WO2023016412A1 - 一种非水电解液及电池 - Google Patents

一种非水电解液及电池 Download PDF

Info

Publication number
WO2023016412A1
WO2023016412A1 PCT/CN2022/110873 CN2022110873W WO2023016412A1 WO 2023016412 A1 WO2023016412 A1 WO 2023016412A1 CN 2022110873 W CN2022110873 W CN 2022110873W WO 2023016412 A1 WO2023016412 A1 WO 2023016412A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivatives
groups
cyclic
structural formula
compound
Prior art date
Application number
PCT/CN2022/110873
Other languages
English (en)
French (fr)
Inventor
向书槐
易洋
胡时光
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023016412A1 publication Critical patent/WO2023016412A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of secondary batteries, and in particular relates to a nonaqueous electrolytic solution and a battery.
  • various additives play a very important role in their performance.
  • film-forming additives are particularly important.
  • the film-forming additives have a priority over the electrolyte to undergo oxidation-reduction reactions, forming a solid electrolyte film near the electrode, which is called SEI film on the negative electrode, and CEI film on the positive electrode, which can slow down electrolysis.
  • SEI film on the negative electrode a solid electrolyte film near the electrode
  • CEI film on the positive electrode which can slow down electrolysis.
  • the liquid reacts with the electrode material, adjusts the permeability of lithium ions, and reduces the electronic conductivity, thereby improving the high and low temperature and cycle performance of the battery.
  • the current SEI film formed by additives has disadvantages such as uneven film surface thickness, poor high temperature stability, low lithium ion conductivity, and high impedance, which have adverse effects on battery life and high-rate discharge.
  • the invention provides a non-aqueous electrolyte and a battery.
  • the invention provides a kind of non-aqueous electrolytic solution, comprises the compound shown in solvent, electrolyte salt and structural formula 1:
  • z is selected from 0 or 1; m and c are each independently selected from any natural number from 1 to 3; p is selected from any natural number from 0 to 3;
  • E 1 and E 2 are each independently selected from a five-membered ring cyclic carbonate group and its derivatives, a five-membered ring cyclic sulfite group and its derivatives, a five-membered ring cyclic sulfate group and its derivatives. Derivatives, five-membered ring sulfinate group and its derivatives or five-membered ring sulfinate group and its derivatives, E 1 and E 2 may be the same or different;
  • A is selected from halogen, lithium, sodium, C1-C4 halogenated hydrocarbon groups, cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, cyclic sulfate groups and their derivatives , a cyclic sulfonate group and its derivatives, or a cyclic sulfinate group and its derivatives.
  • E 1 and E 2 are each independently selected from the following groups:
  • A is selected from cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, cyclic sulfate groups and their derivatives, cyclic sulfonate groups and Ester groups and their derivatives or cyclic sulfinate groups and their derivatives;
  • A is selected from halogen, lithium, sodium, C1-C4 halogenated hydrocarbon groups, cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, and cyclic sulfuric acid esters Groups and their derivatives, cyclic sulfonate groups and their derivatives, or cyclic sulfinate groups and their derivatives.
  • n and c are the same, and E 1 and E 2 are the same.
  • n, c and p are the same, and E 1 and E 2 are the same.
  • A is selected from groups shown in structural formula 2 or structural formula 3:
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the compound represented by the structural formula 1 is added in an amount of 0.05-10%.
  • the electrolyte salt is selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , and at least one of lithium salts of lower aliphatic carboxylates.
  • the non-aqueous electrolyte also includes auxiliary additives, which include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and nitriles at least one of the compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 4,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 5:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • nitrile compound comprises succinonitrile, glutaronitrile, ethylene glycol two (propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more.
  • the present invention provides a battery comprising a positive electrode, a negative electrode and the non-aqueous electrolyte as described above.
  • the inventor speculates through research that the compound shown in structural formula 1 is used as a film-forming additive, which uses phosphate as the central group and is connected to at least two five-membered ring structures externally. Different requirements provide the possibility of generating at least two or more lithium salts in the same molecule.
  • the group When the group does not leave, its five-membered ring structure can be ring-opened to form a lithium salt (such as lithium sulfate, lithium sulfite, lithium carbonate, etc.), or more than two five-membered ring structures are involved in the reaction to produce a cross-linked structure
  • a lithium salt such as lithium sulfate, lithium sulfite, lithium carbonate, etc.
  • the SEI film can enhance the stability of the film, improve battery life and cycle performance; if one or two groups on the compound shown in structural formula 1 leave one or two, lithium phosphate doped with organic segments can be formed in the SEI film.
  • Other types of inorganic lithium salts Other types of inorganic lithium salts.
  • the compound represented by structural formula 1 is a phosphoric acid ester, a phosphite compound or a phosphonate compound formed with a phosphorus atom as a central atom.
  • the probability that the group directly connected with phosphorus of this type of compound leaves step by step is much greater than the probability of simultaneous departure, and its ability to leave becomes relatively difficult with the reduction of substituents, thus increasing the SEI with organic and inorganic salt crosslinked structures.
  • the probability of film formation and its duration thereby improving the stability and durability of the SEI interface, thereby optimizing its high temperature and cycle performance.
  • This type of structure can reduce the probability of a single film-forming additive forming a large-area crystal structure, form small crystal grains to interact with organic matter, have high flexibility, and increase the activity of lithium ions on the crystal surface, thereby improving the lithium-conducting performance of the SEI film and improving its Structural strength, and finally achieve the comprehensive advantages of improving battery discharge efficiency, normal temperature and high and low temperature cycle performance.
  • An embodiment of the present invention provides a non-aqueous electrolyte, including a solvent, an electrolyte salt and a compound represented by structural formula 1:
  • z is selected from 0 or 1; m and c are each independently selected from any natural number from 1 to 3; p is selected from any natural number from 0 to 3;
  • E 1 and E 2 are each independently selected from five-membered ring carbonate groups and their derivatives, five-membered ring sulfite groups and their derivatives, five-membered ring sulfate groups and their derivatives, five-membered ring A sulfonate group and its derivatives or a five-membered ring sulfinate group and its derivatives, E 1 and E 2 may be the same or different;
  • A is selected from halogen, lithium, sodium, C1-C4 halogenated hydrocarbon groups, cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, cyclic sulfate groups and their derivatives , a cyclic sulfonate group and its derivatives or a sulfinate group and its derivatives.
  • the inventor speculates through research that the compound shown in structural formula 1 is used as a film-forming additive, which uses phosphate as the central group and is connected to at least two five-membered ring structures externally. Different requirements provide the possibility of generating at least two or more lithium salts in the same molecule.
  • the group When the group does not leave, its five-membered ring structure can be ring-opened to form a lithium salt (such as lithium sulfate, lithium sulfite, lithium carbonate, etc.), or more than two five-membered ring structures are involved in the reaction to produce a cross-linked structure
  • a lithium salt such as lithium sulfate, lithium sulfite, lithium carbonate, etc.
  • the SEI film can enhance the stability of the film, improve battery life and cycle performance; if one or two groups on the compound shown in structural formula 1 leave one or two, lithium phosphate doped with organic segments can be formed in the SEI film.
  • Other types of inorganic lithium salts Other types of inorganic lithium salts.
  • the compound represented by structural formula 1 is a phosphoric acid ester, a phosphite compound or a phosphonate compound formed with a phosphorus atom as a central atom.
  • the probability that the group directly connected with phosphorus of this type of compound leaves step by step is much greater than the probability of simultaneous departure, and its ability to leave becomes relatively difficult with the reduction of substituents, thus increasing the SEI with organic and inorganic salt crosslinked structures.
  • the probability of film formation and its duration thereby improving the stability and durability of the SEI interface, thereby optimizing its high temperature and cycle performance.
  • This type of structure can reduce the probability of a single film-forming additive forming a large-area crystal structure, form small crystal grains to interact with organic matter, have high flexibility, and increase the activity of lithium ions on the crystal surface, thereby improving the lithium-conducting performance of the SEI film and improving its Structural strength, and finally achieve the comprehensive advantages of improving battery discharge efficiency, normal temperature and high and low temperature cycle performance.
  • cyclic carbonate group and its derivatives refer to a group containing one or more carbons in the cyclic carbon chain replaced by carbonate groups, and one or more carbons in the cyclic carbon chain A group in which a hydrogen atom is substituted, and the substituted group may be a hydrocarbon group, a halogen, a halogenated hydrocarbon group, or the like.
  • Cyclic sulfite group and its derivatives "cyclic sulfate group and its derivatives”, “cyclic sulfonate group and its derivatives” and “cyclic sub Sulfonate groups and their derivatives”.
  • halogenated hydrocarbon group at least one hydrogen atom in the hydrocarbon group is replaced by halogen.
  • E 1 and E 2 are each independently selected from the following groups:
  • A is selected from cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, cyclic sulfate groups and their derivatives, cyclic A sulfonate group and its derivatives or a cyclic sulfinate group and its derivatives;
  • A is selected from halogen, lithium, sodium, C1-C4 halogenated hydrocarbon groups, cyclic carbonate groups and their derivatives, cyclic sulfite groups and their derivatives, and cyclic sulfuric acid esters Groups and their derivatives, cyclic sulfonate groups and their derivatives, or cyclic sulfinate groups and their derivatives.
  • the halohydrocarbyl is preferably selected from fluorohydrocarbyl.
  • m and c are the same, and E 1 and E 2 are the same.
  • m, c and p are all the same, and E 1 and E 2 are the same.
  • A is selected from groups shown in structural formula 2 or structural formula 3:
  • A is selected from the group shown in structural formula 2 or the group shown in structural formula 3;
  • A is selected from halogen, lithium, sodium, a C1-C4 halogenated hydrocarbon group, a group represented by structural formula 2 or a group represented by structural formula 3.
  • the present invention is illustrated by specific compounds below:
  • A is selected from the group shown in structural formula 2 or the group shown in structural formula 3, as an example, the compound shown in structural formula 1 can be selected from :
  • A is selected from the group shown in structural formula 2 or the group shown in structural formula 3, as an example, the group shown in structural formula 1
  • Compounds may be selected from:
  • A is selected from lithium or fluorohydrocarbon groups, as an example, the compound shown in structural formula 1 can be selected from:
  • A is selected from fluorine, lithium or fluorinated hydrocarbon group, as an example, the compound shown in structural formula 1 can be selected from:
  • the above compounds may be used alone or in combination of two or more.
  • Adopt phosphorus oxychloride or phosphorus trichloride first with two equivalents of compound 21, compound 22, compound 23, compound 24 or compound 25 in the presence of an acid-binding agent to undergo a metathesis reaction, and then react with excess structural formula 6
  • the compound or the compound shown in structural formula 7 generates the compound shown in structural formula 1 in the presence of an acid-binding agent.
  • Adopt phosphorus trichloride to generate intermediate by metathesis reaction with three equivalents of compound 21, compound 22, compound 23, compound 24 or compound 25 in the presence of an acid-binding agent, and then react with the compound shown in structural formula 8 or structural formula 9
  • the compound rearrangement reaction produces the compound shown in structural formula 1.
  • Phosphorus oxychloride or phosphorus trichloride first reacts with three equivalents of compound 21, compound 22, compound 23, compound 24 or compound 25 in the presence of an acid-binding agent, and then reacts with lithium hydroxide or hydroxide Sodium reacts in an organic solvent to generate a compound shown in structural formula 1.
  • Adopt phosphorus oxychloride or phosphorus trichloride first with two equivalents of compound 21, compound 22, compound 23, compound 24 or compound 25 in the presence of an acid-binding agent to undergo a metathesis reaction, and then react with excess structural formula 10 The compound generates the compound shown in structural formula 1 in the presence of an acid-binding agent.
  • M is a C1-C4 halogenated hydrocarbon group.
  • Adopt phosphorus oxychloride or phosphorus trichloride first to take place metathesis reaction with two equivalents of compound 21, compound 22, compound 23, compound 24 or compound 25 in the presence of an acid-binding agent, and then with an equivalent fluoride salt, Such as potassium fluoride, cobalt fluoride, cesium fluoride, etc., directly fluorine to generate the compound shown in structural formula 1.
  • the compound represented by the structural formula 1 is added in an amount of 0.05-10%.
  • the compound represented by the structural formula 1 is added in an amount of 0.1-5%.
  • the added amount of the compound represented by the structural formula 1 can be 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.4%, 1.9%, 2.1%, 2.3%, 2.8%, 3.2% %, 3.7%, 4.0%, 4.5%, 5%, 5.5%, 6.2%, 6.8%, 7.7%, 8.8%, 9.3%, 10%.
  • the addition amount of the compound shown in Structural Formula 1 is within the above range, the high-temperature storage performance of the battery can be effectively improved. If the addition amount of the compound shown in Structural Formula 1 is too small, it is difficult to significantly improve the performance of the battery; if the Structural Formula Too much addition of the compound shown in 1 may affect the function of other substances in the electrolyte due to its excessive decomposition products.
  • the electrolyte salt includes one or more of lithium salts, sodium salts, potassium salts, magnesium salts, zinc salts and aluminum salts. In a preferred embodiment, the electrolyte salt is selected from lithium salts or sodium salts.
  • the lithium salt is selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , at least one of lithium salts of lower aliphatic carboxylates .
  • the electrolyte salt is selected from other salts such as sodium salt, potassium salt, magnesium salt, zinc salt or aluminum salt, the lithium in the above lithium salt can be replaced with sodium, potassium, magnesium, zinc or aluminum.
