WO2023101521A1 - 이리듐 클로라이드 수화물의 제조 방법 및 이리듐 클로라이드의 제조 방법 - Google Patents
이리듐 클로라이드 수화물의 제조 방법 및 이리듐 클로라이드의 제조 방법 Download PDFInfo
- Publication number
- WO2023101521A1 WO2023101521A1 PCT/KR2022/019537 KR2022019537W WO2023101521A1 WO 2023101521 A1 WO2023101521 A1 WO 2023101521A1 KR 2022019537 W KR2022019537 W KR 2022019537W WO 2023101521 A1 WO2023101521 A1 WO 2023101521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iridium
- hydrochloric acid
- chloride hydrate
- iridium chloride
- paragraph
- Prior art date
Links
- MJRFDVWKTFJAPF-UHFFFAOYSA-K trichloroiridium;hydrate Chemical compound O.Cl[Ir](Cl)Cl MJRFDVWKTFJAPF-UHFFFAOYSA-K 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 20
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 title claims description 24
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 176
- 238000005406 washing Methods 0.000 claims abstract description 62
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910000457 iridium oxide Inorganic materials 0.000 claims abstract description 54
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 50
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 32
- 238000004090 dissolution Methods 0.000 claims abstract description 29
- 239000003513 alkali Substances 0.000 claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 23
- 150000001339 alkali metal compounds Chemical class 0.000 claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- 239000011734 sodium Substances 0.000 claims description 38
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 229910052783 alkali metal Inorganic materials 0.000 claims description 18
- 150000001340 alkali metals Chemical class 0.000 claims description 18
- 150000004973 alkali metal peroxides Chemical class 0.000 claims description 15
- 238000001914 filtration Methods 0.000 claims description 14
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- 238000001354 calcination Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 claims description 7
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- HPGPEWYJWRWDTP-UHFFFAOYSA-N lithium peroxide Chemical compound [Li+].[Li+].[O-][O-] HPGPEWYJWRWDTP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 45
- 239000000047 product Substances 0.000 description 28
- 239000008367 deionised water Substances 0.000 description 27
- 229910021641 deionized water Inorganic materials 0.000 description 27
- 238000010304 firing Methods 0.000 description 24
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910001415 sodium ion Inorganic materials 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000011978 dissolution method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- -1 iridium metals Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000012487 rinsing solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G55/00—Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
- C01G55/005—Halides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G55/00—Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- It relates to iridium chloride hydrate and a method for producing iridium chloride from iridium metal powder.
- iridium metal powder does not dissolve in an acid solution, an alkali solution, or aqua regia (a mixture of concentrated hydrochloric acid and concentrated nitric acid).
- an iridium aqueous solution by dissolving iridium metal powder it is mixed with an alkali metal (Na, K, etc.), converted into an oxide by heat treatment, and then dissolved in aqua regia.
- an alkali metal Na, K, etc.
- One embodiment is iridium chloride, which is environmentally advantageous because the conversion rate of iridium metal is high, unreacted iridium does not exist due to the high solubility of iridium metal, the purity of the product is high because the content of alkali metal is low, and nitrogen oxide is not generated.
- a method for preparing a hydrate is provided.
- Another embodiment provides a method for preparing iridium chloride using the prepared iridium chloride hydrate.
- a mixing step of preparing a mixture of iridium metal powder and an alkali metal compound a firing step of preparing an alkali-containing iridium oxide by calcining the mixture, and washing the alkali-containing iridium oxide with an aqueous hydrochloric acid solution to obtain iridium oxide.
- a method for producing iridium chloride hydrate comprising a step of washing an aqueous hydrochloric acid solution to obtain an oxide, and a step of dissolving iridium oxide in hydrochloric acid and then reacting the iridium oxide in hydrochloric acid under pressure.
- the alkali metal compound may include an alkali metal hydroxide, an alkali metal peroxide, or mixtures thereof.
- the alkali metal hydroxide may include sodium hydroxide, potassium hydroxide, lithium hydroxide, or mixtures thereof.
- the alkali metal peroxide may include sodium peroxide, potassium peroxide, lithium peroxide, or mixtures thereof.
- the alkali metal hydroxide may include a mixture of sodium hydroxide and sodium peroxide.
- the mixture may include 0.5 parts by weight to 1 part by weight of the alkali metal compound based on 1 part by weight of the iridium metal powder.
- the mixture may include 1 to 3 parts by weight of the alkali metal peroxide based on 1 part by weight of the iridium metal powder.
- the alkali-containing iridium oxide may include a compound represented by Chemical Formula 1 below.
- x is an integer of 2 to 4
- y is an integer of 1 to 3
- z is an integer of 3 to 8.
- the alkali-containing iridium oxide may include Na 2 IrO 3 , Na 4 IrO 4 , Na 4 Ir 3 O 8 , or a mixture thereof.
- firing may be performed at a high temperature of 750 °C or higher.
- a water washing step of washing the alkali-containing iridium oxide with water at 60 °C to 70 °C for 2 to 4 hours may be further included.
- the concentration of the aqueous hydrochloric acid solution may be 5% to 10%.
- a step of obtaining a cake by drying the iridium oxide after washing with an aqueous hydrochloric acid solution may be further included.
- the cake of iridium oxide may have an alkali metal content of 10 ppm or less.
- the amount of hydrochloric acid based on 1 part by weight of iridium oxide may be 5 parts by weight to 15 parts by weight.
- the step of dissolving hydrochloric acid may be performed under a pressure of 5 to 10 pressure.
- the hydrochloric acid dissolution reaction step may be performed for 2 hours to 6 hours at 130° C. to 170° C. under pressure.
- a step of obtaining by filtering the iridium chloride hydrate prepared in the hydrochloric acid dissolution reaction step may be further included.
- the prepared iridium chloride hydrate may have an alkali metal content of 10 ppm or less.
- a method for producing iridium chloride in which iridium chloride is prepared by concentrating the obtained iridium chloride hydrate.
- the method for producing iridium chloride hydrate according to an embodiment has a high conversion rate of iridium metal, no unreacted iridium due to the high solubility of iridium metal, and a low content of alkali metal, resulting in high purity of the product and generation of nitrogen oxides. It is not environmentally beneficial.
- FIG. 1 is a process flow chart showing steps for preparing iridium chloride hydrate and iridium chloride according to an embodiment.
- Example 5 is a photograph showing iridium chloride hydrate and iridium chloride prepared in Example 1.
- FIG. 1 is a process flow chart showing steps for preparing iridium chloride hydrate and iridium chloride according to an embodiment.
- iridium chloride hydrate and a method for producing iridium chloride will be described in detail.
- the method for producing iridium chloride hydrate includes a mixing step (S1-1), a calcining step (S1-2), a hydrochloric acid aqueous solution washing step (S1-4), and a hydrochloric acid dissolution reaction step (S1-5).
- the alkali metal compound may include an alkali metal hydroxide, an alkali metal peroxide, or a mixture thereof, for example a solid mixture of an alkali metal hydroxide and an alkali metal peroxide.
- the alkali metal hydroxide may include sodium hydroxide, potassium hydroxide, lithium hydroxide, or mixtures thereof, for example the alkali metal hydroxide may be sodium hydroxide (NaOH).
- the alkali metal peroxide may include sodium peroxide, potassium peroxide, lithium peroxide, or a mixture thereof, and for example, the alkali metal peroxide may be sodium peroxide (Na 2 O 2 ).
- the alkali metal hydroxide may include a mixture of sodium hydroxide and sodium peroxide.
- the mixture may include an alkali metal compound in an amount of 0.5 parts by weight to 1 part by weight, for example, 0.6 parts by weight to 0.7 parts by weight, based on 1 part by weight of the iridium metal powder. If the content of the alkali metal compound is less than 0.5 parts by weight based on 1 part by weight of the iridium metal powder, the amount of alkali component adsorbed on the surface of the iridium metal may not be uniformly oxidized during the firing process due to insufficient adsorption of the alkali component, and if it exceeds 1 part by weight, excessive alkali The metal compound can cover the iridium metal surface and prevent the oxidizing agent from contacting the iridium metal.
