WO2023089700A1 - 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法 - Google Patents

樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法 Download PDF

Info

Publication number
WO2023089700A1
WO2023089700A1 PCT/JP2021/042281 JP2021042281W WO2023089700A1 WO 2023089700 A1 WO2023089700 A1 WO 2023089700A1 JP 2021042281 W JP2021042281 W JP 2021042281W WO 2023089700 A1 WO2023089700 A1 WO 2023089700A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
cured film
film
sound wave
Prior art date
Application number
PCT/JP2021/042281
Other languages
English (en)
French (fr)
Inventor
恭介 鈴木
恭久 石田
恒則 大平
聖也 根本
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2021/042281 priority Critical patent/WO2023089700A1/ja
Priority to PCT/JP2022/042621 priority patent/WO2023090376A1/ja
Priority to TW111143936A priority patent/TW202328347A/zh
Publication of WO2023089700A1 publication Critical patent/WO2023089700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Definitions

  • the present disclosure relates to resin compositions, dry films, cured films, piezoelectric devices, and sound wave control methods.
  • Piezoelectric devices that transmit and receive sound waves such as ultrasonic waves are used in a wide range of fields, such as ultrasonic imaging devices, obstacle sensing in transportation machines and the like, and fingerprint authentication in electronic devices.
  • a piezoelectric device for example, an ultrasonic device having an acoustic matching portion that is deformed by the stress of the acoustic lens between the ultrasonic element array substrate and the ultrasonic lens is disclosed (for example, Japanese Patent Laid-Open No. 2015-084788 publication, etc.)
  • the function provided on the surface of the member to control the amount of transmission and reflection of sound waves at the interface such as the interface between the member and gas, the interface between the member and liquid, etc.
  • a functional film a functional film capable of controlling an acoustic impedance value to a desired value is desired.
  • the present disclosure provides a resin composition that can obtain a functional film that can widely control acoustic impedance while maintaining flexibility, a dry film, a cured film, a piezoelectric device, and an acoustic wave control method using the same. intended to provide
  • Means for solving the above problems include the following aspects.
  • a resin composition used for manufacturing a functional film for a piezoelectric device A resin composition containing a resin and having an insulating filler content of less than 50% by volume relative to the total solid content of the resin composition.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the resin is a resin having a polar group.
  • the resin includes at least one selected from the group consisting of epoxy resins, phenoxy resins, polyamideimide resins, acrylic resins, polyester resins, and polyether resins. The described resin composition.
  • the resin composition according to 1. ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the insulating filler has a specific gravity of 6.0 or more.
  • ⁇ 11> The resin composition according to any one of ⁇ 1> to ⁇ 10>, further comprising a dispersant.
  • ⁇ 13> A dry film obtained by drying the resin composition according to any one of ⁇ 1> to ⁇ 12>.
  • ⁇ 14> A cured film obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 12>.
  • ⁇ 15> A cured film obtained by curing the dried film according to ⁇ 13>.
  • ⁇ 16> The cured film according to ⁇ 14> or ⁇ 15>, wherein the content of the insulating filler is less than 50% by volume with respect to the entire cured film.
  • ⁇ 17> The cured film according to any one of ⁇ 14> to ⁇ 16>, which is a functional film used for an acoustic matching layer, an acoustic lens, a sound wave transmission layer, a sound wave attenuation layer, or a sound wave reflection layer.
  • a piezoelectric element a first functional film comprising the cured film according to any one of ⁇ 14> to ⁇ 17>;
  • the first functional film is provided in contact with the first functional film, is composed of a cured film according to any one of ⁇ 14> to ⁇ 17>, and has a content rate of the insulating filler in the first functional film. a different second functional deposition;
  • Piezoelectric device including.
  • a sound wave control method comprising: controlling the amount of transmission and reflection of sound waves by providing the cured film according to any one of ⁇ 14> to ⁇ 17> on the surface of a member constituting a piezoelectric device.
  • the sound wave control method according to ⁇ 20>, wherein the cured film has an insulating filler content adjusted according to the acoustic impedance of the member.
  • a resin composition that can obtain a functional film that can widely control acoustic impedance while maintaining flexibility, a dry film, a cured film, a piezoelectric device, and an acoustic wave control method using the same are provided. be.
  • FIG. 2 is a schematic end view showing an acoustic wave transmitting/receiving section in one example of the piezoelectric device according to the first embodiment
  • FIG. 5 is a schematic end view showing a sound wave transmitting/receiving section in another example of the piezoelectric device according to the first embodiment
  • FIG. 11 is a schematic end view showing an acoustic wave transmitting/receiving section in an example of a piezoelectric device according to a second embodiment
  • FIG. 11 is a schematic end view showing an acoustic wave transmitting/receiving section in an example of a piezoelectric device according to a third embodiment
  • the term "process” includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
  • the term “laminate” indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
  • “(meth)acryloyl group” means at least one of acryloyl group and methacryloyl group
  • “(meth)acrylic acid” means at least one of acrylic acid and methacrylic acid.
  • the resin composition of the present disclosure is a resin composition used for producing a functional film for a piezoelectric device, which contains a resin and has an insulating filler content of 50% by volume with respect to the total solid content of the resin composition. is less than
  • the total solid content of the resin composition means all components excluding volatile components from the resin composition.
  • the resin composition contains a resin and the content of the insulating filler is less than 50% by volume, thereby obtaining a functional film capable of widely controlling acoustic impedance while maintaining flexibility.
  • the resin content can be relatively increased compared to the case where the content is 50% by mass or more. It becomes easy to obtain a functional film having Further, since the functional film has flexibility, the functional film can easily adhere to the surface of the member, and the functional film can easily follow the deformation of the member provided in contact with the functional film. Moreover, since the content of the insulating filler is less than 50% by mass, the dried film obtained by drying the resin composition also has flexibility. Therefore, the handling property is also improved when the dry film is peeled from the base material, adhered to the surface of the member, and cured to form a cured film.
  • the acoustic impedance of the functional film can be widely controlled by adjusting the content of the insulating filler in the range of 0% by mass or more and less than 50% by mass.
  • a functional film with a low acoustic impedance can be obtained by reducing the content of the insulating filler without changing the types of the resin and the insulating filler, while increasing the content of the insulating filler. can obtain a functional film with high acoustic impedance.
  • the resin composition can provide a functional film that can widely control acoustic impedance while maintaining flexibility, so that it can be easily provided directly on the member of the piezoelectric device.
  • a functional film that can widely control acoustic impedance while maintaining flexibility, so that it can be easily provided directly on the member of the piezoelectric device.
  • another layer such as an adhesive layer or a cushion layer between the member on which the functional film is provided and the functional film, making it easier to control the amount of transmission and reflection of sound waves at the interface.
  • the resin composition of the present disclosure contains at least a resin.
  • the type of resin is not particularly limited, and may be a thermosetting resin, a thermoplastic resin, or a combination thereof.
  • the resin may be in the state of a monomer having a functional group capable of causing a polymerization reaction by heating, or may be in the state of an already polymerized polymer.
  • the resin is preferably a resin having a polar group.
  • a polar group represents an atomic group having polarity due to bonding between atoms having different electronegativities.
  • Polar groups include, for example, groups having heteroatoms other than carbon atoms and hydrogen atoms, more specifically, from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a boron atom, a phosphorus atom, and a silicon atom. Included are groups containing at least one selected heteroatom.
  • the polar group is preferably a group containing at least one heteroatom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom. More specifically, the polar group includes an amino group, an amide group, an imide group, a cyano group, a nitro group, an epoxy group, a hydroxy group, a carboxy group, a carbonyl group, a thiol group, a sulfo group, a thionyl group, an ester bond, ether bond, sulfide bond, urethane bond, urea bond, etc., selected from the group consisting of amide group, imide group, epoxy group, hydroxy group, amino group, carboxy group, carbonyl group, ether bond, and urea bond At least one is preferred.
