WO2023020323A1 - 一种非水电解液及电池 - Google Patents

一种非水电解液及电池 Download PDF

Info

Publication number
WO2023020323A1
WO2023020323A1 PCT/CN2022/110874 CN2022110874W WO2023020323A1 WO 2023020323 A1 WO2023020323 A1 WO 2023020323A1 CN 2022110874 W CN2022110874 W CN 2022110874W WO 2023020323 A1 WO2023020323 A1 WO 2023020323A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
structural formula
cyclic
group
electrolytic solution
Prior art date
Application number
PCT/CN2022/110874
Other languages
English (en)
French (fr)
Inventor
郑仲天
易洋
刘晋皓
向书槐
胡时光
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023020323A1 publication Critical patent/WO2023020323A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of secondary batteries, and in particular relates to a nonaqueous electrolytic solution and a battery.
  • lithium-ion batteries Due to its advantages of high working voltage, wide working temperature range, high energy density and power density, no memory effect and long cycle life, lithium-ion batteries have been widely used in the field of 3C digital products such as mobile phones and notebook computers, as well as new energy vehicles. application.
  • the substances in the electrolyte will decompose on the surface of the negative electrode to form a layer of SEI film, and at the same time, the surface of the positive electrode will correspondingly generate CEI film, SEI film and
  • the film formation of CEI film has a more obvious impact on the various electrochemical performances of lithium-ion batteries. It is an existing conventional practice to add additives to the electrolyte of lithium-ion batteries to improve the stability of the SEI film and CEI film, thereby improving the cycle stability of the battery.
  • the SEI film and CEI film formed by additives still have shortcomings such as uneven film surface thickness, poor high temperature stability, low lithium ion conductivity and high impedance, which have adverse effects on battery life and high rate discharge.
  • the invention provides a non-aqueous electrolyte and a battery.
  • the present invention provides a kind of non-aqueous electrolytic solution, comprises at least one in the compound shown in structural formula 1:
  • n is a natural number of 0-4, and A is selected from cyclic sulfate groups and their derivatives, cyclic sulfonate groups and their derivatives, cyclic carbonate groups and their derivatives, or cyclic sub Sulfate groups and their derivatives.
  • cyclic sulfate group and its derivatives are selected from groups shown in structural formula 2:
  • * is the bonding position
  • a, b, c are natural numbers, and the sum of a, b, c is 0 or 1
  • R 1 , R 2 , R 3 are each independently selected from hydrogen, halogen atoms, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • cyclic sulfonate group and its derivatives are selected from groups shown in structural formula 3:
  • R 4 , R 5 , R 6 are each independently selected from hydrogen, halogen atom, C1 -C5 alkyl group, heteroatom-containing group, and C1-C5 alkyl group in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatom includes one of O, N, S or halogen one or more species.
  • cyclic carbonate group and its derivatives are selected from groups shown in structural formula 4:
  • R 7 , R 8 , R 9 are each independently selected from hydrogen, halogen atom, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • cyclic sulfite group and its derivatives are selected from groups shown in structural formula 5:
  • * is the bonding position
  • g, h, i are natural numbers, and the sum of g, h, i is 0 or 1
  • R 10 , R 11 , R 12 are each independently selected from hydrogen, halogen atoms, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the compound represented by the structural formula 1 is added in an amount of 0.01-10%.
  • the non-aqueous electrolytic solution further includes an electrolyte salt selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , lower aliphatic At least one of lithium carboxylate salts.
  • an electrolyte salt selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , Li
  • the non-aqueous electrolyte also includes auxiliary additives, which include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and nitriles at least one of the compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 6,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from one of a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 7:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • nitrile compound comprises succinonitrile, glutaronitrile, ethylene glycol two (propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more.
  • the present invention provides a battery comprising a positive electrode, a negative electrode and the non-aqueous electrolyte as described above.
  • the compound shown in structural formula 1 is used as an additive, which can undergo electrochemical reactions on the electrode surface and can be moderately cross-linked to form a relatively stable film structure.
  • the central atom of the compound shown in structural formula 1 is a silicon atom, which has a good affinity with lithium, and its silicon-oxygen bond is connected to multiple ring structures A.
  • the remaining ring structure A is close to the electrode sheet due to the affinity of silicon and lithium, and it is easier to electrochemically react on the electrode surface to form a lithium salt, thereby forming a complete Strong, uniform film thickness and good lithium ion permeability SEI film or CEI film, so as to improve the high temperature performance of the battery and enhance the battery life.
  • the embodiment of the present invention provides a non-aqueous electrolytic solution, including at least one of a solvent, an electrolyte salt and a compound represented by structural formula 1:
  • n is a natural number of 0-4, and A is selected from cyclic sulfate groups and their derivatives, cyclic sulfonate groups and their derivatives, cyclic carbonate groups and their derivatives, or cyclic sub Sulfate groups and their derivatives.
  • the inventor speculates through research that the compound shown in structural formula 1 is added to the non-aqueous electrolyte, and the compound shown in structural formula 1 can undergo an electrochemical reaction on the surface of the electrode, and at the same time, it can be moderately cross-linked to form a relatively stable film structure.
  • the central atom of the compound shown in structural formula 1 is a silicon atom, which has a good affinity with lithium, and its silicon-oxygen bond is connected to multiple ring structures A.
  • the remaining ring structure A is close to the electrode sheet due to the affinity of silicon and lithium, and it is easier to electrochemically react on the electrode surface to form a lithium salt, thereby forming a complete Strong, uniform film thickness and good lithium ion permeability SEI film or CEI film, so as to improve the high temperature performance of the battery and enhance the battery life.
  • the cyclic sulfate group and its derivatives are selected from groups shown in structural formula 2:
  • * is the bonding position
  • a, b, c are natural numbers, and the sum of a, b, c is 0 or 1
  • R 1 , R 2 , R 3 are each independently selected from hydrogen, halogen atoms, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • the cyclic sulfonate group and its derivatives are selected from groups represented by structural formula 3:
  • R 4 , R 5 , R 6 are each independently selected from hydrogen, halogen atom, C1 -C5 alkyl group, heteroatom-containing group, and C1-C5 alkyl group in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatom includes one of O, N, S or halogen one or more species.
  • the cyclic carbonate group and its derivatives are selected from groups represented by structural formula 4:
  • R 7 , R 8 , R 9 are each independently selected from hydrogen, halogen atom, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • the cyclic sulfite group and its derivatives are selected from groups represented by structural formula 5:
  • * is the bonding position
  • g, h, i are natural numbers, and the sum of g, h, i is 0 or 1
  • R 10 , R 11 , R 12 are each independently selected from hydrogen, halogen atoms, C1-C5 Alkyl groups, heteroatom-containing groups, and C1-C5 alkyl groups in which at least one hydrogen atom is replaced by a heteroatom-containing group, and the heteroatoms include one of O, N, S or halogen or Various.
  • examples of the above-mentioned alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl and the like.
  • halogen atom examples include fluorine atom, chlorine atom, bromine atom, iodine atom and the like, and fluorine atom is preferable.
  • nitrogen-containing groups such as amino, hydrazino, nitro, cyano, isocyano, and amidino
  • Oxygen-containing groups such as alkoxy group
  • Sulfur-containing groups such as acyl group, alkylsulfinylamino group, and thiocarboxyl group
  • halogen-containing groups such as fluorine atom, chlorine atom, bromine atom, and iodine atom.
  • the compounds shown in structural formula 1 include but are not limited to the following compounds:
  • the compounds represented by structural formula 1 include but are not limited to the following compounds:
  • the compounds shown in structural formula 1 include but are not limited to the following compounds:
  • the compounds shown in structural formula 1 include but are not limited to the following compounds:
  • the above compounds may be used alone or in combination of two or more.
  • the compound of structural formula 1 can adopt following method to prepare:
  • the compound represented by structural formula 1 is generated by metathesis reaction between silicon tetrachloride and the compound represented by structural formula 8.
  • A is selected from cyclic sulfate ester group and its derivatives, cyclic sulfonate ester group and its derivatives, cyclic carbonate group and its derivatives or cyclic sulfite groups and their derivatives.
  • the compound represented by the structural formula 1 is added in an amount of 0.01-10%.
  • the compound represented by the structural formula 1 is added in an amount of 0.1-5%.
  • the mass percentage of the compound represented by the structural formula 1 can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2%, 2.5% %, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the addition amount of the compound shown in Structural Formula 1 is within the above range, the stability of film formation on the electrode surface can be effectively maintained, and the performance of the battery can be improved. If the addition amount of the compound shown in Structural Formula 1 is too small, it is difficult to significantly affect the performance of the battery. If the compound shown in structural formula 1 is added too much, it may affect the function of other substances in the electrolyte due to its excessive decomposition products.
  • the non-aqueous electrolytic solution further includes electrolyte salts, and the electrolyte salts include one or more of lithium salts, sodium salts, potassium salts, magnesium salts, zinc salts and aluminum salts.
  • the electrolyte salt is selected from lithium salts or sodium salts.
  • the electrolyte salt is selected from LiPF 6 , LiBOB, LiDFOB, LiPO 2 F 2 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 F) 2 , LiClO 4 , LiAlCl 4 , LiCF 3 SO 3 , Li 2 B 10 Cl 10 , at least one of lithium salts of lower aliphatic carboxylates .
  • the electrolyte salt is selected from other salts such as sodium salt, potassium salt, magnesium salt, zinc salt or aluminum salt, the lithium in the above lithium salt can be replaced with sodium, potassium, magnesium, zinc or aluminum.
  • the sodium salt is selected from sodium perchlorate (NaClO 4 ), sodium hexafluorophosphate (NaPF 6 ), sodium tetrafluoroborate (NaBF 4 ), sodium trifluoromethanesulfonate (NaFSI), At least one of sodium trifluoromethanesulfonate (NaTFSI).
  • the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.1 mol/L-8 mol/L. In a preferred embodiment, the concentration of the electrolyte salt in the non-aqueous electrolyte is 0.5 mol/L-2.5 mol/L. Specifically, the concentration of the electrolyte salt may be 0.5 mol/L, 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L.
  • the non-aqueous electrolyte also includes auxiliary additives, the auxiliary additives include cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and at least one of nitrile compounds;
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 6,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group.
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 7:
  • R 31 , R 32 , and R 32 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group.
  • the unsaturated phosphoric acid ester compound may be tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, dipropargyl Trifluoromethyl phosphate, Dipropargyl-2,2,2-trifluoroethyl phosphate, Dipropargyl-3,3,3-trifluoropropyl phosphate, Dipropargyl hexafluoroiso Propyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl phosphate, di At least one of allyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, diallyl hexafluoroisopropyl phosphate kind.
  • nitrile compound comprises succinonitrile, glutaronitrile, ethylene glycol two (propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more.
  • the addition amount of any optional substance in the auxiliary additive in the non-aqueous electrolyte is less than 10%, preferably, the addition amount is 0.1-5%, more Preferably, the added amount is 0.1%-2%.
  • the addition amount of any optional substance in the auxiliary additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2% %, 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the auxiliary additive is selected from fluoroethylene carbonate, based on 100% of the total mass of the non-aqueous electrolyte, the added amount of the fluoroethylene carbonate is 0.05%-30%.
  • the compound shown in Structural Formula 1 when added together with the auxiliary additive, it shows an obvious synergistic effect in improving battery performance , indicating that the compound shown in structural formula 1 and the existing auxiliary additives can form a film together on the surface of the electrode to make up for the film-forming defects of a single addition, and obtain a more stable passivation film.
  • the non-aqueous electrolyte solution further includes a solvent
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents, carboxylate solvents and sulfone solvents.
  • ether solvents include cyclic ethers or chain ethers, preferably chain ethers with 3 to 10 carbon atoms and cyclic ethers with 3 to 6 carbon atoms.
  • the cyclic ethers can specifically be but not limited to It is 1,3-dioxolane (DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-CH 3 -THF), 2-tri One or more of fluoromethyltetrahydrofuran (2-CF 3 -THF);
  • the chain ether can be, but not limited to, dimethoxymethane, diethoxymethane, ethoxymethoxymethane , Ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether.
  • Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane which are low in viscosity and impart high ion conductivity, are particularly preferred because the solvation ability of chain ethers with lithium ions is high and ion dissociation can be improved.
  • methyl methane One kind of ether compound may be used alone, or two or more kinds may be used in any combination and ratio.
  • the addition amount of the ether compound is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio of the non-aqueous solvent is 100%, the volume ratio is usually more than 1%, preferably 1% by volume.
  • the ratio is 2% or more, more preferably 3% or more by volume, and usually 30% or less by volume, preferably 25% or less by volume, more preferably 20% or less by volume.
  • the total amount of the ether compounds may satisfy the above range.
  • the addition amount of the ether compound is within the above-mentioned preferred range, it is easy to ensure the effect of improving the ion conductivity by increasing the lithium ion dissociation degree of the chain ether and reducing the viscosity.
  • the negative electrode active material is a carbon material, it is possible to suppress the co-intercalation phenomenon of the chain ether and lithium ions, so that the input-output characteristics and the charge-discharge rate characteristics can be brought into appropriate ranges.
  • the nitrile solvent may specifically be, but not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.
  • the carbonate solvents include cyclic carbonates or chain carbonates
  • the cyclic carbonates can specifically be, but not limited to, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone One or more of (GBL), butylene carbonate (BC);
  • the chain carbonate can specifically be, but not limited to, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC ), one or more of dipropyl carbonate (DPC).
  • the content of cyclic carbonate is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-pressure lithium-ion battery of the present invention, but the lower limit of its content is relative to that of the non-aqueous electrolyte when one is used alone.
  • the volume ratio of the total solvent is usually 3% or more, preferably 5% or more.
  • the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume.
  • the content of the chain carbonate is not particularly limited, but is usually 15% or more by volume, preferably 20% or more by volume, and more preferably 25% or more by volume relative to the total amount of solvent in the nonaqueous electrolyte.
  • the volume ratio is usually 90% or less, preferably 85% or less, and more preferably 80% or less.
  • the content of the chain carbonate within the above range, it is easy to make the viscosity of the non-aqueous electrolytic solution in an appropriate range, suppress the decrease in ion conductivity, and contribute to making the output characteristics of the non-aqueous electrolyte battery a good range.
  • the total amount of the chain carbonates may satisfy the above-mentioned range.
  • chain carbonates having fluorine atoms may also be preferably used.
  • the number of fluorine atoms in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • these fluorine atoms may be bonded to the same carbon or to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
  • the carboxylate solvent includes cyclic carboxylates and/or chain carbonates.
  • cyclic carboxylic acid esters include one or more of ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone.
  • chain carbonates include: methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), butyl propionate one or more of .
  • the sulfone solvent includes cyclic sulfone and chain sulfone, but preferably, in the case of cyclic sulfone, it usually has 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms. In the case of chain sulfone, it is usually a compound having 2 to 6 carbon atoms, preferably 2 to 5 carbon atoms.
  • the amount of sulfone solvent added is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio is usually more than 0.3%, preferably The volume ratio is 0.5% or more, more preferably 1% or more, and usually 40% or less, preferably 35% or less, more preferably 30% or less.
  • the total amount of the sulfone-based solvent may satisfy the above range.
  • the added amount of the sulfone solvent is within the above range, an electrolytic solution having excellent high-temperature storage stability tends to be obtained.
  • the solvent is a mixture of cyclic carbonates and chain carbonates.
  • Another embodiment of the present invention provides a battery, including a positive electrode, a negative electrode, and the non-aqueous electrolyte as described above.
  • the battery adopts the above-mentioned non-aqueous electrolyte, a passivation film with excellent performance can be formed on the positive electrode and the negative electrode, thereby effectively improving the high-temperature storage performance and high-temperature cycle performance of the battery, and improving the power characteristics of the battery.
  • the battery is a secondary battery
  • the secondary battery can be a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a magnesium secondary battery, a zinc secondary battery, an aluminum secondary battery wait.
  • the battery is a lithium metal battery, a lithium ion battery, a lithium sulfur battery, or a sodium ion battery.
  • the positive electrode includes a positive electrode active material layer, and the positive electrode active material layer includes a positive electrode active material.
  • the type of the positive electrode active material is not particularly limited and can be selected according to actual needs, as long as it can be reversibly embedded It is enough to be a positive electrode active material or a conversion type positive electrode material that deintercalates metal ions (lithium ions, sodium ions, potassium ions, magnesium ions, zinc ions, aluminum ions, etc.).
  • the battery is a lithium ion battery
  • its positive electrode active material can be selected from LiFe 1-x' M' x' PO 4 , LiMn 2-y' M y' O 4 and LiNi x Co y Mn z
  • M 1-xyz O 2 wherein M' is selected from one of Mn, Mg, Co, Ni, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti
  • M is selected from one or more of Fe, Co, Ni, Mn, Mg, Cu, Zn, Al, Sn, B, Ga, Cr, Sr, V or Ti, and 0 ⁇ x' ⁇ 1,0 ⁇ y' ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x ⁇ 1, 0 ⁇ z ⁇ 1, x+y+z ⁇ 1
  • the positive active material can also be selected from sulfide, selenide , one or more of the halides.
  • the positive electrode active material can be selected from LiCoO 2 , LiFePO 4 , LiFe 0.8 Mn 0.2 PO 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 One or more of O 2 , LiNi 0.5 Co 0.2 Mn 0.2 Al 0.1 O 2 , LiMn 2 O 4 , LiNi 0.5 Co 0.2 Al 0.3 O 2 .
  • the battery is a sodium ion battery
  • its positive electrode active material can be selected from metal sodium, carbon materials, alloy materials, overplated metal oxides, overplated metal sulfides, phosphorus-based materials, titanate materials , one or more of the Prussian blue materials.
  • the carbon material can be selected from one or more of graphite, soft carbon, and hard carbon
  • the alloy material can be an alloy material composed of at least two of Si, Ge, Sn, Pb, and Sb.
  • the alloy material can also be an alloy material composed of at least one of Si, Ge, Sn, Pb, Sb and C, the chemical formula of the overplated metal oxide and the overplated metal sulfide is M1 x N y , M1 can be selected from one or more of Fe, Co, Ni, Cu, Mn, Sn, Mo, Sb, V, N is selected from O or S, and the phosphorus-based material can be selected from red phosphorus, white phosphorus, black One or more of phosphorus, the titanate material can be selected from Na 2 Ti 3 O 7 , Na 2 Ti 6 O 13 , Na 4 Ti 5 O 12 , Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) One or more of 3 , the molecular formula of the Prussian blue material is Na x M [M' (CN) 6 ] y ⁇ zH 2 O, wherein, M is a transition metal, M' is a transition metal, 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1, 0 ⁇
  • the positive electrode further includes a positive electrode current collector, and the positive electrode material layer covers the surface of the positive electrode current collector.
  • the positive electrode current collector is selected from metal materials that can conduct electrons.