- the mixture may include 1 part by weight to 3 parts by weight, for example, 1.75 parts by weight to 2.25 parts by weight of the alkali metal peroxide in the alkali metal compound, based on 1 part by weight of the iridium metal powder. If the content of alkali metal peroxide is less than 1 part by weight based on 1 part by weight of iridium metal powder, iridium metal may still remain after firing due to lack of oxidizing agent, and if it exceeds 3 parts by weight, iridium metal is peroxidized to form iridium nanoparticles As a result, it may be difficult to obtain the product by passing through the filter paper in the subsequent filtration process.
- the weight ratio of the alkali metal hydroxide and the alkali metal peroxide may be 1: 2 to 1: 4, for example 1: 2.5 to 1: 3.5 there is. If the weight ratio of alkali metal peroxide is less than 2, iridium metal may still remain after firing due to lack of oxidizing agent, and if it exceeds 4, iridium metal is peroxidized to form iridium nanoparticles, which pass through filter paper in the subsequent filtering process to obtain a product this can be difficult
- iridium oxide containing an alkali is prepared by sintering the mixture.
- Firing can be done at 750 °C or higher.
- the firing temperature is less than 750 ° C, unreacted iridium metal may remain, and at 750 ° C or higher, the iridium metal may be completely converted into alkali-containing iridium oxide.
- the firing may be performed by raising the temperature to 750 °C or higher for 5 to 10 hours and maintaining the temperature at 750 °C or higher for 2 to 4 hours.
- the alkali-containing iridium oxide prepared through sintering may include a compound represented by Formula 1 below.
- x is an integer of 2 to 4
- y is an integer of 1 to 3
- z is an integer of 3 to 8.
- the alkali-containing iridium oxide represented by Chemical Formula 1 may include Na 2 IrO 3 , Na 4 IrO 4 , Na 4 Ir 3 O 8 , or a mixture thereof.
- the alkali-containing iridium oxide obtained in the sintering step may be subjected to washing with water before washing with an aqueous hydrochloric acid solution (S1-3).
- the water may be deionized water, distilled water, or ultrapure water, and deionized water may be used, for example.
- the water washing step may be performed using alkali-containing iridium oxide with water at 60 °C to 70 °C for 2 to 4 hours. If the temperature of the water washing step is less than 60 ° C., the washing may not be completely performed, and alkali ions remaining after washing may exist. If the temperature exceeds 70 ° C., the washing water may be evaporated and concentrated. If the time of the water washing step is less than 2 hours, the washing may not be perfectly performed, and if it exceeds 4 hours, the working time may be unnecessarily long.
- a filtration step may be further included after the water washing step.
- filtration can be done at high temperature using paper filter paper to wash the solution with water.
- the water washing step may be performed again, for example, after the filtration step, it may be washed with pre-prepared high-temperature water at 60 °C to 70 °C.
- alkali metal ions may be removed from the alkali-containing iridium oxide, and thus some iridium oxide may be obtained.
- alkali metal components of about 400 ppm or more may remain even after the water washing step.
- iridium oxide containing alkali is washed with an aqueous hydrochloric acid solution to reduce the content of the remaining alkali metal component to 10 ppm or less, and iridium oxide may be prepared.
- the concentration of the aqueous hydrochloric acid solution may be 5% to 10%.
- concentration of the aqueous hydrochloric acid solution is less than 5%, the washing effect is not well displayed, and alkali metals may still remain, and when the concentration exceeds 10%, some iridium metals may be dissolved in addition to alkali metals.
- a filtration step may be further included after the step of washing the aqueous hydrochloric acid solution.
- filtration can be performed at high temperature using paper filter paper for a solution washed with an aqueous hydrochloric acid solution.
- a cake may be prepared by drying the iridium oxide that has been washed with an aqueous hydrochloric acid solution.
- Drying may be performed at 100 °C or higher for 12 to 24 hours.
- the drying temperature is less than 100 ° C., not only does the drying time increase, but residual moisture may exist even after drying.
- the cake of iridium oxide may have an alkali metal content of 10 ppm or less, for example 0 ppm to 5 ppm.
- the alkali metal content exceeds 10 ppm, the purity of the final product, iridium chloride, may decrease, which may negatively affect the catalytic reaction when preparing a catalyst using the same.
- iridium oxide is dissolved in hydrochloric acid under pressure and then reacted to prepare iridium chloride hydrate.
- the amount of hydrochloric acid based on 1 part by weight of iridium oxide may be 5 parts by weight to 15 parts by weight, for example, 8 parts by weight to 10 parts by weight. If the content of hydrochloric acid relative to 1 part by weight of iridium oxide is less than 5 parts by weight, iridium oxide may not be 100% converted to iridium chloride due to insufficient content of chloride ions required for the reaction, and if it exceeds 15 parts by weight, a subsequent process, a concentration process The energy cost of evaporating the hydrochloric acid solution can be excessive.
- the hydrochloric acid dissolving reaction step may be performed under pressure, for example, in a pressurized container.
- the pressure may be 5 to 10 pressure, for example, 6 to 8 pressure. Since the pressure increases in proportion to the reaction temperature, it is not necessary to separately adjust the pressure if the reaction is performed in the temperature range below.
- the hydrochloric acid dissolving reaction step may be performed under pressure at 130 ° C to 170 ° C for 2 hours to 6 hours, for example, at 150 ° C to 170 ° C for 2 hours to 4 hours.
- the hydrochloric acid dissolving reaction step if the temperature is less than 130 ° C, it may be difficult to convert iridium oxide to iridium chloride by 100%, and if it exceeds 170 ° C, conversion to iridium chloride is easy, but the pressurized container is corroded or deformed, making it difficult to apply commercially. If the time is less than 2 hours, the conversion reaction rate of iridium chloride may decrease, and if the time exceeds 6 hours, energy costs may be excessive.
- a filtration step may be further included after the hydrochloric acid dissolution reaction step.
- filtration step it is possible to obtain iridium chloride hydrate prepared in the hydrochloric acid dissolution reaction step.
- filtration may be performed at a high temperature using paper filter paper for a solution that has undergone a hydrochloric acid dissolution reaction.
- a minimum amount of rinsing solution for recovering residual solution for example, deionized water is used.
- the prepared iridium chloride hydrate may be, for example, a compound represented by H 2 IrCl 6 ⁇ xH 2 O.
- the iridium chloride hydrate obtained in the hydrochloric acid dissolution reaction step is substantially completely dissolved, for example, 99.9% or more dissolved, and has an alkali metal content of 10 ppm or less.
- the production yield can be increased by inducing complete oxidation of iridium metal in the calcination step (S2-1), and in the hydrochloric acid aqueous solution washing step (S1-4), the aqueous hydrochloric acid solution alone is used as a solvent.
- Nitrogen oxide is not generated, and the content of alkali metal in iridium chloride obtained by removing the alkali metal component used as an oxidizing agent using hydrochloric acid before the pressurization reaction is 10 ppm or less, and pressurization in the hydrochloric acid dissolution reaction step (S1-5) Through the reaction, it has a solubility of 99.9% or more, so that unreacted iridium does not exist, and the purity of the product is very high.
- iridium chloride is prepared by concentrating the prepared iridium chloride hydrate (S2-1).
- concentration may use a vacuum distillation method.
- the prepared iridium chloride may be, for example, a compound represented by IrCl 4 ⁇ xH 2 O.
- the mixed powder is placed in a crucible, fired at 750 ° C, and slowly cooled. During firing, it proceeds to the steps of 750 °C temperature increase for 6 hours and holding for 2.5 hours. In addition, the lid of the crucible is opened during firing.
- the calcined powder was put into 500 ml of deionized water and the solution was heated to 65° C. while ultrasonic mixing (sonication) was performed. After reaching 65° C., the mixture is stirred for 2 hours using a magnetic spin bar.
- the stirred solution is filtered in a hot state using paper filter paper. After filtering, wash with 2 L of pre-prepared hot water at 65 °C.
- the washed powder is dried at 120 °C for more than 12 hours to recover the Na x IrO y cake.
- the dried cake is placed in a pressure vessel and mixed with 242 g of HCl.
- the prepared pressure container is put into a heat treatment furnace, and after a high-temperature pressurization reaction at 150 ° C. for 4 hours, it is cooled.
- the dissolved solution is filtered using paper filter paper. Use a minimum amount of rinsing solution (deionized water) for residual solution recovery.
- Iridium chloride hydrate was prepared in the same manner as in Example 1, except that the reaction conditions in Example 1 were changed as shown in Table 1 below.
