WO2023155843A1 - 一种锂离子电池 - Google Patents

一种锂离子电池 Download PDF

Info

Publication number
WO2023155843A1
WO2023155843A1 PCT/CN2023/076529 CN2023076529W WO2023155843A1 WO 2023155843 A1 WO2023155843 A1 WO 2023155843A1 CN 2023076529 W CN2023076529 W CN 2023076529W WO 2023155843 A1 WO2023155843 A1 WO 2023155843A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion battery
current collector
aqueous electrolyte
lithium ion
Prior art date
Application number
PCT/CN2023/076529
Other languages
English (en)
French (fr)
Inventor
钱韫娴
胡时光
邓永红
荆水
向晓霞
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2023155843A1 publication Critical patent/WO2023155843A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of energy storage battery devices, and in particular relates to a lithium ion battery.
  • lithium-ion batteries Because of the advantages of high working voltage, long cycle life, high energy density, and no memory effect, lithium-ion batteries have been widely used in mobile communications and notebook computers since they were put into the market in 1991.
  • the electrolyte consists of solvents, solutes, and functional additives.
  • LiPF 6 lithium hexafluorophosphate
  • the problem with LiPF 6 is that it is sensitive to moisture and easily generates HF to corrode the positive electrode, causing battery performance degradation; and LiPF 6 has poor thermal stability, and it will start to decompose above 80°C LiF and PF 5 are produced.
  • LiFSI lithium bisfluorosulfonyl imide
  • LiFSI Li-ion batteries
  • existing lithium-ion batteries usually use aluminum as the current collector of the positive electrode.
  • LiFSI is used as the solute of the electrolyte
  • a dense passivation film cannot be formed on the surface of the aluminum current collector, and the electrolyte will corrode the aluminum of the positive electrode current collector.
  • free Al ions are formed, and Al ions will be intercalated into the negative electrode, increasing the electrode polarization, resulting in irreversible capacity loss.
  • the invention provides a lithium-ion battery.
  • the invention provides a lithium ion battery, comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, the positive electrode includes a positive electrode current collector and a positive electrode material layer formed on the positive electrode current collector, the positive electrode current collector is an aluminum alloy, The aluminum alloy contains Fe, and the non-aqueous electrolytic solution includes solvent, electrolyte salt and additives, The electrolyte salt includes LiPF 6 and LiFSI, and the additive includes a compound shown in structural formula 1:
  • R 1 is selected from R 2 , R 3 , R 4 and R 5 are each independently selected from a single bond or methylene;
  • the lithium ion battery meets the following conditions:
  • a is the molar content of LiPF 6 in the non-aqueous electrolyte, in mol/L;
  • b is the molar content of LiFSI in the non-aqueous electrolyte, in mol/L;
  • c is the mass percent content of the compound shown in structural formula 1 in the non-aqueous electrolyte, and the unit is wt%;
  • d is the mass percentage of Fe in the positive current collector, in wt%.
  • the lithium-ion battery meets the following conditions:
  • the molar content a of LiPF 6 in the non-aqueous electrolyte is 0.2 ⁇ 1.2 mol/L.
  • the molar content b of LiFSI in the non-aqueous electrolyte is 0.2-0.8 mol/L.
  • the mass percent content c of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.1% ⁇ 1.5%.
  • the mass percentage d of Fe in the positive electrode current collector is 0.2%-0.6%.
  • the compound shown in structural formula 1 is selected from one or more of the following compounds:
  • the additive further includes at least one of cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and nitrile compounds;
  • the additive is added in an amount of 0.01% to 30%.
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 3:
  • R 31 , R 32 , and R 33 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to A natural number of 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group;
  • the nitrile compound is selected from succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more of .
  • the positive electrode material layer includes a positive electrode active material
  • the positive electrode active material includes one or more of the compounds shown in formula (1) and formula (2): Li 1+x' Ni a' Co b' M' 1-a'-b' O 2-y D y formula (1)
  • M' includes Mn and Al
  • Sr, Mg, Ti, Ca, Zr, Zn, Si, Ce includes S, N, F, Cl, Br and I one or more of Li 1+z Mn c' L 2-c' O 4-d' B d' Formula (2)
  • L includes one of Ni, Cr, Ti, Zn, V, Al, Mg, Zr and Ce or more
  • B includes one or more of S, N, F, Cl, Br and I.
  • LiPF 6 and LiFSI are used as the electrolyte salt, and the compound shown in structural formula 1 is added as an additive in the non-aqueous electrolyte.
  • the inventors have found that by adding the compound shown in structural formula 1 as an additive, it can A relatively dense passivation film is formed on the surface of the aluminum alloy positive current collector of Fe element, which can effectively inhibit the corrosion of the aluminum positive current collector by LiFSI in the non-aqueous electrolyte, especially when the lithium-ion battery meets the conditions And 0.1 ⁇ a ⁇ 1.5, 0.1 ⁇ b ⁇ 1.0, 0.02 ⁇ c ⁇ 2, 0.1 ⁇ d ⁇ 0.7, not only can inhibit the corrosion of aluminum foil, but also reduce the impedance of lithium-ion batteries and improve the cycle of lithium-ion batteries capacity.
  • An embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode and a non-aqueous electrolyte, the positive electrode includes a positive electrode current collector and a positive electrode material layer formed on the positive electrode current collector, and the positive electrode current collector is aluminum alloy, the aluminum alloy contains Fe, the non-aqueous electrolytic solution includes a solvent, an electrolyte salt and an additive, the electrolyte salt includes LiPF 6 and LiFSI, and the additive includes a compound shown in structural formula 1:
  • R 1 is selected from R 2 , R 3 , R 4 and R 5 are each independently selected from a single bond or methylene;
  • the lithium ion battery meets the following conditions:
  • a is the molar content of LiPF 6 in the non-aqueous electrolyte, in mol/L;
  • b is the molar content of LiFSI in the non-aqueous electrolyte, in mol/L;
  • c is the mass percent content of the compound shown in structural formula 1 in the non-aqueous electrolyte, and the unit is wt%;
  • d is the mass percentage of Fe in the positive current collector, in wt%.
  • the lithium-ion battery meets the following conditions:
  • the compound shown in structural formula 1 itself can decompose on the surface of the positive electrode material layer to form a passivation film, which can reduce the side reaction of the solvent in the electrolyte on the surface of the positive electrode, and when the content of the compound shown in structural formula 1 and the Fe in the positive electrode current collector When the mass percentage of LiFSI satisfies the above relationship, it can further inhibit the corrosion of the positive electrode collector by LiFSI, and at the same time improve the high-temperature cycle performance of the battery.
  • the molar content a of LiPF in the non-aqueous electrolyte is 0.1mol/L, 0.12mol/L, 0.15mol/L, 0.3mol/L, 0.5mol/L, 0.8mol/L , 0.9mol/L, 1.0mol/L, 1.2mol/L, 1.4mol/L or 1.5mol/L.
  • the molar content a of LiPF 6 in the non-aqueous electrolytic solution is 0.2 ⁇ 1.2 mol/L.
  • the molar content b of LiFSI in the non-aqueous electrolyte is 0.1mol/L, 0.12mol/L, 0.15mol/L, 0.2mol/L, 0.3mol/L, 0.4mol/L, 0.5mol/L, 0.6mol/L, 0.8mol/L, 0.9mol/L or 1.0mol/L.
  • the molar content b of LiFSI in the non-aqueous electrolyte solution is 0.2-0.8 mol/L.
  • the LiPF 6 and the LiFSI are jointly used as the electrolyte salt in the non-aqueous electrolyte.
  • the overall electrolyte salt content in the non-aqueous electrolyte will be less , affecting the ion conductivity of the non-aqueous electrolyte;
  • the content of LiPF 6 is too high and the content of LiFSI is too low, the high-temperature stability of the non-aqueous electrolyte is insufficient, which affects the high-temperature cycle performance and storage performance of the battery;
  • LiFSI When the LiPF 6 content is too high and the LiPF 6 content is too low, the positive electrode collector will be corroded; when the LiPF 6 and LiFSI content are both high, the overall electrolyte salt content in the non-aqueous electrolyte will be too high, and the non-aqueous The viscosity of the electrolyte increases, which is also not conducive to
  • the mass percent content c of the compound represented by structural formula 1 in the non-aqueous electrolyte is 0.02%, 0.05%, 0.1%, 0.12%, 0.15%, 0.3%, 0.5%, 0.8%, 0.9% %, 1.0%, 1.2%, 1.4%, 1.7%, 1.9% or 2%.
  • the mass percent content c of the compound represented by the compound represented by the structural formula 1 in the non-aqueous electrolyte is 0.1% ⁇ 1.5%.
  • the content of the compound shown in structural formula 1 in the non-aqueous electrolyte is too small, it will affect the quality of the passive film on the surface of the positive electrode current collector, and it is difficult to effectively inhibit the corrosion of the positive electrode current collector by LiFSI; Too much content in the aqueous electrolyte will lead to an increase in the viscosity of the non-aqueous electrolyte, affecting the infiltration of the non-aqueous electrolyte to the positive and negative electrode materials, resulting in an increase in impedance and affecting battery performance.