  • the polar group may be present on the main chain of the resin or may be present on the side chain.
  • resins having a polar group include vinyl polymerization resins, acrylic resins, polyamide resins, polyimide resins, polyamideimide resins, polyurethane resins, polyester resins, polyether resins, epoxy resins, oxazine resins, and bismaleimide resins. , phenol resins, unsaturated polyester resins, silicone resins, phenoxy resins, and the like.
  • the resin having a polar group preferably contains at least one selected from the group consisting of polyamideimide resins, epoxy resins, acrylic resins, polyester resins, and polyether resins.
  • a resin having a polar group may be used alone or in combination of two or more.
  • the resin composition may contain a resin having no polar group in addition to the resin having a polar group.
  • resins having no polar group include SBR resin (styrene-butadiene-random copolymer resin), SBS resin (styrene-butadiene block copolymer resin), SIS (styrene-isoprene block copolymer), SEBS (styrene- ethylene/butylene block copolymer resin), SEPS (styrene-ethylene/propylene block copolymer resin) polyethylene, polypropylene, polybutadiene, polyisoprene, polystyrene, cycloolefin polymers, and hydrogenated products thereof.
  • the content of the resin having a polar group with respect to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass or more. is particularly preferred.
  • the content of the resin having a polar group with respect to the total amount of the resin may be 100% by mass or 95% by mass or less.
  • the resin preferably contains a thermosetting resin, preferably a thermosetting resin having a polar group.
  • the thermosetting resin may have an aromatic ring, or may have a condensed ring in which two or more aromatic rings are condensed. Condensed rings include naphthalene ring, anthracene ring, phenanthrene ring and the like.
  • Thermosetting resins having polar groups include epoxy resins, phenolic resins, melamine resins, urea resins, thermosetting polyimide resins, thermosetting acrylic resins, polyurethane resins, and the like.
  • the thermosetting resin having a polar group is preferably an epoxy resin, a phenol resin, or a thermosetting acrylic resin, more preferably an epoxy resin, from the viewpoint of durability.
  • the epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • Specific examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and naphthalene type epoxy resin. , anthracene-type epoxy resin, biphenol-type epoxy resin, biphenyl novolac-type epoxy resin, cycloaliphatic epoxy resin, and the like.
  • epoxy resins include those having substituents such as ether groups and alicyclic epoxy groups in the above epoxy resins.
  • an epoxy resin having a heteroatom other than an oxygen atom derived from an epoxy group or a glycidyloxy group of the epoxy resin is preferable.
  • the epoxy resin may be, for example, an epoxy resin containing a nitrogen atom and a hydrogen atom bonded to the nitrogen atom.
  • the epoxy resin may have a heterocyclic structure containing a nitrogen atom and a hydrogen atom bonded to the nitrogen atom.
  • a heterocyclic structure includes, for example, a glycoluril structure.
  • the molecular weight of the epoxy resin is not particularly limited.
  • the content of the epoxy resin with respect to the total amount of the resin may be 80% by mass or more, 90% by mass or more, or 100% by mass. Further, the content of the epoxy resin with respect to the total amount of the resin may be 10% by mass to 90% by mass, may be 20% by mass to 80% by mass, or may be 30% by mass to 80% by mass. It may be 40% by mass to 80% by mass.
  • thermosetting acrylic resin is not particularly limited as long as it has two or more (meth)acryloyl groups in the molecule.
  • thermosetting acrylic resins include polyfunctional (meth)acrylic acid esters such as 1,9-nonanediol diacrylate, ethylene glycol diacrylate, and propylene glycol diacrylate.
  • the resin composition may further contain an acrylic compound other than the thermosetting acrylic resin.
  • acrylic compounds other than thermosetting acrylic resins include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile; ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, t-butyl acrylate, 3-ethoxy propyl acrylate, oxycarbonyl tetramethacrylate, methyl acrylate, isopropyl methacrylate, dodecyl methacrylate, tetradecyl methacrylate, n-propyl methacrylate, 3,3,5-trimethylcyclohexyl methacrylate, ethyl methacrylate, 2-nitro-2-methylpropyl methacrylate, 1 , 1-diethylpropyl methacrylate, methyl methacrylate, isodecyl acrylate, tricyclode
  • the total content of the thermosetting acrylic resin and the acrylic compound other than the thermosetting acrylic resin with respect to the total amount of the resin is 5% by mass to 100% by mass. It may be 10% by mass to 50% by mass.
  • the resin composition may further contain a curing agent.
  • a curing agent such as a peroxide or an azo compound.
  • the resin preferably contains a thermoplastic resin, and preferably contains a thermoplastic resin having a polar group.
  • thermoplastic resins include phenoxy resins, polyamideimide resins, polyethylene resins, polypropylene resins, SBR resins, and the like.
  • the thermoplastic resin is preferably a phenoxy resin, a polyamideimide resin, a polyethylene resin, or an SBR resin, and more preferably a polyamideimide resin, a phenoxy resin, or an SBR resin.
  • the phenoxy resin is not particularly limited as long as it has a phenoxy structure in its molecular structure.
  • the “phenoxy structure” refers to a structure in which an oxygen atom is bonded to a benzene ring, and includes not only a phenoxy group (C 6 H 5 —O—), but also a partially substituted phenoxy group, a phenoxy group Those partially reacted by hydrogenation or the like are also included.
  • phenoxy resins include phenoxy resins having a bisphenol skeleton, phenoxy resins having a novolac skeleton, phenoxy resins having a naphthalene skeleton, and phenoxy resins having a biphenyl skeleton.
  • the phenoxy resin is preferably a phenoxy resin having a bisphenol skeleton from the viewpoint of versatility.
  • phenoxy resins having a bisphenol skeleton include bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A and bisphenol F copolymer phenoxy resin, bisphenol S type phenoxy resin, brominated bisphenol A type phenoxy resin, hydrogenated bisphenol A type phenoxy resin and the like. These phenoxy resins may be used alone or in combination of two or more.
  • a polyamideimide resin is a resin that has an amide bond and an imide bond in its main chain.
  • Preferred specific examples of polyamideimide resins include polyamideimide resins having at least one selected from the group consisting of a polyalkylene oxide structure and a polysiloxane structure. These polyamide-imide resins are preferable from the viewpoint of relaxation of stress due to deformation of the polyamide-imide resin.
  • These polyamide-imide resins may be polyamide-imide resins synthesized using, for example, polyalkylene oxide-modified diamines and polysiloxane-modified diamines.
  • the unit structure of the polyalkylene oxide structure that may be contained in the polyamideimide resin is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and having 1 to 4 carbon atoms.
  • An alkylene oxide structure is more preferred.
  • a polypropylene oxide structure is preferable as the polyalkylene oxide structure.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the number of unit structures in the polyalkylene oxide structure may be one, or two or more.
  • polysiloxane structure that may be contained in the polyamideimide resin
  • a part or all of the silicon atoms of the polysiloxane structure are substituted with an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • a siloxane structure is mentioned.
  • a preferred embodiment of the polyamide-imide resin includes a polyamide-imide resin having a structural unit derived from diimidecarboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine.
  • the SBR resin is not particularly limited as long as it is a copolymer of styrene and butadiene. Moreover, the ratio of the units derived from styrene and the units derived from butadiene constituting the SBR resin is not limited, nor is the molecular weight of the SBR resin particularly limited.
  • the SBR resin may have an unsaturated double bond of a unit derived from butadiene left in order to react with the thermosetting resin, and the unsaturated double bond is hydrogenated to increase durability. It may be
  • thermoplastic resin When the resin contains a thermoplastic resin, the thermoplastic resin and the thermosetting resin may be combined from the viewpoint of improving the strength of the film after film formation and suppressing curing shrinkage during curing.
  • the total content of the resin in the resin composition is preferably 9% by mass or more, more preferably 10% by mass or more, relative to the solid content of the resin composition. is more preferable, and 13% by mass or more is even more preferable. Further, the total content of the resin in the resin composition may be 100% by mass or less, 99% by mass or less, or 95% by mass or less relative to the solid content of the resin composition. good too. Further, the total content of the resin in the resin composition is preferably 50% by volume or more, preferably 55% by volume or more, relative to the solid content of the resin composition, from the viewpoint of obtaining flexibility of the functional film. It is more preferable that the content is 60% by volume or more. Further, the total content of the resin in the resin composition may be 100% by volume or less, 99% by volume or less, or 95% by volume or less with respect to the solid content of the resin composition. good too.
  • the resin composition of the present disclosure has an insulating filler content of less than 50% by volume relative to the total solid content of the resin composition. That is, the resin composition does not contain an insulating filler, or contains an insulating filler in a range of less than 50% by volume.
  • the resin composition preferably contains an insulating filler in an amount of less than 50% by volume. Including an insulating filler in the resin composition makes it easier to control the acoustic impedance of the resulting functional film.
  • the filler contained in the resin composition is an insulating filler, there is an advantage that a short circuit can be prevented when the resin composition is incorporated in an electronic component and used.
  • insulating fillers examples include oxides such as aluminum oxide, zirconium oxide, titanium oxide, bismuth oxide, silicon dioxide, cerium oxide, tantalum oxide, tungsten oxide, and sintered uranium oxide; barium titanate, tungsten carbide, tungsten, zirconium, and the like.
  • An insulating filler may be used individually by 1 type, or may use 2 or more types together.
  • the insulating filler preferably contains at least one selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, bismuth oxide, silicon dioxide, tantalum oxide, and tungsten oxide.
  • the insulating filler is at least one selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, barium titanate, and bismuth oxide from the viewpoint of high hardness and uniform particle shape. and more preferably at least one selected from the group consisting of aluminum oxide, zirconium oxide, and bismuth oxide.
  • the volume resistivity of the insulating filler at 25° C. is preferably 1 ⁇ 10 6 ⁇ cm or more, more preferably 1 ⁇ 10 8 ⁇ cm or more, and more preferably 1 ⁇ 10 10 ⁇ cm or more. It is even more preferable to have
  • the volume average particle diameter D50 of the insulating filler is preferably 5.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, and 2.0 ⁇ m or less from the viewpoint of thinning the resin composition layer. is more preferred.
  • the lower limit of the volume average particle diameter D50 of the insulating filler is not particularly limited, and may be 0.001 ⁇ m or more. From the above viewpoints, the volume average particle diameter D50 of the insulating filler is preferably 0.001 ⁇ m to 5.0 ⁇ m, more preferably 0.001 ⁇ m to 3.0 ⁇ m, and 0.001 ⁇ m to 2.0 ⁇ m. is more preferable.
  • the volume average particle size D50 of the insulating filler contained in the resin composition and the volume average particle size D50 of the insulating filler contained in the functional film formed using the resin composition are calculated as follows.
  • the particle size when the accumulation from the small diameter side is 50% is defined as the volume average particle size D50.
  • the particle size distribution curve of the insulating filler contained in the resin composition is obtained by observing the cross section of the cured product of the resin composition with a scanning electron microscope (SEM) and obtaining the equivalent circle diameter for 20 insulating fillers. can get.
  • a particle size distribution measuring device using a laser light scattering method for example, Co., Ltd. Shimadzu Corporation, "SALD-3000"
  • SALD-3000 a laser light scattering method
  • the shape of the insulating filler is not particularly limited, and may be spherical, powdery, needle-like, fibrous, plate-like, angular, polyhedral, scale-like, or the like. From the viewpoint of thinning the resin composition layer, the shape of the insulating filler is preferably polyhedral or spherical, more preferably spherical. From the viewpoint of thinning the resin composition layer, the aspect ratio of the insulating filler is preferably 5 or less, preferably 4 or less, and more preferably 3 or less. The aspect ratio of the insulating filler contained in the resin composition is obtained by observing the cross section of the cured product of the resin composition with a scanning electron microscope (SEM) and averaging the aspect ratios of 20 insulating fillers. .
  • SEM scanning electron microscope
  • the specific gravity of the insulating filler is not particularly limited, and may be appropriately adjusted according to the application of the resin composition.
  • the specific gravity of the insulating filler may be 2.0 or more, 3.0 or more, 5.0 or more, 6.0 or more, or 7.0. or more.
  • the upper limit of the specific gravity of the insulating filler is not particularly limited.
  • the specific gravity of the insulating filler may be, for example, 10.0 or less.
  • the specific gravity of the filler is measured according to JIS K 0061: 2001 and JIS Z 8807: 2012 by the ratio of the mass of the measurement sample to the mass of pure water of the same volume under atmospheric pressure. It represents the ratio of the true specific gravity of water to the true specific gravity of water.
  • the specific gravity of the insulating fillers refers to the value of the mixture of the insulating fillers contained in the resin composition.
  • the content of the insulating filler in the total solid content of the resin composition is less than 50% by volume.
  • the content of the insulating filler in the total solid content of the resin composition may be 45% by volume or less, or 35% by volume or less, from the viewpoint of lowering the acoustic impedance of the functional film. It may be vol % or less, or may be 15 vol % or less.
  • the content of the insulating filler in the total solid content of the resin composition may be 1% by volume or more, or 5% by volume or more, from the viewpoint of increasing the acoustic impedance of the functional film. , 15% by volume or more, 25% by volume or more, or 35% by volume or more.
  • the content of the insulating filler in the total solid content of the resin composition is preferably 87% by mass or less, more preferably 70% by mass or less, from the viewpoint of achieving both flexibility and wide acoustic impedance control. More preferably, it is less than 65% by mass. From the viewpoint of lowering the acoustic impedance of the functional film, the content of the insulating filler in the total solid content of the resin composition may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. % by mass or less.
  • the content of the insulating filler in the total solid content of the resin composition may be 1% by mass or more, or 5% by mass or more, from the viewpoint of increasing the acoustic impedance of the functional film. , 20% by mass or more.
  • the resin composition may contain a dispersant from the viewpoint of dispersibility of the insulating filler.
  • the dispersant includes a dispersant having compatibility with the resin.
  • the dispersant includes phosphates, carboxylates, carboxylic acid amine salts, and the like.
  • the content of the dispersant may be 0.01% by mass to 5% by mass, may be 0.05% by mass to 3% by mass, or may be 0.1% by mass with respect to the total solid content of the resin composition. % to 1% by mass, or 0.1% to 0.5% by mass.
  • the resin composition may contain a solvent from the viewpoint of adjusting the viscosity.
  • the solvent is preferably a solvent having a boiling point of 70° C. or higher, and a solvent having a boiling point of 100° C. or higher, from the viewpoint of preventing drying of the composition in the step of applying the composition. is more preferable.
  • the solvent is more preferably a solvent having a boiling point of 300° C. or less in order to suppress the generation of voids.
  • the type of solvent is not particularly limited, and examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, aromatic hydrocarbon-based solvents, ester-based solvents, and nitrile-based solvents.
  • the content of the solvent is preferably 60% by mass or less, more preferably 40% by mass or less, based on the total amount of the resin composition, from the viewpoint of viscosity, shortening of the heating process, and the like. % by mass or less is more preferable.
  • the lower limit of the solvent content is not particularly limited, and the resin composition may not contain a solvent.
  • the solvent content may be 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or less.
  • the resin composition may contain other components as needed.
  • Other components include additives such as coupling agents and thixotropic agents.
  • the type of coupling agent is not particularly limited, and examples of the coupling agent include silane-based compounds, titanium-based compounds, aluminum chelate compounds, aluminum/zirconium-based compounds, and the like. Among them, a silane coupling agent is preferable from the viewpoint of adhesion to a substrate such as glass.
  • a coupling agent may be used individually by 1 type, or may use 2 or more types together. When the resin composition contains a coupling agent, the adhesion of the obtained functional film to the substrate tends to be improved.
  • silane coupling agents examples include silane coupling agents having vinyl groups, epoxy groups, methacrylic groups, acrylic groups, amino groups, isocyanurate groups, ureido groups, mercapto groups, isocyanate groups, acid anhydride groups, and the like. Among them, a silane coupling agent having an epoxy group or an amino group is preferable, and a silane coupling agent having an epoxy group or an anilino group is more preferable.
  • a silane cup having an epoxy group or an amino group A ring agent is preferably used, and a silane coupling agent having an epoxy group or an anilino group is more preferably used.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • silane 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-ureidopropyltri ethoxysilane and the like.
  • the content of the coupling agent in the resin composition is not particularly limited, and is 0.05% by mass to 5% by mass relative to the solid content of the resin composition. is preferred, and 0.1% by mass to 2.5% by mass is more preferred.
  • Thixotropic agents include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylenebisoleic acid amide, N,N'-distearyladipic acid amide, fumed silica and the like.
  • the thixotropic agents may be used alone or in combination of two or more.
  • the content of the thixotropic agent is not particularly limited, and may be 0.01% by mass to 5% by mass, or may be 0.05% by mass to 3% by mass with respect to the total solid content of the resin composition. , 0.1% by mass to 1% by mass.
  • the resin composition may or may not contain a conductive filler as another component.
  • the content of the conductive filler with respect to the total solid content of the resin composition is preferably less than 1% by volume, more preferably less than 0.1% by volume, from the viewpoint of obtaining a functional film having insulating properties. , more preferably less than 0.01% by volume.
  • the conductive filler refers to a filler having a volume resistivity of less than 1 ⁇ 10 6 ⁇ cm at 25°C. Examples of conductive fillers include metals, conductive metal oxides, carbon black, and the like.
  • the method for preparing the resin composition is not particularly limited, and examples thereof include a method of mixing the above-described components contained in the resin composition in predetermined blending amounts using a mixer or the like.
  • the viscosity of the resin composition is preferably 10 Pa ⁇ s to 300 Pa ⁇ s, more preferably 20 Pa ⁇ s to 250 Pa ⁇ s, and more preferably 30 Pa ⁇ s to 200 Pa ⁇ s at 25° C. from the viewpoint of handling properties. is more preferable.
  • the viscosity of the resin composition was determined according to JIS Z 3284-3: 2014 using an E-type rotational viscometer equipped with an SPP rotor at 25°C and 2.5 revolutions per minute (rpm) for 144 seconds. This is the measured value when rotated, and is the average value of two measurements.
  • the resin composition of the present disclosure is used for producing functional films for piezoelectric devices. Specifically, a cured film obtained by curing a dried film obtained by drying a resin composition, a cured film obtained by curing a resin composition, or the like is used as the functional film. The details of the dry film and the cured film will be described later.
  • the functional film includes an acoustic matching layer, an acoustic lens, a sound wave transmission layer, a sound wave attenuation layer, a sound wave reflection layer, and the like.
  • a functional film obtained using the resin composition of the present disclosure is provided between the plurality of members for the purpose of suppressing reflection of sound waves at the interface of a plurality of members having a large difference in acoustic impedance.
  • the functional film may be used as an acoustic matching layer.
  • the resin composition of the present disclosure is applied not only at the interface between a plurality of members, but also at the interface between a member and gas, the interface between a member and liquid, etc., for the purpose of controlling the amount of sound wave transmission and sound wave reflection.
  • a functional film obtained by using the resin composition of the present disclosure is provided on the surface of the member, and the functional film can be used as a sound wave transmission layer, a sound wave attenuation layer, a sound wave reflection layer, or the like. good.
  • these functional films may be acoustic lenses that converge or diverge acoustic waves propagating within the piezoelectric device.
  • the sound wave may be an ultrasonic wave.
  • an ultrasonic wave is a sound wave with a frequency of 20 kHz or higher.
  • the piezoelectric device is not particularly limited as long as it has a piezoelectric element.
  • Piezoelectric devices include, for example, ultrasonic sensors, and specific examples include TOF (Time of Flight) sensors, fingerprint authentication sensors, touch sensors, ultrasonic diagnostic imaging devices, haptics devices, and ultrasonic flowmeters. etc.
  • the dry film of the present disclosure is a film obtained by drying the resin composition described above. Specifically, for example, the above-mentioned resin composition is applied to at least a part of the surface of the base material or the functional film installation target surface of the functional film installation target member to form a resin composition layer, and the resin composition By drying the layer, a dry film is obtained.
  • the member to be provided with the functional film may be a piezoelectric element used in a piezoelectric device, or may be another member, and may be a dry film or a cured film obtained using the above resin composition. There may be.
  • the method of applying the resin composition is not particularly limited, and examples thereof include a spray method, a screen printing method, a spin coating method, a spin coating method, a bar coating method, and the like.
  • the substrate to which the resin composition is applied is not particularly limited, and includes glass, metal, resin material, metal deposition film, metal oxide, ceramic, nonwoven fabric, glass fiber, aramid fiber, carbon fiber, glass fiber prepreg, aramid fiber prepreg, carbon fiber prepreg and the like.
  • the method of drying the resin composition layer is not particularly limited, and includes a method of heat-treating using a device such as a hot plate and an oven, and a method of natural drying.
  • the conditions for drying by heat treatment are not particularly limited as long as the solvent in the resin composition is sufficiently volatilized. .
  • the average thickness of the dry film is, for example, 4 ⁇ m to 500 ⁇ m, may be 10 ⁇ m to 300 ⁇ m, may be 20 ⁇ m to 200 ⁇ m, or may be 4 ⁇ m to 50 ⁇ m.
  • the average thickness of the dry film is measured using, for example, a micrometer, and obtained as the arithmetic mean value of the thickness at any five points.
  • the maximum height Rz of the dry film is preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, even more preferably 6.0 ⁇ m or less, 5.0 ⁇ m or less is particularly preferred, and 3.5 ⁇ m or less is extremely preferred.
  • the arithmetic mean roughness Ra of the dry film is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, more preferably 0.6 ⁇ m, from the viewpoint of adhesion to the surface on which the functional film is to be installed. It is more preferably 0.5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the arithmetic mean roughness Ra and the maximum height Rz of the dry film are values obtained in the same manner as the arithmetic mean roughness Ra and the maximum height Rz of the cured film, which will be described later.
  • the cured film of the present disclosure may be a film obtained by curing the dry film described above, or may be a film obtained by curing the resin composition described above.
  • the cured film may be a film whose hardness is increased by having a chemical structure different from that before curing due to a chemical reaction. It may be a film whose hardness is increased by solidification.
  • the cured film is a film obtained by curing a dry film formed on the surface of the base material
  • the dry film peeled off from the surface of the base material is placed on the functional film installation target surface of the functional film installation target member.
  • a cured film may be obtained by providing it on at least a part and curing it, or after obtaining a cured film by curing a dry film on the substrate, the cured film may be peeled off from the surface of the substrate.
  • the dry film peeled off from the surface of the base material is provided on at least a part of the functional film-installed surface of the functional film-installed target member and cured. is preferred.
  • the dry film obtained using the resin composition described above has flexibility, the dry film is not easily cracked even after the process of peeling it off from the base material and providing it on the surface of the member, and adheres closely to the surface of the member. It is easy to handle, so it is easy to handle.
  • the cured film may be a film obtained by curing a laminate in which a plurality of dry films are laminated. Specifically, dried films formed on a plurality of different substrates may be separated from the respective substrates and then bonded together to obtain an integrated cured film by curing. Alternatively, the resin composition may be further coated on the dry film and dried to obtain a laminated body in which a plurality of dried films are laminated, and the cured film may be obtained by curing the laminated body.
  • the cured film may be obtained by curing the resin composition without going through the drying film.
  • the cured film may be obtained by curing the resin composition without passing through the drying film.
  • the volatile component is removed during the process of curing the resin composition, even if the cured film is obtained without drying the film. good.
  • a resin composition layer is formed by applying the resin composition to at least a part of the functional film installation target surface of the functional film installation target member.
  • a cured film may be obtained by curing the resin composition layer.
  • a cured film may be obtained by applying the resin composition to at least a part of the surface of the substrate to form a resin composition layer, and curing the resin composition layer.
  • the cured film when the cured film is obtained by curing a resin composition, the cured film, which is a molded body of the resin composition, may be obtained by, for example, injection molding, extrusion molding, or the like.
  • the method of curing to obtain a cured film is not particularly limited, and curing can be performed by heat treatment or the like. Curing by heat treatment includes box type dryers, hot air conveyor type dryers, quartz tube furnaces, hot plates, rapid thermal annealing, vertical diffusion furnaces, infrared curing furnaces, electron beam curing furnaces, microwave curing furnaces, laminators, heat It can be carried out using a plate press or the like. Alternatively, a cured film may be obtained by curing the resin composition by heat treatment during molding using a molding machine such as an injection molding machine or an extrusion molding machine.
  • a molding machine such as an injection molding machine or an extrusion molding machine.
  • the average thickness of the cured film is, for example, 4 ⁇ m to 500 ⁇ m, may be 10 ⁇ m to 300 ⁇ m, may be 20 ⁇ m to 200 ⁇ m, or may be 4 ⁇ m to 50 ⁇ m.
  • the average thickness of the cured film may exceed 500 ⁇ m, may be 500 ⁇ m to 5 mm, may be 800 ⁇ m to 4 mm, or may be 1 mm to 3 mm.
  • the cured film when used as an acoustic lens, the cured film may have an average thickness of 3 mm to 6 mm.
  • the average thickness of the cured film is measured using, for example, a micrometer, and obtained as an arithmetic mean value of thicknesses at arbitrary five locations.
  • the maximum height Rz of the cured film is preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, even more preferably 6.0 ⁇ m or less, 5.0 ⁇ m or less is particularly preferred, and 3.5 ⁇ m or less is extremely preferred.
  • the arithmetic mean roughness Ra of the cured film is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, more preferably 0.6 ⁇ m, from the viewpoint of adhesion to the surface on which the functional film is to be installed. It is more preferably 0.5 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the arithmetic mean roughness Ra and the maximum height Rz of the cured film are values obtained based on JIS B 0601:2013. Specifically, it is a value measured using a 3D microscope (eg VR-3200 manufactured by Keyence, 12 times magnification). Regarding the measurement conditions of the arithmetic mean roughness Ra and the maximum height Rz, the measurement length is set to 20 mm, and the average value of the values obtained by measuring three points is used as the arithmetic mean roughness Ra and the maximum height Rz.
  • the density of the cured film is preferably 1.1 g/cm 3 or less, more preferably 0.8 g/cm 3 to 1.0 g/cm 3 , and more preferably 0.8 g/cm 3 to 1.0 g/cm 3 . /cm 3 to 0.9 g/cm 3 .
  • the density of the cured film is preferably 2.0 g/cm 3 or more, more preferably 3.0 g/cm 3 to 8.0 g/cm 3 , from the viewpoint of increasing the acoustic impedance. It is more preferably 0.0 g/cm 3 to 7.0 g/cm 3 .
  • the cured film may have a density of 0.8 g/cm 3 to 8.0 g/cm 3 or 0.8 g/cm 3 to 7.0 g/cm 3 .
  • the density of the cured film can be determined, for example, by preparing a 10 mm square sample and measuring the average thickness and mass of the sample.
  • the sound velocity in the cured film is, for example, in the range of 1000 m / s to 6000 m / s, may be in the range of 1100 m / s to 5000 m / s, and may be in the range of 1200 m / s to 4000 m / s. .
  • the speed of sound in the cured film can be obtained by using an ultrasonic sonic meter (ZX-5, manufactured by Minnesota Japan) and inputting the thickness of the cured film measured using a micrometer.
  • the volume resistivity of the cured film is, for example, in the range of 1.0 ⁇ 10 6 ⁇ cm or more, and may be in the range of 1.0 ⁇ 10 7 ⁇ cm or more. It may be in the range of 8 ⁇ cm or more.
  • the volume resistivity is measured with an insulation resistance meter (for example, Advantest, 8340A), and the volume resistivity is calculated from the area and thickness of the electrode contact surface. can be calculated.
  • the elastic modulus of the cured film at 50° C. is preferably high from the viewpoint of preventing scratches during film formation, preferably 0.1 GPa to 2.0 GPa, more preferably 0.1 GPa to 1.5 GPa. , 0.1 GPa to 1.0 GPa.
  • the elastic modulus of the cured film at 50° C. can be obtained by measurement using a viscoelasticity measuring apparatus RSA-3 (TA Instruments) under the conditions of a temperature increase rate of 10° C./min and a frequency of 1 Hz in tensile mode.
  • the content of the insulating filler with respect to the entire cured film is preferably less than 50% by volume from the viewpoint of achieving both flexibility and wide acoustic impedance control.
  • the content of the insulating filler with respect to the entire cured film may be 45% by volume or less, 35% by volume or less, or 25% by volume or less from the viewpoint of lowering the acoustic impedance. It may be 15% by volume or less.
  • the content of the insulating filler with respect to the entire cured film may be 1% by volume or more, 5% by volume or more, or 15% by volume or more from the viewpoint of increasing the acoustic impedance. It may be 25% by volume or more, or 35% by volume or more.
  • the content of the insulating filler in the entire cured film is preferably 87% by mass or less, more preferably 70% by mass or less, more preferably 65% by mass, from the viewpoint of achieving both flexibility and wide acoustic impedance control. % is more preferable. From the viewpoint of lowering the acoustic impedance, the content of the insulating filler in the entire cured film may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. In addition, the content of the insulating filler with respect to the entire cured film may be 1% by mass or more, 5% by mass or more, or 20% by mass or more from the viewpoint of increasing the acoustic impedance. good.
  • the acoustic impedance of the cured film is, for example, in the range of 1.0 ⁇ 10 6 kg/m 2 s to 15.0 ⁇ 10 6 kg/m 2 s, and 1.3 ⁇ 10 6 kg/m 2 s to 15.0 ⁇ 10 6 kg/m 2 s. It may be in the range of 12.0 ⁇ 10 6 kg/m 2 s, or in the range of 1.5 ⁇ 10 6 kg/m 2 s to 10.0 ⁇ 10 6 kg/m 2 s.
  • the cured film of the present disclosure is used as a functional film for piezoelectric devices. Specifically, it can be suitably used as the above-described acoustic matching layer, acoustic lens, sound wave transmission layer, sound wave attenuation layer, sound wave reflection layer, and the like.
  • a piezoelectric device of the present disclosure includes a piezoelectric element and a functional film made of the cured film described above.
  • the functional film may be provided in contact with the piezoelectric element, may be provided on the piezoelectric element via another layer, or may be provided on another member constituting the piezoelectric device.
  • the piezoelectric device of the present disclosure includes a piezoelectric element, a first functional film made of the above-described cured film, and provided in contact with the first functional film, and made of the above-described cured film and having an insulating filler content of and a second functional film different from the first functional film.
  • the piezoelectric device includes an ultrasonic wave transmitting/receiving section that uses the functional film made of the above-described cured film as an acoustic matching layer that suppresses reflection of sound waves at the interface of a plurality of members having a large difference in acoustic impedance. It is an example of a sound wave diagnostic imaging device.