- Example 1 20g 2.6 750 Na x IrO y deionized water 10% hydrochloric acid aqueous solution ⁇ 1 pressure melting 150
- Example 2 20g 2 750 Ir+Na x IrO y deionized water 10% aqueous hydrochloric acid solution ⁇ 1 pressure melting 150
- Example 3 20g 3 750 Na x IrO y deionized water 10% aqueous hydrochloric acid solution 30.7 pressure melting 150
- Example 4 20g 2.6 650 Ir+Na x IrO y deionized water 10% aqueous hydrochloric acid solution ⁇ 1 pressure melting 150
- Example 5 20g 2.6 700 Ir+IrO2+Na
- Example 1 and Example 4 to Example 6 the state of iridium oxide containing alkali produced as the firing temperature was changed to 750 ° C, 650 ° C, 700 ° C, and 800 ° C, respectively, was analyzed by XRD, and Results are shown in FIG. 2 .
- the iridium metal is completely converted to Na x IrO y by completely combining with Na ions and oxidizing agents under the firing condition of 750 ° C or higher.
- Example 1 Example 7, and Example 8, the state of iridium oxide produced as the washing conditions were changed was analyzed by XRD, and the results are shown in FIG. 3 .
- Example 1 is the result of first washing with deionized water and second washing with 10% aqueous hydrochloric acid solution
- Example 8 is the result of first washing with deionized water and second washing with 5% aqueous hydrochloric acid solution
- 7 is the result of first washing with deionized water and no second washing with aqueous hydrochloric acid.
- the content of iridium in the product prepared in Example 1 was measured through ICP analysis.
- FIG. 4 Reference Example 1 is a result of reagent grade (Aldrich) H 2 IrCl 6 ⁇ xH 2 O. Referring to FIG. 4, it was confirmed that the same crystal phase as reagent grade (Aldrich) H 2 IrCl 6 ⁇ xH 2 O was obtained.
- the prepared product is dried at 100 ° C. for 4 hours to recover the dried product.
- the Cl/Ir molar ratio was 4.2.
- thermogravimetric analysis is shown in Table 2.
- Example 1 and Reference Example 1 were almost similar in residual amounts after thermal analysis at 900 °C. As a result, it was confirmed that the dried product was prepared with IrCl 4 .
- FIG. 5 the result of comparing the color of the manufactured product with that of Reference Example 1, which is commercially available by diluting the product 1000 times, is shown in FIG. 5 .
- (A) is a photograph of iridium metal powder
- (B) is a photograph of the product H 2 IrCl 6 solution
- (B′) is a photograph after diluting and dissolving the product H 2 IrCl 6 solution by a factor of 1000
- (Ref.B') is a photograph of Reference Example 1.
- C is a photograph of the dried product, IrCl 4
- C' is a photograph after dissolving the dried product, IrCl 4 diluted 1000 times
- (Ref.C') is a photograph of Reference Example 1.
- Reference Example 1 is a result of reagent grade (Aldrich Co.) H 2 IrCl 6 ⁇ xH 2 O.
- the product was identified as H 2 IrCl 6 ⁇ xH 2 O and the dried product as IrCl 4 ⁇ xH 2 O.
- Example 1 99.9 4.1
- Example 2 95.2 3.9
- Example 3 99.5
- Example 4 62 3.9
- Example 5 68 4.0
- Example 6 99.9 4.4
- Example 7 99.8 412
- Example 8 99.8 9.8
- Example 9 71.6
- Example 10 85.3
- Example 11 99.9 4.4 Comparative Example 1 62.8 396 Comparative Example 2 71.3 4.1
- catalysts were prepared by adjusting the ratio of the alkali metal compound and the iridium metal during firing.
- complete oxidation of iridium metal did not proceed, so complete dissolution was not achieved in the dissolution reaction step of the final oxide.
- an alkali metal compound was excessively added, so that iridium oxide was dissolved in deionized water during the washing process. There was a problem of melting and eluting.
- Example 1 and Example 4 to Example 6 are cases in which catalysts were prepared by varying the firing temperature during firing. It can be seen that when the firing temperature is less than 750 ° C, unoxidized iridium is present, and the dissolution rate is lowered in the dissolution reaction step.
- Example 1 Example 7, and Example 8 are the results of comparing the amount of Na ions in the product according to the degree of washing in the aqueous hydrochloric acid solution in the washing step.
- Example 7 did not perform secondary washing using an aqueous hydrochloric acid solution, and as a result, it was confirmed that a large amount of Na ions remained in the final product.
- Example 8 is the result of washing with an aqueous hydrochloric acid solution prepared at a concentration of 5% hydrochloric acid, and it was confirmed that the washing effect was excellent even with a small amount of hydrochloric acid.
- Example 1 and Examples 9 to 11 are prepared by varying the dissolution reaction temperature in the dissolution reaction step.
- the pressure dissolution was performed at a temperature of less than 150 °C, a low dissolution rate was shown, and it was confirmed that complete dissolution was achieved from 150 °C or more.
- Example 1 Comparative Example 1, and Comparative Example 2 are prepared by changing the dissolution method in the dissolution reaction step.
- the temperature was not raised above 100 ° C. at atmospheric pressure, and thus showed low solubility.
- Comparative Example 1 showed low solubility and high Na ion residual rate in the product because hydrochloric acid solution was not washed in the washing step. .
- the weight ratio of iridium metal and alkali metal compound is 2.6
- the firing temperature is 750 ° C. or higher
- iridium oxide is prepared through additional removal of Na ions using 5% to 10% hydrochloric acid aqueous solution. It can be seen that an iridium chloride solution having a dissolution rate of 99% or more can be prepared by using a pressurized reaction at 150° C. or higher for the prepared iridium oxide.
- One embodiment is iridium chloride, which is environmentally advantageous because the conversion rate of iridium metal is high, unreacted iridium does not exist due to the high solubility of iridium metal, the purity of the product is high because the content of alkali metal is low, and nitrogen oxide is not generated.
- a method for preparing a hydrate is provided.
- Another embodiment provides a method for preparing iridium chloride using the prepared iridium chloride hydrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
이리듐 금속 분말과 알칼리 금속 화합물의 혼합물을 준비하는 혼합 단계, 혼합물을 소성하여 알칼리가 포함된 이리듐 산화물을 제조하는 소성 단계, 알칼리가 포함된 이리듐 산화물을 염산 수용액으로 세척하여 이리듐 산화물을 얻는 염산 수용액 세척 단계, 그리고 이리듐 산화물을 가압하에서 염산에 용해한 후 반응시키는 염산 용해 반응 단계를 포함하는, 이리듐 클로라이드 수화물의 제조 방법을 제공한다.
Description
이리듐 금속 분말로부터 이리듐 클로라이드 수화물 및 이리듐 클로라이드를 제조하는 방법에 관한 것이다.
가장 일반적으로 상용화된 이리듐의 형태는 금속 분말이다. 그러나, 이리듐 금속 분말은 백금, 또는 팔라듐과 달리 산 용액, 알칼리 용액, 또는 왕수(aqua regia, 진한 염산과 진한 질산의 혼합)에 용해되지 않는다.
이리듐 금속 분말을 용해하여 이리듐 수용액을 제조하기 위해서, 알칼리 금속(Na, 또는 K 등)과 혼합한 후 열처리하여 산화물로 전환시킨 후, 왕수에 녹여 제조한다.
하지만, 이러한 방법에 의해서도 이리듐 금속이 완전히 용해되기 어렵기 때문에, 생성물의 수율이 높지 않고, 미용해 이리듐 금속을 회수하여 열처리 단계부터 동일 과정을 반복하여야 한다.
또한, 이리듐 산화물을 왕수에 녹이는 과정은 고온에서 진행되는데, 이 때 왕수에 포함되어 있던 질산이 증기로 배출되어 환경 오염을 유발할 수 있다.
일 실시예는 이리듐 금속의 전환율이 높고, 이리듐 금속의 높은 용해도로 인하여 미반응 이리듐이 존재하지 않고, 알칼리 금속의 함량도 적어 생성물의 순도가 높고, 질소 산화물이 발생되지 않아 환경적으로 유리한 이리듐 클로라이드 수화물의 제조 방법을 제공한다.
다른 실시예는 제조된 이리듐 클로라이드 수화물을 이용하여 이리듐 클로라이드를 제조하는 방법을 제공한다.
