WO2023016411A1 - 一种非水电解液及电池 - Google Patents

一种非水电解液及电池 Download PDF

Info

Publication number
WO2023016411A1
WO2023016411A1 PCT/CN2022/110872 CN2022110872W WO2023016411A1 WO 2023016411 A1 WO2023016411 A1 WO 2023016411A1 CN 2022110872 W CN2022110872 W CN 2022110872W WO 2023016411 A1 WO2023016411 A1 WO 2023016411A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
cyclic
derivatives
group
hydrocarbon group
Prior art date
Application number
PCT/CN2022/110872
Other languages
English (en)
French (fr)
Inventor
曹朝伟
王萧
胡时光
陈雪君
陈群
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023016411A1 publication Critical patent/WO2023016411A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of secondary batteries, and in particular relates to a nonaqueous electrolytic solution and a battery.
  • the non-aqueous electrolyte is a key factor affecting the high and low temperature performance of the battery.
  • the additives in the non-aqueous electrolyte are particularly important for the high and low temperature performance of the battery.
  • the lithium ions in the positive electrode material of the battery are deintercalated and embedded in the carbon negative electrode through the electrolyte.
  • the electrolyte will decompose on the surface of the electrode and produce insoluble products in the electrolyte.
  • a passivation film is formed on the electrode surface, which is called solid electrolyte interfacial film (SEI).
  • the SEI film is a good conductor of Li + and an insulator of electrons, which can effectively block the contact between the electrode and the electrolyte during subsequent cycles and prevent further decomposition of the electrolyte. Therefore, the SEI film determines the performance of lithium-ion batteries.
  • the high-voltage electrolyte is the technical bottleneck of the high-voltage lithium-ion battery system, because increasing the working voltage of the battery can increase the energy density.
  • the working voltage of the currently used electrolyte exceeds 4.3V, serious oxidation and decomposition will occur, resulting in electrode/ The interface impedance between electrolytes increases, thereby deteriorating battery performance.
  • the impedance of the battery increases more significantly, which is not conducive to the improvement of battery discharge efficiency.
  • film-forming additives such as carbonic acid vinylene ester, fluoroethylene carbonate, ethylene carbonate, 1,3-propane sultone
  • the existing film-forming additives are still difficult to meet the low-temperature discharge performance and high-temperature performance requirements of high-energy-density ion batteries under high-voltage conditions.
  • the invention provides a non-aqueous electrolyte and a battery.
  • the invention provides a kind of non-aqueous electrolytic solution, comprises the compound shown in solvent, electrolyte salt and structural formula 1:
  • R1 is selected from hydrogen atom, C1 ⁇ C10 saturated hydrocarbon group, C1 ⁇ C10 halogenated hydrocarbon group, C6 ⁇ C10 aromatic hydrocarbon group, C3 ⁇ C10 cyclic sulfate group and its derivatives, C3 ⁇ C10 ring Boronic ester group and its derivatives, C3 ⁇ C10 cyclic sulfite group and its derivatives, C3 ⁇ C10 cyclic sulfonate group and its derivatives, C3 ⁇ C10 cyclic sulfinate C3-C10 cyclic carboxylate groups and their derivatives, C3-C10 cyclic carbonate groups and their derivatives, C3-C10 cyclic phosphate groups and their derivatives, C2 ⁇ C10 unsaturated hydrocarbon groups or cyano-containing C1 ⁇ C10 groups, R 2 and R 3 are each independently selected from C3 ⁇ C10 cyclic sulfate groups directly bonded to phosphate groups and derivatives thereof or C3-C10 cyclic cyclic
  • R1 is selected from C2-C10 unsaturated hydrocarbon groups, C3-C10 cyclic sulfate groups and their derivatives, C3-C10 cyclic borate groups and their derivatives, C3-C10 ring Sulfite group and its derivatives, C3 ⁇ C10 cyclic sulfonate group and its derivatives, C3 ⁇ C10 cyclic sulfinate group and its derivatives, C3 ⁇ C10 cyclic carboxylate Groups and their derivatives, C3-C10 cyclic carbonate groups and their derivatives, or C3-C10 cyclic phosphate groups and their derivatives.
  • R1 is selected from Wherein, R 7 and R 8 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; X is selected from Among them, R 9 and R 10 are each independently selected from hydrogen atoms, C1-C7 saturated hydrocarbon groups, C1-C7 alkoxyl groups, C1-C7 halogenated alkoxyl groups, C6-C7 aromatic hydrocarbon groups, C2-C7 Unsaturated hydrocarbon group, C1-C7 halogenated hydrocarbon group or C1-C7 group containing cyano group.
  • R 2 and R 3 are each independently selected from Wherein, R 4 and R 5 are each independently selected from C1-5 alkylene groups or C1-5 halogenated alkylene groups;
  • X is selected from Wherein, R 6 are each independently selected from a hydrogen atom, a C1-C7 saturated hydrocarbon group, a C1-C7 alkoxyl group, a C1-C7 halogenated hydrocarbon group, a C6-C7 aromatic hydrocarbon group, a C2-C7 unsaturated A hydrocarbon group, a C1-C7 halogenated hydrocarbon group, or a C1-C7 group containing a cyano group.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • R 7 and R 8 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups;
  • Y is selected from Among them, R 9 and R 10 are each independently selected from hydrogen atoms, C1-C7 saturated hydrocarbon groups, C1-C7 alkoxyl groups, C1-C7 halogenated alkoxyl groups, C6-C7 aromatic hydrocarbon groups, C2-C7 Unsaturated hydrocarbon groups, C1-C7 halogenated hydrocarbon groups or C1-C7 groups containing cyano groups;
  • R 2 and R 3 are each independently selected from Wherein, R 4 and R 5 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; X is selected from Wherein, R 6 are each independently selected from a hydrogen atom, a C1-C7 saturated hydrocarbon group, a C1-C7 alkoxyl group, a C1-C7 halogenated hydrocarbon group, a C6-C7 aromatic hydrocarbon group, a C2-C7 unsaturated A hydrocarbon group, a C1-C7 halogenated hydrocarbon group, or a C1-C7 group containing a cyano group.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the compound represented by the structural formula 1 is added in an amount of 0.05-10%.
  • the non-aqueous electrolyte also includes auxiliary additives, the auxiliary additives include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds or nitriles at least one of the compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 3:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • nitrile compound comprises succinonitrile, glutaronitrile, ethylene glycol two (propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more.
  • the electrolyte salt is selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , At least one of LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , and lithium salts of lower aliphatic carboxylates.
  • the concentration of the electrolyte salt is 0.1mol/L-8mol/L.
  • the present invention provides a battery comprising a positive electrode, a negative electrode and the non-aqueous electrolyte as described above.
  • the positive electrode includes a positive electrode active material
  • the positive electrode active material includes LiFe 1-x' M' x' PO 4 , LiMn 2-y' M y' O 4 and LiNix Co y Mn z M 1- One or more of xyz O 2 , wherein M' is selected from one or more of Mn, Mg, Co, Ni, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti M is selected from one or more of Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti, and 0 ⁇ x' ⁇ 1, 0 ⁇ y' ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1.
  • the film-forming quality of the passivation film on the electrode surface can be significantly improved, and the passivation film has the characteristics of low impedance and high temperature stability, preferably It can effectively adapt to the application environment of the secondary battery under high voltage state, and then effectively improve the low-temperature discharge performance and high-temperature cycle and storage performance of the battery under high voltage state.
  • the inventors have found through experiments that the central base Group, when at least two of the three groups directly bonded to the outside are cyclic sulfate esters and their derivatives or cyclic borate esters and their derivatives, the battery has a significant improvement effect, and when R 1 , If the amount of cyclic sulfate and its derivatives or cyclic borate and its derivatives in R 2 and R 3 is insufficient, its effect on improving the battery will be significantly reduced, indicating that cyclic sulfate and its derivatives or cyclic There is a certain interaction between the amount of borate and its derivatives and the phosphate group, and this interaction has a positive effect on the film quality of the passivation film.
