WO2023234590A1 - 세라믹 기판 및 그 제조방법 - Google Patents

세라믹 기판 및 그 제조방법 Download PDF

Info

Publication number
WO2023234590A1
WO2023234590A1 PCT/KR2023/006531 KR2023006531W WO2023234590A1 WO 2023234590 A1 WO2023234590 A1 WO 2023234590A1 KR 2023006531 W KR2023006531 W KR 2023006531W WO 2023234590 A1 WO2023234590 A1 WO 2023234590A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pattern
ceramic substrate
forming
manufacturing
pattern
Prior art date
Application number
PCT/KR2023/006531
Other languages
English (en)
French (fr)
Inventor
이지형
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220067150A external-priority patent/KR20230166746A/ko
Priority claimed from KR1020220066936A external-priority patent/KR20230166670A/ko
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2023234590A1 publication Critical patent/WO2023234590A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a ceramic substrate and a manufacturing method thereof, and more specifically, to a ceramic substrate that can be miniaturized by implementing a driving circuit on a ceramic substrate for a power module, and to a manufacturing method thereof (CERAMIC SUBSTRATE AND MANUFACTURING METHOD THEREOF).
  • Power semiconductor chips are responsible for basic parts of electronic systems such as rectifiers and switches, and include diodes, transistors, and thyristors. Additionally, with the advancement of drive IC technology, IC integrated circuits have been developed, and these IC integrated circuits can process high voltage and high current signals compared to the voltage and current of general digital or analog ICs.
  • the present invention was created to solve the above-mentioned problems.
  • the present invention provides a ceramic substrate capable of high efficiency and miniaturization by applying the semiconductor device portion for a power module and the driving circuit or general control drive IC portion to one substrate and a manufacturing method thereof. It is done.
  • a ceramic substrate according to an embodiment of the present invention for achieving the above-described object includes a ceramic substrate, a first electrode pattern and a second electrode pattern formed on the upper and lower surfaces of the ceramic substrate, and a first electrode pattern on the upper surface of the ceramic substrate. and a third electrode pattern formed to be spaced apart from the other, wherein the first electrode pattern is configured to mount a power semiconductor chip, and the third electrode pattern can be configured to mount a drive IC chip.
  • a portion of the upper surface of the ceramic substrate may have a downwardly recessed step surface, and the first electrode pattern may be formed on the step surface.
  • the depth at which a portion of the upper surface of the ceramic substrate is recessed downward may be equal to the thickness of the first electrode pattern.
  • the upper surface of the ceramic substrate is divided into a first region and a second region on both sides based on an imaginary dividing line, the first region may have a first electrode pattern disposed, and the second region may have a third electrode pattern disposed. .
  • the first area and the second area may be on the same plane, and the area of the first area may be larger than the area of the second area.
  • the first area may be located lower than the second area.
  • the ceramic substrate has a plurality of via holes formed to penetrate the upper and lower surfaces, and a metal filler filled in the via holes, and the second electrode pattern and the third electrode pattern may be formed to contact the exposed upper and lower surfaces of the metal filler.
  • the thickness of the first electrode pattern may be thicker than the thickness of the third electrode pattern.
  • the second electrode pattern may be formed over the entire lower surface of the ceramic substrate to face the first electrode pattern and the third electrode pattern.
  • the first electrode pattern may include a plurality of electrodes arranged in a predetermined pattern.
  • a method of manufacturing a ceramic substrate according to an embodiment of the present invention includes preparing a ceramic substrate, forming a first electrode pattern and a second electrode pattern on the upper and lower surfaces of the ceramic substrate, and forming a first electrode pattern on the upper surface of the ceramic substrate. and forming a third electrode pattern spaced apart from the other, wherein the first electrode pattern is configured to mount a power semiconductor chip, and the third electrode pattern can be configured to mount a drive IC chip.
  • the step of preparing a ceramic substrate includes forming a step surface in which a portion of the upper surface of the ceramic substrate is recessed downward, and the first electrode pattern may be formed on the step surface.
  • Preparing a ceramic substrate may further include forming a plurality of via holes penetrating the upper and lower surfaces of the ceramic substrate, filling the via holes with a metal filler, and firing.
  • the second electrode pattern and the third electrode pattern may be formed to contact the exposed upper and lower surfaces of the metal filler.
  • the depth at which a portion of the upper surface of the ceramic substrate is recessed downward may be the same as the thickness of the first electrode pattern.
  • the first electrode pattern and the second electrode pattern may be made of metal foil and bonded to the upper and lower surfaces of the ceramic substrate by brazing.
  • the third electrode pattern may be formed by screen printing a conductive paste. Meanwhile, in the step of forming the third electrode pattern, the third electrode pattern may be formed through a thin film process.
  • Forming the third electrode pattern may further include firing.
  • the firing step may be performed at a temperature ranging from 350°C to 600°C.
  • the present invention enables high efficiency, miniaturization, and weight reduction by implementing the semiconductor device part for a power module and the driving circuit or general control drive IC part on one board.
  • the present invention has a hybrid DIL (Dual in Line) structure in which the power module board and drive IC are integrated, it can be used in various fields from electronic components to energy fields.
  • DIL Device in Line
  • the present invention is formed by screen printing a third electrode pattern that is thinner than the thickness of the first electrode pattern and is formed as a fine pattern, thereby enabling precise pattern printing while automatically correcting the pattern position during printing.
  • the second electrode pattern and the third electrode pattern are connected to the via hole.
  • the first electrode pattern can be formed on a step surface in which a portion of the upper surface of the ceramic substrate is recessed downward, even if the first electrode pattern is formed thicker than the thickness of the third electrode pattern, the third electrode pattern By reducing the height difference with the electrode pattern, the capillary position adjustment time during wire bonding can be reduced by about 1/3.
  • Figure 1 is a perspective view showing a ceramic substrate according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing a ceramic substrate according to an embodiment of the present invention.
  • Figure 3 is a plan view showing a ceramic substrate according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along line a-a' in Figure 3.
  • Figure 5 is an enlarged plan view of area A of Figure 3.
  • Figure 6 is a side view showing a state in which a power semiconductor chip and a drive IC chip are mounted on a ceramic substrate and wires are connected according to an embodiment of the present invention.
  • Figure 7 is an exploded perspective view showing a ceramic substrate according to another embodiment of the present invention.
  • Figure 8 is a plan view showing a ceramic substrate according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line a-a' of FIG. 8.
  • Figure 10 is an enlarged plan view of area A' of Figure 8.
  • Figure 11 is a side view showing a state in which a power semiconductor chip and a drive IC chip are mounted on a ceramic substrate and wires are connected according to another embodiment of the present invention.
  • Figure 12 is a partial perspective view showing a state in which a drive IC chip is mounted on a ceramic substrate and wires are connected according to another embodiment of the present invention.
  • Figure 13 is a flowchart for explaining a method of manufacturing a ceramic substrate according to an embodiment of the present invention.
  • Figure 14 is a diagram for explaining a method of manufacturing a ceramic substrate according to an embodiment of the present invention.
  • Figure 15 is a diagram for explaining a method of manufacturing a ceramic substrate according to another embodiment of the present invention.
  • each layer (film), region, pattern or structure is formed “on” or “under” the substrate, each layer (film), region, pad or pattern.
  • “on” and “under” include both being formed “directly” or “indirectly” through another layer.
  • the standards for the top or bottom of each floor are based on the drawing.
  • Figure 1 is a perspective view showing a ceramic substrate according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing a ceramic substrate according to an embodiment of the present invention
  • Figure 3 is a perspective view showing a ceramic substrate according to an embodiment of the present invention. It is a plan view showing a ceramic substrate
  • FIG. 4 is a cross-sectional view taken along line a-a' of FIG. 3.
  • the ceramic substrate 1 according to an embodiment of the present invention includes a ceramic substrate 10, a first electrode pattern 100 and a second electrode pattern 200, and a third electrode. It may be configured to include a pattern 300.
  • the ceramic substrate 10 may be, for example, any one of alumina (Al 2 O 3 ), AlN, SiN, and Si 3 N 4 .
  • the thickness of the ceramic substrate 10 is 0.3 mm to 0.4 mm.
  • the ceramic substrate 10 can be prepared with a thickness of 0.32 mm or 0.38 mm.
  • the first electrode pattern 100 and the second electrode pattern 200 may be formed on the upper and lower surfaces 11 and 12 of the ceramic substrate 10. Additionally, the third electrode pattern 300 may be formed on the upper surface 11 of the ceramic substrate 10 and spaced apart from the first electrode pattern 100. Specifically, the upper surface of the ceramic substrate 10 may be divided into a first region 11a and a second region 11b on both sides based on the virtual dividing line b (see FIGS. 3 and 4). Here, the first area 11a and the second area 11b may form the same plane. Additionally, the area of the first area 11a may be larger than the area of the second area 11b. The first electrode pattern 100 may be placed in the first area 11a, and the third electrode pattern 300 may be placed in the second area 11b.
  • the first electrode pattern 100 and the second electrode pattern 200 are made of metal foil and bonded to the upper surface 11 and the lower surface 12 of the ceramic substrate 10 by brazing, and then the electrodes are formed by etching, machining, etc. It can be formed into a pattern.
  • Brazing bonding may use a brazing bonding layer made of an alloy material containing at least one of Ag, AgCu, and AgCuTi. Heat treatment for brazing can be performed at 780°C ⁇ 900°C.
  • This ceramic substrate 1 is called an Active Metal Brazing (AMB) substrate, and this AMB substrate has excellent durability and heat dissipation performance.
  • AMB Active Metal Brazing
  • This embodiment is explained using an AMB substrate as an example, but a Direct Bonding Copper (DBC) substrate and a Thick Printing Copper (TPC) substrate can also be applied.
  • DBC Direct Bonding Copper
  • TPC Thick Printing Copper
  • the second electrode pattern 200 is formed in the form of a flat plate, but this is not limited, and the second electrode pattern 200 may be formed in the form of a circuit pattern according to the semiconductor chip, product specifications, etc. .
  • the first electrode pattern 100 and the second electrode pattern 200 may be made of Cu, Cu alloy (CuMo, etc.), or Al.
  • the first electrode pattern 100 may be configured to mount a power semiconductor chip c1 (see FIG. 6).
  • the first electrode pattern 100 is a SiC and GaN-based power semiconductor chip ( c1) can be implemented.
  • the first electrode pattern 100 includes Si chips, MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), JFET (Junction Field Effect Transistor), and HEMT (High Electric Mobility Transistor).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • JFET Joint Field Effect Transistor
  • HEMT High Electric Mobility Transistor
  • various devices such as diodes can be mounted.
  • a plurality of electrodes may be arranged in a predetermined pattern.
  • the third electrode pattern 300 may be configured to mount a drive IC chip c2 (see FIG. 6).
  • the third electrode pattern 300 may be equipped with SOI (Silicon On Insulator)-based driving, electrical, and electronic control elements.
  • the third electrode pattern 300 may be made of Ag, Au, Pt, Cu, Ag alloy, or Carbon Black.
  • the first electrode pattern 100 is a part where the power semiconductor chip (c1) is mounted and a large current flows
  • the third electrode pattern 300 is a part where the drive IC chip (c2) is mounted and a small current flows.
  • the thickness of the first electrode pattern 100 may be thicker than the thickness of the third electrode pattern 300.
  • the thickness of the first electrode pattern 100 may be about 0.3 mm
  • the thickness of the third electrode pattern 300 may be about 20 ⁇ m, but the thickness is not limited thereto.
  • the second electrode pattern 200 may be formed over a large area over the entire lower surface 12 of the ceramic substrate 10 to facilitate heat transfer. One area of the second electrode pattern 200 may face the first electrode pattern 100, and the other area may face the third electrode pattern 300.
  • Figure 5 is an enlarged plan view of area A of Figure 3
  • Figure 6 is a side view showing a state in which a power semiconductor chip and a drive IC chip are mounted on a ceramic substrate and wires are connected according to an embodiment of the present invention.
  • the third electrode pattern 300 includes a first pattern area 310 configured to mount the drive IC chip c2 and a second pattern area where one end of the second wire w2 is joined. 320, a third pattern area 330 connecting the first pattern area 310 and the second pattern area 320, and a fourth pattern area extending on both sides from the center of the first pattern area 310. It may be configured to include (340).
  • a plurality of second pattern areas 320 may be arranged on both sides of the first pattern area 310, and the third pattern area 330 may be formed in the first pattern area 310 and the second pattern area ( 320) may be extended for a certain length on both sides to connect.
  • the power semiconductor chip c1 may be bonded to the first electrode pattern 100 and connected to the first electrode pattern 100 and the first wire w1.
  • the first wire w1 may be an Al wire, but is not limited thereto.
  • the drive IC chip c2 is bonded to the first pattern area 310 of the third electrode pattern 300, and the second pattern area 320 of the third electrode pattern 300 is connected to the first electrode pattern 100.
  • the second wire w2 may be made of Au, but is not limited thereto.
  • the ceramic substrate 1 has two functional chips, a power semiconductor chip c1 and a drive IC chip c2, mounted on the upper surface 11 of the ceramic substrate 10. It is characterized as a ceramic substrate (1) with a dual electrode structure. Compared to the case where the drive IC module and the power module are provided separately, the ceramic substrate 1 with this double electrode structure can be made smaller in size, lightweight, and has increased heat dissipation efficiency, and can be used as a module for home appliances and electric vehicles. It has the advantage of being applicable in a variety of ways.
  • FIGS. 7 to 12 a ceramic substrate according to another embodiment of the present invention will be described with reference to FIGS. 7 to 12.
  • the description of the same components as the embodiment shown in FIGS. 1 to 6 will be omitted, and the differences will be mainly explained below.
  • FIG. 7 is an exploded perspective view showing a ceramic substrate according to another embodiment of the present invention
  • FIG. 8 is a plan view showing a ceramic substrate according to another embodiment of the present invention
  • FIG. 9 is taken along line a-a' of FIG. 8. This is a cross-sectional view according to .
  • the ceramic substrate 1' includes a ceramic substrate 10', a first electrode pattern 100', and a second electrode pattern 200'.
  • It is configured to include a third electrode pattern 300', where the upper surface of the ceramic substrate 10' has first areas on both sides based on the virtual dividing line b' (see FIGS. 8 and 9'). It may be divided into (11a') and a second area (11b').
  • the first area 11a' is formed with a stepped surface in the form of a downward recess and is located at a lower position than the second area 11b', and may be formed to be larger than the area of the second area 11b'.
  • the first electrode pattern 100' may be disposed in the first area 11a'
  • the third electrode pattern 300' may be disposed in the second area 11b'.
  • the ceramic substrate 10' may be provided with a plurality of via holes 13' formed to penetrate the upper and lower surfaces 11 and 12'.
  • the via hole 13' may be filled with a metal filler 20'.
  • the metal filler 20' may be any one of Ag, W, Mo, and Ag alloy, but is not limited thereto.
  • the metal filler 20' filled in the via hole 13' can be fixed to the via hole 13' through a firing process, and the second electrode pattern faces the via hole 13' between them. (200') and the third electrode pattern (300') can be electrically connected.
  • the total number of via holes 13' is two, but the number is not limited thereto.
  • the diameter of the via hole 13' is preferably 0.1 mm or more and 0.3 mm or less. When the diameter of the via hole 13' is 0.1 mm or more and 0.3 mm or less, the via hole 13' can be filled with the metal filler 20' without voids.
  • the diameter of the via hole 13' may be formed to correspond to the thickness of the ceramic substrate 10'. For example, if the thickness of the ceramic substrate 10' is 0.38 mm, the diameter of the via hole 13' is preferably 0.1 mm or more and 0.2 mm or less, and the diameter of the via hole 13' is 0.2 mm. If it is exceeded, the filling efficiency may decrease and a problem may occur where the metal filler 20' falls out of the via hole 13' after firing.
  • the second electrode pattern 200' and the third electrode pattern 300' may be formed to contact the exposed upper and lower surfaces of the metal filler 20'.
  • the via hole 13' is formed in an area where the second electrode pattern 200' and the third electrode pattern 300' face each other. Accordingly, the second electrode pattern 200' and the third electrode pattern 300' may contact the exposed upper and lower surfaces of the metal filler 20' filled in the via hole 13'. Since the ceramic substrate 10' is made of an insulating material, the electrode patterns formed on the upper surface 11' and the lower surface 12' cannot be electrically connected. Therefore, the voltage, current, and signal of the second electrode pattern 200' formed on the lower surface 12' of the ceramic substrate 10' and the third electrode pattern 300' on which the drive IC chip c2' is mounted. If connection is necessary, the second electrode pattern 200' and the third electrode pattern 300' can be connected with the metal filler 20' filled in the via hole 13' to increase current movement efficiency and power It is possible to miniaturize the module.
  • Figure 10 is an enlarged plan view of area A' of Figure 8, and Figure 11 is a side view showing a state in which a power semiconductor chip and a drive IC chip are mounted on a ceramic substrate and wires are connected according to another embodiment of the present invention.
  • Figure 12 is a partial perspective view showing a state in which a drive IC chip is mounted on a ceramic substrate and wires are connected according to another embodiment of the present invention.
  • the third electrode pattern 300' is formed by joining the first pattern area 310' configured to mount the drive IC chip c2' and one end of the second wire w2'. At a position corresponding to the second pattern area 320', the third pattern area 330' connecting the first pattern area 310' and the second pattern area 320', and the via hole 13'. It may be configured to include a formed fourth pattern area 340'.
  • the power semiconductor chip c1' may be bonded to the first electrode pattern 100' and connected to the first electrode pattern 100' and the first wire w1'.
  • the drive IC chip c2' is bonded to the first pattern area 310' of the third electrode pattern 300', and the second pattern area 320' of the third electrode pattern 300' is connected to the first pattern area 310' of the third electrode pattern 300'.
  • the electrode pattern 100' may be connected to the second wire w2'.
  • a capillary '(CA) ') can be used to connect the second pattern area 320' of the third electrode pattern 300' and the first electrode pattern 100' with the second wire w2'.
  • the capillary that performs the wire bonding process moves upward in the vertical direction after forming a primary bonding part on the upper part of the second pattern area 320' of the third electrode pattern 300', and then moves upward in the first electrode pattern ( 100') to form a secondary bonding part.
  • the thickness of the third electrode pattern 300' is about 20 ⁇ m
  • the thickness of the first electrode pattern 100' is about 0.3mm, so there is a height difference of about 280 ⁇ m. Therefore, it takes time to adjust the upper and lower positions of the capillary to match the thickness of the third electrode pattern 300', which inevitably increases manufacturing time and reduces productivity. .
  • the ceramic substrate 1' is formed so that a portion of the upper surface 11' of the ceramic substrate 10' is stepped, so that the first electrode pattern 100' and the first electrode pattern 100' are formed. 3
  • the height difference between the electrode patterns 300' can be reduced.
  • the upper surface 11' of the ceramic substrate 10' is divided into a first area 11a' and a second area 11b' based on the virtual dividing line b' (see FIGS. 8 and 9).
  • the first area 11a' may be formed with a step surface that is recessed downward.
  • the first electrode pattern 100' may be formed on the stepped surface of the downwardly recessed first area 11a'.
  • the height difference with the third electrode pattern 300' formed in the non-indented second region 11b' can be reduced.
  • the depth at which a portion of the upper surface of the ceramic substrate 10' is recessed downward may be the same as the thickness of the first electrode pattern 100'.
  • FIG. 13 is a flowchart for explaining a method for manufacturing a ceramic substrate according to an embodiment of the present invention
  • FIG. 14 is a diagram for explaining a method for manufacturing a ceramic substrate according to an embodiment of the present invention.
  • the method for manufacturing a ceramic substrate includes preparing a ceramic substrate 10 (S10) and forming the upper and lower surfaces 11 and 12 of the ceramic substrate 10. ) forming a first electrode pattern 100 and a second electrode pattern 200 (S20), and a third electrode pattern 300 spaced apart from the first electrode pattern 100 on the upper surface of the ceramic substrate 10. ) may include forming (S30).
  • the ceramic substrate 10 is prepared from any one of alumina (Al 2 O 3 ), AlN, SiN, and Si 3 N 4 .
  • the thickness of the ceramic substrate 10 is 0.3 mm to 0.4 mm.
  • the ceramic substrate 10 can be prepared with a thickness of 0.32 mm or 0.38 mm.
  • the step of forming the first electrode pattern 100 and the second electrode pattern 200 on the upper and lower surfaces 11 and 12 of the ceramic substrate 10 includes forming the first electrode pattern 100 and the second electrode pattern 200 on the upper and lower surfaces 11 and 12 of the ceramic substrate 10.
  • a first electrode pattern 100 may be formed in the area 11a, and a second electrode pattern 200 may be formed on the lower surface 12 of the ceramic substrate 10.
  • the first electrode pattern 100 and the second electrode pattern 200 are made of metal foil to form the ceramic substrate 10.
  • the upper surface 11 and the lower surface 12 can be joined by brazing.
  • Brazing bonding may use a brazing bonding layer made of an alloy material containing at least one of Ag, AgCu, and AgCuTi. Heat treatment for brazing can be performed at 780°C ⁇ 900°C.
  • the first electrode pattern 100 and the second electrode pattern 200 may be made of Cu, Cu alloy (CuMo, etc.), or Al.
  • the third electrode pattern 300 is formed by screen printing a conductive paste. You can.
  • the third electrode pattern 300 since it is formed as a fine pattern with a line and space shape of 100 ⁇ m to 150 ⁇ m, it is preferable to form it by screen printing a conductive paste. Since the standard for line and space is thickness, the line and space shape of the third electrode pattern 300, which is formed thinner than the thickness of the first electrode pattern 100, is finer than that of the first electrode pattern 100. In order to precisely implement such fine patterns, screen printing is preferable.
  • Screen printing has a fast curing speed and excellent adhesion and flexibility, so it is suitable for forming fine patterns.
  • the program automatically corrects the position of the table through the reference index hole on the side and performs printing, so the pattern is precisely positioned in the correct position. Printing is possible.
  • the third electrode pattern 300 is formed through a thin film process.
  • a metal thin film is formed through methods such as deposition, coating, and application, and then a pattern of a desired shape can be formed using a pattern mask.
  • the thin film process can be used to form fine patterns with line and space shapes of 15 ⁇ m to 30 ⁇ m with a thickness of up to 2 ⁇ m.
  • the step of forming the third electrode pattern 300 may further include a firing step. That is, in the step S30 of forming the third electrode pattern 300, a baking process may be performed at 350°C to 600°C to strengthen the bonding strength of the screen-printed conductive paste or the thin film layer formed through the thin film process. At this time, the firing process may be performed in a reducing atmosphere or an oxidizing atmosphere.
  • Figure 15 is a diagram for explaining a method of manufacturing a ceramic substrate according to another embodiment of the present invention.
  • the method of manufacturing a ceramic substrate according to another embodiment of the present invention includes preparing a ceramic substrate 10 (S10) as in one embodiment, and preparing the upper and lower surfaces 11 of the ceramic substrate 10. , 12) forming the first electrode pattern 100 and the second electrode pattern 200 (S20), and a third electrode pattern spaced apart from the first electrode pattern 100 on the upper surface of the ceramic substrate 10. It may include forming (300) (S30).
  • the step (S10) of preparing the ceramic substrate 10 includes the step (S11) of forming a stepped surface in which a portion of the upper surface 11 of the ceramic substrate 10 is recessed downward, and the step of forming the ceramic substrate 10.
  • a step of forming a plurality of via holes 13 penetrating the upper and lower surfaces 11 and 12 (S12), a step of filling the via holes 13 with a metal filler 20 (S13), and a firing step (S14). may include.
  • the depth at which a portion of the upper surface 11 of the ceramic substrate 10 is recessed downward may be the same as the thickness of the first electrode pattern 100.
  • the step (S12) of forming a plurality of via holes 13 penetrating the upper and lower surfaces 11 and 12 of the ceramic substrate 10 is performed by forming a plurality of via holes 13 through the ceramic substrate 10 using a laser drilling method or a photo via method.
  • a plurality of via holes 13 penetrating the upper and lower surfaces 11 and 12 of (10) may be formed.
  • the via hole 13 may be formed in an area where the second electrode pattern 200 and the third electrode pattern 300 face each other so that the second electrode pattern 200 and the third electrode pattern 300 can be connected.
  • the total number of via holes 13 is two, but the number is not limited thereto.
  • the via hole 13 is preferably formed to have a diameter of 0.1 mm or more and 0.3 mm or less.
  • the diameter of the via hole 13 may be formed to correspond to the thickness of the ceramic substrate 10. For example, if the thickness of the ceramic substrate 10 is 0.38 mm, the diameter of the via hole 13 is preferably 0.1 mm or more and 0.2 mm or less, and if the diameter of the via hole 13 exceeds 0.2 mm, Filling efficiency may decrease, and a problem may occur in which the metal filler 20 falls out of the via hole 13 after firing.
  • the metal filler 20 may be filled in the via hole 13 in the form of metal ink (paste).
  • This metal filler 20 may be any one of Ag, W, Mo, and Ag alloy, but is not limited thereto.
  • the metal filler 20 filled in the via hole 13 may be fixed to the via hole 13 through a drying and firing (sintering) process.
  • the firing step (S14) may be performed in a temperature range of 350°C to 600°C, but may be performed at various temperatures depending on the metal filler 20.
  • the step (S20) of forming the first electrode pattern 100 and the second electrode pattern 200 on the upper and lower surfaces 11 and 12 of the ceramic substrate 10 is performed on the upper surface 11 of the ceramic substrate 10.
  • the first electrode pattern 100 may be formed on the first region 11a
  • the second electrode pattern 200 may be formed on the lower surface 12 of the ceramic substrate 10.
  • the first electrode pattern 100 may be formed on the stepped surface of the downwardly recessed first region 11a. Therefore, even if the first electrode pattern 100 is formed thicker than the thickness of the third electrode pattern 300, the height difference with the third electrode pattern 300 formed in the non-indented second region 11b can be reduced. .
  • the depth at which a portion of the upper surface 11 of the ceramic substrate 10 is recessed downward may be the same as the thickness of the first electrode pattern 100. In this way, by reducing the height difference between the first electrode pattern 100 and the third electrode pattern 300, the position adjustment time of the capillary performing the wire bonding process can be reduced by about 1/3, and productivity can be increased. can
  • the first electrode pattern 100 and the second electrode pattern 200 are made of metal foil to form the ceramic substrate 10.
  • the upper surface 11 and the lower surface 12 can be joined by brazing.
  • the metal layer provided with metal foil on the upper surface 11 and the lower surface 12 of the ceramic substrate 10 may be joined by brazing.
  • the drying process can temporarily fix the state in which the metal filler 20 is filled in the via hole 13, and the metal filler 20 is fired during the brazing joining process to form the second electrode pattern 200 and the third electrode pattern. (300) can also be energized.
  • the third electrode pattern 300 is formed by screen printing a conductive paste. or can be formed through a thin film process.
  • the second electrode pattern 200 and the third electrode pattern 300 may be formed to contact the exposed upper and lower surfaces of the metal filler 20.
  • the via hole 13 is formed in an area where the second electrode pattern 200 and the third electrode pattern 300 face each other. Accordingly, the second electrode pattern 200 and the third electrode pattern 300 may contact the exposed upper and lower surfaces of the metal filler 20 filled in the via hole 13. Since the ceramic substrate 10 is made of an insulating material, the electrode patterns formed on the upper surface 11 and the lower surface 12 cannot be electrically connected.
  • the second electrode pattern 200 formed on the lower surface 12 of the ceramic substrate 10 and the third electrode pattern 300 on which the drive IC chip c2 is mounted By connecting the second electrode pattern 200 and the third electrode pattern 300 with the metal filler 20 filled in the via hole 13, the efficiency of current movement can be increased, and the power module can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

본 발명은 세라믹 기판 및 그 제조방법에 관한 것으로, 세라믹 기재와, 세라믹 기재의 상하면에 형성된 제1 전극패턴 및 제2 전극패턴과, 세라믹 기재의 상면에 상기 제1 전극패턴과 이격되어 형성된 제3 전극패턴을 포함하고, 제1 전극패턴은 전력 반도체 칩이 실장되도록 구성되며, 제3 전극패턴은 드라이브 IC 칩이 실장되도록 구성될 수 있다.

Description

세라믹 기판 및 그 제조방법
본 발명은 세라믹 기판 및 그 제조방법에 관한 것으로, 더욱 상세하게는 파워모듈용 세라믹 기판에 구동 회로를 구현하여 소형화가 가능한 세라믹 기판 및 그 제조방법(CERAMIC SUBSTRATE AND MANUFACTURING METHOD THEREOF)에 관한 것이다.
전력 반도체 칩은 정류 및 스위치로서 전자 시스템의 기본적인 부분을 담당하고 있으며, 다이오드, 트랜지스터, 다이리스터 등이 있다. 또한 드라이브 IC 기술의 발전에 따라 IC 집적회로가 개발되었으며, 이러한 IC 집적회로는 일반적인 디지털 또는 아날로그 IC의 전압, 전류에 비해 고전압, 고전류 신호를 처리할 수 있다.
파워모듈의 경우, 고전압, 고전류의 반도체 칩으로부터 사용환경에 따라 고효율, 소형화, 방열 성능을 구현하는 것이 경쟁력으로 부각되고 있다. 일반적으로, 전기자동차, 홈가전, 복합기, 냉장고, 세탁기 등의 파워 인버터나 모터구동 회로 디바이스의 경우, 각각 다른 회로와 소자의 특성으로 인해 구분되어 사용되기 때문에 모듈의 부피 및 크기의 제한으로 많은 성능을 구현하기 어렵고, 소형화가 어렵다는 문제점이 있다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 공개된 종래 기술이 아닌 사항을 포함할 수 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 파워모듈용 반도체 디바이스 부분과 구동회로 또는 일반적인 제어 드라이브 IC 부분을 한 기판에 적용하여 고효율, 소형화가 가능한 세라믹 기판 및 그 제조방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 세라믹 기판은, 세라믹 기재와, 세라믹 기재의 상하면에 형성된 제1 전극패턴 및 제2 전극패턴과, 세라믹 기재의 상면에 제1 전극패턴과 이격되어 형성된 제3 전극패턴을 포함하고, 제1 전극패턴은 전력 반도체 칩이 실장되도록 구성되며, 제3 전극패턴은 드라이브 IC 칩이 실장되도록 구성될 수 있다.
세라믹 기재의 상면 일부는 하방으로 요입된 형태의 단차면이 형성되고, 제1 전극패턴은 단차면 상에 형성될 수 있다. 여기서, 세라믹 기재의 상면 일부가 하방으로 요입된 깊이는 제1 전극패턴의 두께와 동일할 수 있다.
세라믹 기재의 상면은 가상의 분할선을 기준으로 양측에 제1 영역 및 제2 영역으로 분할되고, 제1 영역은 제1 전극패턴이 배치되며, 제2 영역은 제3 전극패턴이 배치될 수 있다.
제1 영역 및 제2 영역은 동일 평면을 이룰 수 있고, 제1 영역의 면적은 제2 영역의 면적보다 더 크게 형성될 수 있다.
제1 영역은 제2 영역보다 낮은 위치에 있을 수 있다.
한편, 세라믹 기재는 상하면을 관통하도록 형성된 복수 개의 비아홀과, 비아홀에 충진된 금속 충진재를 구비하며, 제2 전극패턴 및 제3 전극패턴은 금속 충진재의 노출된 상하면에 접하도록 형성될 수 있다.
제1 전극패턴의 두께는 제3 전극패턴의 두께보다 두껍게 형성될 수 있다.
제2 전극패턴은 제1 전극패턴 및 제3 전극패턴과 마주하도록 세라믹 기재의 하면 전체에 걸쳐 형성될 수 있다.
제1 전극패턴은 복수의 전극이 소정 패턴으로 배치될 수 있다.
본 발명의 실시예에 따른 세라믹 기판 제조 방법은, 세라믹 기재를 준비하는 단계와, 세라믹 기재의 상하면에 제1 전극패턴 및 제2 전극패턴을 형성하는 단계와, 세라믹 기재의 상면에 제1 전극패턴과 이격된 제3 전극패턴을 형성하는 단계를 포함하고, 제1 전극패턴은 전력 반도체 칩이 실장되도록 구성되며, 제3 전극패턴은 드라이브 IC 칩이 실장되도록 구성될 수 있다.
세라믹 기재를 준비하는 단계는, 세라믹 기재의 상면 일부가 하방으로 요입된 형태의 단차면을 형성하는 단계를 포함하며, 제1 전극패턴은 단차면 상에 형성할 수 있다.
세라믹 기재를 준비하는 단계는, 세라믹 기재의 상하면을 관통하는 복수 개의 비아홀을 형성하는 단계와, 비아홀에 금속 충진재를 충진하는 단계와, 소성하는 단계를 더 포함할 수 있다.
제2 전극패턴 및 제3 전극패턴은 금속 충진재의 노출된 상하면에 접하도록 형성할 수 있다.
단차면을 형성하는 단계에서, 세라믹 기재의 상면 일부가 하방으로 요입되는 깊이는 제1 전극패턴의 두께와 동일할 수 있다.
제1 전극패턴 및 제2 전극패턴을 형성하는 단계에서, 제1 전극패턴 및 제2 전극패턴은 금속박으로 구비되어 세라믹 기재의 상면과 하면에 브레이징 접합될 수 있다.
제3 전극패턴을 형성하는 단계는, 도전성 페이스트를 스크린 인쇄하여 제3 전극패턴을 형성할 수 있다. 한편, 제3 전극패턴을 형성하는 단계에서, 제3 전극패턴은 박막 공정(Thin Film Process)으로 형성할 수도 있다.
제3 전극패턴을 형성하는 단계는, 소성하는 단계를 더 포함할 수 있다. 여기서, 소성하는 단계는, 350℃ 내지 600℃ 범위의 온도에서 소성 공정을 수행할 수 있다.
본 발명은 파워모듈용 반도체 디바이스 부분과 구동회로 또는 일반적인 제어 드라이브 IC 부분을 한 기판에 구현하여 고효율, 소형화, 경량화가 가능하다.
또한, 본 발명은 파워모듈용 기판 및 드라이브 IC가 일체형인 하이브리드 구조의 DIL(Dual in Line) 구조이기 때문에 전자부품부터 에너지 분야까지 다양한 분야에 활용 가능하다.
또한, 본 발명은 제1 전극패턴의 두께에 비해 얇고, 미세 패턴으로 형성된 제3 전극패턴을 스크린 인쇄하여 형성함으로써 인쇄 시 패턴 위치를 자동으로 보정하면서 정밀하게 패턴 인쇄가 가능하다.
또한, 본 발명은 세라믹 기재의 하면에 형성되는 제2 전극패턴과 드라이브 IC 칩이 실장되는 제3 전극패턴의 전압, 전류, 신호 연결이 필요한 경우, 제2 전극패턴과 제3 전극패턴을 비아홀에 충진된 금속 충진재로 연결하여 전류의 이동 효율을 높일 수 있고, 파워모듈의 소형화가 가능하다.
또한, 본 발명은 세라믹 기재의 상면 일부가 하방으로 요입된 형태의 단차면 상에 제1 전극패턴이 형성될 수 있기 때문에, 제1 전극패턴이 제3 전극패턴의 두께보다 두껍게 형성되더라도, 제3 전극패턴과의 높이 차이를 줄여 와이어 본딩 시 캐필러리의 위치 조정 시간을 약 1/3 정도로 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 평면도이다.
도 4는 도 3의 a-a'선에 따른 단면도이다.
도 5는 도 3의 A 영역을 확대한 평면도이다.
도 6은 본 발명의 일 실시예에 따른 세라믹 기판에 전력 반도체 칩 및 드라이브 IC 칩이 실장되고, 와이어가 연결된 상태를 도시한 측면도이다.
도 7은 본 발명의 다른 실시예에 따른 세라믹 기판을 도시한 분해 사시도이다.
도 8은 본 발명의 다른 실시예에 따른 세라믹 기판을 도시한 평면도이다.
도 9는 도 8의 a-a'선에 따른 단면도이다.
도 10은 도 8의 A' 영역을 확대한 평면도이다.
도 11은 본 발명의 다른 실시예에 따른 세라믹 기판에 전력 반도체 칩 및 드라이브 IC 칩이 실장되고, 와이어가 연결된 상태를 도시한 측면도이다.
도 12는 본 발명의 다른 실시예에 따른 세라믹 기판에 드라이브 IC 칩이 실장되고, 와이어가 연결되는 상태를 도시한 부분 사시도이다.
도 13은 본 발명의 일 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 흐름도이다.
도 14는 본 발명의 일 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 도면이다.
도 15는 본 발명의 다른 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다.
실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이고, 하기 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것은 아니다. 오히려, 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 또한, 본 명세서에서 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "위(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "위(on)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여(indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 하는 것을 원칙으로 한다.
도면은 본 발명의 사상을 이해할 수 있도록 하기 위한 것일 뿐, 도면에 의해서 본 발명의 범위가 제한되는 것으로 해석되지 않아야 한다. 또한 도면에서 상대적인 두께, 길이나 상대적인 크기는 설명의 편의 및 명확성을 위해 과장될 수 있다.
도 1은 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 분해 사시도이며, 도 3은 본 발명의 일 실시예에 따른 세라믹 기판을 도시한 평면도이고, 도 4는 도 3의 a-a'선에 따른 단면도이다.
도 1 내지 도 4에 도시된 바에 의하면, 본 발명의 일 실시예에 따른 세라믹 기판(1)은 세라믹 기재(10), 제1 전극패턴(100) 및 제2 전극패턴(200), 제3 전극패턴(300)을 포함하여 구성될 수 있다.
세라믹 기재(10)는 알루미나(Al2O3), AlN, SiN, Si3N4 중 어느 하나인 것을 일 예로 할 수 있다. 세라믹 기재(10)의 두께는 0.3mm~0.4mm이다. 일례로, 세라믹 기재(10)의 두께는 0.32mm 또는 0.38mm인 것을 준비할 수 있다.
제1 전극패턴(100) 및 제2 전극패턴(200)은 세라믹 기재(10)의 상하면(11,12)에 형성될 수 있다. 또한, 제3 전극패턴(300)은 세라믹 기재(10)의 상면(11)에 제1 전극패턴(100)과 이격되어 형성될 수 있다. 구체적으로, 세라믹 기재(10)의 상면은 가상의 분할선(b)(도 3 및 도 4 참조)을 기준으로 양측에 제1 영역(11a) 및 제2 영역(11b)으로 분할될 수 있다. 여기서, 제1 영역(11a)과 제2 영역(11b)은 동일 평면을 이룰 수 있다. 또한, 제1 영역(11a)의 면적은 제2 영역(11b)의 면적보다 더 크게 형성될 수 있다. 제1 영역(11a)은 제1 전극패턴(100)이 배치되고, 제2 영역(11b)은 제3 전극패턴(300)이 배치될 수 있다.
제1 전극패턴(100) 및 제2 전극패턴(200)은 금속박으로 구비되어 세라믹 기재(10)의 상면(11)과 하면(12)에 브레이징 접합되고, 이후에 에칭 가공, 기계 가공 등에 의해 전극패턴으로 형성될 수 있다. 브레이징 접합은 Ag, AgCu, AgCuTi 중 적어도 하나를 포함하는 합금재료로 이루어진 브레이징 접합층을 이용할 수 있다. 브레이징을 위한 열처리는 780℃~900℃에서 수행할 수 있다. 이러한 세라믹 기판(1)을 AMB(Active Metal Brazing) 기판이라 하며, 이러한 AMB 기판은 내구성 및 방열 성능이 우수하다. 본 실시예는 AMB 기판을 예로 들어 설명하나 DBC(Direct Bonding Copper) 기판, TPC(Thick Printing Copper) 기판을 적용할 수도 있다.
본 실시예에서는 제2 전극패턴(200)이 평판 형태로 형성된 예를 도시하고 있으나, 이에 한정되지 않으며, 제2 전극패턴(200)은 반도체 칩, 제품 스펙 등에 따라 회로 패턴 형태로 형성될 수도 있다. 제1 전극패턴(100) 및 제2 전극패턴(200)은 Cu, Cu 합금(CuMo 등), Al 중 하나로 이루어지는 것을 일 예로 할 수 있다.
제1 전극패턴(100)은 전력 반도체 칩(c1)(도 6 참조)이 실장되도록 구성될 수 있다. 예컨대, 제1 전극패턴(100)은 고내압, 고전류, 고온 작동, 고주파수 환경에서의 사용과 고속 스위칭, 전력 손실 최소화, 소형 칩 사이즈 등의 요구에 대응할 수 있는 SiC와 GaN 기반의 전력 반도체 칩(c1)이 실장될 수 있다. 제1 전극패턴(100)은 SiC 칩과 GaN 칩 이외에도 Si 칩, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), IGBT(Insulated Gate Bipolar Transistor), JFET(Junction Field Effect Transistor), HEMT(High Electric Mobility Transistor), 다이오드(Diode) 등의 다양한 소자가 실장될 수 있다. 이러한 제1 전극패턴(100)은 복수의 전극이 소정 패턴으로 배치될 수 있다.
제3 전극패턴(300)은 드라이브 IC 칩(c2)(도 6 참조)이 실장되도록 구성될 수 있다. 일례로, 제3 전극패턴(300)은 SOI(Silicon On Insulator) 기반의 구동, 전기, 전자 제어용 소자가 실장될 수 있다. 제3 전극패턴(300)은 Ag, Au, Pt, Cu, Ag 합금, Carbon Black 중 하나로 이루어지는 것을 일 예로 할 수 있다.
제1 전극패턴(100)은 전력 반도체 칩(c1)이 실장되도록 구성되어 대전류가 흐르는 부분이고, 제3 전극패턴(300)은 드라이브 IC 칩(c2)이 실장되도록 구성되어 소전류가 흐르는 부분이므로 제1 전극패턴(100)의 두께는 제3 전극패턴(300)의 두께보다 두껍게 형성될 수 있다. 일 예로, 제1 전극패턴(100)의 두께는 약 0.3mm이고, 제3 전극패턴(300)의 두께는 약 20㎛일 수 있으나, 이에 한정되지는 않는다.
제2 전극패턴(200)은 열전달을 용이하게 하기 위해 세라믹 기재(10)의 하면(12) 전체에 걸쳐 넓은 면적으로 형성될 수 있다. 이러한 제2 전극패턴(200)은 일측 영역이 제1 전극패턴(100)과 마주하고, 타측 영역이 제3 전극패턴(300)과 마주할 수 있다.
도 5는 도 3의 A 영역을 확대한 평면도이고, 도 6은 본 발명의 일 실시예에 따른 세라믹 기판에 전력 반도체 칩 및 드라이브 IC 칩이 실장되고, 와이어가 연결된 상태를 도시한 측면도이다.
도 5에 도시된 바에 의하면, 제3 전극패턴(300)은 드라이브 IC 칩(c2)이 실장되도록 구성된 제1 패턴영역(310)과, 제2 와이어(w2)의 일단이 접합되는 제2 패턴영역(320)과, 제1 패턴영역(310) 및 제2 패턴영역(320)을 연결하는 제3 패턴영역(330)과, 제1 패턴영역(310)의 중심부로부터 양측으로 연장 형성된 제4 패턴영역(340)을 포함하여 구성될 수 있다. 여기서, 제2 패턴영역(320)은 제1 패턴영역(310)을 기준으로 양측에 복수 개가 배치될 수 있고, 제3 패턴영역(330)은 제1 패턴영역(310)과 제2 패턴영역(320)을 연결하도록 양측으로 일정 길이만큼 연장된 형태일 수 있다.
도 6에 도시된 바에 의하면, 전력 반도체 칩(c1)은 제1 전극패턴(100)에 접합되고, 제1 전극패턴(100)과 제1 와이어(w1)로 연결될 수 있다. 여기서, 제1 와이어(w1)는 Al 와이어일 수 있으나, 이에 한정되지는 않는다. 또한, 드라이브 IC 칩(c2)은 제3 전극패턴(300)의 제1 패턴영역(310)에 접합되고, 제3 전극패턴(300)의 제2 패턴영역(320)은 제1 전극패턴(100)과 제2 와이어(w2)로 연결될 수 있다. 여기서, 제2 와이어(w2)는 Au로 이루어질 수 있으나, 이에 한정되지는 않는다.
이와 같이, 본 발명의 일 실시예에 따른 세라믹 기판(1)은 세라믹 기재(10)의 상면(11)에 전력 반도체 칩(c1)과 드라이브 IC 칩(c2)이라는 2가지 기능의 칩이 실장되는 이중(dual) 전극 구조의 세라믹 기판(1)인 것을 특징으로 한다. 이러한 이중 전극 구조의 세라믹 기판(1)은 드라이브 IC 모듈과 파워모듈 각각을 별도로 구비하는 경우와 대비하여 사이즈를 작게 할 수 있고, 경량화가 가능하며 방열 효율을 높일 수 있고, 홈가전 및 전기차용 모듈 등 다양하게 적용 가능하다는 장점이 있다.
이하, 도 7 내지 도 12를 참조하여, 본 발명의 다른 실시예에 따른 세라믹 기판을 설명하기로 한다. 설명의 편의상, 도 1 내지 도 6에 도시된 일 실시예와 동일한 구성 요소에 대한 설명은 생략하며, 이하 차이점을 위주로 설명하기로 한다.
도 7은 본 발명의 다른 실시예에 따른 세라믹 기판을 도시한 분해 사시도이고, 도 8은 본 발명의 다른 실시예에 따른 세라믹 기판을 도시한 평면도이며, 도 9는 도 8의 a-a'선에 따른 단면도이다.
도 7 내지 도 9에 도시된 바에 의하면, 본 발명의 다른 실시예에 따른 세라믹 기판(1')은 세라믹 기재(10'), 제1 전극패턴(100') 및 제2 전극패턴(200'), 제3 전극패턴(300')을 포함하여 구성되며, 여기서 세라믹 기재(10')의 상면은 가상의 분할선(b')(도 8 및 도 9 참조')을 기준으로 양측에 제1 영역(11a') 및 제2 영역(11b')으로 분할될 수 있다. 여기서, 제1 영역(11a')은 하방으로 요입된 형태의 단차면이 형성되어 제2 영역(11b')보다 낮은 위치에 있고, 제2 영역(11b')의 면적보다 더 크게 형성될 수 있다. 제1 영역(11a')은 제1 전극패턴(100')이 배치되고, 제2 영역(11b')은 제3 전극패턴(300')이 배치될 수 있다.
또한, 세라믹 기재(10')는 상하면(11,12')을 관통하도록 형성된 복수 개의 비아홀(13')을 구비할 수 있다. 비아홀(13')에는 금속 충진재(20')가 충진될 수 있다. 금속 충진재(20')는 Ag, W, Mo, Ag 합금 중 어느 하나일 수 있으나, 이에 한정되지는 않는다. 비아홀(13')에 충진된 금속 충진재(20')는 소성(소결')하는 과정을 통해 비아홀(13')에 고정될 수 있고, 비아홀(13')을 사이에 두고 마주하는 제2 전극패턴(200')과 제3 전극패턴(300')을 통전시킬 수 있다.
본 실시예에서, 비아홀(13')의 개수는 총 2개이지만, 이에 한정되지는 않는다. 비아홀(13')의 직경은 0.1mm 이상 0.3mm 이하로 형성하는 것이 바람직하다. 비아홀(13')의 직경을 0.1mm 이상 0.3mm 이하로 형성할 경우, 비아홀(13')에 금속 충진재(20')를 보이드 없이 충진할 수 있다. 비아홀(13')의 직경은 세라믹 기재(10')의 두께에 대응하여 형성할 수 있다. 일례로, 세라믹 기재(10')의 두께가 0.38mm이면, 이에 대응하여 비아홀(13')의 직경은 0.1mm 이상 0.2mm 이하로 형성하는 것이 바람직하며 비아홀(13')의 직경이 0.2mm를 초과할 경우 충진 효율이 떨어지고, 소성 후 금속 충진재(20')가 비아홀(13')에서 빠지는 문제가 발생할 수 있다.
제2 전극패턴(200')과 제3 전극패턴(300')은 금속 충진재(20')의 노출된 상하면에 접하도록 형성될 수 있다. 비아홀(13')은 제2 전극패턴(200')과 제3 전극패턴(300')이 마주하는 영역에 형성된다. 따라서, 제2 전극패턴(200') 및 제3 전극패턴(300')은 비아홀(13')에 충진된 금속 충진재(20')의 노출된 상하면에 접할 수 있다. 세라믹 기재(10')는 절연 재질로 형성되므로 상면(11')과 하면(12')에 형성된 전극패턴의 전기적 연결이 불가능한 구조이다. 따라서, 세라믹 기재(10')의 하면(12')에 형성되는 제2 전극패턴(200')과 드라이브 IC 칩(c2')이 실장되는 제3 전극패턴(300')의 전압, 전류, 신호 연결이 필요한 경우, 제2 전극패턴(200')과 제3 전극패턴(300')을 비아홀(13')에 충진된 금속 충진재(20')로 연결하여 전류의 이동 효율을 높일 수 있고, 파워모듈의 소형화가 가능하다.
도 10은 도 8의 A' 영역을 확대한 평면도이고, 도 11은 본 발명의 다른 실시예에 따른 세라믹 기판에 전력 반도체 칩 및 드라이브 IC 칩이 실장되고, 와이어가 연결된 상태를 도시한 측면도이며, 도 12는 본 발명의 다른 실시예에 따른 세라믹 기판에 드라이브 IC 칩이 실장되고, 와이어가 연결되는 상태를 도시한 부분 사시도이다.
도 10에 도시된 바에 의하면, 제3 전극패턴(300')은 드라이브 IC 칩(c2')이 실장되도록 구성된 제1 패턴영역(310')과, 제2 와이어(w2')의 일단이 접합되는 제2 패턴영역(320')과, 제1 패턴영역(310') 및 제2 패턴영역(320')을 연결하는 제3 패턴영역(330')과, 비아홀(13')에 대응되는 위치에 형성된 제4 패턴영역(340')을 포함하여 구성될 수 있다.
도 11을 참조하면, 전력 반도체 칩(c1')은 제1 전극패턴(100')에 접합되고, 제1 전극패턴(100')과 제1 와이어(w1')로 연결될 수 있다.
또한, 드라이브 IC 칩(c2')은 제3 전극패턴(300')의 제1 패턴영역(310')에 접합되고, 제3 전극패턴(300')의 제2 패턴영역(320')은 제1 전극패턴(100')과 제2 와이어(w2')로 연결될 수 있다. 구체적으로, 도 12에 도시된 바와 같이, 제3 전극패턴(300')의 제1 패턴영역(310')에 드라이브 IC 칩(c2')이 실장된 상태에서 캐필러리(Capillary')(CA')를 이용하여 제3 전극패턴(300')의 제2 패턴영역(320')과 제1 전극패턴(100')을 제2 와이어(w2')로 연결할 수 있다.
와이어 본딩 공정을 수행하는 캐필러리는 제3 전극패턴(300')의 제2 패턴영역(320') 상부에 1차 본딩부를 형성한 후 수직 방향으로 상승 이동하고, 이후에 제1 전극패턴(100')으로 이동하여 2차 본딩부를 형성할 수 있다. 이때, 제3 전극패턴(300')의 두께는 약 20㎛이고, 제1 전극패턴(100')의 두께는 약 0.3mm이므로 약 280㎛의 높이 차이가 존재한다. 따라서, 제3 전극패턴(300')의 두께에 맞춰진 캐필러리의 상하 위치를 제1 전극패턴(100')의 두께에 맞도록 조정하는 시간이 필요하므로 그만큼 제조 시간이 늘어나고 생산성이 저하될 수밖에 없다.
이러한 문제점을 해결하기 위하여, 본 발명의 다른 실시예에 따른 세라믹 기판(1')은 세라믹 기재(10')의 상면(11') 일부가 단차지게 형성되어 제1 전극패턴(100')과 제3 전극패턴(300')의 높이 차이를 줄일 수 있다. 구체적으로, 세라믹 기재(10')의 상면(11')을 가상의 분할선(b')(도 8 및 도 9 참조)을 기준으로 제1 영역(11a') 및 제2 영역(11b')으로 구분했을 때, 제1 영역(11a')은 하방으로 요입된 형태의 단차면이 형성될 수 있다. 여기서, 제1 전극패턴(100')은 하방으로 요입된 제1 영역(11a')의 단차면 상에 형성될 수 있다. 따라서, 제1 전극패턴(100')이 제3 전극패턴(300')의 두께보다 두껍게 형성되더라도, 요입되지 않은 제2 영역(11b')에 형성된 제3 전극패턴(300')과의 높이 차이를 줄일 수 있다. 이때, 세라믹 기재(10')의 상면 일부가 하방으로 요입된 깊이는 제1 전극패턴(100')의 두께와 동일할 수 있다. 이와 같이, 제1 전극패턴(100')과 제3 전극패턴(300')의 높이 차이를 줄임으로써, 캐필러리의 위치 조정 시간을 약 1/3 정도로 줄일 수 있다.
이하, 도 13 및 도 14를 참조하여, 본 발명의 일 실시예에 따른 세라믹 기판 제조방법에 대해서 설명하기로 한다.
도 13은 본 발명의 일 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 흐름도이고, 도 14는 본 발명의 일 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 도면이다.
도 13 및 도 14에 도시된 바에 의하면, 본 발명의 일 실시예에 따른 세라믹 기판 제조방법은, 세라믹 기재(10)를 준비하는 단계(S10)와, 세라믹 기재(10)의 상하면(11,12)에 제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)와, 세라믹 기재(10)의 상면에 제1 전극패턴(100)과 이격된 제3 전극패턴(300)을 형성하는 단계(S30)를 포함할 수 있다.
세라믹 기재(10)를 준비하는 단계(S10)는, 알루미나(Al2O3), AlN, SiN 및 Si3N4 중 어느 하나의 재질로 준비한다. 세라믹 기재(10)의 두께는 0.3mm~0.4mm이다. 일례로, 세라믹 기재(10)의 두께는 0.32mm 또는 0.38mm인 것을 준비할 수 있다.
세라믹 기재(10)의 상하면(11,12)에 제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)는, 세라믹 기재(10)의 상면(11) 중 제1 영역(11a)에 제1 전극패턴(100)을 형성하고, 세라믹 기재(10)의 하면(12)에 제2 전극패턴(200)을 형성할 수 있다.
제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)에서, 제1 전극패턴(100) 및 제2 전극패턴(200)은 금속박으로 구비되어 세라믹 기재(10)의 상면(11)과 하면(12)에 브레이징 접합될 수 있다. 브레이징 접합은 Ag, AgCu, AgCuTi 중 적어도 하나를 포함하는 합금재료로 이루어진 브레이징 접합층을 이용할 수 있다. 브레이징을 위한 열처리는 780℃~900℃에서 수행할 수 있다. 제1 전극패턴(100) 및 제2 전극패턴(200)은 Cu, Cu 합금(CuMo 등), Al 중 하나로 이루어지는 것을 일 예로 할 수 있다.
세라믹 기재(10)의 상면에 제1 전극패턴(100)과 이격된 제3 전극패턴(300)을 형성하는 단계(S30)는, 도전성 페이스트를 스크린 인쇄하여 제3 전극패턴(300)을 형성할 수 있다. 제3 전극패턴(300)의 경우, 100㎛ 내지 150㎛의 라인 앤드 스페이스(line and space) 형상을 가진 미세 패턴으로 형성되므로 도전성 페이스트를 스크린 인쇄하여 형성하는 것이 바람직하다. 라인 앤드 스페이스의 기준은 두께이므로, 제1 전극패턴(100)의 두께에 비해 얇게 형성된 제3 전극패턴(300)의 라인 앤드 스페이스 형상은 제1 전극패턴(100)보다 더 미세하다. 이러한 미세 패턴을 정밀하게 구현하기 위해서는 스크린 인쇄하는 것이 바람직하다. 스크린 인쇄는 경화 속도가 빠르고, 접착성 및 굴곡성이 우수하므로 미세 패턴 형성에 적합하다. 또한, 스크린 마스크 아래에 제품이 안착된 테이블을 배치하고 스크린 공정을 수행할 때, 사이드 측의 기준 인덱스 홀을 통해 프로그램이 테이블의 위치를 자동으로 보정하면서 인쇄를 수행하기 때문에 정위치에 정밀하게 패턴 인쇄가 가능하다.
한편, 세라믹 기재(10)의 상면에 제1 전극패턴(100)과 이격된 제3 전극패턴(300)을 형성하는 단계(S30)에서, 제3 전극패턴(300)은 박막 공정(Thin Film Process)으로 형성할 수도 있다. 박막 공정은 증착, 코팅, 도포 등의 방법으로 금속 박막을 형성한 후 패턴 마스크를 이용하여 원하는 형태의 패턴을 형성할 수 있다. 박막 공정은 15㎛ 내지 30㎛의 라인 앤드 스페이스(line and space) 형상을 가진 미세 패턴을 최대 2㎛의 두께로 형성할 때 사용할 수 있다.
한편, 제3 전극패턴(300)을 형성하는 단계(S30)는, 소성하는 단계를 더 포함할 수 있다. 즉, 제3 전극패턴(300)을 형성하는 단계(S30)에서 스크린 인쇄한 도전성 페이스트 또는 박막 공정으로 형성한 박막층의 접합력 강화를 위해 350℃ 내지 600℃로 소성 공정을 진행할 수 있다. 이때, 소성 공정은 환원 분위기 또는 산화 분위기에서 실시할 수 있다.
이하, 도 15를 참조하여, 본 발명의 다른 실시예에 따른 세라믹 기판 제조방법에 대해서 설명하기로 한다.
도 15는 본 발명의 다른 실시예에 따른 세라믹 기판 제조방법을 설명하기 위한 도면이다.
도 15에 도시된 바에 의하면, 본 발명의 다른 실시예에 따른 세라믹 기판 제조방법은, 일 실시예와 마찬가지로 세라믹 기재(10)를 준비하는 단계(S10)와, 세라믹 기재(10)의 상하면(11,12)에 제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)와, 세라믹 기재(10)의 상면에 제1 전극패턴(100)과 이격된 제3 전극패턴(300)을 형성하는 단계(S30)를 포함할 수 있다.
여기서, 세라믹 기재(10)를 준비하는 단계(S10)는, 세라믹 기재(10)의 상면(11) 일부가 하방으로 요입된 형태의 단차면을 형성하는 단계(S11)와, 세라믹 기재(10)의 상하면(11,12)을 관통하는 복수 개의 비아홀(13)을 형성하는 단계(S12)와, 비아홀(13)에 금속 충진재(20)를 충진하는 단계(S13)와, 소성하는 단계(S14)를 포함할 수 있다. 단차면을 형성하는 단계(S11)에서, 세라믹 기재(10)의 상면(11) 일부가 하방으로 요입된 깊이는 제1 전극패턴(100)의 두께와 동일할 수 있다.
세라믹 기재(10)의 상하면(11,12)을 관통하는 복수 개의 비아홀(13)을 형성하는 단계(S12)는, 레이저 드릴링(Laser Drilling) 공법 또는 포토 비아(Photo via) 공법을 이용하여 세라믹 기재(10)의 상하면(11,12)을 관통하는 복수 개의 비아홀(13)을 형성할 수 있다. 비아홀(13)은 제2 전극패턴(200)과 제3 전극패턴(300)을 연결할 수 있도록 제2 전극패턴(200)과 제3 전극패턴(300)이 마주하는 영역에 형성할 수 있다. 본 실시예에서, 비아홀(13)의 개수는 총 2개이지만, 이에 한정되지는 않는다.
비아홀(13)은 직경을 0.1mm 이상 0.3mm 이하로 형성하는 것이 바람직하다. 비아홀(13)의 직경을 0.1mm 이상 0.3mm 이하로 형성할 경우, 비아홀(13)에 금속 충진재(20)를 보이드 없이 충진할 수 있다. 비아홀(13)의 직경은 세라믹 기재(10)의 두께에 대응하여 형성할 수 있다. 일례로, 세라믹 기재(10)의 두께가 0.38mm이면, 이에 대응하여 비아홀(13)의 직경은 0.1mm 이상 0.2mm 이하로 형성하는 것이 바람직하며 비아홀(13)의 직경이 0.2mm를 초과할 경우 충진 효율이 떨어지고, 소성 후 금속 충진재(20)가 비아홀(13)에서 빠지는 문제가 발생할 수 있다.
비아홀(13)에 금속 충진재(20)를 충진하는 단계(S13)에서, 금속 충진재(20)는 금속 잉크(페이스트) 형태로 비아홀(13)에 충진될 수 있다. 이러한 금속 충진재(20)는 Ag, W, Mo, Ag 합금 중 어느 하나일 수 있으나, 이에 한정되지는 않는다.
소성하는 단계(S14)에서, 비아홀(13)에 충진된 금속 충진재(20)는 건조, 소성(소결)하는 과정을 통해 비아홀(13)에 고정될 수 있다. 소성하는 단계(S14)는 350℃ 내지 600℃ 온도 범위에서 수행할 수 있으나, 금속 충진재(20)에 따라 다양한 온도에서 수행할 수 있다.
이후에, 세라믹 기재(10)의 상하면(11,12)에 제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)는, 세라믹 기재(10)의 상면(11) 중 제1 영역(11a)에 제1 전극패턴(100)을 형성하고, 세라믹 기재(10)의 하면(12)에 제2 전극패턴(200)을 형성할 수 있다. 여기서, 제1 전극패턴(100)은 하방으로 요입된 제1 영역(11a)의 단차면 상에 형성할 수 있다. 따라서, 제1 전극패턴(100)이 제3 전극패턴(300)의 두께보다 두껍게 형성되더라도, 요입되지 않은 제2 영역(11b)에 형성된 제3 전극패턴(300)과의 높이 차이를 줄일 수 있다. 이때, 세라믹 기재(10)의 상면(11) 일부가 하방으로 요입된 깊이는 제1 전극패턴(100)의 두께와 동일할 수 있다. 이와 같이, 제1 전극패턴(100)과 제3 전극패턴(300)의 높이 차이를 줄임으로써, 와이어 본딩 공정을 수행하는 캐필러리의 위치 조정 시간을 약 1/3 정도로 줄일 수 있고, 생산성을 높일 수 있다
제1 전극패턴(100) 및 제2 전극패턴(200)을 형성하는 단계(S20)에서, 제1 전극패턴(100) 및 제2 전극패턴(200)은 금속박으로 구비되어 세라믹 기재(10)의 상면(11)과 하면(12)에 브레이징 접합될 수 있다. 한편, 세라믹 기재(10)의 비아홀(13)에 금속 충진재(20)를 충진하고 건조한 다음, 세라믹 기재(10)의 상면(11)과 하면(12)에 금속박으로 구비된 금속층을 브레이징 접합할 수도 있다. 여기서, 건조 공정은 금속 충진재(20)가 비아홀(13)에 충진된 상태를 임시 고정할 수 있고, 브레이징 접합 과정에서 금속 충진재(20)가 소성되어 제2 전극패턴(200) 및 제3 전극패턴(300)을 통전시킬 수도 있다.
이후에, 세라믹 기재(10)의 상면에 제1 전극패턴(100)과 이격된 제3 전극패턴(300)을 형성하는 단계(S30)는, 도전성 페이스트를 스크린 인쇄하여 제3 전극패턴(300)을 형성하거나, 박막 공정(Thin Film Process)으로 형성할 수 있다.
제2 전극패턴(200) 및 제3 전극패턴(300)은 금속 충진재(20)의 노출된 상하면에 접하도록 형성할 수 있다. 비아홀(13)은 제2 전극패턴(200)과 제3 전극패턴(300)이 마주하는 영역에 형성된다. 따라서, 제2 전극패턴(200) 및 제3 전극패턴(300)은 비아홀(13)에 충진된 금속 충진재(20)의 노출된 상하면에 접할 수 있다. 세라믹 기재(10)는 절연 재질로 형성되므로 상면(11)과 하면(12)에 형성된 전극패턴의 전기적 연결이 불가능한 구조이다. 따라서, 세라믹 기재(10)의 하면(12)에 형성되는 제2 전극패턴(200)과 드라이브 IC 칩(c2)이 실장되는 제3 전극패턴(300)의 전압, 전류, 신호 연결이 필요할 경우, 제2 전극패턴(200)과 제3 전극패턴(300)을 비아홀(13)에 충진된 금속 충진재(20)로 연결하여 전류의 이동 효율을 높일 수 있고, 파워모듈의 소형화가 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 세라믹 기재;
    상기 세라믹 기재의 상하면에 형성된 제1 전극패턴 및 제2 전극패턴; 및
    상기 세라믹 기재의 상면에 상기 제1 전극패턴과 이격되어 형성된 제3 전극패턴을 포함하고,
    상기 제1 전극패턴은 전력 반도체 칩이 실장되도록 구성되며,
    상기 제3 전극패턴은 드라이브 IC 칩이 실장되도록 구성된 세라믹 기판.
  2. 제1항에 있어서,
    상기 세라믹 기재의 상면 일부는 하방으로 요입된 형태의 단차면이 형성되고,
    상기 제1 전극패턴은 상기 단차면 상에 형성된 세라믹 기판.
  3. 제2항에 있어서,
    상기 세라믹 기재의 상면 일부가 하방으로 요입된 깊이는 상기 제1 전극패턴의 두께와 동일한 세라믹 기판.
  4. 제1항에 있어서,
    상기 세라믹 기재의 상면은 가상의 분할선을 기준으로 양측에 제1 영역 및 제2 영역으로 분할되고,
    상기 제1 영역은 상기 제1 전극패턴이 배치되며, 상기 제2 영역은 상기 제3 전극패턴이 배치된 세라믹 기판.
  5. 제4항에 있어서,
    상기 제1 영역 및 상기 제2 영역은 동일 평면을 이루는 세라믹 기판.
  6. 제4항에 있어서,
    상기 제1 영역의 면적은 상기 제2 영역의 면적보다 더 큰 세라믹 기판.
  7. 제4항에 있어서,
    상기 제1 영역은 상기 제2 영역보다 낮은 위치에 있는 세라믹 기판.
  8. 제1항에 있어서,
    상기 세라믹 기재는,
    상하면을 관통하도록 형성된 복수 개의 비아홀; 및
    상기 비아홀에 충진된 금속 충진재를 구비하며,
    상기 제2 전극패턴 및 상기 제3 전극패턴은 상기 금속 충진재의 노출된 상하면에 접하도록 형성된 세라믹 기판.
  9. 제1항에 있어서,
    상기 제1 전극패턴의 두께는 상기 제3 전극패턴의 두께보다 두꺼운 세라믹 기판.
  10. 제1항에 있어서,
    상기 제2 전극패턴은 상기 제1 전극패턴 및 상기 제3 전극패턴과 마주하도록 상기 세라믹 기재의 하면 전체에 걸쳐 형성되는 세라믹 기판.
  11. 제1항에 있어서,
    상기 제1 전극패턴은 복수의 전극이 소정 패턴으로 배치된 세라믹 기판.
  12. 세라믹 기재를 준비하는 단계;
    상기 세라믹 기재의 상하면에 제1 전극패턴 및 제2 전극패턴을 형성하는 단계;
    상기 세라믹 기재의 상면에 상기 제1 전극패턴과 이격된 제3 전극패턴을 형성하는 단계를 포함하고,
    상기 제1 전극패턴은 전력 반도체 칩이 실장되도록 구성되며,
    상기 제3 전극패턴은 드라이브 IC 칩이 실장되도록 구성된 세라믹 기판 제조방법.
  13. 제12항에 있어서,
    상기 세라믹 기재를 준비하는 단계는,
    상기 세라믹 기재의 상면 일부가 하방으로 요입된 형태의 단차면을 형성하는 단계를 포함하며,
    상기 제1 전극패턴은 상기 단차면 상에 형성하는 세라믹 기판 제조방법.
  14. 제13항에 있어서,
    상기 세라믹 기재를 준비하는 단계는,
    상기 세라믹 기재의 상하면을 관통하는 복수 개의 비아홀을 형성하는 단계;
    상기 비아홀에 금속 충진재를 충진하는 단계; 및
    소성하는 단계를 더 포함하는 세라믹 기판 제조방법.
  15. 제14항에 있어서,
    상기 제2 전극패턴 및 제3 전극패턴은 상기 금속 충진재의 노출된 상하면에 접하도록 형성하는 세라믹 기판 제조방법.
  16. 제13항에 있어서,
    상기 단차면을 형성하는 단계에서,
    상기 세라믹 기재의 상면 일부가 하방으로 요입되는 깊이는 상기 제1 전극패턴의 두께와 동일한 세라믹 기판 제조방법.
  17. 제12항에 있어서,
    상기 제1 전극패턴 및 제2 전극패턴을 형성하는 단계에서,
    상기 제1 전극패턴 및 상기 제2 전극패턴은 금속박으로 구비되어 상기 세라믹 기재의 상면과 하면에 브레이징 접합되는 세라믹 기판 제조방법.
  18. 제12항에 있어서,
    상기 제3 전극패턴을 형성하는 단계는,
    도전성 페이스트를 스크린 인쇄하여 제3 전극패턴을 형성하는 세라믹 기판 제조방법.
  19. 제12항에 있어서,
    상기 제3 전극패턴을 형성하는 단계에서,
    상기 제3 전극패턴은 박막 공정(Thin Film Process)으로 형성하는 세라믹 기판 제조방법.
  20. 제12항에 있어서,
    상기 제3 전극패턴을 형성하는 단계는,
    소성하는 단계를 더 포함하고,
    상기 소성하는 단계는,
    350℃ 내지 600℃ 범위의 온도에서 소성 공정을 수행하는 세라믹 기판 제조방법.
PCT/KR2023/006531 2022-05-31 2023-05-15 세라믹 기판 및 그 제조방법 WO2023234590A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220067150A KR20230166746A (ko) 2022-05-31 2022-05-31 세라믹 기판 및 그 제조방법
KR10-2022-0066936 2022-05-31
KR1020220066936A KR20230166670A (ko) 2022-05-31 2022-05-31 세라믹 기판 및 그 제조방법
KR10-2022-0067150 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234590A1 true WO2023234590A1 (ko) 2023-12-07

Family

ID=89025284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006531 WO2023234590A1 (ko) 2022-05-31 2023-05-15 세라믹 기판 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2023234590A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090084714A (ko) * 2008-02-01 2009-08-05 페어차일드 세미컨덕터 코포레이션 스마트-파워 모듈들에 적합한 얇고 작은 반도체 다이 패키지들, 상기 반도체 다이 패키지들의 제조 방법들, 및 상기 반도체 다이 패키지들을 이용한 시스템들
KR101095100B1 (ko) * 2010-06-14 2011-12-16 삼성전기주식회사 방열기판 및 그 제조방법
KR20130120385A (ko) * 2012-04-25 2013-11-04 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 기판 및 적어도 하나의 전력반도체 부품용 기판의 제조방법
KR20140085096A (ko) * 2012-12-27 2014-07-07 삼성전기주식회사 전력 반도체 모듈
KR101626534B1 (ko) * 2015-06-24 2016-06-01 페어차일드코리아반도체 주식회사 반도체 패키지 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090084714A (ko) * 2008-02-01 2009-08-05 페어차일드 세미컨덕터 코포레이션 스마트-파워 모듈들에 적합한 얇고 작은 반도체 다이 패키지들, 상기 반도체 다이 패키지들의 제조 방법들, 및 상기 반도체 다이 패키지들을 이용한 시스템들
KR101095100B1 (ko) * 2010-06-14 2011-12-16 삼성전기주식회사 방열기판 및 그 제조방법
KR20130120385A (ko) * 2012-04-25 2013-11-04 세미크론 엘렉트로니크 지엠비에치 앤드 코. 케이지 기판 및 적어도 하나의 전력반도체 부품용 기판의 제조방법
KR20140085096A (ko) * 2012-12-27 2014-07-07 삼성전기주식회사 전력 반도체 모듈
KR101626534B1 (ko) * 2015-06-24 2016-06-01 페어차일드코리아반도체 주식회사 반도체 패키지 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2019182216A1 (ko) 양면냉각형 파워 모듈 및 그의 제조 방법
WO2021112590A2 (ko) 전력반도체 모듈
CN110637366B (zh) 半导体器件及其制造方法
WO2021125722A1 (ko) 파워모듈용 세라믹 기판 및 이를 포함하는 파워모듈
EP4432349A1 (en) Semiconductor power module, motor controller, and vehicle
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
WO2020159031A1 (ko) 전력 반도체 모듈 패키지 및 이의 제조방법
WO2022045694A1 (ko) 양면 냉각형 파워 모듈용 세라믹 회로 기판, 그 제조방법 및 이를 구비한 양면 냉각형 파워 모듈
WO2023149650A1 (ko) 파워모듈 내 터미널의 전기적 연결 및 일체화 고정 장치
CN113287195B (zh) 半导体装置
WO2023234590A1 (ko) 세라믹 기판 및 그 제조방법
CN112911799A (zh) 一种低寄生参数功率模块的封装结构及封装方法
WO2023244003A1 (ko) 세라믹 기판 및 그 제조방법
WO2022250358A1 (ko) 인버터 파워모듈
EP3654373B1 (en) Multi-chip-package
WO2024034896A1 (ko) 세라믹 기판 및 그 제조방법
EP3770962A1 (en) Semiconductor module arrangement
CN214381606U (zh) 一种低寄生参数功率模块的封装结构
US11355424B2 (en) Multi-chip package
WO2023033425A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
WO2023055127A1 (ko) 파워모듈용 세라믹 기판, 그 제조방법 및 이를 구비한 파워모듈
KR20230166670A (ko) 세라믹 기판 및 그 제조방법
WO2017200174A1 (ko) 후막인쇄기법을 이용한 절연기판
KR20230166746A (ko) 세라믹 기판 및 그 제조방법
WO2022220488A1 (ko) 파워모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816253

Country of ref document: EP

Kind code of ref document: A1