일 실시예에 따르면, 이리듐 금속 분말과 알칼리 금속 화합물의 혼합물을 준비하는 혼합 단계, 혼합물을 소성하여 알칼리가 포함된 이리듐 산화물을 제조하는 소성 단계, 알칼리가 포함된 이리듐 산화물을 염산 수용액으로 세척하여 이리듐 산화물을 얻는 염산 수용액 세척 단계, 그리고 이리듐 산화물을 가압하에서 염산에 용해한 후 반응시키는 염산 용해 반응 단계를 포함하는, 이리듐 클로라이드 수화물의 제조 방법을 제공한다.
알칼리 금속 화합물은 알칼리 금속 수산화물, 알칼리 금속 과산화물, 또는 이들의 혼합물을 포함할 수 있다.
알칼리 금속 수산화물은 수산화나트륨, 수산화칼륨, 수산화리튬, 또는 이들의 혼합물을 포함할 수 있다.
알칼리 금속 과산화물은 과산화나트륨, 과산화칼륨, 과산화리튬, 또는 이들의 혼합물을 포함할 수 있다.
알칼리 금속 수산화물은 수산화나트륨과 과산화나트륨의 혼합물을 포함할 수 있다.
혼합물은 알칼리 금속 화합물을 이리듐 금속 분말 1 중량부에 대하여 0.5 중량부 내지 1 중량부로 포함할 수 있다.
혼합물은 알칼리 금속 과산화물을 이리듐 금속 분말 1 중량부에 대하여 1 중량부 내지 3 중량부로 포함할 수 있다.
알칼리가 포함된 이리듐 산화물은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
NaxIryOz
화학식 1에서, x는 2 내지 4의 정수이고, y는 1 내지 3의 정수이고, z는 3 내지 8의 정수이다.
알칼리가 포함된 이리듐 산화물은 Na2IrO3, Na4IrO4, Na4Ir3O8, 또는 이들의 혼합물을 포함할 수 있다.
소성 단계에서, 소성은 750 ℃ 이상의 고온에서 이루어질 수 있다.
소성 단계와 염산 수용액 세척 단계 사이에, 알칼리가 포함된 이리듐 산화물을 물로, 60 ℃ 내지 70 ℃에서, 2 시간 내지 4 시간 동안 세척하는 물 세척 단계를 더 포함할 수 있다.
염산 수용액 세척 단계에서, 염산 수용액의 농도는 5 % 내지 10 %일 수 있다.
염산 수용액 세척 단계를 거친 이리듐 산화물을 건조하여 케이크(cake)를 얻는 단계를 더 포함할 수 있다.
이리듐 산화물의 케이크는 알칼리 금속의 함량이 10 ppm 이하일 수 있다.
염산 용해 반응 단계에서, 이리듐 산화물 1 중량부에 대한 염산의 함량은 5 중량부 내지 15 중량부일 수 있다.
염산 용해 반응 단계는 5 압력 내지 10 압력의 가압 하에서 이루어질 수 있다.
염산 용해 반응 단계는 가압하, 130 ℃ 내지 170 ℃에서 2 시간 내지 6 시간 동안 이루어질 수 있다.
염산 용해 반응 단계에서 제조된 이리듐 클로라이드 수화물을 여과하여 수득하는 단계를 더 포함할 수 있다.
제조된 이리듐 클로라이드 수화물은 알칼리 금속의 함량이 10 ppm 이하일 수 있다.
다른 실시예에 따르면, 얻어진 이리듐 클로라이드 수화물을 농축하여 이리듐 클로라이드를 제조하는 이리듐 클로라이드의 제조 방법을 제공한다.
일 실시예에 따른 이리듐 클로라이드 수화물의 제조 방법은 이리듐 금속의 전환율이 높고, 이리듐 금속의 높은 용해도로 인하여 미반응 이리듐이 존재하지 않고, 알칼리 금속의 함량도 적어 생성물의 순도가 높고, 질소 산화물이 발생되지 않아 환경적으로 유리하다.
도 1은 일 실시예에 따른 이리듐 클로라이드 수화물 및 이리듐 클로라이드를 제조하는 단계를 나타내는 공정 순서도이다.
도 2는 실험예 1에서 소성 온도별 생성된 알칼리가 포함된 이리듐 산화물의 XRD 분석 결과를 나타내는 그래프이다.
도 3은 실험예 2에서 세척 조건별 생성된 이리듐 산화물의 XRD 분석 결과를 나타내는 그래프이다.
도 4는 실험예 3에서 측정된 이리듐 클로라이드 수화물의 XRD 분석 결과를 나타내는 그래프이다.
도 5는 실시예 1에서 제조된 이리듐 클로라이드 수화물 및 이리듐 클로라이드를 나타내는 사진이다.
이후 설명하는 기술의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 구현되는 형태는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 할 수 있다. 다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 해당 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
도 1은 일 실시예에 따른 이리듐 클로라이드 수화물 및 이리듐 클로라이드를 제조하는 단계를 나타내는 공정 순서도이다.
도 1을 참조하여, 이리듐 클로라이드 수화물 및 이리듐 클로라이드를 제조하는 방법을 상세하게 설명한다.
이리듐 클로라이드 수화물의 제조 방법은 혼합 단계(S1-1), 소성 단계(S1-2), 염산 수용액 세척 단계(S1-4), 그리고 염산 용해 반응 단계(S1-5)를 포함한다.
혼합 단계(S1-1)에서는, 이리듐 금속 분말과 알칼리 금속 화합물의 혼합물을 준비한다.
알칼리 금속 화합물은 알칼리 금속 수산화물, 알칼리 금속 과산화물, 또는 이들의 혼합물을 포함할 수 있고, 예를 들어 알칼리 금속 수산화물과 알칼리 금속 과산화물의 고체 혼합물을 포함할 수 있다.
알칼리 금속 수산화물은 수산화나트륨, 수산화칼륨, 수산화리튬, 또는 이들의 혼합물을 포함할 수 있고, 예를 들어 알칼리 금속 수산화물은 수산화나트륨(NaOH)일 수 있다.
알칼리 금속 과산화물은 과산화나트륨, 과산화칼륨, 과산화리튬, 또는 이들의 혼합물을 포함할 수 있고, 예를 들어 알칼리 금속 과산화물은 과산화나트륨(Na2O2)일 수 있다.
일 예로, 알칼리 금속 수산화물은 수산화나트륨과 과산화나트륨의 혼합물을 포함할 수 있다.
혼합물은 알칼리 금속 화합물을 이리듐 금속 분말 1 중량부에 대하여 0.5 중량부 내지 1 중량부, 예를 들어 0.6 중량부 내지 0.7 중량부로 포함할 수 있다. 알칼리 금속 화합물의 함량이 이리듐 금속 분말 1 중량부에 대하여 0.5 중량부 미만인 경우 이리듐 금속 표면에 알칼리 성분의 흡착량이 부족하여 소성 과정에서 균일한 산화가 안될 수 있고, 1 중량부를 초과하는 경우 과량의 알칼리 금속 화합물이 이리듐 금속 표면을 덮어 산화제가 이리듐 금속과 접촉하는데 방해할 수 있다.
또는, 혼합물은 알칼리 금속 화합물 중 알칼리 금속 과산화물을 이리듐 금속 분말 1 중량부에 대하여 1 중량부 내지 3 중량부, 예를 들어 1.75 중량부 내지 2.25 중량부로 포함할 수 있다. 알칼리 금속 과산화물의 함량이 이리듐 금속 분말 1 중량부에 대하여 1 중량부 미만인 경우 산화제 부족으로 인해 소성 후에도 여전히 이리듐 금속이 잔존할 수 있고, 3 중량부를 초과하는 경우 이리듐 금속을 과산화시켜 이리듐 나노입자가 형성되어 이후 여과 과정에서 여과지를 통과하여 생성물 수득이 어려워질 수 있다.
이때, 알칼리 금속 화합물이 알칼리 금속 수산화물과 알칼리 금속 과산화물의 혼합물을 포함하는 경우, 알칼리 금속 수산화물과 알칼리 금속 과산화물의 중량비는 1 : 2 내지 1 : 4, 예를 들어 1 : 2.5 내지 1 : 3.5일 수 있다. 알칼리 금속 과산화물의 중량비가 2 미만인 경우 산화제 부족으로 인해 소성 후에도 여전히 이리듐 금속이 잔존할 수 있고, 4를 초과하는 경우 이리듐 금속을 과산화시켜 이리듐 나노입자가 형성되어 이후 여과 과정에서 여과지를 통과하여 생성물 수득이 어려워질 수 있다.
소성 단계(S1-2)에서는, 혼합물을 소성하여 알칼리가 포함된 이리듐 산화물을 제조한다.
소성은 750 ℃ 이상에서 이루어질 수 있다. 소성 온도가 750 ℃ 미만인 경우, 미반응된 이리듐 금속이 남아 있을 수 있고, 750 ℃ 이상에서는 이리듐 금속이 완전히 알칼리가 포함된 이리듐 산화물로 전환될 수 있다. 예를 들어, 소성은 5 시간 내지 10 시간 동안 750 ℃ 이상으로 승온하고, 750 ℃ 이상에서 2 시간 내지 4 시간 동안 유지하는 과정으로 이루어질 수 있다.
소성을 통하여 제조된 알칼리가 포함된 이리듐 산화물은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
NaxIryOz
화학식 1에서, x는 2 내지 4의 정수이고, y는 1 내지 3의 정수이고, z는 3 내지 8의 정수이다.
예를 들어, 화학식 1로 표시되는 알칼리가 포함된 이리듐 산화물은 Na2IrO3, Na4IrO4, Na4Ir3O8, 또는 이들의 혼합물을 포함할 수 있다.
선택적으로, 소성 단계에서 얻어진 알칼리가 포함된 이리듐 산화물은 염산 수용액 세척 단계 전에, 물로 세척하는 단계를 거칠 수 있다(S1-3).
물은 탈이온수, 증류수, 또는 초순수 등일 수 있고, 예를 들어 탈이온수를 이용할 수 있다.
일 예로, 물 세척 단계는 알칼리가 포함된 이리듐 산화물을 물로, 60 ℃ 내지 70 ℃에서, 2 시간 내지 4 시간 동안 이루어질 수 있다. 물 세척 단계의 온도가 60 ℃ 미만인 경우 세척이 완벽하게 이루어지지 못해 세척 후 잔존 알칼리 이온이 존재할 수 있고, 70 ℃를 초과하는 경우 세척수가 증발하여 농축될 수 있다. 물 세척 단계의 시간이 2 시간 미만인 경우 역시 세척이 완벽하게 이루어지지 않을 수 있고, 4 시간을 초과하는 경우에는 작업 시간이 불필요하게 길어질 수 있다.
선택적으로, 물 세척 단계 이후 여과 단계를 더 포함할 수 있다. 예를 들어, 여과는 물로 세척된 용액을 종이 필터지를 사용하여 고온 상태에서 이루어질 수 있다.
또한, 선택적으로, 여과 단계 후 물 세척 단계를 다시 거칠 수 있고, 예를 들어 여과 후 미리 제조된 60 ℃ 내지 70 ℃의 고온수로 세척할 수 있다.
물 세척 단계를 통하여 알칼리가 포함된 이리듐 산화물 내에서 알칼리 금속 이온을 일부 제거할 수 있고, 이에 따라 일부 이리듐 산화물을 얻을 수 있다. 그러나, 물 세척 단계 이후에도 약 400 ppm 이상의 알칼리 금속 성분이 잔존할 수 있다.
이에, 염산 수용액 세척 단계(S1-4)에서는, 알칼리가 포함된 이리듐 산화물을 염산 수용액으로 세척하여, 잔존하는 알칼리 금속 성분의 함량을 10 ppm 이하로 줄이고, 이리듐 산화물을 제조할 수 있다.
염산 수용액의 농도는 5 % 내지 10 %일 수 있다. 염산 수용액의 농도가 5 % 미만인 경우 세척 효과가 잘 나타나지 않아 알칼리 금속이 여전히 잔존할 수 있고, 10 %를 초과하는 경우 알칼리 금속 이외에 일부 이리듐 금속까지 용해시킬 수 있다.
선택적으로, 염산 수용액 세척 단계 이후 여과 단계를 더 포함할 수 있다. 예를 들어, 여과는 염산 수용액으로 세척된 용액을 종이 필터지를 사용하여 고온 상태에서 이루어질 수 있다.
또한, 선택적으로, 염산 수용액 세척 단계를 거친 이리듐 산화물을 건조하여 케이크(cake)를 제조할 수 있다.
건조는 100 ℃ 이상에서 12 시간 내지 24 시간 동안 이루어질 수 있다. 건조 온도가 100 ℃ 미만인 경우 건조시간이 길어질 뿐 아니라 건조 후에도 잔존 수분이 존재할 수 있다.
염산 수용액 세척 단계를 통하여, 잔존하는 알칼리 금속 성분의 함량을 줄일 수 있다. 이에 따라, 이리듐 산화물의 케이크는 알칼리 금속의 함량이 10 ppm 이하, 예를 들어 0 ppm 내지 5 ppm일 수 있다.
알칼리 금속의 함량이 10 ppm을 초과하는 경우 최종 생성물인 이리듐 클로라이드의 순도가 떨어져서 이를 이용한 촉매 제조 시, 촉매 반응에 부정적인 영향을 미칠 수 있다.
염산 용해 반응 단계(S1-5)에서는, 이리듐 산화물을 가압하에서 염산에 용해한 후 반응시켜 이리듐 클로라이드 수화물을 제조한다.
이리듐 산화물 1 중량부에 대한 염산의 함량은 5 중량부 내지 15 중량부, 예를 들어 8 중량부 내지 10 중량부일 수 있다. 이리듐 산화물 1 중량부에 대한 염산의 함량이 5 중량부 미만인 경우 반응에 필요한 클로라이드 이온의 함량 부족으로 이리듐 산화물이 이리듐 클로라이드로 100 % 전환이 안될 수 있고, 15 중량부를 초과하는 경우 후속 공정인 농축 과정에서 염산 수용액을 증발시키는 데 에너지 비용이 과다하게 들어갈 수 있다.
염산 용해 반응 단계는 가압 하에서 이루어질 수 있고, 일 예로 가압 용기 내에서 이루어질 수 있다. 가압시 압력은 5 압력 내지 10 압력, 예를 들어 6 압력 내지 8 압력 하에서 이루어질 수 있다. 압력은 반응 온도에 비례하여 증가하므로 아래 온도 범위에서 수행한다면 압력은 별도로 조절할 필요는 없다.
또한, 염산 용해 반응 단계는 가압하, 130 ℃ 내지 170 ℃에서 2 시간 내지 6 시간 동안, 예를 들어 150 ℃ 내지 170 ℃에서 2 시간 내지 4 시간 동안 이루어질 수 있다. 염산 용해 반응 단계에서 온도가 130 ℃ 미만인 경우 이리듐 산화물이 이리듐 클로라이드로 100 % 전환되기 어려울 수 있고, 170 ℃를 초과하는 경우 이리듐 클로라이드 전환은 용이하나 가압 용기가 부식 혹은 변형이 일어나 상업적으로 적용이 어려울 수 있고, 시간이 2 시간 미만인 경우 이리듐 클로라이드의 전환 반응률이 떨어질 수 있고, 6 시간을 초과하는 경우 에너지 비용이 과다하게 투입될 수 있다.
선택적으로, 염산 용해 반응 단계 이후 여과 단계를 더 포함할 수 있다.
여과 단계를 통하여 염산 용해 반응 단계에서 제조된 이리듐 클로라이드 수화물을 수득할 수 있다. 예를 들어, 여과는 염산 용해 반응을 거친 용액을 종이 필터지를 사용하여 고온 상태에서 이루어질 수 있다. 이때, 잔류 용액 회수를 위한 린스 용액, 예를 들어 탈이온수는 최소량을 사용한다.
제조된 이리듐 클로라이드 수화물은 예를 들어, H2IrCl6·xH2O로 표시되는 화합물일 수 있다. 염산 용해 반응 단계에서 얻어진 이리듐 클로라이드 수화물은 실질적으로 완전 용해, 예를 들어 99.9 % 이상 용해되며, 알칼리 금속의 함량이 10 ppm 이하이다.