  • halogenated hydrocarbon group refers to a group in which at least one hydrogen atom in the hydrocarbon group is replaced by a halogen atom, and the halogen atom is selected from one or more of fluorine, chlorine, bromine, and iodine.
  • hydrocarbyloxy refers to a group consisting of a hydrocarbyl group and an oxygen linkage.
  • cyclic carbonate group and its derivatives refers to a group containing one or more carbons in the cyclic carbon chain replaced by a carbonate group, and a group in which one or more hydrogen atoms in the cyclic carbon chain are substituted.
  • the substituted group can be hydrocarbyl, halogen, halogenated hydrocarbyl, etc.
  • Cyclic boronic ester group and its derivatives can be understood with this definition and its derivatives”, “cyclic phosphate group and its derivatives”, “cyclic carboxylate group and its derivatives”, “cyclic sulfite group” can be understood with this definition and its derivatives”, “cyclic sulfate group and its derivatives”, “cyclic sulfonate group and its derivatives” and “cyclic sulfinate group and its derivatives”.
  • An embodiment of the present invention provides that the present invention provides a kind of non-aqueous electrolytic solution, comprises the compound shown in solvent, electrolyte salt and structural formula 1:
  • R1 is selected from hydrogen atom, C1 ⁇ C10 saturated hydrocarbon group, C1 ⁇ C10 halogenated hydrocarbon group, C6 ⁇ C10 aromatic hydrocarbon group, C3 ⁇ C10 cyclic sulfate group and its derivatives, C3 ⁇ C10 ring Boronic ester group and its derivatives, C3 ⁇ C10 cyclic sulfite group and its derivatives, C3 ⁇ C10 cyclic sulfonate group and its derivatives, C3 ⁇ C10 cyclic sulfinate C3-C10 cyclic carboxylate groups and their derivatives, C3-C10 cyclic carbonate groups and their derivatives, C3-C10 cyclic phosphate groups and their derivatives, C2 ⁇ C10 unsaturated hydrocarbon groups or cyano-containing C1 ⁇ C10 groups, R 2 and R 3 are each independently selected from C3 ⁇ C10 cyclic sulfate groups directly bonded to phosphate groups and derivatives thereof or C3-C10 cyclic cyclic
  • the compound shown in structural formula 1 has been added as an additive, which can obviously improve the film-forming quality of the passivation film on the surface of the electrode.
  • the passivation film has the characteristics of low impedance and high temperature stability, preferably It can effectively adapt to the application environment of the secondary battery under high voltage state, and then effectively improve the low-temperature discharge performance and high-temperature cycle and storage performance of the battery under high-voltage state.
  • R 2 and R 3 are the same, and both are selected from C3-C10 cyclic sulfate groups and derivatives thereof.
  • R 2 and R 3 are the same, and both are selected from C3-C10 cyclic borate groups and derivatives thereof.
  • R 2 and R 3 are different, one of which is selected from C3-C10 cyclic sulfate groups and their derivatives, and the other is selected from C3-C10 cyclic borate groups and their derivatives .
  • R 1 is selected from C2 ⁇ C10 unsaturated hydrocarbon groups, C3 ⁇ C10 cyclic sulfate groups and their derivatives, C3 ⁇ C10 cyclic borate groups and their derivatives, C3 ⁇ C10 The cyclic sulfite group and its derivatives, the C3 ⁇ C10 cyclic sulfonate group and its derivatives, the C3 ⁇ C10 cyclic sulfinate group and its derivatives, the C3 ⁇ C10 cyclic carboxyl An ester group and its derivatives, a C3-C10 cyclic carbonate group and its derivatives, or a C3-C10 cyclic phosphate group and its derivatives.
  • R is selected from Wherein, R 7 and R 8 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; X is selected from Among them, R 9 and R 10 are each independently selected from hydrogen atoms, C1-C7 saturated hydrocarbon groups, C1-C7 alkoxyl groups, C1-C7 halogenated alkoxyl groups, C6-C7 aromatic hydrocarbon groups, C2-C7 Unsaturated hydrocarbon group, C1-C7 halogenated hydrocarbon group or C1-C7 group containing cyano group.
  • the sum of carbon atoms of R 7 and R 8 is less than or equal to 6.
  • R 7 and R 8 are carbon chains on R 1. If the sum of carbon atoms in R 7 and R 8 is too large, the stability of the cyclic group R 1 will decrease. When R 7 and R 8 When the sum of the number of carbon atoms is less than or equal to 6, the cyclic group R 1 presents a better stable state, which is conducive to its function.
  • R 2 and R 3 are each independently selected from Wherein, R 4 and R 5 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; X is selected from Wherein, R 6 are each independently selected from a hydrogen atom, a C1-C7 saturated hydrocarbon group, a C1-C7 alkoxyl group, a C1-C7 halogenated hydrocarbon group, a C6-C7 aromatic hydrocarbon group, a C2-C7 unsaturated A hydrocarbon group, a C1-C7 halogenated hydrocarbon group, or a C1-C7 group containing a cyano group.
  • the compound shown in the structural formula 1 is selected from the compounds shown in the following structural formulas:
  • R1 is selected from hydrogen atom, C1 ⁇ C10 saturated hydrocarbon group, C1 ⁇ C10 halogenated hydrocarbon group, C6 ⁇ C10 aromatic hydrocarbon group, C3 ⁇ C10 cyclic sulfate group and its derivatives, C3 ⁇ C10 ring Boronic ester group and its derivatives, C3 ⁇ C10 cyclic sulfite group and its derivatives, C3 ⁇ C10 cyclic sulfonate group and its derivatives, C3 ⁇ C10 cyclic sulfinate C3-C10 cyclic carboxylate groups and their derivatives, C3-C10 cyclic carbonate groups and their derivatives, C3-C10 cyclic phosphate groups and their derivatives, C2 ⁇ C10 unsaturated hydrocarbon groups or cyano-containing C1 ⁇ C10 groups, R 4 , R 5 , R' 4 , R' 5 are each independently selected from C1 ⁇ C5 alkylene groups or C1 ⁇ C5 halogenated subgroups Hydrocarby
  • R 6 , R 9 , and R 10 are each independently selected from fluoromethyl, fluoroethyl, fluoropropyl, fluorobutyl, fluoropentyl, and fluorohexane fluoroheptyl, fluoromethoxy, fluoroethoxy, fluoropropoxy, fluorobutoxy, fluoropentyloxy, fluorohexyloxy, fluoroheptyloxy, Fluorobenzyloxy, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, propenyl, butenyl, pentenyl, propynyl, butynyl , pentynyl, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy or 2-cyanoethyl.
  • R 6 , R 9 , and R 10 are each independently selected from a hydrogen atom, a C1-C7 alkoxy group, a C1-C7 halogenated alkoxy group, or a C1-C7 halogenated alkyl group.
  • R 4 , R 5 , R 7 , and R 8 are each independently selected from fluoromethylene, fluoroethylene, fluoropropylene, fluorobutylene, methylene , ethylene, vinylidene, propylene or butylene.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • R 1 is selected from C2 ⁇ C10 unsaturated hydrocarbon groups or Wherein, R 7 and R 8 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; Y is selected from Among them, R 9 and R 10 are each independently selected from hydrogen atoms, C1-C7 saturated hydrocarbon groups, C1-C7 alkoxyl groups, C1-C7 halogenated alkoxyl groups, C6-C7 aromatic hydrocarbon groups, C2-C7 Unsaturated hydrocarbon groups, C1-C7 halogenated hydrocarbon groups or C1-C7 groups containing cyano groups;
  • R 2 and R 3 are each independently selected from Wherein, R 4 and R 5 are each independently selected from C1-C5 alkylene groups or C1-C5 halogenated alkylene groups; X is selected from Wherein, R 6 are each independently selected from a hydrogen atom, a C1-C7 saturated hydrocarbon group, a C1-C7 alkoxyl group, a C1-C7 halogenated hydrocarbon group, a C6-C7 aromatic hydrocarbon group, a C2-C7 unsaturated A hydrocarbon group, a C1-C7 halogenated hydrocarbon group, or a C1-C7 group containing a cyano group.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the compound represented by structural formula 1 can be obtained by metathesis reaction of phosphorus oxychloride with one or more of R 1 -OH, R 2 -OH and R 3 -OH in the presence of an acid-binding agent.
  • the compound represented by the structural formula 1 is added in an amount of 0.05-10%.
  • the compound represented by the structural formula 1 is added in an amount of 0.1-5%.
  • the added amount of the compound represented by the structural formula 1 can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5% %, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the compound represented by structural formula 1 can significantly improve the high-temperature storage performance and high-temperature cycle performance of the battery, and take into account low impedance and no gas swelling.
  • the addition of the compound shown in structural formula 1 is less than 0.05%, the content of structural formula 1 in the electrolyte is too low to form a complete passivation film on the surface of the positive electrode, so it is difficult to significantly improve the high temperature performance of the non-aqueous electrolyte battery. And the internal resistance of the battery did not decrease significantly.
  • the addition amount of the compound shown in structural formula 1 exceeds 10.0%, an overly thick passivation film is easily formed on the surface of the positive electrode, which increases the internal resistance of the battery instead, and the battery capacity retention rate is obviously deteriorated.
  • the non-aqueous electrolyte also includes auxiliary additives, the auxiliary additives include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphates At least one of compound or nitrile compound;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group.
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 3:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • the unsaturated phosphoric acid ester compound may be tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, Dipropargyl trifluoromethyl phosphate, Dipropargyl-2,2,2-trifluoroethyl phosphate, Dipropargyl-3,3,3-trifluoropropyl phosphate, Dipropargyl Hexafluoroisopropyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl Phosphate, diallyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, diallyl hexafluoroisopropyl phosphate at least one of the
  • the nitrile compounds include succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azela One or more of nitrile and sebaconitrile.
  • the auxiliary additive can be used in combination with the compound shown in Structural Formula 1 to form a more stable SEI film on the surface of the graphite negative electrode, thereby significantly improving the cycle performance of the lithium-ion battery, which can be more excellent than adding the compound shown in Structural Formula 1 alone. Effect.
  • the addition amount of any optional substance in the auxiliary additive in the non-aqueous electrolyte is 0.05-10%, preferably, the addition amount is 0.1-5%, More preferably, the added amount is 0.1% to 3%.
  • the addition amount of any optional substance in the auxiliary additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2% %, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the amount of the auxiliary additive added is 0.05%-30% based on the total mass of the non-aqueous electrolyte solution being 100%.
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents, carboxylate solvents and sulfone solvents.
  • ether solvents include cyclic ethers or chain ethers, preferably chain ethers with 3 to 10 carbon atoms and cyclic ethers with 3 to 6 carbon atoms.
  • the cyclic ethers can specifically be but not limited to It is 1,3-dioxolane (DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-CH3-THF), 2-trifluoro One or more of methyltetrahydrofuran (2-CF3-THF); said chain ether specifically can be but not limited to dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethyl Diol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether.
  • DOL 1,3-dioxolane
  • DX 1,4-dioxane
  • Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane which are low in viscosity and impart high ion conductivity, are particularly preferred because the solvation ability of chain ethers with lithium ions is high and ion dissociation can be improved.
  • methyl methane One kind of ether compound may be used alone, or two or more kinds may be used in any combination and ratio.
  • the addition amount of the ether compound is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio of the non-aqueous solvent is 100%, the volume ratio is usually more than 1%, preferably 1% by volume.
  • the ratio is 2% or more, more preferably 3% or more by volume, and usually 30% or less by volume, preferably 25% or less by volume, more preferably 20% or less by volume.
  • the total amount of the ether compounds may satisfy the above range.
  • the addition amount of the ether compound is within the above-mentioned preferred range, it is easy to ensure the effect of improving the ion conductivity by increasing the lithium ion dissociation degree of the chain ether and reducing the viscosity.
  • the negative electrode active material is a carbon material, it is possible to suppress the co-intercalation phenomenon of the chain ether and lithium ions, so that the input-output characteristics and the charge-discharge rate characteristics can be brought into appropriate ranges.
  • the nitrile solvent may specifically be, but not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.
  • the carbonate solvents include cyclic carbonates or chain carbonates
  • the cyclic carbonates can specifically be, but not limited to, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone One or more of (GBL), butylene carbonate (BC);
  • the chain carbonate can specifically be, but not limited to, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC ), one or more of dipropyl carbonate (DPC).
  • the content of cyclic carbonate is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-pressure lithium-ion battery of the present invention, but the lower limit of its content is relative to that of the non-aqueous electrolyte when one is used alone.
  • the volume ratio of the total solvent is usually 3% or more, preferably 5% or more.
  • the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume.
  • the content of the chain carbonate is not particularly limited, but is usually 15% or more by volume, preferably 20% or more by volume, and more preferably 25% or more by volume relative to the total amount of solvent in the nonaqueous electrolyte.
  • the volume ratio is usually 90% or less, preferably 85% or less, and more preferably 80% or less.
  • the content of the chain carbonate within the above range, it is easy to make the viscosity of the non-aqueous electrolytic solution in an appropriate range, suppress the decrease in ion conductivity, and contribute to making the output characteristics of the non-aqueous electrolyte battery a good range.
  • the total amount of the chain carbonates may satisfy the above-mentioned range.
  • chain carbonates having fluorine atoms may also be preferably used.
  • the number of fluorine atoms in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • these fluorine atoms may be bonded to the same carbon or to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
  • Carboxylate solvents include cyclic carboxylates and/or chain carbonates.
  • cyclic carboxylic acid esters include one or more of ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone.
  • chain carbonates include: methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), butyl propionate one or more of.
  • the sulfone solvent includes cyclic sulfone and chain sulfone, but preferably, in the case of cyclic sulfone, it usually has 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms. In the case of chain sulfone, it is usually a compound having 2 to 6 carbon atoms, preferably 2 to 5 carbon atoms.
  • the amount of sulfone solvent added is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio is usually more than 0.3%, preferably The volume ratio is 0.5% or more, more preferably 1% or more, and usually 40% or less, preferably 35% or less, more preferably 30% or less.
  • the total amount of the sulfone-based solvent may satisfy the above-mentioned range.
  • the added amount of the sulfone solvent is within the above range, an electrolytic solution having excellent high-temperature storage stability tends to be obtained.
  • the solvent is a mixture of cyclic carbonates and chain carbonates.
  • the electrolyte salt includes one or more of lithium salts, sodium salts, potassium salts, magnesium salts, zinc salts and aluminum salts. In a preferred embodiment, the electrolyte salt is selected from lithium salts or sodium salts.
  • the lithium salt is selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , at least one of lithium salts of lower aliphatic carboxylates .
  • the electrolyte salt is selected from other salts such as sodium salt, potassium salt, magnesium salt, zinc salt or aluminum salt, the lithium in the above lithium salt can be replaced with sodium, potassium, magnesium, zinc or aluminum.
  • the sodium salt is selected from sodium perchlorate (NaClO 4 ), sodium hexafluorophosphate (NaPF 6 ), sodium tetrafluoroborate (NaBF 4 ), sodium trifluoromethanesulfonate (NaFSI), At least one of sodium trifluoromethanesulfonate (NaTFSI).
