WO2023157628A1 - 金属部材、金属樹脂接合体及び金属部材の製造方法 - Google Patents

金属部材、金属樹脂接合体及び金属部材の製造方法 Download PDF

Info

Publication number
WO2023157628A1
WO2023157628A1 PCT/JP2023/002914 JP2023002914W WO2023157628A1 WO 2023157628 A1 WO2023157628 A1 WO 2023157628A1 JP 2023002914 W JP2023002914 W JP 2023002914W WO 2023157628 A1 WO2023157628 A1 WO 2023157628A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
uneven structure
organic compound
metal
aluminum alloy
Prior art date
Application number
PCT/JP2023/002914
Other languages
English (en)
French (fr)
Inventor
雄太 小寺
新太郎 光永
紀夫 平光
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023157628A1 publication Critical patent/WO2023157628A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means

Definitions

  • the present invention relates to a metal member, a metal-resin bonded body, and a method for manufacturing a metal member.
  • a metal member whose surface has been roughened by the method described in Patent Document 1 has an uneven structure on the order of nanometers, so that it exhibits excellent bonding strength to, for example, a resin member.
  • the metal member whose surface is roughened by the method described in Patent Document 1 has a problem that the uneven structure of nanometer order formed on the surface disappears as time passes. It is considered that this is because the surface of the metal member reacts with moisture in the air, and the metal hydroxide that is generated fills the uneven structure on the order of nanometers.
  • an object of one embodiment of the present disclosure is to provide a metal member whose surface has an uneven structure for a long period of time, a metal-resin bonded body using the metal member, and a method for manufacturing the metal member. .
  • Means for solving the above problems include the following embodiments. ⁇ 1> having a surface with an uneven structure, A metal member, the surface of which is coated with a hydrophobic film. ⁇ 2> having a surface with an uneven structure, The metal member, wherein the surface has a water contact angle of 90° or more. ⁇ 3> having a surface with an uneven structure, A metal member, wherein the surface is in a state in which an organic compound is chemically bonded. ⁇ 4> The metal member according to ⁇ 3>, wherein the organic compound has a polar group. ⁇ 5> The metal member according to any one of ⁇ 1> to ⁇ 4>, wherein the uneven structure includes a dendritic structure.
  • ⁇ 6> The metal member according to ⁇ 5>, wherein the dendritic structure has an average thickness of 20 nm to 1000 nm.
  • ⁇ 7> The metal member according to any one of ⁇ 1> to ⁇ 4>, wherein the surface has an average ten-point average roughness (Rzjis) of 2 ⁇ m to 50 ⁇ m.
  • Rzjis average ten-point average roughness
  • RSm average length
  • a metal-resin joined body comprising the metal member according to any one of ⁇ 1> to ⁇ 4>, and a resin member bonded to the uneven surface of the metal member.
  • the organic compound has a polar group.
  • a metal member whose surface has an uneven structure for a long period of time, a metal-resin bonded body using this metal member, and a method for manufacturing the metal member.
  • FIG. 4 is an electron microscope image showing the results of a high-temperature, high-humidity storage test performed in Example 1.
  • FIG. 4 is an electron microscope image showing the results of a high-temperature, high-humidity storage test performed in Example 2.
  • FIG. 4 is an electron microscope image showing the results of a high-temperature, high-humidity storage test performed in Example 3.
  • FIG. 4 is an electron microscope image showing the results of a high-temperature, high-humidity storage test performed in Example 4.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper or lower limit values described in a certain numerical range may be replaced with the upper or lower limits of other numerical ranges described in stages, and , may be replaced by the values shown in the examples.
  • the amount of each component in the material means the total amount of the multiple substances present in the material unless otherwise specified.
  • a first embodiment of the metal member of the present disclosure is a metal member having a surface having an uneven structure, the surface being coated with a hydrophobic film.
  • the uneven structure of the surface is well maintained even after a long time has passed since the surface roughening treatment. This is probably because the hydrophobic film covering the surface of the metal member suppresses contact between the surface of the metal member and moisture in the air, thereby suppressing the formation of metal hydroxide on the surface of the metal member. .
  • the components contained in the hydrophobic membrane, the method of forming the hydrophobic membrane, and the like are not particularly limited.
  • the hydrophobic film preferably has a water contact angle of 90° or more, more preferably 100° or more, and even more preferably 110° or more.
  • the contact angle of water in the present disclosure is measured by the method described in Examples below.
  • the hydrophobic film is preferably made of an organic compound.
  • the molecular weight of the organic compound is preferably 1,000 or less, preferably 500 or less, and 300 or less. is more preferred.
  • the organic compound preferably has a hydrophobic functional group such as a hydrocarbon group.
  • the hydrocarbon group possessed by the organic compound may be chain or cyclic.
  • An alkyl group is mentioned as a chain
  • the alkyl group may or may not contain double or triple bonds.
  • An aryl group, a cycloalkyl group, etc. are mentioned as a cyclic hydrocarbon group.
  • the organic compound is in a state of being chemically bonded to the surface of the metal member. That is, it is preferable to coat the surface of the metal member with an organic compound that can chemically bond with the surface of the metal member.
  • the type of organic compound that chemically bonds with the surface of the metal member is not particularly limited, and can be selected according to the material of the surface of the metal member. For example, when a hydroxyl group exists on the surface of the metal member, an organic compound having a functional group that reacts with the hydroxyl group can be selected. Examples of such organic compounds include compounds having an alkyl group having 1 to 20 carbon atoms and a functional group that reacts with a hydroxyl group.
  • organic compounds that chemically bond with the surface of the metal member include phosphonic acid compounds, silane compounds, carboxylic acid derivatives, fluorocarbons, and thiol derivatives.
  • organic compounds that chemically bond with the surface of the metal member include phosphonic acid compounds, silane compounds, carboxylic acid derivatives, fluorocarbons, and thiol derivatives.
  • the compound having an alkyl group of 1 to 20 carbon atoms chemically bonded to the surface of the metal member include a phosphonic acid compound having an alkyl group of 1 to 20 carbon atoms and an alkyl group of 1 to 20 carbon atoms.
  • the organic compound may be a compound having an alkyl group with 1-20 carbon atoms.
  • the number of carbon atoms in the alkyl group of the compound is not particularly limited as long as it is within the range of 1 to 20 carbon atoms.
  • the number of carbon atoms in the alkyl group may be 3 or more, 5 or more, 10 or more, or 15 or more.
  • the alkyl group may have 18 or less, 15 or less, or 12 or less carbon atoms.
  • the number of carbon atoms in the alkyl group may be selected according to the type of resin member to be bonded to the metal member.
  • the resin member to be bonded to the metal member contains a polar group (for example, an amide group in polyamide)
  • the alkyl group may have 12 or less, 10 or less, or 5 or less carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms may be unsubstituted or substituted, and is preferably unsubstituted.
  • the alkyl group having 1 to 20 carbon atoms may be linear or branched, preferably linear.
  • the number of alkyl groups in the compound having an alkyl group of 1 to 20 carbon atoms may be one or two or more, preferably one.
  • the organic compound is preferably capable of forming a self-assembled monolayer on the surface of the metal member.
  • a self-assembled monolayer has a thickness of about 1 to 2 nanometers, which is extremely thin. Therefore, the influence of the hydrophobic film formed on the surface of the metal member on the uneven structure of nanometer order is small.
  • the organic compound capable of forming a self-assembled monolayer on the roughened surface of the antibacterial member include a phosphonic acid compound having a hydrocarbon group and a silane compound having a hydrocarbon group.
  • a hydrocarbon group a chain hydrocarbon group is preferable, and an alkyl group is more preferable.
  • Specific examples of the compound having an alkyl group having 1 to 20 carbon atoms capable of forming a self-assembled monolayer on the surface of a metal member include a phosphonic acid compound having an alkyl group having 1 to 20 carbon atoms and a phosphonic acid compound having 1 to 20 carbon atoms. Examples thereof include silane compounds having 20 alkyl groups, and phosphonic acid compounds having alkyl groups of 1 to 20 carbon atoms are preferred from the viewpoint of the stability of the formed self-assembled monolayer.
  • a phosphonic acid compound forms a self-assembled monolayer with a higher density than a silane compound.
  • the silane compound reacts only with hydroxyl groups (OH) present on the surface of the metal member, whereas the phosphonic acid compound regenerates OH by supplying protons (H + ) to the surface of the metal member. This is thought to be due to a chain reaction. Therefore, a film formed using a phosphonic acid compound is considered to have excellent stability.
  • the organic compound may have a polar group. If the organic compound has a polar group, good bonding strength may be obtained, for example, when a resin member containing a polar group is bonded to a metal member.
  • the polar group that the organic compound may have means a polar group other than the functional group for chemically bonding the compound to the surface of the metal member.
  • polar groups include amino groups, carboxy groups, hydroxy groups, sulfo groups, sulfonimide groups, sulfate groups, phosphonic acid groups, phosphoric acid groups, amino groups, ammonium groups, epoxy groups, thiol groups, and the like.
  • the position of the polar group is not particularly limited.
  • the polar group may be attached to the hydrocarbon group or may be attached to the end of the hydrocarbon group.
  • the organic compound has a polar group and a functional group for chemically bonding the organic compound to the surface of the metal member
  • the positions of the polar group and the functional group are not particularly limited.
  • the organic compound has a hydrocarbon group
  • the polar group and the functional group may be bonded to different sites of the hydrocarbon group, and the polar group and the functional group are respectively bonded to both ends of the hydrocarbon group. You may have
  • the number of polar groups is not particularly limited.
  • the number of polar groups may be 1 to 3, may be 1 or 2, or may be 1.
  • the two or more polar groups may be of the same type or different types.
  • the method of applying the organic compound to the surface of the metal member is not particularly limited.
  • Specific examples of the application method include a method of coating the surface of the metal member with a liquid in which the organic carbon compound is dissolved or dispersed, and a method of immersing the metal member in the liquid.
  • Heat treatment may be performed after applying the organic compound to the surface of the metal member.
  • heat treatment for example, chemical bonding between the organic compound and the surface of the metal member can be promoted.
  • the material of the metal member is not particularly limited. Specifically, the material of the metal member is a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium and manganese, and selected from the above metals and alloys containing at least one of
  • the surface of the metal member of this embodiment is coated with a hydrophobic film. Therefore, even if the material reacts with moisture in the air, such as aluminum, to generate a metal hydroxide on the surface, the uneven structure is well maintained for a long period of time.
  • the material of the metal member may be of one type or two or more types.
  • the metal member may have a main body and a plating layer formed on the surface of the main body.
  • the uneven structure on the surface of the metal member may include a dendritic structure.
  • the term “dendritic structure” refers to a structure in which a plurality of branched trunks stand on the surface of a metal member.
  • the dendritic structure is composed of, for example, a trunk (main trunk) rising from the surface of the metal member, branches (main branches) branching from the main trunk, branches (side branches) branching from the main branch, and the like. Whether or not a dendritic structure is formed on the surface of the metal member can be determined, for example, by observing the cross-sectional profile of the metal member using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average number density of the trunks of the dendritic structure is preferably 5/ ⁇ m or more, more preferably 7/ ⁇ m or more, and even more preferably 10/ ⁇ m or more.
  • the average number density of the trunks of the dendritic structure is preferably 40/ ⁇ m or less, more preferably 35/ ⁇ m or less, even more preferably 30/ ⁇ m or less.
  • the average number density of the main trunks of the dendritic structure is calculated from the cross-sectional profile of the metal member by scanning electron microscopy (SEM). Specifically, it is the arithmetic mean value of the values measured at arbitrary 10 points.
  • the average thickness of the dendritic structure is preferably 20 nm to 1000 nm, more preferably 30 nm to 900 nm, and even more preferably 50 nm to 800 nm.
  • the average thickness of the dendritic structures is calculated from a scanning electron microscope (SEM) cross-sectional profile of the metal member. Specifically, it is the arithmetic mean value of the values measured at arbitrary 10 points of the cross-sectional profile of the portion of the metal member having the uneven structure on its surface.
  • the surface of the metal member preferably satisfies at least one of (1) and (2) below. If the surface of the metal member satisfies at least one of (1) and (2), it can be determined that the surface of the metal member has an uneven structure on the order of micrometers.
  • the average value of ten-point average roughness (Rzjis) is 2 ⁇ m to 50 ⁇ m.
  • the average value of the average length (RSm) of roughness curve elements is 10 ⁇ m to 400 ⁇ m.
  • the ten-point average roughness (Rzjis) of the surface of the metal member is measured according to JIS B0601:2001 (corresponding international standard: ISO4287).
  • the average length (RSm) of the surface roughness curve element of the metal member is measured according to JIS B0601:2001 (corresponding international standard: ISO4287).
  • the average value of ten-point average roughness (Rzjis) on the surface of the metal member is preferably in the range of 5 ⁇ m to 30 ⁇ m, more preferably 8 ⁇ m to 25 ⁇ m, still more preferably 10 ⁇ m to 20 ⁇ m.
  • the average value of the ten-point average roughness (Rzjis) on the surface of the metal member is the arithmetic mean value of the values measured at arbitrary 10 points on the surface having the uneven structure of the metal member.
  • the average value of the average length (RSm) of roughness curve elements on the surface of the metal member is preferably in the range of 50 ⁇ m to 350 ⁇ m, more preferably 70 ⁇ m to 330 ⁇ m, still more preferably 70 ⁇ m to 250 ⁇ m, still more preferably 70 ⁇ m to 230 ⁇ m. It is in.