일 실시예에 따른 이리듐 클로라이드 수화물의 제조 방법은 소성 단계(S2-1)에서 이리듐 금속의 완전한 산화를 유도하여 제조 수율을 높일 수 있으며, 염산 수용액 세척 단계(S1-4)에서는 염산 수용액 단독 용매를 사용하여 질소 산화물이 발생되지 않고 가압 반응 전 염산을 이용하여 산화제로 사용된 알칼리 금속 성분을 제거하여 얻어진 이리듐 클로라이드 내 알칼리 금속의 함유량이 10 ppm 이하이며, 염산 용해 반응 단계(S1-5)에서 가압 반응을 통해 99.9 % 이상의 용해도를 갖게 되어 미반응 이리듐이 존재하지 않아, 생성물의 순도가 매우 높다.
다른 실시예에 따른 이리듐 클로라이드의 제조 방법은 제조된 이리듐 클로라이드 수화물을 농축하여 이리듐 클로라이드를 제조한다(S2-1).
일 예로, 농축은 감압 증류 방법을 이용할 수 있다.
제조된 이리듐 클로라이드는 예를 들어, IrCl4·xH2O로 표시되는 화합물일 수 있다.
이하에서는 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로써 발명의 범위가 제한되어서는 아니된다.
[제조예: 이리듐 클로라이드 수화물의 제조]
(실시예 1)
Ir 금속 분말 20 g을 기준으로 NaOH 파우더 및 Na2O2 파우더를 각각 13.3 g, 40.2g씩 첨가하여 물리적 혼합(physical mixing)한다.
혼합된 파우더를 도가니에 넣고 750 ℃에서 소성 후 서서히 냉각시킨다. 소성 시, 750 ℃ 승온 6 시간, 유지 2.5 시간의 단계로 진행한다. 또한, 소성 시 도가니 뚜껑은 개방시킨다.
소성된 분말을 탈이온수 500 ml에 넣고 초음파 혼합(sonication)을 진행하면서 용액을 65 ℃까지 가열한다. 65 ℃가 된 시점부터 2 시간 동안 마그네틱 스핀 바(magnetic spin bar)를 사용하여 교반한다.
교반된 용액을 종이 필터지를 사용하여 고온 상태에서 여과한다. 여과 후 미리 제조된 65 ℃의 고온수 2 L로 세척한다.
또한, 10 % HCl 용액 200 g(탈이온수 180 g + HCl 20 g)을 제조한 후, 추가로 세척한다.
세척 완료 후 세척액에 대해 ICP 분석을 수행하였고, 그 결과 세척액 내에는 Ir 성분이 존재하지 않음을 확인하였다.
세척이 완료된 파우더를 120 ℃에서 12 시간 이상 건조하여 NaxIrOy 케이크를 회수한다.
건조된 케이크를 압력 용기에 넣고 HCl 242 g을 넣어 혼합한다.
준비된 압력 용기를 열처리로에 넣고, 150 ℃에서 4 시간 동안 고온 가압 반응 후 냉각한다.
용해된 용액을 종이 필터지를 사용하여 여과한다. 잔류 용액 회수를 위한 린스 용액(탈이온수)는 최소량을 사용한다.
(실시예 2 내지 11 및 비교예 1 내지 2)
실시예 1에서 반응 조건을 아래 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일하게 실시하여 이리듐 클로라이드 수화물을 제조한다.
참고로, 비교예 1 및 비교예 2에서는 용해 반응 단계에서 염산 대신 왕수(염산:질산=3:1 부피비)를 사용한다.
구분 | Ir 함량 | 알칼리 금속 화합물/Ir 비율 |
소성 단계 | 세척 단계 | 용해 반응 단계 | ||||
소성 온도(℃) | 소성 생성물 (XRD분석결과) |
탈이온수 세척 (1차) |
HCl 세척 (2차) |
세척 여액 내 Ir 함량(ppm) |
용해반응 | 용해반응 온도(℃) |
|||
실시예1 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 10% 염산 수용액 |
< 1 | 가압용해 | 150 |
실시예2 | 20g | 2 | 750 | Ir+NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 150 |
실시예3 | 20g | 3 | 750 | NaxIrOy | 탈이온수 | 10% 염산수용액 | 30.7 | 가압용해 | 150 |
실시예4 | 20g | 2.6 | 650 | Ir+NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 150 |
실시예5 | 20g | 2.6 | 700 | Ir+IrO2+NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 150 |
실시예6 | 20g | 2.6 | 800 | NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 150 |
실시예7 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 미진행 | < 1 | 가압용해 | 150 |
실시예8 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 5% 염산 수용액 |
< 1 | 가압용해 | 150 |
실시예9 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 100 |
실시예10 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 130 |
실시예11 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 10% 염산수용액 | < 1 | 가압용해 | 170 |
비교예1 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 미진행 | < 1 | 왕수용해 | 90-95 |
비교예2 | 20g | 2.6 | 750 | NaxIrOy | 탈이온수 | 10% 염산 수용액 |
< 1 | 왕수용해 | 90-95 |
[실험예 1: 소성 온도별 생성물의 XRD 분석 결과]
실시예 1, 및 실시예 4 내지 실시예 6에서 소성 온도가 각각 750 ℃, 650 ℃, 700 ℃, 및 800 ℃으로 변함에 따라 생성된 알칼리가 포함된 이리듐 산화물의 상태를 XRD로 분석하고, 그 결과를 도 2에 나타낸다.
도 2를 참조하면, 750 ℃ 미만의 소성 온도에서는 산화제인 Na2O2와 반응하지 못한 이리듐 금속이 잔존하고 있으며, Na 이온과 결합되지 못하고 단순 산화물 형태인 IrO2도 제조되었음을 확인할 수 있다.
반면, 750 ℃ 이상의 소성 조건에서는 Na 이온 및 산화제와 완벽히 결합되어, 이리듐 금속은 완전히 NaxIrOy로 전환됨을 확인할 수 있다.
[실험예 2: 세척 조건별 생성물의 XRD 분석 결과]
실시예 1, 실시예 7 및 실시예 8에서 세척 조건이 변화함에 따라 생성된 이리듐 산화물의 상태를 XRD로 분석하고, 그 결과를 도 3에 나타낸다.
실시예 1은 탈이온수로 1차 세척하고, 10 % 염산 수용액으로 2차 세척한 결과이고, 실시예 8은 탈이온수로 1차 세척하고, 5 % 염산 수용액으로 2차 세척한 결과이고, 실시예 7은 탈이온수로 1차 세척하고, 염산 수용액으로 2차 세척은 진행하지 않은 결과이다.
도 3을 참조하면, 탈이온수에 세척 과정을 거치면 이리듐 산화물에 포함된 대부분의 Na 이온은 제거되나, 일부가 이리듐 산화물 내에 잔존하고 있음을 알 수 있다.
탈이온수 세척 후에 추가로 5 % 내지 10 % 농도의 염산 수용액을 이용하여 2차 세척을 하게 되면 최종적으로 이리듐 산화물 내 Na 이온은 거의 제거가 됨을 알 수 있다.
구체적으로, XRD 분석 결과를 보면, 탈이온수 세척만을 진행하였을 경우 Na가 포함된 NaxIrOy의 피크가 여전히 존재하지만, 염산 수용액을 이용한 추가 세척 후에는 NaxIrOy 피크가 사라지는 것을 볼 수 있다.
또한, Na 이온이 제거된 산화물에 대하여 원소 분석(ICP 분석)을 진행한 결과, 염산 수용액 추가 세척 후에는 이리듐 산화물 내 Na 이온은 5 % 염산 수용액 세척하였을 경우 10 ppm, 10 % 염산 수용액으로 세척하였을 경우 4 ppm 수준으로 측정되었다.
[실험예 3: 제조된 이리듐 클로라이드 수화물의 확인]
실시예 1에서 제조된 생성물에서 이리듐의 함량을 ICP 분석을 통해 측정한다.
그 결과 초기 Ir 분말 대비 99.9 % 이상의 수율을 확인하였고, 생성물 내 잔류 Na의 함량은 4.1 ppm으로서 거의 제거되었음을 확인하였다.
또한, 생성물을 80 ℃에서 건조하여 수분제거 후 XRD 분석을 수행한 결과를 도 4에 나타내었다. 도 4에서 참고예 1은 시약급(알드리치사) H2IrCl6·xH2O에 대한 결과이다. 도 4를 참조하면, 시약급(알드리치사) H2IrCl6·xH2O와 동일한 결정상을 보임을 확인하였다.
