WO2021179989A1 - 功率散热装置 - Google Patents

功率散热装置 Download PDF

Info

Publication number
WO2021179989A1
WO2021179989A1 PCT/CN2021/079116 CN2021079116W WO2021179989A1 WO 2021179989 A1 WO2021179989 A1 WO 2021179989A1 CN 2021079116 W CN2021079116 W CN 2021079116W WO 2021179989 A1 WO2021179989 A1 WO 2021179989A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
heat
conducting plate
power
dissipation device
Prior art date
Application number
PCT/CN2021/079116
Other languages
English (en)
French (fr)
Inventor
叶忠
陶鑫
张兆强
Original Assignee
上海瞻芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海瞻芯电子科技有限公司 filed Critical 上海瞻芯电子科技有限公司
Publication of WO2021179989A1 publication Critical patent/WO2021179989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage

Definitions

  • This application relates to the field of semiconductors, and in particular to a power heat dissipation device.
  • Power electronics technology is an important basic technology of my country's national economy and the core technology of modern science, industry and national defense.
  • power devices have been widely used in aerospace, photovoltaic power generation, energy development, industrial frequency conversion, transportation and other fields.
  • Power module is a device packaging form commonly used in high-power applications. It is one of the driving forces for the installation and integration of power electronic systems.
  • As a power cooling device the power module is responsible for the integration and heat dissipation of the power die. Its role is irreplaceable.
  • the existing power dissipating device the so-called power module
  • One is a traditional single-sided cooling power dissipating device (as shown in Figure 1), which only installs a heat sink on the lower surface of the chip.
  • the heat dissipation efficiency is very low.
  • the other is a new type of double-sided cooling power heat dissipation device (as shown in Figure 2).
  • Radiators are installed on the upper and lower surfaces of the chip. The heat dissipation efficiency is high.
  • this kind of power heat dissipation device has a complex structure, high manufacturing cost, and modern Most of the cooling systems are not compatible.
  • the embodiments of the present application provide a power heat dissipation device.
  • the structure is the same as the traditional single-sided cooling power heat dissipation device, its heat dissipation effect is close to that of the new double-sided cooling power heat dissipation device, and is compatible with various types of heat dissipation devices. cooling system.
  • an embodiment of the present application provides a power heat dissipation device, the power heat dissipation device includes a first circuit board, a second circuit board, a first heat conduction board, and a second heat conduction board;
  • the first circuit board and the second circuit board are electrically connected by copper pillars, and the copper pillars are arranged between the first circuit board and the second circuit board so that the first circuit board and the second circuit board are electrically connected.
  • a space capable of accommodating at least one chip is formed between the second circuit boards;
  • the second heat conducting plate is arranged on a side of the second circuit board away from the first circuit board, and the first heat conducting plate is arranged on a side of the first circuit board away from the second circuit board;
  • the second heat-conducting plate is fixedly connected to the first heat-conducting plate, so that the heat of the second heat-conducting plate can be transferred to the first heat-conducting plate.
  • a buffer material is filled between the second circuit board and the second heat conducting plate.
  • the buffer material includes thermally conductive silica gel or metal foam material.
  • the circuit board includes a copper-clad ceramic substrate.
  • the copper-clad ceramic substrate includes a ceramic layer and a copper foil layer covering the upper and lower surfaces of the ceramic layer, wherein the surface of the copper foil layer in contact with the chip is etched with a circuit, The circuit is used to transmit the electrical signal of the chip.
  • the heat conducting plate includes any one of the following materials: copper or aluminum.
  • one side of the power heat dissipating device is connected to an external heat conductor, and the external heat conductor includes an air-cooled radiator, a liquid-cooled radiator, or natural cooling.
  • a chip is welded between the first circuit board and the second circuit board.
  • a plurality of chips are soldered between the first circuit board and the second circuit board.
  • the power heat dissipating device includes a plurality of second circuit boards, one side of each chip of the plurality of chips is respectively connected to a second circuit board, and the plurality of The other side of each chip is soldered on the same first circuit board.
  • Figure 1 shows a schematic structural diagram of a single-sided cooling power heat sink produced by a traditional process
  • Figure 2 shows a schematic structural diagram of a double-sided cooling power heat dissipation device produced by a new process
  • Fig. 3 shows a schematic structural diagram of a power heat dissipation device according to some embodiments of the present application
  • Fig. 4 shows a schematic structural diagram of a DBC substrate according to some embodiments of the present application
  • Fig. 5 shows a manufacturing flow chart of a power heat dissipation device according to some embodiments of the present application
  • Fig. 6 shows a schematic structural diagram of another power heat dissipation device according to some embodiments of the present application.
  • Illustrative embodiments of the present application include, but are not limited to, power heat dissipation devices.
  • FIG. 1 shows a schematic structural diagram of a single-sided cooling power heat dissipation device produced by a traditional process.
  • the single-sided cooling power dissipating device 100 shown in FIG. 1 includes a circuit board 103 welded on the back of the chip 101, wherein the circuit board 103 and the chip 101 are electrically connected by bonding wires 102, and the circuit board 103 is welded on the heat conducting plate 104.
  • a heat sink 105 is installed under the heat conducting plate 104. Because the heat generated by the chip 101 can only be exported to the heat sink 105 through the circuit board 103 and the heat conducting plate 104 below, the heat dissipation efficiency of the single-sided cooling power heat sink 100 is very low.
  • the bonding wire 102 electrically connects the chip 102 and the circuit board 103 through wire bonding (WB, Wire Bonding).
  • Wire bonding is a kind of thin metal wire that uses heat, pressure, and ultrasonic energy to make metal wires. It is tightly welded with the circuit board pad to realize the electrical interconnection between the chip and the circuit board and the information exchange between the chips.
  • FIG. 2 shows a schematic structural diagram of a double-sided cooling power heat sink produced by the new process.
  • the double-sided cooling power dissipating device 200 shown in FIG. 2 includes a circuit board 202 welded on the back of the chip 201 and a circuit board 203 welded on the front of the chip 201.
  • the circuit board 202 and the circuit board 203 are respectively welded to the heat conducting plate 204 and the heat conducting plate 205
  • a heat sink 206 is installed above the heat conducting plate 205
  • a heat sink 207 is installed below the heat conducting plate 204.
  • the double-sided cooling device 200 since the upper and lower surfaces of the double-sided cooling power radiator 200 are equipped with radiators, the double-sided cooling device 200 has a high heat dissipation efficiency.
  • the structure of the double-sided cooling device 200 is complicated, the manufacturing cost is high, and the current Most cooling systems are not compatible.
  • FIG. 3 shows a schematic structural diagram of a power heat dissipation device 300 according to some embodiments of the present application.
  • the power heat dissipating device 300 shown in FIG. 3 includes a first circuit board 303 and a second circuit board 304 soldered on the back and front of the chip 301, respectively. Connection, the first circuit board 303 is welded to the first heat conducting board 305, the external heat conductor 308 is installed under the first heat conducting board 305, the second heat conducting board 307 is installed above the second circuit board 304, and the second circuit board 304 and A buffer material 306 is filled between the second heat-conducting plate 307, and both sides of the second heat-conducting plate 307 and the first heat-conducting plate 305 are fixedly connected.
  • the buffer material 306 includes, but is not limited to, metal foam material or thermally conductive silica gel, which is used to reduce the stress generated on the chip 301 when the second thermally conductive plate 307 thermally expands.
  • the power heat dissipation device 300 The buffer material 306 may not be included, and there is no limitation here.
  • the arrow in the second heat conducting plate 307 indicates the direction of heat conduction.
  • circuit boards in this application include but are not limited to copper-clad ceramic substrates (DBC, Direct Bond Copper), printed circuit boards (PCB, Printed Circuit Board), etc., which are not limited here.
  • the circuit board adopts a DBC substrate, which has excellent thermal cycleability, stable shape, good rigidity, and high thermal conductivity.
  • Figure 4 shows a schematic diagram of the structure of the first circuit board 303 as a DBC substrate.
  • the DBC substrate shown in Figure 4 includes a ceramic layer 401, an upper copper foil layer 402 covering the upper surface of the ceramic layer, and a lower surface covering the lower surface of the ceramic layer.
  • FIG. 5 show the preparation flow chart of the power heat dissipation device 300, as shown in FIG. 5, including:
  • solder paste (a) Apply solder paste to the position to be soldered on the front surface of the first circuit board 303 through a screen printing process, and then reflow the chip 301 and the copper pillars 302 on the first circuit board 303, in order to ensure that the copper pillars 302 and the chip
  • the position of 301 is accurate, and there will be no deviation during reflow soldering, and their positions can be fixed by molds, and then a stable mechanical and electrical structure can be formed by reflow soldering.
  • Reflow soldering refers to the use of solder paste (a mixture of solder and flux) to connect one or more electronic components to the contact pad, and then control the heating to melt the solder to achieve permanent bonding. You can use a reflow furnace, Different heating methods such as infrared heating lamp or hot air gun are used for welding.
  • the first heat conducting plate 305 can have its own heat sink, or an external heat conductor (not shown in the figure) can be installed at the bottom. It can be understood that the external heat conductor may be an air-cooled radiator, a liquid-cooled radiator, or natural cooling (for example, air), which is not limited here.
  • the power dissipation device in the figure has the same structure as the traditional single-sided cooling power dissipation device 100. Therefore, the power dissipation device of the embodiment of the present application has no difference in appearance design from the traditional single-sided heat dissipation device, and can directly replace the traditional single-sided cooling device. Surface cooling power heat dissipation device, without the need to change other structures of the entire heat dissipation system.
  • the buffer material 306 includes but is not limited to metal foam material, thermal conductive silica gel, etc., which is not limited here.
  • the two sides of the second heat conduction plate 307 are fixedly connected to the first heat conduction plate 305, so that the heat generated by the chip 301 can be transferred to the second heat conduction plate 307 through the second circuit board 304 and the buffer material 306, and then the second heat conduction plate 307 passes through the two
  • the side heat-conducting plate transfers heat to the first heat-conducting plate 305 (the arrow in the figure indicates the heat transfer path). This additional heat transfer path improves the heat dissipation performance of the power heat sink 300.
  • FIG. 6 shows another power heat dissipation device 600.
  • the power heat dissipation device 600 in FIG. 6 includes two chips 301, and the upper surfaces of the two chips 301 are each soldered with a circuit board 304, The lower surfaces of the two chips 301 are soldered on the same first circuit board 303, and the two chips 301 are interconnected through the first circuit board 303.
  • the other structure of the power heat sink 600 is the same as that of the power device 300, and will not be repeated here. It can be understood that although the power heat sink shown in FIG. 6 can dissipate heat for two chips, in fact, the power heat sink can also dissipate heat for one or more chips, which is not limited here.
  • the area of the second heat conducting plate 307 is not necessarily the same as the area of the first heat conducting plate 305. In order to avoid structures such as pins, the area of the second heat conducting plate 307 may be reduced or used more often.
  • the chip 301 can also be connected to the first circuit board 303 in other ways, such as copper tape bonding, and then a buffer material is filled between the copper tape and the second heat conducting plate 307, and the power dissipation device
  • the gap part of 300 can also be filled with potting glue to better protect the mechanical structure of the power heat dissipation device, so as to improve the dielectric performance and thermal conductivity of the entire power heat dissipation device.
  • the power dissipating device provided by the embodiment of the present application has the same structure as the traditional single-sided cooling power dissipating device, its heat dissipation effect is close to that of the new double-sided cooling power dissipating device, and it is compatible with various heat dissipation systems.
  • each unit/device mentioned in each device embodiment of this application is a logical unit/device.
  • a logical unit/device can be a physical unit/device or a physical unit/device.
  • a part of the device can also be realized by a combination of multiple physical units/devices.
  • the physical realization of these logical units/devices is not the most important.
  • the combination of the functions implemented by these logical units/devices is the solution to this application.
  • the above-mentioned equipment embodiments of this application do not introduce units/devices that are not closely related to solving the technical problems proposed by this application. This does not mean that the above-mentioned equipment embodiments do not exist. Other units/devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

涉及半导体领域,公开了一种功率散热装置(300)。该功率散热装置(300)包括第一电路板(303)、第二电路板(304)、第一导热板(305)和第二导热板(307);其中第一电路板(303)与第二电路板(304)通过铜柱(302)电连接,铜柱(302)设置在第一电路板(303)和第二电路板(304)之间,使第一电路板(303)与第二电路板(304)之间形成能够容纳至少一个芯片(301)的空间;第二导热板(307)设置在第二电路板(304)远离第一电路板(303)的一侧,第一导热板(305)设置在第一电路板(303)远离第二电路板(304)的一侧;第二导热板(307)与第一导热板(305)固定连接,使第二导热板(307)的热量能够传递给第一导热板(305)。

Description

功率散热装置
本申请要求于2020年03月10日提交中国专利局、申请号为202010160026.8、申请名称为“功率散热装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体领域,特别涉及一种功率散热装置。
背景技术
电力电子技术是我国国民经济的重要基础技术,是现代科学、工业和国防的核心技术。功率器件作为电力电子技术的基础和核心,已广泛应用于航空航天、光伏发电、能源开发、工业变频、交通运输等领域。功率模块是大功率应用中普遍采用的器件封装形式,是电力电子系统装置化和集成化的驱动力之一,而作为功率散热装置的功率模块,承担着为功率管芯集成和散热的重任,其作用不可替代。
现有的功率散热装置,即所说的功率模块,有两种冷却形式,一种是传统的单面冷却功率散热装置(如图1所示),只在芯片的下表面安装一个散热器,散热效率很低。另一种是新型的双面冷却功率散热装置(如图2所示),在芯片的上下表面都安装散热器,散热效率高,但是这种功率散热装置结构复杂,制造成本高,并且和现有的大部分散热系统不兼容。
发明内容
为解决上述问题,本申请实施例提供了一种功率散热装置,虽然与传统的单面冷却功率散热装置结构相同,但是其散热效果接近于新型的双面冷却功率散热装置,并且可以兼容各种散热系统。
第一方面,本申请实施例提供了一种功率散热装置,所述功率散热装置包括第一电路板、第二电路板、第一导热板和第二导热板;其中
所述第一电路板与所述第二电路板通过铜柱电连接,所述铜柱设置在所述第一电路板和所述第二电路板之间,使所述第一电路板与所述第二电路板之间形成能够容纳至少一个芯片的空间;
所述第二导热板设置在所述第二电路板远离第一电路板的一侧,所述第一导热板设置在所述第一电路板远离第二电路板的一侧;
所述第二导热板与所述第一导热板固定连接,使所述第二导热板的热量能够传递给所述第一导热板。
在上述第一方面的一种可能实现中,所述第二电路板与所述第二导热板之间填充有缓冲材料。
在上述第一方面的一种可能实现中,所述缓冲材料包括导热硅胶或金属泡沫材料。
在上述第一方面的一种可能实现中,所述电路板包括覆铜陶瓷基板。
在上述第一方面的一种可能实现中,所述覆铜陶瓷基板包括陶瓷层和覆盖在陶瓷层上下表面的铜箔层,其中,与所述芯片接触的铜箔层表面刻蚀有电路,所述电路用于传递所述芯片的电信号。
在上述第一方面的一种可能实现中,所述导热板包括以下材料中的任意一种:铜或铝。
在上述第一方面的一种可能实现中,所述功率散热装置的一面与外部导热体相连,所述外部导热体包括风冷散热器、液冷散热器或自然冷却。
在上述第一方面的一种可能实现中,所述第一电路板与所述第二电路板之间焊接有一个芯片。
在上述第一方面的一种可能实现中,所述第一电路板与所述第二电路板之间焊接有多个芯片。
在上述第一方面的一种可能实现中,所述功率散热装置包括多个第二电路板,所述多个芯片中的每个芯片的一侧分别与一个第二电路板连接,所述多个芯片的另一侧焊接在同一个第一电路板上。
附图说明
图1示出了传统工艺生产的一种单面冷却功率散热装置的结构示意图;
图2示出了新型工艺生产的一种双面冷却功率散热装置的结构示意图;
图3根据本申请的一些实施例,示出了一种功率散热装置的结构示意图;
图4根据本申请的一些实施例,示出了一种DBC基板的结构示意图;
图5根据本申请的一些实施例,示出了一种功率散热装置的制造流程图;
图6根据本申请的一些实施例,示出了另外一种功率散热装置的结构示意图。
具体实施例
本申请的说明性实施例包括但不限于功率散热装置。
下面将结合附图对本申请的实施例作进一步地详细描述。
图1示出了传统工艺生产的一种单面冷却功率散热装置的结构示意图。图1所示的单面冷却功率散热装置100包括焊接在芯片101背面的电路板103,其中,电路板103与芯片101通过键合线102电连接,电路板103焊接在导热板104上,在导热板104下面安装散热器105。因为芯片101产生的热量只能通过下面的电路板103以及导热板104导出到散热器105上,因此单面冷却功率散热装置100的散热效率很低。需要说明的是,键合线102通过引线键合(WB,Wire Bonding)将芯片102和电路板103电连接,引线键合是一种使用细金属线,利用热、压力、超声波能量使金属引线与电路板焊盘紧密焊合,实现芯片与电路板间的电气互连和芯片间的信息互通。
图2示出了新型工艺生产的一种双面冷却功率散热装置的结构示意图。图2所示的双面冷却功率散热装置200包括焊接在芯片201背面的电路板202和焊接在芯片201正面的电路板203,电路板202和电路板203分别焊接在导热板204和导热板205上,导热板205上方安装散热器206,导热板204下方安装散热器207。从图中可以看出,由于双面冷却功率散热装置200的上下表面都安装有散热器,因此双面冷却装置200的散热效率高,但是这种散热装置结构复杂,制造成本高,而且和现有的大部分散热系统都不兼容。
图3根据本申请的一些实施例,示出了一种功率散热装置300的结构示意图。图3所示的功率散热装置300包括分别焊接在芯片301背面和正面的第一电路板303和第二电路板304,其中,第一电路板303和第二电路板304通过铜柱302实现电连接,第一电路板 303焊接在第一导热板305上,第一导热板305下面安装外部导热体308,在第二电路板304的上方安装第二导热板307,并且第二电路板304和第二导热板307之间填充有缓冲材料306,第二导热板307和第一导热板305两侧固定连接。可以理解的是,缓冲材料306包括但不限于金属泡沫材料或导热硅胶,用于减小第二导热板307热膨胀时对芯片301产生的应力,在本申请的其他实施例中,功率散热装置300可以不包括缓冲材料306,在此不做限制。在图中,第二导热板307中的箭头表示热传导的方向。
需要说明的是,本申请中电路板包括但不限于覆铜陶瓷基板(DBC,Direct Bond Copper)、印刷电路板(PCB,Printed Circuit Board)等,在此不做限制。
在本申请的一些实施例中,电路板采用的是DBC基板,其具有极好的热循环性,并且形状稳定、刚性好、导热率高,以图3中的第一电路板303为例,图4示出了第一电路板303为DBC基板的结构示意图,图4所示的DBC基板包括陶瓷层401、覆盖在陶瓷层上表面的上铜箔层402和覆盖在陶瓷层下表面的下铜箔层403,其中,上铜箔层402上刻蚀有电路,用于传递芯片301的电信号,而下铜箔层403表面完整,不用进行刻蚀。
下面具体介绍本申请实施例的功率散热装置300的制备流程,图5中(a)~(d)示出了功率散热装置300的制备流程图,如图5所示,包括:
(a)将焊膏通过丝网印刷工艺涂覆在第一电路板303正面待焊接的位置,然后将芯片301、铜柱302回流焊接在第一电路板303上,为了确保铜柱302和芯片301的位置准确,并且在回流焊接中不会发生偏移,可以通过模具固定它们的位置,再通过回流焊接形成稳定的机械和电学结构。回流焊接是指利用焊膏(由焊料和助焊剂混合而成的混合物)将一或多个电子元件连接到接触垫上之后,通过控制加温来熔化焊料以达到永久接合,可以用回焊炉、红外加热灯或热风枪等不同加温方式来进行焊接。
(b)将焊膏通过丝网印刷工艺涂覆在第二电路板304的下表面待焊接位置,然后将芯片301、铜柱302回流焊接在第二电路板304的下表面待焊接位置,使得第二电路板304与芯片301和铜柱302固定连接。可以理解的是,铜柱用于实现第一电路板303和第二电路板304的电连接,从而将芯片301的电信号传递出去,并且,铜柱与键合线相比,电路通路更短,电阻和寄生电感减小,从而使得功率装置拥有更好的电学性能。需要说明的是,丝网印刷是指用丝网作为版基,并通过感光制版方法,制成带有图文的丝网印版。
(c)将图(b)中的功率散热装置回流焊接在第一导热板305上,第一导热板305可 以自带散热片,也可以在底部安装外部导热体(图中未示出),可以理解,外部导热体可以是风冷散热器、液冷散热器或者自然冷却(例如空气),在此不做限制。图中的功率散热装置与传统的单面冷却功率散热装置100的结构相同,因此,本申请实施例的功率散热装置在外形设计上与传统的单面散热装置没有差异,可以直接取代传统的单面冷却功率散热装置,而不需要更改整个散热系统的其他结构。
(d)在第二电路板304的上方安装第二导热板307并且二者之间填充缓冲材料306,缓冲材料306包括但不限于金属泡沫材料、导热硅胶等,在此不做限制。第二导热板307的两侧与第一导热板305固定连接,这样芯片301产生的热量可以通过第二电路板304和缓冲材料306传递给第二导热板307,然后第二导热板307通过两侧导热板将热量传递给第一导热板305(图中箭头表示传热路径),这种额外的传热路径提高了功率散热装置300的散热性能。
根据本申请的一些实施例,图6示出了另外一种功率散热装置600,图6中的功率散热装置600包含2个芯片301,并且2个芯片301的上表面各焊接一个电路板304,2个芯片301的下表面焊接在同一个第一电路板303上,2个芯片301通过第一电路板303形成互联,功率散热装置600的其他结构与功率装置300相同,在此不做赘述。可以理解的是,虽然图6中示出的功率散热装置能够给2个芯片进行散热,但实际上功率散热装置还可以给1个或2个以上的芯片进行散热,在此不做限制。
需要说明的是,在图3中,第二导热板307的面积不一定与第一导热板305的面积相同,为了避开针脚等结构,可能会减小第二导热板307的面积或者使用多个面积更小的第二导热板307,并且在同一个第二导热板307除了两侧可以传递热量外,还可以在其他位置与第一导热板305连接,例如中间位置,在此不做限制。
需要说明的是,在图3中,芯片301也可以通过其他方式与第一电路板303连接,例如铜带键合,然后在铜带与第二导热板307之间填充缓冲材料,功率散热装置300的空隙部分还可以填入灌封胶,用于更好地保护功率散热装置的机械结构,以提高整个功率散热装置的介电性能和导热性能。
因此,虽然本申请实施例提供的功率散热装置与传统的单面冷却功率散热装置结构相同,但是其散热效果接近于新型的双面冷却功率散热装置,并且可以兼容各种散热系统。
在附图中,可以以特定布置和/或顺序示出一些结构或方法特征。然而,应该理解,可 能不需要这样的特定布置和/或排序。而是,在一些实施例中,这些特征可以以不同于说明性附图中所示的方式和/或顺序来布置。另外,在特定图中包括结构或方法特征并不意味着暗示在所有实施例中都需要这样的特征,并且在一些实施例中,可以不包括这些特征或者可以与其他特征组合。
需要说明的是,本申请各设备实施例中提到的各单元/装置都是逻辑单元/装置,在物理上,一个逻辑单元/装置可以是一个物理单元/装置,也可以是一个物理单元/装置的一部分,还可以以多个物理单元/装置的组合实现,这些逻辑单元/装置本身的物理实现方式并不是最重要的,这些逻辑单元/装置所实现的功能的组合才是解决本申请所提出的技术问题的关键。此外,为了突出本申请的创新部分,本申请上述各设备实施例并没有将与解决本申请所提出的技术问题关系不太密切的单元/装置引入,这并不表明上述设备实施例并不存在其它的单元/装置。
需要说明的是,在本专利的示例和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然通过参照本申请的某些优选实施例,已经对本申请进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种功率散热装置,其特征在于,所述功率散热装置包括第一电路板、第二电路板、第一导热板和第二导热板;其中
    所述第一电路板与所述第二电路板通过铜柱电连接,所述铜柱设置在所述第一电路板和所述第二电路板之间,使所述第一电路板与所述第二电路板之间形成能够容纳至少一个芯片的空间;
    所述第二导热板设置在所述第二电路板远离第一电路板的一侧,所述第一导热板设置在所述第一电路板远离第二电路板的一侧;
    所述第二导热板与所述第一导热板固定连接,使所述第二导热板的热量能够传递给所述第一导热板。
  2. 根据权利要求1所述的功率散热装置,其特征在于,所述第二电路板与所述第二导热板之间填充有缓冲材料。
  3. 根据权利要求2所述的功率散热装置,其特征在于,所述缓冲材料包括导热硅胶或金属泡沫材料。
  4. 根据权利要求1所述的功率散热装置,其特征在于,所述电路板包括覆铜陶瓷基板。
  5. 根据权利要求4所述的功率散热装置,其特征在于,所述覆铜陶瓷基板包括陶瓷层和覆盖在陶瓷层上下表面的铜箔层,其中,与所述芯片接触的铜箔层表面刻蚀有电路,所述电路用于传递所述芯片的电信号。
  6. 根据权利要求1所述的功率散热装置,其特征在于,所述导热板包括以下材料中的任意一种:铜或铝。
  7. 根据权利要求1所述的功率散热装置,其特征在于,所述功率散热装置的一面与外部导热体相连,所述外部导热体包括风冷散热器、液冷散热器或自然冷却。
  8. 根据权利要求1所述的功率散热装置,其特征在于,所述第一电路板与所述第二电路板之间焊接有一个芯片。
  9. 根据权利要求1所述的功率散热装置,其特征在于,所述第一电路板与所述第二电路板之间焊接有多个芯片。
  10. 根据权利要求9所述的功率散热装置,其特征在于,所述功率散热装置包括多个第二电路板,所述多个芯片中的每个芯片的一侧分别与一个第二电路板连接,所述多个芯片的另一侧焊接在同一个第一电路板上。
PCT/CN2021/079116 2020-03-10 2021-03-04 功率散热装置 WO2021179989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010160026.8 2020-03-10
CN202010160026.8A CN111354692A (zh) 2020-03-10 2020-03-10 功率散热装置

Publications (1)

Publication Number Publication Date
WO2021179989A1 true WO2021179989A1 (zh) 2021-09-16

Family

ID=71196053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079116 WO2021179989A1 (zh) 2020-03-10 2021-03-04 功率散热装置

Country Status (2)

Country Link
CN (1) CN111354692A (zh)
WO (1) WO2021179989A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354692A (zh) * 2020-03-10 2020-06-30 上海瞻芯电子科技有限公司 功率散热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552635A (en) * 1994-01-11 1996-09-03 Samsung Electronics Co., Ltd. High thermal emissive semiconductor device package
CN102664177A (zh) * 2012-05-16 2012-09-12 中国科学院电工研究所 一种双面冷却的功率半导体模块
CN209496859U (zh) * 2019-03-13 2019-10-15 黄山学院 一种高功率密度igbt模块的双面水冷散热封装结构
CN110739282A (zh) * 2019-10-15 2020-01-31 唐博汶 功率器件封装结构及模块电源
US20200066680A1 (en) * 2018-08-21 2020-02-27 Internatrional Business Machines Corporation Integrated Circuit Chip Carrier with In-Plane Thermal Conductance Layer
CN111354692A (zh) * 2020-03-10 2020-06-30 上海瞻芯电子科技有限公司 功率散热装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10959319B2 (en) * 2016-10-25 2021-03-23 Telefonaktiebolaget Lm Ericsson (Publ) Cooling package and power module
CN206584917U (zh) * 2017-02-27 2017-10-24 奥肯思(北京)科技有限公司 一种倒装焊芯片的气密性陶瓷封装体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552635A (en) * 1994-01-11 1996-09-03 Samsung Electronics Co., Ltd. High thermal emissive semiconductor device package
CN102664177A (zh) * 2012-05-16 2012-09-12 中国科学院电工研究所 一种双面冷却的功率半导体模块
US20200066680A1 (en) * 2018-08-21 2020-02-27 Internatrional Business Machines Corporation Integrated Circuit Chip Carrier with In-Plane Thermal Conductance Layer
CN209496859U (zh) * 2019-03-13 2019-10-15 黄山学院 一种高功率密度igbt模块的双面水冷散热封装结构
CN110739282A (zh) * 2019-10-15 2020-01-31 唐博汶 功率器件封装结构及模块电源
CN111354692A (zh) * 2020-03-10 2020-06-30 上海瞻芯电子科技有限公司 功率散热装置

Also Published As

Publication number Publication date
CN111354692A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US10943845B2 (en) Three-dimensional packaging structure and packaging method of power devices
JP5106519B2 (ja) 熱伝導基板及びその電子部品実装方法
CN107896421B (zh) 一种快速散热的pcb
KR20060121671A (ko) 전력 모듈 패키지 구조체
CN107734837B (zh) 一种快速散热的pcb
WO2021179989A1 (zh) 功率散热装置
TWI446462B (zh) 功率模組
CN209787545U (zh) 印制电路板
US20200068700A1 (en) Cooling package and power module
JP2006287168A (ja) 混成回路と複合基板を具えたパッケージ構造
WO2024114220A1 (zh) 一种金属基板散热结构和光伏功率优化器
JP2000156439A (ja) パワー半導体モジュール
WO2023071583A1 (zh) 芯片模组、电路板以及电子设备
JP2002164485A (ja) 半導体モジュール
TW201436701A (zh) 散熱模組
CN107734838B (zh) 一种快速散热的pcb
TWM592106U (zh) 功率模組
CN213847398U (zh) 电路板散热结构和电器设备
CN214099627U (zh) 智能功率模块
WO2021233241A1 (zh) 一种功率变换装置
CN212367615U (zh) 一种功率管散热结构
CN208434206U (zh) 多层功率器件堆叠结构
CN112490232A (zh) 智能功率模块和智能功率模块的制造方法
CN113727515A (zh) 一种金属覆铜板
CN214672591U (zh) 一种功率器件封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768382

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21768382

Country of ref document: EP

Kind code of ref document: A1