  • the average value of the average length (RSm) of the roughness curve elements on the surface of the metal member is the arithmetic mean value of the values measured at arbitrary 10 points on the surface having the uneven structure of the metal member.
  • the surface of the metal member satisfies at least one of (1) and (2) above and includes a dendritic structure. If the surface of the metal member satisfies at least one of (1) and (2) above and includes a dendritic structure, a micrometer-order uneven structure (base rough surface) is formed on the surface of the metal member, and It means a state (double rough surface) in which an uneven structure (fine rough surface) of nanometer order is formed on the surface.
  • excellent bonding strength of the metal member to the resin member can be obtained.
  • the average pore diameter of the recesses in the uneven structure on the surface of the metal member may be, for example, 5 nm to 250 ⁇ m, preferably 10 nm to 150 ⁇ m, more preferably 15 nm to 100 ⁇ m.
  • the average pore depth of the recesses in the uneven structure on the surface of the metal member may be, for example, 5 nm to 250 ⁇ m, preferably 10 nm to 150 ⁇ m, more preferably 15 nm to 100 ⁇ m.
  • the average pore diameter and average pore depth of the recesses in the uneven structure can be obtained by using an electron microscope or a laser microscope. Specifically, the surface of the metal member and the cross-section of the surface are photographed. From the obtained photograph, 50 arbitrary recesses are selected, and from the hole diameters and hole depths of these recesses, the average hole diameter and average hole depth of the recesses can be calculated as arithmetic mean values, respectively.
  • a metal member having a surface having an uneven structure can be obtained, for example, by roughening the surface of the metal member.
  • a method for roughening treatment of metal members a method using a laser as disclosed in Japanese Patent No. 4020957 ; A method of immersion; a method of treating the surface of a metal member by anodization, as disclosed in Japanese Patent No.
  • an acid-based etchant preferably, inorganic acids, ferric ions or cupric ions
  • the roughening treatment of the metal member may be to form a porous plating layer on the surface of the metal member as described in Japanese Patent No. 5366076.
  • treatment with an acid-based etchant is preferable from the viewpoint of increasing the bonding strength of the metal member to the resin member.
  • the treatment with an acid-based etchant includes, for example, a method of performing the following steps (1) to (4) in this order.
  • Pretreatment Step A pretreatment is performed to remove oxide films, hydroxide films, and the like present on the surface of the metal member.
  • a mechanical polishing or chemical polishing process is usually performed. If the surface of the metal member is significantly contaminated with machine oil or the like, it may be treated with an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, or degreased.
  • step (3) Treatment step with an acid-based etchant
  • the metal member is treated with an acid-based etchant containing at least one of ferric ions and cupric ions and an acid to remove the metal member.
  • the zinc-containing coating on the surface is eluted, and micrometer-order fine irregularities are formed.
  • the metal member is washed. It usually consists of washing and drying operations. An ultrasonic cleaning operation may be included for desmutting.
  • the roughening treatment of the metal member may be performed twice or more.
  • the above steps (1) to (4) are performed to form a micrometer-order uneven structure (base rough surface) on the surface of the metal member, and then a nanometer-order uneven structure (fine rough surface) is formed.
  • the metal member on which the base rough surface is formed is subjected to a standard electrode potential E 0 exceeding ⁇ 0.2 at 25° C. and 0.0.
  • a method of contacting with an oxidizing acidic aqueous solution containing 8 or less, preferably more than 0 and 0.5 or less metal cations can be mentioned.
  • the oxidizing acidic aqueous solution preferably does not contain a metal cation having E 0 of -0.2 or less.
  • Cu 2+ is preferable from the viewpoint of metal scarcity and the safety and toxicity of the corresponding metal salt.
  • Compounds that generate Cu 2+ include inorganic compounds such as copper hydroxide, cupric oxide, cupric chloride, cupric bromide, copper sulfate, and copper nitrate. Copper oxide is preferable from the viewpoint of the efficiency of imparting a thin layer.
  • the oxidizing acidic aqueous solution examples include nitric acid or an acid obtained by mixing nitric acid with hydrochloric acid, hydrofluoric acid, or sulfuric acid. Further, an aqueous solution of percarboxylic acid represented by peracetic acid and performic acid may be used.
  • the concentration of nitric acid constituting the aqueous solution is, for example, 10% by mass to 40% by mass, preferably 15% by mass to 38% by mass, and more. It is preferably 20% by mass to 35% by mass.
  • the concentration of copper ions constituting the aqueous solution is, for example, 1% to 15% by mass, preferably 2% to 12% by mass, more preferably 2% to 8% by mass.
  • the temperature at which the metal member on which the base rough surface is formed is brought into contact with the oxidizing acidic aqueous solution is not particularly limited.
  • a treatment temperature of 30° C. to 50° C. is preferably employed.
  • the treatment time at this time is, for example, in the range of 1 minute to 15 minutes, preferably 2 minutes to 10 minutes.
  • a second embodiment of the metal member of the present disclosure is having a surface with an uneven structure, The surface is a metal member having a water contact angle of 90° or more.
  • the uneven structure of the surface is well maintained even after a long time has passed since the surface roughening treatment. This is because when the contact angle of water on the surface of the metal member is 90° or more, the contact between the surface of the metal member and moisture in the air is suppressed, and the formation of metal hydroxide on the surface of the metal member is suppressed. It is considered to be for
  • the contact angle of water on the surface of the metal member is preferably 100° or more, more preferably 110° or more.
  • the method of making the contact angle of water on the surface of the metal member 90° or more is not particularly limited.
  • a compound having a hydrophobic functional group such as a hydrocarbon group may be chemically bonded to the surface of the metal member. Details of the compound having a hydrocarbon group are as described for the metal member of the first embodiment.
  • a third embodiment of the metal member is having a surface with an uneven structure, The surface is a metal member to which an organic compound is chemically bonded.
  • the uneven structure of the surface is well maintained even after a long time has passed since the surface roughening treatment. This is because the organic compound is chemically bonded to the surface of the metal member, which suppresses contact between the surface of the metal member and moisture in the air, thereby suppressing the formation of metal hydroxide on the surface of the metal member. This is thought to be because
  • the surface to which the organic compound is chemically attached may be hydrophobic or hydrophilic.
  • Examples of the case where the surface to which the organic compound is chemically bonded are hydrophobic include the case where the organic compound to be chemically bonded to the surface of the metal member has a hydrophobic functional group such as a hydrocarbon group.
  • Examples of the case where the surface to which the organic compound is chemically bonded are hydrophilic include the case where the organic compound to be chemically bonded to the surface of the metal member has a hydrophilic functional group such as a polar group.
  • the metal-resin joined body of the present disclosure is the metal member described above; and a resin member bonded to the surface having the uneven structure of the metal member.
  • a state in which a metal member and a resin member are "joined” means a state in which the metal member is fixed to the resin member without using an adhesive, screws, or the like.
  • the state in which the metal member is joined to the resin member can be formed, for example, by applying the material of the resin member in a state of fluidity due to melting or softening to the surface having the uneven structure of the metal member.
  • the material of the resin member When the material of the resin member is in a fluid state, the material of the resin member penetrates into the uneven structure of the surface of the metal member to exhibit an anchor effect, and the resin member is strongly bonded to the surface of the metal member.
  • the type of resin contained in the resin member is not particularly limited, and may be thermoplastic resin, thermosetting resin, thermoplastic elastomer, thermosetting elastomer, or the like.
  • Thermoplastic resins include polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile/styrene resin (AS), acrylonitrile/butadiene/styrene resin (ABS), methacrylic resin (PMMA), polyvinyl chloride (PVC ), polyamide (PA), polyacetal (POM), ultra-high molecular weight polyethylene (UHPE), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethylpentene (TPX), polycarbonate (PC), modified polyphenylene ether (PPE ), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystal resin (LCP), polytetrafluoroethylene (PTFE), polyetherimi
  • Thermosetting resins include phenol resins, urea resins, melamine resins, unsaturated polyesters, alkyd resins, epoxy resins, diallyl phthalate, and the like.
  • thermoplastic elastomers include styrene-based thermoplastic elastomers, polyester-based thermoplastic elastomers, urethane-based thermoplastic elastomers, amide-based thermoplastic elastomers, and the like.
  • Thermosetting elastomers include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber ( NBR) and other diene rubbers, butyl rubber (IIR), ethylene-propylene rubber (EPM), urethane rubber, silicone rubber, acrylic rubber and other non-diene rubbers.
  • the resin contained in the resin member may be in the form of ionomer or polymer alloy.
  • the resin contained in the resin member may be of one type or two or more types.
  • the resin member may contain various compounding agents in addition to the resin.
  • Compounding agents include fillers such as glass fibers, carbon fibers, inorganic powders, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, release agents, antistatic agents, etc. is mentioned.
  • the proportion of the resin in the entire resin member is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. preferable.
  • the step of joining the resin member to the surface having the uneven structure of the metal member can be performed by a known method such as injection molding, for example.
  • the manufacturing method of the metal member of the present disclosure includes: forming an uneven structure on the surface of the metal member; and applying an organic compound to the surface on which the uneven structure is formed.
  • the organic compound may be changed to a hydrophobizing agent.
  • a hydrophobizing agent means a substance capable of hydrophobizing a surface having an uneven structure.
  • the uneven structure is well maintained even after a long time has passed since the unevenness is formed on the surface. This is because the contact between the surface of the metal member and moisture in the air is suppressed by the organic compound applied to the surface of the metal member on which the unevenness is formed, and the formation of metal hydroxide on the surface of the metal member is suppressed. It is considered to be for
  • the method of forming an uneven structure on the surface of the metal member is not particularly limited.
  • it can be selected from the methods exemplified for the metal members described above.
  • the method of applying the organic compound to the surface of the metal member on which the concave-convex structure is formed is not particularly limited.
  • a method of applying a liquid in which an organic compound is dissolved or dispersed on the surface of the metal member, a method of immersing the metal member in the liquid, and the like can be used.
  • Heat treatment may be performed after applying the organic compound to the surface of the metal member.
  • heat treatment for example, chemical bonding between the organic compound and the surface of the metal member can be promoted.
  • Example 1 Surface treatment of aluminum alloy plate A plate made of aluminum alloy (A3003) is formed with an uneven structure of micrometer order using an acid-based etchant, and then further formed with an uneven structure of nanometer order (i.e. , to satisfy the above (1) and (2) and to include a dendritic structure) roughening treatment was performed.
  • the roughened aluminum alloy plate was immersed in an ethanol solution of n-octadecylphosphonic acid (5 mmol/L) for 1 minute. After that, the aluminum alloy plate was washed with ethanol and dried at 80° C. for 20 minutes.
  • Ion-exchanged water (2 ⁇ L) was dropped on the surface of the aluminum alloy plate treated with n-octadecylphosphonic acid, and the contact angle was measured 1 minute after dropping. The measurement was performed under the conditions of 24° C. and 31% relative humidity. The contact angle calculated by the tangent method from the image of the water droplet taken with a digital camera was 119°.
  • the aluminum alloy plate not treated with n-octadecylphosphonic acid lost its fine uneven structure over time, while the aluminum alloy plate treated with n-octadecylphosphonic acid started the test. A fine uneven structure was observed even after a long period of time.
  • Example 2 (1) Surface treatment of aluminum alloy plate Roughening treatment and treatment with n-octadecylphosphonic acid were performed in the same manner as in Example 1, except that a plate made of aluminum alloy (A6063) was used as the aluminum alloy plate. The contact angle of ion-exchanged water measured in the same manner as in Example 1 on the surface of the aluminum alloy plate after treatment was 120°.
  • a test piece was prepared in the same manner as described above except that PP was changed to polyphenylene sulfide (PPS), and the shear bond strength of the test piece was measured to be 42 MPa.
  • PPS polyphenylene sulfide
  • an aluminum alloy plate not treated with n-octadecylphosphonic acid was used to prepare a test piece in the same manner, and the shear bond strength was measured to be 43 MPa. From the above results, it was found that the treatment with n-octadecylphosphonic acid has little effect on the bonding strength of aluminum alloy (A6063) to PPS.
  • Example 3 (1) Surface treatment of aluminum alloy plate Roughening treatment and treatment with n-octadecylphosphonic acid were performed in the same manner as in Example 1, except that a plate made of aluminum alloy (A6061) was used as the aluminum alloy plate. The contact angle of ion-exchanged water measured in the same manner as in Example 1 on the surface of the aluminum alloy plate after treatment was 115°.
  • Example 4 (1) Surface Treatment of Aluminum Alloy Plate A plate made of an aluminum alloy (A3003) was roughened in the same manner as in Example 1. The aluminum alloy plate after the roughening treatment was immersed for 1 minute in an ethanol solution (5 mmol/L) of hydrophobizing agents 1 to 5 shown below. Thereafter, the aluminum alloy plate was washed with ethanol and dried at 80° C. for 20 minutes, and the contact angle of deionized water was measured in the same manner as in Example 1. Table 1 shows the results.
  • Organic compound 1 propylphosphonic acid
  • Organic compound 2 undecylphosphonic acid
  • Organic compound 3 10-carboxydecylphosphonic acid
  • Organic compound 4 11-hydroxyundecylphosphonic acid
  • Organic compound 5 11-aminoundecylphosphonic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