제조된 생성물을 100 ℃에서 4 시간 건조하여 건조품을 회수한다. 건조품에 대해 이온크로마토그래피 분석을 통해 분석한 결과, Cl/Ir 몰비가 4.2였다.
또한, 열중량 분석 결과를 표 2에 나타낸다.
샘플 | 열분석 후 최종 고체 중량(Solid mass, %) | Ir / IrCl4 | |
실시예 1 | IrCl4 | 58.95 % | 57.54 % |
참고예 1 | IrCl4 | 59.20 % |
표 2를 참조하면, 실시예 1과 참고예 1은 900 ℃ 열분석 후 잔량이 거의 유사하였다. 이로써 건조품은 IrCl4로 제조되었음을 확인하였다.
또한, 제조된 생성품을 1000 배 희석하여 시판되는 참고예 1과 색상을 비교해본 결과를 도 5에 나타낸다. 도 5에서 (A)는 이리듐 금속 분말의 사진이고, (B)는 생성물인 H2IrCl6 용액의 사진이고, (B')는 생성물인 H2IrCl6 용액을 1000 배 희석 용해한 후의 사진이고, (Ref.B')는 참고예 1의 사진이다. (C)는 생성물의 건조품인 IrCl4의 사진이고, (C')는 생성물의 건조품인 IrCl4을 1000 배 희석 용해한 후의 사진이고, (Ref.C')는 참고예 1의 사진이다. 도 5에서 참고예 1은 시약급(알드리치사) H2IrCl6·xH2O에 대한 결과이다.
도 5를 참조하면, 생성품은 H2IrCl6·xH2O, 건조품은 IrCl4·xH2O으로 확인되었다.
[실험예 4: 제조된 이리듐 클로라이드 수화물의 수율 및 Na 함량 측정]
실시예 1 내지 11 및 비교예 1 내지 2에서 제조된 이리듐 클로라이드 수화물의 수율 및 Na 함량을 측정하고, 그 결과를 표 3에 나타낸다.
구분 | 제조수율, 용해도(%) | 생성물 내 잔류 Na 함량(ppm) |
실시예1 | 99.9 | 4.1 |
실시예2 | 95.2 | 3.9 |
실시예3 | 99.5 | 4.2 |
실시예4 | 62 | 3.9 |
실시예5 | 68 | 4.0 |
실시예6 | 99.9 | 4.4 |
실시예7 | 99.8 | 412 |
실시예8 | 99.8 | 9.8 |
실시예9 | 71.6 | 4.5 |
실시예10 | 85.3 | 4.1 |
실시예11 | 99.9 | 4.4 |
비교예1 | 62.8 | 396 |
비교예2 | 71.3 | 4.1 |
표 3을 참조하면, 실시예 1 내지 실시예 3은 소성시 알칼리 금속 화합물과 이리듐 금속의 비율을 조절하여 촉매를 제조한 경우이다. 실시예 2의 경우 이리듐 금속의 완전한 산화가 진행되지 못해 최종 산화물의 용해 반응 단계에서 완전한 용해가 이루어지지 못했으며, 실시예 3의 경우 알칼리 금속 화합물이 과하게 첨가되어 세척 과정에서 이리듐 산화물이 탈이온수에 녹아 용출되는 문제가 있었다.
실시예 1 및 실시예 4 내지 실시예 6은 소성시 소성 온도를 달리하여 촉매를 제조한 경우이다. 소성 온도가 750 ℃ 미만에서는 미산화 이리듐이 존재하고 있어 용해 반응 단계에서 용해율이 낮아졌으며, 750 ℃ 이상의 온도에서 소성하였을 때 비로소 단독의 NaxIrOy 복합 산화물 형태가 만들어 지게 됨을 알 수 있다.
실시예 1, 실시예 7, 및 실시예 8은 세척 단계에서의 염산 수용액 세척 정도에 따라 생성물 내 Na 이온의 양을 비교한 결과이다. 실시예 7은 염산 수용액을 이용한 2차 세척을 실시하지 않았으며 그 결과 최종 생성물 내 Na 이온이 다량 잔존하고 있음을 확인하였다. 실시예 8은 염산의 농도를 5 %로 제조된 염산 수용액으로 세척한 결과이며, 적은 양의 염산으로도 세척 효과가 우수하게 나타남을 확인하였다.
실시예 1, 및 실시예 9 내지 실시예 11은 용해 반응 단계에서 용해 반응 온도를 달리하여 제조한 경우이다. 150 ℃ 미만의 온도에서 가압 용해를 하였을 경우 낮은 용해율을 보였으며, 150 ℃ 이상에서부터 완전한 용해가 이루어짐을 확인하였다.
실시예 1, 비교예 1, 및 비교예 2는 용해 반응 단계에서 용해 방법을 달리하여 제조한 경우이다. 왕수 용해법의 경우 상압에서 실시하여 100 ℃ 이상 온도를 올리지 못하게 되어 낮은 용해도를 보이고 있으며, 특히 비교예 1은 세척 단계에서 염산 수용액 세척을 하지 않아 낮은 용해도와 더불어 생성물 내 높은 Na 이온 잔존율을 보이고 있다.
따라서, 실시예 1에서와 같이 이리듐 금속과 알칼리 금속 화합물의 중량 비율을 2.6, 소성 온도를 750 ℃ 이상, 5 % 내지 10 %의 염산 수용액을 이용한 추가적인 Na 이온 제거를 통하여 이리듐 산화물을 제조하고, 이렇게 제조된 이리듐 산화물에 대해 150 ℃ 이상에서의 가압 반응을 이용하여 용해율 99 % 이상의 이리듐 클로라이드 용액을 제조할 수 있음을 알 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
일 실시예는 이리듐 금속의 전환율이 높고, 이리듐 금속의 높은 용해도로 인하여 미반응 이리듐이 존재하지 않고, 알칼리 금속의 함량도 적어 생성물의 순도가 높고, 질소 산화물이 발생되지 않아 환경적으로 유리한 이리듐 클로라이드 수화물의 제조 방법을 제공한다.
다른 실시예는 제조된 이리듐 클로라이드 수화물을 이용하여 이리듐 클로라이드를 제조하는 방법을 제공한다.
Claims (19)
- 이리듐 금속 분말과 알칼리 금속 화합물의 혼합물을 준비하는 혼합 단계,상기 혼합물을 소성하여 알칼리가 포함된 이리듐 산화물을 제조하는 소성 단계,상기 알칼리가 포함된 이리듐 산화물을 염산 수용액으로 세척하여 이리듐 산화물을 얻는 염산 수용액 세척 단계, 그리고상기 이리듐 산화물을 가압하에서 염산에 용해한 후 반응시키는 염산 용해 반응 단계를 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 알칼리 금속 화합물은 알칼리 금속 수산화물, 알칼리 금속 과산화물, 또는 이들의 혼합물을 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제2항에서,상기 알칼리 금속 수산화물은 수산화나트륨, 수산화칼륨, 수산화리튬, 또는 이들의 혼합물을 포함하고,상기 알칼리 금속 과산화물은 과산화나트륨, 과산화칼륨, 과산화리튬, 또는 이들의 혼합물을 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제3항에서,상기 알칼리 금속 수산화물은 상기 수산화나트륨과 상기 과산화나트륨의 혼합물을 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 혼합물은 상기 알칼리 금속 화합물을 상기 이리듐 금속 분말 1 중량부에 대하여 0.5 중량부 내지 1 중량부로 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제2항에서,상기 혼합물은 상기 알칼리 금속 과산화물을 상기 이리듐 금속 분말 1 중량부에 대하여 1 중량부 내지 3 중량부로 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 알칼리가 포함된 이리듐 산화물은 하기 화학식 1로 표시되는 화합물을 포함하는, 이리듐 클로라이드 수화물의 제조 방법.[화학식 1]NaxIryOz(상기 화학식 1에서, 상기 x는 2 내지 4의 정수이고, 상기 y는 1 내지 3의 정수이고, 상기 z는 3 내지 8의 정수이다)
- 제7항에서,상기 알칼리가 포함된 이리듐 산화물은 Na2IrO3, Na4IrO4, Na4Ir3O8, 또는 이들의 혼합물을 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 소성 단계에서, 상기 소성은 750 ℃ 이상의 고온에서 이루어지는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 소성 단계와 상기 염산 수용액 세척 단계 사이에,상기 알칼리가 포함된 이리듐 산화물을 물로, 60 ℃ 내지 70 ℃에서, 2 시간 내지 4 시간 동안 세척하는 물 세척 단계를 더 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 수용액 세척 단계에서, 상기 염산 수용액의 농도는 5 % 내지 10 %인, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 수용액 세척 단계를 거친 이리듐 산화물을 건조하여 케이크(cake)를 얻는 단계를 더 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제12항에서,상기 이리듐 산화물의 케이크는 알칼리 금속의 함량이 10 ppm 이하인, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 용해 반응 단계에서, 상기 이리듐 산화물 1 중량부에 대한 상기 염산의 함량은 5 중량부 내지 15 중량부인, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 용해 반응 단계는 5 압력 내지 10 압력의 가압 하에서 이루어지는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 용해 반응 단계는 가압하, 130 ℃ 내지 170 ℃에서 2 시간 내지 6 시간 동안 이루어지는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 염산 용해 반응 단계에서 제조된 이리듐 클로라이드 수화물을 여과하여 수득하는 단계를 더 포함하는, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에서,상기 제조된 이리듐 클로라이드 수화물은 알칼리 금속의 함량이 10 ppm 이하인, 이리듐 클로라이드 수화물의 제조 방법.
