WO2023142185A1 - 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法 - Google Patents

一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法 Download PDF

Info

Publication number
WO2023142185A1
WO2023142185A1 PCT/CN2022/076653 CN2022076653W WO2023142185A1 WO 2023142185 A1 WO2023142185 A1 WO 2023142185A1 CN 2022076653 W CN2022076653 W CN 2022076653W WO 2023142185 A1 WO2023142185 A1 WO 2023142185A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
aluminum spinel
magnesia
ceramics
pressureless sintering
Prior art date
Application number
PCT/CN2022/076653
Other languages
English (en)
French (fr)
Inventor
章健
刘梦玮
韩丹
李贵
赵瑾
王士维
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Publication of WO2023142185A1 publication Critical patent/WO2023142185A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention relates to transparent spinel ceramics and opaque spinel ceramics and a manufacturing method thereof, in particular to a sintering aid for reducing the pressureless sintering temperature of magnesia-aluminum spinel ceramics, and in particular to a low-temperature pressureless sintering preparation
  • a method for high-density magnesia-aluminum spinel ceramics belongs to the technical field of ceramics.
  • Spinel ceramics have excellent mechanical properties, corrosion resistance, and high temperature resistance, and are one of the most widely used materials in the field of traditional refractory materials. In addition to the above-mentioned excellent properties, transparent spinel ceramics also have excellent optical properties. Transparent spinel ceramics have high transmittance in the ultraviolet to mid-infrared band, and are widely used in many fields such as transparent armor, infrared dome, surface acoustic wave filter, smartphone panel and camera protection window, high-energy laser emission window, etc. .
  • the preparation of transparent spinel ceramics requires a higher sintering temperature, which usually leads to a large energy loss, which makes the existing advanced sintering methods have many limitations.
  • the existing magnesia-aluminum spinel ceramics are prone to abnormal grain growth during the sintering process, which affects various properties of the ceramic material, mainly including mechanical properties and optical properties.
  • magnesia-alumina spinel ceramics For opaque magnesia-alumina spinel ceramics, the mechanical properties are the most concerned in various application scenarios. Therefore, it is very important to inhibit the grain growth and improve the mechanical properties of magnesia-alumina spinel ceramics.
  • magnesia-aluminum spinel ceramics both mechanical and optical properties are of great concern. Therefore, it is an important trend of current development to obtain magnesium aluminum spinel transparent ceramics with small grain size and excellent optical properties.
  • Adding sintering aids to magnesia-aluminum spinel ceramic raw materials is a common means to promote sintering, reduce sintering temperature, inhibit grain growth, and achieve better mechanical, optical and high-temperature properties.
  • CaO, CaCO 3 , LiF, B 2 O 3 , MgF 2 /AlF 3 , TiO 2 , V 2 O 5 , Cr 2 O 3 , Y 2 O 3 , MnO 2 , ZrO 2 , CoCO have been developed successively. 3 and other sintering aids are used to reduce the sintering temperature of magnesium aluminum spinel ceramics, and have shown certain effects.
  • these sintering aids have some deficiencies more or less, and some have no significant effect in reducing the sintering temperature, and some react with raw materials to form heterophases (for example, CaO or CaCO 3 and magnesium aluminum spinel Stone formation CaAl 4 O 7 is equal), and some need to add more content, which affects the intrinsic properties of ceramic materials.
  • the development of new types can be used to reduce the sintering temperature of magnesium aluminum spinel ceramics, slow down the grain growth, obtain magnesium aluminum spinel ceramics with excellent mechanical properties and high temperature properties, and obtain excellent mechanical properties, high temperature properties and optical properties.
  • the sintering aid of magnesium aluminum spinel transparent ceramics has very important value.
  • the present invention provides a method for preparing high-density magnesia-aluminum spinel ceramics by low-temperature pressureless sintering, comprising: using MgAl 2 O 4 powder as raw material powder, adding calcium phosphate as sintering auxiliary agent and control the Ca element in the calcium phosphate to not exceed 500ppm of the total mass of the raw material powder, and then undergo pressureless sintering to realize the preparation of high-density magnesium-aluminum spinel ceramics; preferably, the composition of the calcium phosphate includes Ca 10 (PO 4 ) 6 (OH) 2 , Ca 3 (PO 4 ) 2 , Ca 4 O(PO 4 ) 2 , Ca 10-X H 2X (PO 4 ) 6 (OH) 2 , Ca 8 H 2 (PO 4 ) 6.5 H 2 O, CaHPO 4 2H 2 O, CaHPO 4 , Ca 2 P 2 O 7 , CaP 2 O 7 2H 2 O, Ca 7 (
  • the present invention also provides a method for preparing high-density magnesia-aluminum spinel ceramics by low-temperature pressureless sintering, comprising: using MgO powder and Al2O3 powder as raw material powder, adding calcium phosphate as sintering aid and control the Ca element in calcium phosphate to not exceed 500ppm of the total mass of the raw material powder, and then undergo pressureless sintering to realize the preparation of high-density magnesium-aluminum spinel ceramics; preferably, the composition of the calcium phosphate includes Ca 10 (PO 4 ) 6 (OH) 2 , Ca 3 (PO 4 ) 2 , Ca 4 O(PO 4 ) 2 , Ca 10-X H 2X (PO 4 ) 6 (OH) 2 , Ca 8 H 2 (PO 4 ) 6.5 H 2 O, CaHPO 4 2H 2 O, CaHPO 4 , Ca 2 P 2 O 7 , CaP 2 O 7 2H 2 O, Ca 7 (P 5 O 16 ) 2
  • the pressureless sintering temperature is 40-200°C lower than the pressureless sintering densification temperature without adding calcium phosphate.
  • the other processes are exactly the same, and the pressureless sintering temperature to obtain the same sintering effect is reduced: specifically, the pressureless sintering temperature at which the open porosity of magnesium aluminum spinel ceramics does not exceed 1%
  • the reduction is 40-220°C, preferably 70-220°C, most preferably 100-220°C.
  • the other processes are exactly the same, and the pressureless sintering temperature for obtaining the same sintering effect is reduced: specifically, the pressureless sintering temperature for achieving the open porosity of magnesia-aluminum spinel ceramics does not exceed 1%. 20-220°C, preferably 40-220°C.
  • the temperature of the pressureless sintering is 1360-1460° C.; the time of the pressureless sintering is no more than 20 hours.
  • the raw material powder is formed to prepare a green body; the forming method is dry forming or/and wet forming.
  • the molar ratio of the MgO powder to the Al 2 O 3 powder is 1:(0.98 ⁇ 2.2).
  • the present invention provides a magnesia-alumina spinel ceramic prepared according to the method for preparing high-density magnesia-alumina spinel ceramics by low-temperature pressureless sintering, the density of the magnesia-alumina spinel being more than 90% , The open porosity does not exceed 1%.
  • the present invention provides a method for preparing a magnesium-aluminum spinel transparent ceramic, comprising: sintering the magnesium-aluminum spinel ceramic prepared above by hot isostatic pressing to obtain the transparent magnesium-aluminum spinel ceramic ceramics.
  • the HIP sintering temperature is 1350-1800°C; the HIP sintering pressure is 50-200 MPa; the HIP sintering time is no more than 20 hours.
  • the present invention provides a magnesium aluminum spinel transparent ceramic prepared according to the above preparation method.
  • the obtained magnesium-aluminum spinel transparent ceramic has no visible defects, and the ceramic has a transmittance higher than 70%, preferably higher than 70% when measured at a wavelength of 200nm to 2500nm at a thickness ⁇ 3mm. More than 80%, more preferably higher than 85%.
  • Figure 1 shows the microstructure (SEM) and elemental distribution diagram (EDS) of the magnesium aluminum spinel ceramic pre-sintered body (pressureless sintering temperature: 1360°C) with the addition of sintering aids at 450ppm;
  • Fig. 2 is the X-ray diffraction pattern (XRD) of the magnesia-aluminum spinel ceramic pre-sintered body (pressureless sintering temperature: 1400°C) with Ca additions of 0ppm, 350ppm, and 15000ppm respectively in the sintering aid.
  • XRD X-ray diffraction pattern
  • calcium element less than or equal to 500ppm is introduced as a sintering aid (for example, 25ppm, 50ppm, 75ppm, 100ppm, 150ppm, 200ppm, 250ppm, 300ppm, 350ppm, 400ppm , 450ppm, 500ppm, etc.), to achieve low-temperature sintering and densification of magnesium-aluminum spinel ceramics.
  • a sintering aid for example, 25ppm, 50ppm, 75ppm, 100ppm, 150ppm, 200ppm, 250ppm, 300ppm, 350ppm, 400ppm , 450ppm, 500ppm, etc.
  • the calcium element exists in the form of calcium phosphate
  • the calcium phosphate composition includes Ca 10 (PO 4 ) 6 (OH) 2 or Ca 3 (PO 4 ) 2 , and can also be calcium phosphate with other Ca/P ratios, Including Ca 4 O(PO 4 ) 2 , Ca 10-X H 2X (PO 4 ) 6 (OH) 2 , Ca 8 H 2 (PO 4 ) 6.5 H 2 O, CaHPO 4 2H 2 O, CaHPO 4 , Ca 2 P 2 O 7 , CaP 2 O 7 ⁇ 2H 2 O, Ca 7 (P 5 O 16 ) 2 , Ca 4 H 2 P 6 O 20 , Ca(H 2 PO 4 ) 2 ⁇ H 2 O, Ca(PO 3 ) 2 etc.
  • magnesia-alumina spinel ceramics can be prepared from phase-formed magnesia-alumina spinel powders as raw materials, or can be prepared from magnesia and alumina powders by reaction sintering.
  • the preparation method is The above changes do not affect the implementation of the present invention.
  • the particle size adjustment of the raw material powder used for the magnesium aluminum spinel before sintering does not affect the implementation of the present invention.
  • the preparation of the magnesia-aluminum spinel ceramics can adopt dry molding methods such as direct dry pressing molding, cold isostatic pressing molding, gel casting molding, grouting molding, tape casting, and pressure-assisted gel casting molding.
  • dry molding methods such as filter press molding do not affect the implementation of the present invention.
  • the follow-up involves the step of plastic discharge, the temperature of plastic discharge can be 300-800°C, and the time can be 0-10 hours.
  • the adjustment of the molding process in the dry molding and cold isostatic pressing molding processes does not affect the implementation of the present invention, for example: the treatment of the raw material powder includes calcination, granulation, cleaning, etc. of the raw material, Adjustment of molding pressure, etc.
  • the adjustment of the forming process in the wet forming process does not affect the implementation of the present invention, for example: the adjustment of the type and content of the dispersant, the adjustment of the solid content of the slurry, the adjustment of the curing temperature and time, etc.
  • the calcium element in the preparation method of spinel ceramics, can be introduced in the process of slurry preparation or formula preparation of ceramics.
  • the lowering of the sintering temperature includes lowering the pressureless sintering temperature by 220° C. or less. At the same time, the subsequent hot isostatic pressing sintering temperature is also reduced.
  • the relative density of the magnesium aluminum spinel ceramics is higher than 90% and the open porosity is not more than 1% by adjusting the content of Ca element in the sintering aid and the pressureless sintering temperature.
  • the relative density of the obtained magnesium-aluminum spinel ceramics is higher than 90%, and the open porosity is not more than 1%.
  • magnesia-aluminum spinel ceramics are sintered by hot isostatic pressing to obtain the magnesia-alumina spinel transparent ceramics.
  • the obtained magnesium-aluminum spinel transparent ceramic has a transmittance higher than 70% when measured in the wavelength range of 300nm to 2500nm at a thickness ⁇ 3mm.
  • the magnesium aluminum spinel powder, deionized water, sintering aid, and dispersant are uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume of the magnesium aluminum spinel powder is The proportion is 44vol%, the volume proportion of deionized water is 56vol%, the content of Ca element in the sintering aid is 0.0025wt%, and the content of the dispersant is 1.8wt%.
  • the particle size of the magnesium aluminum spinel powder is 250nm, and the molecular weight of the dispersant is 350.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, the degumming temperature is 300°C, and the time is 20 hours;
  • magnesia-aluminum spinel ceramic body after debinding is pre-sintered in a muffle furnace (air atmosphere, normal pressure, the following examples and comparative examples are the same as Example 1), and the pre-sintering temperatures are respectively set to 1420 ° C, At 1400°C, 1460°C, and 1480°C, ceramic calcined bodies with relative densities of 91.6%, 93.1%, 94.5%, and 95.6% were obtained, and their open porosity were 7.0%, 1.8%, and 0.32%, and 0.10% was opaque. spinel ceramics;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1450° C., the pressure was 180 MPa, and the holding time was 3 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance in the 300-2000nm band is higher than 80% (3mm thickness).
  • Embodiment 2 (450ppm, 44vol%, wet forming)
  • the magnesium aluminum spinel powder, deionized water, sintering aid, and dispersant are uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume of the magnesium aluminum spinel powder is The proportion is 44vol%, the volume proportion of deionized water is 56vol%, the content of Ca element in the sintering aid is 0.045wt%, and the content of the dispersant is 1.8wt%.
  • the particle size of the magnesium aluminum spinel powder is 250nm, and the molecular weight of the dispersant is 350.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, and the degumming temperature is 800°C;
  • the relative densities of ceramic calcined bodies are 90.7%, 92.3%, 93.4%, 94.2%, 95.0%, 95.0%, and 95.4%, respectively, and their open porosity are 1.9%, 0.6%, 0.5%, 0.5%, and 0.13%. , 0.5%, and 0.4% are opaque spinel ceramics;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1450° C., the pressure was 180 MPa, and the holding time was 3 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance of the obtained transparent magnesium-aluminum spinel ceramics in the 200-2000nm band is higher than 80%.
  • the ceramic pre-sintered body sintered at 1360 °C is analyzed using scanning electron microscope (SEM) and energy spectrum (EDS), and the analysis results are in the attached Fig. 1, according to the microstructure picture that SEM takes, can find out, do not produce the second phase material in the sintering process; According to the result of energy spectrum, can show, the sintering aid doped in the present invention has been lower than the EDS energy spectrum Detection limit, only three elements Mg, Al, O can be detected, and no new substances will be produced during the sintering process.
  • SEM scanning electron microscope
  • EDS energy spectrum
  • Embodiment 3 (350ppm, 44vol%, wet forming)
  • the magnesium aluminum spinel powder, deionized water, sintering aid, and dispersant are uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume of the magnesium aluminum spinel powder is The proportion is 44vol%, the volume proportion of deionized water is 56vol%, the content of Ca element in the sintering aid is 0.035wt%, and the content of the dispersant is 1.8wt%.
  • the particle size of the magnesium aluminum spinel powder is 250nm, and the molecular weight of the dispersant is 350.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, and the degumming temperature is 800°C;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1350° C., the pressure was 180 MPa, and the holding time was 6 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance of the obtained transparent magnesium-aluminum spinel ceramics in the 200-2000nm band is higher than 80%.
  • Embodiment 4 (100ppm, 44vol%, wet forming)
  • Example 6 The preparation process of the opaque spinel ceramics in Example 6 refers to Example 1, the only difference is that: the sintering aid is Ca 3 (PO 4 ) 2 and the amount of Ca element in 2 is 0.01wt%; the pre-sintering temperature is set respectively At 1400°C, 1420°C, 1400°C, 1460°C, 1480°C, ceramic calcined bodies with relative densities of 92.0%, 95.0%, 96.9%, 97.8%, and 98.2% were obtained, and their open porosity were 6.3%, 0.8 %, 0.4%, 0.1%, 0.2%, are opaque spinel ceramics.
  • the sintering aid is Ca 3 (PO 4 ) 2 and the amount of Ca element in 2 is 0.01wt%
  • the pre-sintering temperature is set respectively At 1400°C, 1420°C, 1400°C, 1460°C, 1480°C, ceramic calcined bodies with relative densities of 92.0%, 95.0%, 96
  • Embodiment 5 (50ppm, 44vol%, wet forming)
  • Example 9 The preparation process of the opaque spinel ceramics in Example 9 refers to Example 1, the only difference is that: the sintering aid is Ca 3 (PO 4 ) 2 and the amount of Ca element in 2 is 0.005wt%; the pre-sintering temperature is set respectively At 1400°C, 1420°C, 1400°C, 1460°C, 1480°C, ceramic calcined bodies with relative densities of 91.8%, 93.6%, 94.2%, 98.1%, and 98.6% were obtained, and their open porosity were 7.0%, 3.1%, respectively. %, 0.5%, 0.2%, 0.2%, are opaque spinel ceramics.
  • the sintering aid is Ca 3 (PO 4 ) 2 and the amount of Ca element in 2 is 0.005wt%
  • the pre-sintering temperature is set respectively At 1400°C, 1420°C, 1400°C, 1460°C, 1480°C, ceramic calcined bodies with relative densities of 91.8%,
  • Embodiment 6 (350ppm, 44vol%, wet forming)
  • the magnesium aluminum spinel powder, deionized water, sintering aid, and dispersant are uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume of the magnesium aluminum spinel powder is The proportion is 44vol%, the volume proportion of deionized water is 56vol%, the content of Ca element in the sintering aid is 0.035wt%, and the content of the dispersant is 1.8wt%.
  • the particle size of the magnesium aluminum spinel powder is 250nm, and the molecular weight of the dispersant is 350.
  • the sintering aid is Ca 10 (PO 4 ) 6 (OH) 2 , and the particle size is 300nm; the prepared magnesia-alumina spinel slurry is subjected to pressure-assisted coagulation molding to obtain a magnesia-alumina spinel ceramic green body;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, and the degumming temperature is 800°C;
  • Embodiment 7 (350ppm, dry molding)
  • the magnesium aluminum spinel powder, absolute ethanol, and sintering aid were uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume ratio of the magnesium aluminum spinel powder was 10vol%
  • the volume ratio of absolute ethanol is 90vol%
  • the Ca element content in the sintering aid is 0.035wt%.
  • the particle size of magnesium aluminum spinel powder is 250nm.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • the prepared magnesia-aluminum spinel slurry is dried and sieved to obtain uniformly mixed powder raw materials, which are formed by dry pressing and cold isostatic pressing.
  • the cold isostatic pressing pressure is 200MPa.
  • magnesia-aluminum spinel ceramic green body is degummed, and the degumming temperature is 800°C;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1350° C., the pressure was 180 MPa, and the holding time was 6 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance of the obtained transparent magnesium-aluminum spinel ceramics in the 200-2000nm band is higher than 80%.
  • Embodiment 8 (300ppm, reaction sintering)
  • MgO powder, Al 2 O 3 powder (the molar ratio of MgO to Al 2 O 3 is 1:1.3), absolute ethanol, and sintering aids in a ball mill for two hours to obtain magnesium aluminum spinel ceramic slurry
  • the volume ratio of magnesium aluminum spinel powder is 10vol%
  • the volume ratio of absolute ethanol is 90vol%
  • the content of Ca element in the sintering aid is 0.03wt%.
  • the particle diameters of MgO powder and Al 2 O 3 powder are both 250nm.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • magnesia-aluminum spinel ceramic green body is degummed, and the degumming temperature is 800°C;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1450° C., the pressure was 180 MPa, and the holding time was 6 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance of the obtained transparent magnesium-aluminum spinel ceramics in the 200-2000nm band is all higher than 85%.
  • the magnesium aluminum spinel powder, deionized water, sintering aid, and dispersant are uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume of the magnesium aluminum spinel powder is The proportion is 44vol%, the volume proportion of deionized water is 56vol%, the content of Ca element in the sintering aid is 0.050wt%, and the content of the dispersant is 1.8wt%.
  • the particle size of the magnesium aluminum spinel powder is 250nm, and the molecular weight of the dispersant is 350.
  • the sintering aid is Ca 3 (PO 4 ) 2 , and the particle size is 300nm;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, and the degumming temperature is 800°C;
  • the magnesium aluminum spinel powder and absolute ethanol were uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume ratio of the magnesium aluminum spinel powder was 10vol%.
  • the volume ratio of water and ethanol is 90vol%, and there is no sintering aid.
  • the particle size of magnesium aluminum spinel powder is 250nm.
  • the prepared magnesia-aluminum spinel slurry is dried and sieved to obtain uniformly mixed powder raw materials, which are formed by dry pressing and cold isostatic pressing.
  • the cold isostatic pressing pressure is 200MPa.
  • magnesia-aluminum spinel ceramic green body is degummed, and the degumming temperature is 800°C;
  • the ceramic pre-sintered body was subjected to hot isostatic pressing treatment at 1350° C., the pressure was 180 MPa, and the holding time was 6 hours to obtain transparent magnesium-aluminum spinel ceramics.
  • MgO powder MgO powder, Al 2 O 3 powder (the molar ratio of MgO to Al 2 O 3 is 1:1.3), and absolute ethanol in a ball mill for two hours to obtain magnesium aluminum spinel ceramic slurry.
  • the volume ratio of magnesium aluminum spinel powder is 10vol%
  • the volume ratio of absolute ethanol is 90vol%.
  • the particle diameters of MgO powder and Al 2 O 3 powder are both 250nm.
  • magnesia-aluminum spinel ceramic green body is degummed, and the degumming temperature is 800°C;
  • the magnesium aluminum spinel powder, deionized water, and dispersant were uniformly mixed in a ball mill for two hours to obtain a magnesium aluminum spinel ceramic slurry.
  • the volume ratio of the magnesium aluminum spinel powder was 44vol %
  • the volume ratio of deionized water is 56vol%
  • no sintering aid is added
  • the content of dispersant is 1.8wt%.
  • the particle size of magnesium aluminum spinel powder is 250nm, and the molecular weight of dispersant is 350;
  • magnesia-aluminum spinel ceramic green body is dried and degummed, and the degumming temperature is 800°C;
  • the ceramic calcined body was subjected to hot isostatic pressing treatment at 1650° C., the pressure was 180 MPa, and the holding time was 3 hours to obtain transparent magnesium-aluminum spinel ceramics. After testing, the transmittance in the 200-2000nm band is higher than 80%.
  • the preparation process of the opaque spinel ceramics in this Comparative Example 4 refers to Example 6, the only difference is: the addition of Ca element in the sintering aid CaO is 0.010wt%; 1400°C, 1420°C, 1400°C, 1460, 1480°C, 1500°C, obtained ceramic calcined bodies with relative densities of 82.3%, 84.2%, 85.9%, 87.8%, 89.1%, 91.2%, 92.4%, 93.2% respectively , The open porosity is 17.4%, 15.3%, 13.4%, 11.8%, 9.9%, 7.5%, 2.1%, 0.3%, which is opaque spinel ceramics.
  • Example 6 The preparation process of the opaque spinel ceramics in Comparative Example 5 is referred to Example 6, the only difference is that the amount of Ca element added to the sintering aid CaO is 0.050wt%.
  • the pre-sintering temperatures were 1360°C, 1380°C, 1400°C, 1420°C, 1440°C, 1460°C, 1480°C, 1500°C, and the relative densities were 81.7%, 83.7%, 85.3%, 87.1%, 88.6%, 90.5% %, 93.0%, 93.6% ceramic pre-sintered body, the open porosity is 17.8%, 15.9%, 13.9%, 12.2%, 10.2%, 8.1%, 0.6%, 0.4%, opaque spinel ceramics .
  • the preparation process of the opaque spinel ceramics in this proof example refers to Example 1, the only difference is: the addition of Ca element in the sintering aid Ca 3 (PO 4 ) 2 is 1.5wt%; the pre-sintering temperature is set to 1400 °C, the ceramic pre-sintered body is obtained, which is an opaque spinel ceramic.
  • the ceramic pre-sintered body obtained by sintering in the example of this proof is detected by X-ray diffraction (XRD), and the doping amount of the sintering aid is set as It is 15000ppm, and the purpose is to make the dopant content higher than the detection limit of XRD, and the possible reaction between the sintering aid and the magnesium aluminum spinel is fully carried out.
  • XRD spectrum is shown in Figure 2. According to the spectrum, it can be judged that there are only two phases of magnesia-aluminum spinel and Ca 3 (PO 4 ) 2 in the ceramic calcined body. Therefore, it can be concluded that the sintering aid and There is no reaction between magnesia-aluminum spinels, and no new second-phase substances will be generated during sintering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,包括:以MgAl 2O 4粉体作为原料粉体,通过加入磷酸钙作为烧结助剂并控制磷酸钙中Ca元素不超过原料粉体总质量的500ppm,再经无压烧结,从而实现高致密镁铝尖晶石陶瓷的制备;所述无压烧结包括常压烧结或真空烧结。

Description

一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法 技术领域
本发明涉及透明的尖晶石陶瓷和不透明的尖晶石陶瓷及其制造方法,具体涉及一种降低镁铝尖晶石陶瓷无压烧结温度的烧结助剂,尤其涉及一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,属于陶瓷技术领域。
背景技术
尖晶石陶瓷具有优异的力学性能,耐腐蚀性能,耐高温性能,是传统耐火材料领域应用广泛的材料之一。透明尖晶石陶瓷除了具备上述优异性能外,还具有优异的光学性能。透明尖晶石陶瓷在紫外到中红外波段具有高透过率,在透明装甲、红外整流罩、声表面波滤波器、智能手机面板和摄像头保护窗口、高能激光发射窗口等众多领域具有广泛的应用。
但是,为了获得理想的致密度,制备透明尖晶石陶瓷需要采用较高的烧结温度,这通常会带来很大的能源损耗,使得现有的多种先进烧结手段又有很多的局限性。并且,现有的镁铝尖晶石陶瓷在烧结过程中容易发生晶粒异常生长的现象,影响陶瓷材料的多方面性能,主要包括力学性能和光学性能。
对于不透明镁铝尖晶石陶瓷来说,力学性能是多种应用场景中受到关注最多的,因此,抑制镁铝尖晶石陶瓷的晶粒生长并提高其力学性能至关重要。对于透明镁铝尖晶石陶瓷来说,力学性能和光学性能都会受到很高的关注。因此,获得晶粒尺寸较小,光学性能优异的镁铝尖晶石透明陶瓷是当前发展的重要趋势。
在镁铝尖晶石陶瓷原料中添加烧结助剂是促进烧结,降低烧结温度,抑制晶粒生长,实现更好的力学、光学以及高温性能的常用手段。多年来,先后发展出了CaO、CaCO 3、LiF、B 2O 3、MgF 2/AlF 3、TiO 2、V 2O 5、Cr 2O 3、Y 2O 3、MnO 2、ZrO 2、CoCO 3等多种烧结助剂用于降低镁铝尖晶石陶瓷烧结温度,并展现出了一定的效果。同时也有一些烧结助剂能够为提高透明陶瓷透过率提供有效帮助。但总体来说,这些烧结助剂或多或少都存在一些不足,有的在降低烧结温度方面效果不显著,有的与原料发生反应生成杂相(例如,CaO或CaCO 3与镁铝尖晶石生成CaAl 4O 7相等),有的需要添加较多的含量,影响陶瓷材料的本征性能等。
因此,发展新型的可用于降低镁铝尖晶石陶瓷烧结温度,减缓晶粒生长,获得具有优异力学性能和高温性能的镁铝尖晶石陶瓷,获得具有优异力学性能、高温性能和光学性能的镁铝尖晶石透明陶瓷的烧结助剂具有非常重要的价值。
发明内容
针对上述问题,第一方面,本发明提供了一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,包括:以MgAl 2O 4粉体作为原料粉体,通过加入磷酸钙作为烧结助剂并控制磷酸钙中Ca元素不超过原料粉体总质量的500ppm,再经无压烧结,从而实现高致密镁铝尖晶石陶瓷的制备;优选地,所述磷酸钙的组成包括Ca 10(PO 4) 6(OH) 2、Ca 3(PO 4) 2、Ca 4O(PO 4) 2、Ca 10-XH 2X(PO 4) 6(OH) 2、Ca 8H 2(PO 4) 6.5H 2O、CaHPO 4·2H 2O、CaHPO 4、Ca 2P 2O 7、CaP 2O 7·2H 2O、Ca 7(P 5O 16) 2、Ca 4H 2P 6O 20、Ca(H 2PO 4) 2·H 2O、Ca(PO 3) 2中的至少一种;所述无压烧结为常压烧结或真空烧结。
第二方面,本发明还提供了一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,包括:以MgO粉体和Al 2O 3粉体作为原料粉体,通过加入磷酸钙作为烧结助剂并控制磷酸钙中Ca元素不超过原料粉体总质量的500ppm,再经无压烧结,从而实现高致密镁铝尖晶石陶瓷的制备;优选地,所述磷酸钙的组成包括Ca 10(PO 4) 6(OH) 2、Ca 3(PO 4) 2、Ca 4O(PO 4) 2、Ca 10-XH 2X(PO 4) 6(OH) 2、Ca 8H 2(PO 4) 6.5H 2O、CaHPO 4·2H 2O、CaHPO 4、Ca 2P 2O 7、CaP 2O 7·2H 2O、Ca 7(P 5O 16) 2、Ca 4H 2P 6O 20、Ca(H 2PO 4) 2·H 2O、Ca(PO 3) 2中的至少一种;所述无压烧结为常压烧结或真空烧结。
较佳的,所述无压烧结的温度相较于不添加磷酸钙时无压烧结致密温度降低了40~200℃。相比于不添加该烧结助剂,其他工艺完全相同,获得相同烧结效果的无压烧结温度实现了降低:具体地,实现镁铝尖晶石陶瓷开口气孔率不超过1%的无压烧结温度降低了40~220℃,优选70~220℃,最优选100~220℃。相比于添加CaO或CaCO 3,其他工艺完全相同,获得相同烧结效果的无压烧结温度实现了降低:具体地,实现镁铝尖晶石陶瓷开口气孔率不超过1%的无压烧结温度降低了20~220℃,优选40~220℃。
较佳的,所述无压烧结的温度为1360~1460℃;所述无压烧结的时间为不超过20小时。
较佳的,在无压烧结之前,将原料粉体成型制备素坯;所述成型的方式为干法成型或/和湿法成型。
较佳的,所述MgO粉体和Al 2O 3粉体的摩尔比为1:(0.98~2.2)。
第三方面,本发明提供了一种根据上述低温无压烧结制备高致密镁铝尖晶石陶瓷的方法制备的镁铝尖晶石陶瓷,所述镁铝尖晶石的致密度为90%以上,开口气孔率不超过1%。
第四方面,本发明提供了一种镁铝尖晶石透明陶瓷的制备方法,包括:将上述制备 的镁铝尖晶石陶瓷,通过热等静压烧结,得到所述镁铝尖晶石透明陶瓷。
较佳的,所述热等静压烧结的温度为1350~1800℃;所述热等静压烧结的压力为50~200MPa;所述热等静压烧结的时间为不超过20小时。
第四方面,本发明提供了一种根据上述制备方法制备的镁铝尖晶石透明陶瓷。
本发明中,所得镁铝尖晶石透明陶瓷不具有可见的缺陷,并且该陶瓷在≥3mm的厚度下,在波长200nm至2500nm范围内进行测量,具有高于70%的透过率,优选高于80%,更优选高于85%。
附图说明
图1为烧结助剂添加量为450ppm的镁铝尖晶石陶瓷预烧体(无压烧结温度:1360℃)显微结构(SEM)与元素分布图(EDS);
图2为烧结助剂中Ca添加量分别为0ppm、350ppm、15000ppm的镁铝尖晶石陶瓷预烧体(无压烧结温度:1400℃)X射线衍射图谱(XRD)。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,在镁铝尖晶石陶瓷的制备过程中,引入小于等于500ppm的钙元素作为烧结助剂(例如,25ppm、50ppm、75ppm、100ppm、150ppm、200ppm、250ppm、300ppm、350ppm、400ppm、450ppm、500ppm等),实现镁铝尖晶石陶瓷的低温烧结致密。其中,所述钙元素以磷酸钙形式存在,所述磷酸钙组成包括Ca 10(PO 4) 6(OH) 2或Ca 3(PO 4) 2,也可以为其他Ca/P比的磷酸钙,包括Ca 4O(PO 4) 2,Ca 10-XH 2X(PO 4) 6(OH) 2,Ca 8H 2(PO 4) 6.5H 2O,CaHPO 4·2H 2O,CaHPO 4,Ca 2P 2O 7,CaP 2O 7·2H 2O,Ca 7(P 5O 16) 2,Ca 4H 2P 6O 20,Ca(H 2PO 4) 2·H 2O,Ca(PO 3) 2等。
根据本发明,镁铝尖晶石陶瓷可以由已经成相的镁铝尖晶石粉体为原料来制备,也可以由氧化镁和氧化铝粉体为原料,通过反应烧结来制备,制备方式的上述变化不影响本发明的实施。烧结前镁铝尖晶石所用原料粉体的粒径调整不影响本发明的实施。
根据本发明,所述镁铝尖晶石陶瓷的制备,可以采用直接干压成型、冷等静压成型等干法成型方式,注凝成型,注浆成型,流延成型,压力辅助注凝成型,压滤成型等湿法成型方式,不影响本发明的实施。后续涉及排塑步骤,排塑的温度可为300~800℃,时间可为0~10小时。
根据本发明,所述干法成型和冷等静压成型过程中关于成型工艺的调节不影响本发 明的实施,例如:对原料粉体的处理,包括对原料进行煅烧、造粒、清洗等,成型压力的调节等。
根据本发明,所述湿法成型过程中关于成型工艺的调节不影响本发明的实施,例如:分散剂种类、含量的调节,浆料固含量的调节,固化温度和时间的调节等。
根据本发明,所述尖晶石陶瓷的制备方法,钙元素的引入方式可以在陶瓷的浆料准备或配方准备过程中。
根据本发明,所述尖晶石陶瓷的制备方法,所述烧结温度降低包括无压烧结温度降低220℃以下。同时,后续热等静压烧结温度也实现降低。本发明中,通过调控烧结助剂中Ca元素的含量和无压烧结的温度使得镁铝尖晶石陶瓷的相对密度高于90%且开口气孔率不超过1%。
根据本发明,所得镁铝尖晶石陶瓷的相对密度高于90%,且开口气孔率不超过1%。
进一步,将镁铝尖晶石陶瓷进行热等静压烧结,得到镁铝尖晶石透明陶瓷。
所得镁铝尖晶石透明陶瓷在≥3mm的厚度下在波长300nm至2500nm范围内进行测量,具有高于70%的透过率。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1(25ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,烧结助剂,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,烧结助剂中Ca元素的含量为0.0025wt%,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为300℃,时间为20小时;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉(空气气氛、常压,下述实施例和对比例同实施例1)中进行预烧结,预烧结温度分别设置为1420℃、1400℃、1460℃、1480℃,获得相对密度分别为91.6%、93.1%、94.5%、95.6%的陶瓷预烧体,其开口气孔率分别为7.0%、1.8%、0.32%,0.10%为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1450℃的热等静压处理,压力为180MPa,保温时间为3小时,获得透明的镁铝尖晶石陶瓷。经过测试,在300-2000nm波段透过率均高于80%(3mm厚度)。
实施例2(450ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,烧结助剂,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,烧结助剂中Ca元素的含量为0.045wt%,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结,预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃,获得相对密度分别为90.7%、92.3%、93.4%、94.2%、95.0%、95.0%、95.4%的陶瓷预烧体,其开口气孔率分别为1.9%、0.6%、0.5%、0.5%、0.13%、0.5%,0.4%为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1450℃的热等静压处理,压力为180MPa,保温时间为3小时,获得透明的镁铝尖晶石陶瓷。经过测试,获得的透明镁铝尖晶石陶瓷在200-2000nm波段透过率均高于80%。
为了证明本发明中烧结助剂的极低掺杂量,在本实施例中对1360℃无压烧结的陶瓷预烧体使用扫描电镜(SEM)和能谱(EDS)进行分析,分析结果在附图1,根据SEM拍摄的显微结构图片,可以看出,烧结过程中不产生第二相物质;根据能谱结果,可以表明,本发明中掺杂的烧结助剂已经低于EDS能谱的检测限,仅有Mg、Al、O三种元素可以被检测到,并且烧结过程中不会产生新的物质。
实施例3(350ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,烧结助剂,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,烧结助剂中Ca元素的含量为0.035wt%,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃,获得相对密度分别为91.7%、 93.3%、94.3%、95.1%、95.9%、96.0%、96.2%的陶瓷预烧体,其开口气孔率分别为0.5%、0.5%、0.6%、0.4%、0.3%、0.6%、0.4%,为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1350℃的热等静压处理,压力为180MPa,保温时间为6小时,获得透明的镁铝尖晶石陶瓷。经过测试,获得的透明镁铝尖晶石陶瓷在200-2000nm波段透过率均高于80%。
实施例4(100ppm,44vol%,湿法成型)
本实施例6中不透明的尖晶石陶瓷的制备过程参照实施例1,区别仅在于:烧结助剂为Ca 3(PO 4) 2中Ca元素的加入量为0.01wt%;设置预烧结温度分别为1400℃、1420℃、1400℃、1460、1480℃,获得相对密度分别为92.0%、95.0%、96.9%、97.8%、98.2%的陶瓷预烧体,其开口气孔率分别为6.3%、0.8%、0.4%、0.1%、0.2%,为不透明的尖晶石陶瓷。
实施例5(50ppm,44vol%,湿法成型)
本实施例9中不透明的尖晶石陶瓷的制备过程参照实施例1,区别仅在于:烧结助剂为Ca 3(PO 4) 2中Ca元素的加入量为0.005wt%;设置预烧结温度分别为1400℃、1420℃、1400℃、1460、1480℃,获得相对密度分别为91.8%、93.6%、94.2%、98.1%、98.6%的陶瓷预烧体,其开口气孔率分别为7.0%、3.1%、0.5%、0.2%、0.2%,为不透明的尖晶石陶瓷。
实施例6(350ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,烧结助剂,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,烧结助剂中Ca元素的含量为0.035wt%,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350。烧结助剂为Ca 10(PO 4) 6(OH) 2,颗粒粒径为300nm;把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃,获得相对密度分别为91.3%、93.5%、94.1%、95.4%、95.6%、96.1%、96.3%的陶瓷预烧体,其开口气孔率分别为0.3%、0.1%、0.3%、0.6%、0.2%、0.3%、0.4%为不透明的尖晶石陶瓷。
实施例7(350ppm,干法成型)
将镁铝尖晶石粉,无水乙醇,烧结助剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石 陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为10vol%,无水乙醇体积占比为90vol%,烧结助剂中Ca元素的含量为0.035wt%。镁铝尖晶石粉的颗粒粒径都为250nm。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行干燥、过筛操作,得到混合均匀的粉体原料,采用干压成型结合冷等静压成型的方式进行成型,冷等静压成型压力为200MPa,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃,获得相对密度分别为95.8%、97.0%、97.5%、98.1%、98.4%、98.4%、98.7%的陶瓷预烧体,其开口气孔率分别为0.3%、0.3%、0.5%、0.3%、0.3%、0.4%、0.25%,为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1350℃的热等静压处理,压力为180MPa,保温时间为6小时,获得透明的镁铝尖晶石陶瓷。经过测试,获得的透明镁铝尖晶石陶瓷在200-2000nm波段透过率均高于80%。
实施例8(300ppm,反应烧结)
将MgO粉、Al 2O 3粉(MgO与Al 2O 3摩尔比为1:1.3),无水乙醇,烧结助剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为10vol%,无水乙醇体积占比为90vol%,烧结助剂中Ca元素的含量为0.03wt%。MgO粉、Al 2O 3粉的颗粒粒径都为250nm。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行干压、冷等静压成型,冷等静压压力为200MPa,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1360℃、1380℃、1400℃、1410℃、1430℃、1450℃,获得相对密度分别为90.7%、96.1%、97.5%、97.5%、98.2%、99.3%的陶瓷预烧体,其开口气孔率分别为9.8%、0.02%、0.1%、0.1%、0.02%、0.07%,为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1450℃的热等静压处理,压力为180MPa,保温时间为6小时,获得透明的镁铝尖晶石陶瓷。经过测试,获得的透明镁铝尖晶石陶瓷在200-2000nm波段透过率均高于85%。
实施例9(500ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,烧结助剂,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,烧结助剂中Ca元素的含量为0.050wt%,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350。烧结助剂为Ca 3(PO 4) 2,颗粒粒径为300nm;
把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结,预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃、1500℃,获得相对密度分别为89.1%、90.9%、92.2%、91.2%、91.3%、93.1%、93.7%、93.9%的陶瓷预烧体,其开口气孔率分别为8.3%、2.8%、2.7%、2.8%、2.95%、0.5%、0.7%,0.4%,为不透明的尖晶石陶瓷。将陶瓷预烧体进行1550℃的热等静压处理,压力为180MPa,保温时间为3小时,获得透明的镁铝尖晶石陶瓷。经过测试,获得的透明镁铝尖晶石陶瓷在200-2000nm波段透过率低于65%。
对比例1(0ppm,干法成型)
将镁铝尖晶石粉,无水乙醇在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为10vol%,无水乙醇体积占比为90vol%,无烧结助剂。镁铝尖晶石粉的颗粒粒径都为250nm。
把制备好的镁铝尖晶石浆料进行干燥、过筛操作,得到混合均匀的粉体原料,采用干压成型结合冷等静压成型的方式进行成型,冷等静压成型压力为200MPa,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃,获得相对密度分别为77.8%、81.1%、83.5%、86.4%、88.5%、91.3%、94.0%的陶瓷预烧体,其开口气孔率分别为21.4%、18.0%、15.4%、12.7%、6.5%、1.3%、0.2%,为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1350℃的热等静压处理,压力为180MPa,保温时间为6小时,获得透明的镁铝尖晶石陶瓷。
对比例2(0ppm,反应烧结)
将MgO粉、Al 2O 3粉(MgO与Al 2O 3摩尔比为1:1.3),无水乙醇在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为10vol%,无 水乙醇体积占比为90vol%。MgO粉、Al 2O 3粉的颗粒粒径都为250nm。
把制备好的镁铝尖晶石浆料进行干压、冷等静压成型,冷等静压压力为200MPa,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结预烧结温度分别设置为1550℃、1590℃、1600℃、1620℃,获得相对密度分别为87.8%、93.1%、93.9%、97.8%的陶瓷预烧体,其开口气孔率分别为10.6%、0.5%、0.04%、0.09%,为不透明的尖晶石陶瓷。
对比例3(0ppm,44vol%,湿法成型)
将镁铝尖晶石粉,去离子水,分散剂在球磨机中进行两小时的均匀混合,得到镁铝尖晶石陶瓷浆料,该浆料中,镁铝尖晶石粉体体积占比为44vol%,去离子水体积占比为56vol%,不添加烧结助剂,分散剂含量为1.8wt%。镁铝尖晶石粉颗粒粒径为250nm,分散剂分子量为350;
把制备好的镁铝尖晶石浆料进行压力辅助注凝成型,得到镁铝尖晶石陶瓷素坯;
将镁铝尖晶石陶瓷素坯进行干燥、排胶操作,排胶温度为800℃;
将排胶后的镁铝尖晶石陶瓷坯体在马弗炉中进行预烧结,预烧结温度分别设置为1360℃、1380℃、1400℃、1420℃、1400℃、1460℃、1480℃、1500℃,获得相对密度分别为82.7%、84.6%、86.4%、87.9%、90.5%、92.1%、93.0%、94.2%的陶瓷预烧体,其开口气孔率分别为17.1%、14.4%、12.7%、10.9%、8.7%、1.5%、1.6%、0.1%,为不透明的尖晶石陶瓷;
将陶瓷预烧体进行1650℃的热等静压处理,压力为180MPa,保温时间为3小时,获得透明的镁铝尖晶石陶瓷。经过测试,在200-2000nm波段透过率均高于80%。
对比例4
本对比例4中不透明的尖晶石陶瓷的制备过程参照实施例6,区别仅在于:烧结助剂CaO中Ca元素的加入量为0.010wt%;设置预烧结温度分别为1360℃、1380℃、1400℃、1420℃、1400℃、1460、1480℃、1500℃,获得相对密度分别为82.3%、84.2%、85.9%、87.8%、89.1%、91.2%、92.4%、93.2%的陶瓷预烧体,其开口气孔率分别为17.4%、15.3%、13.4%、11.8%、9.9%、7.5%、2.1%、0.3%,为不透明的尖晶石陶瓷。
对比例5
本对比例5中不透明的尖晶石陶瓷的制备过程参照实施例6,区别仅在于:烧结助剂CaO中Ca元素的加入量为0.050wt%。预烧结温度分别为1360℃、1380℃、1400℃、1420℃、 1440℃、1460℃、1480℃、1500℃,获得相对密度分别为81.7%、83.7%、85.3%、87.1%、88.6%、90.5%、93.0%、93.6%的陶瓷预烧体,其开口气孔率分别为17.8%、15.9%、13.9%、12.2%、10.2%、8.1%、0.6%、0.4%,为不透明的尖晶石陶瓷。
证明例(15000ppm,44vol%,湿法成型)
本证明例中不透明的尖晶石陶瓷的制备过程参照实施例1,区别仅在于:烧结助剂Ca 3(PO 4) 2中Ca元素的加入量为1.5wt%;设置预烧结温度分别为1400℃,获得陶瓷预烧体,为不透明的尖晶石陶瓷。
为了证明本发明中烧结助剂与镁铝尖晶石的反应是否形成杂相情况,将本证明例中烧结得到的陶瓷预烧体进行X射线衍射(XRD)检测,烧结助剂掺杂量设为15000ppm,目的在于:使得掺杂物质含量高于XRD的检测限,并且烧结助剂与镁铝尖晶石之间可能发生的反应充分进行。XRD图谱如附图2所示,根据图谱,可以判断陶瓷陶瓷预烧体中仅有镁铝尖晶石和Ca 3(PO 4) 2两种物相,因此,可以得出结论,烧结助剂与镁铝尖晶石之间没有反应发生,烧结过程中不会有新的第二相物质生成。

Claims (11)

  1. 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,包括:以MgAl 2O 4粉体作为原料粉体,通过加入磷酸钙作为烧结助剂并控制磷酸钙中Ca元素不超过原料粉体总质量的500ppm,再经无压烧结,从而实现高致密镁铝尖晶石陶瓷的制备;所述无压烧结包括常压烧结或真空烧结。
  2. 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,包括:以MgO粉体和Al 2O 3粉体作为原料粉体,通过加入磷酸钙作为烧结助剂并控制磷酸钙中Ca元素不超过原料粉体总质量的500ppm,再经无压烧结,从而实现高致密镁铝尖晶石陶瓷的制备;所述无压烧结包括常压烧结或真空烧结。
  3. 根据权利要求1或2所述的无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,所述磷酸钙的组成包括Ca 10(PO 4) 6(OH) 2、Ca 3(PO 4) 2、Ca 4O(PO 4) 2、Ca 10-XH 2X(PO 4) 6(OH) 2、Ca 8H 2(PO 4) 6.5H 2O、CaHPO 4·2H 2O、CaHPO 4、Ca 2P 2O 7、CaP 2O 7·2H 2O、Ca 7(P 5O 16) 2、Ca 4H 2P 6O 20、Ca(H 2PO 4) 2·H 2O、Ca(PO 3) 2中的至少一种。
  4. 根据权利要求1或2所述的无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,所述无压烧结的温度相较于不添加磷酸钙时无压烧结致密温度降低了40~200℃。
  5. 根据权利要求4所述的无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,所述无压烧结的温度为1360~1460℃;所述无压烧结的时间为不超过20小时。
  6. 根据权利要求2所述的无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,所述MgO粉体和Al 2O 3粉体的摩尔比为1:(0.98~2.2)。
  7. 根据权利要求1或2所述的无压烧结制备高致密镁铝尖晶石陶瓷的方法,其特征在于,在无压烧结之前,将原料粉体成型制备素坯;所述成型的方式为干法成型或/和湿法成型。
  8. 一种根据权利要求1-7中任一项所述的低温无压烧结制备高致密镁铝尖晶石陶瓷的方法制备的镁铝尖晶石陶瓷,其特征在于,所述镁铝尖晶石的致密度为90%以上,开口气孔率不超过1%。
  9. 一种镁铝尖晶石透明陶瓷的制备方法,其特征在于,包括:将权利要求8所述的镁铝尖晶石陶瓷,通过热等静压烧结,得到所述镁铝尖晶石透明陶瓷。
  10. 根据权利要求9所述的制备方法,其特征在于,所述热等静压烧结温度为1350~1800℃;所述热等静压烧结的压力为50~200MPa;所述热等静压烧结的时间为不超过20小时。
  11. 一种根据权利要求10所述的制备方法制备的镁铝尖晶石透明陶瓷。
PCT/CN2022/076653 2022-01-26 2022-02-17 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法 WO2023142185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210094788.1A CN114477990B (zh) 2022-01-26 2022-01-26 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法
CN202210094788.1 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142185A1 true WO2023142185A1 (zh) 2023-08-03

Family

ID=81477451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076653 WO2023142185A1 (zh) 2022-01-26 2022-02-17 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法

Country Status (2)

Country Link
CN (1) CN114477990B (zh)
WO (1) WO2023142185A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143528A (zh) * 2023-04-20 2023-05-23 淄博雷法耐火材料有限公司 一种耐火材料结合剂及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100056357A1 (en) * 2008-07-16 2010-03-04 Loutfy Raouf O Ready-to-sinter spinel nanomixture and method for preparing same
CN107473730A (zh) * 2017-08-29 2017-12-15 中国科学院上海硅酸盐研究所 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN107721406A (zh) * 2017-10-12 2018-02-23 中国科学院上海硅酸盐研究所 一种制备高透光性镁铝尖晶石透明陶瓷的方法
KR20180063744A (ko) * 2016-12-02 2018-06-12 한국기계연구원 칼슘을 유효성분으로 하는 마그네슘 알루미네이트 스피넬 세라믹 및 그의 제조방법
CN109081700A (zh) * 2018-09-28 2018-12-25 华中科技大学 一种无压放电等离子体烧结陶瓷的方法
CN112250461A (zh) * 2020-10-15 2021-01-22 广东欧文莱陶瓷有限公司 一种高强度透明陶瓷及其制备方法
WO2022015688A1 (en) * 2020-07-13 2022-01-20 Heraeus Conamic North America Llc Ceramic sintered body comprising magnesium aluminate spinel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687443B2 (ja) * 1999-10-12 2005-08-24 株式会社村田製作所 低温焼成セラミック組成物及びセラミック多層基板
CN101434488B (zh) * 2008-12-12 2011-12-07 哈尔滨工业大学 一种以磷酸盐为烧结助剂的氮化硅基复合陶瓷及制备方法
CN108640672A (zh) * 2018-06-07 2018-10-12 武汉理工大学 一种镁铝尖晶石透明陶瓷的制备方法
CN112266240A (zh) * 2020-10-26 2021-01-26 湖北斯曼新材料股份有限公司 一种低温固相反应合成富铝尖晶石的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100056357A1 (en) * 2008-07-16 2010-03-04 Loutfy Raouf O Ready-to-sinter spinel nanomixture and method for preparing same
KR20180063744A (ko) * 2016-12-02 2018-06-12 한국기계연구원 칼슘을 유효성분으로 하는 마그네슘 알루미네이트 스피넬 세라믹 및 그의 제조방법
CN107473730A (zh) * 2017-08-29 2017-12-15 中国科学院上海硅酸盐研究所 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN107721406A (zh) * 2017-10-12 2018-02-23 中国科学院上海硅酸盐研究所 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN109081700A (zh) * 2018-09-28 2018-12-25 华中科技大学 一种无压放电等离子体烧结陶瓷的方法
WO2022015688A1 (en) * 2020-07-13 2022-01-20 Heraeus Conamic North America Llc Ceramic sintered body comprising magnesium aluminate spinel
CN112250461A (zh) * 2020-10-15 2021-01-22 广东欧文莱陶瓷有限公司 一种高强度透明陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114477990B (zh) 2023-03-07
CN114477990A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US10081575B2 (en) Sintered ceramic component and a process of forming the same
WO2023142185A1 (zh) 一种低温无压烧结制备高致密镁铝尖晶石陶瓷的方法
CN112250440B (zh) 一种固相法制备低热导高温热障陶瓷CaWTa2O9的方法
JPH06211573A (ja) 透明なy2o3焼結体の製造方法
JP5234933B2 (ja) リチウムイオン伝導性固体電解質の製造方法
TWI589718B (zh) Ceramic materials and sputtering target components
CN115947598B (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
TW202043173A (zh) 介電性無機組成物
CN114988873A (zh) 一种铋基焦绿石介电储能陶瓷及其制备方法
JPH08268751A (ja) イットリウム−アルミニウム−ガーネット仮焼粉末及びこれを用いたイットリウム−アルミニウム−ガーネット焼結体の製造方法
JP4729705B2 (ja) 透光性アルミナ焼結体の製造方法と光フィルタの製造方法
JP2009227477A (ja) 半導体磁器組成物の製造方法及び半導体磁器組成物を用いたヒータ
KR101961836B1 (ko) 순수 단사정계 지르코니아 소결체 및 이의 제조방법
JPH0258232B2 (zh)
JP2762508B2 (ja) ジルコニア焼結体およびその製造法
TWI580809B (zh) Ceramic materials and sputtering target parts
KR102216429B1 (ko) 세라믹 히터용 코디어라이트계 세라믹 조성물
JPH11106258A (ja) スパッタリング用BaxSr1−xTiO3−yターゲット材
CN116924796B (zh) 一种abo3型低介电损耗陶瓷及其制备方法
KR20190074743A (ko) 마그네슘 화합물의 제조 방법
JP2612545B2 (ja) 耐熱導電性セラミックス
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法
WO2013065413A1 (ja) 正の抵抗温度特性を有する半導体磁器の製造方法、半導体磁器、および該半導体磁器を用いたptcサーミスタ
CN116553922A (zh) 一种镁铝尖晶石透明陶瓷及其制备方法
JPH07249413A (ja) 固体電解質型燃料電池セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923007

Country of ref document: EP

Kind code of ref document: A1