凹凸構造を有する表面を有し、下記(1)~(3)の少なくとも1つを満たす金属部材。(1)前記表面は疎水性の膜で被覆されている(2)前記表面は水の接触角が90°以上である(3)前記表面は有機化合物が化学的に結合した状態である

Description

金属部材、金属樹脂接合体及び金属部材の製造方法
 本発明は、金属部材、金属樹脂接合体及び金属部材の製造方法に関する。
 金属部材の表面を粗化する方法として、最初にマイクロメートルオーダーの凹凸構造を形成し、次いでマイクロメートルオーダーの凹凸構造の表面にナノメートルオーダーの凹凸構造を形成する方法が提案されている(例えば、特許文献1参照)。
国際公開2020/158820号広報
 特許文献1に記載された方法で表面を粗化された金属部材は、表面にナノメートルオーダーの凹凸構造を有することで、例えば、樹脂部材に対する優れた接合強度を発揮する。その一方で、特許文献1に記載された方法で表面を粗化された金属部材は、時間が経過するにしたがって表面に形成されたナノメートルオーダーの凹凸構造が消失するという問題がある。これは、金属部材の表面が空気中の水分と反応して生じる金属水酸化物がナノメートルオーダーの凹凸構造を埋めるためと考えられる。
 上記事情に鑑み、本開示の一実施形態は、長期にわたって表面の凹凸構造が維持される金属部材、この金属部材を用いる金属樹脂接合体、及び金属部材の製造方法を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>凹凸構造を有する表面を有し、
 前記表面は疎水性の膜で被覆されている、金属部材。
<2>凹凸構造を有する表面を有し、
 前記表面は水の接触角が90°以上である、金属部材。
<3>凹凸構造を有する表面を有し、
 前記表面は有機化合物が化学的に結合した状態である、金属部材。
<4>前記有機化合物は極性基を持つ、<3>に記載の金属部材。
<5>前記凹凸構造が樹枝状構造を含む、<1>~<4>のいずれか1項に記載の金属部材。
<6>前記樹枝状構造の平均厚みが20nm~1000nmである、<5>に記載の金属部材。
<7>前記表面の十点平均粗さ(Rzjis)の平均値が2μm~50μmである、<1>~<4>のいずれか1項に記載の金属部材。
<8>前記表面の粗さ曲線要素の平均長さ(RSm)の平均値が10μm~400μmである、<1>~<4>のいずれか1項に記載の金属部材。
<9>アルミニウムを含む、<1>~<4>のいずれか1項に記載の金属部材。
<10><1>~<4>のいずれか1項に記載の金属部材と、前記金属部材の凹凸構造を有する表面に接合している樹脂部材と、を含む金属樹脂接合体。
<11>金属部材の表面に凹凸構造を形成する工程と、
 前記凹凸構造が形成された表面に有機化合物を付与する工程と、を含む金属部材の製造方法。
<12>前記有機化合物は炭素数1~20のアルキル基を持つ、<11>に記載の金属部材の製造方法。
<13>前記有機化合物は極性基を持つ、<11>に記載の金属部材の製造方法。
 本開示の一実施形態によれば、長期にわたって表面の凹凸構造が維持される金属部材、この金属部材を用いる金属樹脂接合体、及び金属部材の製造方法が提供される。
実施例1で実施した高温高湿保管試験の結果を示す電子顕微鏡画像である。 実施例2で実施した高温高湿保管試験の結果を示す電子顕微鏡画像である。 実施例3で実施した高温高湿保管試験の結果を示す電子顕微鏡画像である。 実施例4で実施した高温高湿保管試験の結果を示す電子顕微鏡画像である。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値または下限値は、他の段階的な記載の数値範囲の上限値または下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
<金属部材(第1実施形態)>
 本開示の金属部材の第1実施形態は、凹凸構造を有する表面を有し、前記表面は疎水性の膜で被覆されている、金属部材である。
 本実施形態の金属部材は、表面の粗化処理から長時間が経過した後も表面の凹凸構造が良好に維持される。これは、金属部材の表面を被覆する疎水性の膜によって金属部材の表面と空気中の水分との接触が抑制され、金属部材の表面における金属水酸化物の生成が抑制されるためと考えられる。
 疎水性の膜に含まれる成分、疎水性の膜を形成する方法等は特に制限されない。疎水性の膜は、水の接触角が90°以上であることが好ましく、100°以上であることがより好ましく、110°以上であることがさらに好ましい。
 本開示における水の接触角は、後述する実施例に記載した方法で測定される。
 疎水性の膜の強度の観点からは、疎水性の膜は、有機化合物から形成されていることが好ましい。
 金属部材の表面の凹凸構造に与える影響を抑制しながら被覆を形成する観点からは、有機化合物の分子量は1,000以下であることが好ましく、500以下であることが好ましく、300以下であることがより好ましい。
 有機化合物は、炭化水素基のような疎水性の官能基を持つことが好ましい。
 有機化合物が持つ炭化水素基は鎖状又は環状のいずれであってもよい。鎖状の炭化水素基としてはアルキル基が挙げられる。アルキル基は二重又は三重結合を含んでいても、二重又は三重結合を含んでいなくてもよい。環状の炭化水素基としてはアリール基、シクロアルキル基等が挙げられる。
 有機化合物から形成される膜の耐久性の観点からは、有機化合物は金属部材の表面と化学的に結合した状態であることが好ましい。すなわち、金属部材の表面と化学的に結合しうる有機化合物で金属部材の表面を被覆することが好ましい。
 金属部材の表面と化学的に結合する有機化合物の種類は特に制限されず、金属部材の表面の材質等に応じて選択できる。例えば、金属部材の表面に水酸基が存在する場合は、水酸基と反応する官能基とを持つ有機化合物を選択できる。このような有機化合物としては、炭素数1~20のアルキル基と、水酸基と反応する官能基とを持つ化合物が挙げられる。
 金属部材の表面と化学的に結合する有機化合物として具体的には、ホスホン酸化合物、シラン化合物、カルボン酸誘導体、フッ化炭化水素、チオール誘導体等が挙げられる。
 金属部材の表面と化学的に結合する炭素数1~20のアルキル基を持つ化合物として具体的には、炭素数1~20のアルキル基を持つホスホン酸化合物、炭素数1~20のアルキル基を持つシラン化合物、カルボン酸誘導体、フッ化炭化水素、チオール誘導体等が挙げられる。
 有機化合物は、炭素数1~20のアルキル基を持つ化合物であってもよい。
 炭素数1~20のアルキル基を持つ化合物において、化合物が持つアルキル基の炭素数は1~20の範囲内であれば特に制限されない。アルキル基の炭素数は3以上、5以上、10以上、又は15以上であってもよい。アルキル基の炭素数は18以下、15以下、又は12以下であってもよい。
 アルキル基の炭素数は、金属部材に接合させる樹脂部材の種類に応じて選択してもよい。例えば、金属部材と接合させる樹脂部材が極性基(例えば、ポリアミド中のアミド基)を含む場合、アルキル基の炭素数は12以下、10以下、又は5以下であってもよい。アルキル基の炭素数を減らすことで、金属部材の表面と樹脂部材との間の距離を短くできる。その結果、金属部材の表面と空気中の水分との接触が抑制されつつ、金属部材の表面と樹脂部材との間での相互作用が効果的に発現して良好な接合強度が得られる場合がある。
 炭素数1~20のアルキル基は無置換であっても置換基を有していてもよく、無置換であることが好ましい。
 炭素数1~20のアルキル基は直鎖状であっても分岐状であってもよく、直鎖状であることが好ましい。
 炭素数1~20のアルキル基を持つ化合物のアルキル基の数は1つでも2つ以上であってもよく、1つであることが好ましい。
 有機化合物は、金属部材の表面に自己組織化単分子膜を形成しうることが好ましい。
 自己組織化単分子膜は、厚みが1~2ナノメートル程度と極めて薄い。したがって、金属部材の表面に形成される疎水性の膜がナノメートルオーダーの凹凸構造に与える影響が小さい。
 抗菌部材の粗化面に自己組織化単分子膜を形成しうる有機化合物として具体的には、炭化水素を持つホスホン酸化合物及び炭化水素基を持つシラン化合物が挙げられる。炭化水素基としては鎖状の炭化水素基が好ましく、アルキル基がより好ましい。
 金属部材の表面に自己組織化単分子膜を形成しうる炭素数1~20のアルキル基を持つ化合物として具体的には、炭素数1~20のアルキル基を持つホスホン酸化合物及び炭素数1~20のアルキル基を持つシラン化合物が挙げられ、形成された自己組織化単分子膜の安定性の観点からは、炭素数1~20のアルキル基を持つホスホン酸化合物が好ましい。
 ホスホン酸化合物は、シラン化合物よりも高密度な自己組織化単分子膜を形成する。これは例えば、シラン化合物は金属部材の表面に存在する水酸基(OH)とのみ反応するのに対し、ホスホン酸化合物は金属部材の表面にプロトン(H)を供給することでOHを再生し、連鎖的に反応するためと考えられる。したがって、ホスホン酸化合物を用いて形成される膜は安定性に優れると考えられる。
 有機化合物は、極性基を有していてもよい。
 有機化合物が極性基を有していると、例えば、金属部材に極性基を含む樹脂部材を接合させる場合に良好な接合強度が得られる場合がある。
 有機化合物が有してもよい極性基とは、当該化合物を金属部材の表面に化学的に結合させるための官能基以外の極性基を意味する。
 極性基として具体的には、アミノ基、カルボキシ基、ヒドロキシ基、スルホ基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、アミノ基、アンモニウム基、エポキシ基、チオール基等が挙げられる。
 有機化合物が極性基を有する場合、極性基の位置は特に制限されない。例えば、有機化合物が炭化水素基を持つ場合は、極性基は炭化水素基に結合していてもよく、炭化水素基の末端に結合していてもよい。
 有機化合物が極性基と、有機化合物を金属部材の表面に化学的に結合させるための官能基とを有する場合、極性基及び官能基の位置は特に制限されない。例えば、有機化合物が炭化水素基を持つ場合は、炭化水素基の異なる部位に極性基と官能基とが結合していてもよく、炭化水素基の両末端に極性基と官能基とがそれぞれ結合していてもよい。
 有機化合物が極性基を有する場合、極性基の数は特に制限されない。例えば、極性基の数は1~3であってもよく、1又は2であってもよく、1であってもよい。有機化合物が2つ以上の極性基を有する場合、2つ以上の極性基は同じ種類であっても異なる種類であってもよい。
 金属部材の表面に有機化合物を付与する方法は、特に制限されない。付与の方法として具体的には、炭有機化合物を溶解又は分散させた液体を金属部材の表面に塗布する方法、前記液体に金属部材を浸漬する方法などが挙げられる。
 有機化合物を金属部材の表面に付与した後、加熱処理を行ってもよい。加熱処理を行うことで、例えば、有機化合物と金属部材の表面との化学的な結合を促進させることができる。
 金属部材の材質は、特に制限されない。金属部材の材質として具体的には、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム及びマンガンから選択される金属、並びに前記金属から選択される少なくとも1種を含む合金が挙げられる。
 本実施形態の金属部材は、表面が疎水性の膜で被覆されている。このため、アルミニウムのような空気中の水分と反応して表面に金属水酸化物を生成するものであっても、凹凸構造が長期にわたって良好に維持される。
 金属部材の材質は1種のみでも2種以上であってもよい。
 金属部材は、本体と、本体の表面に形成されるめっき層とを有するものであってもよい。
 金属部材が表面に有する凹凸構造は、樹枝状構造を含んでいてもよい。
 本開示において「樹枝状構造」とは、複数に枝分かれした幹が金属部材の表面に林立した状態の構造をいう。樹枝状構造は、例えば、金属部材の表面から立ち上がる幹(主幹)、主幹から分かれた枝(主枝)、主枝から分かれた枝(側枝)等から構成される。
 金属部材の表面に樹枝状構造が形成されているか否かは、例えば、走査型電子顕微鏡(SEM)を用いて金属部材の断面プロファイルを観察して判断できる。
 樹枝状構造の主幹の平均本数密度は、5本/μm以上であることが好ましく、7本/μm以上であることがより好ましく、10本/μm以上であることがさらに好ましい。
 樹枝状構造の主幹の平均本数密度は、40本/μm以下であることが好ましく、35本/μm以下であることがより好ましく、30本/μm以下であることがさらに好ましい。
 樹枝状構造の主幹の平均本数密度は、金属部材の走査型電子顕微鏡(SEM)による断面プロファイルから算出される。具体的には、任意の10点で測定した値の算術平均値とする。
 樹枝状構造の平均厚みは、20nm~1000nmであることが好ましく、30nm~900nmであることがより好ましく、50nm以上800nm以下であることがさらに好ましい。
 樹枝状構造の平均厚みは、金属部材の走査型電子顕微鏡(SEM)による断面プロファイルから算出される。具体的には、金属部材が表面に凹凸構造を有する部分の断面プロファイルの任意の10点で測定した値の算術平均値とする。
 金属部材の表面は、下記(1)及び(2)の少なくともいずれかを満たすことが好ましい。金属部材の表面が(1)及び(2)の少なくともいずれかを満たしていると、金属部材の表面にマイクロメートルオーダーの凹凸構造が形成されていると判断できる。
(1)十点平均粗さ(Rzjis)の平均値が2μm~50μmである。
(2)粗さ曲線要素の平均長さ(RSm)の平均値が10μm~400μmである。
 本開示において、金属部材の表面の十点平均粗さ(Rzjis)はJIS B0601:2001(対応国際規格:ISO4287)に準拠して測定される。
 本開示において、金属部材の表面の粗さ曲線要素の平均長さ(RSm)はJIS B0601:2001(対応国際規格:ISO4287)に準拠して測定される。
 金属部材の表面における十点平均粗さ(Rzjis)の平均値は、好ましくは5μm~30μm、より好ましくは8μm~25μm、さらに好ましくは10μm~20μmの範囲にある。
 金属部材の表面における十点平均粗さ(Rzjis)の平均値は、金属部材の凹凸構造を有する表面の任意の10点で測定した値の算術平均値とする。
 金属部材の表面における粗さ曲線要素の平均長さ(RSm)の平均値は、好ましくは50μm~350μm、より好ましくは70μm~330μm、さらに好ましくは70μm~250μm、さらにより好ましくは70μm~230μmの範囲にある。
 金属部材の表面における粗さ曲線要素の平均長さ(RSm)の平均値は、金属部材の凹凸構造を有する表面の任意の10点で測定した値の算術平均値とする。
 金属部材の表面は、上記(1)及び(2)の少なくともいずれかを満たし、かつ樹枝状構造を含むことが好ましい。
 金属部材の表面が上記(1)及び(2)の少なくともいずれかを満たし、かつ樹枝状構造を含むことは、金属部材の表面にマイクロメートルオーダーの凹凸構造(ベース粗面)が形成され、さらにその表面にナノメートルオーダーの凹凸構造(ファイン粗面)が形成された状態(ダブル粗面)であることを意味する。
 金属部材の表面がダブル粗面の状態であると、例えば、金属部材の樹脂部材に対する優れた接合強度が得られる。
 金属部材の表面の凹凸構造における凹部の平均孔径は、例えば5nm~250μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
 金属部材の表面の凹凸構造における凹部の平均孔深さは、例えば5nm~250μmであってよく、好ましくは10nm~150μmであり、より好ましくは15nm~100μmである。
 金属部材の表面の凹凸構造における凹部の平均孔径または平均孔深さのいずれかまたは両方が上記数値範囲内であると、より強固な接合が得られる傾向にある。
 凹凸構造における凹部の平均孔径および平均孔深さは、電子顕微鏡またはレーザー顕微鏡を用いることによって求めることができる。具体的には、金属部材の表面および表面の断面を撮影する。得られた写真から、任意の凹部を50個選択し、それらの凹部の孔径および孔深さから、凹部の平均孔径および平均孔深さをそれぞれ算術平均値として算出することができる。
 凹凸構造を有する表面を有する金属部材は、例えば、金属部材の表面に対して粗化処理を行うことで得られる。
 金属部材の粗化処理の方法としては、特許第4020957号に開示されているようなレーザーを用いる方法;NaOH等の無機塩基、またはHCl、HNO等の無機酸の水溶液に金属部材の表面を浸漬する方法;特許第4541153号に開示されているような、陽極酸化により金属部材の表面を処理する方法;国際公開第2015-8847号に開示されているような、酸系エッチング剤(好ましくは、無機酸、第二鉄イオンまたは第二銅イオン)および必要に応じてマンガンイオン、塩化アルミニウム六水和物、塩化ナトリウム等を含む酸系エッチング剤水溶液によってエッチングする置換晶析法;国際公開第2009/31632号に開示されているような、水和ヒドラジン、アンモニア、および水溶性アミン化合物から選ばれる1種以上の水溶液に金属部材の表面を浸漬する方法(NMT法);特開2008-162115号公報に開示されているような温水処理法;ブラスト処理等の粗化処理が挙げられる。
 金属部材の粗化処理は、特許第5366076号に記載されているような多孔質のめっき層を金属部材の表面に形成するものであってもよい。
 上記方法の中でも、金属部材の樹脂部材に対する接合強度を高める観点からは酸系エッチング剤による処理が好ましい。
 酸系エッチング剤による処理としては、例えば、下記工程(1)~(4)をこの順に実施する方法が挙げられる。
(1)前処理工程
 金属部材の表面に存在する酸化膜や水酸化物等からなる被膜を除去するための前処理を行う。通常、機械研磨や化学研磨処理が行われる。金属部材の表面に機械油等の著しい汚染がある場合は、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ性水溶液による処理や、脱脂を行ってもよい。
(2)亜鉛イオン含有アルカリ水溶液による処理工程
 水酸化アルカリ(MOH)と亜鉛イオン(Zn2+)とを質量比(MOH/Zn2+)1~100の割合で含む亜鉛イオン含有アルカリ水溶液中に、前処理後の金属部材を浸漬し、表面に亜鉛含有被膜を形成する。なお、前記MOHのMはアルカリ金属またはアルカリ土類金属である。
(3)酸系エッチング剤による処理工程
 工程(2)の後に、金属部材を、第二鉄イオンと第二銅イオンの少なくとも一方と、酸を含む酸系エッチング剤により処理して、金属部材の表面上の亜鉛含有被膜を溶離させると共に、マイクロメートルオーダーの微細凹凸形状を形成させる。
(4)後処理工程
 上記工程(3)の後に、金属部材を洗浄する。通常は、水洗および乾燥操作からなる。スマット除去のために超音波洗浄操作を含めてもよい。
 金属部材の粗化処理は、2回以上行ってもよい。例えば、上記工程(1)~(4)を実施して金属部材の表面にマイクロメートルオーダーの凹凸構造(ベース粗面)を形成し、その後さらにナノメートルオーダーの凹凸構造(ファイン粗面)を形成してもよい。
 金属部材の表面にベース粗面を形成した後にファイン粗面を形成する方法としては、例えば、ベース粗面が形成された金属部材を25℃における標準電極電位Eが-0.2超え0.8以下、好ましくは0超え0.5以下の金属カチオンを含む酸化性酸性水溶液と接触させる方法が挙げられる。
 上記酸化性酸性水溶液は、上記Eが-0.2以下の金属カチオンを含まないことが好ましい。
 25℃における標準電極電位Eが-0.2超え0.8以下である金属カチオンとしては、Pb2+、Sn2+、Ag、Hg2+、Cu2+等が挙げられる。これらの中では、金属の希少性の視点、対応金属塩の安全性・毒性の視点からは、Cu2+が好ましい。
 Cu2+を発生させる化合物としては、水酸化銅、酸化第二銅、塩化第二銅、臭化第二銅、硫酸銅、硝酸銅などの無機化合物が挙げられ、安全性、毒性の視点、樹枝状層の付与効率の視点からは、酸化銅が好ましい。
 酸化性酸性水溶液としては、硝酸または硝酸に対し塩酸、弗酸、硫酸のいずれかを混合した酸を例示することができる。さらに、過酢酸、過ギ酸に代表される過カルボン酸水溶液を用いてもよい。酸化性酸性水溶液として硝酸を用い、金属カチオン発生化合物として酸化第二銅を用いる場合、水溶液を構成する硝酸濃度は、例えば10質量%~40質量%、好ましくは15質量%~38質量%、より好ましくは20質量%~35質量%である。また、水溶液を構成する銅イオン濃度は、例えば1質量%~15質量%、好ましくは2質量%~12質量%、より好ましくは2質量%~8質量%である。
 ベース粗面が形成された金属部材を酸化性酸性水溶液と接触させる際の温度は特に制限されないが、発熱反応を制御しつつ経済的なスピードで粗化を完結するために、例えば常温~60℃、好ましくは30℃~50℃の処理温度が採用される。この際の処理時間は、例えば1分~15分、好ましくは2分~10分の範囲にある。
<金属部材(第2実施形態)>
 本開示の金属部材の第2実施形態は、
 凹凸構造を有する表面を有し、
 前記表面は水の接触角が90°以上である、金属部材である。
 本実施形態の金属部材は、表面の粗化処理から長時間が経過した後も表面の凹凸構造が良好に維持される。これは、金属部材の表面における水の接触角が90°以上であることによって金属部材の表面と空気中の水分との接触が抑制され、金属部材の表面における金属水酸化物の生成が抑制されるためと考えられる。
 金属部材の表面の凹凸構造を良好に維持する観点からは、金属部材の表面における水の接触角は100°以上であることが好ましく、110°以上であることがより好ましい。
 金属部材の表面における水の接触角を90°以上にする方法は特に制限されない。例えば、金属部材の表面に炭化水素基のような疎水性の官能基を持つ化合物を化学的に結合させてもよい。炭化水素基を持つ化合物の詳細は、第1実施形態の金属部材に関して記載したとおりである。
<金属部材(第3実施形態)>
 金属部材の第3実施形態は、
 凹凸構造を有する表面を有し、
 前記表面は有機化合物が化学的に結合した状態である、金属部材である。
 本実施形態の金属部材は、表面の粗化処理から長時間が経過した後も表面の凹凸構造が良好に維持される。これは、金属部材の表面に有機化合物が化学的に結合した状態であることによって金属部材の表面と空気中の水分との接触が抑制され、金属部材の表面における金属水酸化物の生成が抑制されるためと考えられる。
 有機化合物の詳細及び好ましい態様は、第1実施形態の金属部材に関して記載した有機化合物の詳細及び好ましい態様と同様である。
 有機化合物が化学的に結合している表面は疎水性であっても、親水性であってもよい。
 有機化合物が化学的に結合している表面が疎水性である場合としては、金属部材の表面に化学的に結合させる有機化合物が炭化水素基のような疎水性の官能基を持つ場合が挙げられる。
 有機化合物が化学的に結合している表面が親水性である場合としては、金属部材の表面に化学的に結合させる有機化合物が極性基のような親水性の官能基を持つ場合が挙げられる。
 有機化合物が化学的に結合している表面が親水性である場合、有機化合物は親水性官能基(例えば、上述した極性基)と疎水性官能基(例えば、上述した炭化水素基)を含むことが好ましい。金属部材の表面に化学的に結合させる有機化合物が疎水性官能基を含むことで、金属部材の表面に疎水性官能基が配置される。その結果、有機化合物が化学的に結合している表面が親水性であっても金属部材の表面と外的環境との接触を効果的に抑制できる。
<金属樹脂接合体>
 本開示の金属樹脂接合体は、
 上述した金属部材と、
 前記金属部材の凹凸構造を有する表面に接合している樹脂部材と、を含む金属樹脂接合体である。
 本開示において金属部材と樹脂部材とが「接合」した状態とは、金属部材が接着剤、ねじ等を用いずに樹脂部材と固着している状態を意味する。
 金属部材が樹脂部材と接合した状態は、例えば、溶融又は軟化により流動性を有する状態の樹脂部材の材料を、金属部材の凹凸構造を有する表面に付与して形成することができる。樹脂部材の材料が流動性を有する状態であると、金属部材の表面の凹凸構造に樹脂部材の材料が入り込んでアンカー効果が発現し、樹脂部材が金属部材の表面に強固に接合する。
 樹脂部材に含まれる樹脂の種類は特に制限されず、熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、熱硬化性エラストマー等であってよい。
 熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル/スチレン樹脂(AS)、アクリロニトリル/ブタジエン/スチレン樹脂(ABS)、メタクリル樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリアミド(PA)、ポリアセタール(POM)、超高分子量ポリエチレン(UHPE)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリメチルペンテン(TPX)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性樹脂(LCP)、ポリテトラフロロエチレン(PTFE)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル、アルキド樹脂、エポキシ樹脂、ジアリルフタレート等が挙げられる。
 熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性エラストマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴム、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPM)、ウレタンゴム、シリコーンゴム、アクリルゴム等の非ジエン系ゴムなどが挙げられる。
 樹脂部材に含まれる樹脂はアイオノマー又はポリマーアロイの状態であってもよい。
 樹脂部材に含まれる樹脂は1種のみでも2種以上であってもよい。
 樹脂部材は、樹脂に加えて種々の配合剤を含んでもよい。配合剤としては、ガラス繊維、カーボン繊維、無機粉末等の充填材、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。
 樹脂部材が樹脂以外の成分を含む場合、樹脂部材全体に占める樹脂の割合は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。
 金属部材の凹凸構造を有する表面に樹脂部材を接合する工程は、例えば、射出成形等の公知の方法で実施することができる。
<金属部材の製造方法>
 本開示の金属部材の製造方法は、
 金属部材の表面に凹凸構造を形成する工程と、
 前記凹凸構造が形成された表面に有機化合物を付与する工程と、を含む金属部材の製造方法である。
 上記方法において、有機化合物は疎水化剤に変更してもよい。疎水化剤とは、凹凸構造が形成された表面を疎水化しうる物質を意味する。
 上記方法で製造される金属部材は、表面に凹凸形成を形成してから長時間が経過した後も凹凸構造が良好に維持される。これは、金属部材の凹凸形成が形成された表面に付与される有機化合物によって金属部材の表面と空気中の水分との接触が抑制され、金属部材の表面における金属水酸化物の生成が抑制されるためと考えられる。
 上記方法において金属部材の表面に凹凸構造を形成する方法は特に制限されない。例えば、上述した金属部材に関して例示した方法から選択できる。
 上記方法において金属部材の凹凸構造が形成された表面に有機化合物を付与する方法は特に制限されない。例えば、有機化合物を溶解又は分散させた液体を金属部材の表面に塗布する方法、前記液体に金属部材を浸漬する方法などが挙げられる。
 上記方法で使用する有機化合物の詳細及び好ましい態様は、第1実施形態の金属部材に関して記載した有機化合物の詳細及び好ましい態様と同様である。
 有機化合物を金属部材の表面に付与した後、加熱処理を行ってもよい。加熱処理を行うことで、例えば、有機化合物と金属部材の表面との化学的な結合を促進させることができる。
 以下、本開示に係る実施形態を、実施例を参照して説明する。なお本開示は、これらの実施例の記載に何ら限定されるものではない。
<実施例1>
(1)アルミニウム合金板の表面処理
 アルミニウム合金(A3003)からなる板に対し、酸系エッチング剤を用いてマイクロメートルオーダーの凹凸構造を形成し、その後さらにナノメートルオーダーの凹凸構造を形成する(すなわち、上記(1)及び(2)を満たし、かつ樹枝状構造を含む状態にする)粗化処理を行った。
 粗化処理後のアルミニウム合金板を、n-オクタデシルホスホン酸のエタノール溶液(5mmol/L)に1分間浸漬した。その後アルミニウム合金板をエタノールで洗浄し、80℃で20分間乾燥した。
 n-オクタデシルホスホン酸で処理した後のアルミニウム合金板の表面にイオン交換水(2μL)を滴下し、滴下から1分後に接触角を測定した。測定は24℃、相対湿度31%の条件で行った。デジタルカメラで撮影した水滴の画像から接線法で算出した接触角は119°であった。
(2)高温高湿保管試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後及び2か月後にアルミニウム合金板の表面の電子顕微鏡画像を得た。得られた画像を図1に示す。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後、2か月後及び1年後にアルミニウム合金板の表面の電子顕微鏡画像を得た。得られた画像を図1に示す。
 図1に示すように、n-オクタデシルホスホン酸で処理していないアルミニウム合金板は時間の経過とともに微細な凹凸構造が消失したのに対し、n-オクタデシルホスホン酸で処理したアルミニウム合金板は試験開始から長時間を経過した後も微細な凹凸構造が観察された。
(3)樹脂接合試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板をインサート成形金型に配置し、溶融したポリプロピレン(PP)を注入してアルミニウム合金板の凹凸構造が形成された表面にPPが接合した状態の試験片を5個作製した。試験片のせん断接合強度をオートグラフ(AGS-500-D、TYPE-III、株式会社島津製作所)を用いて測定した。5個の試験片の測定値の算術平均値は、28MPaであった。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を用いて同様に試験片を作製し、せん断接合強度を測定したところ、29MPaであった。
 以上の結果から、n-オクタデシルホスホン酸による処理がアルミニウム合金(A3003)のPPに対する接合強度に与える影響は小さいことがわかった。
<実施例2>
(1)アルミニウム合金板の表面処理
 アルミニウム合金板として、アルミニウム合金(A6063)からなる板を用いたこと以外は実施例1と同様にして粗化処理とn-オクタデシルホスホン酸による処理を行った。処理後のアルミニウム合金板の表面に実施例1と同様にして測定したイオン交換水の接触角は120°であった。
(2)高温高湿保管試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後及び2か月後に試験片の表面の電子顕微鏡画像を得た。得られた画像を図2に示す。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後、2か月後に試験片の表面の電子顕微鏡画像を得た。得られた画像を図2に示す。
 図2に示すように、n-オクタデシルホスホン酸で処理していないアルミニウム合金板は時間の経過とともに微細な凹凸構造が消失したのに対し、n-オクタデシルホスホン酸で処理したアルミニウム合金板は試験開始から長時間を経過した後も微細な凹凸構造が観察された。
(3)樹脂接合試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板をインサート成形金型に配置し、溶融したポリプロピレン(PP)を注入してアルミニウム合金板の凹凸構造が形成された表面にPPが接合した状態の試験片を5個作製した。試験片のせん断接合強度をオートグラフ(AGS-500-D、TYPE-III、株式会社島津製作所)を用いて測定した。5個の試験片の測定値の算術平均値は、29MPaであった。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を用いて同様に試験片を作製し、せん断接合強度を測定したところ、29MPaであった。
 以上の結果から、n-オクタデシルホスホン酸による処理がアルミニウム合金(A6063)のPPに対する接合強度に与える影響は小さいことがわかった。
 PPをポリフェニレンスルフィド(PPS)に変更したこと以外は上記と同様にして試験片を作製し、試験片のせん断接合強度を測定したところ、42MPaであった。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を用いて同様に試験片を作製し、せん断接合強度を測定したところ、43MPaであった。
 以上の結果から、n-オクタデシルホスホン酸による処理がアルミニウム合金(A6063)のPPSに対する接合強度に与える影響は小さいことがわかった。
<実施例3>
(1)アルミニウム合金板の表面処理
 アルミニウム合金板として、アルミニウム合金(A6061)からなる板を用いたこと以外は実施例1と同様にして粗化処理とn-オクタデシルホスホン酸による処理を行った。処理後のアルミニウム合金板の表面に実施例1と同様にして測定したイオン交換水の接触角は115°であった。
(2)高温高湿保管試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後及び2か月後に試験片の表面の電子顕微鏡画像を得た。得られた画像を図3に示す。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始時(初期)、1週間後、1か月後、2か月後に試験片の表面の電子顕微鏡画像を得た。得られた画像を図3に示す。
 図2に示すように、n-オクタデシルホスホン酸で処理していないアルミニウム合金板は時間の経過とともに微細な凹凸構造が消失したのに対し、n-オクタデシルホスホン酸で処理したアルミニウム合金板は試験開始から長時間を経過した後も微細な凹凸構造が観察された。
(3)樹脂接合試験
 n-オクタデシルホスホン酸で処理したアルミニウム合金板をインサート成形金型に配置し、溶融したポリプロピレン(PP)を注入してアルミニウム合金板の凹凸構造が形成された表面にPPが接合した状態の試験片を5個作製した。試験片のせん断接合強度をオートグラフ(AGS-500-D、TYPE-III、株式会社島津製作所)を用いて測定した。5個の試験片の測定値の算術平均値は、26MPaであった。
 比較のため、n-オクタデシルホスホン酸で処理していないアルミニウム合金板を用いて同様に試験片を作製し、せん断接合強度を測定したところ、28MPaであった。
 以上の結果から、n-オクタデシルホスホン酸による処理がアルミニウム合金(A6061)のPPに対する接合強度に与える影響は小さいことがわかった。
<実施例4>
(1)アルミニウム合金板の表面処理
 アルミニウム合金(A3003)からなる板に対し、実施例1と同様にして粗化処理を行った。粗化処理後のアルミニウム合金板を、下記に示す疎水化剤1~5のエタノール溶液(5mmol/L)に1分間浸漬した。その後、アルミニウム合金板をエタノールで洗浄し、80℃で20分間乾燥し、実施例1と同様にしてイオン交換水の接触角を測定した。結果を表1に示す。
 有機化合物1:プロピルホスホン酸
 有機化合物2:ウンデシルホスホン酸
 有機化合物3:10-カルボキシデシルホスホン酸
 有機化合物4:11-ヒドロキシウンデシルホスホン酸
 有機化合物5:11-アミノウンデシルホスホン酸
(2)高温高湿保管試験
 有機化合物1~5で処理したアルミニウム合金板を40℃、相対湿度90%の環境にて保管する試験を実施し、試験開始から1週間後及び2か月又は3か月後にアルミニウム合金板の表面の電子顕微鏡画像を得た。得られた画像を図4に示す。
 図4に示すように、有機化合物1~5で処理したアルミニウム合金板は、試験開始から長時間が経過した後も微細な凹凸構造が観察された。
(3)樹脂接合試験
 有機化合物1~5で処理したアルミニウム合金板をインサート成形金型に配置し、溶融したポリフタルアミド(PPA)を注入して、アルミニウム合金板の凹凸構造が形成された表面にPPAが接合した状態の試験片を5個作製した。試験片のせん断接合強度をオートグラフ(AGS-500-D、TYPE-III、株式会社島津製作所)を用いて測定した。5個の試験片の測定値の算術平均値を表1に示す。
 比較のため、有機化合物で処理していないアルミニウム合金板を用いて同様に試験片を作製し、せん断接合強度を測定した。結果を表1に示す。
 表1に示す結果から、有機化合物1~5による処理がアルミニウム合金板のPPAに対する接合強度に与える影響は小さいことがわかった。
 アルキル基の炭素数が3である有機化合物1又は極性基を持つ有機化合物3~5を用いた場合は、アルキル基の炭素数が11であり極性基を持たない有機化合物2を用いた場合に比べてアルミニウム合金板のPPAに対する接合強度に与える影響が小さいことがわかった。
 日本国特許出願第2022-025116号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (13)

  1.  凹凸構造を有する表面を有し、
     前記表面は疎水性の膜で被覆されている、金属部材。
  2.  凹凸構造を有する表面を有し、
     前記表面は水の接触角が90°以上である、金属部材。
  3.  凹凸構造を有する表面を有し、
     前記表面は有機化合物が化学的に結合した状態である、金属部材。
  4.  前記有機化合物は極性基を持つ、請求項3に記載の金属部材。
  5.  前記凹凸構造が樹枝状構造を含む、請求項1~請求項4のいずれか1項に記載の金属部材。
  6.  前記樹枝状構造の平均厚みが20nm~1000nmである、請求項5に記載の金属部材。
  7.  前記表面の十点平均粗さ(Rzjis)の平均値が2μm~50μmである、請求項1~請求項4のいずれか1項に記載の金属部材。
  8.  前記表面の粗さ曲線要素の平均長さ(RSm)の平均値が10μm~400μmである、請求項1~請求項4のいずれか1項に記載の金属部材。
  9.  アルミニウムを含む、請求項1~請求項4のいずれか1項に記載の金属部材。
  10.  請求項1~請求項4のいずれか1項に記載の金属部材と、前記金属部材の凹凸構造を有する表面に接合している樹脂部材と、を含む金属樹脂接合体。
  11.  金属部材の表面に凹凸構造を形成する工程と、
     前記凹凸構造が形成された表面に有機化合物を付与する工程と、を含む金属部材の製造方法。
  12.  前記有機化合物は炭素数1~20のアルキル基を持つ、請求項11に記載の金属部材の製造方法。
  13.  前記有機化合物は極性基を持つ、請求項11に記載の金属部材の製造方法。
PCT/JP2023/002914 2022-02-21 2023-01-30 金属部材、金属樹脂接合体及び金属部材の製造方法 WO2023157628A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022025116 2022-02-21
JP2022-025116 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157628A1 true WO2023157628A1 (ja) 2023-08-24

Family

ID=87578493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002914 WO2023157628A1 (ja) 2022-02-21 2023-01-30 金属部材、金属樹脂接合体及び金属部材の製造方法

Country Status (2)

Country Link
TW (1) TW202340531A (ja)
WO (1) WO2023157628A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246163A (ja) * 1995-01-11 1996-09-24 Kao Corp 金属表面への撥液性付与方法
JPH10156282A (ja) * 1996-11-28 1998-06-16 Seimi Chem Co Ltd 撥水撥油性金属材料
JPH10263474A (ja) * 1996-02-01 1998-10-06 Matsushita Electric Ind Co Ltd 撥水性被膜とその製造方法及びその装置と撥水性塗料組成物
JP2000239895A (ja) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd 撥水性に優れたアルミニウム表面処理材及びその製造方法
JP2015214072A (ja) * 2014-05-09 2015-12-03 新日鐵住金株式会社 高い撥水撥油性を有する複合材料およびその製造方法
WO2020158820A1 (ja) * 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246163A (ja) * 1995-01-11 1996-09-24 Kao Corp 金属表面への撥液性付与方法
JPH10263474A (ja) * 1996-02-01 1998-10-06 Matsushita Electric Ind Co Ltd 撥水性被膜とその製造方法及びその装置と撥水性塗料組成物
JPH10156282A (ja) * 1996-11-28 1998-06-16 Seimi Chem Co Ltd 撥水撥油性金属材料
JP2000239895A (ja) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd 撥水性に優れたアルミニウム表面処理材及びその製造方法
JP2015214072A (ja) * 2014-05-09 2015-12-03 新日鐵住金株式会社 高い撥水撥油性を有する複合材料およびその製造方法
WO2020158820A1 (ja) * 2019-01-29 2020-08-06 三井化学株式会社 アルミニウム系金属樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属樹脂複合構造体の製造方法

Also Published As

Publication number Publication date
TW202340531A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
JP6387301B2 (ja) アルミ樹脂接合体及びその製造方法
JP5772966B2 (ja) アルミ樹脂接合体及びその製造方法
JP5531326B2 (ja) アルミニウム−樹脂複合体の製造方法
KR101141619B1 (ko) 초소수성 표면을 갖는 재료의 제조방법 및 이에 따라제조된 초소수성 재료
JP5581680B2 (ja) 耐候性に優れたアルミ・樹脂複合品及びその製造方法
JP3295404B2 (ja) 改良された樹脂塵埃耐性のためのコーティング
JP5380496B2 (ja) 接合複合体
KR20140125422A (ko) 알루미늄 합금 수지 복합체 및 그것을 제조하는 방법
KR20140123589A (ko) 표면처리 알루미늄재 및 그 제조방법과 수지 피복 표면처리 알루미늄재
JP2012041579A (ja) アルミニウム又はアルミニウム合金材の表面加工方法、複合材料及び表面加工前処理液
WO2023157628A1 (ja) 金属部材、金属樹脂接合体及び金属部材の製造方法
WO2018131709A1 (ja) 表面の疎水性もしくは親水性が高められた基体
JP6237999B2 (ja) 接合品の製造方法
JP2010031306A (ja) 樹脂基材へのめっき処理方法
JP2004143547A (ja) アルミニウム安定化積層体
JP2013022761A (ja) 銅−樹脂複合体の製造方法
JP6519061B1 (ja) 一体成形物とその製造方法、およびプライマー組成物
JP2023121657A (ja) 表面性状の評価方法、金属部材の製造方法、金属樹脂接合体の製造方法及び機械学習装置
JP5373477B2 (ja) めっき処理方法
JP7319634B2 (ja) アルミニウム-樹脂複合体の製造方法。
JP7453846B2 (ja) 金属樹脂接合体の製造方法及び金型
KR101841471B1 (ko) 복합 표면 처리방법을 이용한 다층구조 금속 제조방법 및 이에 의하여 제조된 다층구조 금속
JP2017071849A (ja) 表面処理アルミニウム材及びその製造方法、ならびに、これを用いた表面処理アルミニウム/樹脂複合材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501076

Country of ref document: JP

Kind code of ref document: A