  • the sodium salt is selected from sodium perchlorate (NaClO 4 ), sodium hexafluorophosphate (NaPF 6 ), sodium tetrafluoroborate (NaBF 4 ), sodium trifluoromethanesulfonate (NaFSI), At least one of sodium trifluoromethanesulfonate (NaTFSI).
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.1 mol/L-8 mol/L. In a preferred embodiment, the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.5 mol/L-2.5 mol/L. Specifically, the concentration of the electrolyte salt may be 0.5 mol/L, 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L.
  • the non-aqueous electrolyte also includes auxiliary additives, the auxiliary additives include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and at least one of nitrile compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 4,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 5:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group.
  • the unsaturated phosphoric acid ester compound may be tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, dipropargyl Trifluoromethyl phosphate, Dipropargyl-2,2,2-trifluoroethyl phosphate, Dipropargyl-3,3,3-trifluoropropyl phosphate, Dipropargyl hexafluoroiso Propyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl phosphate, di At least one of allyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, diallyl hexafluoroisopropyl phosphate kind.
  • nitrile compound comprises succinonitrile, glutaronitrile, ethylene glycol two (propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more.
  • the addition amount of any optional substance in the auxiliary additive in the non-aqueous electrolyte is 0.05-10%, preferably, the addition amount is 0.1-5%, More preferably, the added amount is 0.1% to 3%.
  • the addition amount of any optional substance in the auxiliary additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2% %, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the auxiliary additive is selected from fluoroethylene carbonate, based on 100% of the total mass of the non-aqueous electrolyte, the added amount of the fluoroethylene carbonate is 0.05%-30%.
  • the compound shown in structural formula 1 when added together with the auxiliary additive, it shows obvious synergy in improving the high-temperature storage performance of the battery.
  • the promotion effect shows that the compound shown in structural formula 1 and the auxiliary additive can form a film together on the electrode surface to make up for the film-forming defect of a single addition, and obtain a more stable passivation film under high temperature conditions.
  • the auxiliary additive is selected from vinyl sulfate.
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents, carboxylate solvents and sulfone solvents.
  • ether solvents include cyclic ethers or chain ethers, preferably chain ethers with 3 to 10 carbon atoms and cyclic ethers with 3 to 6 carbon atoms.
  • the cyclic ethers can specifically be but not limited to It is 1,3-dioxolane (DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-CH3-THF), 2-trifluoro One or more of methyltetrahydrofuran (2-CF3-THF); said chain ether specifically can be but not limited to dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethyl Diol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether.
  • DOL 1,3-dioxolane
  • DX 1,4-dioxane
  • Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane which are low in viscosity and impart high ion conductivity, are particularly preferred because the solvation ability of chain ethers with lithium ions is high and ion dissociation can be improved.
  • methyl methane One kind of ether compound may be used alone, or two or more kinds may be used in any combination and ratio.
  • the addition amount of the ether compound is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio of the non-aqueous solvent is 100%, the volume ratio is usually more than 1%, preferably 1% by volume.
  • the ratio is 2% or more, more preferably 3% or more by volume, and usually 30% or less by volume, preferably 25% or less by volume, more preferably 20% or less by volume.
  • the total amount of the ether compounds may satisfy the above range.
  • the addition amount of the ether compound is within the above-mentioned preferred range, it is easy to ensure the effect of improving the ion conductivity by increasing the lithium ion dissociation degree of the chain ether and reducing the viscosity.
  • the negative electrode active material is a carbon material, it is possible to suppress the co-intercalation phenomenon of the chain ether and lithium ions, so that the input-output characteristics and the charge-discharge rate characteristics can be brought into appropriate ranges.
  • the nitrile solvent may specifically be, but not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.
  • the carbonate solvents include cyclic carbonates or chain carbonates
  • the cyclic carbonates can specifically be, but not limited to, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone One or more of (GBL), butylene carbonate (BC);
  • the chain carbonate can specifically be, but not limited to, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC ), one or more of dipropyl carbonate (DPC).
  • the content of cyclic carbonate is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-pressure lithium-ion battery of the present invention, but the lower limit of its content is relative to that of the non-aqueous electrolyte when one is used alone.
  • the volume ratio of the total solvent is usually 3% or more, preferably 5% or more.
  • the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume.
  • the content of the chain carbonate is not particularly limited, but is usually 15% or more by volume, preferably 20% or more by volume, and more preferably 25% or more by volume relative to the total amount of solvent in the nonaqueous electrolyte.
  • the volume ratio is usually 90% or less, preferably 85% or less, and more preferably 80% or less.
  • the content of the chain carbonate within the above range, it is easy to make the viscosity of the non-aqueous electrolytic solution in an appropriate range, suppress the decrease in ion conductivity, and contribute to making the output characteristics of the non-aqueous electrolyte battery a good range.
  • the total amount of the chain carbonates may satisfy the above-mentioned range.
  • chain carbonates having fluorine atoms may also be preferably used.
  • the number of fluorine atoms in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • these fluorine atoms may be bonded to the same carbon or to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
  • the carboxylate solvent can be, but not limited to, methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), One or more of butyl propionate.
  • MA methyl acetate
  • EA ethyl acetate
  • EP propyl acetate
  • PP propyl propionate
  • the sulfone solvent includes cyclic sulfone and chain sulfone, but preferably, in the case of cyclic sulfone, it usually has 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms. In the case of chain sulfone, it is usually a compound having 2 to 6 carbon atoms, preferably 2 to 5 carbon atoms.
  • the amount of sulfone solvent added is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio is usually more than 0.3%, preferably The volume ratio is 0.5% or more, more preferably 1% or more, and usually 40% or less, preferably 35% or less, more preferably 30% or less.
  • the total amount of the sulfone-based solvent may satisfy the above range.
  • the added amount of the sulfone solvent is within the above range, an electrolytic solution having excellent high-temperature storage stability tends to be obtained.
  • Another embodiment of the present invention provides a battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the battery adopts the above-mentioned non-aqueous electrolyte, a passivation film with excellent performance can be formed on the positive electrode and the negative electrode, thereby effectively improving the high-temperature storage performance and high-temperature cycle performance of the battery, and improving the power characteristics of the battery.
  • the battery is a secondary battery
  • the secondary battery can be a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a magnesium secondary battery, a zinc secondary battery, an aluminum secondary battery wait.
  • the battery is a lithium metal battery, a lithium ion battery, a lithium sulfur battery, or a sodium ion battery.
  • the positive electrode includes a positive electrode active material layer, and the positive electrode active material layer includes a positive electrode active material.
  • the type and content of the positive electrode active material are not particularly limited, and can be selected according to actual needs, as long as it is reversible
  • a positive electrode active material or a conversion type positive electrode material that intercalates/deintercalates metal ions (lithium ions, sodium ions, potassium ions, magnesium ions, zinc ions, aluminum ions, etc.) can be used.
  • the battery is a lithium ion battery
  • its positive electrode active material can be selected from LiFe 1-x' M' x' PO 4 , LiMn 2-y' M y' O 4 and LiNi x Co y Mn z
  • M 1-xyz O 2 wherein M' is selected from one of Mn, Mg, Co, Ni, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti
  • M is selected from one or more of Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti, and 0 ⁇ x' ⁇ 1,0 ⁇ y' ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1
  • the positive active material can also be selected from sulfide, selenide , one or more of the halides.
  • the positive electrode active material can be selected from LiCoO 2 , LiFePO 4 , LiFe 0.8 Mn 0.2 PO 4 , LiMn 2 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi One or more of 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Co 0.2 Mn 0.2 Al 0.1 O 2 , LiNi 0.5 Co 0.2 Al 0.3 O 2 .
  • the battery is a sodium ion battery
  • its positive electrode active material can be selected from metal sodium, carbon materials, alloy materials, overplated metal oxides, overplated metal sulfides, phosphorus-based materials, titanate materials , one or more of the Prussian blue materials.
  • the carbon material can be selected from one or more of graphite, soft carbon, and hard carbon
  • the alloy material can be an alloy material composed of at least two of Si, Ge, Sn, Pb, and Sb.
  • the alloy material can also be an alloy material composed of at least one of Si, Ge, Sn, Pb, Sb and C, the chemical formula of the overplated metal oxide and the overplated metal sulfide is M1 x N y , M1 can be selected from one or more of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, V, N is selected from O or S, and the phosphorus-based material can be selected from red phosphorus, white phosphorus, black One or more of phosphorus, the titanate material can be selected from Na 2 Ti 3 O 7 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) One or more of 3 , the molecular formula of the Prussian blue material is Na x M [M'(CN) 6 ] y zH 2 O, wherein, M is a transition metal, M' is a transition metal, 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1, 0 ⁇ z ⁇
  • the positive electrode further includes a positive electrode current collector, and the positive electrode material layer covers the surface of the positive electrode current collector.
  • the positive electrode current collector is selected from metal materials that can conduct electrons.
  • the positive electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the positive electrode The current collector is selected from aluminum foil.
  • the positive electrode active material layer further includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode active material layer.
  • the positive electrode binder includes polyvinylidene fluoride, copolymer of vinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride-hexafluoropropylene, copolymer of tetrafluoroethylene-hexafluoropropylene, tetrafluoroethylene- Copolymer of perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride-trichloroethylene Copolymers, vinylidene fluoride-fluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, thermoplastic polyimides, thermoplastic resins such as polyethylene and polypropy
  • the positive electrode conductive agent includes one or more of conductive carbon black, conductive carbon spheres, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.
  • the negative electrode includes a negative electrode material layer, the negative electrode material layer includes a negative electrode active material, and the negative electrode active material includes a carbon-based negative electrode, a tin-based negative electrode, a silicon-based negative electrode, a lithium negative electrode, a sodium negative electrode, and a potassium negative electrode. , one or more of magnesium negative pole, zinc negative pole and aluminum negative pole.
  • the carbon-based negative electrode can include graphite, hard carbon, soft carbon, graphene, mesocarbon microspheres, etc.
  • the silicon-based negative electrode can include one or more of silicon materials, silicon oxides, silicon-carbon composite materials, and silicon alloy materials.
  • tin-based negative electrodes can include tin, tin carbon, tin oxide, tin metal compounds; lithium negative electrodes can include metallic lithium or lithium alloys.
  • the lithium alloy may be at least one of lithium-silicon alloy, lithium-sodium alloy, lithium-potassium alloy, lithium-aluminum alloy, lithium-tin alloy and lithium-indium alloy.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer covers the surface of the negative electrode current collector.
  • the material of the negative electrode current collector may be the same as that of the positive electrode current collector, and will not be repeated here.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder and the negative electrode conductive agent may be the same as the positive electrode binder and the positive electrode conductive agent respectively, and will not be repeated here.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, which can be a ceramic diaphragm, a polymer diaphragm, a non-woven fabric, an inorganic-organic composite diaphragm, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), Double-layer PP/PE, double-layer PP/PP and triple-layer PP/PE/PP separators.
  • This embodiment is used to illustrate the preparation method of the non-aqueous electrolyte and battery disclosed in the present invention, including the following steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 at a mass ratio of 93:4:3, conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF), and then combine them Disperse in N-methyl-2-pyrrolidone (NMP) to obtain positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry is uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum-dried, and an aluminum lead-out wire is welded with an ultrasonic welder to obtain a positive plate, the thickness of which is between 120-150 ⁇ m.
  • a three-layer separator with a thickness of 20 ⁇ m was placed between the positive plate and the negative plate, and then the sandwich structure composed of the positive plate, the negative plate and the separator was wound, and then the wound body was flattened and put into an aluminum foil packaging bag. °C for 48 hours under vacuum to obtain the cell to be filled.
  • This embodiment is used for comparatively illustrating the method of non-aqueous electrolytic solution and battery disclosed by the present invention, comprises most of the operation steps in embodiment 1, and its difference is:
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovered capacity/initial capacity ⁇ 100%.
  • Comparative examples 1 ⁇ 8 and the test result of comparative example 1 ⁇ 4 know that compared to traditional vinylene carbonate (VC), vinyl sulfate (DTD) and 1,3-propane sultone (PS), Using the compound represented by structural formula 1 provided by the present application as an additive can more significantly improve the storage performance of lithium-ion batteries at high temperatures, indicating that the passivation film formed by the compound represented by structural formula 1 has more excellent high temperature stability.
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • PS 1,3-propane sultone
  • Example 2 Comparing the test results of Example 2 and Examples 9-13, it can be seen that with the increase in the amount of the compound shown in Structural Formula 1, the high-temperature storage performance of lithium-ion batteries first increases and then decreases, especially when the compound shown in Structural Formula 1 When the addition amount of the compound is 0.5-5%, the lithium-ion battery has the best high-temperature storage performance.
  • test result of comparative example 2, embodiment 14, comparative example 3 and comparative example 5 can know, compared with traditional vinylene carbonate (VC), ethylene sulfate (DTD) combination additive, or add ethylene sulfate separately (DTD), or add the compound shown in Structural Formula 1 alone, adopt the compound shown in Structural Formula 1 provided by the application and vinyl sulfate (DTD) to combine, battery performance is further improved, explain by the compound shown in Structural Formula 1 and The passivation film formed by the co-decomposition of vinyl sulfate (DTD) has more excellent high temperature stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有电池中的SEI膜存在表面厚度不均一、高温稳定性差、离子电导率较低、阻抗较高的问题,本发明提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物。同时,本发明还公开了包括上述非水电解液的电池。本发明提供的非水电解液具有较高的稳定性和耐久能力,同时有效提高了SEI膜的稳定性。

Description

一种非水电解液及电池 技术领域
本发明属于二次电池技术领域,具体涉及一种非水电解液及电池。
背景技术
在含金属或金属及其离子复合物为负极、正极材料的各种储能装置中,如锂离子电池,各类添加剂对其性能的发挥起到了非常重要的作用。其中成膜添加剂尤为重要。例如在锂离子电池中,成膜添加剂优先于电解液发生氧化还原反应,在电极附近形成一层固态电解质薄膜,在负极被称作SEI膜,正极常被称为CEI膜,可起到减缓电解液与电极材料反应,调节锂离子通透性,降低电子电导率等作用,从而提高电池的高低温及循环性能。但目前添加剂形成的SEI膜,有膜表面厚度不均一,高温稳定性差,锂离子电导率较低,阻抗较高等缺点,对电池寿命和高倍率放电都有不利影响。
发明内容
针对现有电池中的SEI膜存在表面厚度不均一、高温稳定性差、离子电导率较低、阻抗较高的问题,本发明提供了一种非水电解液及电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物:
Figure PCTCN2022110873-appb-000001
其中,z选自0或1;m、c各自独立地选自1~3的任意自然数;p选自0~3的任意自然数;
当z=0时,n=1;当z=1时,n=0或1;
E 1、E 2各自独立地选自五元环环状碳酸酯基团及其衍生物、五元环环状亚硫酸酯基团及其衍生物、五元环环状硫酸酯基团及其衍生物、五元环环状磺酸酯基团及其衍生物或五元环亚磺酸酯基团及其衍生物,E 1、E 2可相同可不相同;
A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物。
可选的,E 1、E 2各自独立地选自以下基团:
Figure PCTCN2022110873-appb-000002
可选的,当z=0时,A选自环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物;
当z=1时,A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物。
可选的,m、c相同,且E 1、E 2相同。
可选的,m、c及p相同,且E 1、E 2相同。
可选的,A选自结构式2或结构式3所示的基团:
Figure PCTCN2022110873-appb-000003
其中,a、b为自然数且a+b=1或2;d=1或2,当d=2时,Y为硫原子;当d=1时,Y为硫原子或碳原子;
Figure PCTCN2022110873-appb-000004
其中,i、k为自然数且i+k=1或2或3,j=1或2。
可选的,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110873-appb-000005
Figure PCTCN2022110873-appb-000006
可选的,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05-10%。
可选的,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
可选的,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式4所示化合物中的至少一种,
Figure PCTCN2022110873-appb-000007
所述结构式4中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式5所示化合物中的至少一种:
Figure PCTCN2022110873-appb-000008
所述结构式5中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
另一方面,本发明提供了一种电池,包括正极、负极以及如上所述的非水电解液。
根据本发明提供的非水电解液,发明人经研究推测认为,采用了结构式1所示的化合物作为成膜添加剂,其以磷酸酯为中心基团,外部连接至少两个五元环结构,根据不同的需求,在同一个分子中提供至少生成两种以上锂盐的可能性。当基团未离去时,其五元环结构可开环形成锂盐(如硫酸锂、亚硫酸锂、碳酸锂等),或两个以上的五元环结构均参与反应产生具有交联结构的SEI膜,增强薄膜稳定性,提高电池寿命和循环性能;若结构式1所示的化合物上的基团离去一个或两个,可在SEI膜中形成含有有机链段的磷酸锂掺杂于其他类型无机锂盐中。同时,结构式1所示的化合物是以为磷原子为中心原子形成的磷酸酯、亚磷酸酯类化合物或膦酸酯类化合物。该类化合物与磷直接相连的基团分步离去的概率远大于同时离去的概率,并且其离去能力随取代基的减少而变得相对困难,从而增加含有有机无机盐交联结构SEI膜形成的概率和其存续时间,从而提高SEI界面的稳定性及耐久性,进而优化其高温和循环性能。此种类型的结构可降低单一成膜添加剂形成大面积晶体结构的概率,形成小晶粒与有机物交互,柔韧性高,晶体表面锂离子活性增加,从而提高SEI膜导锂性能的同时,提升其结构强度,最终达到提高电池放电效率、常温以及高低温循环性能等综合优势。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物:
Figure PCTCN2022110873-appb-000009
其中,z选自0或1;m、c各自独立地选自1~3的任意自然数;p选自0~3的任意自然数;
当z=0时,n=1;当z=1时,n=0或1;
E 1、E 2各自独立地选自五元环碳酸酯基团及其衍生物、五元环亚硫酸酯基团及其衍生物、五元环硫酸酯基团及其衍生物、五元环磺酸酯基团及其衍生物或五元环亚磺酸酯基团及其衍生物,E 1、E 2可相同可不相同;
A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或亚磺酸酯基团及其衍生物。
根据本发明提供的非水电解液,发明人经研究推测认为,采用了结构式1所示的化合物作为成膜添加剂,其以磷酸酯为中心基团,外部连接至少两个五元环结构,根据不同的需求,在同一个分子中提供至少生成两种以上锂盐的可能性。当基团未离去时,其五元环结构可开环形成锂盐(如硫酸锂、亚硫酸锂、碳酸锂等),或两个以上的五元环结构均参与反应产生具有交联结构的SEI膜,增强薄膜稳定性,提高电池寿命和循环性能;若结构式1所示的化合物上的基团离去一个或两个,可在SEI膜中形成含有有机链段的磷酸锂掺杂于其他类型无机锂盐中。同时,结构式1所示的化合物是以为磷原子为中心原子形成的磷酸酯、亚磷酸酯类化合物或膦酸酯类化合物。该类化合物与磷直接相连的基团分步离去的概率远大于同时离去的概率,并且其离去能力随取代基的减少而变得相对困难,从而增加含有有机无机盐交联结构SEI膜形成的概率和其存续时间,从而提高SEI界面的稳定性及耐久性,进而优化其高温和循环性能。此种类型的结构可降低单一成膜添加剂形成大面积晶体结构的概率,形成小晶粒与有机物交互,柔韧性高,晶体表面锂离子活性增加,从而提高SEI膜导锂性能的同时,提升其结构强度,最终达到提高电池放电效率、常温以及高低温循环性能等综合优势。
本发明的描述中,“环状碳酸酯基团及其衍生物”指代含有环状碳链中一个或多个碳被碳酸酯基取代的基团,以及环状碳链上一个或多个氢原子被取代的基团,取代的基团可以为烃基、卤素、卤代烃基等。可以以该定义理解“环状亚硫酸酯基团及其衍生物”、“环状硫酸酯基团及其衍生物”、“环状磺酸酯基团及其衍生物”和“环状亚磺酸酯基团及其衍生物”。
作为上述的卤素,可以列举的有F、Cl、Br、I。
作为上述的卤代烃基,即烃基中至少一个氢原子被卤素取代。
在优选的实施例中,E 1、E 2各自独立地选自以下基团:
Figure PCTCN2022110873-appb-000010
在一些实施例中,当z=0时,A选自环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物;
当z=1时,A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物。经取代时,卤代烃基优选自氟代烃基。
在优选的实施例中,m、c相同,且E 1、E 2相同。
在优选的实施例中,m、c及p均相同,且E 1、E 2相同。
在优选的实施例中,A选自结构式2或结构式3所示的基团:
Figure PCTCN2022110873-appb-000011
其中,a、b为自然数且a+b=1或2;d=1或2,当d=2时,Y为硫原子;当d=1时,Y为硫原子或碳原子;
Figure PCTCN2022110873-appb-000012
其中,i、k为自然数且i+k=1或2或3,j=1或2。
在优选的实施例中,当z=0时,A选自结构式2所示的基团或结构式3所示的基团;
当z=1时,A选自卤素、锂、钠、C1~C4的卤代烃基、结构式2所示的基团或结构式3所示的基团。以下通过具体的化合物对本发明进行说明:
(1)当z=0,n=1,m=c=1,A选自结构式2所示的基团或结构式3所示的基团时,作为示例,结构式1所示的化合物可选自:
Figure PCTCN2022110873-appb-000013
(2)当z=1,n=1,m=c=1,p=1,A选自结构式2所示的基团或结构式3所示的基团时,作为示例,结构式1所示的化合物可选自:
Figure PCTCN2022110873-appb-000014
(3)当z=1,n=0,m=c=1,p=1,A选自结构式2所示的基团或结构式3所示的基团时,作为示例,结构式1所示的化合物可选自:
Figure PCTCN2022110873-appb-000015
(4)当z=0,n=1,m=c=1,p=0或1,A选自锂或氟代烃基时,作为示例,结构式1所示的化合物可选自:
Figure PCTCN2022110873-appb-000016
(5)当z=1,n=1,m=c=1,p=0或1,A选自氟、锂或氟代烃基时,作为示例,结构式1所示的化合物可选自:
Figure PCTCN2022110873-appb-000017
上述化合物可单独使用,也可两种或以上组合使用。
本领域技术人员在知晓结构式1的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。作为本发明的示例:
(1)当z=0或1,n=1,m=c=1,A选自结构式2或结构式3所示的基团时,结构式1所示的化合物可通过如下方法制备得到:
采用三氯氧磷或三氯化磷先与两个当量的化合物21、化合物22、化合物23、化合物24或化合物25在缚酸剂存在的情况下发生复分解反应,再与过量的结构式6所示的化合物或结构式7所示的化合物在缚酸剂存在的情况下生成结构式1所示的化合物。
Figure PCTCN2022110873-appb-000018
其中,a、b为自然数且a+b=1或2;p选自0~3任意自然数;d=1或2,当d=2时,Y为硫原子;当d=1时,Y为硫原子或碳原子。
Figure PCTCN2022110873-appb-000019
其中,i、k为自然数且i+k=1或2或3;j=1或2,p选自0~3任意自然数。
(2)当z=0,n=1,m=c=1,A选自结构式2或结构式3所示的基团时,结构式1所示的化合物可通过如下方法制备得到:
采用三氯化磷先与三个当量的化合物21、化合物22、化合物23、化合物24或化合物25在缚酸剂存在的情况下发生复分解反应生成中间体,再与结构式8或结构式9所示的化合物重排反应生成结构式1所示的化合物。
Figure PCTCN2022110873-appb-000020
其中,a、b为自然数且a+b=1或2;p选自0~3任意自然数;d=1或2,当d=2时,Y为硫原子;当d=1时,Y为硫原子或碳原子。
Figure PCTCN2022110873-appb-000021
其中,i、k为自然数且i+k=1或2或3;j=1或2,p选自0~3任意自然数。
(3)当z=0或1,m=c=1,p=0,A选自锂或钠时,结构式1所示的化合物可通过如下方法制备得到:
采用三氯氧磷或三氯化磷先与三个当量的化合物21、化合物22、化合物23、化合物24或化合物25在缚酸剂存在的情况下发生复分解反应,再与氢氧化锂或氢氧化钠在有机溶剂中反应生成结构式1所示的化合物。
(4)当z=0或1,m=c=1,A选自卤代烃基时,结构式1所示的化合物可通过如下方法制备得到:
采用三氯氧磷或三氯化磷先与两个当量的化合物21、化合物22、化合物23、化合物24或化合物25在缚酸剂存在的情况下发生复分解反应,再与过量的结构式10所示的化合物在缚酸剂存在的情况下生成结构式1所示的化合物。
Figure PCTCN2022110873-appb-000022
其中,M为C1~C4的卤代烃基。
(5)当z=0或1,n=0,m=c=1,p=0,A选自氟原子时,结构式1所示的化合物可通过如下方法制备得到:
采用三氯氧磷或三氯化磷先与两个当量的化合物21、化合物22、化合物23、化合物24或化合物25在缚酸剂存在的情况下发生复分解反应,再与当量的氟化盐,如氟化钾、氟化钴、氟化铯等,直接氟代生成结构式1所示的化合物。
在一些实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05~10%。
在优选的实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.1~5%。
具体的,所述结构式1所示的化合物的添加量可以为0.05%、0.1%、0.3%、0.5%、0.8%、1%、1.4%、1.9%、2.1%、2.3%、2.8%、3.2%、3.7%、4.0%、4.5%、5%、5.5%、6.2%、6.8%、7.7%、8.8%、9.3%、10%。
当结构式1所示的化合物添加量处于上述范围内时,可以有效提高电池的高温存储性能,若结构式1所示的化合物添加量过少,则难以对电池的性能产生明显的提升效果;若结构式1所示的化合物添加量过多则可能因其分解产物过多而影响电解液中其他物质的功能发挥。
在一些实施例中,所述电解质盐包括锂盐、钠盐、钾盐、镁盐、锌盐和铝盐中的一种或多种。在优选的实施例中,所述电解质盐选自锂盐或钠盐。
在优选实施例中,所述锂盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。若所述电解质盐选自钠盐、钾盐、镁盐、锌盐或铝盐等其它盐时,可将上述所述锂盐中的锂对应换成钠、钾、镁、锌或铝等。
在优选实施例中,所述钠盐选自高氯酸钠(NaClO 4)、六氟磷酸钠(NaPF 6)、四氟硼酸钠(NaBF 4)、三氟甲基磺酸钠(NaFSI)、双三氟甲基磺酸钠(NaTFSI)中的至少一种。
在一些实施例中,所述非水电解液中,所述电解质盐的浓度为0.1mol/L-8mol/L。在优选的实施例中,所述非水电解液中,所述电解质盐的浓度为0.5mol/L-2.5mol/L。具体的,所述电解质盐的浓度可以为0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L。
在一些实施例中,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式4所示化合物中的至少一种,
Figure PCTCN2022110873-appb-000023
所述结构式4中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式5所示化合物中的至少一种:
Figure PCTCN2022110873-appb-000024
所述结构式5中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基。具体的,所述不饱和磷酸酯类化合物可为磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为0.05~10%,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~3%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。
所述非水电解液中,相比于单一添加或是其他现有添加剂的组合,结构式1所示的化合物与所述辅助添加剂一同添加时,在提升电池的高温存储性能方面体现出明显的协同提升的作用,说明结构式1所示的化合物与所述辅助添加剂在电极表面共同成膜能够弥补单一添加的成膜缺陷,得到在高温条件下更加稳定 的钝化膜。
在优选的实施例中,所述辅助添加剂选自硫酸乙烯酯。
在一些实施例中,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂、羧酸酯类溶剂和砜类溶剂中的一种或多种。
在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH3-THF),2-三氟甲基四氢呋喃(2-CF3-THF)中的一种或多种;所述链状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性物质为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。
在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。
在一些实施例中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。环状碳酸酯的含量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。
在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。
在一些实施例中,羧酸酯类溶剂具体可以但不限于是乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
在一些实施例中,砜类溶剂包括环状砜和链状砜,但优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,相对于非水 电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。
本发明的另一实施例提供了一种电池,包括正极、负极以及如上所述的非水电解液。
所述电池由于采用了如上所述的非水电解液,能够在正极和负极上形成性能优异的钝化膜,进而有效地提高了电池的高温存储性能和高温循环性能,提升电池功率特性。
在一些实施例中,所述电池为二次电池,所述二次电池可以是锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池、铝二次电池等。
在优选的实施例中,所述电池为锂金属电池、锂离子电池、锂硫电池、钠离子电池。
在一些实施例中,所述正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料的种类及含量没有特别限制,可以根据实际需求进行选择,只要是能够可逆地嵌入/脱嵌金属离子(锂离子、钠离子、钾离子、镁离子、锌离子、铝离子等)的正极活性材料或转换型正极材料即可。
在优选实施例中,所述电池为锂离子电池,其正极活性材料可选自LiFe 1-x’M’ x’PO 4、LiMn 2-y’M y’O 4和LiNi xCo yMn zM 1-x-y-zO 2中的一种或多种,其中,M’选自Mn、Mg、Co、Ni、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,且0≤x’<1,0≤y’≤1,0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1,所述正极活性材料还可以选自硫化物、硒化物、卤化物中的一种或几种。更为优选的,所述正极活性材料可选自LiCoO 2、LiFePO 4、LiFe 0.8Mn 0.2PO 4、LiMn 2O 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.5Co 0.2Mn 0.2Al 0.1O 2、LiNi 0.5Co 0.2Al 0.3O 2中的一种或多种。
在优选实施例中,所述电池为钠离子电池,其正极活性材料可选自金属钠、碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料、钛酸盐材料、普鲁士蓝类材料中的一种或几种。所述碳材料可选自石墨、软碳、硬碳中的一种或几种,所述合金材料可选自由Si、Ge、Sn、Pb、Sb中的至少两种组成的合金材料,所述合金材料还可选自由Si、Ge、Sn、Pb、Sb中的至少一种与C组成的合金材料,所述过镀金属氧化物和所述过镀金属硫化物的化学式为M1 xN y,M1可选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V中的一种或几种,N选自O或S,所述磷基材料可选自红磷、白磷、黑磷中的一种或几种,所述钛酸盐材料可选自Na 2Ti 3O 7、Na 2Ti 6O 13、Na 4Ti 5O 12、Li 4Ti 5O 12、NaTi 2(PO 4) 3中的一种或几种,所述普鲁士蓝类材料的分子式为Na xM[M′(CN) 6] y·zH 2O,其中,M为过渡金属,M′为过渡金属,0<x≤2,0.8≤y<1,0<z≤20。
在一些实施例中,所述正极还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。
所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。
在一些实施例中,所述正极活性材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极活性材料层。
所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
所述正极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。
在一些实施例中,所述负极包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料包括碳基负极、锡基负极、硅基负极、锂负极、钠负极、钾负极、镁负极、锌负极和铝负极中的一种或多 种。其中碳基负极可包括石墨、硬碳、软碳、石墨烯、中间相碳微球等;硅基负极可包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料中的一种或多种;锡基负极可包括锡、锡碳、锡氧、锡金属化合物;锂负极可包括金属锂或锂合金。锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。所述负极集流体的材料可与所述正极集流体相同,在此不再赘述。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂和负极导电剂可分别与所述正极粘接剂和正极导电剂相同,在此不再赘述。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是陶瓷隔膜、聚合物隔膜、无纺布、无机-有机复合隔膜等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
以下实施例中所采用的结构式1所示的化合物如下表:
Figure PCTCN2022110873-appb-000025
Figure PCTCN2022110873-appb-000026
实施例1~14
本实施例用于说明本发明公开的非水电解液及电池的制备方法,包括以下操作步骤:
1)非水电解液的制备:
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,以所述非水电解液的总重量为100%计,加入如表1~4中实施例1~14所示质量百分含量的添加剂。
2)正极板的制备:
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm之间。
3)负极板的制备:
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。
4)电芯的制备:
在正极板和负极板之间放置厚度为20μm的三层隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成:
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到一种LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子电池。
对比例1~7
本实施例用于对比说明本发明公开的非水电解液及电池的方法,包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备中,加入如表1~4中对比例1~7所示质量百分含量的添加剂。
性能测试
对实施例1~14和对比例1~7制备得到的锂离子电池进行如下性能测试:
高温储存性能测试
将化成后的锂离子电池在常温下以1C的电流恒流充电至4.2V,再恒流恒压充电至电流下降至0.05C,然后以1C的电流恒流放电至3.0V,测量电池初始放电容量及初始电池体积,然后充至满电在60℃环境中分别储存30天、60天和90天后,以1C放电至3V,测量电池的保持容量和恢复容量。计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%。
1、将实施例1~8和对比例1~4得到的测试结果填入表1。
表1
Figure PCTCN2022110873-appb-000027
对比实施例1~8和对比例1~4的测试结果可知,相比于传统的碳酸亚乙烯酯(VC)、硫酸乙烯酯(DTD)和1,3-丙烷磺酸内酯(PS),采用本申请提供的结构式1所示的化合物作为添加剂,能够更加明显地改善锂离子电池在高温下的存储性能,说明由结构式1所示化合物形成的钝化膜具有更加优异的高温稳定性。
2、将实施例2和实施例9~13得到的测试结果填入表2。
表2
Figure PCTCN2022110873-appb-000028
Figure PCTCN2022110873-appb-000029
对比实施例2和实施例9~13的测试结果可知,随着结构式1所示的化合物的添加量的提升,锂离子电池的高温存储性能先提升后降低,尤其是,当结构式1所示的化合物的添加量在0.5~5%时,锂离子电池具有最优高温存储性能。
3、将实施例2、实施例14、对比例3和对比例5得到的测试结果填入表3。
表3
Figure PCTCN2022110873-appb-000030
对比实施例2、实施例14、对比例3和对比例5的测试结果可知,相比于传统的碳酸亚乙烯酯(VC)、硫酸乙烯酯(DTD)组合添加剂,或是单独添加硫酸乙烯酯(DTD),或是单独添加结构式1所示的化合物,采用本申请提供的结构式1所示的化合物与硫酸乙烯酯(DTD)进行组合,电池性能得到进一步提升,说明由结构式1所示化合物与硫酸乙烯酯(DTD)共同分解形成的钝化膜具有更加优异的高温稳定性。
4、将实施例3、实施例6、对比例6和对比例7得到的测试结果填入表4。
表4
Figure PCTCN2022110873-appb-000031
对比实施例3、6和对比例6、7的测试结果可知,当结构式1所示的化合物中,具有两个或以上的环状取代基,才能形成完整性强、结构稳定的交联结构薄膜,从而形成高温性能稳定的钝化膜。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种非水电解液,其特征在于,包括溶剂、电解质盐和结构式1所示的化合物:
    Figure PCTCN2022110873-appb-100001
    其中,z选自0或1;m、c各自独立地选自1~3的任意自然数;p选自0~3的任意自然数;