  • the positive electrode current collector includes one or more of Al, Ni, tin, copper, and stainless steel.
  • the positive electrode The current collector is selected from aluminum foil.
  • the positive electrode active material layer further includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode active material layer.
  • the positive electrode binder includes polyvinylidene fluoride, a copolymer of vinylidene fluoride, polytetrafluoroethylene, a copolymer of vinylidene fluoride-hexafluoropropylene, a copolymer of tetrafluoroethylene-hexafluoropropylene Copolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride Ethylene-trichloroethylene copolymer, vinylidene fluoride-fluorinated vinyl copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, thermoplastic polyimi
  • the positive electrode conductive agent includes one or more of metal conductive agents, carbon-based materials, metal oxide-based conductive agents, and composite conductive agents.
  • the metal conductive agent can be copper powder, nickel powder, silver powder and other metals
  • the carbon-based material can be carbon-based materials such as conductive graphite, conductive carbon black, conductive carbon fiber or graphene
  • the metal oxide-based conductive agent can be tin oxide , iron oxide, zinc oxide, etc.
  • the composite conductive agent can be composite powder, composite fiber, etc.
  • the conductive carbon black can be one or more of acetylene black, 350G, Ketjen black, carbon fiber (VGCF), and carbon nanotubes (CNTs).
  • the negative electrode includes a negative electrode material layer, the negative electrode material layer includes a negative electrode active material, and the negative electrode active material includes one or more of silicon-based negative electrodes, carbon-based negative electrodes, tin-based negative electrodes, and lithium negative electrodes. kind.
  • the silicon-based negative electrode includes one or more of silicon materials, silicon oxides, silicon-carbon composite materials, and silicon alloy materials;
  • the carbon-based negative electrode includes graphite, hard carbon, soft carbon, graphene, intermediate One or more of phase carbon microspheres;
  • the tin-based negative electrode includes one or more of tin, tin carbon, tin oxide, and tin metal compounds;
  • the lithium negative electrode includes one of metal lithium or lithium alloy one or more species.
  • the lithium alloy may be at least one of lithium-silicon alloy, lithium-sodium alloy, lithium-potassium alloy, lithium-aluminum alloy, lithium-tin alloy and lithium-indium alloy.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer covers the surface of the negative electrode current collector.
  • the material of the negative electrode current collector may be the same as that of the positive electrode current collector, and details will not be repeated here.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder and the negative electrode conductive agent may be the same as the positive electrode binder and the positive electrode conductive agent respectively, and will not be repeated here.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, which can be a ceramic diaphragm, a polymer diaphragm, a non-woven fabric, an inorganic-organic composite diaphragm, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), Double-layer PP/PE, double-layer PP/PP and triple-layer PP/PE/PP separators.
  • This embodiment is used to illustrate the preparation method of the non-aqueous electrolyte and battery disclosed in the present invention, including the following steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • positive electrode active material lithium nickel cobalt manganese oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 at a mass ratio of 93:4:3, conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF), and then combine them Disperse in N-methyl-2-pyrrolidone (NMP) to obtain positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry is evenly coated on both sides of the aluminum foil, dried, calendered and vacuum-dried, and the aluminum lead-out wire is welded with an ultrasonic welder to obtain a positive plate, the thickness of which is between 12-15 ⁇ m.
  • a three-layer separator with a thickness of 20 ⁇ m was placed between the positive plate and the negative plate, and then the sandwich structure composed of the positive plate, the negative plate and the separator was wound, and then the wound body was flattened and put into an aluminum foil packaging bag. °C for 48 hours under vacuum to obtain the cell to be filled.
  • This comparative example is used for comparing and illustrating the method of the non-aqueous electrolyte and the battery disclosed by the present invention, including most of the operating steps in Example 1, and the difference is that:
  • Battery capacity retention rate (%) retention capacity D2/initial capacity D1 ⁇ 100%
  • Battery capacity recovery rate (%) recovery capacity D3/initial capacity D1 ⁇ 100%
  • Volume expansion rate (%) (battery volume V2 after storage-initial battery volume V1)/initial battery volume V1 ⁇ 100%;
  • Internal resistance growth rate (%) battery impedance F2 after storage/initial impedance F1 ⁇ 100%.
  • test results of comparative examples 1-6 and comparative examples 1-4 can be known, compared to traditional vinylene carbonate (VC), vinyl sulfate (DTD) and 1,3-propane sultone (PS),
  • VC vinylene carbonate
  • DTD vinyl sulfate
  • PS 1,3-propane sultone
  • Using the compound shown in the structural formula 1 provided by this application as an additive can more significantly improve the storage performance of lithium-ion batteries at high temperatures, indicating that the silicon-containing groups connected to multiple ring structures A introduced in this application can be used in
  • the passivation film obtained by decomposing the electrode surface contains a more stable structure, and the silicon-oxygen bond between multiple ring structures A has a cross-linking effect, which ensures the bonding effect between the decomposition products of multiple ring structures A, so
  • the passivation film formed by the compound represented by structural formula 1 has more excellent high temperature stability and lower internal resistance.
  • Example 1 Comparing the test results of Example 1 and Examples 7-12, it can be seen that as the amount of the compound represented by Structural Formula 1 increases, the high-temperature storage performance of the lithium-ion battery first increases and then decreases. Especially, when the compound represented by structural formula 1 is added in an amount of 0.5-5%, the lithium-ion battery has the best high-temperature storage performance. That is, when the addition amount of the compound represented by the structural formula 1 is too low, the performance improvement of the lithium-ion battery is not obvious enough.
  • the addition amount of the compound shown in structural formula 1 is not the more the better, its reason is: along with the addition of the content of the compound shown in structural formula 1, the composition of the passivation film on the electrode surface changes, because the composition of the passivation film It is relatively complex, including the mixed product obtained from the decomposition of electrolyte salt, solvent and additives. Its performance is the comprehensive performance of the combination of various components. With the excessive addition of the compound shown in structural formula 1, the passivation film comes from structural formula 1. If the composition content of the decomposition products of the compounds shown is too large, it is not conducive to the inhibitory effect of the passivation film on gas production under high temperature storage, and also leads to an increase in internal resistance.

Abstract

为克服现有极片表面钝化膜存在厚度不均一、高温稳定性差、锂离子电导率较低和阻抗较高的问题,本发明提供了一种非水电解液,包括结构式1所示的化合物中的至少一种。其中,n为0-4的自然数,A选自环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物、环状碳酸酯基团及其衍生物或环状亚硫酸酯基团及其衍生物。同时,本发明还公开了包括上述非水电解液的锂离子电池。本发明提供的非水电解液可在电极表面发生电化学反应,同时能够适度交联形成比较稳定的薄膜结构,利于改善极片表面钝化膜的质量。

Description

一种非水电解液及电池 技术领域
本发明属于二次电池技术领域,具体涉及一种非水电解液及电池。
背景技术
锂离子电池因其具有工作电压高、工作温度范围广、能量密度和功率密度大、无记忆效应和循环寿命长等优点,在手机、笔记本电脑等3C数码产品领域以及新能源汽车得到了广泛的应用。
根据目前的研究表明,锂离子电池在化成和电池充放电循环的过程中,电解液中的物质会在负极的表面分解以形成一层SEI膜,同时正极表面对应地生成CEI膜,SEI膜和CEI膜的成膜优劣对锂离子电池的各项电化学性能有较为明显的影响。在锂离子电池的电解液中加入添加剂,以提高形成SEI膜和CEI膜的稳定性,进而提高电池的循环稳定性是现有常规的做法。目前添加剂形成的SEI膜和CEI膜,仍存在膜表面厚度不均一、高温稳定性差、锂离子电导率较低和阻抗较高等缺点,对电池寿命和高倍率放电都有不利影响。
发明内容
针对现有极片表面钝化膜存在厚度不均一、高温稳定性差、锂离子电导率较低和阻抗较高的问题,本发明提供了一种非水电解液及电池。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供一种非水电解液,包括结构式1所示的化合物中的至少一种:
Figure PCTCN2022110874-appb-000001
其中,n为0-4的自然数,A选自环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物、环状碳酸酯基团及其衍生物或环状亚硫酸酯基团及其衍生物。
可选的,所述环状硫酸酯基团及其衍生物选自如结构式2所示的基团:
Figure PCTCN2022110874-appb-000002
其中,*为键合位置,a、b、c为自然数,且a、b、c之和为0或1,R 1、R 2、R 3各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
可选的,所述环状磺酸酯基团及其衍生物选自结构式3所示的基团:
Figure PCTCN2022110874-appb-000003
其中,*为键合位置,d、e、f为自然数,且d、e、f之和为0、1或2,R 4、R 5、R 6各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
可选的,所述环状碳酸酯基团及其衍生物选自结构式4所示的基团:
Figure PCTCN2022110874-appb-000004
其中,*为键合位置,l、o、p为自然数,且l、o、p之和为0或1,R 7、R 8、R 9各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
可选的,所述环状亚硫酸酯基团及其衍生物选自结构式5所示的基团:
Figure PCTCN2022110874-appb-000005
其中,*为键合位置,g、h、i为自然数,且g、h、i之和为0或1,R 10、R 11、R 12各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
可选的,所述结构式1所示的化合物选自以下化合物中的一种或多种:
Figure PCTCN2022110874-appb-000006
Figure PCTCN2022110874-appb-000007
可选的,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.01~10%。
可选的,所述非水电解液还包括电解质盐,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
可选的,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式6所示化合物中的至少一种,
Figure PCTCN2022110874-appb-000008
所述结构式6中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式7所示化合物中的至少一种:
Figure PCTCN2022110874-appb-000009
所述结构式7中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
另一方面,本发明提供了一种电池,包括正极、负极以及如上所述的非水电解液。
根据本发明提供的非水电解液,采用了结构式1所示的化合物作为添加剂,其可在电极表面发生电化学反应,同时能够适度交联形成比较稳定的薄膜结构。具体的,结构式1所示的化合物的中心原子为硅原子,其与锂有较好的亲和性,其硅氧键连接着多个环状结构A,当结构式1所示的化合物的其中一个环状结构A在电极表面发生电化学反应形成锂盐后,剩余环状结构A由于硅锂的亲和作用紧密靠近电极极片,更容易在电极表面发生电化学反应形成锂盐,从而形成完整性强、膜厚薄均匀且锂离子通透性好的SEI膜或CEI膜,从而提高电池高温性能,增强电池寿命。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并 不用于限定本发明。
本发明实施例提供了一种非水电解液,包括溶剂、电解质盐和结构式1所示的化合物中的至少一种:
Figure PCTCN2022110874-appb-000010
其中,n为0-4的自然数,A选自环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物、环状碳酸酯基团及其衍生物或环状亚硫酸酯基团及其衍生物。
发明人经研究推测认为,在非水电解液中加入了结构式1所示的化合物,结构式1所示的化合物可在电极表面发生电化学反应,同时能够适度交联形成比较稳定的薄膜结构。具体的,结构式1所示的化合物的中心原子为硅原子,其与锂有较好的亲和性,其硅氧键连接着多个环状结构A,当结构式1所示的化合物的其中一个环状结构A在电极表面发生电化学反应形成锂盐后,剩余环状结构A由于硅锂的亲和作用紧密靠近电极极片,更容易在电极表面发生电化学反应形成锂盐,从而形成完整性强、膜厚薄均匀且锂离子通透性好的SEI膜或CEI膜,从而提高电池高温性能,增强电池寿命。
在一些实施例中,所述环状硫酸酯基团及其衍生物选自如结构式2所示的基团:
Figure PCTCN2022110874-appb-000011
其中,*为键合位置,a、b、c为自然数,且a、b、c之和为0或1,R 1、R 2、R 3各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
在一些实施例中,所述环状磺酸酯基团及其衍生物选自结构式3所示的基团:
Figure PCTCN2022110874-appb-000012
其中,*为键合位置,d、e、f为自然数,且d、e、f之和为0、1或2,R 4、R 5、R 6各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
在一些实施例中,所述环状碳酸酯基团及其衍生物选自结构式4所示的基团:
Figure PCTCN2022110874-appb-000013
其中,*为键合位置,l、o、p为自然数,且l、o、p之和为0或1,R 7、R 8、R 9各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
在一些实施例中,所述环状亚硫酸酯基团及其衍生物选自结构式5所示的基团:
Figure PCTCN2022110874-appb-000014
其中,*为键合位置,g、h、i为自然数,且g、h、i之和为0或1,R 10、R 11、R 12各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
在本发明的描述中,作为上述的烷基,可列举的有:甲基、乙基、丙基、异丙基、丁基、异丁基等。
作为上述的卤素原子,可列举的有:氟原子、氯原子、溴原子、碘原子等,优选氟原子。
作为上述的含杂原子的基团,可列举的有:氨基、肼基、硝基、氰基、异氰基、脒基等含氮基团;烷酰基、羧基、烷氧基羰基、羟基、烷氧基等含氧基团;磺基、氧硫基、烷基氧硫基、烷基磺酰基、烷基磺酰基氨基、烷基氨基磺酰基、烷基亚磺酰基、烷基氨基亚磺酰基、 烷基亚磺酰基氨基、硫代羧基等含硫基团;氟原子、氯原子、溴原子、碘原子等含卤素基团。
以下通过具体的化合物对本发明提供的结构式1所示的化合物进行说明:
当A选自结构式4所示的基团时,结构式1所示的化合物包括但不限于下列化合物:
Figure PCTCN2022110874-appb-000015
当A选自结构式5所示的基团时,所述结构式1所示的化合物包括但不限于下列化合物:
Figure PCTCN2022110874-appb-000016
当A选自结构式2所示的基团时,所述结构式1所示的化合物包括但不限于下列化合物:
Figure PCTCN2022110874-appb-000017
当A选自结构式3所示的基团时,所述结构式1所示的化合物包括但不限于下列化合物:
Figure PCTCN2022110874-appb-000018
上述化合物可单独使用,也可两种或以上组合使用。
本领域技术人员在知晓结构式1的化合物的结构式的情况下,根据化学合成领域的公知常识可以知晓上述化合物的制备方法。例如:结构式1的化合物可采用以下方法制备得到:
采用四氯化硅与结构式8所示的化合物发生复分解反应,生成结构式1所示的化合物。
HO——(CH 2) n——A
结构式8
其中,n=0-4,A选自环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物、环状碳酸酯基团及其衍生物或环状亚硫酸酯基团及其衍生物。
在一些实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.01~10%。
在优选的实施例中,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.1~5%。
具体的,所述结构式1所示的化合物的质量百分比可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
当结构式1所示的化合物添加量处于上述范围内时,可以有效维持电极表面成膜的稳定性,提升电池性能,若结构式1所示的化合物添加量过少,则难以对电池的性能产生明显的提升效果;若结构式1所示的化合物添加量过多则可能因其分解产物过多而影响电解液中其他物质的功能发挥。
