WO2023137878A1 - 锂离子电池 - Google Patents

锂离子电池 Download PDF

Info

Publication number
WO2023137878A1
WO2023137878A1 PCT/CN2022/085251 CN2022085251W WO2023137878A1 WO 2023137878 A1 WO2023137878 A1 WO 2023137878A1 CN 2022085251 W CN2022085251 W CN 2022085251W WO 2023137878 A1 WO2023137878 A1 WO 2023137878A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion battery
lithium ion
structural formula
lithium
Prior art date
Application number
PCT/CN2022/085251
Other languages
English (en)
French (fr)
Inventor
钱韫娴
胡时光
邓永红
李红梅
向晓霞
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to KR1020227015439A priority Critical patent/KR20230113686A/ko
Priority to EP22716303.7A priority patent/EP4239745A1/en
Priority to US17/772,130 priority patent/US20230231126A1/en
Priority to JP2022528267A priority patent/JP7470789B2/ja
Publication of WO2023137878A1 publication Critical patent/WO2023137878A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of energy storage battery devices, and in particular relates to a lithium ion battery.
  • lithium-ion batteries Since the first commercialization of lithium-ion batteries (LIBs) in 1991, lithium-ion batteries have rapidly occupied the mainstream market and become a part of social life, greatly affecting our lives. With the development of lithium-ion battery technology and the pursuit of high energy density, an important positive electrode active material for lithium-ion batteries—layered lithium-nickel-based oxide materials have emerged. Layered lithium-nickel-based oxide materials have the advantages of high energy density and low-temperature performance, and are currently a very widely used type of positive electrode material. At present, the further improvement of the capacity of layered lithium-nickel-based oxide materials can be achieved by increasing the working voltage (above 4.25Vvs Li + /Li). However, the increase of working voltage usually leads to the destruction of the structure of layered oxide materials, causing the dissolution of metal ions, resulting in the continuous attenuation of battery cycle life and gas swelling, which affects the safety performance of high-voltage batteries.
  • working voltage above 4.25Vvs Li + /Li
  • the simplest and most effective way to improve the adaptability of the lithium-ion battery electrolyte to high-voltage working conditions is to develop a high-voltage-resistant additive, which can form a stable and dense interfacial film on the surface of the positive electrode material under high voltage, effectively inhibit the oxidative decomposition of the electrolyte, thereby improving the safety performance of the lithium-ion battery and the cycle performance under high voltage.
  • the structure of the layered lithium nickel-based oxide material can be effectively passivated, the oxidative decomposition of the electrolyte on the surface of the positive electrode material can be inhibited, the amount of residual alkali on the surface of the active material can be reduced, and problems such as structural damage and gas production can be improved.
  • the high-voltage electrolyte additives reported so far cannot achieve a good match with the interface of the positive electrode material coating and/or doping elements, resulting in the formation of an interfacial film that increases the electrode interface impedance. Therefore, the development of electrolyte additives with high compatibility with positive electrode materials and low impedance is very important for the development of high-voltage lithium-ion batteries.
  • the invention provides a lithium-ion battery.
  • the invention provides a lithium ion battery, comprising a positive electrode containing a positive electrode material layer, a negative electrode and a non-aqueous electrolyte, the positive electrode material layer comprising a positive electrode active material, the positive electrode active material comprising Li x Ni the y co z m 1-yz o 2 , wherein, 0.9 ⁇ x ⁇ 1.2, 0.5 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.5, 0 ⁇ 1-y-z ⁇ 0.5, M is at least one element selected from Mn and Al, and the positive electrode active material is doped or coated with E element, the E element is selected from one or more of Ba, Zn, Ti, Mg, Zr, W, Y, Si, Sn, B, Co, P, and the potential range of the positive electrode active material relative to metal lithium is ⁇ 4.25V ;
  • Described non-aqueous electrolytic solution comprises solvent, electrolyte salt and additive, and described additive comprises the compound shown in structural formula 1:
  • n 0 or 1
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H, R1 and R2 are not selected from H at the same time, and X, R1 and R2 contain at least one sulfur atom;
  • the lithium ion battery meets the following conditions:
  • H is the thickness of the positive electrode material layer, and the unit is ⁇ m;
  • T is the mass percentage content of E element in the positive electrode material layer, and the unit is %;
  • M is the mass percent content of the compound represented by the structural formula 1 in the non-aqueous electrolyte, and the unit is %.
  • the potential range of the positive electrode active material relative to metal lithium is 4.25V-4.6V.
  • the lithium-ion battery meets the following conditions:
  • the thickness H of the positive electrode material layer is 90-120 ⁇ m.
  • the mass percentage T of element E in the positive electrode material layer is 0.01% ⁇ 0.2%.
  • the mass percentage M of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.1% ⁇ 1%.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds 1-22:
  • the electrolyte salt is selected from LiPF 6 , LiBOB, LiDFOB, LiDFOP, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , At least one of LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , and lithium salts of lower aliphatic carboxylates.
  • the non-aqueous electrolyte also includes auxiliary additives, the auxiliary additives include at least one of cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, phosphate compounds, borate compounds and nitrile compounds;
  • the amount of the auxiliary additive added is 0.01%-30%.
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is at least one selected from methylene methanedisulfonate, 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the phosphoric acid ester compound is selected from at least one of tris(trimethylsilyl) phosphate and the compound shown in structural formula 3:
  • R 31 , R 32 , and R 32 are independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, and -Si(C m H 2m+1 ) 3 , m is a natural number ranging from 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • the borate compound is selected from three (trimethylsilane) borates;
  • the nitrile compound is selected from one or more of succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile and sebaconitrile.
  • the compound shown in structural formula 1 is added as an additive in the non-aqueous electrolyte, and the positive electrode active material is doped or coated with E element at the same time.
  • the interface film formed by the compound shown in structural formula 1 on the surface of the positive electrode material layer and the positive electrode active material doped or coated with E element has a good binding effect, thereby effectively improving the compactness and stability of the interface film, and improving the high temperature cycle stability of the lithium ion battery.
  • the inventors Based on the relationship between the compound shown in Structural Formula 1, the E element in the positive electrode active material and the interface film, the inventors have found through a lot of research: when the thickness H of the positive electrode material layer, the mass percentage T of the E element in the positive electrode material layer, and the mass percentage M of the compound shown in Structural Formula 1 in the non-aqueous electrolyte are in an appropriate range, and at the same time satisfy the relational formula 0.1 ⁇ (H/T) ⁇ M/1000 ⁇ 10, the synergy between the compound shown in Structural Formula 1 and the E element can be fully exerted, reduce battery impedance, and improve battery resistance. High temperature cycle performance of the battery.
  • An embodiment of the present invention provides a lithium ion battery, comprising a positive electrode containing a positive electrode material layer, a negative electrode, and a non-aqueous electrolyte, the positive electrode material layer comprising a positive electrode active material, the positive electrode active material comprising Li x Ni the y co z m 1-yz o 2 , wherein, 0.9 ⁇ x ⁇ 1.2, 0.5 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 0.5, 0 ⁇ 1-y-z ⁇ 0.5, M is at least one element selected from Mn and Al, and the positive electrode active material is doped or coated with E element, the E element is selected from one or more of Ba, Zn, Ti, Mg, Zr, W, Y, Si, Sn, B, Co, P, and the potential range of the positive electrode active material relative to metal lithium is ⁇ 4.25V ;
  • Described non-aqueous electrolytic solution comprises solvent, electrolyte salt and additive, and described additive comprises the compound shown in structural formula 1:
  • n 0 or 1
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H, R1 and R2 are not selected from H at the same time, and X, R1 and R2 contain at least one sulfur atom;
  • the lithium ion battery meets the following conditions:
  • H is the thickness of the positive electrode material layer, and the unit is ⁇ m;
  • T is the mass percentage content of E element in the positive electrode material layer, and the unit is %;
  • M is the mass percent content of the compound represented by the structural formula 1 in the non-aqueous electrolyte, and the unit is %.
  • the compound shown in structural formula 1 is added as an additive in the non-aqueous electrolyte, and the positive electrode active material is doped or coated with E element at the same time.
  • the interface film formed by the compound shown in structural formula 1 on the surface of the positive electrode material layer and the positive electrode active material doped or coated with E element has a good binding effect, thereby effectively improving the compactness and stability of the interface film, and improving the high temperature cycle stability of the lithium ion battery.
  • the inventors Based on the relationship between the compound shown in Structural Formula 1, the E element in the positive electrode active material and the interface film, the inventors have found through a lot of research: when the thickness H of the positive electrode material layer, the mass percentage T of the E element in the positive electrode material layer, and the mass percentage M of the compound shown in Structural Formula 1 in the non-aqueous electrolyte are in an appropriate range, and at the same time satisfy the relational formula 0.1 ⁇ (H/T) ⁇ M/1000 ⁇ 10, the synergy between the compound shown in Structural Formula 1 and the E element can be fully exerted, reduce battery impedance, and improve battery resistance. High temperature cycle performance of the battery.
  • the compound represented by the structural formula 1 is:
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R1 and R2 are not selected from H at the same time
  • X, R1 and R2 contain at least one sulfur atom.
  • the compound represented by the structural formula 1 is:
  • A is selected from C or O
  • X is selected from R 1 and R 2 are each independently selected from H
  • R 1 and R 2 are not selected from H at the same time
  • X, R 1 and R 2 contain at least one sulfur atom.
  • the potential range of the positive electrode active material relative to metal lithium is 4.25V-4.6V.
  • the lithium-ion battery meets the following conditions:
  • the influence of the thickness H of the positive electrode material layer, the mass percentage content T of the E element in the positive electrode material layer, and the mass percentage content M of the compound shown in structural formula 1 in the nonaqueous electrolyte on the high-temperature cycle performance of the battery can be integrated, so that the battery has a longer high-temperature service life and lower impedance.
  • the thickness H of the positive electrode material layer may be selected from 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 105 ⁇ m, 110 ⁇ m, 115 ⁇ m, 120 ⁇ m, 125 ⁇ m, 130 ⁇ m, 135 ⁇ m, 140 ⁇ m, 145 ⁇ m or 150 ⁇ m.
  • the thickness H of the positive electrode material layer is 90-120 ⁇ m.
  • the thickness of the positive electrode material layer is also a key technical parameter in the design and manufacture of lithium-ion lithium-ion batteries. Under the same pole piece size, the greater the thickness of the positive electrode material layer, the greater the energy density of the battery, but the corresponding increase in internal resistance; and the decrease in the thickness of the positive electrode material layer, the lower the energy density of the battery, which is not conducive to commercial applications; when the thickness H of the positive electrode material layer is in the above range, the battery has higher energy density and lower impedance.
  • the mass percentage T of element E in the positive electrode material layer can be selected from 0.005%, 0.01%, 0.015%, 0.02%, 0.05%, 0.08%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45%, 0.5%, 0.55%, 0.6%, 0.65% , 0.7%, 0.75% or 0.8%.
  • the mass percentage T of element E in the positive electrode material layer is 0.01% ⁇ 0.2%.
  • the E element When doping treatment, the E element is embedded in the lattice of the positive electrode active material, replacing part of the positions of cobalt, nickel, manganese or aluminum, forming a stable doping state, and suppressing the dissolution of metal ions; when performing coating treatment, the E element is coated on the outer surface of the positive electrode active material in the form of oxide or metal salt, avoiding direct contact between the positive electrode active material and the non-aqueous electrolyte, and reducing the amount of residual alkali on the surface of the positive electrode material, improving structural damage and gas production caused by the positive electrode active material under high voltage working conditions , improve the cycle and safety performance of the battery under high voltage.
  • the mass percentage M of the compound represented by structural formula 1 in the non-aqueous electrolyte can be selected from 0.05%, 0.08%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1%, 1.1%, 1.3%, 1.5%, 1.8%, 2%, 2.1%, 2.3%, 2.5%, 2.8% or 3%.
  • the mass percentage M of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.1%-1%.
  • Adding the compound shown in structural formula 1 to the non-aqueous electrolyte can form a stable and dense interfacial film on the surface of the positive electrode active material under high voltage, effectively inhibit the oxidative decomposition of the electrolyte, and improve the electrochemical performance of the high-voltage battery.
  • the mass percentage M of the compound shown in Structural Formula 1 is too small, it is difficult to improve the performance of the interfacial film; when the mass percentage M of the compound shown in Structural Formula 1 is too large, it will cause the viscosity of the non-aqueous electrolyte to increase, affect ion transmission, and easily produce too many by-products during battery cycling, thereby affecting the stability of the non-aqueous electrolyte.
  • the compound represented by structural formula 1 is selected from one or more of the following compounds 1-22:
  • compound 7 can be prepared by the following method:
  • Organic solvents such as sorbitol, dimethyl carbonate, methanol alkaline substance catalyst potassium hydroxide, and DMF were placed in a reaction vessel. After the reaction was carried out for several hours under heating conditions, a certain amount of oxalic acid was added to adjust the pH to neutral. After filtration and recrystallization, the intermediate product 1 was obtained. Then the intermediate product 1, carbonate, thionyl chloride, etc. were esterified under high temperature conditions to obtain the intermediate product 2, and then the intermediate product 2 was oxidized with an oxidant such as sodium periodate to obtain the compound 7.
  • an oxidant such as sodium periodate
  • the electrolyte salt is selected from LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiDFOB, LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO At least one of 2F) 2 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiAlCl 4 , lithium chloroborane, lower aliphatic lithium carboxylates having 4 or less carbon atoms, lithium tetraphenylborate, and lithium imide.
  • the electrolyte salt in the electrolyte is the transfer unit of lithium ions.
  • concentration of the electrolyte salt directly affects the transfer speed of lithium ions, and the transfer speed of lithium ions will affect the potential change of the negative electrode.
  • the total concentration of the electrolyte salt in the electrolyte can be 0.5mol/L ⁇ 2.0mol/L, 0.5mol/L ⁇ 0.6mol/L, 0.6mol/L ⁇ 0.7mol/L, 0.7mol/L ⁇ 0.8mol/L, 0.8mol/L ⁇ 0.9mol/L, 0.9mol/L ⁇ 1.0mol/L, 1.0mol/L ⁇ 1.1mol/L, 1.1mol/L ⁇ 1.2mol/L, 1.2mol/L ⁇ 1.3mol/L, 1.3mol/L ⁇ 1.4mol/L, 1.4mol/L ⁇ 1.5mol/L, 1.5mol/L ⁇ 1.6mol/L, 1.6mol/L ⁇ 1.7mol/L, 1.7mol/L ⁇ 1.8mol/L, 1.8mol/L ⁇ 1.9mol/L, or 1.9mol/L ⁇ 2.0mol/L, more preferably It may be 0.6 mol/L-1.8 mol/L, 0.7 mol/L-1.7 mol/L, or 0.8 mol/L-1.5 mol/L.
  • the non-aqueous electrolyte further includes auxiliary additives, the auxiliary additives include at least one of cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, phosphate compounds, borate compounds and nitrile compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is at least one selected from methylene methanedisulfonate, 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the phosphoric acid ester compound is selected from at least one of tris(trimethylsilyl) phosphate and the compound shown in structural formula 3:
  • R 31 , R 32 , and R 32 are each independently selected from a C1-C5 saturated hydrocarbon group, an unsaturated hydrocarbon group, a halogenated hydrocarbon group, and -Si(C m H 2m+1 ) 3 , m is a natural number ranging from 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group.
  • the unsaturated phosphate compound may be tris(trimethylsilane) phosphate, tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, dipropargyl trifluoromethyl phosphate, dipropargyl-2,2,2-trifluoroethyl phosphate, dipropargyl-3,3,3-trifluoropropyl phosphate, dipropargyl hexafluoroisopropyl phosphate, triallyl phosphate, di At least one of allyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl phosphate, diallyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, diallyl hexafluoroisopropyl phosphat
  • the borate compound is selected from three (trimethylsilane) borates;
  • the nitrile compound is selected from one or more of succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile and sebaconitrile.
  • the auxiliary additives may also include other additives that can improve battery performance: for example, additives that improve battery safety performance, specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene, or anti-overcharge additives such as tert-amylbenzene and tert-butylbenzene.
  • additives that improve battery safety performance specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene
  • anti-overcharge additives such as tert-amylbenzene and tert-butylbenzene.
  • the amount of the auxiliary additive is 0.01%-30%.
  • the addition amount of any optional substance in the auxiliary additive in the non-aqueous electrolyte solution is less than 10%, preferably, the addition amount is 0.1-5%, more preferably, the addition amount is 0.1%-2%.
  • the addition amount of any optional substance in the auxiliary additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7% %, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the auxiliary additive is selected from fluoroethylene carbonate, based on 100% of the total mass of the non-aqueous electrolyte, the added amount of the fluoroethylene carbonate is 0.05%-30%.
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents and carboxylate solvents.
  • ether has a high solvating ability with lithium ions and improves ion dissociation, dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are particularly preferable because they have low viscosity and can impart high ion conductivity.
  • One kind of ether compound may be used alone, or two or more kinds may be used in any combination and ratio.
  • the amount of the ether compound added is not particularly limited, and is arbitrary within the range that does not significantly damage the effect of the high-compaction lithium-ion battery of the present invention.
  • the volume ratio of the non-aqueous solvent is usually 1% or more, preferably 2% or more, and more preferably 3% or more. In addition, the volume ratio is usually 30% or less, preferably 25% or less, and more preferably 20% or less.
  • the total amount of the ether compounds may satisfy the above range.
  • the addition amount of the ether compound is within the above-mentioned preferred range, it is easy to ensure the effect of improving the ion conductivity by increasing the lithium ion dissociation degree of the chain ether and reducing the viscosity.
  • the negative electrode active material is a carbon material, co-intercalation of the chain ether and lithium ions can be suppressed, so that input-output characteristics and charge-discharge rate characteristics can be brought into appropriate ranges.
  • the nitrile solvent may specifically be, but not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.
  • carbonate solvents include cyclic carbonates or chain carbonates.
  • Cyclic carbonates may be, but not limited to, one or more of ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone (GBL), butylene carbonate (BC); chain carbonates may be, but not limited to, one or more of dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and dipropyl carbonate (DPC).
  • the content of the cyclic carbonate is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the lithium-ion battery of the present invention, but the lower limit of its content is usually more than 3% by volume, preferably more than 5% by volume, relative to the total amount of solvent in the non-aqueous electrolytic solution when one is used alone.
  • the lower limit of its content is usually more than 3% by volume, preferably more than 5% by volume, relative to the total amount of solvent in the non-aqueous electrolytic solution when one is used alone.
  • the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume.
  • the content of the chain carbonate is not particularly limited, but is usually 15% or more by volume, preferably 20% or more by volume, and more preferably 25% or more by volume relative to the total amount of solvent in the nonaqueous electrolyte.
  • the volume ratio is usually 90% or less, preferably 85% or less, and more preferably 80% or less.
  • the content of the chain carbonate within the above range, it is easy to make the viscosity of the non-aqueous electrolytic solution in an appropriate range, suppress the decrease in ion conductivity, and contribute to making the output characteristics of the non-aqueous electrolyte battery a good range.
  • the total amount of the chain carbonates may satisfy the above-mentioned range.
  • chain carbonates having fluorine atoms may also be preferably used.
  • the number of fluorine atoms in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • these fluorine atoms may be bonded to the same carbon or to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
  • Carboxylate solvents include cyclic carboxylates and/or chain carbonates.
  • cyclic carboxylic acid esters include one or more of ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone.
  • chain carbonates include one or more of methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), and butyl propionate.
  • the sulfone solvent includes cyclic sulfone and chain sulfone, preferably, in the case of cyclic sulfone, it is usually a compound with 3-6 carbon atoms, preferably 3-5 carbon atoms, and in the case of chain sulfone, it is usually a compound with 2-6 carbon atoms, preferably 2-5 carbon atoms.
  • the amount of the sulfone solvent added is not particularly limited, and is arbitrary within the range of not significantly destroying the effect of the lithium-ion battery of the present invention. With respect to the total amount of solvents in the non-aqueous electrolyte, the volume ratio is usually 0.3% or more, preferably 0.5% or more, and more preferably 1% or more.
  • the volume ratio is usually 40% or less, preferably 35% or less, and more preferably 30% or less.
  • the total amount of the sulfone-based solvent may satisfy the above range.
  • the added amount of the sulfone solvent is within the above range, an electrolytic solution having excellent high-temperature storage stability tends to be obtained.
  • the solvent is a mixture of cyclic carbonates and chain carbonates.
  • the positive electrode further includes a positive electrode current collector, and the positive electrode material layer covers the surface of the positive electrode current collector.
  • the parts of the positive electrode other than the positive electrode current collector are referred to as the positive electrode material layer.
  • the positive current collector is selected from metal materials that can conduct electrons.
  • the positive current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the positive current collector is selected from aluminum foil.
  • the positive electrode material layer further includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode material layer.
  • the positive electrode binder includes polyvinylidene fluoride, a copolymer of vinylidene fluoride, polytetrafluoroethylene, a copolymer of vinylidene fluoride-hexafluoropropylene, a copolymer of tetrafluoroethylene-hexafluoropropylene, a copolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether, a copolymer of ethylene-tetrafluoroethylene, a copolymer of vinylidene fluoride-tetrafluoroethylene, a copolymer of vinylidene fluoride-trifluoroethylene, a copolymer of vinylidene fluoride-trichloroethylene, a copolymer of vinylidene fluoride-fluoroethylene, a copolymer of vinylidene fluoride-hexafluoropropylene-tetraflu
  • the positive electrode conductive agent includes one or more of metal conductive agents, carbon-based materials, metal oxide-based conductive agents, and composite conductive agents.
  • the metal conductive agent can be copper powder, nickel powder, silver powder and other metals
  • the carbon-based material can be carbon-based materials such as conductive graphite, conductive carbon black, conductive carbon fiber or graphene
  • the metal oxide-based conductive agent can be tin oxide, iron oxide, zinc oxide, etc.
  • the composite conductive agent can be composite powder, composite fiber, etc.
  • the conductive carbon black can be one or more of acetylene black, 350G, Ketjen black, carbon fiber (VGCF), and carbon nanotubes (CNTs).
  • the anode includes an anode material layer, the anode material layer includes an anode active material, and the anode active material includes one or more of a silicon-based anode, a carbon-based anode, and a tin-based anode.
  • the carbon-based negative electrode may include graphite, hard carbon, soft carbon, graphene, mesocarbon microspheres, and the like.
  • the graphite includes but not limited to one or more of natural graphite, artificial graphite, amorphous carbon, carbon-coated graphite, graphite-coated graphite, and resin-coated graphite.
  • the natural graphite may be flaky graphite, flaky graphite, soil graphite, and/or graphite particles obtained by using these graphites as raw materials and subjecting them to spheroidization, densification, and the like.
  • the artificial graphite can be obtained by graphitization of organic substances such as p-coal tar pitch, coal heavy crude oil, atmospheric residual oil, petroleum heavy crude oil, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymers, polyphenylene sulfide, polyphenylene ether, furfuryl alcohol resin, phenolic resin, and imide resin.
  • organic substances such as p-coal tar pitch, coal heavy crude oil, atmospheric residual oil, petroleum heavy crude oil, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymers, polyphenylene sulfide, polyphenylene ether, furfuryl alcohol resin, phenolic resin, and imide resin.
  • the amorphous carbon may be an amorphous carbon particle obtained by heat-treating an easily graphitizable carbon precursor such as tar or pitch as a raw material in a temperature range (400 to 2200° C.) where graphitization does not occur, or an amorphous carbon particle obtained by heat-treating a non-graphitizable carbon precursor such as a resin as a raw material.
  • the carbon-coated graphite may be obtained by mixing natural graphite and/or artificial graphite with a carbon precursor that is an organic compound such as tar, pitch, resin, etc., and performing heat treatment at 400-2300° C. once or more.
  • a carbon-graphite composite is obtained by using the obtained natural graphite and/or artificial graphite as core graphite and covering it with amorphous carbon.
  • the carbon-graphite composite may be a form in which the entire or part of the surface of core graphite is coated with amorphous carbon, or may be a form in which a plurality of primary particles are composited using carbon derived from the carbon precursor described above as a binder.
  • a carbon-graphite composite can also be obtained by reacting hydrocarbon gases such as benzene, toluene, methane, propane, and volatile components of aromatics with natural graphite and/or artificial graphite at high temperature to deposit carbon on the graphite surface.
  • the graphite-coated graphite may be natural graphite and/or artificial graphite mixed with carbon precursors of easily graphitizable organic compounds such as tar, pitch, resin, etc., and heat-treated at a range of about 2400-3200°C for more than one time.
  • the obtained natural graphite and/or artificial graphite is used as the core graphite, and the entire or part of the surface of the core graphite is coated with graphitized substances, so that graphite-coated graphite can be obtained.
  • the resin-coated graphite can be mixed with natural graphite and/or artificial graphite and resin, and dried at a temperature lower than 400°C, and the obtained natural graphite and/or artificial graphite is used as core graphite, and the core graphite is coated with resin or the like.
  • organic compounds such as tar and asphalt resin include carbonizable organic compounds selected from coal-based heavy crude oil, straight-line heavy crude oil, decomposition petroleum heavy crude oil, aromatic hydrocarbons, N-ring compounds, S-ring compounds, polyphenylene, organic synthetic polymers, natural polymers, thermoplastic resins, and thermosetting resins.
  • the silicon-based negative electrode may include silicon materials, silicon oxides, silicon-carbon composite materials, silicon alloy materials, and the like.
  • the added amount of the silicon-based material is greater than 0 and less than 30%.
  • the upper limit of the added amount of the silicon-based material is 10%, 15%, 20% or 25%; the lower limit of the added amount of the silicon-based material is 5%, 10% or 15%.
  • the silicon material is one or more of silicon nanoparticles, silicon nanowires, silicon nanotubes, silicon films, 3D porous silicon, and hollow porous silicon.
  • the tin-based negative electrode may include tin, tin-carbon, tin oxide, tin-based alloy, and tin metal compound;
  • the tin-based alloy refers to an alloy composed of tin and one or more of Cu, Ag, Co, Zn, Sb, Bi, and In.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer covers the surface of the negative electrode current collector.
  • the part of the negative electrode in this application other than the negative electrode current collector is referred to as the negative electrode material layer.
  • the negative electrode current collector is selected from metal materials that can conduct electrons.
  • the negative electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the negative electrode current collector is selected from aluminum foil.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder includes polyvinylidene fluoride, copolymer of vinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride-hexafluoropropylene, copolymer of tetrafluoroethylene-hexafluoropropylene, copolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride-trichloroethylene, copolymer of vinylidene fluoride-fluoride
  • the negative electrode conductive agent includes one or more of conductive carbon black, conductive carbon spheres, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, which can be a polymer diaphragm, non-woven fabric, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), double-layer PP/PE, double-layer PP/PP and three-layer PP/PE/PP and other separators.
  • This embodiment is used to illustrate the battery disclosed in the present invention and its preparation method, including the following steps:
  • the positive electrode active material conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) in a mass ratio of 93:4:3, and then disperse them in N-methyl-2-pyrrolidone (NMP) to obtain the positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was evenly coated on both sides of the aluminum foil, dried, calendered, and vacuum-dried, and an aluminum lead-out wire was welded with an ultrasonic welder to obtain a positive electrode plate.
  • the thickness of the electrode plate was 80-150 ⁇ m.
  • the selection of the positive electrode active material and the thickness of the positive electrode material layer are shown in Table 2.
  • the slurry is coated on both sides of the copper foil, dried, rolled, and nickel-made lead wires are welded by an ultrasonic welder to obtain a negative plate.
  • a polyethylene microporous film with a thickness of 20 ⁇ m is placed between the positive plate and the negative plate as a separator, and then the sandwich structure composed of the positive plate, negative plate and separator is wound, and then the wound body is flattened and placed in an aluminum-plastic film. After the lead-out wires of the positive and negative electrodes are drawn out, the aluminum-plastic film is heat-pressed and sealed to obtain a cell to be injected.
  • Examples 2-49 are used to illustrate the battery disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, the differences are:
  • the electrolyte solution shown in Table 2 was used to add the components and the positive electrode material layer.
  • Comparative Examples 1-21 are used to illustrate the battery disclosed in the present invention and its preparation method, including most of the operating steps in Example 1, the difference being:
  • the electrolyte solution shown in Table 2 was used to add the components and the positive electrode material layer.
  • the lithium-ion batteries prepared in Examples and Comparative Examples were charged at a 1C rate and discharged at a 1C rate, and the initial capacity and initial impedance of the lithium-ion battery were recorded, and a full-full-discharge cycle test was performed until the capacity of the lithium-ion battery decayed to 80% of the initial capacity, and the number of cycles was recorded.
  • Example 1 1120.00 9.0 1835
  • Example 2 1011.00 14 1720
  • Example 3 1082.00 10.6 1796
  • Example 4 1075.00 11.2 1775
  • Example 5 1032.00 13.2 1736
  • Example 6 1031.00 13.3 1736
  • Example 7 1101.00 9.6 1820
  • Example 8 1065.00 11.6 1770
  • Example 9 1061.00 11.7 1766
  • Example 10 1111.00 9.3 1829
  • Example 11 1041.00 13.0 1742
  • Example 12 1035.00 13.2 1738
  • Example 13 1038.00 13.1 1741
  • Example 14 1024.00 13.6 1730
  • Example 15 1030.00 13.4 1735
  • Example 16 1012.00 13.8 1726
  • Example 17 1034.00 13.2 1740
  • Example 18 1056.00 11.8 1760
  • Example 19 1070.00 11.5 1766
  • Example 20 1027.00 13.5 1733
  • Example 21 1092.00 9.8 1812
  • Example 22 1030.00 13.3 1734
  • Example 23 1028.00 13.4 1736
  • Example 24 1026.00 13.5 1733
  • Example 25 1014.00 13.7 1725
  • Example 26 1060.00 11.7 1762
  • Example 27 1198.00 15.9 1648
  • Example 28 1235.00 15.1 1665
  • Example 29 1246.00 16.3 1632
  • Example 30 1285.00 17.3 1601
  • Example 31 1318.00 17.0 1611
  • Example 32 1242.00 18.0 1588 Comparative example 1 856.00 27.6 1335
  • Comparative example 2 843.00 29.5 1311
  • Comparative example 3 935.00 23.1 1435
  • Comparative example 4 892.00 25.2 1401
  • Comparative example 5 912.00 24.2 1410
  • Comparative example 6 871.00 26.3 1371
  • Comparative example 7 946.00 22.4
  • the stability of the positive active material under high voltage conditions can be effectively improved, and the interfacial film formed by the decomposition of the compound shown in structural formula 1 on the surface of the positive active material has a binding effect with the E element on the surface of the positive active material.
  • the electrolyte solvent is continuously decomposed on the surface of the positive electrode active material, and the interface film has good ion conductivity, which effectively reduces the impedance of the battery.
  • Example 1 1120.00 9.0 1835
  • Example 39 1118.00 9.2 1830
  • Example 40 1108.00 9.6 1822
  • Example 41 1116.00 9.3 1828
  • Example 42 1113.00 9.5 1824
  • Example 43 1110.00 9.4 1826
  • Example 44 1105.00 9.1 1831
  • Example 45 1103.00 8.9 1819
  • Example 1 1120.00 9.0 1835
  • Example 46 1131.00 8.5 1845
  • Example 47 1126.00 8.7 1841
  • Example 48 1145.00 8.1 1853
  • Example 49 1134.00 8.4 1848

Abstract

为克服现有高电压锂离子电池存在循环性能不足的问题,本发明提供了一种锂离子电池,包括含正极材料层的正极、负极和非水电解液,所述正极材料层包括正极活性材料,所述正极活性材料包括LixNiyCozM1-y-zO2,M选自Mn、Al中的至少一种元素,且所述正极活性材料掺杂或包覆有E元素,所述E元素选自Ba、Zn、Ti、Mg、Zr、W、Y、Si、Sn、B、Co、P中的一种或多种,所述正极活性材料相对金属锂的电位范围≥4.25V;所述非水电解液包括溶剂、电解质盐和添加剂,所述添加剂包括结构式1所示的化合物。所述锂离子电池满足以下条件: 0.1≤(H/T)×M/1000≤10;且80≤H≤150,0.005≤T≤0.8,0.05≤M≤3。本发明提供的锂离子电池具有较低电池阻抗和优异的高温循环性能。

Description

锂离子电池 技术领域
本发明属于储能电池器件技术领域,具体涉及一种锂离子电池。
背景技术
自1991年锂离子电池(LIBs)的首次商业化以来,锂离子电池迅速占据主流市场,成为社会生活的一部分,极大地影响着我们的生活。随着锂离子电池技术的发展以及对高能量密度的追求催生了一种重要的锂离子电池正极活性材料——层状锂镍基氧化物材料,层状锂镍基氧化物材料具有能量密度高和低温性能好等优点,是目前应用非常广泛的一类正极材料。目前针对层状锂镍基氧化物材料容量的进一步提升可以通过提升工作电压实现(4.25Vvs Li +/Li以上),然而工作电压的提升通常会导致层状氧化物材料结构的破坏,引起金属离子的溶出,导致电池循环寿命的不断衰减和气胀等问题,影响高电压电池的安全性能。
同时,提高工作电压会导致电解液在高电压下的氧化分解,引起电池循环等性能不断劣化,限制了高电压锂离子电池的发展。提高锂离子电池电解液对高电压工作条件的适应性,最简单有效的方法是开发出一款耐高电压的添加剂,其可以在正极材料表面形成一种在高电压下稳定、致密的界面膜,有效抑制电解液的氧化分解,从而提高锂离子电池的安全性能和高电压下的循环性能等。另外,通过在正极材料设置包覆或掺杂元素,能够有效钝化层状锂镍基氧化物材料的结构,抑制电解液在正极材料表面的氧化分解,降低活性材料表面的残碱量,改善结构破坏和产气等问题。但是,目前已报道的高电压电解液添加剂不能实现与正极材料包覆和/或掺杂元素界面良好的匹配性,导致形成的界面膜增加了电极界面阻抗,因此,开发出与正极材料高匹配性、低阻抗的电解液添加剂对于高电压锂离子电池的发展至关重要。
发明内容
针对现有高电压锂离子电池存在循环性能不足的问题,本发明提供了一种锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种锂离子电池,包括含正极材料层的正极、负极和非水电解液,所述正极材料层包括正极活性材料,所述正极活性材料包括Li xNi yCo zM 1-y-zO 2,其中,0.9≤x≤1.2,0.5≤y≤1,0≤z≤0.5,0≤1-y-z≤0.5,M选自Mn、Al中的至少一种元素,且所述正极活性材料掺杂或包覆有E元素,所述E元素选自Ba、Zn、Ti、Mg、Zr、W、Y、Si、Sn、B、Co、P中的一种或多种,所述正极活性材料相对金属锂的电位范围≥4.25V;
所述非水电解液包括溶剂、电解质盐和添加剂,所述添加剂包括结构式1所示的化合物:
Figure PCTCN2022085251-appb-000001
其中,n为0或1,A选自C或O,X选自
Figure PCTCN2022085251-appb-000002
R 1、R 2各自独立选自H、
Figure PCTCN2022085251-appb-000003
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
所述锂离子电池满足以下条件:
0.1≤(H/T)×M/1000≤10;
且80≤H≤150,0.005≤T≤0.8,0.05≤M≤3;
其中,H为正极材料层的厚度,单位为μm;
T为正极材料层中E元素的质量百分含量,单位为%;
M为非水电解液中结构式1所示的化合物的质量百分含量,单位为%。
可选的,所述正极活性材料相对金属锂的电位范围为4.25V~4.6V。
可选的,所述锂离子电池满足以下条件:
0.5≤(H/T)×M/1000≤6。
可选的,所述正极材料层的厚度H为90~120μm。
可选的,所述正极材料层中E元素的质量百分含量T为0.01%~0.2%。
可选的,所述非水电解液中结构式1所示的化合物的质量百分含量M为0.1%~1%。
可选的,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
Figure PCTCN2022085251-appb-000004
Figure PCTCN2022085251-appb-000005
Figure PCTCN2022085251-appb-000006
可选的,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiDFOP、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
可选的,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、磷酸酯类化合物、硼酸酯类化合物和腈类化合物中的至少一种;
优选的,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.01%~30%。
可选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自甲基二磺酸亚甲酯、1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022085251-appb-000007
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述磷酸酯类化合物选自三(三甲基硅烷)磷酸酯、结构式3所示化合物中的至少一种:
Figure PCTCN2022085251-appb-000008
所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
所述硼酸酯类化合物选自三(三甲基硅烷)硼酸酯;
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
根据本发明提供的锂离子电池,在非水电解液中添加结构式1所示的化合物作为添加剂,同时在正极活性材料中掺杂或包覆有E元素,结构式1所示的化合物在所述正极材料层表面形成的界面膜与掺杂或包覆有E元素的正极活性材料之间具有较好的结合效果,从而有效提高该界面膜的致密性和稳定性,提高锂离子电池的高温循环稳定性。基于结构式1所示的化合物、正极活性材料中E元素和界面膜之间的关系,发明人通过大量研究发现:当合理调控正极材料层的厚度H、正极材料层中E元素的质量百分含量T和非水电解液中结构式1所示的化合物的质量百分含量M处于合适范围,同时使其满足关系式0.1≤(H/T)×M/1000≤10时,能够充分发挥结构式1所示化合物与E元素的协同作用,降低电池阻抗,提高电池的高温循环性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池,包括含正极材料层的正极、负极和非水电解液,所述正极材料层包括正极活性材料,所述正极活性材料包括Li xNi yCo zM 1-y-zO 2,其中,0.9≤x≤1.2,0.5≤y≤1,0≤z≤0.5,0≤1-y-z≤0.5,M选自Mn、Al中的至少一种元素,且所述正极活性材料掺杂或包覆有E元素,所述E元素选自Ba、Zn、Ti、Mg、Zr、W、Y、Si、Sn、B、Co、P中的一种或多种,所述正极活性材料相对金属锂的电位范围≥4.25V;
所述非水电解液包括溶剂、电解质盐和添加剂,所述添加剂包括结构式1所示的化合物:
Figure PCTCN2022085251-appb-000009
其中,n为0或1,A选自C或O,X选自
Figure PCTCN2022085251-appb-000010
R 1、R 2各自独立选自H、
Figure PCTCN2022085251-appb-000011
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
所述锂离子电池满足以下条件:
0.1≤(H/T)×M/1000≤10;
且80≤H≤150,0.005≤T≤0.8,0.05≤M≤3;
其中,H为正极材料层的厚度,单位为μm;
T为正极材料层中E元素的质量百分含量,单位为%;
M为非水电解液中结构式1所示的化合物的质量百分含量,单位为%。
根据本发明提供的锂离子电池,在非水电解液中添加结构式1所示的化合物作为添加剂,同时在正极活性材料中掺杂或包覆有E元素,结构式1所示的化合物在所述正极材料层表面形成的界面膜与掺杂或包覆有E元素的正极活性材料之间具有较好的结合效果,从而有效提高该界面膜的致密性和稳定性,提高锂离子电池的高温循环稳定性。基于结构式1所示的化合物、正极活性材料中E元素和界面膜之间的关系,发明人通过大量研究发现:当合理调控正极材料层的厚度H、正极材料层中E元素的质量百分含量T和非水电解液中结构式1所示的化合物的质量百分含量M处于合适范围,同时使其满足关系式0.1≤(H/T)×M/1000≤10时,能够充分发挥结构式1所示化合物与E元素的协同作用,降低电池阻抗,提高电池的高温循环性能。
在一些实施例中,当n为0时,所述结构式1所示的化合物为:
Figure PCTCN2022085251-appb-000012
其中,A选自C或O,X选自
Figure PCTCN2022085251-appb-000013
R 1、R 2各自独立选自H、
Figure PCTCN2022085251-appb-000014
Figure PCTCN2022085251-appb-000015
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子。
在一些实施例中,当n为1时,所述结构式1所示的化合物为:
Figure PCTCN2022085251-appb-000016
其中,A选自C或O,X选自
Figure PCTCN2022085251-appb-000017
R 1、R 2各自独立选自H、
Figure PCTCN2022085251-appb-000018
Figure PCTCN2022085251-appb-000019
R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子。
在优选的实施例中,所述正极活性材料相对金属锂的电位范围为4.25V~4.6V。
在优选的实施例中,所述锂离子电池满足以下条件:
0.5≤(H/T)×M/1000≤6。
在0.1≤(H/T)×M/1000≤10的基础上进一步优选0.5≤(H/T)×M/1000≤6,可综合正极材料层的厚度H、正极材料层中E元素的质量百分含量T和非水电解液中结构式1所示的化合物的质量百分含量M对于电池高温循环性能的影响,使电池具有更长的高温使用寿命和更低的阻抗。
具体的,所述正极材料层的厚度H可以选自80μm、85μm、90μm、95μm、100μm、105μm、110μm、115μm、120μm、125μm、130μm、135μm、140μm、145μm或150μm。
在优选的实施例中,所述正极材料层的厚度H为90~120μm。
正极材料层的厚度也是锂离子锂离子电池设计及制作中的关键技术参数。在相同极片大小下,正极材料层的厚度越大,其电池的能量密度增大,但内阻也会相应增大;而正极材料层的厚度降低,则电池的能量密度降低,不利于商用化应用;当所述正极材料层的厚度H处于上述范围中时,电池具有较高的能量密度和较低的阻抗。
具体的,所述正极材料层中E元素的质量百分含量T可以选自0.005%、0.01%、0.015%、0.02%、0.05%、0.08%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%、0.6%、0.65%、0.7%、0.75%或0.8%。
在优选的实施例中,所述正极材料层中E元素的质量百分含量T为0.01%~0.2%。
当进行掺杂处理时,所述E元素嵌入于所述正极活性材料的晶格中,替代部分钴、镍、锰或铝的位置,形成稳定的掺杂状态,抑制金属离子的溶出;当进行包覆处理时,所述E元素通过氧化物或金属盐的形式包覆于所述正极活性材料的外表面,避免正极活性材料与非水电解液的直接接触,而且会降低正极材料表面的残碱量,改善正极活性材料在高电压工作条件下引起的结构破坏和产气等问题,提高电池在高电压下的循环和安全等性能。
具体的,所述非水电解液中结构式1所示的化合物的质量百分含量M可以选自0.05%、0.08%、0.1%、0.2%、0.4%、0.6%、0.8%、1%、1.1%、1.3%、1.5%、1.8%、2%、2.1%、2.3%、2.5%、2.8%或3%。
在优选实施例中,所述非水电解液中结构式1所示的化合物的质量百分含量M为0.1%~1%。
在非水电解液中添加结构式1所示的化合物,可以在正极活性材料表面形成一种在高电压下稳定、致密的界面膜,有效抑制电解液的氧化分解,提升高电压电池的电化学性能。当结构式1所示的化合物的质量百分含量M过小时,则难以起到对于界面膜性能的提升作用;当结构式1所示的化合物的质量百分含量M过大时,则会导致非水电解液的粘度增大,影响离子传输,且容易在电池循环的过程中产生过多的副产物,从而影响非水电解液的稳定性。
在一些实施例中,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
Figure PCTCN2022085251-appb-000020
Figure PCTCN2022085251-appb-000021
需要说明的是,以上仅是本发明优选的化合物,并不代表对于本发明的限制。
本领域技术人员在知晓结构式1的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。例如:化合物7可通过以下方法制成:
将山梨醇、碳酸二甲酯、甲醇碱性物质催化剂氢氧化钾以及DMF等有机溶剂置于反应容器中,在加热条件下进行反应数小时后,加入一定量的草酸调节pH至中性,过滤、重结晶后即可得到中间产物1,接着将中间产物1、碳酸酯、二氯亚砜等在高温条件下发生酯化反应得到中间产物2,再使用高碘酸钠等氧化剂将中间产物2氧化即可得到化合物7。
在优选实施例中,所述电解质盐选自LiPF 6、LiPO 2F 2、LiBF 4、LiBOB、LiSbF 6、LiAsF 6、LiCF 3SO 3、LiDFOB、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiN(SO 2C 2F 5) 2、LiN(SO 2F) 2、LiCl、LiBr、LiI、LiClO 4、LiBF 4、LiB 10Cl 10、LiAlCl 4、氯硼烷锂、具有4个以下的碳原子的低级脂族羧酸锂、四苯基硼酸锂以及亚氨基锂中的至少一种。具体的,电解质盐可以为LiBF 4、LiClO 4、LiAlF 4、LiSbF 6、LiTaF 6、LiWF 7等无机电解质盐;LiPF 6等氟磷酸电解质盐类;LiWOF 5等钨酸电解质盐类;HCO 2Li、CH 3CO 2Li、CH 2FCO 2Li、CHF 2CO 2Li、CF 3CO 2Li、CF 3CH 2CO 2Li、CF 3CF 2CO 2Li、CF 3CF 2CF 2CO 2Li、CF 3CF 2CF 2CF 2CO 2Li等羧酸电解质盐类;CH 3SO 3Li等磺酸电解质盐类;LiN(FCO 2) 2、LiN(FCO)(FSO 2)、LiN(FSO 2) 2、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,2-全氟乙二磺酰亚胺锂、环状1,3-全氟丙二磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)等酰亚胺电解质盐类;LiC(FSO 2) 3、LiC(CF 3SO 2) 3、LiC(C 2F 5SO 2) 3等甲基电解质盐类;二氟草酸根合硼酸锂、二(草酸根合)硼酸锂、四氟草酸根合磷酸锂、二氟二(草酸根合)磷酸锂、三(草酸根合)磷酸锂等草酸电解质盐类;以及LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 3CF 3、LiBF 3C 2F 5、LiBF 3C 3F 7、LiBF 2(CF 3) 2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2等含氟有机电解质盐类等。
通常,电解液中的电解质盐是锂离子的传递单元,电解质盐的浓度大小直接影响锂离子的传递速度,而锂离子的传递速度会影响负极的电位变化。在电池快速充电过程中,需要尽量提高锂离子的移动速度,防止负极电位下降过快导致锂枝晶的形成,给电池带来安全隐患,同时还能防止电池的循环容量过快衰减。优选的,所述电解质盐在电解液中的总浓度可以为0.5mol/L~2.0mol/L、0.5mol/L~0.6mol/L、0.6mol/L~0.7mol/L、0.7mol/L~0.8mol/L、0.8mol/L~0.9mol/L、0.9mol/L~1.0mol/L、1.0mol/L~1.1mol/L、1.1mol/L~1.2mol/L、1.2mol/L~1.3mol/L、1.3mol/L~1.4mol/L、1.4mol/L~1.5mol/L、1.5mol/L~1.6mol/L、1.6mol/L~1.7mol/L、1.7mol/L~1.8mol/L、1.8mol/L~1.9mol/L、或1.9mol/L~2.0mol/L,进一步优选的可以为0.6mol/L~1.8mol/L、0.7mol/L~1.7mol/L、或0.8mol/L~1.5mol/L。
在一些实施例中,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、磷酸酯类化合物、硼酸酯类化合物和腈类化合物中的至少一种;
在优选的实施例中,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自甲基二磺酸亚甲酯、1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022085251-appb-000022
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述磷酸酯类化合物选自三(三甲基硅烷)磷酸酯、结构式3所示化合物中的至少一种:
Figure PCTCN2022085251-appb-000023
所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基。
在优选的实施例中,所述不饱和磷酸酯类化合物可为三(三甲基硅烷)磷酸酯、磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
所述硼酸酯类化合物选自三(三甲基硅烷)硼酸酯;
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
在另一些实施例中,所述辅助添加剂还可包括其它能改善电池性能的添加剂:例如,提升电池安全性能的添加剂,具体如氟代磷酸酯、环磷腈等阻燃添加剂,或叔戊基苯、叔丁基苯等防过充添加剂。
在一些实施例中,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.01%~30%。
需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为10%以下,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~2%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。
在一些实施例中,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂和羧酸酯类溶剂中的一种或多种。
在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH 3-THF),2-三氟甲基四氢呋喃(2-CF 3-THF)中的一种或多种;所述链状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。 醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性材料为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。
在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。
在一些实施例中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。环状碳酸酯的含量没有特殊限制,在不显著破坏本发明锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。
在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。
羧酸酯类溶剂包括环状羧酸酯和/或链状碳酸酯。作为环状羧酸酯的例子,可以列举如:γ-丁内酯、γ-戊内酯、δ-戊内酯中的一种或多种。作为链状碳酸酯的例子,可以列举如:乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
在一些实施例中,砜类溶剂包括环状砜和链状砜,优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明锂离子电池效果的范围内是任意的,相对于非水电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。
在优选的实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
在一些实施例中,所述正极还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。本申请正极中除正极集流体之外的部分均称之为正极材料层。
所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。
在一些实施例中,所述正极材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极材料层。
在一些实施例中,所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热 塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
在一些实施例中,所述正极导电剂包括金属导电剂、碳系材料、金属氧化物系导电剂、复合导电剂中的一种或多种。具体的,金属导电剂可以为铜粉、镍粉、银粉等金属;碳系材料可为导电石墨、导电炭黑、导电碳纤维或石墨烯等碳系材料;金属氧化物系导电剂可为氧化锡、氧化铁、氧化锌等;复合导电剂可以为复合粉、复合纤维等。更具体的,导电炭黑可以为乙炔黑、350G、科琴黑、碳纤维(VGCF)、碳纳米管(CNTs)中的一种或几种。
在一些实施例中,所述负极包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料包括硅基负极、碳基负极和锡基负极中的一种或多种。
在优选的实施例中,所述碳基负极可包括石墨、硬碳、软碳、石墨烯、中间相碳微球等。所述石墨包括但不限于天然石墨、人造石墨、非晶碳、碳包覆石墨、石墨包覆石墨、树脂包覆石墨中的一种或几种。所述天然石墨可以为鳞状石墨、鳞片状石墨、土壤石墨和/或以这些石墨为原料并对其实施球形化、致密化等处理而得到的石墨粒子等。所述人造石墨可以为对煤焦油沥青、煤炭类重质原油、常压渣油、石油类重质原油、芳香族烃、含氮环状化合物、含硫环状化合物、聚苯、聚氯乙烯、聚乙烯醇、聚丙烯腈、聚乙烯醇缩丁醛、天然高分子、聚苯硫醚、聚苯醚、糠醇树脂、酚醛树脂、酰亚胺树脂等有机物在高温下通过石墨化得到。所述非晶碳可以为使用焦油、沥青等易石墨化性碳前躯体作为原料,在不会发生石墨化的温度范围(400~2200℃的范围)进行1次以上热处理而成的非晶碳粒子、使用树脂等难石墨化性碳前驱体作为原料进行热处理而成的非晶碳粒子。所述碳包覆石墨可以为将天然石墨和/或人造石墨与作为焦油、沥青、树脂等有机化合物的碳前体混合,在400~2300℃的范围内进行1次以上热处理。以得到的天然石墨和/或人造石墨作为核石墨,利用非晶碳对其进行包覆而得到碳石墨复合物。碳石墨复合物可以是核石墨的整个或部分表面包覆有非晶碳的形态,也可以是以上述碳前体起源的碳作为粘结剂使多个初级粒子复合而成的形态。另外,还可以通过使苯、甲苯、甲烷、丙烷、芳香族类的挥发成分等烃类气体与天然石墨和/或人造石墨在高温下反应,使碳沉积于石墨表面,得到碳石墨复合物。所述石墨包覆石墨可以为天然石墨和/或人造石墨与焦油、沥青、树脂等易石墨化的有机化合物的碳前体混合,在2400~3200℃左右的范围进行1次以上热处理。以所得天然石墨和/或人造石墨作为核石墨,并利用石墨化物包覆该核石墨的整个或部分表面,从而可得到石墨包覆石墨。所述树脂包覆石墨可以为将天然石墨和/或人造石墨与树脂等混合,并在低于400℃的温度下进行干燥,将由此得到的天然石墨和/或人造石墨作为核石墨,利用树脂等包覆该核石墨。上述焦油、沥青树脂等有机化合物,可列举,选自煤炭类重质原油、直流类重质原油、分解类石油重质原油、芳香族烃、N环化合物、S环化合物、聚苯、有机合成高分子、天然高分子、热塑性树脂及热固性树脂中的可碳化的有机化合物等。
在优选的实施例中,所述硅基负极可包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料等。所述硅基材料的添加量大于0小于30%。优选地,所述硅基材料的添加量的上限值为10%、15%、20%或25%;所述硅基材料的添加量的下限值为5%、10%或15%。所述硅材料为硅纳米颗粒、硅纳米线、硅纳米管、硅薄膜、3D多孔硅、中空多孔硅中的一种或几种。
在优选的实施例中,所述锡基负极可包括锡、锡碳、锡氧、锡基合金、锡金属化合物;所述锡基合金指锡与Cu、Ag、Co、Zn、Sb、Bi以及In中的一种或几种组成的合金。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。本申请负极中除负极集流体之外的部分均称之为负极材料层。
所述负极集流体选自可传导电子的金属材料,优选的,所述负极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述负极集流体选自铝箔。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚 的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;羟甲基纤维素钠;以及苯乙烯丁二烯橡胶中的一种或多种。
所述负极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是聚合物隔膜、无纺布等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
以下实施例中所采用的结构式1所示的化合物如下表1:
表1
Figure PCTCN2022085251-appb-000024
表2 实施例和对比例各参数设计
Figure PCTCN2022085251-appb-000025
Figure PCTCN2022085251-appb-000026
实施例1
本实施例用于说明本发明公开的电池及其制备方法,包括以下操作步骤:
1)电解液的制备:将碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)按质量比为EC:EMC=3:7进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,然后加入添加剂,电解液中各添加剂的含量如表2所示,添加剂的含量按照占电解液的总质量的百分比计。
2)正极板的制备
按93:4:3的质量比混合正极活性材料、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在80~150μm,正极活性材料的选择和正极材料层的厚度如表2所示。
3)负极板的制备
按94:1:2.5:2.5的质量比混合负极活性材料改性天然石墨、导电碳黑Super-P、粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、辊压,并用超声波焊机焊上镍制引出线后得到负极板。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组 成的三明治结构进行卷绕,再将卷绕体压扁后放入铝塑膜中,将正负极的引出线分别引出后,热压封口铝塑膜,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液通过注液孔注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电180min,0.1C恒流充电180min,搁置24hr后整形封口,然后进一步以0.2C的电流恒流充电至截至电压,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。
实施例2~49
实施例2~49用于说明本发明公开的电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
采用表2所示的电解液添加组分和正极材料层。
对比例1~21
对比例1~21用于说明本发明公开的电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
采用表2所示的电解液添加组分和正极材料层。
性能测试
对上述制备得到的锂离子电池进行如下性能测试:
高温循环性能测试:
在45℃下,将实施例和对比例制备得到的锂离子电池以1C倍率充电、以1C倍率放电,记录锂离子电池的初始容量和初始阻抗,进行满充满放循环测试,直至锂离子电池的容量衰减至初始容量的80%,记录循环圈数。
(1)实施例1~32和对比例1~14得到的测试结果填入表3。
表3
组别 初始容量(mAh) 初始阻抗(ohm) 45℃循环圈数
实施例1 1120.00 9.0 1835
实施例2 1011.00 14 1720
实施例3 1082.00 10.6 1796
实施例4 1075.00 11.2 1775
实施例5 1032.00 13.2 1736
实施例6 1031.00 13.3 1736
实施例7 1101.00 9.6 1820
实施例8 1065.00 11.6 1770
实施例9 1061.00 11.7 1766
实施例10 1111.00 9.3 1829
实施例11 1041.00 13.0 1742
实施例12 1035.00 13.2 1738
实施例13 1038.00 13.1 1741
实施例14 1024.00 13.6 1730
实施例15 1030.00 13.4 1735
实施例16 1012.00 13.8 1726
实施例17 1034.00 13.2 1740
实施例18 1056.00 11.8 1760
实施例19 1070.00 11.5 1766
实施例20 1027.00 13.5 1733
实施例21 1092.00 9.8 1812
实施例22 1030.00 13.3 1734
实施例23 1028.00 13.4 1736
实施例24 1026.00 13.5 1733
实施例25 1014.00 13.7 1725
实施例26 1060.00 11.7 1762
实施例27 1198.00 15.9 1648
实施例28 1235.00 15.1 1665
实施例29 1246.00 16.3 1632
实施例30 1285.00 17.3 1601
实施例31 1318.00 17.0 1611
实施例32 1242.00 18.0 1588
对比例1 856.00 27.6 1335
对比例2 843.00 29.5 1311
对比例3 935.00 23.1 1435
对比例4 892.00 25.2 1401
对比例5 912.00 24.2 1410
对比例6 871.00 26.3 1371
对比例7 946.00 22.4 1450
对比例8 933.00 23.2 1431
对比例9 921.00 23.9 1418
对比例10 906.00 24.6 1395
对比例11 904.00 24.8 1385
对比例12 941.00 22.9 1440
对比例13 883.00 25.5 1381
对比例14 863.00 26.6 1360
从表3的测试结果可以看出,当正极材料层的厚度H、正极材料层中E元素的质量百分含量T、非水电解液中结构式1所示的化合物的质量百分含量M满足关系式0.1≤(H/T)×M/1000≤10且80≤H≤150,0.005≤T≤0.8,0.05≤M≤3时,能够有效增加锂离子电池的高温循环圈数,进而延长锂离子电池在高压和高温条件下的使用寿命。
从实施例1~32和对比例4、10、11、13、14的测试结果可以看出,即使正极材料层的厚度H、正极材料层中E元素的质量百分含量T、非水电解液中结构式1所示的化合物的质量百分含量M满足其范围限制,但(H/T)×M/1000值过大或过小时,锂离子电池仍不具备较好的高温循环性能。同时,结合对比例5、7~8、12的测试结果可以看出,同样(H/T)×M/1000值处于0.1和10之间,但正极材料层的厚度H、正极材料层中E元素的质量百分含量T、非水电解液中结构式1所示的化合物的质量百分含量M不满足其范围限制,同样无法提升电池的高温循环性能,说明正极材料层的厚度H、正极材料层中E元素的质量百分含量T、非水电解液中结构式1所示的化合物的质量百分含量M之间具有强关联性,通过在正极活性材料中掺杂E元素,能够有效提高正极活性材料在高电压条件下的稳定性,而结构式1所示的化合物在正极活性材料的表面分解形成的界面膜与正极活性材料表面的E元素具有结合作用,通过与E元素的结合提高了界面膜的致密性和稳定性,有效抑制正极活性材料在高温循环过程中的结构坍塌,抑制金属离子的溶出,避免非水电解液溶剂在正极活性材料表面的持续分解,同时该界面膜具有较好的离子导电能力,有效降低了电池的阻抗。通过关系式0.1≤(H/T)×M/1000≤10限定和控制正极材料层的厚度H、正极材料层中E元素的质量百分含量T、非水电解液中结构式1所示的化合物的质量百分含量M的范围,有利于保证非水电解 液中结构式1所示的化合物与正极活性材料的浸润,同时使正极活性材料表面具有足够与结构式1所示的化合物接触的E元素,综合各因素对于电池高温循环性能的影响,以得到高压高温循环性能优异的锂离子电池。
由实施例1、5和20的测试结果可知,当正极活性材料掺杂的E元素含量偏低时,不能有效避免正极活性材料在高压下的结构稳定性,同时影响界面膜的质量,导致电池循环时发生结构破坏和产气等问题,影响电池循环性能。由实施例1、2和27的测试结果可知,当正极活性材料掺杂的E元素含量偏高时,会降低锂离子的扩散,增大电池的阻抗,并使得电池容量降低。
由实施例1、14~16和25的测试结果可知,随着结构式1所示的化合物含量的增加,电池循环性能先变好后变差。即本发明所述结构式1所示的化合物在电解液中的加入量为0.5%时,能够有效提高电池的整体性能;当含量过低时,难以在高电压下形成稳定、致密的界面膜,导致电解液的氧化分解加速;当含量过高时,其在正极片中的残余量也增加,过量的结构式1所示的化合物会增加电池内部的副反应,增加电池阻抗,劣化电池循环等性能。
从实施例26~32的测试结果可以看出,采用不同的元素对于正极活性材料进行掺杂,在满足关系式0.1≤(H/T)×M/1000≤10以及对于H值、T值和M值的范围限定的条件下,锂离子电池的高温循环圈数均具有较大的提升,说明不同元素掺杂的正极活性材料均与结构式1所示的化合物具有较好的配合效果。
(2)实施例1、33~38和对比例15~21得到的测试结果填入表4。
表4
组别 初始容量(mAh) 初始阻抗(ohm) 45℃循环圈数
实施例1 1120.00 9.0 1835
实施例33 1001.00 8.7 1845
实施例34 956.00 8.1 1856
实施例35 1052.00 9.4 1827
实施例36 1195.00 9.6 1820
实施例37 1231.00 10.2 1803
实施例38 1284.00 10.6 1795
对比例15 839.00 29.8 1302
对比例16 781.00 29.2 1330
对比例17 753.00 28.5 1358
对比例18 801.00 29.5 1314
对比例19 875.00 30.4 1275
对比例20 892.00 30.7 1256
对比例21 932.00 31.8 1221
由对比例15~21的测试结果可知,随着工作电压的增加,虽然电池的初始容量相应提升,但正极材料的结构破裂程度也会增加,电池的高温循环性能下降明显。而从实施例1和33~28的测试结构可知,通过添加结构式1所示的化合物,并通过关系式0.1≤(H/T)×M/1000≤10进行限制,能够在正极活性材料的表面形成耐压和耐高温的界面膜,有效抑制工作电压提升对于电池高温循环性能的不利影响,得到一种兼顾高容量和高使用寿命的锂离子电池。
(3)实施例1、39~45得到的测试结果填入表5。
表5
组别 初始容量(mAh) 初始阻抗(ohm) 45℃循环圈数
实施例1 1120.00 9.0 1835
实施例39 1118.00 9.2 1830
实施例40 1108.00 9.6 1822
实施例41 1116.00 9.3 1828
实施例42 1113.00 9.5 1824
实施例43 1110.00 9.4 1826
实施例44 1105.00 9.1 1831
实施例45 1103.00 8.9 1819
从表5的测试结果可以看出,实施例1、39~45中,当采用不同的结构式1所示的化合物时,同样满足对于H值、T值和M值的范围限定,说明不同结构式1所示的化合物中共同含有的环状含硫基团在参与正极活性材料表面界面膜的形成过程中起到了决定性作用,推测是因为其分解产生的富含S元素的钝化膜与掺杂E元素的正极活性材料均具有较好的结合强度,提高了电解质离子的嵌入脱出效率,并抑制了非水电解液的持续分解,不同的结构式1所示的化合物与掺杂的正极活性材料均具有较好的配合效果,从而对于电池的高温循环性能具有普适性的提升。
(4)实施例1、46~49得到的测试结果填入表6。
表6
组别 初始容量(mAh) 初始阻抗(ohm) 45℃循环圈数
实施例1 1120.00 9.0 1835
实施例46 1131.00 8.5 1845
实施例47 1126.00 8.7 1841
实施例48 1145.00 8.1 1853
实施例49 1134.00 8.4 1848
从表6的测试结果可以看出,在本发明提供的锂离子电池体系的基础上,添加PS(1,3-丙烷磺内酯)、DTD(硫酸乙烯酯)、磷酸三炔丙酯、丁二腈等作为辅助添加剂,能够进一步的提高电池的循环性能,推测是由于结构式1所示的化合物和加入的PS(1,3-丙烷磺内酯)、DTD(硫酸乙烯酯)、三(三甲基硅烷)硼酸酯、磷酸三炔丙酯或丁二腈之间存在一定的共同分解反应,能够共同参与电极表面界面膜的形成,且得到的界面膜能够提高电极材料的稳定性,以提高电池的高温循环稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种锂离子电池,其特征在于,包括含正极材料层的正极、负极和非水电解液,所述正极材料层包括正极活性材料,所述正极活性材料包括Li xNi yCo zM 1-y-zO 2,其中,0.9≤x≤1.2,0.5≤y≤1,0≤z≤0.5,0≤1-y-z≤0.5,M选自Mn、Al中的至少一种元素,且所述正极活性材料掺杂或包覆有E元素,所述E元素选自Ba、Zn、Ti、Mg、Zr、W、Y、Si、Sn、B、Co、P中的一种或多种,所述正极活性材料相对金属锂的电位范围≥4.25V;
    所述非水电解液包括溶剂、电解质盐和添加剂,所述添加剂包括结构式1所示的化合物:
    Figure PCTCN2022085251-appb-100001
    其中,n为0或1,A选自C或O,X选自
    Figure PCTCN2022085251-appb-100002
    R 1、R 2各自独立选自H、
    Figure PCTCN2022085251-appb-100003
    R 1和R 2不同时选自H,且X、R 1和R 2中至少含有一个硫原子;
    所述锂离子电池满足以下条件:
    0.1≤(H/T)×M/1000≤10;
    且80≤H≤140,0.005≤T≤0.8,0.05≤M≤3;
    其中,H为正极材料层的厚度,单位为μm;
    T为正极材料层中E元素的质量百分含量,单位为%;
    M为非水电解液中结构式1所示的化合物的质量百分含量,单位为%。
  2. 根据权利要求1所述的锂离子电池,其特征在于,所述正极活性材料相对金属锂的电位范围为4.25V~4.6V。
  3. 根据权利要求1所述的锂离子电池,其特征在于,所述锂离子电池满足以下条件:
    0.5≤(H/T)×M/1000≤6。
  4. 根据权利要求1所述的锂离子电池,其特征在于,所述正极材料层的厚度H为90~120μm。
  5. 根据权利要求1所述的锂离子电池,其特征在于,所述正极材料层中E元素的质量百分含量T为0.01%~0.2%。
  6. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中结构式1所示的化合物的质量百分含量M为0.1%~1%。
  7. 根据权利要求1所述的锂离子电池,其特征在于,所述结构式1所示的化合物选自以下化合物1~22中的一种或多种:
    Figure PCTCN2022085251-appb-100004
    Figure PCTCN2022085251-appb-100005
  8. 根据权利要求1所述的锂离子电池,其特征在于,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiDFOP、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
  9. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、磷酸酯类化合物、硼酸酯类化合物和腈类化合物中的至少一种。
  10. 根据权利要求9所述的锂离子电池,其特征在于,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.01%~30%。
  11. 根据权利要求9所述的锂离子电池,其特征在于,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
    所述磺酸内酯类化合物选自甲基二磺酸亚甲酯、1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸 内酯中的至少一种;
    所述环状碳酸酯类化合物选自碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
    Figure PCTCN2022085251-appb-100006
    所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
    所述磷酸酯类化合物选自三(三甲基硅烷)磷酸酯、结构式3所示化合物中的至少一种:
    Figure PCTCN2022085251-appb-100007
    所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
    所述硼酸酯类化合物选自三(三甲基硅烷)硼酸酯;
    所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
PCT/CN2022/085251 2022-01-19 2022-04-06 锂离子电池 WO2023137878A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227015439A KR20230113686A (ko) 2022-01-19 2022-04-06 리튬 이온 전지
EP22716303.7A EP4239745A1 (en) 2022-01-19 2022-04-06 Lithium ion battery
US17/772,130 US20230231126A1 (en) 2022-01-19 2022-04-06 Lithium ion battery
JP2022528267A JP7470789B2 (ja) 2022-01-19 2022-04-06 リチウムイオン電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210057979.0 2022-01-19
CN202210057979.0A CN114094109B (zh) 2022-01-19 2022-01-19 锂离子电池

Publications (1)

Publication Number Publication Date
WO2023137878A1 true WO2023137878A1 (zh) 2023-07-27

Family

ID=80308595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085251 WO2023137878A1 (zh) 2022-01-19 2022-04-06 锂离子电池

Country Status (2)

Country Link
CN (1) CN114094109B (zh)
WO (1) WO2023137878A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207462A (zh) * 2021-04-13 2022-10-18 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN115207441A (zh) * 2021-04-13 2022-10-18 深圳新宙邦科技股份有限公司 一种磷酸铁锂电池
CN115692840A (zh) * 2021-07-22 2023-02-03 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN114094109B (zh) * 2022-01-19 2022-05-03 深圳新宙邦科技股份有限公司 锂离子电池
WO2023206394A1 (zh) * 2022-04-29 2023-11-02 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包和用电装置
CN115020813B (zh) * 2022-08-09 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115020815B (zh) * 2022-08-09 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN115117452B (zh) * 2022-08-30 2022-12-06 深圳新宙邦科技股份有限公司 一种锂离子电池
CN116093428A (zh) * 2022-09-07 2023-05-09 深圳新宙邦科技股份有限公司 一种锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176760A (ja) * 2014-03-14 2015-10-05 三井化学株式会社 リチウム二次電池
JP2016004751A (ja) * 2014-06-19 2016-01-12 三井化学株式会社 リチウム二次電池及び非水電解液
JP2017199548A (ja) * 2016-04-27 2017-11-02 日立化成株式会社 リチウムイオン二次電池
JP2018092778A (ja) * 2016-12-02 2018-06-14 日立化成株式会社 リチウムイオン二次電池
CN111403807A (zh) * 2019-01-02 2020-07-10 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN111755753A (zh) * 2020-07-09 2020-10-09 香河昆仑化学制品有限公司 一种锂离子电池电解液添加剂环碳酸硫酸乙烯酯及其制备方法
CN114068936A (zh) * 2022-01-14 2022-02-18 深圳新宙邦科技股份有限公司 锂离子电池
CN114094109A (zh) * 2022-01-19 2022-02-25 深圳新宙邦科技股份有限公司 锂离子电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038900A (ja) * 2010-08-06 2012-02-23 Jm Energy Corp リチウムイオンキャパシタ
JP2017097995A (ja) * 2015-11-19 2017-06-01 日立マクセル株式会社 非水電解質二次電池およびその製造方法
KR102007130B1 (ko) * 2016-01-22 2019-10-01 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자
JP2018142487A (ja) * 2017-02-28 2018-09-13 マクセルホールディングス株式会社 非水電解液系電気化学素子用負極、その製造方法、リチウムイオン二次電池およびその製造方法
CN111095453B (zh) * 2017-11-14 2022-04-05 旭化成株式会社 非水系锂型蓄电元件
CN111095650B (zh) * 2018-07-18 2023-04-04 旭化成株式会社 锂离子二次电池
CN110931863B (zh) * 2019-11-12 2022-03-29 深圳市比克动力电池有限公司 电池电解液用添加剂、锂离子电池电解液、锂离子电池
JP7359868B2 (ja) * 2020-05-28 2023-10-11 旭化成株式会社 非水系二次電池及び非水系電解液
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176760A (ja) * 2014-03-14 2015-10-05 三井化学株式会社 リチウム二次電池
JP2016004751A (ja) * 2014-06-19 2016-01-12 三井化学株式会社 リチウム二次電池及び非水電解液
JP2017199548A (ja) * 2016-04-27 2017-11-02 日立化成株式会社 リチウムイオン二次電池
JP2018092778A (ja) * 2016-12-02 2018-06-14 日立化成株式会社 リチウムイオン二次電池
CN111403807A (zh) * 2019-01-02 2020-07-10 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN111755753A (zh) * 2020-07-09 2020-10-09 香河昆仑化学制品有限公司 一种锂离子电池电解液添加剂环碳酸硫酸乙烯酯及其制备方法
CN114068936A (zh) * 2022-01-14 2022-02-18 深圳新宙邦科技股份有限公司 锂离子电池
CN114094109A (zh) * 2022-01-19 2022-02-25 深圳新宙邦科技股份有限公司 锂离子电池

Also Published As

Publication number Publication date
CN114094109B (zh) 2022-05-03
CN114094109A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN114094109B (zh) 锂离子电池
CN113659206B (zh) 一种高压实锂离子电池
CN114068936B (zh) 锂离子电池
JP5990604B2 (ja) 非水電解液及びそれを備えたリチウム二次電池
KR102044438B1 (ko) 리튬 이차 전지
WO2023045948A1 (zh) 一种二次电池
CN114639872B (zh) 一种锂离子电池
CN114497692B (zh) 二次电池
WO2023124831A1 (zh) 锂离子电池
WO2023124604A1 (zh) 二次电池
CN115117452B (zh) 一种锂离子电池
WO2023138244A1 (zh) 一种非水电解液及二次电池
WO2023246279A1 (zh) 一种锂二次电池
WO2024032174A1 (zh) 一种锂离子电池
WO2024037187A1 (zh) 一种锂离子电池
WO2023104038A1 (zh) 一种二次电池
WO2023016412A1 (zh) 一种非水电解液及电池
WO2023016411A1 (zh) 一种非水电解液及电池
JP2015138695A (ja) リチウムイオン二次電池
CN110797573B (zh) 锂二次电池
JP7470789B2 (ja) リチウムイオン電池
WO2024016897A1 (zh) 一种非水电解液及二次电池
WO2023020323A1 (zh) 一种非水电解液及电池
CN117096440A (zh) 一种锂离子电池
CN117525583A (zh) 一种锂离子电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022716303

Country of ref document: EP

Effective date: 20220425

WWE Wipo information: entry into national phase

Ref document number: 2022528267

Country of ref document: JP