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.1 mol/L-8 mol/L. In a preferred embodiment, the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.5 mol/L-2.5 mol/L. Specifically, the concentration of the electrolyte salt may be 0.5 mol/L, 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L.
  • Another embodiment of the present invention provides a battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the battery adopts the above-mentioned non-aqueous electrolyte, a passivation film with excellent performance can be formed on the positive electrode and the negative electrode, thereby effectively improving the high-temperature storage performance and high-temperature cycle performance of the battery, and improving the power characteristics of the battery.
  • the battery is a secondary battery
  • the secondary battery can be a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a magnesium secondary battery, a zinc secondary battery, an aluminum secondary battery wait.
  • the battery is a lithium metal battery, a lithium ion battery, a lithium sulfur battery, or a sodium ion battery.
  • the positive electrode includes a positive electrode active material layer, and the positive electrode active material layer includes a positive electrode active material.
  • the type of the positive electrode active material is not particularly limited and can be selected according to actual needs, as long as it can be reversibly embedded It is enough to be a positive electrode active material or a conversion type positive electrode material that deintercalates metal ions (lithium ions, sodium ions, potassium ions, magnesium ions, zinc ions, aluminum ions, etc.).
  • the battery is a lithium ion battery
  • its positive electrode active material can be selected from LiFe 1-x' M' x' PO 4 , LiMn 2-y' M y' O 4 and LiNi x Co y Mn z
  • M 1-xyz O 2 wherein M' is selected from one of Mn, Mg, Co, Ni, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti
  • M is selected from one or more of Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti, and 0 ⁇ x' ⁇ 1,0 ⁇ y' ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1
  • the positive active material can also be selected from sulfide, selenide , one or more of the halides.
  • the positive electrode active material can be selected from LiCoO 2 , LiFePO 4 , LiFe 0.8 Mn 0.2 PO 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 One or more of O 2 , LiNi 0.5 Co 0.2 Mn 0.2 Al 0.1 O 2 , LiMn 2 O 4 , LiNi 0.5 Co 0.2 Al 0.3 O 2 .
  • the battery is a sodium ion battery
  • its positive electrode active material can be selected from metal sodium, carbon materials, alloy materials, overplated metal oxides, overplated metal sulfides, phosphorus-based materials, titanate materials , one or more of the Prussian blue materials.
  • the carbon material can be selected from one or more of graphite, soft carbon, and hard carbon
  • the alloy material can be an alloy material composed of at least two of Si, Ge, Sn, Pb, and Sb.
  • the alloy material can also be an alloy material composed of at least one of Si, Ge, Sn, Pb, Sb and C, the chemical formula of the overplated metal oxide and the overplated metal sulfide is M1 x N y , M1 can be selected from one or more of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, V, N is selected from O or S, and the phosphorus-based material can be selected from red phosphorus, white phosphorus, black One or more of phosphorus, the titanate material can be selected from Na 2 Ti 3 O 7 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) One or more of 3 , the molecular formula of the Prussian blue material is Na x M [M'(CN) 6 ] y zH 2 O, wherein, M is a transition metal, M' is a transition metal, 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1, 0 ⁇ z ⁇
  • the positive electrode further includes a positive electrode current collector, and the positive electrode material layer covers the surface of the positive electrode current collector.
  • the positive electrode current collector is selected from metal materials that can conduct electrons.
  • the positive electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the positive electrode The current collector is selected from aluminum foil.
  • the positive electrode active material layer further includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode active material layer.
  • the positive electrode binder includes polyvinylidene fluoride, copolymer of vinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride-hexafluoropropylene, copolymer of tetrafluoroethylene-hexafluoropropylene, tetrafluoroethylene- Copolymer of perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride-trichloroethylene Copolymers, vinylidene fluoride-fluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, thermoplastic polyimides, thermoplastic resins such as polyethylene and polypropy
  • the positive electrode conductive agent includes one or more of conductive carbon black, conductive carbon spheres, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.
  • the negative electrode includes a negative electrode material layer, the negative electrode material layer includes a negative electrode active material, and the negative electrode active material includes one or more of silicon-based negative electrodes, carbon-based negative electrodes, tin-based negative electrodes, and lithium negative electrodes. kind.
  • the silicon-based negative electrode includes one or more of silicon materials, silicon oxides, silicon-carbon composite materials, and silicon alloy materials;
  • the carbon-based negative electrode includes graphite, hard carbon, soft carbon, graphene, intermediate One or more of phase carbon microspheres;
  • the tin-based negative electrode includes one or more of tin, tin carbon, tin oxide, and tin metal compounds;
  • the lithium negative electrode includes one of metal lithium or lithium alloy one or more species.
  • the lithium alloy may be at least one of lithium-silicon alloy, lithium-sodium alloy, lithium-potassium alloy, lithium-aluminum alloy, lithium-tin alloy and lithium-indium alloy.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer covers the surface of the negative electrode current collector.
  • the material of the negative electrode current collector may be the same as that of the positive electrode current collector, and will not be repeated here.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder and the negative electrode conductive agent may be the same as the positive electrode binder and the positive electrode conductive agent respectively, and will not be repeated here.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, which can be a ceramic diaphragm, a polymer diaphragm, a non-woven fabric, an inorganic-organic composite diaphragm, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), Double-layer PP/PE, double-layer PP/PP and triple-layer PP/PE/PP separators.
  • This embodiment is used to illustrate the electrolyte, battery and preparation method thereof disclosed in the present invention, including the following steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • the slurry is evenly coated on both sides of the aluminum foil of the positive electrode current collector, after drying, calendering and vacuum drying, and then edge trimming, cutting, and slitting, the positive electrode is obtained by welding the aluminum lead-out wires with an ultrasonic welder Pole piece, the thickness of the positive pole piece is between 120-150 ⁇ m.
  • a lithium battery three-layer separator with a thickness of 20 ⁇ m is placed between the positive electrode sheet and the negative electrode sheet prepared above, and the sandwich structure composed of the positive electrode sheet, the negative electrode sheet and the separator is wound, and then the wound body is flattened and placed Put it into an aluminum foil packaging bag, and bake it under vacuum at 75°C for 48 hours to obtain the cell to be filled with liquid.
  • This embodiment is used for comparatively illustrating the method of non-aqueous electrolytic solution and battery disclosed by the present invention, comprises most of the operation steps in embodiment 1, and its difference is:
  • the formed battery was charged to 4.2V with 1C constant current and constant voltage (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery), and then charged at constant voltage until the current dropped to 0.02C, and then charged with 1C
  • the current is discharged at a constant current to 3.0V, and this cycle is repeated, and the discharge capacity of the first time and the discharge capacity of the last time are recorded.
  • Capacity retention ratio last discharge capacity / first discharge capacity ⁇ 100%.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery Charge the formed lithium-ion battery to 4.2V (LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery) at room temperature with 1C constant current and constant voltage, measure the initial discharge capacity and initial battery thickness of the battery, and then store it in a 60°C environment After storage for 30 days in medium temperature, discharge at 1C to 3V, measure the holding capacity and recovery capacity of the battery and the thickness of the battery after storage.
  • 4.2V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery
  • Battery capacity retention rate (%) retention capacity/initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
  • Thickness expansion rate (%) (battery thickness after storage-initial battery thickness)/initial battery thickness ⁇ 100%.
  • the formed lithium-ion battery was charged to 4.2V with 1C constant current and constant voltage, and the cut-off current was 0.01C, and then discharged to 3.0V with 0.2C constant current, and the discharge capacity was recorded. Then 1C constant current and constant voltage charge to 4.2V, and then put the battery in the environment of -20 °C for 12h, then 0.2C constant current discharge to 3.0V, record the discharge capacity.
  • Example 1 Comparing the test results of Example 1 and Examples 9 to 12, it can be seen that with the increase in the amount of the compound shown in Structural Formula 1, the performance improvement of the lithium-ion battery first increases and then decreases, indicating that too much or too little addition Both will lead to the improvement of the high-temperature performance and low-temperature performance of the lithium-ion battery.
  • the compound shown in structural formula 1 is added in an amount of 1% to 2%, the obtained lithium-ion battery has the best high-low temperature performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有电池存在低温阻抗高和高温循环、存储性能不足的问题,本发明提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物。同时,本发明还提供了包括上述非水电解液的电池。本发明提供的非水电解液由于采用了结构式1所示的化合物作为添加剂,有效提升电池在高压状态下的低温放电性能和高温循环和存储性能。

Description

一种非水电解液及电池 技术领域
本发明属于二次电池技术领域,具体涉及一种非水电解液及电池。
背景技术
随着锂离子电池应用领域的拓展,除了日常使用的3C电子产品外,尤其是在锂电动力汽车和混动汽车领域的应用,高能量密度和功率密度的电池已经成为未来研究的方向,为了匹配高压电极材料的实际应用,对锂离子电池的高压电解液体系提出了更高安全技术要求,而电解液的核心技术就是新材料的研发。因此新能源汽车能否取代燃油车的关键在于能否突破电池技术瓶颈,在保证安全的前提下如何通过电解液的添加剂提高动力电池的能量密度。
在非水电解液锂离子电池中,非水电解液是影响电池高低温性能的关键因素,特别地,非水电解液中的添加剂对电池高低温性能的发挥尤其重要。在锂离子电池初始充电过程中,电池正极材料中的锂离子脱嵌出来,通过电解液嵌入碳负极中,电解液会在电极表面发生分解,生成不溶于电解液的产物,这些产物将沉积在电极表面形成钝化膜,该钝化膜称为固体电解液界面膜(SEI)。SEI膜是Li +的良好导体,电子的绝缘体,可以有效的阻隔在之后循环过程中电极与电解液的接触,阻止电解液的进一步分解。因此,SEI膜决定了锂离子电池性能的好坏。高电压电解液是高电压锂离子电池体系的技术瓶颈,因为提高电池的工作电压可以提高能量密度,但是,目前所使用的电解液当工作电压超过4.3V时会发生严重的氧化分解导致电极/电解液之间界面阻抗增加,从而恶化电池性能。同时,在低温条件下,电池的阻抗提升更为明显,不利于电池放电效率的提升,为了提高锂离子电池的各项性能,许多科研者通过往电解液中添加不同的成膜添加剂(如碳酸亚乙烯酯、氟代碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙烷磺酸内酯)来改善SEI膜的质量,从而改善电池的各项性能。但现有的成膜添加剂仍然难以满足高能量密度离子电池的在高电压状态下的低温放电性能和高温性能的需求。
发明内容
针对现有电池存在低温阻抗高和高温循环、存储性能不足的问题,本发明提供了一种非水电解液及电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物:
Figure PCTCN2022110872-appb-000001
其中,R 1选自氢原子、C1~C10的饱和烃基、C1~C10的卤代烃基、C6~C10的芳香烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物、C3~C10的环状磷酸酯基及其衍生物、C2~C10的不饱和烃基或含氰基的C1~C10的基团,R 2、R 3各自独立地选自与磷酸酯基直接键合的C3~C10的环状硫酸酯基及其衍生物或C3~C10的环状硼酸酯基及其衍生物。
可选的,R 1选自C2~C10的不饱和烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物或C3~C10的环状磷酸酯基及其衍生物。
可选的,R 1选自
Figure PCTCN2022110872-appb-000002
其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃 基;X选自
Figure PCTCN2022110872-appb-000003
Figure PCTCN2022110872-appb-000004
其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
可选的,R 2、R 3各自独立地选自
Figure PCTCN2022110872-appb-000005
其中,R 4、R 5各自独立地选自C1~5的亚烃基或C1~5的卤代亚烃基;X选自
Figure PCTCN2022110872-appb-000006
其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
可选的,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110872-appb-000007
Figure PCTCN2022110872-appb-000008
Figure PCTCN2022110872-appb-000009
Figure PCTCN2022110872-appb-000010
可选的,R 1
Figure PCTCN2022110872-appb-000011
其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;Y选自
Figure PCTCN2022110872-appb-000012
Figure PCTCN2022110872-appb-000013
其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团;
R 2、R 3各自独立地选自
Figure PCTCN2022110872-appb-000014
其中,R 4、R 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
Figure PCTCN2022110872-appb-000015
其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
可选的,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110872-appb-000016
可选的,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05~10%。
可选的,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物或腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022110872-appb-000017
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子和C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
Figure PCTCN2022110872-appb-000018
所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
优选的,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
优选的,所述电解质盐的浓度为0.1mol/L-8mol/L。
另一方面,本发明提供了一种电池,包括正极、负极以及如上所述的非水电解液。
可选的,所述正极包括正极活性材料,所述正极活性材料包括LiFe 1-x’M’ x’PO 4、LiMn 2-y’M y’O 4和LiNi xCo yMn zM 1-x-y-zO 2中的一种或多种,其中,M’选自Mn、Mg、Co、Ni、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,且0≤x’<1,0≤y’≤1,0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1。
根据本发明提供的非水电解液,通过加入了结构式1所示的化合物,能够明显改善电极表面钝化膜的成膜质量,该钝化膜具有低阻抗以及高温稳定性高的特点,较好地适应高电压状态下的二次电池的应用环境,进而有效提升电池在高压状态下的低温放电性能和高温循环和存储性能,需要注意的是,发明人通过实验发现,以磷酸酯为中心基团,其外部直接键合的三个基团中至少有两个为环状硫酸酯及其衍生物或环状硼酸酯及其衍生物时,电池具有显著地提升效果,而当R 1、R 2、R 3中环状硫酸酯及其衍生物或环状硼酸酯及其衍生物数量不足,则其对电池的提升效果会明显降低,说明环状硫酸酯及其衍生物或环状硼酸酯及其衍生物的数量与磷酸酯基之间存在一定的相互作用,且该相互作用对于钝化膜的成膜质量具有正向促进作用。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
术语“卤代烃基”指代烃基中至少一个氢原子被卤素原子取代的基团,卤素原子选自氟、氯、溴、碘中的一种或多种。
术语“烃氧基”指代由烃基和氧连接组成的基团。
术语“环状碳酸酯基及其衍生物”指代含有环状碳链中一个或多个碳被碳酸酯基取代的基团,以及环状碳链上一个或多个氢原子被取代的基团,取代的基团可以为烃基、卤素、卤代烃基等。可以以该定义理解“环状硼酸酯基及其衍生物”、“环状磷酸酯基及其衍生物”、“环状羧酸酯基及其衍生物”、“环状亚硫酸酯基及其衍生物”、“环状硫酸酯基及其衍生物”、“环状磺酸酯基及其衍生物”和“环状亚磺酸酯基及其衍生物”。
本发明一实施例提供了本发明提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物:
Figure PCTCN2022110872-appb-000019
其中,R 1选自氢原子、C1~C10的饱和烃基、C1~C10的卤代烃基、C6~C10的芳香烃基、C3~C10的环状 硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物、C3~C10的环状磷酸酯基及其衍生物、C2~C10的不饱和烃基或含氰基的C1~C10的基团,R 2、R 3各自独立地选自与磷酸酯基直接键合的C3~C10的环状硫酸酯基及其衍生物或C3~C10的环状硼酸酯基及其衍生物。
本发明提供的非水电解液中加入了结构式1所示的化合物作为添加剂,能够明显改善电极表面钝化膜的成膜质量,该钝化膜具有低阻抗以及高温稳定性高的特点,较好地适应高电压状态下的二次电池的应用环境,进而有效提升电池在高电压状态下的低温放电性能和高温循环和存储性能,需要注意的是,发明人通过实验发现,以磷酸酯为中心基团,其外部直接键合的三个基团中至少有两个为环状硫酸酯及其衍生物或环状硼酸酯及其衍生物时,结构式1所示的化合物具有上述所述的电池提升效果,而当R 1、R 2、R 3中环状硫酸酯及其衍生物或环状硼酸酯及其衍生物数量不足,则其对电池的提升效果会明显降低,说明环状硫酸酯及其衍生物或环状硼酸酯及其衍生物的数量与磷酸酯基之间存在一定的相互作用,且该相互作用对于钝化膜的成膜质量具有正向促进作用。
在一些实施例中,R 2、R 3相同,均选自C3~C10的环状硫酸酯基及其衍生物。
在一些实施例中,R 2、R 3相同,均选自C3~C10的环状硼酸酯基及其衍生物。
在一些实施例中,R 2、R 3不相同,其中一个选自C3~C10的环状硫酸酯基及其衍生物,另一个选自C3~C10的环状硼酸酯基及其衍生物。
在一些实施例中,R 1选自C2~C10的不饱和烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物或C3~C10的环状磷酸酯基及其衍生物。
在一些实施例中,R 1选自
Figure PCTCN2022110872-appb-000020
其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
Figure PCTCN2022110872-appb-000021
Figure PCTCN2022110872-appb-000022
其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
在一些实施例中,R 7、R 8的碳原子数之和小于或等于6个。
R 7、R 8为R 1上的碳链,若R 7、R 8的碳原子数之和过大,则以导致环状基团R 1的稳定性的下降,当R 7、R 8的碳原子数之和小于或等于6个时,环状基团R 1呈现较好的稳定状态,利于其功能的发挥。
在一些实施例中,R 2、R 3各自独立地选自
Figure PCTCN2022110872-appb-000023
其中,R 4、R 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
Figure PCTCN2022110872-appb-000024
其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
具体的,所述结构式1所示的化合物选自以下结构式所示的化合物:
Figure PCTCN2022110872-appb-000025
其中,R 1选自氢原子、C1~C10的饱和烃基、C1~C10的卤代烃基、C6~C10的芳香烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物、C3~C10的环状磷酸酯基及其衍生物、C2~C10的不饱和烃基或含氰基的C1~C10的基团,R 4、R 5、R’ 4、R’ 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基,X、X’各自独立地选自
Figure PCTCN2022110872-appb-000026
其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
在一些实施例中,R 6、R 9、R 10各自独立地选自氟代甲基、氟代乙基、氟代丙基、氟代丁烷基、氟代戊烷基、氟代己烷基、氟代庚烷基、氟代甲氧基、氟代乙氧基、氟代丙氧基、氟代丁氧基、氟代戊氧基、氟代己氧基、氟代庚氧基、氟代苯甲氧基、甲基、乙基、丙基、丁烷基、戊烷基、己烷基、庚烷基、丙烯基、丁烯基、戊烯基、丙炔基、丁炔基、戊炔基、甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基或2-氰基乙基。
在一些实施例中,R 6、R 9、R 10各自独立地选自氢原子、C1~C7的烃氧基、C1~C7的卤代烃氧基或C1~C7的卤代烃基。
在一些实施例中,R 4、R 5、R 7、R 8各自独立地选自氟代亚甲基、氟代亚乙基、氟代亚丙基、氟代亚丁烷基,亚甲基、亚乙基、亚乙烯基、亚丙基或亚丁烷基。
在一些实施例中,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110872-appb-000027
Figure PCTCN2022110872-appb-000028
Figure PCTCN2022110872-appb-000029
Figure PCTCN2022110872-appb-000030
Figure PCTCN2022110872-appb-000031
在一些实施例中,R 1选自C2~C10的不饱和烃基或
Figure PCTCN2022110872-appb-000032
其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;Y选自
Figure PCTCN2022110872-appb-000033
Figure PCTCN2022110872-appb-000034
其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团;
R 2、R 3各自独立地选自
Figure PCTCN2022110872-appb-000035
其中,R 4、R 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
Figure PCTCN2022110872-appb-000036
其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
在优选的实施例中,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110872-appb-000037
需要说明的是,以上仅是本发明保护的部分实施例,并不能理解为对本发明的限制。
本领域技术人员在知晓结构式1的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。作为本发明的示例:
结构式1所示的化合物可通过三氯氧磷与R 1-OH、R 2-OH和R 3-OH中一种或多种在缚酸剂存在的情况下 进行复分解反应获得。
在一些实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05~10%。
在优选的实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.1~5%。
具体的,所述结构式1所示的化合物的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在上述范围内,结构式1所示的化合物能够明显改善电池的高温存储性能和高温循环性能,并兼顾低阻抗和无气胀。当结构式1所示的化合物的添加量低于0.05%时,电解液中的结构式1含量过低无法在正极电极表面形成完整的钝化膜,从而难以明显改善非水电解液电池的高温性能,且电池内阻无明显降低。而结构式1所示的化合物的添加量超过10.0%时,正极电极表面容易形成过厚的钝化膜,反而增加电池内阻,而且电池容量保持率明显劣化。
在一些实施例中,所述非水电解液中还包括有辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物或腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
Figure PCTCN2022110872-appb-000038
所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子和C1-C5基团中的一种。
所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
Figure PCTCN2022110872-appb-000039
所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
在优选的实施例中,所述不饱和磷酸酯类化合物可为磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
在优选的实施例中,所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
所述辅助添加剂能够和结构式1所示的化合物联合使用,在石墨负极表面形成更稳定的SEI膜,从而显 著提高锂离子电池的循环性能,相对于单独添加结构式1所示的化合物能够得到更优异的效果。
需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为0.05~10%,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~3%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述辅助添加剂的添加量为0.05%~30%。
在一些实施例中,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂、羧酸酯类溶剂和砜类溶剂中的一种或多种。
在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH3-THF),2-三氟甲基四氢呋喃(2-CF3-THF)中的一种或多种;所述链状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性物质为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。
在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。
在一些实施例中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。环状碳酸酯的含量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。
在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。
羧酸酯类溶剂包括环状羧酸酯和/或链状碳酸酯。作为环状羧酸酯的例子,可以列举如:γ-丁内酯、γ-戊内酯、δ-戊内酯中的一种或多种。作为链状碳酸酯的例子,可以列举如:乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
在一些实施例中,砜类溶剂包括环状砜和链状砜,但优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,相对于非水电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶 剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。
在优选的实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
在一些实施例中,所述电解质盐包括锂盐、钠盐、钾盐、镁盐、锌盐和铝盐中的一种或多种。在优选的实施例中,所述电解质盐选自锂盐或钠盐。
在优选实施例中,所述锂盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。若所述电解质盐选自钠盐、钾盐、镁盐、锌盐或铝盐等其它盐时,可将上述所述锂盐中的锂对应换成钠、钾、镁、锌或铝等。
在优选实施例中,所述钠盐选自高氯酸钠(NaClO 4)、六氟磷酸钠(NaPF 6)、四氟硼酸钠(NaBF 4)、三氟甲基磺酸钠(NaFSI)、双三氟甲基磺酸钠(NaTFSI)中的至少一种。
在一些实施例中,所述非水电解液中,所述电解质盐的浓度为0.1mol/L-8mol/L。在优选的实施例中,所述非水电解液中,所述电解质盐的浓度为0.5mol/L-2.5mol/L。具体的,所述电解质盐的浓度可以为0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L。
本发明的另一实施例提供了一种电池,包括正极、负极以及如上所述的非水电解液。
所述电池由于采用了如上所述的非水电解液,能够在正极和负极上形成性能优异的钝化膜,进而有效地提高了电池的高温存储性能和高温循环性能,提升电池功率特性。
在一些实施例中,所述电池为二次电池,所述二次电池可以是锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池、铝二次电池等。
在优选的实施例中,所述电池为锂金属电池、锂离子电池、锂硫电池、钠离子电池。
在一些实施例中,所述正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料的种类没有特别限制,可以根据实际需求进行选择,只要是能够可逆地嵌入/脱嵌金属离子(锂离子、钠离子、钾离子、镁离子、锌离子、铝离子等)的正极活性材料或转换型正极材料即可。
在优选实施例中,所述电池为锂离子电池,其正极活性材料可选自LiFe 1-x’M’ x’PO 4、LiMn 2-y’M y’O 4和LiNi xCo yMn zM 1-x-y-zO 2中的一种或多种,其中,M’选自Mn、Mg、Co、Ni、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,且0≤x’<1,0≤y’≤1,0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1,所述正极活性材料还可以选自硫化物、硒化物、卤化物中的一种或几种。更为优选的,所述正极活性材料可选自LiCoO 2、LiFePO 4、LiFe 0.8Mn 0.2PO 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.5Co 0.2Mn 0.2Al 0.1O 2、LiMn 2O 4、LiNi 0.5Co 0.2Al 0.3O 2中的一种或多种。
在优选实施例中,所述电池为钠离子电池,其正极活性材料可选自金属钠、碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料、钛酸盐材料、普鲁士蓝类材料中的一种或几种。所述碳材料可选自石墨、软碳、硬碳中的一种或几种,所述合金材料可选自由Si、Ge、Sn、Pb、Sb中的至少两种组成的合金材料,所述合金材料还可选自由Si、Ge、Sn、Pb、Sb中的至少一种与C组成的合金材料,所述过镀金属氧化物和所述过镀金属硫化物的化学式为M1 xN y,M1可选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V中的一种或几种,N选自O或S,所述磷基材料可选自红磷、白磷、黑磷中的一种或几种,所述钛酸盐材料可选自Na 2Ti 3O 7、Na 2Ti 6O 13、Na 4Ti 5O 12、Li 4Ti 5O 12、NaTi 2(PO 4) 3中的一种或几种,所述普鲁士蓝类材料的分子式为Na xM[M′(CN) 6] y·zH 2O,其中,M为过渡金属,M′为过渡金属,0<x≤2,0.8≤y<1,0<z≤20。
在一些实施例中,所述正极还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。
所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。
在一些实施例中,所述正极活性材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极活性材料层。
所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
所述正极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。
在一些实施例中,所述负极包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料 包括硅基负极、碳基负极、锡基负极、锂负极中的一种或多种。其中,所述硅基负极包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料中的一种或多种;所述碳基负极包括石墨、硬碳、软碳、石墨烯、中间相碳微球中的一种或多种;所述锡基负极包括锡、锡碳、锡氧、锡金属化合物中的一种或多种;所述锂负极包括金属锂或锂合金中的一种或多种。所述锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。所述负极集流体的材料可与所述正极集流体相同,在此不再赘述。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂和负极导电剂可分别与所述正极粘接剂和正极导电剂相同,在此不再赘述。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是陶瓷隔膜、聚合物隔膜、无纺布、无机-有机复合隔膜等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
表1
Figure PCTCN2022110872-appb-000040
注:以下实施例和对比例中采用的化合物选自于表1。
实施例1~15
本实施例用于说明本发明公开的电解液、电池及其制备方法,包括以下操作步骤:
1)非水电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,以所述非水电解液的总重量为100%计,加入如表2中实施例1~15所示质量百分含量的添加剂。
2)正极极片的制备
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,混和均匀制备得到锂离子电池得到正极浆料。正极将浆料均匀涂布在正极集流体铝箔的两面上,经过烘干、压延和真空干燥,然后进行切 边、裁片、分条后,用超声波焊机焊上铝制引出线后得到正极极片,正极极片的厚度在120-150μm之间。
3)负极极片的制备
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨、导电剂导电碳黑Super-P、粘结剂丁苯橡胶(SBR)和增稠剂羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,然后进行切边、裁片、分条后,用超声波焊机焊上镍制引出线后得到负极极片,负极极片的厚度在120-150μm之间。
4)电芯的制备
在上述制备得到的正极片和负极片之间放置厚度为20μm的锂电池三层隔膜,将正极极片、负极极片和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入到干燥后的电芯中,真空封装、静置24h,然后按照以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到一种LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子电池。
对比例1~7
本实施例用于对比说明本发明公开的非水电解液及电池的方法,包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备中,加入如表2中对比例1~7所示质量百分含量的添加剂。
性能测试
对实施例1-15和对比例1-7制备得到的锂离子电池进行如下性能测试:
1)高温循环性能测试:
在45℃下,将化成后的电池用1C恒流恒压充至4.2V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池),再恒压充电至电流下降至0.02C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1次的放电容量和最后1次的放电容量。
按下式计算高温循环的容量保持率:
容量保持率=最后1次的放电容量/第1次的放电容量×100%。
2)高温储存性能测试
将化成后的锂离子电池在常温下用1C恒流恒压充至4.2V(LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨电池),测量电池初始放电容量及初始电池厚度,然后在60℃环境中储存30天后,以1C放电至3V,测量电池的保持容量和恢复容量及储存后电池厚度。
计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
厚度膨胀率(%)=(储存后电池厚度-初始电池厚度)/初始电池厚度×100%。
3)低温放电性能测试
在25℃下,将化成后的锂离子电池用1C恒流恒压充至4.2V,截至电流为0.01C,然后用0.2C恒流放电至3.0V,记录放电容量。然后1C恒流恒压充电至4.2V,再将电池置于-20℃的环境中搁置12h后,0.2C恒流放电至3.0V,记录放电容量。
-20℃0.2C放电效率计算公式如下:
-20℃的低温放电效率(%)=0.2C放电容量(-20℃)/0.2C放电容量(25℃)。
测试结果填入表2。
表2
Figure PCTCN2022110872-appb-000041
Figure PCTCN2022110872-appb-000042
对比实施例1~8和对比例1~4的测试结果可知,相比于无添加剂或添加现有添加剂的锂离子电池,采用本发明提供的结构式1的化合物作为添加剂,得到的锂离子电池具有较好的高温循环和高温存储性能,且根据低温放电效率上可以看出,加入了结构式1所示的化合物后,同样对电池的低温放电性能有所提升,提高了电池的充放电性能及循环次数,具有较好的高低温适应性。
对比实施例1、实施例9~12的测试结果可知,随着结构式1所示化合物的添加量的提升,锂离子电池的性能提升幅度先升高后降低,说明过多或过少的添加量都会导致锂离子电池的高温性能和低温性能的提升,当结构式1所示的化合物添加量处于1%~2%时,其得到的锂离子电池具有最佳的高低温性能。
对比实施例13~15和对比例2~4的数据可知,相比于实施例1中单独加入结构式1所示的化合物,当非水电解液中同时加入结构式1所示的化合物和FEC(或VEC、VC)时,FEC(或VEC、VC)能够和结构式1所示的化合物协同作用,在石墨负极表面形成更稳定的SEI膜,使得锂离子电池具有良好的高温性能和高温存储性能,显著提高锂离子电池的循环性能,尤其是低温性能提升明显。
对比实施例1~8和对比例5-7的测试结果可知,与结构式1中所示的化合物类似的化合物中,当R 1、R 2、R 3中环状硫酸酯基或硼酸酯基的数量低于2个时,则其对电池的提升效果会明显降低,说明环状硫酸酯基或硼酸酯基的数量与结构式1所示的化合物性能直接相关。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种非水电解液,其特征在于,包括溶剂、电解质盐和结构式1所示的化合物:
    Figure PCTCN2022110872-appb-100001
    其中,R 1选自氢原子、C1~C10的饱和烃基、C1~C10的卤代烃基、C6~C10的芳香烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物、C3~C10的环状磷酸酯基及其衍生物、C2~C10的不饱和烃基或含氰基的C1~C10的基团,R 2、R 3各自独立地选自与磷酸酯基直接键合的C3~C10的环状硫酸酯基及其衍生物或C3~C10的环状硼酸酯基及其衍生物。
  2. 根据权利要求1所述的非水电解液,其特征在于,R 1选自C2~C10的不饱和烃基、C3~C10的环状硫酸酯基及其衍生物、C3~C10的环状硼酸酯基及其衍生物、C3~C10的环状亚硫酸酯基及其衍生物、C3~C10的环状磺酸酯基及其衍生物、C3~C10的环状亚磺酸酯基及其衍生物、C3~C10的环状羧酸酯基及其衍生物、C3~C10的环状碳酸酯基及其衍生物或C3~C10的环状磷酸酯基及其衍生物。
  3. 根据权利要求1或2所述的非水电解液,其特征在于,R 1选自
    Figure PCTCN2022110872-appb-100002
    其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;Y选自
    Figure PCTCN2022110872-appb-100003
    Figure PCTCN2022110872-appb-100004
    Figure PCTCN2022110872-appb-100005
    其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
  4. 根据权利要求1或2所述的非水电解液,其特征在于,R 2、R 3各自独立地选自
    Figure PCTCN2022110872-appb-100006
    其中,R 4、R 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
    Figure PCTCN2022110872-appb-100007
    Figure PCTCN2022110872-appb-100008
    其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022110872-appb-100009
    Figure PCTCN2022110872-appb-100010
    Figure PCTCN2022110872-appb-100011
    Figure PCTCN2022110872-appb-100012
  6. 根据权利要求1所述的非水电解液,其特征在于,R 1选自C2~10的不饱和烃基或
    Figure PCTCN2022110872-appb-100013
    其中,R 7、R 8各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;Y选自
    Figure PCTCN2022110872-appb-100014
    Figure PCTCN2022110872-appb-100015
    Figure PCTCN2022110872-appb-100016
    其中,R 9、R 10各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团;
    R 2、R 3各自独立地选自
    Figure PCTCN2022110872-appb-100017
    其中,R 4、R 5各自独立地选自C1~C5的亚烃基或C1~C5的卤代亚烃基;X选自
    Figure PCTCN2022110872-appb-100018
    其中,R 6各自独立地选自氢原子、C1~C7的饱和烃基、C1~C7的烃氧基、C1~C7的卤代烃氧基、C6~C7的芳香烃基、C2~C7的不饱和烃基、C1~C7的卤代烃基或含氰基的C1~C7的基团。
  7. 根据权利要求6所述的非水电解液,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022110872-appb-100019
  8. 根据权利要求1所述的非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.05~10%。
  9. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物或腈类化合物中的至少一种。
  10. 根据权利要求9所述的非水电解液,其特征在于,,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
    所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
    所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种;
    Figure PCTCN2022110872-appb-100020
    所述结构式2中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子和C1-C5基团中的一种;
    所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
    Figure PCTCN2022110872-appb-100021
    所述结构式3中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
    所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
  11. 根据权利要求1所述的非水电解液,其特征在于,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种;
    优选的,所述电解质盐的浓度为0.1mol/L-8mol/L。
  12. 一种电池,其特征在于,包括正极、负极以及如权利要求1~11任意一项所述的非水电解液。
PCT/CN2022/110872 2021-08-09 2022-08-08 一种非水电解液及电池 WO2023016411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910471.6A CN115911515A (zh) 2021-08-09 2021-08-09 一种非水电解液及电池
CN202110910471.6 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023016411A1 true WO2023016411A1 (zh) 2023-02-16

Family

ID=85200566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110872 WO2023016411A1 (zh) 2021-08-09 2022-08-08 一种非水电解液及电池

Country Status (2)

Country Link
CN (1) CN115911515A (zh)
WO (1) WO2023016411A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116895839A (zh) * 2023-08-29 2023-10-17 合肥市赛纬电子材料有限公司 非水电解液及含该非水电解液的钠离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069278A1 (ja) * 2015-10-23 2017-04-27 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2017208246A (ja) * 2016-05-19 2017-11-24 株式会社Gsユアサ 非水電解液二次電池用非水電解液、非水電解液二次電池、及び非水電解液二次電池の製造方法
CN109950620A (zh) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN111048831A (zh) * 2018-10-11 2020-04-21 Sk新技术株式会社 用于二次电池的电解液以及包含电解液的锂二次电池
CN111490293A (zh) * 2020-04-21 2020-08-04 东莞东阳光科研发有限公司 非水电解液添加剂、非水电解液及锂离子电池
CN111527636A (zh) * 2017-12-12 2020-08-11 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069278A1 (ja) * 2015-10-23 2017-04-27 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2017208246A (ja) * 2016-05-19 2017-11-24 株式会社Gsユアサ 非水電解液二次電池用非水電解液、非水電解液二次電池、及び非水電解液二次電池の製造方法
CN111527636A (zh) * 2017-12-12 2020-08-11 中央硝子株式会社 非水电解液电池用电解液和使用其的非水电解液电池
CN109950620A (zh) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN111048831A (zh) * 2018-10-11 2020-04-21 Sk新技术株式会社 用于二次电池的电解液以及包含电解液的锂二次电池
CN111490293A (zh) * 2020-04-21 2020-08-04 东莞东阳光科研发有限公司 非水电解液添加剂、非水电解液及锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116895839A (zh) * 2023-08-29 2023-10-17 合肥市赛纬电子材料有限公司 非水电解液及含该非水电解液的钠离子电池
CN116895839B (zh) * 2023-08-29 2024-04-05 合肥市赛纬电子材料有限公司 非水电解液及含该非水电解液的钠离子电池

Also Published As

Publication number Publication date
CN115911515A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2023045948A1 (zh) 一种二次电池
WO2023060770A1 (zh) 一种二次电池正极片及二次电池
CN114497692B (zh) 二次电池
WO2023134334A1 (zh) 锂离子电池
WO2023124604A1 (zh) 二次电池
WO2023138244A1 (zh) 一种非水电解液及二次电池
WO2024037187A1 (zh) 一种锂离子电池
WO2023124831A1 (zh) 锂离子电池
WO2024032171A1 (zh) 一种锂离子电池
WO2023179456A1 (zh) 非水电解液及二次电池
CN114361588A (zh) 一种锂离子电池
WO2024120053A1 (zh) 一种锂离子电池
WO2023016411A1 (zh) 一种非水电解液及电池
WO2023016412A1 (zh) 一种非水电解液及电池
WO2023104038A1 (zh) 一种二次电池
WO2023279953A1 (zh) 一种非水电解液及电池
WO2022218145A1 (zh) 一种非水电解液及锂离子电池
WO2022042374A1 (zh) 锂离子电池非水电解液以及锂离子电池
EP4325620A1 (en) Iron phosphate lithium battery
WO2023020323A1 (zh) 一种非水电解液及电池
WO2024016897A1 (zh) 一种非水电解液及二次电池
WO2024078116A1 (zh) 一种非水电解液及二次电池
WO2023000889A1 (zh) 一种非水电解液及锂离子电池
CN117352836A (zh) 一种非水电解液添加剂、非水电解液和二次电池
CN117558979A (zh) 一种非水电解液添加剂、非水电解液和二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE