981188B (zh) 有机电子器件及其制造方法
CN110894361B (zh) 光固化封装组合物、封装结构及半导体器件
CN111933823B (zh) 一种光电子器件封装用组成物、封装结构及光电子器件
CN110982346A (zh) 墨水组合物、封装结构及半导体器件
WO2022105660A1 (zh) 一种基于环烷烃的紫外光固化封装油墨及其使用方法和应用
CN111826024A (zh) 墨水组合物、封装结构及半导体器件
WO2023065723A1 (zh) 一种用于oled封装的油墨组合物及其应用
CN103182878B (zh) 热转印膜和使用其制造的有机电致发光显示器
CN113185544A (zh) 一种用于封装薄膜的化合物、包含其的油墨组合物及封装结构
CN113717350B (zh) 光固化组合物、封装结构和半导体器件
WO2022095792A1 (zh) 一种紫外光固化组合物胶水及其使用方法和应用
KR20140004906A (ko) 광경화 조성물 및 상기 조성물로 형성된 보호층을 포함하는 광학 부재
CN116096563A (zh) 电子设备封装用组合物、电子设备封装膜形成方法和电子设备封装膜
CN113980514B (zh) 一种光固化封装组合物、有机封装薄膜及其应用
CN115260226A (zh) 封装薄膜用化合物及基于该化合物的紫外光固化油墨
WO2024007741A1 (zh) 墨水组合物、封装结构和半导体器件
CN115216178A (zh) 一种oled封装用的油墨组合物及其制备方法
CN115491157B (zh) 光固化封装组合物、封装结构和半导体器件
CN110235262A (zh) 用于有机电子器件密封剂的组合物以及采用该组合物形成的密封剂
KR102105825B1 (ko) 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치
KR101860095B1 (ko) 플렉시블 oled용 자외선 경화형 조성물 및 이의 용도
CN115353587B (zh) 环戊烷三聚体取代物的应用、光固化组合物、有机封装薄膜及oled器件
TWI837499B (zh) 電子裝置密封用組成物、電子裝置密封膜形成方法及電子裝置密封膜
KR20240009473A (ko) 전자 디바이스 봉지용 조성물, 전자 디바이스 봉지막 형성 방법 및 전자 디바이스 봉지막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882345

Country of ref document: EP

Effective date: 20240307