在一些实施例中,所述非水电解液还包括电解质盐,所述电解质盐包括锂盐、钠盐、钾盐、镁盐、锌盐和铝盐中的一种或多种。在优选的实施例中,所述电解质盐选自锂盐或钠盐。
在优选实施例中,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。若所述电解质盐选自钠盐、钾盐、镁盐、锌盐或铝盐等其它盐时,可将上述锂盐中的锂对应换成钠、钾、镁、锌或铝等。
在优选实施例中,所述钠盐选自高氯酸钠(NaClO 4)、六氟磷酸钠(NaPF 6)、四氟硼酸钠(NaBF 4)、三氟甲基磺酸钠(NaFSI)、双三氟甲基磺酸钠(NaTFSI)中的至少一种。
在一些实施例中,所述非水电解液中,所述电解质盐的浓度为0.1mol/L-8mol/L。在优选的实施例中,所述非水电解液中,所述电解质盐的浓度为0.5mol/L-2.5mol/L。具体的,所述电解质盐的浓度可以为0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L。
在一些实施例中,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;
优选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式6所示化合物中的至少一种,
Figure PCTCN2022110874-appb-000019
所述结构式6中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种。
所述不饱和磷酸酯类化合物选自结构式7所示化合物中的至少一种:
Figure PCTCN2022110874-appb-000020
所述结构式7中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基。具体的,所述不饱和磷酸酯类化合物可为磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、 二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
需要说明的是,除非特殊说明,一般情况下,所述辅助添加剂中任意一种可选物质在非水电解液中的添加量为10%以下,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~2%。具体的,所述辅助添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当辅助添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。
所述非水电解液中,相比于单一添加或是其他现有添加剂的组合,结构式1所示的化合物与所述辅助添加剂一同添加时,在提升电池性能方面体现出明显的协同提升的作用,说明结构式1所示的化合物与现有辅助添加剂在电极表面共同成膜能够弥补单一添加的成膜缺陷,得到更加稳定的钝化膜。
在一些实施例中,所述非水电解液还包括溶剂,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂、羧酸酯类溶剂和砜类溶剂中的一种或多种。
在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH 3-THF),2-三氟甲基四氢呋喃(2-CF 3-THF)中的一种或多种;所述链状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性物质为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。
在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。
在一些实施例中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、 碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。环状碳酸酯的含量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。
在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。
在一些实施例中,羧酸酯类溶剂包括环状羧酸酯和/或链状碳酸酯。作为环状羧酸酯的例子,可以列举如:γ-丁内酯、γ-戊内酯、δ-戊内酯中的一种或多种。作为链状碳酸酯的例子,可以列举如:乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
在一些实施例中,砜类溶剂包括环状砜和链状砜,但优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,相对于非水电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。
在优选的实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
本发明的另一实施例提供了一种电池,包括正极、负极以及如上所述的非水电解液。
所述电池由于采用了如上所述的非水电解液,能够在正极和负极上形成性能优异的钝化膜,进而有效地提高了电池的高温存储性能和高温循环性能,提升电池功率特性。
在一些实施例中,所述电池为二次电池,所述二次电池可以是锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池、铝二次电池等。
在优选的实施例中,所述电池为锂金属电池、锂离子电池、锂硫电池、钠离子电池。
在一些实施例中,所述正极包括正极活性材料层,所述正极活性材料层包括正极活性材料,所述正极活性材料的种类没有特别限制,可以根据实际需求进行选择,只要是能够可逆 地嵌入/脱嵌金属离子(锂离子、钠离子、钾离子、镁离子、锌离子、铝离子等)的正极活性材料或转换型正极材料即可。
在优选实施例中,所述电池为锂离子电池,其正极活性材料可选自LiFe 1-x’M’ x’PO 4、LiMn 2-y’M y’O 4和LiNi xCo yMn zM 1-x-y-zO 2中的一种或多种,其中,M’选自Mn、Mg、Co、Ni、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,M选自Fe、Co、Ni、Mn、Mg、Cu、Zn、Al、Sn、B、Ga、Cr、Sr、V或Ti中的一种或多种,且0≤x’<1,0≤y’≤1,0≤y≤1,0≤x≤1,0≤z≤1,x+y+z≤1,所述正极活性材料还可以选自硫化物、硒化物、卤化物中的一种或几种。更为优选的,所述正极活性材料可选自LiCoO 2、LiFePO 4、LiFe 0.8Mn 0.2PO 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi 0.5Co 0.2Mn 0.2Al 0.1O 2、LiMn 2O 4、LiNi 0.5Co 0.2Al 0.3O 2中的一种或多种。
在优选实施例中,所述电池为钠离子电池,其正极活性材料可选自金属钠、碳材料、合金材料、过镀金属氧化物、过镀金属硫化物、磷基材料、钛酸盐材料、普鲁士蓝类材料中的一种或几种。所述碳材料可选自石墨、软碳、硬碳中的一种或几种,所述合金材料可选自由Si、Ge、Sn、Pb、Sb中的至少两种组成的合金材料,所述合金材料还可选自由Si、Ge、Sn、Pb、Sb中的至少一种与C组成的合金材料,所述过镀金属氧化物和所述过镀金属硫化物的化学式为M1 xN y,M1可选自Fe、Co、Ni、Cu、Mn、Sn、Mo、Sb、V中的一种或几种,N选自O或S,所述磷基材料可选自红磷、白磷、黑磷中的一种或几种,所述钛酸盐材料可选自Na 2Ti 3O 7、Na 2Ti 6O 13、Na 4Ti 5O 12、Li 4Ti 5O 12、NaTi 2(PO 4) 3中的一种或几种,所述普鲁士蓝类材料的分子式为Na xM[M′(CN) 6] y·zH 2O,其中,M为过渡金属,M′为过渡金属,0<x≤2,0.8≤y<1,0<z≤20。
在一些实施例中,所述正极还包括正极集流体,所述正极材料层覆盖于所述正极集流体的表面。
所述正极集流体选自可传导电子的金属材料,优选的,所述正极集流体包括Al、Ni、锡、铜、不锈钢的一种或多种,在更优选的实施例中,所述正极集流体选自铝箔。
在一些实施例中,所述正极活性材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极活性材料层。
在一些实施例中,所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
在一些实施例中,所述正极导电剂包括金属导电剂、碳系材料、金属氧化物系导电剂、复合导电剂中的一种或多种。具体的,金属导电剂可以为铜粉、镍粉、银粉等金属;碳系材料可为导电石墨、导电炭黑、导电碳纤维或石墨烯等碳系材料;金属氧化物系导电剂可为氧化锡、氧化铁、氧化锌等;复合导电剂可以为复合粉、复合纤维等。更具体的,导电炭黑可 以为乙炔黑、350G、科琴黑、碳纤维(VGCF)、碳纳米管(CNTs)中的一种或几种。
在一些实施例中,所述负极包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料包括硅基负极、碳基负极、锡基负极、锂负极中的一种或多种。其中,所述硅基负极包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料中的一种或多种;所述碳基负极包括石墨、硬碳、软碳、石墨烯、中间相碳微球中的一种或多种;所述锡基负极包括锡、锡碳、锡氧、锡金属化合物中的一种或多种;所述锂负极包括金属锂或锂合金中的一种或多种。所述锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层覆盖于所述负极集流体的表面。所述负极集流体的材料可与所述正极集流体相同,不再赘述。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂和负极导电剂可分别与所述正极粘接剂和正极导电剂相同,不再赘述。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是陶瓷隔膜、聚合物隔膜、无纺布、无机-有机复合隔膜等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
表1
Figure PCTCN2022110874-appb-000021
Figure PCTCN2022110874-appb-000022
注:以下实施例和对比例中采用的化合物选自于表1。
实施例1~13
本实施例用于说明本发明公开的非水电解液及电池的制备方法,包括以下操作步骤:
1)非水电解液的制备:
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EC)按质量比为EC:DEC:EC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF 6)至摩尔浓度为1mol/L,以所述非水电解液的总重量为100%计,加入如表2~4中实施例1~13所示质量百分含量的添加剂。
2)正极板的制备:
按93:4:3的质量比混合正极活性材料锂镍钴锰氧化物LiNi 0.5Co 0.2Mn 0.3O 2,导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在12-15μm之间。
3)负极板的制备:
按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm之间。
4)电芯的制备:
在正极板和负极板之间放置厚度为20μm的三层隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成:
在露点控制在-40℃以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,静止24h。
然后按以下步骤进行首次充电的常规化成:0.05C恒流充电180min,0.2C恒流充电至3.95V,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V,得到一种LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子电池。
对比例1~5
本对比例用于对比说明本发明公开的非水电解液及电池的方法,包括实施例1中大部分的操作步骤,其不同之处在于:
非水电解液的制备中,加入如表2~4中对比例1~5所示质量百分含量的添加剂。
性能测试
对实施例1-13和对比例1-5制备得到的锂离子电池进行如下性能测试:
高温储存性能测试
将化成后的锂离子电池在常温下以1C的电流恒流充电至4.2V,再恒流恒压充电至电流下降至0.05C,然后以1C的电流恒流放电至3.0V,测量电池初始放电容量D1、初始电池体积V1及初始阻抗F1,然后充至满电在60℃环境中储存30天后,以1C放电至3V,测量电池的保持容量D2、恢复容量D3、储存后电池阻抗F2及储存后电池体积V2。计算公式如下:
电池容量保持率(%)=保持容量D2/初始容量D1×100%;
电池容量恢复率(%)=恢复容量D3/初始容量D1×100%;
体积膨胀率(%)=(储存后电池体积V2-初始电池体积V1)/初始电池体积V1×100%;
内阻增长率(%)=储存后电池阻抗F2/初始阻抗F1×100%。
1、将实施例1~6和对比例1~4得到的测试结果填入表2。
表2
Figure PCTCN2022110874-appb-000023
对比实施例1~6和对比例1~4的测试结果可知,相比于传统的碳酸亚乙烯酯(VC)、硫 酸乙烯酯(DTD)和1,3-丙烷磺酸内酯(PS),采用本申请提供的结构式1所示的化合物作为添加剂,能够更加明显地改善锂离子电池在高温下的存储性能,说明本申请中引入的连接多个环状结构A的含硅基团,其在电极表面分解得到的钝化膜含有更加稳定的结构,多个环状结构A之间的硅氧键具有交联的作用,保证了多个环状结构A分解产物之间的键连效果,因此由结构式1所示化合物形成的钝化膜具有更加优异的高温稳定性,同时内阻较低。
2、将实施例1、7~12得到的测试结果填入表3。
表3
Figure PCTCN2022110874-appb-000024
对比实施例1和实施例7~12的测试结果可知,随着结构式1所示的化合物的添加量的提升,锂离子电池的高温存储性能先提升后降低。尤其是,当结构式1所示的化合物的添加量在0.5~5%时,锂离子电池具有最优高温存储性能。即当结构式1所示的化合物的添加量过低时,对于锂离子电池的性能提升不够明显。但结构式1所示的化合物的添加量并非越多越好,其原因是:随着结构式1所示的化合物的含量的添加,电极表面钝化膜的成分发生了改变,由于钝化膜的成分较为复杂,包括来自电解质盐、溶剂和添加剂分解得到的混合产物,其性能是各成分组合后的综合性能,随着结构式1所示的化合物的过多添加而导致钝化膜中来自于结构式1所示的化合物分解产物的成分含量过大,则反而不利于钝化膜对于高温存储下产气的抑制效果,也导致了内阻的提升。
3、将实施例1、实施例13、对比例3和对比例5得到的测试结果填入表4。
表4
Figure PCTCN2022110874-appb-000025
对比表4的测试结果可知,相比于传统的碳酸亚乙烯酯(VC)、硫酸乙烯酯(DTD)组合添加剂,或是单独添加硫酸乙烯酯(DTD),或是单独添加结构式1所示的化合物,采用本申请提供的结构式1所示的化合物与硫酸乙烯酯(DTD)进行组合,能够进一步提升电池的高温存储性能,说明结构式1所示的化合物的分解产物具有与硫酸乙烯酯(DTD)分解产物具有较好的亲和性,两者共同组合得到的结合产物在高温下具有比其单独分解产物更高的稳定性,因此由结构式1所示化合物与硫酸乙烯酯共同形成的钝化膜体现出了更加优异的高温稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种非水电解液,其特征在于,包括结构式1所示的化合物中的至少一种:
    Figure PCTCN2022110874-appb-100001
    其中,n为0-4的自然数,A选自环状硫酸酯基团及其衍生物、环状磺酸酯基团及其衍生物、环状碳酸酯基团及其衍生物或环状亚硫酸酯基团及其衍生物。
  2. 根据权利要求1所述的非水电解液,其特征在于,所述环状硫酸酯基团及其衍生物选自如结构式2所示的基团:
    Figure PCTCN2022110874-appb-100002
    其中,*为键合位置,a、b、c为自然数,且a、b、c之和为0或1,R 1、R 2、R 3各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
  3. 根据权利要求1所述的非水电解液,其特征在于,所述环状磺酸酯基团及其衍生物选自结构式3所示的基团:
    Figure PCTCN2022110874-appb-100003
    其中,*为键合位置,d、e、f为自然数,且d、e、f之和为0、1或2,R 4、R 5、R 6各自 独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
  4. 根据权利要求1所述的非水电解液,其特征在于,所述环状碳酸酯基团及其衍生物选自结构式4所示的基团:
    Figure PCTCN2022110874-appb-100004
    其中,*为键合位置,l、o、p为自然数,且l、o、p之和为0或1,R 7、R 8、R 9各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述环状亚硫酸酯基团及其衍生物选自结构式5所示的基团:
    Figure PCTCN2022110874-appb-100005
    其中,*为键合位置,g、h、i为自然数,且g、h、i之和为0或1,R 10、R 11、R 12各自独立地选自氢、卤素原子、C1-C5的烷基、含杂原子的基团以及C1-C5烷基中至少一个氢原子被含杂原子的基团取代的基团,所述杂原子包括O、N、S或卤素中的一种或多种。
  6. 根据权利要求1所述的非水电解液,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
    Figure PCTCN2022110874-appb-100006
  7. 根据权利要求1所述的非水电解液,其特征在于,以所述非水电解液的总质量为100%计,所述结构式1所示的化合物的添加量为0.01~10%。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括电解质盐,所述电解质盐选自LiPF 6、LiBOB、LiDFOB、LiPO 2F 2、LiBF 4、LiSbF 6、LiAsF 6、LiN(SO 2CF 3) 2、LiN(SO 2C 2F 5) 2、LiC(SO 2CF 3) 3、LiN(SO 2F) 2、LiClO 4、LiAlCl 4、LiCF 3SO 3、Li 2B 10Cl 10、低级脂肪族羧酸锂盐中的至少一种。
  9. 根据权利要求1所述的非水电解液,其特征在于,所述非水电解液还包括辅助添加剂,所述辅助添加剂包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种。
  10. 根据权利要求9所述的非水电解液,其特征在于,,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
    所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
    所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式6所示化合物中的至少一种,
    Figure PCTCN2022110874-appb-100007
    所述结构式6中,R 21、R 22、R 23、R 24、R 25、R 26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
    所述不饱和磷酸酯类化合物选自结构式7所示化合物中的至少一种:
    Figure PCTCN2022110874-appb-100008
    所述结构式7中,R 31、R 32、R 32各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(C mH 2m+1) 3,m为1~3的自然数,且R 31、R 32、R 33中至少有一个为不饱和烃基;
    所述腈类化合物包括丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
  11. 一种电池,其特征在于,包括正极、负极以及如权利要求1~10任意一项所述的非水电解液。
PCT/CN2022/110874 2021-08-20 2022-08-08 一种非水电解液及电池 WO2023020323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110962324.3A CN115911545A (zh) 2021-08-20 2021-08-20 一种非水电解液及电池
CN202110962324.3 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023020323A1 true WO2023020323A1 (zh) 2023-02-23

Family

ID=85240042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110874 WO2023020323A1 (zh) 2021-08-20 2022-08-08 一种非水电解液及电池

Country Status (2)

Country Link
CN (1) CN115911545A (zh)
WO (1) WO2023020323A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931863A (zh) * 2005-09-13 2007-03-21 信越化学工业株式会社 环碳酸酯改性的有机硅化合物、包含它的非水电解溶液、二次电池和电容器
JP2009054286A (ja) * 2007-08-23 2009-03-12 Sony Corp 電解液および電池
US20120082890A1 (en) * 2010-09-30 2012-04-05 Jian Dong Non-aqueous electrolytes for electrochemical cells
CN109585925A (zh) * 2018-12-28 2019-04-05 合肥国轩高科动力能源有限公司 一种电解液及使用该电解液的锂离子电池
CN112018446A (zh) * 2020-09-27 2020-12-01 珠海冠宇电池股份有限公司 一种适用于硅碳体系锂离子电池的电解液
CN112054238A (zh) * 2020-09-11 2020-12-08 山东海科新源材料科技股份有限公司 含硅氧链段的环状硫酸酯类添加剂、包合其的电解液及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931863A (zh) * 2005-09-13 2007-03-21 信越化学工业株式会社 环碳酸酯改性的有机硅化合物、包含它的非水电解溶液、二次电池和电容器
JP2009054286A (ja) * 2007-08-23 2009-03-12 Sony Corp 電解液および電池
US20120082890A1 (en) * 2010-09-30 2012-04-05 Jian Dong Non-aqueous electrolytes for electrochemical cells
CN109585925A (zh) * 2018-12-28 2019-04-05 合肥国轩高科动力能源有限公司 一种电解液及使用该电解液的锂离子电池
CN112054238A (zh) * 2020-09-11 2020-12-08 山东海科新源材料科技股份有限公司 含硅氧链段的环状硫酸酯类添加剂、包合其的电解液及锂离子电池
CN112018446A (zh) * 2020-09-27 2020-12-01 珠海冠宇电池股份有限公司 一种适用于硅碳体系锂离子电池的电解液

Also Published As

Publication number Publication date
CN115911545A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN107431197B (zh) 非水电解质及包含该非水电解质的锂二次电池
CN114497692B (zh) 二次电池
WO2023045948A1 (zh) 一种二次电池
WO2023137878A1 (zh) 锂离子电池
WO2023138244A1 (zh) 一种非水电解液及二次电池
CN115117452B (zh) 一种锂离子电池
WO2023124604A1 (zh) 二次电池
WO2023246279A1 (zh) 一种锂二次电池
WO2024032171A1 (zh) 一种锂离子电池
WO2024037187A1 (zh) 一种锂离子电池
WO2023098477A1 (zh) 一种锂离子电池
WO2023179456A1 (zh) 非水电解液及二次电池
WO2023016412A1 (zh) 一种非水电解液及电池
CN116845382A (zh) 一种高稳定性的钠离子电池
WO2023016411A1 (zh) 一种非水电解液及电池
WO2023279953A1 (zh) 一种非水电解液及电池
WO2023104038A1 (zh) 一种二次电池
WO2022218145A1 (zh) 一种非水电解液及锂离子电池
WO2023020323A1 (zh) 一种非水电解液及电池
CN117175015B (zh) 一种非水电解液及电池
EP4325620A1 (en) Iron phosphate lithium battery
WO2024016897A1 (zh) 一种非水电解液及二次电池
CN115939511A (zh) 一种非水电解液及电池
WO2024078116A1 (zh) 一种非水电解液及二次电池
WO2023000889A1 (zh) 一种非水电解液及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857635

Country of ref document: EP

Kind code of ref document: A1