- 제1항에 따른 이리듐 클로라이드 수화물의 제조 방법에서 얻어진 이리듐 클로라이드 수화물을 농축하여 이리듐 클로라이드를 제조하는 이리듐 클로라이드의 제조 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0171286 | 2021-12-02 | ||
KR1020210171286A KR102641001B1 (ko) | 2021-12-02 | 2021-12-02 | 이리듐 클로라이드 수화물의 제조 방법 및 이리듐 클로라이드의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023101521A1 true WO2023101521A1 (ko) | 2023-06-08 |
Family
ID=86612861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/019537 WO2023101521A1 (ko) | 2021-12-02 | 2022-12-02 | 이리듐 클로라이드 수화물의 제조 방법 및 이리듐 클로라이드의 제조 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102641001B1 (ko) |
WO (1) | WO2023101521A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965055A (en) * | 1990-03-27 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Preparation of ultra-pure metal halides |
CN102408135A (zh) * | 2010-09-25 | 2012-04-11 | 中国石油化工股份有限公司 | 一种三氯化铱水合物的制备方法 |
US20150225808A1 (en) * | 2012-09-26 | 2015-08-13 | Orbite Aluminae Inc. | PROCESSES FOR PREPARING ALUMINA AND MAGNESIUM CHLORIDE BY HCl LEACHING OF VARIOUS MATERIALS |
KR20190112753A (ko) * | 2017-01-25 | 2019-10-07 | 헤레우스 도이칠란트 게엠베하 운트 코. 카게 | 고순도 이리듐(iii) 클로라이드 수화물의 제조 방법 |
KR20200000746A (ko) * | 2018-06-25 | 2020-01-03 | 주식회사 두산 | 고순도 금속할로겐화물 및 이의 제조방법, 상기 고순도 금속할로겐화물을 포함하는 유기전계 발광소자 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59145739A (ja) * | 1983-02-10 | 1984-08-21 | Permelec Electrode Ltd | 金属電極からルテニウム及びイリジウムを回収する方法 |
CN112357979B (zh) * | 2020-11-16 | 2022-10-14 | 沈阳有色金属研究院有限公司 | 一种由含铱废料直接制备氯铱酸的方法 |
CN112517002B (zh) * | 2020-11-26 | 2022-04-05 | 中山大学 | 一种铱氧水合物催化剂的制备方法 |
-
2021
- 2021-12-02 KR KR1020210171286A patent/KR102641001B1/ko active IP Right Grant
-
2022
- 2022-12-02 WO PCT/KR2022/019537 patent/WO2023101521A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965055A (en) * | 1990-03-27 | 1990-10-23 | The United States Of America As Represented By The Secretary Of The Navy | Preparation of ultra-pure metal halides |
CN102408135A (zh) * | 2010-09-25 | 2012-04-11 | 中国石油化工股份有限公司 | 一种三氯化铱水合物的制备方法 |
US20150225808A1 (en) * | 2012-09-26 | 2015-08-13 | Orbite Aluminae Inc. | PROCESSES FOR PREPARING ALUMINA AND MAGNESIUM CHLORIDE BY HCl LEACHING OF VARIOUS MATERIALS |
KR20190112753A (ko) * | 2017-01-25 | 2019-10-07 | 헤레우스 도이칠란트 게엠베하 운트 코. 카게 | 고순도 이리듐(iii) 클로라이드 수화물의 제조 방법 |
KR20200000746A (ko) * | 2018-06-25 | 2020-01-03 | 주식회사 두산 | 고순도 금속할로겐화물 및 이의 제조방법, 상기 고순도 금속할로겐화물을 포함하는 유기전계 발광소자 |
Also Published As
Publication number | Publication date |
---|---|
KR102641001B1 (ko) | 2024-02-23 |
KR20230083146A (ko) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020085608A1 (ko) | 폐탈질촉매로부터 고순도 이산화타이타늄 제조방법 | |
WO2019198972A1 (ko) | 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법 | |
WO2013165071A1 (ko) | 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물 | |
WO2017090877A1 (ko) | 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법 | |
WO2018164340A1 (ko) | 리튬 함유 폐기물로부터 리튬 화합물을 회수하는 방법 | |
WO2023191414A1 (ko) | 블랙 매스로부터 이차전지 소재의 제조방법 | |
WO2023282565A1 (ko) | 암모니아 용액을 이용한 오산화바나듐의 부분환원방법 및 이로부터 제조된 이산화바나듐 분말 | |
WO2018110974A1 (ko) | 인산리튬으로부터 수산화리튬을 제조하는 방법 | |
WO2024219704A1 (ko) | 페로브스카이트 물질 대량생산 방법 | |
WO2013165148A1 (ko) | 고순도 사산화삼망가니즈의 제조방법 및 그 제조방법에 의하여 제조된 고순도 사산화삼망가니즈 | |
WO2022220477A1 (ko) | 고회수율의 리튬 농축 용액 제조 방법 및 이를 이용한 리튬 화합물의 제조 방법 | |
WO2023101521A1 (ko) | 이리듐 클로라이드 수화물의 제조 방법 및 이리듐 클로라이드의 제조 방법 | |
WO2019125008A1 (ko) | 루타일상 타이타니아 담체에 고분산된 과산화수소 제조용 팔라듐 촉매의 제조방법 및 이를 이용한 과산화수소 제조방법 | |
WO2019231166A1 (ko) | 슈가마덱스 나트륨염의 제조방법 | |
WO2019199013A1 (ko) | 리튬 비스(플루오로술포닐)이미드염의 제조방법 | |
WO2023243827A1 (ko) | 니켈 또는 코발트 수용액 제조 방법 | |
KR100840553B1 (ko) | 폐염화동 용액으로부터 극미량의 염소를 함유하는 고순도의산화동을 제조하는 방법 | |
WO2020009421A1 (ko) | 수산화 반응을 이용한 친환경적으로 산화 흑연 및 산화 그래핀을 제조하는 방법 | |
WO2010085018A1 (en) | Method of regenerating heteropolyacid catalyst used in the direct process of preparing dichloropropanol by reacting glycerol and chlorinating agent, method of preparing dichloropropanol comprising the method of regenerating heteropolyacid catalyst and method of preparing epichlorohydrin comprising the method of preparing dichloropropanol | |
WO2019022320A1 (ko) | 석탄회로부터 희소 금속 원소 추출 방법 및 희소 금속 원소 추출 장치 | |
WO2020262780A1 (ko) | 고팽창 흑연 제조용 조성물, 고팽창 흑연 및 이의 제조 방법 | |
JP3973329B2 (ja) | 六フッ化リン酸リチウムの製造方法 | |
WO2023113411A1 (ko) | 이리듐 산화물의 제조 방법 | |
WO2021133085A2 (ko) | 페로브스카이트 제조용 유기 할라이드의 제조 방법, 이에 의해 제조된 페로브스카이트, 및 태양 전지 | |
WO2018155753A1 (ko) | 재생 가능한 수처리 분리막 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22901879 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024530517 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |