WO2018133069A1 - Igbt模组及其制造方法 - Google Patents

Igbt模组及其制造方法 Download PDF

Info

Publication number
WO2018133069A1
WO2018133069A1 PCT/CN2017/072072 CN2017072072W WO2018133069A1 WO 2018133069 A1 WO2018133069 A1 WO 2018133069A1 CN 2017072072 W CN2017072072 W CN 2017072072W WO 2018133069 A1 WO2018133069 A1 WO 2018133069A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
igbt
heat dissipation
circuit layer
chip
Prior art date
Application number
PCT/CN2017/072072
Other languages
English (en)
French (fr)
Inventor
钟山
高卫东
胡启钊
林伟健
Original Assignee
乐健科技(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐健科技(珠海)有限公司 filed Critical 乐健科技(珠海)有限公司
Priority to PCT/CN2017/072072 priority Critical patent/WO2018133069A1/zh
Priority to US16/476,107 priority patent/US11107744B2/en
Priority to CN201780000036.1A priority patent/CN107078110B/zh
Publication of WO2018133069A1 publication Critical patent/WO2018133069A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/405Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to the field of semiconductor devices, and in particular to a method for manufacturing an IGBT heat dissipation plate and an IGBT module having good heat dissipation performance.
  • IGBT Insulated Gate Bipolar Transistor
  • BJT bipolar triode
  • MOS insulated gate field effect transistor
  • the existing IGBT chip is usually packaged on a circuit board.
  • a heat dissipation plate is disposed on one side of the circuit board.
  • a ceramic piece is usually disposed on one side of the heat dissipation plate, and a part of the IGBT chip has a pin, such as
  • the gate and emitter are typically packaged on a ceramic wafer by a chip process, while the collector is often connected to the circuit board via a metal wire. Due to the small cross-sectional diameter of the metal wire, the current conduction capability is poor, and often cannot withstand a large current, thereby limiting the current carrying capacity of the IGBT module.
  • the IGBT chip is directly mounted on the ceramic chip, the heat dissipation capability of the IGBT module is insufficient, and the maximum voltage and maximum current of the IGBT module are also limited, resulting in the withstand voltage of the IGBT module.
  • the heat dissipation capability cannot meet the requirements of electronic equipment.
  • a first object of the present invention is to provide an IGBT module that has good heat dissipation performance and can withstand a large current.
  • a second object of the present invention is to provide a method of manufacturing the above IGBT module.
  • the IGBT module comprises a heat dissipation substrate, a first ceramic heat sink embedded in the heat dissipation substrate, and a first circuit layer on the surface of the heat dissipation substrate, and a first side of the IGBT chip Mounted on the first circuit layer; wherein the second side of the IGBT chip is provided with a heat conductive metal plate, and one side of the first circuit layer is provided with a first heat dissipation plate with a first through hole, The IGBT chip and the heat conductive metal plate are located in the first through hole, the second circuit layer is disposed on a side of the first heat dissipation plate away from the IGBT chip, and the second circuit layer is disposed on one side of the heat conductive metal plate; the second circuit layer is away from the IGBT a second ceramic heat sink and a second heat sink with a second through hole, the second ceramic heat sink is located in the second through hole, and the second heat sink is further provided
  • one side of the first circuit layer is further provided with an IC chip with a heat sink.
  • the IC chip and the heat sink are located in the second through hole, and one of the second through holes has an IGBT chip or an IC chip.
  • thermally conductive metal plate is disposed on the collector of the IGBT chip, and the gate and the emitter of the IGBT chip are mounted on the first circuit layer.
  • the first heat sink and/or the second heat sink comprise a fiberglass board, and the first metal layer is disposed on both sides of the fiberglass board.
  • the first ceramic heat sink and/or the second ceramic heat sink comprises a ceramic body, and the second side of the ceramic body is provided with a second metal layer.
  • the thickness of the thermally conductive metal plate is greater than the thickness of the second circuit layer, and the organic insulating medium is polypropylene or epoxy or silane.
  • a method for manufacturing an IGBT module includes manufacturing a heat dissipation substrate, a first ceramic heat sink embedded in the heat dissipation substrate, and a first circuit layer formed on a surface of the heat dissipation substrate;
  • the IGBT chip is mounted on the heat conductive metal plate, and then the IGBT chip on which the heat conductive metal plate is mounted is mounted on the first circuit layer, so that the two opposite surfaces of the IGBT chip are respectively mounted on the heat conductive metal plate and the first line
  • a first prepreg and a first heat dissipation plate with a first through hole are disposed, so that the IGBT chip and the heat conductive metal plate are located in the first through hole, and the first heat dissipation plate and the first prepreg are
  • the heat dissipation substrate is pressed, and the first metal layer is plated on the first heat dissipation plate and the heat conductive metal plate and etched to form
  • a preferred solution is to mount an IC chip on the heat sink before placing the first prepreg on the first circuit layer; after placing the first prepreg and the first heat sink with the first through hole on the first circuit layer, The IC chip is placed in the first through hole.
  • a further solution is: mounting the IGBT chip on the heat conductive metal plate comprises: mounting two or more IGBT chips on a heat conductive metal plate, and cutting the heat conductive metal plate to paste the heat conductive metal plate after cutting It is equipped with an IGBT module.
  • a further solution is: when the IGBT chip is mounted on the heat conductive metal plate, the collector of the IGBT chip is mounted on the heat conductive metal plate; when the IGBT chip is mounted on the first circuit layer, the gate of the IGBT chip and The emitter is mounted on the first circuit layer.
  • a further solution is: after the first heat dissipation plate and the first prepreg are pressed together with the heat dissipation substrate, the pressed surface is polished, and then the first metal layer is plated on the first heat dissipation plate and the heat conductive metal plate. .
  • a further solution is: after the intermediate product, the second curing sheet and the second ceramic heat sink are pressed together, the pressed surface is polished, and then the second heat sink and the second ceramic heat sink are plated. The second metal layer.
  • one surface of the IGBT chip is mounted on the first circuit layer, and the other surface is mounted on a heat conductive metal plate, and the second circuit layer is formed on the heat conductive metal plate.
  • the pins of the IGBT chip do not need to be connected to the circuit layer through the metal wires. Since the current carrying capacity of the heat conducting metal plate is much larger than the current carrying capacity of the metal wires, this design scheme can greatly improve the current carrying capacity of the IGBT module. .
  • the IGBT chip is embedded between the heat dissipation substrate and the first heat dissipation plate, and since the heat dissipation substrate and the first heat dissipation plate are also filled with an organic insulating medium, the periphery of the IGBT chip is surrounded by the organic insulating medium, and The high dielectric withstand capability of the organic insulating medium enables the IGBT module to withstand high voltages of up to 40KV, greatly improving the withstand voltage capability of the IGBT module.
  • the heat generated by the IGBT chip can be dissipated through the heat dissipation substrate and the heat conduction metal plate in time to avoid heat dissipation.
  • a large amount of heat is accumulated on the IGBT chip to improve the heat dissipation performance of the IGBT module.
  • the collector of the IGBT chip is mounted on the heat conducting metal plate, and the gate and the emitter are mounted on the first circuit layer. Since the gate and the emitter are relatively easy to be positioned during mounting, the IGBT chip can be reduced. The difficulty of mounting on the first circuit layer reduces the manufacturing difficulty of the IGBT module. In addition, since the current on the collector is generally large, the present invention can increase the current flowing through the IGBT chip by increasing the thickness of the metal layer of the second wiring layer, thereby improving the conductivity of the IGBT module.