    当z=0时,n=1;当z=1时,n=0或1;
    E 1、E 2各自独立地选自五元环碳酸酯基团及其衍生物、五元环亚硫酸酯基团及其衍生物、五元环硫酸酯基团及其衍生物、五元环磺酸酯基团及其衍生物或五元环亚磺酸酯基团及其衍生物,E 1、E 2可相同可不相同;
    A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物。
  2. 根据权利要求1所述的非水电解液,其特征在于,E 1、E 2各自独立地选自以下基团中的一种:
    Figure PCTCN2022110873-appb-100002
  3. 根据权利要求1所述的非水电解液,其特征在于,m、c相同,且E 1、E 2相同。
  4. 根据权利要求1所述的非水电解液,其特征在于,当z=0时,A选自环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物;
    当z=1时,A选自卤素、锂、钠、C1~C4的卤代烃基、环状碳酸酯基团及其衍生物、环状亚硫酸酯基团及其衍生物、环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物或环状亚磺酸酯基团及其衍生物。
  5. 根据权利要求1或4所述的非水电解液,其特征在于,A选自结构式2或结构式3所示的基团:
    Figure PCTCN2022110873-appb-100003
    其中,a、b为自然数且a+b=1或2;d=1或2,当d=2时,Y为硫原子;当d=1时,Y为硫原子或碳原子;
    Figure PCTCN2022110873-appb-100004
    其中,i、k为自然数且i+k=1或2或3,j=1或2。
  6. 根据权利要求1所述的非水电解液,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022110873-appb-100005
    Figure PCTCN2022110873-appb-100006
    Figure PCTCN2022110873-appb-100007
  7. 根据权利要求1所述的非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05~10%。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
  9. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种。
  10. 根据权利要求9所述的非水电解液,其特征在于,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
    所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
    所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式4所示化合物中的至少一种,
    Figure PCTCN2022110873-appb-100008
    所述结构式4中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
    所述不饱和磷酸酯类化合物选自结构式5所示化合物中的至少一种:
    Figure PCTCN2022110873-appb-100009
    所述结构式5中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
    所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
  11. 一种电池,其特征在于,包括正极、负极以及如权利要求1~10任意一项所述的非水电解液。
PCT/CN2022/110873 2021-08-09 2022-08-08 一种非水电解液及电池 WO2023016412A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910490.9A CN115706255A (zh) 2021-08-09 2021-08-09 一种非水电解液及电池
CN202110910490.9 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023016412A1 true WO2023016412A1 (zh) 2023-02-16

Family

ID=85179323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110873 WO2023016412A1 (zh) 2021-08-09 2022-08-08 一种非水电解液及电池

Country Status (2)

Country Link
CN (1) CN115706255A (zh)
WO (1) WO2023016412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435601A (zh) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 一种电解液及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069278A1 (ja) * 2015-10-23 2017-04-27 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2019016903A1 (ja) * 2017-07-19 2019-01-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2019114391A (ja) * 2017-12-22 2019-07-11 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
CN111527636A (zh) * 2017-12-12 2020-08-11 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069278A1 (ja) * 2015-10-23 2017-04-27 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2019016903A1 (ja) * 2017-07-19 2019-01-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
CN111527636A (zh) * 2017-12-12 2020-08-11 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
JP2019114391A (ja) * 2017-12-22 2019-07-11 宇部興産株式会社 非水電解液およびそれを用いた蓄電デバイス
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435601A (zh) * 2023-06-14 2023-07-14 广州天赐高新材料股份有限公司 一种电解液及其应用
CN116435601B (zh) * 2023-06-14 2024-03-22 广州天赐高新材料股份有限公司 一种电解液及其应用

Also Published As

Publication number Publication date
CN115706255A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US10193182B2 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2023045948A1 (zh) 一种二次电池
CN114497692B (zh) 二次电池
JP2014523101A (ja) 非水電解液及びそれを用いたリチウム二次電池
WO2023124604A1 (zh) 二次电池
WO2023138244A1 (zh) 一种非水电解液及二次电池
WO2023155843A1 (zh) 一种锂离子电池
WO2024037187A1 (zh) 一种锂离子电池
WO2023246279A1 (zh) 一种锂二次电池
CN114361588B (zh) 一种锂离子电池
WO2024120053A1 (zh) 一种锂离子电池
WO2024114206A1 (zh) 一种锂离子电池
WO2023016412A1 (zh) 一种非水电解液及电池
WO2023016411A1 (zh) 一种非水电解液及电池
CN116845382A (zh) 一种高稳定性的钠离子电池
WO2023279953A1 (zh) 一种非水电解液及电池
WO2023104038A1 (zh) 一种二次电池
WO2022218145A1 (zh) 一种非水电解液及锂离子电池
WO2022042374A1 (zh) 锂离子电池非水电解液以及锂离子电池
WO2023020323A1 (zh) 一种非水电解液及电池
EP4325620A1 (en) Iron phosphate lithium battery
WO2024016897A1 (zh) 一种非水电解液及二次电池
WO2024078116A1 (zh) 一种非水电解液及二次电池
WO2023000889A1 (zh) 一种非水电解液及锂离子电池
CN115939511A (zh) 一种非水电解液及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE