WO2021233241A1 - 一种功率变换装置 - Google Patents

一种功率变换装置 Download PDF

Info

Publication number
WO2021233241A1
WO2021233241A1 PCT/CN2021/094057 CN2021094057W WO2021233241A1 WO 2021233241 A1 WO2021233241 A1 WO 2021233241A1 CN 2021094057 W CN2021094057 W CN 2021094057W WO 2021233241 A1 WO2021233241 A1 WO 2021233241A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
heat capacity
additional heat
thermal resistance
heating element
Prior art date
Application number
PCT/CN2021/094057
Other languages
English (en)
French (fr)
Inventor
庄加才
李璇
于安博
邵可可
秦龙
罗黎艳
姚巨彪
汪洋
陈超
孙亚飞
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to EP21807658.6A priority Critical patent/EP4156480A4/en
Priority to US17/798,602 priority patent/US20230108943A1/en
Priority to JP2022600112U priority patent/JP3242452U/ja
Publication of WO2021233241A1 publication Critical patent/WO2021233241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0209Thermal insulation, e.g. for fire protection or for fire containment or for high temperature environments
    • H05K5/0211Thermal buffers, e.g. latent heat absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • This application relates to the field of power electronic heat dissipation technology, and in particular to a power conversion device.
  • the system's requirements for power conversion equipment not only require it to meet the rated operating conditions, but also require it to provide an output capacity several times higher than the peak value of the rated operating conditions in a short time. At this time, it means power conversion.
  • the loss of the related heating devices in the equipment increases exponentially, and this has a particularly large impact on the power semiconductor devices.
  • the size of the finished product is also not large.
  • an insulating material needs to be added for isolation between the semiconductor device and the heat sink, and the thermal conductivity of the insulating material is generally poor. Therefore, if the semiconductor device has a large loss in a short period of time, it will inevitably lead to a sharp rise in the temperature of the device, which will have a great impact on the device, and cause the reliability of the equipment to decrease.
  • higher-performance switching tubes are usually used, or more switching tubes in parallel are used to reduce peak power consumption and thereby reduce the temperature rise of the device body.
  • replace the insulating material with a material with higher thermal conductivity, such as an aluminum substrate with a higher thermal conductivity and a thermal grease with a higher thermal conductivity, so as to speed up the heat conduction of the device to the heat sink.
  • a heat sink with higher heat dissipation capacity can also be designed to reduce the basic temperature of the power conversion device itself.
  • an embodiment of the present application provides a power conversion device to solve the problems of large volume, large weight, and high cost of the system in the prior art.
  • This application provides a power conversion device, including: a low thermal resistance channel, a high thermal resistance channel, a heat sink, an additional heat capacity device, and at least one heating element; wherein:
  • the additional heat capacity device is connected with the heating body through the low thermal resistance channel
  • the heat sink is connected to the high thermal resistance passage of the heating element.
  • the low thermal resistance channel is a channel formed by a metal or a combination of multiple metals.
  • the material of the additional heat capacity device is metal.
  • the material of the additional heat capacity device is copper or aluminum.
  • the additional heat capacity device has a strip shape or a block shape.
  • the additional heat capacity device is arranged around the heating element, or in a posture that covers the heating element.
  • the heating element is a power device chip arranged on a chip lead frame.
  • the low thermal resistance channel is PCB surface metal and its solder, and a plurality of heating elements form a power conversion circuit on the PCB.
  • the power conversion circuit is an ACDC conversion circuit, a DCAC conversion circuit, a DCDC conversion circuit or an ACAC conversion circuit.
  • the high thermal resistance channel includes at least one insulating layer.
  • the additional heat capacity device is connected to the heating element through a low thermal resistance channel, which increases the heat capacity of the heating element. Therefore, when the transient loss is large and the temperature of the heating element rises rapidly, It can reduce the rate of temperature rise, thereby reducing the temperature of the heating element at the end of the short-term peak working condition, and ensuring the reliability of the device; and there is no need to use high-performance switching tubes or more switching tubes in parallel as in the prior art, The volume and weight of the system are reduced, and the cost is saved.
  • Figure 1 is a schematic cross-sectional view of a conventional heat source to a heat sink provided in the prior art
  • FIG. 2 is a schematic cross-sectional view of a power conversion device provided by an embodiment of the application.
  • Figure 3 is a top view of a heating element provided by an embodiment of the application.