  • the mass percentage d of Fe in the positive current collector is 0.1%, 0.12%, 0.15%, 0.18%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45% , 0.5%, 0.55%, 0.6%, 0.65%, or 0.7%.
  • the mass percentage d of Fe in the positive electrode current collector is 0.2% ⁇ 0.6%.
  • the content of Fe in the positive current collector affects the corrosion resistance of the positive current collector in the LiFSI-containing non-aqueous electrolyte. Too high or too low a content of Fe in the positive current collector is not conducive to the improvement of its corrosion resistance. It is speculated that Because there is a certain synergy between the compound shown in structural formula 1 and the Fe element, the passivation film formed is denser.
  • the compound represented by the structural formula 1 is selected from one or more of the following compounds:
  • the additive further includes at least one of cyclic sulfate compounds, sultone compounds, cyclic carbonate compounds, unsaturated phosphate compounds and nitrile compounds.
  • the cyclic sulfate ester compound is selected from at least one of vinyl sulfate, propylene sulfate or vinyl methyl sulfate;
  • the sultone compound is selected from at least one of 1,3-propane sultone, 1,4-butane sultone or 1,3-propene sultone;
  • the cyclic carbonate compound is selected from at least one of vinylene carbonate, ethylene carbonate, fluoroethylene carbonate or the compound shown in structural formula 2,
  • R 21 , R 22 , R 23 , R 24 , R 25 , and R 26 are each independently selected from a hydrogen atom, a halogen atom, and a C1-C5 group;
  • the unsaturated phosphate compound is selected from at least one of the compounds shown in structural formula 3:
  • R 31 , R 32 , and R 33 are each independently selected from C1-C5 saturated hydrocarbon groups, unsaturated hydrocarbon groups, halogenated hydrocarbon groups, -Si(C m H 2m+1 ) 3 , m is 1 to 3, and at least one of R 31 , R 32 , and R 33 is an unsaturated hydrocarbon group.
  • the unsaturated phosphoric acid ester compound may be tripropargyl phosphate, dipropargyl methyl phosphate, dipropargyl ethyl phosphate, dipropargyl propyl phosphate, Dipropargyl trifluoromethyl phosphate, Dipropargyl-2,2,2-trifluoroethyl phosphate, Dipropargyl-3,3,3-trifluoropropyl phosphate, Dipropargyl Hexafluoroisopropyl phosphate, triallyl phosphate, diallyl methyl phosphate, diallyl ethyl phosphate, diallyl propyl phosphate, diallyl trifluoromethyl Phosphate, diallyl-2,2,2-trifluoroethyl phosphate, diallyl-3,3,3-trifluoropropyl phosphate, diallyl hexafluoroisopropyl phosphate at least one of the
  • the nitrile compound is selected from succinonitrile, glutaronitrile, ethylene glycol bis(propionitrile) ether, hexanetrinitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile one or more of .
  • the additives may also include other additives that can improve battery performance: for example, additives that improve battery safety performance, specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene, or tert-amylbenzene , tert-butylbenzene and other anti-overcharge additives.
  • additives that improve battery safety performance specifically flame retardant additives such as fluorophosphate esters and cyclophosphazene, or tert-amylbenzene , tert-butylbenzene and other anti-overcharge additives.
  • the additive is added in an amount of 0.01%-30%.
  • the amount of any optional substance in the additive in the non-aqueous electrolyte is less than 10%, preferably, the amount is 0.1-5%, more preferably Yes, the addition amount is 0.1% to 2%.
  • the addition amount of any optional substance in the additive can be 0.05%, 0.08%, 0.1%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.2% , 2.5%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 7.8%, 8%, 8.5 %, 9%, 9.5%, 10%.
  • the additive when the additive is selected from fluoroethylene carbonate, based on the total mass of the non-aqueous electrolyte solution as 100%, the added amount of the fluoroethylene carbonate is 0.05%-30%.
  • the solvent includes one or more of ether solvents, nitrile solvents, carbonate solvents and carboxylate solvents.
  • ether solvents include cyclic ethers or chain ethers, preferably chain ethers with 3 to 10 carbon atoms and cyclic ethers with 3 to 6 carbon atoms.
  • the cyclic ethers can specifically be but not limited to It is 1,3-dioxolane (DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-CH 3 -THF), 2-tri One or more of fluoromethyltetrahydrofuran (2-CF 3 -THF); the chain Dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol Dimethyl ether.
  • DOL 1,3-dioxolane
  • DX 1,4-dioxane
  • crown ether tetrahydrofur
  • Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane which are low in viscosity and impart high ion conductivity, are particularly preferred because the solvation ability of chain ethers with lithium ions is high and ion dissociation can be improved.
  • methyl methane One kind of ether compound may be used alone, or two or more kinds may be used in any combination and ratio.
  • the addition amount of the ether compound is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the high-compression lithium-ion battery of the present invention.
  • the volume ratio of the non-aqueous solvent is 100%, the volume ratio is usually more than 1%, preferably 1% by volume.
  • the ratio is 2% or more, more preferably 3% or more by volume, and usually 30% or less by volume, preferably 25% or less by volume, more preferably 20% or less by volume.
  • the total amount of the ether compounds may satisfy the above range.
  • the addition amount of the ether compound is within the above-mentioned preferred range, it is easy to ensure the effect of improving the ion conductivity by increasing the lithium ion dissociation degree of the chain ether and reducing the viscosity.
  • the negative electrode active material is a carbon material, co-intercalation of the chain ether and lithium ions can be suppressed, so that input-output characteristics and charge-discharge rate characteristics can be brought into appropriate ranges.
  • the nitrile solvent may specifically be, but not limited to, one or more of acetonitrile, glutaronitrile, and malononitrile.
  • the carbonate solvents include cyclic carbonates or chain carbonates
  • the cyclic carbonates can specifically be, but not limited to, ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone One or more of (GBL), butylene carbonate (BC);
  • the chain carbonate can specifically be, but not limited to, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC ), one or more of dipropyl carbonate (DPC).
  • the content of the cyclic carbonate is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the lithium-ion battery of the present invention, but the lower limit of its content is relative to the total amount of solvent in the non-aqueous electrolyte when one is used alone.
  • the volume ratio is 3% or more, preferably 5% or more.
  • the upper limit is usually 90% or less by volume, preferably 85% or less by volume, and more preferably 80% or less by volume.
  • the content of the chain carbonate is not particularly limited, but is usually 15% or more by volume, preferably 20% or more by volume, and more preferably 25% or more by volume relative to the total amount of solvent in the nonaqueous electrolyte.
  • the volume ratio is usually 90% or less, preferably 85% or less, and more preferably 80% or less.
  • the content of the chain carbonate in the above-mentioned range it is easy to make the viscosity of the non-aqueous electrolytic solution reach an appropriate range, suppress the reduction of ion conductivity, and then contribute to The output characteristics of the non-aqueous electrolyte battery are brought into a good range.
  • the total amount of the chain carbonates may satisfy the above-mentioned range.
  • chain carbonates having fluorine atoms may also be preferably used.
  • the number of fluorine atoms in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less.
  • these fluorine atoms may be bonded to the same carbon or to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
  • Carboxylate solvents include cyclic carboxylates and/or chain carbonates.
  • cyclic carboxylic acid esters include one or more of ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone.
  • chain carbonates include: methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), butyl propionate one or more of .
  • the sulfone solvent includes cyclic sulfone and chain sulfone.
  • cyclic sulfone it usually has 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms.
  • a sulfone it is usually a compound having 2 to 6 carbon atoms, preferably a compound having 2 to 5 carbon atoms.
  • the amount of sulfone solvent added is not particularly limited, and it is arbitrary within the scope of not significantly destroying the effect of the lithium ion battery of the present invention.
  • the volume ratio is usually more than 0.3%, preferably 0.3% by volume.
  • the total amount of the sulfone-based solvent may satisfy the above range.
  • the added amount of the sulfone solvent is within the above range, an electrolytic solution having excellent high-temperature storage stability tends to be obtained.
  • the solvent is a mixture of cyclic carbonates and chain carbonates.
  • the electrolyte salt further includes LiPO 2 F 2 , LiBF 4 , LiBOB, LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiDFOB, LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiN(SO 2 C 2 F 5 ) 2 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiAlCl 4 , lithium chloroborane, lower aliphatic with 4 or less carbon atoms At least one of lithium carboxylate, lithium tetraphenylborate and lithium imide.
  • the positive electrode material layer includes a positive electrode active material
  • the positive electrode active material includes one or more of the compounds represented by formula (1) and formula (2): Li 1+x' Ni a' Co b' M' 1-a'-b' O 2-y D y formula (1)
  • M' includes Mn and Al
  • D includes S, N, F, Cl, Br and I one or more of Li 1+z Mn c' L 2-c' O 4-d' B d' Formula (2)
  • L includes one of Ni, Cr, Ti, Zn, V, Al, Mg, Zr and Ce or more
  • B includes one or more of S, N, F, Cl, Br and I.
  • the positive electrode material layer further includes a positive electrode binder and a positive electrode conductive agent, and the positive electrode active material, the positive electrode binder and the positive electrode conductive agent are blended to obtain the positive electrode material layer.
  • the positive electrode binder includes polyvinylidene fluoride, copolymer of vinylidene fluoride, polytetrafluoroethylene, copolymer of vinylidene fluoride-hexafluoropropylene, copolymer of tetrafluoroethylene-hexafluoropropylene, tetrafluoroethylene- Copolymer of perfluoroalkyl vinyl ether, copolymer of ethylene-tetrafluoroethylene, copolymer of vinylidene fluoride-tetrafluoroethylene, copolymer of vinylidene fluoride-trifluoroethylene, copolymer of vinylidene fluoride-trichloroethylene Copolymers, vinylidene fluoride-fluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, thermoplastic polyimides, thermoplastic resins such as polyethylene and polypropy
  • the positive electrode conductive agent includes one or more of conductive carbon black, conductive carbon spheres, conductive graphite, conductive carbon fibers, carbon nanotubes, graphene or reduced graphene oxide.
  • the anode includes an anode material layer, the anode material layer includes an anode active material, and the anode active material includes one or more of a silicon-based anode, a carbon-based anode, and a tin-based anode.
  • the carbon-based negative electrode may include graphite, hard carbon, soft carbon, graphene, mesocarbon microspheres, and the like.
  • the graphite includes but not limited to one or more of natural graphite, artificial graphite, amorphous carbon, carbon-coated graphite, graphite-coated graphite, and resin-coated graphite.
  • the natural graphite may be flaky graphite, flaky graphite, soil graphite, and/or graphite particles obtained by using these graphites as raw materials and subjecting them to spheroidization, densification, and the like.
  • the artificial graphite can be p-coal tar pitch, coal heavy crude oil, atmospheric residue, petroleum heavy crude oil, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride , polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymers, polyphenylene sulfide, polyphenylene ether, furfuryl alcohol resin, phenolic resin, imide resin and other organic substances are obtained by graphitization at high temperature.
  • the amorphous carbon may be obtained by heat-treating once or more in a temperature range (400 to 2200° C.) in which graphitization does not occur, using a graphitizable carbon precursor such as tar or pitch as a raw material. Particles, amorphous carbon particles obtained by heat treatment using a non-graphitizable carbon precursor such as a resin as a raw material.
  • the carbon-coated graphite may be obtained by mixing natural graphite and/or artificial graphite with a carbon precursor that is an organic compound such as tar, pitch, resin, etc., and performing heat treatment at 400-2300° C. once or more.
  • a carbon-graphite composite is obtained by using the obtained natural graphite and/or artificial graphite as core graphite and covering it with amorphous carbon.
  • Carbon-graphite composites can be all or part of the surface of the core graphite
  • the form coated with amorphous carbon may be a form in which a plurality of primary particles are composited using carbon derived from the above-mentioned carbon precursor as a binder.
  • a carbon-graphite composite can also be obtained by reacting hydrocarbon gases such as benzene, toluene, methane, propane, and volatile components of aromatics with natural graphite and/or artificial graphite at high temperature to deposit carbon on the graphite surface.
  • the graphite-coated graphite may be natural graphite and/or artificial graphite mixed with carbon precursors of easily graphitizable organic compounds such as tar, pitch, resin, etc., and heat-treated at a range of about 2400-3200°C for more than one time.
  • the obtained natural graphite and/or artificial graphite is used as the core graphite, and the entire or part of the surface of the core graphite is coated with graphitized substances, so that graphite-coated graphite can be obtained.
  • the resin-coated graphite can be mixed with natural graphite and/or artificial graphite and resin, and dried at a temperature lower than 400°C, using the natural graphite and/or artificial graphite thus obtained as core graphite, and using the resin and so on to coat the core graphite.
  • Organic compounds such as tar and pitch resin mentioned above are selected from coal-based heavy crude oil, straight-through heavy crude oil, decomposition petroleum heavy crude oil, aromatic hydrocarbons, N-ring compounds, S-ring compounds, polyphenylene, and organic synthetic compounds. Carbonizable organic compounds in polymers, natural polymers, thermoplastic resins and thermosetting resins, etc.
  • the silicon-based negative electrode may include silicon materials, silicon oxides, silicon-carbon composite materials, silicon alloy materials, and the like.
  • the added amount of the silicon-based material is greater than 0 and less than 30%.
  • the upper limit of the added amount of the silicon-based material is 10%, 15%, 20% or 25%; the lower limit of the added amount of the silicon-based material is 5%, 10% or 15%.
  • the silicon material is one or more of silicon nanoparticles, silicon nanowires, silicon nanotubes, silicon films, 3D porous silicon, and hollow porous silicon.
  • the tin-based negative electrode may include tin, tin-carbon, tin oxide, tin-based alloy, tin metal compound; the tin-based alloy refers to tin and Cu, Ag, Co, Zn, Sb, Bi and An alloy composed of one or more of In.
  • the negative electrode further includes a negative electrode current collector, and the negative electrode material layer is formed on the surface of the negative electrode current collector.
  • the material of the negative electrode current collector may be the same as that of the positive electrode current collector, and will not be repeated here.
  • the negative electrode material layer further includes a negative electrode binder and a negative electrode conductive agent, and the negative electrode active material, the negative electrode binder and the negative electrode conductive agent are blended to obtain the negative electrode material layer.
  • the negative electrode binder and the negative electrode conductive agent may be the same as the positive electrode binder and the positive electrode conductive agent respectively, and will not be repeated here.
  • the battery further includes a separator, and the separator is located between the positive electrode and the negative electrode.
  • the diaphragm can be an existing conventional diaphragm, and can be a ceramic diaphragm, a polymer diaphragm, a non-woven fabric, a non-woven Machine-organic composite separators, etc., including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), double-layer PP/PE, double-layer PP/PP and three-layer PP/PE/PP separators.
  • This embodiment is used to illustrate the lithium-ion battery disclosed in the present invention and its preparation method, including the following steps:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • LiFSI bis Fluorosulfonyl Lithium imide
  • Table 2 shows the contents of lithium hexafluorophosphate (LiPF 6 ), lithium bisfluorosulfonimide (LiFSI), and the compound represented by structural formula 1 in the electrolyte solution.
  • positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) at a mass ratio of 93:4:3, and then disperse them in N-methyl -2-pyrrolidone (NMP) to obtain positive electrode slurry.
  • the positive electrode slurry is evenly coated on both sides of the aluminum foil (aluminum alloy) whose Fe element concentration is shown in Table 2, after drying, calendering and vacuum drying, and after welding the aluminum lead-out wire with an ultrasonic welder, the positive electrode plate is obtained.
  • the thickness of the pole plate is 120-150 ⁇ m.
  • a three-layer separator with a thickness of 20 ⁇ m is placed between the positive plate and the negative plate, and then the sandwich structure composed of the positive electrode, the negative electrode and the separator is wound, and then the wound body is flattened and put into an aluminum foil packaging bag, at 75°C Baking under vacuum for 48 hours to obtain the cell to be filled with liquid.
  • Examples 2-36 are used to illustrate the battery disclosed in the present invention and its preparation method, including most of the operation steps in Example 1, the differences are:
  • Comparative Examples 1-16 are used to compare and illustrate the battery disclosed in the present invention and its preparation method, including most of the operating steps in Example 1, the difference being:
  • Capacity retention rate discharge capacity at the 800th cycle/discharge capacity at the first cycle ⁇ 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂离子电池,包括正极、负极和非水电解液,正极包括正极集流体和形成于正极集流体上的正极材料层,正极集流体为铝合金,铝合金中含有Fe,非水电解液包括溶剂、电解质盐和添加剂,电解质盐包括LiPF 6和LiFSI,添加剂包括结构式1所示化合物;锂离子电池满足以下条件:0.5≤d/b+a≤5,0.05≤d/c≤6;且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7;锂离子电池能够有效抑制铝箔的腐蚀,降低锂离子电池的阻抗,提高锂离子电池的循环容量。

Description

一种锂离子电池 技术领域
本发明属于储能电池器件技术领域,具体涉及一种锂离子电池。
背景技术
锂离子电池因为具有工作电压高,循环寿命长,能量密度大,无记忆效应等优势,自1991年投入市场后,迅速实现了在移动通讯,笔记本电脑等领域的广泛应用。在锂离子电池中,电解液由溶剂、溶质和功能型添加剂组成。
目前商业化应用最广泛的溶质为六氟磷酸锂(LiPF6),但LiPF6的问题在于对水分敏感,易产生HF腐蚀正极,造成电池性能衰减;且LiPF6的热稳定性差,80℃以上会开始分解产生LiF和PF5
相比于LiPF6的以上问题,双氟磺酰亚胺锂(LiFSI)热稳定性更高,分解温度达到200℃。将LiFSI加入到电解液中,电导率和锂离子迁移数更高。此外,LiFSI有助于形成稳定的、导离子性更好的SEI钝化膜,抑制电池高温产气等优点。
然而,正极集流体的腐蚀是限制LiFSI在锂离子电池中广泛应用的主要因素。现有的锂离子电池通常采用铝作为正极的集流体,当采用LiFSI作为电解液的溶质时,无法在铝集流体的表面形成致密的钝化膜,电解液会对正极集流体的铝产生腐蚀作用,在长期循环的过程中形成游离的Al离子,而Al离子会嵌入负极,增大电极极化,导致不可逆的容量损失。
发明内容
针对现有含LiFSI电解液对铝集流体腐蚀而导致电池性能劣化的问题,本发明提供了一种锂离子电池。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种锂离子电池,包括正极、负极和非水电解液,所述正极包括正极集流体和形成于所述正极集流体上的正极材料层,所述正极集流体为铝合金,所述铝合金中含有Fe,所述非水电解液包括溶剂、电解质盐和添加剂, 所述电解质盐包括LiPF6和LiFSI,所述添加剂包括结构式1所示化合物:
其中,R1选自R2、R3、R4和R5各自独立地选自单键或亚甲基;
所述锂离子电池满足以下条件:
且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7;
其中,a为非水电解液中LiPF6的摩尔含量,单位为mol/L;
b为非水电解液中LiFSI的摩尔含量,单位为mol/L;
c为非水电解液中结构式1所示化合物的质量百分比含量,单位为wt%;
d为正极集流体中Fe的质量百分含量,单位为wt%。
可选的,所述锂离子电池满足以下条件:
可选的,所述非水电解液中LiPF6的摩尔含量a为0.2~1.2mol/L。
可选的,所述非水电解液中LiFSI的摩尔含量b为0.2~0.8mol/L。
可选的,所述非水电解液中结构式1所示化合物的质量百分比含量c为0.1%~1.5%。
可选的,所述正极集流体中Fe的质量百分含量d为0.2%~0.6%。
可选的,结构式1所示的化合物选自以下化合物中的一种或多种:

可选的,所述添加剂还包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种;
优选的,以所述非水电解液的总质量为100%计,所述添加剂的添加量为0.01%~30%。
可选的,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
所述结构式2中,R21、R22、R23、R24、R25、R26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
所述结构式3中,R31、R32、R33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(CmH2m+1)3,m为1~3的自然数,且R31、R32、R33中至少有一个为不饱和烃基;
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
可选的,所述正极材料层包括正极活性材料,所述正极活性材料包括式(1)和式(2)所示的化合物中的一种或多种:
Li1+x’Nia’Cob’M’1-a’-b’O2-yDy   式(1)
式(1)中,-0.1≤x’≤0.2,0<a’<1,0≤b’<1,0<a’+b’<1,0≤y<0.2,M’包括Mn及Al中的一种或多种,以及包括Sr、Mg、Ti、Ca、Zr、Zn、Si、Ce中的零种、一种或多种,D包括S、N、F、Cl、Br及I中的一种或多种;
Li1+zMnc’L2-c’O4-d’Bd’   式(2)
式(2)中,-0.1≤z≤0.2,0<c’≤2,0≤d’<1,L包括Ni、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B包括S、N、F、Cl、Br及I中的一种或多种。
根据本发明提供的锂离子电池,采用LiPF6和LiFSI作为电解质盐,在非水电解液中加入结构式1所示化合物作为添加剂,发明人发现,通过加入结构式1所示化合物作为添加剂,能够在含有Fe元素的铝合金正极集流体表面形成较为致密的钝化膜,该钝化膜能够有效抑制非水电解液中LiFSI对于铝质的正极集流体的腐蚀,尤其是,当锂离子电池满足条件且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7时,不仅可以抑制铝箔的腐蚀,同时也降低了锂离子电池的阻抗,提高了锂离子电池的循环容量。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种锂离子电池,包括正极、负极和非水电解液,所述正极包括正极集流体和形成于所述正极集流体上的正极材料层,所述正极集流体为铝合金,所述铝合金中含有Fe,所述非水电解液包括溶剂、电解质盐和添加剂,所述电解质盐包括LiPF6和LiFSI,添加剂包括结构式1所示化合物:
其中,R1选自R2、R3、R4和R5各自独立地选自单键或亚甲基;
所述锂离子电池满足以下条件:
且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7;
其中,a为非水电解液中LiPF6的摩尔含量,单位为mol/L;
b为非水电解液中LiFSI的摩尔含量,单位为mol/L;
c为非水电解液中结构式1所示化合物的质量百分比含量,单位为wt%;
d为正极集流体中Fe的质量百分含量,单位为wt%。
发明人研究发现,通过加入结构式1所示化合物作为添加剂,同时在Fe元素的配合下能够在含有Fe元素的正极集流体表面形成较为致密的钝化膜,该钝化膜能够有效抑制非水电解液中LiFSI对于铝质的正极集流体的腐蚀,尤其是,当锂离子电池满足条件且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7时,不仅可以抑制铝箔的腐蚀,同时也降低了锂离子电池的阻抗,提高了锂离子电池的循环容量。
在优选的实施例中,所述锂离子电池满足以下条件:
值过低时,可能是由于铝合金中Fe元素含量过低导致,正极集流体的力学性能较低,在高温循环过程中易形成微裂痕,导致电池循环性能下降;或者是由于LiFSI在非水电解液中的占比过高导致,使得正极集流体的腐蚀现象仍然存在,劣化电池循环性能;当值过高时,可能是由于铝合金中Fe元素含量过高,也会导致正极集流体耐LiFSI的腐蚀性能劣化,最终导致电池循环性能劣化,或者是由于LiFSI在非水电解液中的占比过低,无法起到降低电池阻抗的作用,非水电解液的耐高温性能不足。
结构式1所示化合物本身能够在正极材料层的表面分解形成钝化膜,起到减少电解液中溶剂在正极表面发生副反应的作用,而且当结构式1所示化合物的含量和正极集流体中Fe的质量百分含量满足以上关系式时,可以进一步起到抑制LiFSI对正极集流体腐蚀的作用,同时提升电池的高温循环性能。
值过低时,结构式1所示化合物的含量过高,会导致正极材料层表面的钝化膜厚度增大,增加电池阻抗;当值过高时,结构式1所示化合物形成的钝化膜不足以覆盖在正极集流体的裸露区域,导致正极集流体腐蚀,电池循环性能劣化。
在具体的实施例中,所述非水电解液中LiPF6的摩尔含量a为0.1mol/L、0.12mol/L、0.15mol/L、0.3mol/L、0.5mol/L、0.8mol/L、0.9mol/L、1.0mol/L、1.2mol/L、1.4mol/L或1.5mol/L。
在优选的实施例中,所述非水电解液中LiPF6的摩尔含量a为0.2~1.2mol/L。
在具体的实施例中,所述非水电解液中LiFSI的摩尔含量b为0.1mol/L、0.12mol/L、0.15mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.8mol/L、0.9mol/L或1.0mol/L。
在优选的实施例中,所述非水电解液中LiFSI的摩尔含量b为0.2~0.8mol/L。
所述LiPF6和所述LiFSI共同作为非水电解液中的电解质盐,当所述LiPF6的含量过低,且LiFSI的含量不足时,会导致非水电解液中总体的电解质盐含量较少,影响非水电解液的离子导电能力;当LiPF6的含量过高,且LiFSI的含量过低时,非水电解液的高温稳定性不足,影响电池的高温循环性能和存储性能;当LiFSI的含量过高,且LiPF6的含量过低时,会对正极集流体产生腐蚀;当LiPF6和LiFSI的含量均偏高时,会导致非水电解液中总体的电解质盐含量过高,非水电解液的粘度增大,同样不利于非水电解液离子导电能力的提升。
在具体的实施例中,所述非水电解液中结构式1所示化合物的质量百分比含量c为0.02%、0.05%、0.1%、0.12%、0.15%、0.3%、0.5%、0.8%、0.9%、1.0%、1.2%、1.4%、1.7%、1.9%或2%。
在优选的实施例中,所述非水电解液中结构式1所示化合物所示化合物的质量百分比含量c为0.1%~1.5%。
若结构式1所示化合物在非水电解液中的含量过少,则会影响正极集流体表面钝化膜的生成质量,难以有效抑制LiFSI对于正极集流体的腐蚀;若结构式1所示化合物在非水电解液中的含量过多,则会导致非水电解液的粘度增大,影响非水电解液对于正负极材料的浸润,导致阻抗增大而影响电池性能。
在具体的实施例中,所述正极集流体中Fe的质量百分含量d为0.1%、0.12%、0.15%、0.18%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%、0.6%、0.65%或0.7%。
在优选的实施例中,所述正极集流体中Fe的质量百分含量d为0.2%~0.6%。
所述正极集流体中Fe的含量影响正极集流体在含LiFSI非水电解液中的抗腐蚀性能,正极集流体中Fe的含量过高或过低均不利于其抗腐蚀性能的提升,推测是由于结构式1所示化合物与Fe元素之间存在某种协同作用使其形成的钝化膜更加致密。
在一些实施例中,所述结构式1所示的化合物选自以下化合物中的一种或多种:

需要说明的是,以上仅是本发明优选的化合物,并不代表对于本发明的限制。
在一些实施例中,所述添加剂还包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种。
在优选的实施例中,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种;
所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种;
所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
所述结构式2中,R21、R22、R23、R24、R25、R26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种;
所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
所述结构式3中,R31、R32、R33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(CmH2m+1)3,m为1~3的自然数,且R31、R32、R33中至少有一个为不饱和烃基。
在优选的实施例中,所述不饱和磷酸酯类化合物可为磷酸三炔丙酯、二炔丙基甲基磷酸酯、二炔丙基乙基磷酸酯、二炔丙基丙基磷酸酯、二炔丙基三氟甲基磷酸酯、二炔丙基-2,2,2-三氟乙基磷酸酯、二炔丙基-3,3,3-三氟丙基磷酸酯、二炔丙基六氟异丙基磷酸酯、磷酸三烯丙酯、二烯丙基甲基磷酸酯、二烯丙基乙基磷酸酯、二烯丙基丙基磷酸酯、二烯丙基三氟甲基磷酸酯、二烯丙基-2,2,2-三氟乙基磷酸酯、二烯丙基-3,3,3-三氟丙基磷酸酯、二烯丙基六氟异丙基磷酸酯中的至少一种。
所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
在另一些实施例中,所述添加剂还可包括其它能改善电池性能的添加剂:例如,提升电池安全性能的添加剂,具体如氟代磷酸酯、环磷腈等阻燃添加剂,或叔戊基苯、叔丁基苯等防过充添加剂。
在一些实施例中,以所述非水电解液的总质量为100%计,所述添加剂的添加量为0.01%~30%。
需要说明的是,除非特殊说明,一般情况下,所述添加剂中任意一种可选物质在非水电解液中的添加量为10%以下,优选的,添加量为0.1-5%,更优选的,添加量为0.1%~2%。具体的,所述添加剂中任意一种可选物质的添加量可以为0.05%、0.08%、0.1%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.2%、2.5%、2.8%、3%、3.2%、3.5%、3.8%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、7.8%、8%、8.5%、9%、9.5%、10%。
在一些实施例中,当添加剂选自氟代碳酸乙烯酯时,以所述非水电解液的总质量为100%计,所述氟代碳酸乙烯酯的添加量为0.05%~30%。
在一些实施例中,所述溶剂包括醚类溶剂、腈类溶剂、碳酸酯类溶剂和羧酸酯类溶剂中的一种或多种。
在一些实施例中,醚类溶剂包括环状醚或链状醚,优选为碳原子数3~10的链状醚及碳原子数3~6的环状醚,环状醚具体可以但不限于是1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH3-THF),2-三氟甲基四氢呋喃(2-CF3-THF)中的一种或多种;所述链 状醚具体可以但不限于是二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷、乙二醇二正丙基醚、乙二醇二正丁基醚、二乙二醇二甲基醚。由于链状醚与锂离子的溶剂化能力高、可提高离子解离性,因此特别优选粘性低、可赋予高离子电导率的二甲氧基甲烷、二乙氧基甲烷、乙氧基甲氧基甲烷。醚类化合物可以单独使用一种,也可以以任意的组合及比率组合使用两种以上。醚类化合物的添加量没有特殊限制,在不显著破坏本发明高压实锂离子电池效果的范围内是任意的,在非水溶剂体积比为100%中通常体积比为1%以上、优选体积比为2%以上、更优选体积比为3%以上,另外,通常体积比为30%以下、优选体积比为25%以下、更优选体积比为20%以下。在将两种以上醚类化合物组合使用的情况下,使醚类化合物的总量满足上述范围即可。醚类化合物的添加量在上述的优选范围内时,易于确保由链状醚的锂离子离解度的提高和粘度降低所带来的离子电导率的改善效果。另外,负极活性材料为碳素材料的情况下,可抑制因链状醚与锂离子共同发生共嵌入的现象,因此能够使输入输出特性、充放电速率特性达到适当的范围。
在一些实施例中,腈类溶剂具体可以但不限于是乙腈、戊二腈、丙二腈中的一种或多种。
在一些实施例中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以但不限于是碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以但不限于是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。环状碳酸酯的含量没有特殊限制,在不显著破坏本发明锂离子电池效果的范围内是任意的,但在单独使用一种的情况下其含量的下限相对于非水电解液的溶剂总量来说,通常体积比为3%以上、优选体积比为5%以上。通过设定该范围,可避免由于非水电解液的介电常数降低而导致电导率降低,易于使非水电解质电池的大电流放电特性、相对于负极的稳定性、循环特性达到良好的范围。另外,上限通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过设定该范围,可提高非水电解液的氧化/还原耐性,从而有助于提高高温保存时的稳定性。链状碳酸酯的含量没有特殊限定,相对于非水电解液的溶剂总量,通常为体积比为15%以上、优选体积比为20%以上、更优选体积比为25%以上。另外,通常体积比为90%以下、优选体积比为85%以下、更优选体积比为80%以下。通过使链状碳酸酯的含量在上述范围,容易使非水电解液的粘度达到适当范围,抑制离子电导率的降低,进而有助于 使非水电解质电池的输出特性达到良好的范围。在组合使用两种以上链状碳酸酯的情况下,使链状碳酸酯的总量满足上述范围即可。
在一些实施例中,还可优选使用具有氟原子的链状碳酸酯类(以下简称为“氟化链状碳酸酯”)。氟化链状碳酸酯所具有的氟原子的个数只要为1以上则没有特殊限制,但通常为6以下、优选4以下。氟化链状碳酸酯具有多个氟原子的情况下,这些氟原子相互可以键合于同一个碳上,也可以键合于不同的碳上。作为氟化链状碳酸酯,可列举,氟化碳酸二甲酯衍生物、氟化碳酸甲乙酯衍生物、氟化碳酸二乙酯衍生物等。
羧酸酯类溶剂包括环状羧酸酯和/或链状碳酸酯。作为环状羧酸酯的例子,可以列举如:γ-丁内酯、γ-戊内酯、δ-戊内酯中的一种或多种。作为链状碳酸酯的例子,可以列举如:乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
在一些实施例中,砜类溶剂包括环状砜和链状砜,优选地,在为环状砜的情况下,通常为碳原子数3~6、优选碳原子数3~5,在为链状砜的情况下,通常为碳原子数2~6、优选碳原子数2~5的化合物。砜类溶剂的添加量没有特殊限制,在不显著破坏本发明锂离子电池效果的范围内是任意的,相对于非水电解液的溶剂总量,通常体积比为0.3%以上、优选体积比为0.5%以上、更优选体积比为1%以上,另外,通常体积比为40%以下、优选体积比为35%以下、更优选体积比为30%以下。在组合使用两种以上砜类溶剂的情况下,使砜类溶剂的总量满足上述范围即可。砜类溶剂的添加量在上述范围内时,倾向于获得高温保存稳定性优异的电解液。
在优选的实施例中,所述溶剂为环状碳酸酯和链状碳酸酯的混合物。
在一些实施例中,所述电解质盐还包括LiPO2F2、LiBF4、LiBOB、LiSbF6、LiAsF6、LiCF3SO3、LiDFOB、LiN(SO2CF3)2、LiC(SO2CF3)3、LiN(SO2C2F5)2、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiAlCl4、氯硼烷锂、具有4个以下的碳原子的低级脂族羧酸锂、四苯基硼酸锂以及亚氨基锂中的至少一种。
在一些实施例中,所述正极材料层包括正极活性材料,所述正极活性材料包括式(1)和式(2)所示的化合物中的一种或多种:
Li1+x’Nia’Cob’M’1-a’-b’O2-yDy   式(1)
式(1)中,-0.1≤x’≤0.2,0<a’<1,0≤b’<1,0<a’+b’<1,0≤y<0.2,M’包括Mn及Al中的一种或两种,以及包括Sr、Mg、Ti、Ca、Zr、Zn、Si、Ce中的零种、一种或多种,D包括S、N、F、Cl、Br及I中的一种或多种;
Li1+zMnc’L2-c’O4-d’Bd’   式(2)
式(2)中,-0.1≤z≤0.2,0<c’≤2,0≤d’<1,L包括Ni、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B包括S、N、F、Cl、Br及I中的一种或多种。
在一些实施例中,所述正极材料层还包括有正极粘结剂和正极导电剂,所述正极活性材料、所述正极粘结剂和所述正极导电剂共混得到所述正极材料层。
所述正极粘结剂包括聚偏氟乙烯、偏氟乙烯的共聚物、聚四氟乙烯、偏氟乙烯-六氟丙烯的共聚物、四氟乙烯-六氟丙烯的共聚物、四氟乙烯-全氟烷基乙烯基醚的共聚物、乙烯-四氟乙烯的共聚物、偏氟乙烯-四氟乙烯的共聚物、偏氟乙烯-三氟乙烯的共聚物、偏氟乙烯-三氯乙烯的共聚物、偏氟乙烯-氟代乙烯的共聚物、偏氟乙烯-六氟丙烯-四氟乙烯的共聚物、热塑性聚酰亚胺、聚乙烯及聚丙烯等热塑性树脂;丙烯酸类树脂;以及苯乙烯丁二烯橡胶中的一种或多种。
所述正极导电剂包括导电炭黑、导电碳球、导电石墨、导电碳纤维、碳纳米管、石墨烯或还原氧化石墨烯中的一种或多种。
在一些实施例中,所述负极包括负极材料层,所述负极材料层包括负极活性材料,所述负极活性材料包括硅基负极、碳基负极和锡基负极中的一种或多种。
在优选的实施例中,所述碳基负极可包括石墨、硬碳、软碳、石墨烯、中间相碳微球等。所述石墨包括但不限于天然石墨、人造石墨、非晶碳、碳包覆石墨、石墨包覆石墨、树脂包覆石墨中的一种或几种。所述天然石墨可以为鳞状石墨、鳞片状石墨、土壤石墨和/或以这些石墨为原料并对其实施球形化、致密化等处理而得到的石墨粒子等。所述人造石墨可以为对煤焦油沥青、煤炭类重质原油、常压渣油、石油类重质原油、芳香族烃、含氮环状化合物、含硫环状化合物、聚苯、聚氯乙烯、聚乙烯醇、聚丙烯腈、聚乙烯醇缩丁醛、天然高分子、聚苯硫醚、聚苯醚、糠醇树脂、酚醛树脂、酰亚胺树脂等有机物在高温下通过石墨化得到。所述非晶碳可以为使用焦油、沥青等易石墨化性碳前躯体作为原料,在不会发生石墨化的温度范围(400~2200℃的范围)进行1次以上热处理而成的非晶碳粒子、使用树脂等难石墨化性碳前驱体作为原料进行热处理而成的非晶碳粒子。所述碳包覆石墨可以为将天然石墨和/或人造石墨与作为焦油、沥青、树脂等有机化合物的碳前体混合,在400~2300℃的范围内进行1次以上热处理。以得到的天然石墨和/或人造石墨作为核石墨,利用非晶碳对其进行包覆而得到碳石墨复合物。碳石墨复合物可以是核石墨的整个或部分表面 包覆有非晶碳的形态,也可以是以上述碳前体起源的碳作为粘结剂使多个初级粒子复合而成的形态。另外,还可以通过使苯、甲苯、甲烷、丙烷、芳香族类的挥发成分等烃类气体与天然石墨和/或人造石墨在高温下反应,使碳沉积于石墨表面,得到碳石墨复合物。所述石墨包覆石墨可以为天然石墨和/或人造石墨与焦油、沥青、树脂等易石墨化的有机化合物的碳前体混合,在2400~3200℃左右的范围进行1次以上热处理。以所得天然石墨和/或人造石墨作为核石墨,并利用石墨化物包覆该核石墨的整个或部分表面,从而可得到石墨包覆石墨。所述树脂包覆石墨可以为将天然石墨和/或人造石墨与树脂等混合,并在低于400℃的温度下进行干燥,将由此得到的天然石墨和/或人造石墨作为核石墨,利用树脂等包覆该核石墨。上述焦油、沥青树脂等有机化合物,可列举,选自煤炭类重质原油、直流类重质原油、分解类石油重质原油、芳香族烃、N环化合物、S环化合物、聚苯、有机合成高分子、天然高分子、热塑性树脂及热固性树脂中的可碳化的有机化合物等。
在优选的实施例中,所述硅基负极可包括硅材料、硅的氧化物、硅碳复合材料以及硅合金材料等。所述硅基材料的添加量大于0小于30%。优选地,所述硅基材料的添加量的上限值为10%、15%、20%或25%;所述硅基材料的添加量的下限值为5%、10%或15%。所述硅材料为硅纳米颗粒、硅纳米线、硅纳米管、硅薄膜、3D多孔硅、中空多孔硅中的一种或几种。
在优选的实施例中,所述锡基负极可包括锡、锡碳、锡氧、锡基合金、锡金属化合物;所述锡基合金指锡与Cu、Ag、Co、Zn、Sb、Bi以及In中的一种或几种组成的合金。
在一些实施例中,所述负极还包括负极集流体,所述负极材料层形成于所述负极集流体的表面。所述负极集流体的材料可与所述正极集流体相同,在此不再赘述。
在一些实施例中,所述负极材料层还包括有负极粘结剂和负极导电剂,所述负极活性材料、所述负极粘结剂和所述负极导电剂共混得到所述负极材料层。所述负极粘结剂和负极导电剂可分别与所述正极粘接剂和正极导电剂相同,在此不再赘述。
在一些实施例中,所述电池中还包括有隔膜,所述隔膜位于所述正极和所述负极之间。
所述隔膜可为现有常规隔膜,可以是陶瓷隔膜、聚合物隔膜、无纺布、无 机-有机复合隔膜等,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
以下通过实施例对本发明进行进一步的说明。
以下实施例中所采用的结构式1所示的化合物如下表1:
表1
表2实施例和对比例各参数设计

实施例1
本实施例用于说明本发明公开的锂离子电池及其制备方法,包括以下操作步骤:
1)电解液的制备
将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)按质量比为EC:DEC:EMC=1:1:1进行混合,然后加入六氟磷酸锂(LiPF6)和双氟磺酰 亚胺锂(LiFSI)。然后添加结构式1所示的化合物。电解液中六氟磷酸锂(LiPF6)、双氟磺酰亚胺锂(LiFSI)、结构式1所示的化合物的含量如表2所示。
2)正极的制备
按93:4:3的质量比混合正极活性材料LiNi0.5Co0.2Mn0.3O2、导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将正极浆料均匀涂布在Fe元素浓度如表2所示的铝箔(铝合金)的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板,极板的厚度在120-150μm。
3)负极的制备
按94:1:2.5:2.5的质量比混合负极活性材料石墨、导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板,极板的厚度在120-150μm。
4)电芯的制备
在正极板和负极板之间放置厚度为20μm的三层隔离膜,然后将正极、负极和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝箔包装袋,在75℃下真空烘烤48h,得到待注液的电芯。
5)电芯的注液和化成
在水氧含量分别20ppm、50ppm以下的手套箱中,将上述制备的电解液注入电芯中,经真空封装,45℃搁置24h。
然后按以下步骤进行首次充电的常规化成:
0.05C恒流充电180min,0.1C恒流充电180min,0.2C恒流充电120min,总充电容量为c1,在45℃老化48h后,二次真空封口,然后进一步以0.2C的电流恒流充电至4.2V,以0.2C的电流恒流放电至3.0V。
实施例2~36
实施例2~36用于说明本发明公开的电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
电解液中各组分的含量和正极集流体中Fe的含量如表2所示。
对比例1~16
对比例1~16用于对比说明本发明公开的电池及其制备方法,包括实施例1中大部分操作步骤,其不同之处在于:
电解液中各组分的含量和正极集流体中Fe的含量如表2所示。
性能测试
对上述制备得到的锂离子电池进行如下性能测试:
0℃DCIR测试
在常温(25℃)下将电池恒流充电到电池容量的50%,再将温度调至0℃,并保持6h。
0.1C恒流充电10s后搁置40s;0.1C恒流放电10s后搁置40s,记录终止电压V1;
0.2C恒流充电10s后搁置40s;0.2C恒流放电10s后搁置40s,记录终止电压V2;
0.5C恒流充电10s后搁置40s;0.5C恒流放电10s后搁置40s,记录终止电压V3;
以电流为横坐标,电压为纵坐标做一条直线,直线的斜率即为0℃阻抗。
高温循环性能测试
将制备的锂离子电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.2V,再恒流恒压充电至电流下降至0.05C,然后以1C的电流恒流放电至3.0V,如此循环,记录第1周的放电容量和内阻;再记录800周后的放电容量和内阻。
按下式计算高温循环的容量保持率:
容量保持率=第800周放电容量/第1周放电容量×100%。
(1)实施例1~25和对比例1~16得到的测试结果填入表3。
表3

由实施例1~25和对比例1~16的测试结果可知,当非水电解液中LiPF6的摩尔含量a、LiFSI的摩尔含量b、结构式1所示化合物的质量百分比含量c和正极集流体中Fe的质量百分含量d满足关系式:且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7时,结构式1所示的化合物能够在含有Fe元素的正极集流体上形成较为致密的钝化膜,有效抑制了非水电解液中LiFSI对于正极集流体的腐蚀,且该锂离子电池具有较低的初始阻抗和较优的高温循环性能,推测是由于结构式1所示的化合物形成的钝化膜与正极集流体上的Fe元素具有较好的结合作用,能够提高钝化膜与正极集流体的亲和性和结合强度,从而更好地对正极集流体产生保护作用,且该钝化膜的离子导电性更好,具有较低的初始阻抗。
由对比例1~3和对比例12~16的测试结果可知,当值或值过大或过小时,均会影响锂离子电池的初始阻抗和高温循环性能,说明非水电解液中LiPF6的摩尔含量a、LiFSI的摩尔含量b、结构式1所示化合物的质量百分比含量c和正极集流体中Fe的质量百分含量d之间相互关联和相互影响,当四者处于一定平衡状态时,才对电池正极集流体上钝化膜的生成质量以及非水电解液的高温稳定性具有较好的提升。同时,由对比例5~对比例11的测试结果可知,即使值和值处于上述关系式的限定范围中,但a值、b值、c值或d值不满足其范围限制时,得到的锂离子电池同样不具有较低的初始阻抗和较优的高温循环性能。
由实施例1~5和对比例1~5的测试结果可知,随着正极集流体中Fe元素的含量的提升,锂离子电池在高温下800周循环后的容量保持率先提升后降低,说明正极集流体中Fe元素影响正极集流体上结构式1所示的化合物分解得到的钝化膜的致密度和稳定性,在本发明提供的电解液体系中,当正极集流体中Fe元素处于合适范围中时,对于锂离子电池的耐高温性能具有较大的提升。
由实施例6~8和对比例6、7的测试结果可知,随着非水电解液中LiFSI在锂盐中占比的提升,锂离子电池的初始阻抗先降低后增大,而高温循环性能先提升后降低,说明在非水电解液中LiFSI的添加有利于降低电池阻抗同时提高非水电解液的高温稳定性,但过多的LiFSI会导致正极集流体的腐蚀,影响电池循环性能。
由实施例12~18和对比例10、11的测试结果可知,随着非水电解液中结构式1所示化合物的含量提升,锂离子电池的高温循环容量保持率逐渐提升,说明结构式1所示的化合物在正极集流体上形成的钝化膜有利于抑制LiFSI对于正极集流体的腐蚀,但过高含量的结构式1所示的化合物也会导致钝化膜的厚度过大,导致电池阻抗的增加,从而降低电池的高温循环容量。
(2)实施例26~32得到的测试结果填入表4。
表4

