WO2023149650A1 - 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치 - Google Patents

파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치 Download PDF

Info

Publication number
WO2023149650A1
WO2023149650A1 PCT/KR2022/020330 KR2022020330W WO2023149650A1 WO 2023149650 A1 WO2023149650 A1 WO 2023149650A1 KR 2022020330 W KR2022020330 W KR 2022020330W WO 2023149650 A1 WO2023149650 A1 WO 2023149650A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
lead frame
power module
solder paste
electrical connection
Prior art date
Application number
PCT/KR2022/020330
Other languages
English (en)
French (fr)
Inventor
김영민
임진수
김유석
김현기
남기두
강동우
Original Assignee
(주)아이에이파워트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이에이파워트론 filed Critical (주)아이에이파워트론
Publication of WO2023149650A1 publication Critical patent/WO2023149650A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an electrical connection and integral fixing device for terminals in a power module, and more particularly, the fastening method of a power module is DBC (Direct Bonded Copper) rather than an indirect fixing method through a mold or case surrounding an existing board. It relates to an electrical connection and integrated fixing device for terminals in a power module that can be simplified and cost-reduced through integration of terminals and screw bolts through holes in a board.
  • DBC Direct Bonded Copper
  • power semiconductors include Field Effect Transistor (FET), Metal Oxide Semiconductor FET (MOSFET), and Insulated Gate Bipolar Mode Transistor (IGBT) semiconductor devices.
  • FET Field Effect Transistor
  • MOSFET Metal Oxide Semiconductor FET
  • IGBT Insulated Gate Bipolar Mode Transistor
  • a power MOSFET device may have a DMOS (Double-Diffused Metal Oxide Semiconductor) structure unlike a general MOSFET due to its high-voltage, high-current operation.
  • DMOS Double-Diffused Metal Oxide Semiconductor
  • a power module is a component that is essential to all electronic devices, and plays various roles such as power conversion, stability and efficiency as well as power supply.
  • These power modules include an insulated gate type bipolar transistor (IGBT211) that converts power, an IGBT module mounted with a number of diodes and placed in a dedicated case, and a current sensor built-in power management module (IPM) with protection circuits such as overcurrent and overheat added. ), and a MOSFET module in which a metal oxide silicon field effect transistor (MOSFET) is mounted.
  • IGBT211 insulated gate type bipolar transistor
  • IPM current sensor built-in power management module
  • MOSFET metal oxide silicon field effect transistor
  • ceramic substrates have the characteristics of enduring high temperatures and high currents well by using ceramics as their base material. Because of these characteristics, forsterite, steatite, beryllia, and alumina are mainly used in power semiconductors, insulated gate bipolar transistors (IGBTs), high-power light emitting diodes (LEDs), and solar cell modules, and alumina is mainly used in power semiconductors.
  • IGBTs insulated gate bipolar transistors
  • LEDs high-power light emitting diodes
  • solar cell modules and alumina is mainly used in power semiconductors.
  • the MLZ method mainly uses molymanganese MLZ for mounting semiconductor devices on the surface of alumina and bonding dissimilar materials 2).
  • DBC direct bonding copper
  • hybrid vehicles and electric vehicles use an inverter that converts DC power from a high-voltage battery into AC power and drives an electric motor.
  • a power module used as a high-voltage inverter is composed of an IGBT and a compound semiconductor switch such as a diode or SiC MOSFET, and is operated through fast switching.
  • the present invention has been made to solve the above problems, and the present invention provides an integration of a method of electrically connecting terminals in a ceramic substrate of a power module and a method of fixing a product.
  • the present invention can improve the overall performance by reducing the deviation of cooling performance according to the deviation of the thickness of the TIM by fixing it using a constant torque of the lead frame and screw bolts located on the outer edge of the ceramic substrate, and improving the overall performance of the product through a hole in the substrate
  • the purpose is to provide a power module that secures cost competitiveness due to simplification of manufacturing method and size reduction by fixing and electrical connection together.
  • a ceramic substrate in a power module includes a hole large enough to insert a screw bolt, a lead frame directly connected to the ceramic substrate is in contact with a solder surface, and an electrical connection is made between the screw bolt and the lead frame.
  • an insulating washer is used, and a hole is required for the heat sink to fix the ceramic substrate through a screw bolt, and a power module that can fill the gap between the ceramic substrate and the heat sink through TIM Its purpose is to provide an electrical connection and integrated fixing device for my terminals.
  • the present invention is a second lead frame necessary to connect the first lead frame with external factors;
  • TIM to fill the gap of the intermetallic surface between the ceramic substrate and the heat sink; It includes; a heat sink located on the lower side of the ceramic substrate and including a hole that can be fixed with a screw bolt.
  • the first lead frame includes an intermediate space having a shape of “ ⁇ ” and “ ⁇ ” on both sides of the vertical cutting surface to integrate screw bolts penetrating the intermediate space.
  • the electrical connection and integrated fixing device of the terminals in the power module applies a vertical load directly using a constant torque to a corner portion or a side portion of the board to bring the adhesive surface between the board and the heat sink into constant contact.
  • the pre-worked solder paste layer on the surface of the ceramic substrate is deformed due to torque applied during screw bolting, and the deformed solder paste layer serves to fill the space between the substrate and the first lead frame, thereby providing electrical contact It has the function of reducing resistance.