  • an IC chip can be disposed in the IGBT module, and the IC chip can be disposed in the first through hole of the first heat dissipation plate, so that the IGBT including the IC chip can be designed according to the production requirements of different types of IGBT modules. Module.
  • the pressed surface is polished, and the organic insulating medium formed on the outflow surface formed by the first prepreg can be removed. , to avoid the organic insulating medium left on the board surface and affect the subsequent process.
  • the thickness of the heat conductive metal piece is designed to be compared, for example, a thickness greater than or equal to 0.6 mm, it is possible to prevent the heat conductive metal plate from being too thin during the grinding to affect the heat dissipation of the IGBT chip.
  • Figure 1 is a cross-sectional view showing a first embodiment of an IGBT module of the present invention.
  • FIG. 2 is a cross-sectional view showing a first state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • FIG 3 is a cross-sectional view showing a second state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • FIG. 4 is a cross-sectional view showing a third state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • Fig. 5 is a cross-sectional view showing a fourth state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • Fig. 6 is a cross-sectional view showing a fifth state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • Fig. 7 is a cross-sectional view showing a sixth state in the manufacturing process of the first embodiment of the IGBT module manufacturing method of the present invention.
  • Figure 8 is a cross-sectional view showing a second embodiment of the IGBT module of the present invention.
  • the IGBT module of the invention has a heat dissipation substrate, and an IGBT chip is mounted on the heat dissipation substrate, and the IGBT module is further provided with two heat dissipation plates, and the IGBT chip is embedded between the heat dissipation substrate and a heat dissipation plate, and the IGBT mode
  • the group is also filled with an organic insulating medium to improve the insulation performance of the IGBT chip.
  • the heat dissipation substrate 10 includes a wiring layer 11 at the lowermost end, and a wiring pattern is formed on the wiring layer 11.
  • the wiring layer 11 is etched from a copper foil.
  • the heat dissipation substrate 10 further includes a plurality of ceramic heat sinks 16 and two heat dissipation plates 12, wherein the two heat dissipation plates 12 are respectively located on the upper and lower sides of the heat dissipation substrate 10, and each layer radiates heat.
  • the plate 12 is provided with a plurality of through holes, and the ceramic heat sink 16 is located in the through holes of the two layers of the heat dissipation plates 12.
  • the two heat dissipation plates 12 are not adjacent to each other, and the two heat dissipation plates 12 are filled with an organic insulating medium 19, and preferably, the organic insulating medium is a polypropylene material. It should be noted that, in FIGS. 1 to 8 , the place where the hatching is not filled is an organic insulating medium.
  • Each of the ceramic heat dissipating bodies 16 includes a ceramic body 17 which is an aluminum nitride ceramic body or an alumina ceramic body.
  • the upper and lower surfaces of the ceramic body 17 are provided with a copper-clad layer 18, and therefore, the ceramic heat sink 16 is a Double-sided copper-clad ceramic heat sink.
  • the upper and lower surfaces of the ceramic body 17 may also be formed of a metal layer made of other metals, such as a metal layer made of a metal such as aluminum.
  • a wiring layer 20 is provided on one side of the heat dissipation substrate 10.
  • the wiring layer 20 is disposed on a surface opposite to the wiring layer 11.
  • the wiring layer 20 may be formed by wiring copper and etching to form a wiring pattern, thereby forming the wiring layer 20.
  • a plurality of pads are formed on the wiring layer 20 so that the IGBT chip 30 is mounted on the wiring layer 20.
  • each IGBT chip 30 includes a collector 31, a gate 32 and an emitter 33.
  • the collector 31 is located above the IGBT chip 30.
  • the heat conductive metal plate 28 is disposed above the IGBT chip 30, so the collector electrode 31 is mounted on the heat conductive metal plate 28 through a solder paste 26, and the gate electrode 32 and the emitter electrode 33 are mounted on the circuit layer through the solder paste 27. 20 on the pad.
  • the solder paste 26 adhered between the collector electrode 31 and the heat conductive metal plate 30 is a high temperature solder paste, and the solder paste adhered between the gate electrode 32 and the circuit layer 20 is attached to the emitter 33 and the circuit layer 20.
  • the solder paste 27 is a low temperature solder paste. Further, in the present embodiment, the area of the heat conductive metal plate 28 is larger than the area of the IGBT chip 30.
  • the IGBT chip can also be placed in reverse, that is, the collector of the IGBT chip is mounted on the circuit layer 20, and the gate and the emitter are mounted on the heat conductive metal plate.
  • the upper surface of the heat dissipation plate 36 is flush with the upper surface of the heat conductive metal plate 28, and the circuit layer 40 is disposed above the heat dissipation plate 36 and the heat conductive metal plate 28.
  • the circuit layer 40 is on the heat dissipation plate 36 and the heat conductive metal.
  • a line pattern formed by etching a layer of copper foil on the upper side of the board 28 is etched.
  • the thickness of the heat conductive metal plate 28 is large, such as the thickness of the heat conductive metal plate 28 being 0.6 mm.
  • the thickness of the thermally conductive metal plate 28 is much greater than the thickness of the circuit layer 40.
  • the structure of the heat dissipation plate 50 is the same as that of the heat dissipation plate 36, that is, the heat dissipation plate 50 also has a fiberglass plate 51 in the glass.
  • the upper and lower surfaces of the fiberboard 51 have a metal layer 52, such as a copper-clad layer, and a plurality of through holes 53 are disposed in the heat dissipation plate 50.
  • the cross-sectional area of each of the through holes needs to be larger than the area of the ceramic heat sink 45 to facilitate the ceramic heat sink. 45 is located in the through hole 53.
  • the heat dissipation plate 50 and the wiring layer 40 there is a gap between the heat dissipation plate 50 and the wiring layer 40, and an organic insulating medium 19 such as polypropylene is filled between the heat dissipation plate 50 and the wiring layer 40.
  • an organic insulating medium 19 such as polypropylene is filled between the heat dissipation plate 50 and the wiring layer 40.
  • the plurality of ceramic insulators 45 are also filled with the organic insulating medium 19, thereby improving the insulation performance of the IGBT module.
  • a heat dissipating substrate is fabricated, and the structure of the heat dissipating substrate is as shown in FIG.
  • the heat dissipation substrate 10 firstly, a through hole is formed in the two heat dissipation plates 12, a prepreg with a through hole is placed between the two heat dissipation plates 12, and then the ceramic heat dissipation body 16 is placed in the through hole to dissipate the two pieces.
  • the plate 12 and the ceramic heat sink 16 are pressed at a high temperature to melt the prepreg and form an organic insulating medium 19.
  • the organic insulating medium 19 may be polypropylene or a silane or an epoxy resin.
  • the upper and lower surfaces of the pressed plate are plated with copper and etched to form the wiring layer 11 and the wiring layer 20, respectively.
  • the wiring layer 20 is provided with a plurality of pads.
  • the heat dissipation substrate 10 While manufacturing the heat dissipation substrate 10, it is also necessary to manufacture an IGBT chip with a thermally conductive metal plate. As shown in FIG. 3, a plurality of IGBT chips 30 are mounted on a heat conductive metal plate 25 by an SMT chip process.
  • the heat conductive metal plate 25 is a copper piece having a large thickness, preferably, a heat conductive metal plate 25. The thickness is greater than 0.6 mm.
  • the heat conductive metal plate 25 is cut, as shown in FIG. 4, so that only one IGBT chip 30 is attached to the heat conductive metal plate 28 after cutting, and the IGBT
  • the collector 31 of the chip 30 is mounted on the thermally conductive metal plate 28 by a solder paste 26.
  • the area of the thermally conductive metal plate 28 mounted on the IGBT chip 30 is larger than the area of the upper surface of the IGBT chip 30.
  • the IGBT chip 30 with the heat conductive metal plate 28 is mounted on the wiring layer 20 of the heat dissipation plate 10.
  • the circuit layer 20 is provided with a plurality of pads, and the gate of the IGBT chip 30
  • the pole 32 and the emitter 33 are mounted on the pads of the wiring layer 20 by solder paste 27.
  • the heat dissipation plate 36 and the heat conductive metal plate 28 are required.
  • the surface is subjected to a rubbing treatment to abrade the organic insulating medium 19 adhered to the upper surface of the heat radiating plate 36 and the heat conductive metal plate 28, and the upper surfaces of the heat radiating plate 36 and the heat conductive metal plate 28 are flattened.
  • a copper foil is plated on the upper surface of the heat dissipation plate 36 and the heat conductive metal plate 28 and the copper foil is etched to form the wiring layer 40 to form an intermediate product.
  • a plurality of ceramic heat sinks 45 are mounted on the intermediate product, that is, mounted on the wiring layer 40.
  • each of the ceramic heat radiating bodies 45 is mounted on the wiring layer 40 by the solder paste 48.
  • the prepreg with the through holes is placed on the wiring layer 40, and the heat dissipation plate 50 with the through holes 53 is placed on the prepreg such that the ceramic heat sink 45 is positioned in the through holes.
  • the intermediate product, the prepreg, and the heat dissipation plate 50 are subjected to high temperature pressing to melt the prepreg to form the organic insulating medium 19.
  • the upper surfaces of the heat dissipation plate 50 and the ceramic heat sink 45 are polished to remove the organic insulating medium 19 remaining on the upper surface of the heat dissipation plate 50 and the ceramic heat sink 45, and the heat dissipation plate 50 and the ceramic heat sink 45 are The upper surface is flat. Then, copper foil is plated on the upper surfaces of the heat dissipation plate 50 and the ceramic heat sink 45, and the copper foil is etched to form the wiring layer 55, thereby completing the manufacture of the IGBT module.
  • the package of the IGBT chip 30 does not need to be performed through the metal wire and the wiring layer.
  • Connections, such as collector 31, can be electrically connected to circuit layer 40 via thermally conductive metal plate 28. Since the heat conducting metal plate 28 is subjected to a large current, its current withstand capability is far greater than the current carrying capacity of the metal wire, and thus the embodiment can greatly improve the ability of the IGBT module to withstand current. Moreover, the manufacturing process of the IGBT module of the present embodiment is simpler and the manufacturing cost is lower than that of the IGBT module that needs to solder the metal wires on the IGBT chip 30.
  • the IGBT chip is embedded in the IGBT module.
  • the IGBT module can also be embedded with the IC chip.
  • the IGBT module of the present embodiment has a heat dissipation substrate 60.
  • the heat dissipation substrate 60 includes two heat dissipation plates 62. Each of the heat dissipation plates 62 is provided with a through hole, and the ceramic heat dissipation body 63 is disposed in the through hole.
  • An organic insulating medium 65 is filled between the two heat dissipation plates 62.
  • a wiring layer 61 is formed on the lower surface of the heat dissipation substrate 60, and a wiring layer 64 is formed on the upper surface.
  • the wiring layer 64 is provided with a plurality of pads.
  • At least one IGBT chip 68 is attached to the circuit layer 64, and at least one IC chip 75 is attached.
  • the gate and the emitter of the IGBT chip 68 are mounted on the pads of the circuit layer 64 by solder paste.
  • the collector of the IGBT chip 68 is mounted on a heat conducting metal plate 69 by solder paste. Therefore, the heat conducting metal plate 69 in FIG. 8 is located above the IGBT chip 68.
  • Portions of the IC chip 75 are mounted on the pads of the circuit layer 40 by solder paste, and the other pins are mounted on a heat sink 76.
  • the heat sink 76 may be an RF4 sheet including A fiberglass board and a metal layer on the lower surface of the fiberglass board, and the IC chip 75 is mounted on the heat sink 76 by a piece of solder paste.
  • a heat dissipation plate 70 is disposed above the circuit layer 64, and the heat dissipation plate 70 is provided with a plurality of through holes 71.
  • One of the through holes 71 is provided with an IGBT chip 68 or an IC chip 75, that is, the IGBT chip 68 does not appear.
  • the case where the IC chip 75 is located in the same through hole.
  • an organic insulating medium 65 such as polypropylene, epoxy resin or silane is filled between the heat dissipation plate 70 and the wiring layer 64.
  • the upper surfaces of the heat dissipation plate 70, the heat conductive metal plate 69, and the heat sink 76 are flat, and copper foil is plated on the upper surfaces of the heat dissipation plate 70, the heat conductive metal plate 69, and the heat sink 76, and the wiring layer 72 is etched.
  • a plurality of ceramic heat sinks 80 are attached to the circuit layer 72, and a heat dissipation plate 85 having a through hole 86 is also provided.
  • the intermediate layer of the heat dissipation plate 85 is a fiberglass plate, and the upper and lower surfaces of the fiberglass plate are provided with a metal layer.
  • the ceramic heat sink 80 is located in the through hole 86, and the organic insulating medium 65 is filled between the heat dissipation plate 85 and the wiring layer 72, so that the periphery of the plurality of filling heat sinks 80 is surrounded by the organic insulating medium 65. Further, the upper surfaces of the heat dissipation plate 85 and the ceramic heat sink 80 are flat, and the copper foil is plated and etched to form the wiring layer 87.
  • the thickness of the copper foil of the circuit layer 72 should be relatively thick, so that a large current does not cause the line of the circuit layer 72 to be burned through the circuit layer 72.
  • the thickness of the thermally conductive metal plate 69 should be greater than the thickness of the circuit layer 72.
  • the manufacturing method of the IGBT module of the present embodiment is basically the same as the manufacturing method of the IGBT module of the first embodiment, except that when the IGBT chip 68 is mounted on the wiring layer 64, the IC chip 75 is also required to be mounted. On the circuit layer 64. Of course, it is necessary to pre-manufacture the IC chip 75 with the heat sink 76. When manufacturing the IC chip 75 with the heat sink 76, a plurality of IC chips 75 can be mounted on a large heat sink and then mounted. The heat sinks of the plurality of IC chips 75 are cut so that only one IC chip 75 is attached to the heat sink 76 after the cutting.
  • the IGBT module of the present embodiment also has the advantages of being high voltage resistant and capable of withstanding a large current, and the package of the IGBT chip and the IC chip does not need to be connected by a metal wire and a line, and the manufacturing process is simple, and the production cost of the IGBT module is reduced.
  • the metal layers on the two surfaces of the circuit layer and the ceramic heat sink are not necessarily made of copper, and aluminum may be used. Or other metal materials; or, the thickness of the electroplated copper foil for manufacturing the wiring layer may be selected according to actual conditions, and such changes do not affect the implementation of the present invention.
  • the present invention is not limited to the above embodiments, and variations such as a specific material of the ceramic heat sink, a material change of the organic insulating medium, and the like are also included in the scope of protection of the present invention.
  • the IGBT module of the invention can be applied to circuit boards for manufacturing various electronic devices, for example, for LED lamps, especially for high-frequency LED lamps, wherein the IGBT chip of the IGBT module is used as a soft switching device.
  • the IGBT module can be applied to the circuit board of the motor controller. Since the IGBT module can form a plurality of circuit layers, various lines can be formed on the circuit layer according to actual use requirements, and various other electronic devices can be mounted or soldered, and different printed circuit boards and IGBT modules are formed. The application is very extensive.

Abstract

提供一种IGBT模组及其制造方法。IGBT模组包括散热基板(10),散热基板(10)内嵌埋有第一陶瓷散热体(16),且散热基板(10)的表面上设有第一线路层(20),IGBT芯片(30)的第一侧贴装在第一线路层(20)上;其中,IGBT芯片(30)的第二侧设有导热金属板(28),且第一线路层(20)的一侧设有带第一通孔(35)的第一散热板(36),IGBT芯片(30)及导热金属板(28)位于第一通孔(35)内,第一散热板(36)远离IGBT芯片(30)的一侧设有第二线路层(40),第二线路层(40)设置在导热金属板(28)的一侧;第二线路层(40)远离IGBT的一侧上设有第二陶瓷散热体(45)以及带第二通孔(53)的第二散热板(50),第二陶瓷散热体(45)位于第二通孔(53)内,第二散热板(50)上还设有第三线路层(55);第一散热板(36)与散热基板(10)之间、第一散热板(36)与第二散热板(50)之间均填充有有机绝缘介质(19)。还提供制造IGBT模组的制造方法。

Description

IGBT模组及其制造方法 技术领域
本发明涉及半导体器件领域,具体地说,是涉及一种散热性能好的IGBT散热板及IGBT模组的制造方法。
背景技术
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由一种由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,作为一种常见的电子器件已经广泛应用在各种电子设备上。随着变频器等高电流电子设备的发展,对IGBT芯片的性能提出了更高的要求,例如要求IGBT芯片承受更高的电流等,但是随着IGBT芯片承受的电流的增加,其工作时产生的热量也不断增加,如果不及时将IGBT芯片产生的热量散发,将严重影响IGBT芯片的工作,甚至影响电路板上其他电子器件的工作,因此,具有高散热能力的IGBT模组已经成为业界共同追求的目标。
现有的IGBT芯片通常封装在电路板上,通常,电路板一侧设有散热板,为了实现散热板的绝缘,通常在散热板的一侧设置陶瓷片,而IGBT芯片的一部分引脚,如门极和发射极通常通过贴片工艺封装在陶瓷片上,而集电极则往往通过金属导线连接至电路板的线路上。由于金属导线截面直径较小,电流导通能力较差,往往不能承受较大的电流,从而限制了IGBT模组的电流承受能力。
此外,由于现有的IGBT模组中,IGBT芯片直接贴装在陶瓷片上,IGBT模组的散热能力不足,且IGBT模组承受的最大电压、最大电流也受到限制,导致IGBT模组的耐压、散热能力不能满足电子设备的要求。
技术问题
本发明的第一目的是提供一种散热性能好且能够承受较大电流的IGBT模组。
本发明的第二目的是提供一种上述IGBT模组的制造方法。
技术解决方案
为了实现上述的第一目的,本发明提供的IGBT模组包括散热基板,散热基板内嵌埋有第一陶瓷散热体,且散热基板的表面上设有第一线路层,IGBT芯片的第一侧贴装在第一线路层上;其中,IGBT芯片的第二侧设有导热金属板,且第一线路层的一侧设有带第一通孔的第一散热板, IGBT芯片及导热金属板位于第一通孔内,第一散热板远离IGBT芯片的一侧设有第二线路层,且第二线路层设置在导热金属板的一侧;第二线路层远离IGBT的一侧上设有第二陶瓷散热体以及带第二通孔的第二散热板,第二陶瓷散热体位于第二通孔内,第二散热板上还设有第三线路层;第一散热板与散热基板之间、第一散热板与第二散热板之间均填充有有机绝缘介质。
一个优选的方案是,第一线路层的一侧还设有带有散热片的IC芯片, IC芯片及散热片位于第二通孔内,且一个第二通孔内具有一个IGBT芯片或者一个IC芯片。
进一步的方案是,导热金属板设置在IGBT芯片的集电极上,IGBT芯片的门极以及发射极贴装在第一线路层上。
进一步的方案是,第一散热板和/或第二散热板包括玻璃纤维板,玻璃纤维板的两侧均设有第一金属层。
更进一步的方案是,第一陶瓷散热体和/或第二陶瓷散热体包括一个陶瓷体,陶瓷体的两侧均设有第二金属层。
更进一步的方案是,导热金属板的厚度大于第二线路层的厚度,且有机绝缘介质为聚丙烯或者环氧树脂或者硅烷。
为实现上述的第二目的,本发明提供的IGBT模组的制造方法包括制造散热基板,散热基板内嵌埋有第一陶瓷散热体,且散热基板的表面上形成有第一线路层;并且,将IGBT芯片贴装在导热金属板上,然后将贴装导热金属板的IGBT芯片贴装在第一线路层上,使IGBT芯片的两个相对的表面分别贴装在导热金属板与第一线路层上;在第一线路层上放置第一半固化片以及带有第一通孔的第一散热板,使IGBT芯片及导热金属板位于第一通孔内,将第一散热板、第一半固化片与散热基板压合,并在第一散热板与导热金属板上电镀第一金属层并蚀刻形成第二线路层,形成中间产品;在第二线路层上贴装第二陶瓷散热体,并且在第二线路层上放置第二半固化片以及带有第二通孔的第二散热板,使第二陶瓷散热体位于第二通孔内,将中间产品、第二固化片与第二陶瓷散热体压合,并在第二散热板与第二陶瓷散热体上电镀第二金属层并蚀刻形成第三线路层。
一个优选的方案是,在第一线路层上放置第一半固化片前,在散热片上贴装IC芯片;在第一线路层上放置第一半固化片以及带有第一通孔的第一散热板后,使IC芯片位于第一通孔内。
进一步的方案是,将IGBT芯片贴装在导热金属板上包括:将二个以上的IGBT芯片贴装在一块导热金属板上,并且将导热金属板切割,使切割后的一块导热金属板上贴装有一个IGBT模组。
更进一步的方案是,将IGBT芯片贴装在导热金属板时,将IGBT芯片的集电极贴装在导热金属板上;将IGBT芯片贴装在第一线路层时,将IGBT芯片的门极以及发射极贴装在第一线路层上。
更进一步的方案是,将第一散热板、第一半固化片与散热基板压合后,将压合后的板面进行打磨处理后,再在第一散热板与导热金属板上电镀第一金属层。
更进一步的方案是,将中间产品、第二固化片与第二陶瓷散热体压合后,将压合后的板面进行打磨处理后,再在第二散热板与第二陶瓷散热体上电镀第二金属层。
有益效果
由于本发明提供的IGBT模组中,IGBT芯片的一个表面贴装在第一线路层上,而另一个表面是贴装在一块导热金属板上,且导热金属板上形成有第二线路层,这样IGBT芯片的管脚不需要通过金属导线连接至线路层上,由于导热金属板的电流承受能力比金属导线的电流承受能力大很多,因此这种设计方案能够大大提高IGBT模组的电流承受能力。
并且,由于IGBT芯片是嵌埋在散热基板与第一散热板之间,并且由于散热基板与第一散热板之间还填充有有机绝缘介质,这样IGBT芯片的四周将被有机绝缘介质包围,且有机绝缘介质的耐压能力很高,使得IGBT模组能够承受高达40KV的高压,大大提高了IGBT模组的耐压能力。
此外,由于IGBT芯片的一个表面分别经过第一线路层连接到散热基板,而另一个表面则直接贴装到导热金属板上,IGBT芯片产生的热量能够及时通过散热基板以及导热金属板散热,避免IGBT芯片上积聚大量的热量,提高IGBT模组的散热性能。
并且,IGBT芯片的集电极贴装在导热金属板上,而门极以及发射极贴装在第一线路层上,由于在贴装时门极与发射极较容易定位,这样可以降低将IGBT芯片贴装在第一线路层上的难度,降低IGBT模组的制造难度。此外,由于集电极上的电流通常较大,本发明可以通过增加第二线路层的金属层厚度的方法来增加流经IGBT芯片的电流,从而提高IGBT模组的导电能力。
另外,在IGBT模组内还可以设置IC芯片,且IC芯片可以设置在第一散热板的第一通孔内,这样可以根据不同型号的IGBT模组的生产要求需要,设计包含IC芯片的IGBT模组。
此外,由于在第一散热板、第一半固化片与散热基板压合后将压合后的板面进行打磨处理后,可以将压合时第一半固化片所形成的流出板面的有机绝缘介质磨去,避免有机绝缘介质留在板面上而影响后续的工序。并且,由于将导热金属片的厚度设计得比较后,如大于或者等于0.6毫米的厚度,这样可以避免在打磨时将导热金属板磨得过薄而影响IGBT芯片的散热。
附图说明
图1是本发明IGBT模组第一实施例的剖视图。
图2是本发明IGBT模组制造方法第一实施例制造过程中的第一状态的剖视图。
图3是本发明IGBT模组制造方法第一实施例制造过程中的第二状态的剖视图。
图4是本发明IGBT模组制造方法第一实施例制造过程中的第三状态的剖视图。
图5是本发明IGBT模组制造方法第一实施例制造过程中的第四状态的剖视图。
图6是本发明IGBT模组制造方法第一实施例制造过程中的第五状态的剖视图。
图7是本发明IGBT模组制造方法第一实施例制造过程中的第六状态的剖视图。
图8是本发明IGBT模组第二实施例的剖视图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
第一实施例:
本发明的IGBT模组具有一块散热基板,在散热基板上贴装有IGBT芯片,且IGBT模组还设有两块散热板,IGBT芯片嵌埋在散热基板与一块散热板之间,且IGBT模组外还填充有有机绝缘介质,以提高IGBT芯片的绝缘性能。
如图1所示,散热基板10包括有位于最下端的线路层11,线路层11上形成线路的图案,优选地,线路层11由铜箔蚀刻而成。需要说明的是,本发明所指的方向“上”、“下”是以图1至图8所示的方向说明,但不应理解为对本发明的限定。
如图2所示,散热基板10除了设置线路层11,还包括多个陶瓷散热体16以及两层散热板12,其中两层散热板12分别位于散热基板10的上下两侧,每一层散热板12上均设有多个通孔,陶瓷散热体16位于两层散热板12的通孔内。并且,两层散热板12并不相邻,两层散热板12之间填充有有机绝缘介质19,优选的,有机绝缘介质为聚丙烯材料。需要说明的是,图1至图8中,没有填充剖面线的地方为有机绝缘介质。
每一个陶瓷散热体16包括一个陶瓷体17,陶瓷体17为氮化铝陶瓷体或者氧化铝陶瓷体,在陶瓷体17的上下表面均设有覆铜层18,因此,陶瓷散热体16是一个双面覆铜的陶瓷散热体。当然,陶瓷体17的上下表面也可以形成其他金属构成的金属层,如由铝等金属构成的金属层。
在散热基板10的一侧设有线路层20,本实施例中,线路层20设置在与线路层11相对的表面上。优选的,线路层20可以是通过覆铜并且蚀刻形成线路图案,从而形成线路层20。此外,在线路层20上形成多个焊盘,以便于IGBT芯片30贴装在线路层20上。
本实施例中,线路层20上贴装有多个IGBT芯片30,每一个IGBT芯片30包括一个集电极31、门极32以及发射极33,图1中,集电极31位于IGBT芯片30的上方,且IGBT芯片30的上方设有导热金属板28,因此集电极31通过一块锡膏26贴装在导热金属板28上方,而门极32以及发射极33则通过锡膏27贴装在线路层20的焊盘上。优选的,贴在集电极31与导热金属板30之间的锡膏26是一块高温锡膏,而贴在门极32与线路层20之间的锡膏、贴在发射极33与线路层20之间的锡膏27是低温锡膏。并且,本实施例中,导热金属板28的面积大于IGBT芯片30的面积。当然,实际制造时,也可以将IGBT芯片反过来放置,即IGBT芯片的集电极贴装在线路层20上,而门极与发射极贴装在导热金属板上。
在线路层20的上方还设有散热板36,散热板36包括一块玻璃纤维板37,并且玻璃纤维板37的上下表面均设有金属层38,如覆铜层。此外,散热板36上开设有多个通孔35,且每一个通孔的横截面积需要大于导热金属板28的面积,以便于IGBT芯片30以及导热金属板28能够套设在通孔35内。在散热板36与线路层20之间填充有有机绝缘介质19,如聚丙烯。这样,IGBT芯片30的四周将被有机绝缘介质19包围,由于有机绝缘介质19具有很强的耐高压能力,使得IGBT模组能够承受高达40KV的高压。
从图1可见,散热板36的上表面与导热金属板28的上表面平齐,并且散热板36与导热金属板28的上方设有线路层40,线路层40是在散热板36与导热金属板28的上方经过电镀一层铜箔后蚀刻形成的线路图案。优选的,导热金属板28的厚度较大,如导热金属板28的厚度为0.6毫米。从图1可见,导热金属板28的厚度远大于线路层40的厚度。
在线路层40上设有多个陶瓷散热体45,每一个陶瓷散热体45均具有一个陶瓷体46,在陶瓷体46的上下表面设置有金属层47,如覆铜层,且陶瓷散热体46通过一块锡膏48贴装在线路层40上,优选的,锡膏48是一块高温锡膏。在线路层40远离IGBT芯片30的一侧,即线路层40的上方还设有散热板50,散热板50的结构与散热板36的结构相同,即散热板50也具有玻璃纤维板51,在玻璃纤维板51的上下表面具有金属层52,如覆铜层,并且在散热板50上设置多个通孔53,每一个通孔的横截面积需要大于陶瓷散热体45的面积,以便于陶瓷散热体45位于通孔53内。
并且,散热板50与线路层40之间具有间隙,且在散热板50与线路层40之间填充有有机绝缘介质19,如聚丙烯。这样,多个陶瓷绝缘体45之间也填充有有机绝缘介质19,从而提高IGBT模组的绝缘性能。
优选的,散热板50的上表面与陶瓷散热体45的上表面平齐,以便于在散热板50的上表面与陶瓷散热体45的上表面上镀铜并且蚀刻形成线路层55。可见,IGBT模组一共设有四层线路层,分别是线路层11、线路层20、线路层40以及线路层50,其中线路层20与线路层40之间可以通过IGBT芯片30实现电连接。
下面结合图2至图7介绍IGBT模组的制造流程。首先,制造一块散热基板,散热基板的结构如图2所示。制造散热基板10时,首先在两块散热板12上开设通孔,在两块散热板12之间放置带有通孔的半固化片,然后将陶瓷散热体16放置到通孔内,将两块散热板12以及陶瓷散热体16高温压合,使半固化片熔化并且形成有机绝缘介质19。有机绝缘介质19可以是聚丙烯,也可以是硅烷或者环氧树脂等。最后在压合后的板材上下两个表面镀铜并且蚀刻分别形成线路层11和线路层20,优选的,线路层20上设有多个焊盘。
制造散热基板10的同时,还需要制造带有导热金属板的IGBT芯片。如图3所示,将多个IGBT芯片30通过SMT贴片工艺贴装在一块导热金属板25上,优选的,导热金属板25是一块厚度较大的铜片,优选的,导热金属板25的厚度大于0.6毫米。
将多个IGBT芯片30贴装在导热金属板25后,将导热金属板25进行切割,如图4所示,使得切割以后的导热金属板28上仅贴装有一个IGBT芯片30,并且,IGBT芯片30的集电极31通过一块锡膏26贴装在导热金属板28上。优选的,贴装在IGBT芯片30上的导热金属板28的面积大于IGBT芯片30上表面的面积。
然后,如图5所示,将带有导热金属板28的IGBT芯片30贴装在散热板10的线路层20上,优选的,线路层20上设置有多个焊盘,IGBT芯片30的门极32以及发射极33通过锡膏27贴装在线路层20的焊盘上。
接着,如图6所示,将带有通孔的半固化片放置在线路层20上,然后将带有通孔35的散热板36放置在半固化片上,并且使IGBT芯片30位于通孔内,且一个IGBT芯片30位于一个通孔内。然后,将散热基板10、半固化片以及散热板36进行高温压合,从而使得半固化片熔化并且形成有机绝缘介质19,这样IGBT芯片30的四周被有机绝缘介质19所包围。
由于高温压合过程中,半固化片熔化形成有机绝缘介质19时会导致散热板36、导热金属板28的上表面粘有少量的有机绝缘介质,因此,需要对散热板36、导热金属板28的上表面进行打磨处理,以磨去粘在散热板36、导热金属板28的上表面的有机绝缘介质19,并且使得散热板36、导热金属板28的上表面平整。然后,在散热板36、导热金属板28的上表面电镀一层铜箔并且对铜箔进行蚀刻形成线路层40,形成中间产品。
接着,将多个陶瓷散热体45贴装在中间产品上,即贴装在线路层40上,如图7所示,每一个陶瓷散热体45通过锡膏48贴装在线路层40上。然后,将带有通孔的半固化片放置在线路层40上,再将带有通孔53的散热板50放置在半固化片上,使陶瓷散热体45位于通孔内。将中间产品、半固化片以及散热板50进行高温压合,使半固化片熔化形成有机绝缘介质19。
最后,对散热板50以及陶瓷散热体45的上表面进行打磨处理,以磨去散热板50以及陶瓷散热体45的上表面残留的有机绝缘介质19,并且使散热板50以及陶瓷散热体45的上表面平整。然后在散热板50以及陶瓷散热体45的上表面电镀铜箔并且对铜箔进行蚀刻形成线路层55,完成IGBT模组的制造。
由于IGBT芯片30的集电极31通过导热金属板28与线路层40连接,而门极32、发射极33贴装在线路层20上,因此IGBT芯片30的封装不需要通过金属导线与线路层进行连接,如集电极31可以通过导热金属板28与线路层40进行电连接。由于导热金属板28承受较大的电流,其电流承受能力远远大于金属导线的电流承受能力,因此本实施例可以大大提高IGBT模组承受电流的能力。且相比起需要在IGBT芯片30上焊接金属导线的IGBT模组,本实施例的IGBT模组的制造工艺更加简单,制造成本更低。
此外,由于IGBT芯片30的四周被有机绝缘介质19所包围,且有机绝缘介质19能够承受较高的电压,使得IGBT模组能够承受高达40KV的电压。且IGBT芯片30的上下两端分别设有散热基板10以及散热板36,且散热基板10内设有陶瓷散热体16,而散热板36上方也设有陶瓷散热体46,可以快速的将IGBT芯片30所产生的热量散发,提高IGBT模组的散热性能。
上述实施例中,IGBT模组内仅嵌埋有IGBT芯片,实际应用时,IGBT模组还可以嵌埋有IC芯片。
第二实施例:
参见图8,本实施例的IGBT模组具有散热基板60,散热基板60包括两块散热板62,每一块散热板62上均设有通孔,陶瓷散热体63设置在通孔内。且两块散热板62之间填充有有机绝缘介质65。并且,散热基板60的下表面形成有线路层61,上表面形成有线路层64,优选的,线路层64上设有多个焊盘。
在线路层64上贴装有至少一个IGBT芯片68,还贴装有至少一个IC芯片75,优选的,IGBT芯片68的门极以及发射极通过锡膏贴装在线路层64的焊盘上,并且IGBT芯片68的集电极通过锡膏贴装在一块导热金属板69上,因此,图8中导热金属板69位于IGBT芯片68的上方。
IC芯片75的部分引脚通过锡膏贴装在线路层40的焊盘上,另一部分引脚则贴装在一块散热片76上,优选的,散热片76可以是一块RF4片材,其包括玻璃纤维板以及位于玻璃纤维板上下表面的金属层,且IC芯片75通过一块锡膏贴装在散热片76上。
在线路层64的上方设有散热板70,并且散热板70上设有多个通孔71,一个通孔71内套设有一个IGBT芯片68或者一个IC芯片75,即不会出现IGBT芯片68与IC芯片75位于同一个通孔内的情况。并且,散热板70与线路层64之间填充有有机绝缘介质65,如聚丙烯、环氧树脂或者硅烷等。这样,IGBT芯片68以及IC芯片75的四周被有机绝缘介质65所包围,从而提高IGBT模组的耐压性能。
此外,散热板70、导热金属板69以及散热片76的上表面平整,且在散热板70、导热金属板69以及散热片76的上表面上电镀形成铜箔并且蚀刻形成线路层72。
在线路层72上贴装有多个陶瓷散热体80,并且还设有带有通孔86的散热板85,散热板85的中间层为玻璃纤维板,玻璃纤维板的上下表面均设有金属层。陶瓷散热体80位于通孔86内,并且散热板85与线路层72之间填充有有机绝缘介质65,使得多个填充散热体80的四周被有机绝缘介质65所包围。并且,散热板85、陶瓷散热体80的上表面平整,并且电镀铜箔并且蚀刻形成线路层87。
为了满足IGBT模组承受大电流的要求,线路层72的铜箔厚度应该较厚,使得较大的电流经过线路层72也不会造成线路层72的线路被烧毁。当然,导热金属板69的厚度应该大于线路层72的厚度。
本实施例的IGBT模组的制造方法与第一实施例的IGBT模组的制造方法基本相同,区别在于:将IGBT芯片68贴装在线路层64时,还需要将IC芯片75也贴装在线路层64上。当然,需要预先制造带有散热片76的IC芯片75,制造带有散热片76的IC芯片75时,可以将多个IC芯片75贴装在一块面积较大的散热片上,然后将贴装有多个IC芯片75的散热片进行切割,使切割后的散热片76上只贴装有一个IC芯片75。
本实施例的IGBT模组也具有耐高压、能够承受大电流的优点,并且IGBT芯片以及IC芯片的封装不需要使用金属导线与线路进行连接,制造工艺简单,降低IGBT模组的生产成本。
当然,上述实施例仅是本发明优选的实施方案,实际应用时还可有更多的改变,例如,线路层、陶瓷散热体两个表面上的金属层不一定使用铜制成,可以使用铝或者其他金属材料制成;或者,制造线路层的电镀铜箔的厚度可以根据实际情况选择其他的尺寸,这样的改变并不会影响本发明的实施。
最后需要强调的是,本发明不限于上述实施方式,如陶瓷散热体具体的材料的改变、有机绝缘介质的材料改变等变化也应该包括在本发明权利要求的保护范围内。
工业实用性
本发明的IGBT模组可以应用于制造各种电子器件的线路板材,例如用于在LED灯具上,尤其是应用在高频LED灯具上,其中IGBT模组的IGBT芯片看作为软开关器件使用。或者,IGBT模组可以应用在电机控制器的线路板材。由于IGBT模组上可以形成多层的线路层,因此可以根据实际使用需要在线路层上形成各种线路并且贴片或者焊接各种其他电子器件,已形成不同的印刷电路板,IGBT模组的应用非常广泛。

Claims (16)

  1. IGBT模组,包括
    散热基板,所述散热基板内嵌埋有第一陶瓷散热体,且所述散热基板的表面上设有第一线路层,IGBT芯片的第一侧贴装在所述第一线路层上;
    其特征在于:
    所述IGBT芯片的第二侧设有导热金属板,且所述第一线路层的一侧设有带第一通孔的第一散热板,所述IGBT芯片及所述导热金属板位于所述第一通孔内,所述第一散热板远离所述IGBT芯片的一侧设有第二线路层,且所述第二线路层设置在所述导热金属板的一侧;
    所述第二线路层远离所述IGBT的一侧上设有第二陶瓷散热体以及带第二通孔的第二散热板,所述第二陶瓷散热体位于所述第二通孔内,所述第二散热板上还设有第三线路层;
    所述第一散热板与所述散热基板之间、所述第一散热板与所述第二散热板之间均填充有有机绝缘介质。
  2. 根据权利要求1所述的IGBT模组,其特征在于:
    所述第一线路层的一侧还设有带有散热片的IC芯片,所述IC芯片及所述散热片位于所述第二通孔内。
  3. 根据权利要求2所述的IGBT模组,其特征在于:
    一个所述第二通孔内具有一个所述IGBT芯片或者一个所述IC芯片。
  4. 根据权利要求1至3任一项所述的IGBT模组,其特征在于:
    所述导热金属板设置在所述IGBT芯片的集电极上,所述IGBT芯片的门极以及发射极贴装在所述第一线路层上。
  5. 根据权利要求1至4任一项所述的IGBT模组,其特征在于:
    所述第一散热板和/或所述第二散热板包括玻璃纤维板,所述玻璃纤维板的两侧均设有第一金属层。
  6. 根据权利要求1至5任一项所述的IGBT模组,其特征在于:
    所述第一陶瓷散热体和/或所述第二陶瓷散热体包括一个陶瓷体,所述陶瓷体的两侧均设有第二金属层。
  7. 根据权利要求1至6任一项所述的IGBT模组,其特征在于:
    所述导热金属板的厚度大于所述第二线路层的厚度。
  8. 根据权利要求1至7任一项所述的IGBT模组,其特征在于:
    所述有机绝缘介质为聚丙烯或者环氧树脂或者硅烷。
  9. IGBT模组的制造方法,其特征在于,包括
    制造散热基板,所述散热基板内嵌埋有第一陶瓷散热体,且所述散热基板的表面上形成有第一线路层;
    其特征在于:
    将IGBT芯片贴装在导热金属板上,然后将贴装所述导热金属板的所述IGBT芯片贴装在所述第一线路层上,使所述IGBT芯片的两个相对的表面分别贴装在所述导热金属板与所述第一线路层上;
    在所述第一线路层上放置第一半固化片以及带有第一通孔的第一散热板,使所述IGBT芯片及所述导热金属板位于所述第一通孔内,将所述第一散热板、第一半固化片与所述散热基板压合,并在所述第一散热板与所述导热金属板上电镀第一金属层并蚀刻形成第二线路层,形成中间产品;
    在所述第二线路层上贴装第二陶瓷散热体,并且在所述第二线路层上放置第二半固化片以及带有第二通孔的第二散热板,使所述第二陶瓷散热体位于所述第二通孔内,将所述中间产品、所述第二固化片与所述第二陶瓷散热体压合,并在所述第二散热板与所述第二陶瓷散热体上电镀第二金属层并蚀刻形成第三线路层。
  10. 根据权利要求9所述的IGBT模组的制造方法,其特征在于:
    在所述第一线路层上放置第一半固化片前,在散热片上贴装IC芯片;
    在所述第一线路层上放置第一半固化片以及带有第一通孔的第一散热板后,使所述IC芯片位于所述第一通孔内。
  11. 根据权利要求10所述的IGBT模组的制造方法,其特征在于:
    一个所述第二通孔内具有一个所述IGBT芯片或者一个所述IC芯片。
  12. 根据权利要求9至11任一项所述的IGBT模组的制造方法,其特征在于:
    将所述IGBT芯片贴装在导热金属板上包括:将二个以上的IGBT芯片贴装在一块导热金属板上,并且将所述导热金属板切割,使切割后的一块导热金属板上贴装有一个所述IGBT模组。
  13. 根据权利要求9至12任一项所述的IGBT模组的制造方法,其特征在于:
    将所述IGBT芯片贴装在导热金属板时,将所述IGBT芯片的集电极贴装在所述导热金属板上;
    将所述IGBT芯片贴装在所述第一线路层时,将所述IGBT芯片的门极以及发射极贴装在所述第一线路层上。
  14. 根据权利要求9至13任一项所述的IGBT模组的制造方法,其特征在于:
    将所述第一散热板、第一半固化片与所述散热基板压合后,将压合后的板面进行打磨处理后,再在所述第一散热板与所述导热金属板上电镀第一金属层。
  15. 根据权利要求9至14任一项所述的IGBT模组的制造方法,其特征在于:
    将所述中间产品、所述第二固化片与所述第二陶瓷散热体压合后,将压合后的板面进行打磨处理后,再在所述第二散热板与所述第二陶瓷散热体上电镀第二金属层。
  16. 根据权利要求9至15任一项所述的IGBT模组的制造方法,其特征在于:
    所述导热金属板的厚度大于所述第二线路层的厚度。
PCT/CN2017/072072 2017-01-22 2017-01-22 Igbt模组及其制造方法 WO2018133069A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/072072 WO2018133069A1 (zh) 2017-01-22 2017-01-22 Igbt模组及其制造方法
US16/476,107 US11107744B2 (en) 2017-01-22 2017-01-22 Insulated gate bipolar transistor module and manufacturing method thereof
CN201780000036.1A CN107078110B (zh) 2017-01-22 2017-01-22 Igbt模组及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072072 WO2018133069A1 (zh) 2017-01-22 2017-01-22 Igbt模组及其制造方法

Publications (1)

Publication Number Publication Date
WO2018133069A1 true WO2018133069A1 (zh) 2018-07-26

Family

ID=59613578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072072 WO2018133069A1 (zh) 2017-01-22 2017-01-22 Igbt模组及其制造方法

Country Status (3)

Country Link
US (1) US11107744B2 (zh)
CN (1) CN107078110B (zh)
WO (1) WO2018133069A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494275A (zh) * 2017-11-16 2018-09-04 广州擎天实业有限公司 一种高导热大功率同步整流模块
CN108133915B (zh) * 2017-12-21 2020-04-03 乐健科技(珠海)有限公司 功率器件内置且双面散热的功率模组及其制备方法
CN108091621A (zh) * 2017-12-21 2018-05-29 乐健科技(珠海)有限公司 内嵌开关芯片的器件模组及其制作方法
CN110444520B (zh) * 2019-08-13 2021-06-01 丰鹏创科科技(珠海)有限公司 具有电绝缘散热体的功率器件模组及其制备方法
CN110429071B (zh) * 2019-08-13 2021-09-21 丰鹏创科科技(珠海)有限公司 功率器件模组及其制备方法
CN112768362A (zh) * 2019-11-05 2021-05-07 深圳第三代半导体研究院 一种嵌入式封装器件制备方法
CN112786455A (zh) * 2019-11-07 2021-05-11 深圳第三代半导体研究院 一种嵌入式封装模块化制备方法
EP3869923A1 (en) * 2020-02-20 2021-08-25 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Cooling profile integration for embedded power systems
DE102021109974A1 (de) * 2020-04-27 2021-10-28 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Bauteilträger mit einem eingebetteten wärmeleitfähigen Block und Herstellungsverfahren
CN111863745B (zh) * 2020-08-17 2022-04-08 天津大学 一种针对介质集成悬置线功放的散热结构
CN112164675B (zh) * 2020-10-29 2023-06-16 湖南国芯半导体科技有限公司 一种功率模块的制造方法及功率模块
EP4012763A1 (de) 2020-12-09 2022-06-15 Siemens Aktiengesellschaft Halbleitermodul mit zumindest einem halbleiterelement
CN114449739A (zh) * 2022-01-27 2022-05-06 华为数字能源技术有限公司 封装模组及其制备方法、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547966B2 (en) * 2006-10-18 2009-06-16 Hitachi, Ltd. Power semiconductor module
US7732917B2 (en) * 2007-10-02 2010-06-08 Rohm Co., Ltd. Power module
CN102254886A (zh) * 2011-08-04 2011-11-23 株洲南车时代电气股份有限公司 一种免引线键合igbt模块
CN104867891A (zh) * 2014-02-26 2015-08-26 西安永电电气有限责任公司 一种igbt器件用双层导电膜电连接结构
CN105590930A (zh) * 2016-02-02 2016-05-18 中国第一汽车股份有限公司 一种新能源车用igbt功率模块
CN106098648A (zh) * 2016-07-07 2016-11-09 乐健科技(珠海)有限公司 Igbt散热基板及其制造方法、igbt模组及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817453B2 (ja) * 2001-09-25 2006-09-06 新光電気工業株式会社 半導体装置
JP4022758B2 (ja) * 2003-03-31 2007-12-19 株式会社デンソー 半導体装置
US7253518B2 (en) * 2005-06-15 2007-08-07 Endicott Interconnect Technologies, Inc. Wirebond electronic package with enhanced chip pad design, method of making same, and information handling system utilizing same
JP2008041752A (ja) * 2006-08-02 2008-02-21 Hitachi Metals Ltd 半導体モジュールおよび半導体モジュール用放熱板
CN100495665C (zh) * 2006-08-18 2009-06-03 日月光半导体制造股份有限公司 电路板制造方法
US7557434B2 (en) * 2006-08-29 2009-07-07 Denso Corporation Power electronic package having two substrates with multiple electronic components
CN100585890C (zh) * 2006-11-06 2010-01-27 南茂科技股份有限公司 发光芯片封装体及其制造方法
TWI357135B (en) * 2008-05-29 2012-01-21 Ind Tech Res Inst Chip package structure and manufacturing method th
TWI489918B (zh) * 2012-11-23 2015-06-21 Subtron Technology Co Ltd 封裝載板
US9859265B2 (en) * 2014-06-06 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and methods of forming the same
US20180122777A1 (en) * 2016-10-31 2018-05-03 Raytheon Company Hybrid micro-circuit device with stacked chip components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547966B2 (en) * 2006-10-18 2009-06-16 Hitachi, Ltd. Power semiconductor module
US7732917B2 (en) * 2007-10-02 2010-06-08 Rohm Co., Ltd. Power module
CN102254886A (zh) * 2011-08-04 2011-11-23 株洲南车时代电气股份有限公司 一种免引线键合igbt模块
CN104867891A (zh) * 2014-02-26 2015-08-26 西安永电电气有限责任公司 一种igbt器件用双层导电膜电连接结构
CN105590930A (zh) * 2016-02-02 2016-05-18 中国第一汽车股份有限公司 一种新能源车用igbt功率模块
CN106098648A (zh) * 2016-07-07 2016-11-09 乐健科技(珠海)有限公司 Igbt散热基板及其制造方法、igbt模组及其制造方法

Also Published As

Publication number Publication date
US20190355644A1 (en) 2019-11-21
CN107078110A (zh) 2017-08-18
CN107078110B (zh) 2023-05-02
US11107744B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018133069A1 (zh) Igbt模组及其制造方法
US10638633B2 (en) Power module, power converter and manufacturing method of power module
TW560229B (en) Power converter package with enhanced thermal management
US10973113B2 (en) Component carrier with transistor components arranged side by side
TWI690246B (zh) 內建縱向散熱陶瓷塊印刷電路板及具該電路板的電路組件
US10524349B2 (en) Printed circuit board with built-in vertical heat dissipation ceramic block, and electrical assembly comprising the board
US20190198423A1 (en) Device module embedded with switch chip and manufacturing method thereof
WO2018133070A1 (zh) 电路基板及其制造方法、电路板及其制造方法
WO2011060714A1 (zh) Led发光模组及其制造方法
CN106098648B (zh) Igbt散热基板及其制造方法、igbt模组及其制造方法
WO2023142487A1 (zh) 封装模组及其制备方法、电子设备
WO2014121878A1 (en) Circuit board
WO2021162369A1 (ko) 파워모듈 및 그 제조방법
WO2020166901A1 (ko) 회로기판
CN112713120A (zh) 功率电子组件及其产生方法
WO2021179989A1 (zh) 功率散热装置
EP4102563A1 (en) Encapsulation structure, power electrical control system and manufacturing method
CN113764357B (zh) 导电模块的封装结构
CN208271874U (zh) 散热基板及采用该散热基板的功率模组
CN217334063U (zh) 一种半导体电路模块
CN208572543U (zh) 内嵌散热器的多层电路板
CN210007992U (zh) 一种多层印刷复合集成电路板
CN219718573U (zh) 一种单面大孔灌胶铜基板结构
WO2021091144A1 (en) A connecting element for connecting a circuit board to a heat sink and method of establishing the connection
US20240164069A1 (en) Ceramic substrate structure and power module having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893033

Country of ref document: EP

Kind code of ref document: A1