  • FIG. 4 is a top view of a plurality of heating elements soldered on a circuit printed board provided by an embodiment of the application;
  • FIG. 5 is a schematic cross-sectional view of an additional heat capacity device provided around a low thermal resistance channel according to an embodiment of the application;
  • FIG. 6 is a top view of the additional heat capacity device provided by an embodiment of the application as a copper block
  • FIG. 7 is a top view of the copper strip as the additional heat capacity device provided by the embodiment of the application.
  • FIG. 8 is a top view of the additional heat capacity device provided by an embodiment of the application as a U-shaped copper strip;
  • FIG. 9 is a schematic diagram of a temperature change comparison curve between a power conversion device provided by an embodiment of the application and a system without an additional heat capacity device.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • FIG. 1 A cross-sectional schematic diagram of a traditional heat source to a heat sink is shown in Figure 1.
  • a short time such as tens of seconds
  • the heat source 101 will inevitably generate a large amount of heat.
  • the heat needs to be transferred to the heat sink through the semiconductor lead frame 102, the printed circuit board (Printed Circuit Board) surface copper foil 103 and the PCB insulation layer 104 in sequence. 105.
  • the heat sink 105 cannot achieve a good heat dissipation effect, causing the temperature of the heat source 101 to rise rapidly, which has a greater impact on the system.
  • the present application provides a power conversion device to solve the problems of large volume, large weight, and high cost of the system in the prior art.
  • the power conversion device includes: a low thermal resistance channel 203, a high thermal resistance channel 204, a heat sink 205, an additional heat capacity device 201, and at least one heating element 202;
  • the additional heat capacity device 201 and the heating element 202 are connected through a low thermal resistance channel 203;
  • the heat sink 205 is connected to the high thermal resistance channel 204 of the heating element 202.
  • this embodiment takes only one heating element 202 as an example for description.
  • the top view of the heating element 202 is shown in FIG.
  • the chip lead frame 301 is generally a DBC (Direct Bonded Copper, ceramic copper clad) board.
  • the semiconductor manufacturer solders the power device chip 302 to one side of the chip lead frame 301, and then uses epoxy and other materials to connect the two on the outside. Carry out packaging to form a device. Due to the limitation of industrial packaging standards, the volume of the power device chip 302 itself is generally small, and the chip lead frame 301 is determined by the packaging, and the volume is generally not large.
  • the low thermal resistance channel 203 can be a metal, or a channel formed by a combination of multiple metals.
  • the surface metal of a PCB (aluminum-containing substrate) and its solder the surface metal is usually copper foil, but, Since the copper surface is easily oxidized in the general environment, it can not be tinned (poor solderability), so it will be protected on the copper surface that needs to be tinned.
  • the protection methods include spray tin (HASL) and gold (ENIG) , Immersion Silver, Immersion Tin, Organic Solder Preservative (OSP), etc., but not limited to this.
  • the device manufacturer solders the other side of the chip lead frame 301 with the heating element 202 to the side of the printed copper foil on the surface of the PCB.
  • the chips 302 each achieve different
  • the printed copper foil on the surface of the PCB is usually welded with multiple heating elements 202.
  • the multiple heating elements 202 are printed on the surface of the PCB by welding and
  • the wiring forms a power conversion circuit.
  • the power conversion circuit may be an ACDC conversion circuit, a DCAC conversion circuit, a DCDC conversion circuit, or an ACAC conversion circuit, depending on specific application scenarios.
  • the setting method of the additional heat capacity device 201 is analogous to the scenario where there is only one heating element 202. Specifically, it can be a whole or multiple individual independent bodies. The details are not described here. limited.
  • the surface of the PCB is copper foil with a thickness of tens of microns, and in order to ensure the power density, the area that cannot be made is large, resulting in a small volume.
  • the volume of the heating element 202 itself is small, and the size of the low thermal resistance channel 203 is not large, which in turn leads to a relatively low heat capacity of the system as a whole.
  • the high thermal resistance channel 204 includes at least one insulating layer, which can actually be an insulating layer and thermally conductive silicone grease in the aluminum substrate.
  • the thermal conductivity of the insulating layer and the thermally conductive silicone grease is low, even less than the chip lead frame 301, One percent of the metal such as PCB, and in order to ensure its insulation performance, processing performance (such as anti-breaking or cracking), etc., equipment manufacturers usually make the insulation layer into a certain thickness.
  • the heating element 202 with a small heat capacity is installed on the low thermal resistance channel 203, and then installed on the heat sink 205 through the high thermal resistance channel 204, the heating element 202 will generate large power consumption in a short time. A lot of heat.
  • the system conducts heat to the radiator 205 through the high thermal resistance channel 204, and on the other hand, it needs to share the heat through the body of the heating element 202 and the PCB.
  • the overall heat capacity is low, and the heat passes through the high thermal resistance channel 204
  • the slow transmission speed to the radiator 205 will inevitably cause the temperature of the heating element 202 to rise rapidly, thereby affecting the reliability of the device.
  • the additional heat capacity device 201 and the heating element 202 are connected through the low thermal resistance channel 203.
  • the additional heat capacity device 201 has a larger size and increases the heat capacity of the heating element 202, thereby generating greater power in the power device chip 302 in a short time. It takes time to slow down the temperature rise of the heating element 202.
  • the additional heat capacity device 201 and the heating element 202 are connected through a low thermal resistance channel 203.
  • the design scheme is arranged on the PCB and around the heating element 202, even interspersed with multiple heating elements.
  • the schemes in the middle of 202 are all within the protection scope of this application.
  • the material of the additional heat capacity device 201 is generally a metal with a relatively high thermal conductivity, such as copper or aluminum, but it is not limited thereto. Any material with a thermal conductivity greater than the high thermal resistance channel 204 is within the protection scope of the present application.
  • a specific solution is to improve the instantaneous temperature rise by welding a metal with high heat capacity on the edge of the copper foil in an application scenario where the power device chip 302 is welded to an aluminum substrate or copper foil.
  • the shape of the additional heat capacity device 201 can be strip or block.
  • the additional heat capacity device 201 is a strip-shaped top view; it can be seen that regardless of whether the additional heat capacity device 201 is strip-shaped or block-shaped, it can be arranged around the heating element 202 (as shown in FIG. 6 and FIG. 7), Alternatively, it is inserted between a plurality of heating elements 202 (not shown).
  • the shape of the additional heat capacity device 201 can also be a U-shaped strip when the shape of the additional heat capacity device 201 is strip-shaped. FIG.
  • FIGS. 6 to 8 show a top view of the additional heat-capacity device 201 with the entire U-shaped strip shape soldered on the surface of the PCB with the opening facing down.
  • the printed copper foil straddles the heating element 202 and assumes a posture of covering the heating element 202.
  • the schematic cross-sectional view of the heating element 202 is shown in FIG. 5.
  • FIGS. 6 to 8 are all shown with multiple additional heat capacity devices 201 as examples. In practical applications, only one additional heat capacity device 201 may also be provided, which is not limited here. In specific application scenarios, one or more copper blocks or copper bars can be selected according to the actual situation, which are all within the scope of protection of this application.
  • the additional heat capacity device 201 is soldered on the printed copper foil on the surface of the PCB.
  • the additional heat capacity device 201 cannot be installed on it.
  • the additional heat capacity device 201 is soldered to the chip lead frame 301, the increase in the volume and weight of the heating element 202 itself cannot be avoided, which does not conform to the original design intention of the present application.
  • the additional heat capacity device 201 provided in the present application, and is not limited to this. Any shape that can increase the heat capacity of the heating element 202 is within the protection scope of the present application.
  • the temperature at the end of the peak operating condition can be reduced.
  • thermal energy formula and heat conduction formula are used to explain the working principle of the above additional heat capacity device 201.
  • q is the heat absorbed or released (J); c is the specific heat capacity of the material (J/(kg.°C)); m is the mass of the material (kg); ⁇ T is the temperature difference (°C). It can be seen that if the heat absorbed or released is the same, if you want to reduce the temperature rise rate of the object, you can increase the specific heat capacity and mass of the material.
  • the heat conduction formula is:
  • Q is the heat conduction flow (W); ⁇ is the thermal conductivity of the material (W/m.°C); A is the cross-sectional area perpendicular to the direction of heat conduction (m 2 ); Is the temperature gradient (°C/m) along the normal of the isothermal surface.
  • the negative sign in the formula means that the direction of heat transfer is opposite to the temperature gradient. It can be seen that if you want to increase the heat dissipation of heat conduction, you can increase the thermal conductivity of the material. For example, you can choose a material with a higher thermal conductivity (copper or aluminum), and you can also increase the cross-sectional area in the direction of heat conduction.
  • the additional heat capacity device is connected to the heating element through a low thermal resistance channel, which increases the heat capacity of the heating element 202. Therefore, when the transient loss is large and the temperature of the heating element rises rapidly, It can reduce the rate of temperature rise, thereby reducing the temperature of the heating element at the end of the short-term peak working condition, and ensuring the reliability of the device; and there is no need to use high-performance switching tubes or more switching tubes in parallel as in the prior art, The volume and weight of the system are reduced, and the cost is saved.
  • the power conversion device provided by this embodiment of the present application has a large transient loss and the temperature of the heating element 202 rises rapidly. The effect is remarkable.
  • the starting point of the curve indicates that the temperature of the heating element 202 has begun to rise sharply.
  • the temperature curve of the system without additional heat capacity device or other better heat dissipation device in the prior art rises rapidly, while the temperature curve provided by this embodiment
  • the temperature rise rate of the system with additional heat capacity device is significantly lower than that of the system without additional heat capacity device, and at the end of the peak condition, the temperature of the system with additional heat capacity device is also significantly lower than that without additional heat capacity device
  • the system of the device proves the rationality and feasibility of the system with the additional heat capacity device, and ensures the reliability of the system.
  • the prior art has the following solutions. For example, using higher-performance switching tubes in the system, or connecting more switching tubes in parallel, can reduce the peak power consumption of the system, thereby reducing the temperature rise rate of the heating device itself; in addition, you can also choose higher thermal conductivity Materials, such as aluminum substrates with higher thermal conductivity, thermal grease with higher thermal conductivity, etc., to accelerate the transfer of heat generated by heating devices to the heat dissipation device; in addition, design a heat dissipation device with higher heat dissipation capacity to reduce the system itself The base temperature.
  • higher thermal conductivity Materials such as aluminum substrates with higher thermal conductivity, thermal grease with higher thermal conductivity, etc.
  • the above technical solutions have the same drawbacks.
  • Using high-performance switching tubes or connecting more switching tubes in parallel will increase the cost of the heating device itself, while connecting more switching tubes in parallel will increase the size of the PCB board.
  • Increasing, and choosing a material with higher thermal conductivity or designing a heat sink with stronger heat dissipation capacity also means higher costs, and may also lead to an increase in the volume and weight of the heat sink.
  • the above solutions will cause the weight and volume of the system to increase, and the cost increases.
  • an additional heat capacity device 201 is provided on the low thermal resistance channel 203, which increases the heat capacity of the heating element 202, thereby increasing the ability of the heating element 202 to store heat during peak output conditions. Basically does not change the temperature rise of the rated working condition. Moreover, no changes are made to the heating device or the heat dissipation device, which will not increase the volume or weight of the system, nor will it increase the cost of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供一种功率变换装置,其附加热容装置与发热体通过低热阻通道相连,增加了发热体的热容,因此,当发生瞬态损耗大而导致发热体温度迅速上升的情况时,能够降低其温度上升的速率,进而降低了发热体短时峰值工况结束时的温度,保证了设备的可靠性;并且,无需如现有技术采用高性能开关管或者并联更多的开关管,减小了系统的体积和重量,并节约了成本。

Description

一种功率变换装置
本申请要求于2020年05月19日提交中国专利局、申请号为202020837107.2、发明名称为“一种功率变换装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子散热技术领域,特别涉及一种功率变换装置。
背景技术
在许多应用场景中,系统对电源转换设备的要求不仅需要其满足额定工况,还要求其能够在短时间内提供高于额定工况的峰值数倍的输出能力,此时,意味着电源转换设备内相关的发热器件的损耗随即成倍数增加,而这对其中的功率半导体这一类器件的影响尤其大。
由于功率半导体此类器件本身,也就是晶元,其尺寸较小,并且制成成品的过程中一般需要进行工业封装,成品尺寸同样不大。另外,应用到电气设备上时,出于电气绝缘的需求,半导体器件与散热装置之间需要增加绝缘材料进行隔离,而绝缘材料的导热性能一般较差。所以半导体器件短时间内损耗较大的情况下,必然会导致器件温度急剧上升,给器件带来极大的影响,造成设备运行的可靠性下降。
目前,为解决上述问题,通常采用更高性能的开关管,或者,并联更多的开关管,以此降低峰值功耗,进而降低器件本体的温升。又或者,将绝缘材料替换成更高导热性能的材料,比如更高导热率的铝基板、更高导热率的导热硅脂,以加快器件将热传导至散热装置上。当然,还可以设计更高散热能力的散热装置,以降低电源转换设备本身的基础温度。
然而,以上技术方案存在共同的问题,即都会导致系统的体积、重量增大,并且成本较高。
发明内容
有鉴于此,本申请实施例提供一种功率变换装置,以解决现有技术中系统存在体积大、重量大以及成本高的问题。
为实现上述目的,本申请实施例提供如下技术方案:
本申请提供了一种功率变换装置,包括:低热阻通道、高热阻通道、散热 器、附加热容装置以及至少一个发热体;其中:
所述附加热容装置与所述发热体通过所述低热阻通道相连;
所述散热器与所述发热体所述高热阻通道相连。
优选的,所述低热阻通道是一种金属或者多种金属组合连接构成的通道。
优选的,所述附加热容装置的材料为金属。
优选的,所述附加热容装置的材料为铜或铝。
优选的,所述附加热容装置的形状为条状或者块状。
优选的,所述附加热容装置设置于所述发热体的周围,或者,呈笼罩住所述发热体的姿态。
优选的,所述发热体为:设置于芯片引线框架上的功率器件芯片。
优选的,所述低热阻通道为PCB表面金属及其焊料,多个发热体在所述PCB上构成功率变换电路。
优选的,所述功率变换电路为ACDC变换电路、DCAC变换电路、DCDC变换电路或者ACAC变换电路。
优选的,所述高热阻通道至少包括一个绝缘层。
本申请实施例提供的功率变换装置,附加热容装置与发热体通过低热阻通道相连,增加了发热体的热容,因此,当发生瞬态损耗大而导致发热体温度迅速上升的情况时,能够降低其温度上升的速率,进而降低了发热体短时峰值工况结束时的温度,保证了设备的可靠性;并且,无需如现有技术采用高性能开关管或者并联更多的开关管,减小了系统的体积和重量,并节约了成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为现有技术提供的传统的发热源到散热装置的横截面示意图;
图2为本申请实施例提供的功率变换装置的横截面示意图;
图3为本申请实施例提供的发热体的俯视图;
图4为本申请实施例提供的多个发热体焊接在电路印刷版上的俯视图;
图5为本申请实施例提供的附加热容装置设置在低热阻通道的周围的横截面示意图;
图6为本申请实施例提供的附加热容装置为铜块的俯视图;
图7为本申请实施例提供的附加热容装置为铜条的俯视图;
图8为本申请实施例提供的附加热容装置为U型铜条的俯视图;
图9为本申请实施例提供的功率变换装置与无附加热容装置的系统的温度变化对比曲线示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
一种传统的发热源到散热装置的横截面示意图如图1所示,在短时间(如几十秒)内,若需要满足峰值输出条件,即需要提供高于额定工况数倍的输出能力时,发热源101必然会产生大量的热量,此时,热量需要依次通过半导体引线框架102、器件安装焊接PCB(Printed Circuit Board,电路印刷版)表面铜箔103以及PCB绝缘层104传递到散热装置105。但是,受限于系统整体上热容量不大,并且PCB绝缘层104的导热性能差,散热装置105并不能起到很好的散热效果,造成发热源101温度迅速上升,对系统影响较大。
现有的技术方案,比如使用更高性能的开关管、并联更多的开关管,或者设计更高散热能力的散热装置,都存在导致系统体积和重量增大,成本更高的问题,所以,本申请提供一种功率变换装置,以解决现有技术中系统存在体积大、重量大以及成本高的问题。
该装置的横截面示意图如图2所示,该功率变换装置包括:低热阻通道203、高热阻通道204、散热器205、附加热容装置201以及至少一个发热体202;其中,
附加热容装置201与发热体202通过低热阻通道203相连;
散热器205与发热体202高热阻通道204相连。
需要说明的是,本实施例以只有一个发热体202为例进行说明,上述发热体202的俯视图如附图3所示,具体包括:设置于芯片引线框架301上的功率器件芯片302。其中,芯片引线框架301一般是DBC(Direct Bonded Copper,陶瓷覆铜)板,半导体厂家将功率器件芯片302焊接在芯片引线框架301的一侧,然后再在其外部使用环氧等材料将二者进行封装组成器件。由于工业封装标准的限制,功率器件芯片302本身的体积一般很小,并且,芯片引线框架301为封装所决定,体积一般也不大。
实际应用中,低热阻通道203可以是一种金属,也可以是多种金属组合连接构成的通道,比如,PCB(含铝基板)表面金属及其焊料,其表面金属通常为铜箔,但是,由于铜面在一般环境中,很容易氧化,导致无法上锡(焊锡性不良),因此会在要吃锡的铜面上进行保护,保护的方式有喷锡(HASL),化金(ENIG),化银(Immersion Silver),化锡(Immersion Tin),有机保焊剂(OSP)等,但不仅限于此。设备制造商将焊接有发热体202的芯片引线框架301的另一侧焊接于PCB的表面印刷铜箔的一侧,许多应用场景中,因为一个设备需要有不同的功率器件芯片302各自实现不同的作用,PCB的表面印刷铜箔通常会焊接有多个发热体202,具体可参见附图4中的发热体1至发热体5,多个发热体202在PCB的表面印刷铜箔上通过焊接和走线构成功率变换电路,具体的,该功率变换电路可以为ACDC变换电路、DCAC变换电路、DCDC变换电路或者ACAC变换电路,视具体应用场景而定。对于设置有多个发热体202的PCB,其附加热容装置201的设置方法类比只有一个发热体202的情景,具体可以是一个整体,也可以是多个单独的独立体,此处不做具体限定。通常来说,PCB表面为几十微米厚的铜箔,并且为了保证功率密度,也无法做的面积很大,导致其体积也很小。
也就是说,发热体202本身的体积很小,同时低热阻通道203的尺寸也不大,进而导致了系统整体的热容量比较低。
另外,高热阻通道204至少包括一个绝缘层,实际上可以是铝基板内的绝缘层以及导热硅脂等,众所周知,绝缘层和导热硅脂的导热系数都较低,甚至不及芯片引线框架301、PCB等金属的百分之一,并且,设备制造商为了保证其绝缘性能、加工性能(如防破或者开裂)等,通常将绝缘层做成一定的厚度。
若将上述热容量较小的发热体202设置于低热阻通道203上,再通过高热阻通道204设置于散热器205上,在发热体202在短时间内产生较大功耗的情况下,会产生大量热量,此时,系统一方面通过高热阻通道204向散热器205传导热量,另一方面需要通过发热体202本体以及PCB来分担热量,但是由于整体热容量较低,且热量通过高热阻通道204传导到散热器205的速度较慢,必然会导致发热体202的温度迅速上升,进而影响设备的可靠性。
因此,将附加热容装置201与发热体202通过低热阻通道203相连,该附加热容装置201的尺寸较大,增加发热体202的热容量,进而在功率器件芯片302短时间内产生较大功耗时,减缓发热体202温度上升的速度。
具体的,可参见附图5,附加热容装置201与发热体202通过低热阻通道203相连,具体的,设置在PCB上、发热体202的周围的设计方案,甚至是穿插于多个发热体202中间的方案,均在本申请的保护范围之内。并且,附加热容装置201的材料一般是导热系数比较高的金属,比如,铜或者铝,但不仅限于此,凡是导热系数大于高热阻通道204的材料都在本申请的保护范围之内。一种具体的方案是,在功率器件芯片302焊接于铝基板或者铜箔的应用场景下,通过在铜箔边缘上焊接高热容金属,改善瞬时温升。
另外,上述附加热容装置201的形状可以是条状或者块状,具体可参见附图6和附图7,其中,附图6是附加热容装置201为块状的俯视图,附图7是附加热容装置201为条状的俯视图;可以看出,无论附加热容装置201是条状还是块状,皆可以设置在发热体202的周围(如附图6和附图7所示),或者,穿插在多个发热体202之间(未进行图示)。另外,上述附加热容装置201的形状为条状时还可以是U型条状,附图8所示为其俯视图,整个U型条状的附加热容装置201开口朝下焊接在PCB的表面印刷铜箔上,横跨在发热体202之上,呈笼罩住发热体202的姿态,其横截面示意图如附图5所示。附图6至附图8均是以多个附加热容装置201为例进行展示,实际应用中也可以仅设置一个附加热容装置201, 此处不做限定。在具体应用场景中,可以根据实际情况,选择设置一个或多个铜块或者铜条,均在本申请的保护范围之内,但是,不论其数量多少、形状如何、位置如何、材料为何,该附加热容装置201均焊接在PCB板的表面印刷铜箔上,一方面,是因为焊接有发热体202的芯片引线框架301本身的体积不大,无法再在其上面设置附加热容装置201,另一方面,若将附加热容装置201焊接于芯片引线框架301,则无法避免对于发热体202本身体积和重量的增加,不符合本申请的设计初衷。
以上仅是本申请设置附加热容装置201的部分举例,不仅限于此,凡是能够增大发热体202的热容的形状都在本申请的保护范围之内。通过在功率器件芯片302周边的PCB的表面印刷铜箔上焊接铜条或者铜块,得以降低峰值工况结束时的温度。
进一步的,利用以下热能公式和热传导公式对以上附加热容装置201的工作原理进行解释。
热能公式为:q=cmΔT;
其中,q为吸收或者放出的热量(J);c为材料的比热容(J/(kg﹒℃));m为材料的质量(kg);ΔT为温度差(℃)。可以看出,若吸收或放出的热量一样时,如果想要降低物体的温度上升速度,可以增加材料的比热容和质量。
热传导公式为:
Figure PCTCN2021094057-appb-000001
上式中,Q为热传导流量(W);λ为材料的导热系数(W/m﹒℃);A为垂直于导热方向的截面积(m 2);
Figure PCTCN2021094057-appb-000002
为沿等温面法线方向的温度梯度(℃/m)。式中的负号表示热量传递的方向与温度梯度相反。可见,若想增强热传导的散热量,可以增加材料的导热系数,比如选择导热系数较高的材料(铜或铝),也可以增加导热方向的截面积等。
本申请提供的功率变换装置,该附加热容装置与发热体通过低热阻通道相连,增加了发热体202的热容,因此,当发生瞬态损耗大而导致发热体温度迅速上升的情况时,能够降低其温度上升的速率,进而降低了发热体短时峰值工况结束时的温度,保证了设备的可靠性;并且,无需如现有技术采用高性能开 关管或者并联更多的开关管,减小了系统的体积和重量,并节约了成本。
参见附图9,本申请该实施例提供的功率变换装置,在瞬态损耗较大,发热体202的温度迅速升高的情况下,其增设的附加热容装置201对于降低系统温度上升速率的效果显著。该曲线的起点表示发热体202的温度开始急剧升高,可以看出,现有技术中无附加热容装置或者其他更好的散热装置的系统,其温度曲线极速上升,而本实施例提供的有附加热容装置的系统,其温度上升速度明显低于无附加热容装置的系统,并且,在峰值工况结束时刻,有附加热容装置的系统的温度也明显要低于无附加热容装置的系统,证明了有附加热容装置的系统的合理性和可行性,保证了系统的可靠性。
值得说明的是,针对短时需要峰值输出,系统产生较大功耗的工况,现有技术有以下解决方案。例如,在系统中使用更高性能的开关管,或者并联更多的开关管等,能够降低系统峰值功耗,进而降低发热器件本身的温度上升速率;再者,还可选择更高导热性能的材料,如更高导热率的铝基板、更高导热率的导热硅脂等,加快速度将发热器件产生的热量传导至散热装置上;另外,设计更高散热能力的散热装置,以降低系统本身的基础温度。
可以看出,现有技术存在的技术方案,皆是以额定工况下,增加系统的温度上升裕量为前提,来解决系统需要在短时间内满足峰值工况下,发热器件损坏增加而导致系统急剧升温的问题。
同时,以上技术方案存在同样的弊端,使用高性能的开关管或者并联更多的开关管,将会导致发热器件本身的成本会增加,而并联更多的开关管则会使PCB板的尺寸会增大,而选择更高导热性能的材料或者设计散热能力更强的散热装置,同样意味着需要更高的成本,并且,还有可能会导致散热装置的体积和重量增加。总之,以上方案都会造成系统的重量和体积增大,成本增加。
而本实施例提供的功率变换装置,在低热阻通道203上设置了附加热容装置201,增加了发热体202的的热容量,进而增加了发热体202在峰值输出工况时存储热量的能力,基本不改变额定工况的温升。并且,未对发热器件或者散热装置作出改变,不会增大系统的体积或者重量,亦不会增加系统的成本。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之 处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种功率变换装置,其特征在于,包括:低热阻通道、高热阻通道、散热器、附加热容装置以及至少一个发热体;其中:
    所述附加热容装置与所述发热体通过所述低热阻通道相连;
    所述散热器与所述发热体所述高热阻通道相连。
  2. 根据权利要求1所述的功率变换装置,其特征在于,所述低热阻通道是一种金属或者多种金属组合连接构成的通道。
  3. 根据权利要求1所述的功率变换装置,其特征在于,所述附加热容装置的材料为金属。
  4. 根据权利要求3所述的功率变换装置,其特征在于,所述附加热容装置的材料为铜或铝。
  5. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述附加热容装置的形状为条状或者块状。
  6. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述附加热容装置设置于所述发热体的周围,或者,呈笼罩住所述发热体的姿态。
  7. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述发热体为:设置于芯片引线框架上的功率器件芯片。
  8. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述低热阻通道为PCB表面金属及其焊料,多个发热体在所述PCB上构成功率变换电路。
  9. 根据权利要求8所述的功率变换装置,其特征在于,所述功率变换电路为ACDC变换电路、DCAC变换电路、DCDC变换电路或者ACAC变换电路。
  10. 根据权利要求1-4任一所述的功率变换装置,其特征在于,所述高热阻通道至少包括一个绝缘层。
PCT/CN2021/094057 2020-05-19 2021-05-17 一种功率变换装置 WO2021233241A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21807658.6A EP4156480A4 (en) 2020-05-19 2021-05-17 CURRENT CONVERSION DEVICE
US17/798,602 US20230108943A1 (en) 2020-05-19 2021-05-17 Power conversion apparatus
JP2022600112U JP3242452U (ja) 2020-05-19 2021-05-17 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020837107.2U CN211908640U (zh) 2020-05-19 2020-05-19 一种功率变换装置
CN202020837107.2 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021233241A1 true WO2021233241A1 (zh) 2021-11-25

Family

ID=73270243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094057 WO2021233241A1 (zh) 2020-05-19 2021-05-17 一种功率变换装置

Country Status (5)

Country Link
US (1) US20230108943A1 (zh)
EP (1) EP4156480A4 (zh)
JP (1) JP3242452U (zh)
CN (1) CN211908640U (zh)
WO (1) WO2021233241A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211908640U (zh) * 2020-05-19 2020-11-10 阳光电源股份有限公司 一种功率变换装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165884A (zh) * 2006-10-20 2008-04-23 英飞凌科技股份公司 半导体装置和模块以及连接半导体芯片到陶瓷基板的方法
CN101438403A (zh) * 2006-05-10 2009-05-20 株式会社东芝 半导体装置及其制造方法
CN102842543A (zh) * 2011-06-22 2012-12-26 株式会社电装 电子控制单元
CN103745962A (zh) * 2013-12-19 2014-04-23 联合汽车电子有限公司 适用于电动汽车逆变器的igbt模块及封装方法和使用方法
CN211908640U (zh) * 2020-05-19 2020-11-10 阳光电源股份有限公司 一种功率变换装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022983A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 半導体装置
JP2005094842A (ja) * 2003-09-12 2005-04-07 Toshiba Corp インバータ装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101438403A (zh) * 2006-05-10 2009-05-20 株式会社东芝 半导体装置及其制造方法
CN101165884A (zh) * 2006-10-20 2008-04-23 英飞凌科技股份公司 半导体装置和模块以及连接半导体芯片到陶瓷基板的方法
CN102842543A (zh) * 2011-06-22 2012-12-26 株式会社电装 电子控制单元
CN103745962A (zh) * 2013-12-19 2014-04-23 联合汽车电子有限公司 适用于电动汽车逆变器的igbt模块及封装方法和使用方法
CN211908640U (zh) * 2020-05-19 2020-11-10 阳光电源股份有限公司 一种功率变换装置

Also Published As

Publication number Publication date
EP4156480A1 (en) 2023-03-29
US20230108943A1 (en) 2023-04-06
EP4156480A4 (en) 2024-06-05
JP3242452U (ja) 2023-06-19
CN211908640U (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
US11139278B2 (en) Low parasitic inductance power module and double-faced heat-dissipation low parasitic inductance power module
JP6217756B2 (ja) 半導体モジュール
US10524349B2 (en) Printed circuit board with built-in vertical heat dissipation ceramic block, and electrical assembly comprising the board
US20080278917A1 (en) Heat dissipation module and method for fabricating the same
JP2007335663A (ja) 半導体モジュール
JP2006240955A (ja) セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
CN108417546B (zh) 电力电子模块
US10314208B2 (en) Cooling device, method for producing a cooling device and power circuit
JP2008028163A (ja) パワーモジュール装置
WO2021233241A1 (zh) 一种功率变换装置
EP3533303B1 (en) Power module
JP2004022973A (ja) セラミック回路基板および半導体モジュール
TWI522032B (zh) 散熱模組
JP2008124187A (ja) パワーモジュール用ベース
JP2008124187A6 (ja) パワーモジュール用ベース
JP2012169319A (ja) 絶縁積層材、絶縁回路基板、パワーモジュール用ベースおよびパワーモジュール
WO2021179989A1 (zh) 功率散热装置
JP6686467B2 (ja) 電子部品放熱構造
US20120075826A1 (en) pressure support for an electronic circuit
CN205179511U (zh) 一种高散热性能的大功率电子元件线路板
US20100251536A1 (en) Heat-dissipating structure on case of industrial computer and manufacturing method thereof
JP2008171963A (ja) 半導体チップ冷却構造
CN214672591U (zh) 一种功率器件封装结构
Cheng et al. Characterization of Highly Thermally Conductive Organic Substrates for a Double-Sided Cooled Power Module
CN108135075A (zh) 一种高导热印制电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022600112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021807658

Country of ref document: EP

Effective date: 20221219