由实施例26~32的测试结果可知,当采用不同的结构式1所示的化合物作为非水电解液的添加剂时,同样满足关系式的限制,说明不同结构式1所示的化合物中共同含有的双环硫酸酯的结构在参与正极集流体上钝化膜的形成过程中起到了决定性的作用,其形成的钝化膜能够与正极集流体上Fe元素具有较好的结合,保证钝化膜的致密性,有效隔离电解液对正极集流体的腐蚀。
(3)实施例7、实施例33~36得到的测试结果填入表5。
表5
由实施例7和实施例33~36的测试结果可知,在本发明提供的电池体系中,加入FEC(氟代碳酸乙烯酯)、PS(1,3-丙烷磺内酯)、磷酸三炔丙酯或丁二腈作为辅助添加剂,能够进一步提高电池的容量保持性能,但是对降低电池的初始阻抗无明显的促进作用,推测是由于结构式1所示的化合物和加入的FEC(氟代碳酸乙烯酯)、PS(1,3-丙烷磺内酯)、磷酸三炔丙酯和丁二腈之间存在一定的共同分解反应,能够共同参与电极表面钝化膜的形成,且得到的钝化膜能够提高非水电解液的稳定性,保持电池高温下的循环性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种锂离子电池,其特征在于,包括正极、负极和非水电解液,所述正极包括正极集流体和形成于所述正极集流体上的正极材料层,所述正极集流体为铝合金,所述铝合金中含有Fe,所述非水电解液包括溶剂、电解质盐和添加剂,所述电解质盐包括LiPF6和LiFSI,所述添加剂包括结构式1所示的化合物:
    其中,R1选自R2、R3、R4和R5各自独立地选自单键或亚甲基;
    所述锂离子电池满足以下条件:
    且0.1≤a≤1.5,0.1≤b≤1.0,0.02≤c≤2,0.1≤d≤0.7;
    其中,a为非水电解液中LiPF6的摩尔含量,单位为mol/L;
    b为非水电解液中LiFSI的摩尔含量,单位为mol/L;
    c为非水电解液中结构式1所示化合物的质量百分比含量,单位为wt%;
    d为正极集流体中Fe的质量百分含量,单位为wt%。
  2. 根据权利要求1所述的锂离子电池,其特征在于,所述锂离子电池满足以下条件:
  3. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中LiPF6的摩尔含量a为0.2~1.2mol/L。
  4. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中LiFSI的摩尔含量b为0.2~0.8mol/L。
  5. 根据权利要求1所述的锂离子电池,其特征在于,所述非水电解液中结构式1所示化合物的质量百分比含量c为0.1%~1.5%。
  6. 根据权利要求1所述的锂离子电池,其特征在于,所述正极集流体中Fe 的质量百分含量d为0.2-0.6wt%。
  7. 根据权利要求1所述的锂离子电池,其特征在于,所述结构式1所示的化合物选自以下化合物中的一种或多种:
  8. 根据权利要求1所述的锂离子电池,其特征在于,所述添加剂还包括环状硫酸酯类化合物、磺酸内酯类化合物、环状碳酸酯类化合物、不饱和磷酸酯类化合物和腈类化合物中的至少一种。
  9. 根据权利要求8所述的锂离子电池,其特征在于,以所述非水电解液的总质量为100%计,所述添加剂的添加量为0.01%~30%。
  10. 根据权利要求8所述的非水电解液,其特征在于,所述环状硫酸酯类化合物选自硫酸乙烯酯、硫酸丙烯酯或甲基硫酸乙烯酯中的至少一种。
  11. 根据权利要求8所述的非水电解液,其特征在于,所述磺酸内酯类化合物选自1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯或1,3-丙烯磺酸内酯中的至少一种。
  12. 根据权利要求8所述的非水电解液,其特征在于,所述环状碳酸酯类化合物选自碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯或结构式2所示化合物中的至少一种,
    所述结构式2中,R21、R22、R23、R24、R25、R26各自独立地选自氢原子、卤素原子、C1-C5基团中的一种。
  13. 根据权利要求8所述的非水电解液,其特征在于,所述不饱和磷酸酯类化合物选自结构式3所示化合物中的至少一种:
    所述结构式3中,R31、R32、R33各自独立的选自C1-C5的饱和烃基、不饱和烃基、卤代烃基、-Si(CmH2m+1)3,m为1~3的自然数,且R31、R32、R33中至少有一个为不饱和烃基。
  14. 根据权利要求8所述的非水电解液,其特征在于,所述腈类化合物选自丁二腈、戊二腈、乙二醇双(丙腈)醚、己烷三腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种。
  15. 根据权利要求1所述的锂离子电池,其特征在于,所述正极材料层包括正极活性材料,所述正极活性材料包括式(1)和式(2)所示的化合物中的一种或多种:
    Li1+x’Nia’Cob’M’1-a’-b’O2-yDy  式(1)
    式(1)中,-0.1≤x’≤0.2,0<a’<1,0≤b’<1,0<a’+b’<1,0≤y<0.2,M’包括Mn及Al中的一种或两种,以及包括Sr、Mg、Ti、Ca、Zr、Zn、Si、 Ce中的零种、一种或多种,D包括S、N、F、Cl、Br及I中的一种或多种;
    Li1+zMnc’L2-c’O4-d’Bd’  式(2)
    式(2)中,-0.1≤z≤0.2,0<c’≤2,0≤d’<1,L包括Ni、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B包括S、N、F、Cl、Br及I中的一种或多种。
PCT/CN2023/076529 2022-02-21 2023-02-16 一种锂离子电池 WO2023155843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210158148.2A CN114639872B (zh) 2022-02-21 2022-02-21 一种锂离子电池
CN202210158148.2 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023155843A1 true WO2023155843A1 (zh) 2023-08-24

Family

ID=81945832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076529 WO2023155843A1 (zh) 2022-02-21 2023-02-16 一种锂离子电池

Country Status (2)

Country Link
CN (1) CN114639872B (zh)
WO (1) WO2023155843A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639872B (zh) * 2022-02-21 2024-04-05 深圳新宙邦科技股份有限公司 一种锂离子电池
CN117477027A (zh) * 2022-07-21 2024-01-30 深圳新宙邦科技股份有限公司 一种非水电解液及二次电池
CN115425277A (zh) * 2022-08-26 2022-12-02 江苏正力新能电池技术有限公司 一种锂离子电池
WO2024065808A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 电池、其制备方法、及包含其的用电装置
CN117895075A (zh) * 2022-10-09 2024-04-16 深圳新宙邦科技股份有限公司 一种非水电解液及二次电池
CN115528309A (zh) * 2022-11-04 2022-12-27 九江天赐高新材料有限公司 有机电解液和含有该有机电解液的锂离子二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051909A1 (en) * 1999-02-25 2002-05-02 Frysz Christine A. Cobalt-based alloys as positive electrode current collectors in nonaqueous electrochemical cells
CN110637388A (zh) * 2017-05-18 2019-12-31 日本电气株式会社 锂离子二次电池用电解液和使用其的锂离子二次电池
CN111403807A (zh) * 2019-01-02 2020-07-10 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN111837261A (zh) * 2018-03-30 2020-10-27 株式会社东芝 电极组、电池及电池包
CN114068936A (zh) * 2022-01-14 2022-02-18 深圳新宙邦科技股份有限公司 锂离子电池
CN114639872A (zh) * 2022-02-21 2022-06-17 深圳新宙邦科技股份有限公司 一种锂离子电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718062B1 (ko) * 2013-09-24 2017-03-20 삼성에스디아이 주식회사 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR102380512B1 (ko) * 2015-01-16 2022-03-31 삼성에스디아이 주식회사 리튬 전지용 전해액 및 이를 채용한 리튬 전지
KR102451966B1 (ko) * 2015-06-08 2022-10-07 에스케이온 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2017190355A1 (zh) * 2016-05-06 2017-11-09 深圳先进技术研究院 一种电解液、含有所述电解液的二次电池及其制备方法
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109950620B (zh) * 2017-12-20 2021-05-14 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及锂离子电池
CN110444804B (zh) * 2018-05-04 2021-02-12 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN109193029B (zh) * 2018-08-21 2021-02-19 东莞市杉杉电池材料有限公司 一种高镍三元锂离子电池非水电解液及含该电解液的高镍三元锂离子电池
CN110931863B (zh) * 2019-11-12 2022-03-29 深圳市比克动力电池有限公司 电池电解液用添加剂、锂离子电池电解液、锂离子电池
CN115224233A (zh) * 2020-10-15 2022-10-21 宁德新能源科技有限公司 电化学装置和电子装置
CN115101802A (zh) * 2020-10-15 2022-09-23 宁德新能源科技有限公司 电化学装置和电子装置
CN112271337A (zh) * 2020-11-25 2021-01-26 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN113659206B (zh) * 2021-08-13 2023-05-09 深圳新宙邦科技股份有限公司 一种高压实锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051909A1 (en) * 1999-02-25 2002-05-02 Frysz Christine A. Cobalt-based alloys as positive electrode current collectors in nonaqueous electrochemical cells
CN110637388A (zh) * 2017-05-18 2019-12-31 日本电气株式会社 锂离子二次电池用电解液和使用其的锂离子二次电池
CN111837261A (zh) * 2018-03-30 2020-10-27 株式会社东芝 电极组、电池及电池包
CN111403807A (zh) * 2019-01-02 2020-07-10 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN114068936A (zh) * 2022-01-14 2022-02-18 深圳新宙邦科技股份有限公司 锂离子电池
CN114639872A (zh) * 2022-02-21 2022-06-17 深圳新宙邦科技股份有限公司 一种锂离子电池

Also Published As

Publication number Publication date
CN114639872A (zh) 2022-06-17
CN114639872B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN113659206B (zh) 一种高压实锂离子电池
CN114094109B (zh) 锂离子电池
CN114068936B (zh) 锂离子电池
CN114639872B (zh) 一种锂离子电池
WO2023045948A1 (zh) 一种二次电池
CN114497692B (zh) 二次电池
WO2023124604A1 (zh) 二次电池
CN115117452B (zh) 一种锂离子电池
WO2024037187A1 (zh) 一种锂离子电池
WO2024104100A1 (zh) 一种锂离子电池
WO2023246279A1 (zh) 一种锂二次电池
CN114725512A (zh) 一种非水电解液及二次电池
WO2024055794A1 (zh) 一种锂离子电池
CN114361588B (zh) 一种锂离子电池
CN116435595A (zh) 一种锂离子电池
WO2023124831A1 (zh) 锂离子电池
WO2023104038A1 (zh) 一种二次电池
WO2023016412A1 (zh) 一种非水电解液及电池
CN114447295B (zh) 锂离子电池
CN117175015B (zh) 一种非水电解液及电池
JP7470789B2 (ja) リチウムイオン電池
WO2024114176A1 (zh) 一种锂离子电池
CN118281331A (zh) 一种非水电解液及二次电池
CN118281332A (zh) 一种非水电解液及二次电池
WO2024016897A1 (zh) 一种非水电解液及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755844

Country of ref document: EP

Kind code of ref document: A1