  • the present invention it is possible to contribute to cost reduction due to size reduction and process reduction of the product due to integration of the lead frame and the screw bolt for fixing the product.
  • the present invention made as described above can reduce the case size (cost reduction due to the overall package size reduction) as the existing case type mount method is changed to the terminal mount method.
  • the conventional case-type mount method additionally increases the number of processes because the mount position and terminal connection part are used individually, but in the case of the terminal mount method, cost down is excellent due to the reduction of the process because it is performed simultaneously. .
  • a vertical load may be directly applied to four points of the substrate using a constant torque, so that the adhesive surface between the substrate and the heat sink may be brought into constant contact.
  • the solder paste 140 layer pre-worked on the surface of the DBC substrate is deformed by the torque applied during screw bolting, and the torque dispersion and shock caused by the deformation of the solder paste 140 layer are alleviated. It has the function of mitigating the impact transmitted to the ceramic substrate.
  • the solder paste 140 layer pre-worked on the surface of the ceramic substrate serves to increase contact resistance so that it does not loosen in the opposite direction after screw bolting is completed, thereby preventing external vibration shock (improving vibration durability performance).
  • solder paste 140 layer pre-worked on the surface of the ceramic substrate is deformed due to the torque applied during screw bolting, and the deformed solder paste 140 layer serves to fill the space between the substrate and the terminal. It helps to increase the current capacity through the function of reducing the electrical contact resistance.
  • FIG. 1 is a view showing a connection method of a power module according to the prior art.
  • Figure 2 is a view showing the overall appearance of the electrical connection and integrated fixing device of the terminal in the power module according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of a device for electrical connection and integrated fixing of terminals in a power module according to an embodiment of the present invention.
  • Figure 4 is a view showing a cross-sectional view of the electrical connection and integrated fixing device of the terminal in the power module according to an embodiment of the present invention.
  • FIG. 5 is a view showing a state in which an electrical connection and integrated fixing device of a terminal in a power module according to another embodiment of the present invention is attached to a substrate.
  • FIG. 6 is a view showing a state in which an electrical connection and integrated fixing device of a terminal in a power module is attached to a corner portion or a side portion point of a board according to another embodiment of the present invention.
  • the present invention is a second lead frame necessary to connect the first lead frame with external factors;
  • TIM to fill the gap of the intermetallic surface between the ceramic substrate and the heat sink; It includes; a heat sink located on the lower side of the ceramic substrate and including a hole that can be fixed with a screw bolt.
  • the first lead frame includes an intermediate space having a shape of “ ⁇ ” and “ ⁇ ” on both sides of the vertical cutting surface to integrate screw bolts penetrating the intermediate space.
  • the electrical connection and integrated fixing device of the terminals in the power module applies a vertical load directly using a constant torque to a corner portion or a side portion of the board to bring the adhesive surface between the board and the heat sink into constant contact.
  • the pre-worked solder paste layer on the surface of the ceramic substrate is deformed due to torque applied during screw bolting, and the deformed solder paste layer serves to fill the space between the substrate and the first lead frame, thereby providing electrical contact It has the function of reducing resistance.
  • the present invention includes a first lead frame 130; a second lead frame 100; screw bolt 110; Insulation washer 120; solder paste 140; top copper 150; ceramic substrate 160; lower copper 170; TIM (180); heat sink 190; consists of, etc.
  • the first lead frame 130 has a structure divided into two sides and is a frame through which an insulation washer 120 and a screw bolt 110 pass through an intermediate space.
  • the second lead frame 100 is a frame necessary to connect the first lead frame with external factors.
  • the screw bolt 110 is a bolt that passes through the first lead frame 130 and the ceramic substrate 160 and is connected to the heat sink 190 .
  • the insulating washer 120 is a washer that electrically insulates between the screw bolt 110 and the first lead frame 130 .
  • the ceramic substrate 160 includes a hole large enough for a screw bolt to be inserted, and is a substrate to which upper and lower copper 150 and lower copper 170 are respectively attached.
  • the TIM 180 is a material that can fill gaps in the intermetallic surface between the ceramic substrate 160 and the heat sink.
  • a thermal interface material is a component for increasing thermal contact between the ceramic substrate 160 and the heat sink.
  • the heat sink 190 is located on the lower side of the ceramic substrate 160 and includes a hole through which the screw bolt 110 can be fixed.
  • the solder paste 140 is a material for separating and bonding the first lead frame 130 directly connected to the ceramic substrate 160 .
  • the first lead frame 130 has a shape including an intermediate space and is integrated with the screw bolt 110 penetrating the intermediate space.
  • the electrical connection and integral fixing device of the terminals in the power module may directly apply a vertical load to four points of the board using a constant torque to bring the adhesive surface between the board and the heat sink into constant contact.
  • the thickness of the TIM can be effectively controlled to be constant by directly controlling the thickness of the TIM, so that the heat dissipation performance can be constantly maintained on the entire surface of the power module.
  • the present invention further includes a solder paste 140 for spacing and bonding the first lead frame 130 directly connected to the ceramic substrate 160.
  • the pre-worked solder paste layer 140 on the surface of the ceramic substrate 160 is deformed by torque applied during screw bolting, and the dispersion of torque and shock caused by the deformation of the solder paste 140 layer are alleviated. It functions to mitigate the impact transmitted to the ceramic substrate.
  • the pre-worked solder paste layer 140 on the surface of the ceramic substrate 160 prevents external vibration shock by increasing contact resistance so that it does not loosen in the opposite direction after screw bolting is completed.
  • the pre-worked solder paste layer 140 on the surface of the ceramic substrate 160 is deformed due to torque applied during screw bolting, and the deformed solder paste 140 layer is between the substrate and the first lead frame 130. It serves to fill the space of the surface and helps to increase the current capacity through the function of reducing the electrical contact resistance.
  • the first lead frame 130 includes an intermediate space because both sides of the vertical cutting surface are “ ⁇ ” and “ ⁇ ”, and the screw bolts pass through the intermediate space. Integrate (110).
  • the present invention may further include a solder paste 140 for separating and bonding the first lead frame 130 directly connected to the ceramic substrate 160, wherein the pre-worked solder is applied to the surface of the ceramic substrate 160.
  • the paste 140 layer is deformed by the torque applied during the screw bolting process, and the dispersion of the torque and the shock caused by the deformation of the solder paste 140 layer are alleviated to mitigate the shock transmitted to the ceramic substrate.
  • the pre-worked solder paste layer 140 on the surface of the ceramic substrate 160 is deformed due to torque applied during screw bolting, and the deformed solder paste 140 layer is between the substrate and the first lead frame 130. It serves to fill the space of the surface and reduces the electrical contact resistance.
  • the electrical connection and integrated fixing device of the terminals in the power module applies a vertical load directly to the edge or side surface of the board 300 using a constant torque to bond the board and the heat sink. surface in constant contact.
  • copper including pure copper and copper alloys
  • copper alloys may be used as a metal material for the upper and lower portions of the ceramic substrate 160 .
  • This metal material is a high heat dissipation/high conductivity conductor, and may be, for example, any one of copper molybdenum (CuMo), aluminum silicon carbide (AlSiC), aluminum carbide (AlC), and copper tungsten (CuW). .
  • CuMo copper molybdenum
  • AlSiC aluminum silicon carbide
  • AlC aluminum carbide
  • CuW copper tungsten
  • the metal material is, for example, any one of silver (Ag), copper (Cu), gold (Au), aluminum (Al), magnesium (Mg), molybdenum (Mo), tungsten (W), nickel (Ni) of materials or alloys of two or more.
  • the material of the insulation washer 120 may be, for example, an insulator of any one of aluminum oxide (Al2O3), aluminum nitride (AlN), silicon nitride (Si3N4), and zirconia toughened alumina (ZTA).
  • Al2O3 aluminum oxide
  • AlN aluminum nitride
  • Si3N4 silicon nitride
  • ZTA zirconia toughened alumina
  • the insulating material includes organopolysiloxane, organohydrogenpolysiloxane, and a nitrogen-based compound, and the organopolysiloxane includes an alkenyl group and a hydroxyl group, or any one of a hydrogenated bisphenol-A type epoxy resin and a cycloaliphatic epoxy resin. or an epoxy resin composed of a mixture thereof and a polymer/high weather resistance epoxy resin.
  • the present invention includes the steps of directly applying a vertical load to a corner portion or side portion of the substrate 300 using a constant torque; and bringing an adhesive surface between the substrate and the heat dissipation plate into constant contact.
  • the first lead frame 130 directly connected to the ceramic substrate 160 is spaced apart with solder paste 140. connect
  • sampling the collected thickness of the solder paste 140 with a preset number of patterns (c) learning a neural network composed of a preset solder paste 140 using the sampled data; and (d) inferring the thin film thickness of the sample using the learned neural network.
  • the solder paste 140 layer pre-worked on the surface of the ceramic substrate 160 is deformed by torque applied during screw bolting, and the torque is distributed by the deformation of the solder paste 140 layer. and mitigating the impact transmitted to the ceramic substrate by mitigating the impact.
  • At least one of a predicted impact value and a predicted impact rating value of the solder paste 140 layer is stored.
  • the learning value that causes the impact transmitted to the ceramic substrate is checked, and re-learning is performed so that torque is distributed and impact Calculate the predicted impact value or layer thickness of the optimal layer that can mitigate the
  • solder paste 140 layer pre-worked on the surface of the ceramic substrate 160 is deformed due to torque applied during screw bolting, and the deformed solder paste 140 layer is formed between the substrate and the first lead frame 130. It serves to fill the space between them and reduces the electrical contact resistance; includes.
  • the damage information through the analysis of the correlation between the electrical contact resistance data and the damage form of the solder paste 140 layer is learned by applying a machine learning-based random forest algorithm, and the damage information is stored in a database. the step of tempering; Classifying and verifying damage information based on the learned database; and estimating electrical contact resistance based on the verified damage information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Thermal Sciences (AREA)

Abstract

본 발명은 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치에 관한 것으로서, 보다 상세하게는 파워모듈의 체결방식을 기존의 기판을 둘러싼 몰드 또는 케이스를 통한 간접적인 고정 방식이 아닌 DBC (Direct Bonded Copper) 기판의 홀을 통한 터미널, 스크류 볼트의 일체화를 통해 간소화 및 비용절감이 가능한 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치에 관한 것이다.

Description

파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치
본 발명은 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치에 관한 것으로서, 보다 상세하게는 파워모듈의 체결방식을 기존의 기판을 둘러싼 몰드 또는 케이스를 통한 간접적인 고정 방식이 아닌 DBC (Direct Bonded Copper) 기판의 홀을 통한 터미널, 스크류 볼트의 일체화를 통해 간소화 및 비용절감이 가능한 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치에 관한 것이다.
일반적으로 전력반도체로는 FET(Field Effect Transistor), MOSFET(Metal Oxide Semiconductor FET), IGBT(Insulated Gate Bipolar Mode Transistor) 반도체 소자들을 포함한다. 예를 들어 전력용 MOSFET 소자는 고전압 고전류 동작으로 일반 MOSFET와 달리 DMOS(Double-Diffused Metal Oxide Semiconductor) 구조를 가질 수 있다.
파워모듈(power module)은 모든 전자기기에 필수적으로 탑재되는 부품으로, 전력공급 뿐만 아니라 전력 변환, 안정성 및 효율성 확보 등과 같은 다양한 역할을 한다.
이러한 파워모듈에는, 전력을 변환하는 절연게이트형 양극성 트랜지스터(IGBT211) 및 다수의 다이오드를 실장하여 전용 케이스에 넣은 IGBT모듈과, 과전류·과열 등의 보호 회로를 추가한 전류센서 내장형 전력관리모듈(IPM)과, 금속산화막실리콘 전계효과 트랜지스터(MOSFET)를 실장한 MOSFET모듈 등이 있다.
최근, 파워일렉트로닉스의 진보에 의해 전력의 변환과 제어를 고효율로 수행하는 전력반도체가 급속히 보급되면서 반도체 시장에서의 세라믹과 금속의 접합이 늘어나고 있다. 페놀이나 에폭시를 주요 소재로 사용하는 일반 PCB와 달리 세라믹 기판은 세라믹을 기초 소재로 사용해 높은 온도와 고전류를 잘 견디는 특성을 갖고 있다. 이런 특성 때문에 전력반도체, 절연게이트 양극성 트렌지스터(IGBT), 고출력 발광다이오드(LED), 태양전지 모듈 등은 주로 forsterite, steatite, beryllia 및 알루미나가 사용되고 있고, 전력용반도체에서는 주로 알루미나가 사용되고 있다. 금속을 구리로 사용하는 것은 우수한 전기전도도와 높은 전자이주성을 가지고 있어 반도체 배선으로 유력한 물질로 간주되어 사용되 고 있으며, 이를 위한 선행연구와 고순도 구리박막을 얻기 위한 다양한 증착법 또한 개발되고 있다. 이러한 세라믹과 금속의 접합기법에는 Brazing, Diffusion bonding, Eutetic bonding, Metallizing(이하 MLZ) 법 등의 용도에 따라 다양하게 사용되어지고 있으며 다 양한 분야에 걸쳐 절실히 요구되고 있다.
종래에 MLZ 법은 주로 알루미나 표면의 반도체 소자 실장 및 이종 소재를 접합하기 위한 몰리망간 MLZ을 사용하고 있다 2). 최근 세라믹 표면의 금속을 접합하는 방법으로 동판 의 표면을 임의적으로 산화시켜 산화물 층을 형성시킨 후 알루미나와 구리를 직접 접합하는 DBC(Direct Bonding Copper)법에 대한 많은 연구가 진행과 함께 사용되고 있다.
또한 하이브리드 차량 및 전기자동차에서는 고전압 배터리의 DC전원을 AC전원으로 변환시켜주는 인버터를 사용하며, 전기모터를 구동시킬 수 있다.
고전압 인버터로 사용되는 파워모듈은 IGBT 및 Diode 또는 SiC MOSFET인 화합물 반도체 스위치로 구성되며, 빠른 스위칭을 통해 동작된다.
따라서 점차적으로 친환경차량의 공급 및 수요가 증대됨에 따라, 더 큰 출력과 함께 가격경쟁력이 요구되어 가고 있어 시장 흐름에 따라 원가개선 및 뛰어난 냉각 방안이 필요하다.
본 발명은 상기와 같은 문제점을 해결하기 위해 이루어진 것으로서, 본 발명은 본 발명은 파워모듈의 세라믹 기판내 터미널의 전기적 연결 방법 및 제품의 고정 방식의 일체화를 제공한다.
본 발명은 세라믹 기판의 외곽에 위치한 리드프레임 및 스크류 볼트의 일정한 토크를 사용하여 고정함으로써 TIM의 두께의 편차에 따른 냉각 성능의 편차를 줄여 전체적인 성능을 개선할 수 있고, 기판 내 홀을 통해 제품의 고정과 전기적 연결을 함께 함으로써 제품의 제작방식 간소화 및 사이즈 축소화에 따른 원가경쟁력을 확보한 파워모듈을 제공하는데 그 목적이 있다.
또한 본 발명은 파워모듈내 세라믹 기판에는 스크류 볼트가 삽입될 수 있을만한 크기의 홀을 포함하고, 세라믹 기판과 직접적으로 연결되는 리드프레임은 솔더 표면에 접촉되고, 스크류 볼트와 리드프레임 사이에는 전기적 연결이 되지 않도록 절연 와셔를 사용하며, 히트싱크에는 세라믹 기판을 스크류 볼트를 통해 고정될 수 있도록 홀이 필요하며, 세라믹 기판과 히트싱크 사이에는 TIM을 통해 금속간 면의 빈틈을 채울 수 있게 하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치를 제공하는 데 목적이 있다.
상기 과제를 해결하기 위하여 본 발명은 제1 리드프레임을 외부 요인과 연결하기 위해 필요한 제2 리드프레임 ; 제1 리드프레임과 세라믹 기판을 관통하여 히트싱크에 연결되는 스크류 볼트; 스크류 볼트와 제1 리드프레임 사이에 전기적 절연이 되도록 하는 절연 와셔; 양측으로 나뉘어진 구조로 중간 공간부에 절연 와셔와 스크류 볼트가 관통하는 제1 리드프레임; 스크류 볼트가 삽입될 수 있을만한 크기의 홀을 포함하고, 상부 구리와 하부 구리가 상부와 하부에 각각 부착되는 파워모듈의 세라믹 기판; 세라믹 기판과 히트싱크 사이에 금속간 면의 빈틈을 채울 수 있도록 하는 TIM; 세라믹 기판 하측부에 위치하여 스크류 볼트와 고정될 수 있는 홀을 포함하는 히트싱크;을 포함한다.
상기 제1 리드프레임은 수직 절단면 양측이 “┗”와 “┛” 형상이어서 중간 공간부를 포함하여, 상기 중간 공간부를 관통하는 스크류 볼트를 일체화시킨다.
상기 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치는 기판의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시킨다.
세라믹 기판과 직접적으로 연결되는 제1 리드프레임을 이격 접합시키는 솔더페이스트;를 더 포함하고, 상기 세라믹 기판 표면에 사전작업된 솔더페이스트 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 갖는다.
상기 세라믹 기판 표면에 사전작업된 솔더페이스트 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트 레이어는 기판과 제1 리드프레임 사이의 공간을 채워주는 역할을 하게 되어 전기적인 접촉저항을 감소시키는 기능을 갖는다.
본 명세서에서 개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해 되어서는 아니 될 것이다.
본 발명에 따르면 리드프레임과 제품 고정을 위한 스크류 볼트의 일체화로 인해 제품의 사이즈 축소 및 공정감소로 인한 원가 비용절감에 이바지 가능하다. 또한, 제품 외곽에 위치한 스크류 볼트의 일정한 토크로 TIM의 두께를 간접적으로 관리가 가능하여 방열성능의 편차를 감소시켜 줄 수 있다.
상기와 같이 이루어지는 본 발명은 기존 케이스 타입의 마운트 방식에서 터미널 마운트 방식으로 변경됨에 따라 케이스 크기의 축소(전체 패키지 사이즈 축소에 따른 비용 절감)가 가능하다.
또한 종래 케이스 타입의 마운트 방식은 마운트 위치와 터미널 연결부위를 개별로 사용하기 때문에 공정의 수가 추가로 증가되나, 터미널 마운트방식의 경우 동시에 진행되기에 공정 감소로 인해 비용 절감(Cost down)이 우수하다.
또한 본 발명은 기판의 4가지 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시킬 수 있다.
이는 TIM의 두께를 직접적으로 제어하는데 효과적으로 그 층이 일정하게 제어될 수 있어 방열성능을 파워모듈 전면에 일정하게 유지(방열성능 개선)시켜줄 수 있다.
또한 본 발명은 DBC 기판 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트(140) 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 갖는다.
또한 본 발명은 세라믹 기판 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅이 완료된 이후 반대방향으로 풀리지 않도록 접촉 저항을 증가시키는 기능을 하여 외부 진동 충격을 방지(진동내구 성능 개선)한다.
또한 본 발명은 세라믹 기판 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트(140) 레이어는 기판과 터미널 사이의 공간을 채워주는 역할을 하게되어 전기적인 접촉저항을 감소시키는 기능을 통해 전류용량 증가에 도움을 준다.
도 1은 종래 발명에 따른 파워 모듈의 연결 방법을 보여주는 도면이다.
도 2는 본 발명의 일실시예에 따른 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치의 전체적인 모습을 보여주는 도면이다.
도 3은 본 발명의 일실시예에 따른 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치의 분해 사시도를 보여주는 도면이다.
도 4는 본 발명의 일실시예에 따른 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치의 절단면도를 보여주는 도면이다.
도 5는 본 발명의 다른 실시예에 따른 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치가 기판에 부착된 모습을 보여주는 도면이다.
도 6은 본 발명의 다른 실시예에 따라 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치가 기판의 모서리 부분 또는 측면부 지점에 부착된 모습을 보여주는 도면이다.
상기와 같은 목적을 달성하기 위한 구체적인 해결적 수단은,
상기 과제를 해결하기 위하여 본 발명은 제1 리드프레임을 외부 요인과 연결하기 위해 필요한 제2 리드프레임 ; 제1 리드프레임과 세라믹 기판을 관통하여 히트싱크에 연결되는 스크류 볼트; 스크류 볼트와 제1 리드프레임 사이에 전기적 절연이 되도록 하는 절연 와셔; 양측으로 나뉘어진 구조로 중간 공간부에 절연 와셔와 스크류 볼트가 관통하는 제1 리드프레임; 스크류 볼트가 삽입될 수 있을만한 크기의 홀을 포함하고, 상부 구리와 하부 구리가 상부와 하부에 각각 부착되는 파워모듈의 세라믹 기판; 세라믹 기판과 히트싱크 사이에 금속간 면의 빈틈을 채울 수 있도록 하는 TIM; 세라믹 기판 하측부에 위치하여 스크류 볼트와 고정될 수 있는 홀을 포함하는 히트싱크;을 포함한다.
상기 제1 리드프레임은 수직 절단면 양측이 “┗”와 “┛” 형상이어서 중간 공간부를 포함하여, 상기 중간 공간부를 관통하는 스크류 볼트를 일체화시킨다.
상기 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치는 기판의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시킨다.
세라믹 기판과 직접적으로 연결되는 제1 리드프레임을 이격 접합시키는 솔더페이스트;를 더 포함하고, 상기 세라믹 기판 표면에 사전작업된 솔더페이스트 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 갖는다.
상기 세라믹 기판 표면에 사전작업된 솔더페이스트 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트 레이어는 기판과 제1 리드프레임 사이의 공간을 채워주는 역할을 하게 되어 전기적인 접촉저항을 감소시키는 기능을 갖는다.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 2와 도 3에 도시된 바와 같이 본 발명은 제1 리드프레임(130); 제2 리드프레임 (100); 스크류 볼트(110); 절연 와셔(120); 솔더페이스트(140); 상부 구리(150); 세라믹 기판(160); 하부 구리(170); TIM(180); 히트싱크(190); 등으로 구성된다.
제1 리드프레임(130)은 양측으로 나뉘어진 구조로 중간 공간부에 절연 와셔(120)와 스크류 볼트(110)가 관통하는 프레임이다.
제2 리드프레임 (100)은 제1 리드프레임을 외부 요인과 연결하기 위해 필요한 프레임이다.
스크류 볼트(110)는 제1 리드프레임(130)과 세라믹 기판(160)을 관통하여 히트싱크(190)에 연결되는 볼트이다.
절연 와셔(120)는 스크류 볼트(110)와 제1 리드프레임(130) 사이에 전기적 절연이 되도록 하는 와셔이다.
세라믹 기판(160)은 스크류 볼트가 삽입될 수 있을만한 크기의 홀을 포함하고, 상부 구리(150)와 하부 구리(170)가 상부와 하부에 각각 부착되는 기판이다.
TIM(180)는 세라믹 기판(160)과 히트싱크 사이에 금속간 면의 빈틈을 채울 수 있도록 하는 재료이다.
TIM (Thermal Interface Material)은 세라믹 기판(160)과 히트싱크 간의 열 접점을 증가시키기 위한 부품이다.
히트싱크(190)는 세라믹 기판(160) 하측부에 위치하여 스크류 볼트(110)와 고정될 수 있는 홀을 포함한다.
솔더페이스트(140)는 세라믹 기판(160)과 직접적으로 연결되는 제1 리드프레임(130)을 이격 접합시키는 재료이다.
제1 리드프레임(130)은 중간 공간부를 포함하는 형상이고 상기 중간 공간부를 관통하는 스크류 볼트(110)와 일체화된다.
따라서 본 발명과 같이 이러한 터미널 마운트방식의 경우 동시에 진행되기에 공정 감소로 인해 비용 절감 우수하다.
상기 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치는 기판의 4가지 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시킬 수 있다.
따라서 TIM의 두께를 직접적으로 제어하는데 효과적으로 그 층이 일정하게 제어될 수 있어 방열성능을 파워모듈 전면에 일정하게 유지시켜줄 수 있다.
본 발명은 세라믹 기판(160)과 직접적으로 연결되는 제1 리드프레임(130)을 이격 접합시키는 솔더페이스트(140);를 더 포함한다.,
상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트(140) 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 한다.
상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅이 완료된 이후 반대방향으로 풀리지 않도록 접촉 저항을 증가시키는 기능을 하여 외부 진동 충격을 방지한다.
상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트(140) 레이어는 기판과 제1 리드프레임(130) 사이의 공간을 채워주는 역할을 하게되어 전기적인 접촉저항을 감소시키는 기능을 통해 전류용량 증가에 도움을 준다.
구체적으로 살펴보면, 도 4와 도 5에 도시된 바와 같이 상기 제1 리드프레임(130)은 수직 절단면 양측이 “┗”와 “┛” 형상이어서 중간 공간부를 포함하여, 상기 중간 공간부를 관통하는 스크류 볼트(110)를 일체화시킨다.
본 발명은 세라믹 기판(160)과 직접적으로 연결되는 제1 리드프레임(130)을 이격 접합시키는 솔더페이스트(140);를 더 포함할 수 있는 데, 상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트(140) 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 갖는다.
상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트(140) 레이어는 기판과 제1 리드프레임(130) 사이의 공간을 채워주는 역할을 하게 되어 전기적인 접촉저항을 감소시킨다.
도 6에 도시된 바와 같이, 상기 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치는 기판(300)의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시킨다.
한편, 상기 세라믹 기판(160)의 상, 하부에는 금속소재로 구리(순수 구리 및 구리합금 포함)가 사용될 수 있다.
이러한 금속소재는 고방열/고전도의 도전체로서, 예를 들어, 구리 몰리브덴(CuMo), 알루미늄실리콘카바이드(AlSiC), 탄화알루미늄(AlC), 구리텅스텐(CuW) 중 어느 하나의 재질일 수도 있다.
또는 금속소재는 예를 들어, 은(Ag), 구리(Cu), 금(Au), 알루미늄(Al), 마그네슘(Mg), 몰리브덴(Mo), 텅스텐(W), 니켈(Ni) 중 어느 하나의 재질 또는 둘 이상의 합금일 수 있다.
절연 와셔(120) 재료로는 예를 들어, 산화알루미늄(Al2O3), 질화알루미늄(AlN), 질화규소(Si3N4), 지르코니아 강화된 알루미나(Zirconia Toughened Alumina, ZTA) 중 어느 하나의 절연물일 수 있다.
상기 절연물은 오르가노폴리실록산, 오르가노하이드로겐폴리실록산 및 질소계 화합물을 포함하고, 상기 오르가노폴리실록산은 알케닐기 및 히드록시기를 포함하거나, 수소화 비스페놀-A 형 에폭시 수지 및 싸이클로 알리파틱계 에폭시 수지 중 어느 하나 또는 이들의 혼합물로 이루어진 에폭시수지 및 고분자/고내후성 에폭시 수지로 이루어진다.
이하 본 발명의 실시를 위한 방법에 대하여 자세히 설명한다.
일실시예로서 본 발명은 기판(300)의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하는 단계; 상기 기판과 방열판과의 접착면을 일정하게 접촉시키는 단계;를 포함한다.
상기 기판(300)의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하기 위해서는 세라믹 기판(160)과 직접적으로 연결되는 제1 리드프레임(130)을 솔더페이스트(140)로 이격 접합시킨다.
이 때 솔더페이스트(140)의 수집된 두께를 미리 설정된 패턴 수로 샘플링하는 단계; (c) 상기 샘플링된 데이터를 이용하여 미리 설정된 솔더페이스트(140)으로 구성되는 신경망을 학습하는 단계; 및 (d) 상기 학습된 신경망을 이용하여 시료의 박막 두께를 추론하는 단계를 포함한다.
또한 본 발명은 상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트(140) 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 단계;를 포함한다.
상기 토크 입력에 대하여 솔더페이스트(140) 레이어의 예측 충격값 및 예측 충격 등급값 중 적어도 하나를 저장한다.
상기 솔더페이스트(140) 레이어의 예측 충격값과 레이어 두께에 대한 학습된 다수의 토크 학습 값 중 세라믹 기판에 전달되는 충격을 유발하는 학습 값을 확인하여, 재 학습이 이루어지도록 하여 토크의 분산 및 충격을 완화시킬 수 있는 최적의 레이어의 예측 충격값 또는 레이어 두께를 연산한다.
또한 상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트(140) 레이어는 기판과 제1 리드프레임(130) 사이의 공간을 채워주는 역할을 하게 되어 전기적인 접촉저항을 감소시키는 단계;를 포함한다.
상기 전기적인 접촉저항 데이터와 변형된 솔더페이스트(140) 레이어의 이미지를 통해 손상 형태의 상관관계를 분석하는 단계; 상기 전기적인 접촉저항 데이터와 솔더페이스트(140) 레이어의 손상 형태의 상관관계의 분석을 통한 손상정보를 머신러닝(machine learning) 기반 랜덤포레스트(random forest) 알고리즘을 적용하여 학습하고, 손상정보를 데이터베이스화 하는 단계; 학습된 데이터베이스를 토대로 손상정보를 분류 및 검증하는 단계; 및 검증된 손상정보를 기반으로 전기적인 접촉저항을 예측하는 단계를 포함한다.

Claims (5)

  1. 제1 리드프레임을 외부 요인과 연결하기 위해 필요한 제2 리드프레임 (100);
    제1 리드프레임(130)과 세라믹 기판(160)을 관통하여 히트싱크(190)에 연결되는 스크류 볼트(110);
    스크류 볼트(110)와 제1 리드프레임(130) 사이에 전기적 절연이 되도록 하는 절연 와셔(120);
    양측으로 나뉘어진 구조로 중간 공간부에 절연 와셔(120)와 스크류 볼트(110)가 관통하는 제1 리드프레임(130);
    스크류 볼트가 삽입될 수 있을만한 크기의 홀을 포함하고, 상부 구리(150)와 하부 구리(170)가 상부와 하부에 각각 부착되는 파워모듈의 세라믹 기판(160);
    세라믹 기판(160)과 히트싱크 사이에 금속간 면의 빈틈을 채울 수 있도록 하는 TIM(180);
    세라믹 기판(160) 하측부에 위치하여 스크류 볼트(110)와 고정될 수 있는 홀을 포함하는 히트싱크(190);을 포함하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치.
  2. 청구항 1에 있어서,
    상기 제1 리드프레임(130)은 수직 절단면 양측이 “┗”와 “┛” 형상이어서 중간 공간부를 포함하여, 상기 중간 공간부를 관통하는 스크류 볼트(110)를 일체화시키는 것을 특징으로 하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치.
  3. 청구항 1에 있어서,
    상기 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치는 상기 상부 구리(150), 하부 구리(170), 세라믹 기판(160), TIM(180), 및 히트싱크(190)를 포함하는 기판(300)의 모서리 부분 또는 측면부 지점에 일정한 토크를 이용하여 직접적으로 수직하중을 인가하여 기판과 방열판과의 접착면을 일정하게 접촉시키는 것을 특징으로 하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치.
  4. 청구항 1에 있어서,
    세라믹 기판(160)과 직접적으로 연결되는 제1 리드프레임(130)을 이격 접합시키는 솔더페이스트(140);를 더 포함하고,
    상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅되는 과정에서 인가되는 토크에 의하여 변형을 일으키게 되며, 솔더페이스트(140) 레이어의 변형에 의한 토크의 분산 및 충격을 완화시켜 세라믹 기판에 전달되는 충격을 완화 시켜주는 기능을 갖는 것을 특징으로 하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치.
  5. 청구항 4에 있어서,
    상기 세라믹 기판(160) 표면에 사전작업된 솔더페이스트(140) 레이어는 스크류 볼팅시 인가되는 토크로 인해 변형이 발생되며, 변형된 솔더페이스트(140) 레이어는 기판과 제1 리드프레임(130) 사이의 공간을 채워주는 역할을 하게 되어 전기적인 접촉저항을 감소시키는 기능을 갖는 것을 특징으로 하는 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치.
PCT/KR2022/020330 2022-02-04 2022-12-14 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치 WO2023149650A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220014514A KR102442951B1 (ko) 2022-02-04 2022-02-04 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치
KR10-2022-0014514 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023149650A1 true WO2023149650A1 (ko) 2023-08-10

Family

ID=83281673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020330 WO2023149650A1 (ko) 2022-02-04 2022-12-14 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치

Country Status (3)

Country Link
KR (1) KR102442951B1 (ko)
CN (1) CN115172302B (ko)
WO (1) WO2023149650A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442951B1 (ko) * 2022-02-04 2022-09-15 (주)아이에이파워트론 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179492A (ja) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp 半導体装置およびその実装体
KR101033892B1 (ko) * 2008-10-17 2011-05-11 현대자동차주식회사 스너버 캐패시터의 냉각성능을 향상시킨 인버터
KR101077378B1 (ko) * 2010-06-23 2011-10-26 삼성전기주식회사 방열기판 및 그 제조방법
KR101663558B1 (ko) * 2016-05-23 2016-10-07 제엠제코(주) 패키지 파괴 방지 구조를 갖는 반도체 칩 패키지
JP2020202239A (ja) * 2019-06-07 2020-12-17 富士電機株式会社 半導体モジュールの外部接続部、半導体モジュールの外部接続部の製造方法、半導体モジュール、車両、及び外部接続部とバスバーとの接続方法
KR102442951B1 (ko) * 2022-02-04 2022-09-15 (주)아이에이파워트론 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990720A (en) * 1988-04-12 1991-02-05 Kaufman Lance R Circuit assembly and method with direct bonded terminal pin
US4907124A (en) * 1988-09-01 1990-03-06 Kaufman Lance R Bolted circuit assembly with isolating washer
JP3433279B2 (ja) * 1995-11-09 2003-08-04 株式会社日立製作所 半導体装置
JP3347977B2 (ja) * 1997-07-02 2002-11-20 フリヂスター株式会社 液体循環型熱電冷却・加熱装置
JP2006100640A (ja) * 2004-09-30 2006-04-13 Hitachi Metals Ltd セラミックス回路基板及びこれを用いたパワー半導体モジュール
CN101351109A (zh) * 2007-07-20 2009-01-21 富准精密工业(深圳)有限公司 散热装置
KR101463075B1 (ko) * 2008-02-04 2014-11-20 페어차일드코리아반도체 주식회사 히트 싱크 패키지
US8159821B2 (en) * 2009-07-28 2012-04-17 Dsem Holdings Sdn. Bhd. Diffusion bonding circuit submount directly to vapor chamber
JP2011077463A (ja) * 2009-10-02 2011-04-14 Hitachi Automotive Systems Ltd 電力変換装置、それを用いた回転電機、及び半導体パワーモジュールの製造方法
CN103732037B (zh) * 2012-10-12 2016-12-21 台达电子工业股份有限公司 热交换装置及应用其的电子装置
KR101420536B1 (ko) 2012-12-14 2014-07-17 삼성전기주식회사 전력 모듈 패키지
JP5510601B2 (ja) * 2013-07-16 2014-06-04 日本軽金属株式会社 熱交換器
KR101765372B1 (ko) * 2014-11-26 2017-08-04 주식회사 엘지화학 편광소자 보호필름 및 이를 포함하는 편광판
JP2017224752A (ja) * 2016-06-16 2017-12-21 富士電機株式会社 電子機器及び電力変換装置
KR101897639B1 (ko) 2016-08-25 2018-09-12 현대오트론 주식회사 파워 모듈
KR102552077B1 (ko) 2018-04-23 2023-07-06 현대자동차주식회사 적층형 파워 모듈 및 이의 제조 방법
CN109285818A (zh) * 2018-11-20 2019-01-29 盐城盈信通科技有限公司 一种电子芯片散热装置
CN110275590A (zh) * 2019-04-26 2019-09-24 天津英伦电脑有限公司 一种笔记本电脑散热器
CN110173788B (zh) * 2019-06-02 2020-11-10 山东合力金桥系统集成技术有限公司 一种用于通信机房的散热通风系统
KR20210041426A (ko) 2019-10-07 2021-04-15 현대모비스 주식회사 전력용 반도체 모듈 및 그 제조 방법
CN212677623U (zh) * 2020-09-04 2021-03-09 北京卡尔工控科技有限公司 一种防尘防潮型机柜
CN112984041B (zh) * 2021-02-26 2022-03-29 深圳市韦宏达科技有限公司 一种用于机顶盒防水散热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179492A (ja) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp 半導体装置およびその実装体
KR101033892B1 (ko) * 2008-10-17 2011-05-11 현대자동차주식회사 스너버 캐패시터의 냉각성능을 향상시킨 인버터
KR101077378B1 (ko) * 2010-06-23 2011-10-26 삼성전기주식회사 방열기판 및 그 제조방법
KR101663558B1 (ko) * 2016-05-23 2016-10-07 제엠제코(주) 패키지 파괴 방지 구조를 갖는 반도체 칩 패키지
JP2020202239A (ja) * 2019-06-07 2020-12-17 富士電機株式会社 半導体モジュールの外部接続部、半導体モジュールの外部接続部の製造方法、半導体モジュール、車両、及び外部接続部とバスバーとの接続方法
KR102442951B1 (ko) * 2022-02-04 2022-09-15 (주)아이에이파워트론 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치

Also Published As

Publication number Publication date
KR102442951B1 (ko) 2022-09-15
CN115172302A (zh) 2022-10-11
CN115172302B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US6710463B2 (en) Electrically isolated power semiconductor package
US7911792B2 (en) Direct dipping cooled power module and packaging
WO2019182216A1 (ko) 양면냉각형 파워 모듈 및 그의 제조 방법
KR20010041692A (ko) 전자 반도체 모듈
US20220319975A1 (en) Semiconductor device
WO2018133069A1 (zh) Igbt模组及其制造方法
WO2021112590A2 (ko) 전력반도체 모듈
JP7199167B2 (ja) パワー半導体モジュール、電力変換装置、およびパワー半導体モジュールの製造方法
WO2021125722A1 (ko) 파워모듈용 세라믹 기판 및 이를 포함하는 파워모듈
US6989592B2 (en) Integrated power module with reduced thermal impedance
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
WO2023149650A1 (ko) 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치
CN112864113A (zh) 功率器件、功率器件组件与相关装置
CN113906554A (zh) 半导体装置
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
US11600558B2 (en) Plurality of transistor packages with exposed source and drain contacts mounted on a carrier
WO2020159031A1 (ko) 전력 반도체 모듈 패키지 및 이의 제조방법
US10896864B2 (en) Power semiconductor chip module
JP3797040B2 (ja) 半導体装置
CN215008199U (zh) 功率器件、功率器件组件、电能转换装置及电能转换设备
WO2023033425A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
WO2023244003A1 (ko) 세라믹 기판 및 그 제조방법
WO2022220488A1 (ko) 파워모듈 및 그 제조방법
WO2024034896A1 (ko) 세라믹 기판 및 그 제조방법
WO2023234590A1 (ko) 세라믹 기판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925117

Country of ref document: EP

Kind code of ref document: A1