  • FIG. 1 shows a schematic end view showing an acoustic wave transmitting/receiving section in an example of the piezoelectric device according to the first embodiment.
  • the sound wave transmitting/receiving unit 10 is provided in contact with an element substrate 12 having a plurality of piezoelectric elements installed on one surface of a base substrate and a surface 12A of the element substrate 12 on the piezoelectric element side. and an acoustic lens 16 provided in contact with the surface of the acoustic matching layer 14 opposite to the element substrate 12 .
  • the element substrate 12 and the acoustic lens 16 known ones are used.
  • ultrasonic waves emitted from the piezoelectric elements of the element substrate 12 pass through the acoustic matching layer 14 and pass through the acoustic lens 16 to be converged and reach the object.
  • the ultrasonic waves reflected by the object pass through the acoustic lens 16 and the acoustic matching layer 14 and are received by the piezoelectric elements of the element substrate 12 .
  • the acoustic matching layer 14 is provided and the functional film made of the above-described cured film is used as the acoustic matching layer 14, even if the acoustic impedance difference between the piezoelectric element and the acoustic lens 16 is large, the piezoelectric Reflection of ultrasonic waves at the interface between the element and the acoustic lens 16 is suppressed.
  • the acoustic matching layer 14 can be provided in contact with both the element substrate 12 and the acoustic lens 16 .
  • both the acoustic matching layer 14 and the acoustic lens 16 may be functional films made of the aforementioned cured film, or only the acoustic lens 16 may be made of the functional film made of the aforementioned cured film.
  • both the acoustic impedance of the acoustic matching layer 14 and the acoustic impedance of the acoustic lens 16 are set to desired values, respectively, and the interface can suppress the reflection in
  • the acoustic impedance difference between the acoustic matching layer 14 and the acoustic lens 16 is, for example, the content rate of the insulating filler in the cured film used as the acoustic matching layer 14, the content rate of the insulating filler in the cured film used as the acoustic lens 16, may be controlled by adjusting the The content rate of the insulating filler in the cured film used as the acoustic matching layer 14 and the content rate of the insulating filler in the cured film used as the acoustic lens 16 may be adjusted to have different values, or may be the same value. can be adjusted to The composition of
  • the acoustic matching layer may have a multilayer structure.
  • the acoustic wave transmitting/receiving unit 20 shown in FIG. The acoustic matching layer 26, which is provided in contact with the surface opposite to the element substrate 12 in the above, is a functional film made of the above-described cured film and has a different insulating filler content from the acoustic matching layer 24, and an acoustic matching layer and an acoustic lens 28 provided in contact with the surface opposite to the acoustic matching layer 24 in 26 .
  • both the acoustic matching layer 24 and the acoustic matching layer 26 are functional films made of the above-described cured film, and the contents of the insulating filler are different from each other, so that the piezoelectric element Even if the acoustic impedance difference between the piezoelectric element and the acoustic lens 28 is large, reflection of ultrasonic waves at the interface between the piezoelectric element and the acoustic lens 28 is suppressed.
  • the acoustic impedance of the acoustic matching layer 24 is set to a value close to the acoustic impedance of the piezoelectric element between the acoustic impedance of the piezoelectric element and the acoustic impedance of the acoustic lens 28, and the acoustic impedance of the acoustic matching layer 26 is By setting the impedance between the acoustic impedance of the piezoelectric element and the acoustic impedance of the acoustic lens 28 to a value close to the acoustic impedance of the acoustic lens 28, the acoustic impedance difference at the interface is reduced and the reflection of ultrasonic waves is suppressed.
  • the acoustic matching layer is not limited to the two-layer structure as shown in FIG. 2, and may have a structure of three or more layers.
  • a piezoelectric device is a sonic flowmeter having an sonic wave transmitting/receiving section that uses the functional film made of the above-described cured film as a sonic wave transmitting layer that promotes the transmission of sonic waves on the surface of a member and suppresses the reflection thereof.
  • FIG. 3 shows a schematic end view showing a sound wave transmitting/receiving section in an example of the piezoelectric device according to the second embodiment.
  • the sound wave transmitting/receiving unit 30 is provided in contact with an element substrate 32 having a plurality of piezoelectric elements provided on one surface of a base substrate, and a surface 32A of the element substrate 32 on the side of the piezoelectric elements. It has a protective layer 34 that protects the piezoelectric element of the substrate 32 from fluid, and a sound wave transmission layer 36 provided in contact with the surface of the protective layer 34 opposite to the element substrate 32 .
  • the sound wave transmission layer 36 is provided, for example, inside the flow channel of the sonic flowmeter, and the surface of the sound wave transmission layer 36 opposite to the protective layer 34 directly contacts the fluid to be measured.
  • two sonic wave transmitting/receiving units 30 are provided in the flow channel, and the sonic wave transmitted from one sonic wave transmitting/receiving unit 30 is received by the other sonic wave transmitting/receiving unit 30, Measure fluid velocity.
  • the pair of sound wave transmitting/receiving units 30 are arranged, for example, so that the sound wave transmission layer 36 side faces each other via the flow path.
  • sound waves emitted from the piezoelectric elements of the element substrate 32 pass through the protective layer 34 and the sound wave transmission layer 36 and propagate to the fluid that is in direct contact with the sound wave transmission layer 36 .
  • the sound wave transmitting/receiving unit 30 that receives sound waves the sound wave propagating through the fluid enters from the sound wave transmission layer 36 and reaches the element substrate 32 by passing through the sound wave transmission layer 36 and the protective layer 34 .
  • the sound wave transmission layer 36 is provided, and the sound wave transmission layer 36 is a functional film made of the above-described cured film, so that even if the acoustic impedance difference between the protective layer 34 and the fluid is large, the protection Reflection of sound waves on the surface of layer 34 is suppressed. Specifically, by setting the acoustic impedance of the sound wave transmission layer 36 to a value close to the average value of the acoustic impedance of the protective layer 34 and the acoustic impedance of the fluid, the acoustic impedance difference at the interface is reduced, and the sound wave is reflected. is suppressed.
  • the cured film described above is flexible and can be directly provided on the protective layer 34 without passing through another layer such as an adhesive layer, it is easy to control the acoustic impedance difference at the interface, and the sound waves at the interface can be easily controlled. It is easy to suppress reflection. By suppressing the reflection of sound waves at the interface, the sound waves transmitted from one piezoelectric element efficiently reach the other piezoelectric element, thereby increasing the sensitivity of the sonic flowmeter.
  • both the sound wave transmission layer 36 and the protective layer 34 may be functional films made of the aforementioned cured film. Also, the sound wave transmission layer 36 may have a multilayer structure.
  • the piezoelectric device according to the third embodiment is an example of a fingerprint authentication sensor having a sound wave transmitting/receiving section that uses the above functional film made of the cured film as a sound wave attenuation layer that suppresses the transmission of sound waves on the surface of the member.
  • FIG. 4 shows a schematic end view showing an acoustic wave transmitting/receiving section in an example of the piezoelectric device according to the third embodiment.
  • the sound wave transmitting/receiving unit 40 is provided in contact with an element substrate 42 having a plurality of piezoelectric elements provided on one surface of a base substrate, and a surface 42A of the element substrate 42 on the piezoelectric element side.
  • an integrated circuit layer 48 disposed in contact with the .
  • the surface of the protective layer 44 opposite to the element substrate 42 is in direct contact with, for example, a fingerprint to be measured.
  • ultrasonic waves emitted from the piezoelectric elements of the element substrate 42 pass through the protective layer 44 and reach the uneven portions of the fingerprint to be measured. Then, the ultrasonic waves reflected by the object to be measured pass through the protective layer 44 again and are received by the piezoelectric elements of the element substrate 42 .
  • the integrated circuit layer 48 is a layer having a piezoelectric device control function, and is easily affected by vibrations such as ultrasonic waves. Therefore, it is preferable that vibrations such as ultrasonic waves do not propagate to the integrated circuit layer 48 .
  • the sound wave attenuation layer 46 is provided, and the functional film made of the above-described cured film is used as the sound wave attenuation layer 46, so that the ultrasonic wave transmitted through the element substrate 42 is attenuated by the sound wave attenuation layer 46.
  • the integrated circuit layer 48 is protected from ultrasonic vibrations.
  • the sound wave attenuation layer 46 is used to protect the integrated circuit layer 48 from ultrasonic vibrations, but the present invention is not limited to this.
  • a functional film made of the aforementioned cured film may be provided as a sound wave reflecting layer that promotes reflection of sound waves on the surface of the member.
  • the sound wave control method of the present disclosure is a sound wave control method that controls the amount of transmission and reflection of sound waves by providing the above-described cured film on the surface of a member that constitutes a piezoelectric device. For example, by adjusting the content of the insulating filler with respect to the total solid content of the resin composition used for producing the cured film according to the acoustic impedance of the member on which the cured film is to be provided, the amount of the insulating filler in the cured film is adjusted. The content is adjusted, and as a result, a cured film having an acoustic impedance value adjusted to a desired value is obtained. By providing a cured film having an adjusted acoustic impedance value on the surface of the member, the amount of transmission and reflection of sound waves on the surface of the member can be controlled.
  • the above-mentioned cured film whose acoustic impedance is adjusted to a value close to the average value of the acoustic impedances of the plurality of members is placed between the plurality of members.
  • the transmission amount of sound waves at the interface can be increased and the reflection amount can be controlled to be low.
  • the above-mentioned curing agent with adjusted acoustic impedance is used.
  • the film on the surface of the member the amount of transmission and reflection of sound waves on the surface is controlled.
  • ⁇ Resin 1 Epoxy resin (YL-983U (trade name), Mitsubishi Chemical Corporation)
  • Resin 2 Phenoxy resin (YP-50 (trade name), Nippon Steel Chemical & Materials Co., Ltd.)
  • Resin 3 Acrylic resin (Viscoat #260 (trade name), Osaka Organic Chemical Industry Co., Ltd.)
  • Resin 4 SBR resin (Dynaron 2324P (trade name), JSR Corporation)
  • Resin 5 Polyurethane resin (KU-7008 (trade name), Showa Denko Materials Co., Ltd.)
  • Curing agent 1 triethylenetetramine (Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Curing agent 2 Peroxide (Perbutyl-P (trade name), NOF Corporation)
  • Dispersant 1 Phosphate (BYK-9010 (trade name), BYK Chemie Japan Co., Ltd.)
  • Dispersant 1 Phosphate (BYK-9010 (trade name), BYK Chemie Japan Co.
  • Example 4 The obtained resin composition was applied to a release PET film so as to have a thickness of 100 ⁇ m after drying, and dried at 100° C. for 20 minutes to obtain a dry film. The obtained dried film was peeled off, cut into a predetermined size, superimposed, and processed with a hot plate press (temperature 170° C., pressure 2 MPa, time 30 minutes) to obtain a cured film having a thickness of 3 mm.
  • a hot plate press temperature 170° C., pressure 2 MPa, time 30 minutes
  • Example 5 The resulting resin composition was poured into a mold having a thickness of 3 mm, cured at 90° C. for 3 hours, and then removed from the mold to obtain a cured film.
  • Acoustic impedance was calculated from the following formula from the values of the density and sound velocity of the cured film obtained by measurement. Table 1 shows the results.
  • Formula: Acoustic Impedance Sound Velocity x Density
  • the resin compositions of Examples can provide functional films that can widely control acoustic impedance while maintaining flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂組成物は、圧電デバイス用機能性膜の製造に用いる樹脂組成物であって、樹脂を含み、絶縁性フィラーの含有率が前記樹脂組成物の全固形分に対して50体積%未満である。

Description

樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
 本開示は、樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法に関する。
 超音波等の音波の送受信が行われる圧電デバイスは、超音波画像装置、輸送機械等の障害物感知、電子機器の指紋認証など、幅広い分野に使用されている。
 圧電デバイスとしては、例えば、超音波素子アレイ基板と超音波レンズとの間に、音響レンズの応力により変形する音響整合部を備えた超音波デバイスが開示されている(例えば、特開2015-084788号公報等)
 例えば材質の異なる複数の部材を貼り合わせた圧電デバイスでは、前記複数の部材の音響インピーダンス差が大きいほど界面で音波が反射されやすく、音響インピーダンス差が小さいほど音波が界面を透過しやすい。そのため、界面における音波の透過率及び反射率を制御するため、上記複数の部材の間に設けられる機能性膜として、音響インピーダンス値を所望の値に制御できる機能性膜が求められている。
 また、複数の部材の界面に限らず、部材と気体との界面、部材と液体との界面等においても、界面における音波の透過量及び反射量を制御するため、前記部材の表面に設けられる機能性膜として、音響インピーダンス値を所望の値に制御できる機能性膜が求められている。
 そして、これらの機能性膜においては、音響インピーダンス値を所望の値に制御できることに加え、機能性膜に接して設けられる部材の表面に密着しやすく、かつ、機能性膜に接して設けられる部材の変形に追従しやすいことも求められている。
 上記事情に鑑み、本開示は、可撓性を維持しつつ音響インピーダンスを幅広く制御できる機能性膜が得られる樹脂組成物、並びにこれを用いた乾燥膜、硬化膜、圧電デバイス、及び音波制御方法を提供することを目的とする。
 上記課題を解決するための手段は、以下の態様を含む。
<1>
 圧電デバイス用機能性膜の製造に用いる樹脂組成物であって、
 樹脂を含み、絶縁性フィラーの含有率が前記樹脂組成物の全固形分に対して50体積%未満である、樹脂組成物。
<2>
 前記絶縁性フィラーの含有率が、前記樹脂組成物の全固形分に対して1体積%以上である、<1>に記載の樹脂組成物。
<3>
 前記樹脂が、熱硬化性樹脂を含有する、<1>又は<2>に記載の樹脂組成物。
<4>
 前記樹脂が、熱可塑性樹脂を含有する、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>
 前記樹脂が、極性基を有する樹脂である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>
 前記極性基が、窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む、<5>に記載の樹脂組成物。
<7>
 前記樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリアミドイミド樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つを含む、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>
 前記絶縁性フィラーが、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ビスマス、二酸化ケイ素、酸化タンタル、及び酸化タングステンからなる群より選択される少なくとも1種を含む、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>
 前記絶縁性フィラーの比重が、6.0以上である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>
 前記絶縁性フィラーの体積平均粒径が、0.001μm~5.0μmである、<1>~<9>のいずれか1つに記載の樹脂組成物。
<11>
 さらに分散剤を含む、<1>~<10>のいずれか1つに記載の樹脂組成物。
<12>
 前記圧電デバイス用機能性膜が、音響整合層、音響レンズ、音波透過層、音波減衰層、又は音波反射層として用いる機能性膜である、<1>~<11>のいずれか1つに記載の樹脂組成物。
<13>
 <1>~<12>のいずれか1つに記載の樹脂組成物を乾燥させてなる乾燥膜。
<14>
 <1>~<12>のいずれか1つに記載の樹脂組成物を硬化してなる硬化膜。
<15>
 <13>に記載の乾燥膜を硬化してなる硬化膜。
<16>
 前記絶縁性フィラーの含有率が硬化膜全体に対して50体積%未満である<14>又は<15>に記載の硬化膜。
<17>
 音響整合層、音響レンズ、音波透過層、音波減衰層、又は音波反射層に用いる機能性膜である、<14>~<16>のいずれか1つに記載の硬化膜。
<18>
 圧電素子と、
 <14>~<17>のいずれか1つに記載の硬化膜からなる機能性膜と、
 を含む圧電デバイス。
<19>
 圧電素子と、
 <14>~<17>のいずれか1つに記載の硬化膜からなる第1の機能性膜と、
 前記第1の機能性膜に接して設けられ、<14>~<17>のいずれか1つに記載の硬化膜からなり、前記絶縁性フィラーの含有率が前記第1の機能性膜とは異なる第2の機能成膜と、
 を含む圧電デバイス。
<20>
 圧電デバイスを構成する部材の表面に、<14>~<17>のいずれか1つに記載の硬化膜を設けることで、音波の透過量及び反射量を制御する、音波制御方法。
<21>
 前記硬化膜は、前記部材の音響インピーダンスに応じて絶縁性フィラーの含有率が調整されたものである、<20>に記載の音波制御方法。
 本開示によれば、可撓性を維持しつつ音響インピーダンスを幅広く制御できる機能性膜が得られる樹脂組成物、並びにこれを用いた乾燥膜、硬化膜、圧電デバイス、及び音波制御方法が提供される。
第1実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図である。 第1実施形態に係る圧電デバイスの他の一例における音波送受信部を示す概略端面図である。 第2実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図である。 第3実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の少なくとも一方を意味し、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の少なくとも一方を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
≪樹脂組成物≫
 本開示の樹脂組成物は、圧電デバイス用機能性膜の製造に用いる樹脂組成物であって、樹脂を含み、絶縁性フィラーの含有率が前記樹脂組成物の全固形分に対して50体積%未満である。ここで、樹脂組成物の全固形分とは、樹脂組成物から揮発成分を除いた全成分を意味する。
 上記樹脂組成物は、樹脂を含み、絶縁性フィラーの含有率が50体積%未満であることにより、可撓性を維持しつつ音響インピーダンスを幅広く制御できる機能性膜が得られる。
 具体的には、絶縁性フィラーの含有率が50質量%未満であることにより、50質量%以上である場合に比べて、相対的に樹脂の含有率を高くすることができるため、可撓性を有する機能性膜が得られやすくなる。そして、機能性膜が可撓性を有することにより、機能性膜が部材の表面に密着しやすく、かつ、機能性膜に接して設けられる部材の変形に機能性膜が追従しやすくなる。
 また、絶縁性フィラーの含有率が50質量%未満であることにより、樹脂組成物を乾燥させてなる乾燥膜も可撓性を有する。そのため、乾燥膜を基材から剥離して部材の表面に密着させ、乾燥膜を硬化させて硬化膜とする場合の取り扱い性も向上する。
 そして、絶縁性フィラーの含有率を0質量%以上50質量%未満の範囲で調整することにより、機能性膜の音響インピーダンスを幅広く制御できる。例えば、樹脂及び絶縁性フィラーの種類を変えずに、絶縁性フィラーの含有率を低くすることで音響インピーダンスの低い機能性膜を得ることができ、一方、絶縁性フィラーの含有率を高くすることで音響インピーダンスの高い機能性膜を得ることができる。
 このように、上記樹脂組成物は、可撓性を維持しつつ音響インピーダンスを幅広く制御できる機能性膜が得られるため、圧電デバイスの部材に直接設けることが容易となる。つまり、機能性膜が設けられる部材と機能性膜との間に、接着層、クッション層等の他の層を設ける必要がなく、界面における音波の透過量及び反射量を制御しやすくなる。
 以下、樹脂組成物に含まれる各成分について説明する。
<樹脂>
 本開示の樹脂組成物は、少なくとも樹脂を含む。
 樹脂の種類は特に制限されず、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよく、これらの組合せであってもよい。
 また、樹脂は、加熱により重合反応を生じうる官能基を有するモノマーの状態であってもすでに重合したポリマーの状態であってもよい。
 樹脂は、極性基を有する樹脂であることが好ましい。樹脂として極性基を有する樹脂を用いることで、機能性膜が設けられる部材の表面との相互作用が向上し、接着性の高い機能性膜が得られる。
 極性基とは電気陰性度の異なる原子どうしの結合により極性を有する原子団を表す。極性基としては、例えば、炭素原子及び水素原子以外のヘテロ原子を有する基が挙げられ、より具体的には、窒素原子、酸素原子、硫黄原子、ホウ素原子、リン原子、ケイ素原子からなる群より選択される少なくとも1つのヘテロ原子を含む基が挙げられる。なかでも極性基としては窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む基が好ましい。より具体的には、極性基としては、アミノ基、アミド基、イミド基、シアノ基、ニトロ基、エポキシ基、ヒドロキシ基、カルボキシ基、カルボニル基、チオール基、スルホ基、チオニル基、エステル結合、エーテル結合、スルフィド結合、ウレタン結合、ウレア結合等が挙げられ、アミド基、イミド基、エポキシ基、ヒドロキシ基、アミノ基、カルボキシ基、カルボニル基、エーテル結合、及びウレア結合からなる群より選択される少なくとも1つが好ましい。極性基は樹脂の主鎖に存在していても側鎖に存在していてもよい。
 極性基を有する樹脂としては、具体的には、ビニル重合系樹脂、アクリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、フェノキシ樹脂等が挙げられる。なかでも、極性基を有する樹脂は、ポリアミドイミド樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つを含むことが好ましい。極性基を有する樹脂は1種を単独で用いても2種以上を併用してもよい。
 樹脂組成物は、極性基を有する樹脂に加えて、極性基を有しない樹脂を含有してもよい。極性基を有しない樹脂としては、例えばSBR樹脂(スチレン-ブタジエン-ランダム共重合樹脂)、SBS樹脂(スチレン-ブタジエンブロック共重合樹脂)、SIS(スチレン-イソプレンブロック共重合体)、SEBS(スチレン-エチレン・ブチレンブロック共重合樹脂)、SEPS(スチレン-エチレン・プロピレンブロック共重合樹脂)ポリエチレン、ポリプロピレン、ポリブタジエン、ポリイソプレン、ポリスチレン、及びシクロオレフィンポリマー等、並びにそれらに水添したものなどが挙げられる。
 樹脂の全量に対する極性基を有する樹脂の含有率は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。樹脂の全量に対する極性基を有する樹脂の含有率は、100質量%であってもよく、95質量%以下であってもよい。
 樹脂は、耐久性の観点から、熱硬化性樹脂を含むことが好ましく、極性基を有する熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂は、芳香環を有してもよく、2以上の芳香環が縮合した縮合環を有してもよい。縮合環としては、ナフタレン環、アントラセン環、フェナントレン環等が挙げられる。
 極性基を有する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、熱硬化性ポリイミド樹脂、熱硬化性アクリル樹脂、ポリウレタン樹脂等が挙げられる。なかでも、極性基を有する熱硬化性樹脂としては、耐久性の観点から、エポキシ樹脂、フェノール樹脂、熱硬化性アクリル樹脂が好ましく、エポキシ樹脂がより好ましい。
 エポキシ樹脂は、1分子中に2以上のエポキシ基を有するものであれば特に限定されるものではない。
 エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。
 また、エポキシ樹脂の好ましい具体例としては、上述のエポキシ樹脂において、エーテル基、脂環式エポキシ基等の置換基を有するものが挙げられる。エポキシ樹脂としては、エポキシ樹脂のエポキシ基又はグリシジルオキシ基に由来する酸素原子以外のヘテロ原子を有するエポキシ樹脂が好ましい。
 エポキシ樹脂は、例えば、窒素原子と当該窒素原子に結合する水素原子とを含むエポキシ樹脂であってもよい。好ましい一態様において、エポキシ樹脂は窒素原子と当該窒素原子に結合する水素原子とを含むヘテロ環構造を有してもよい。このようなヘテロ環構造としては、例えばグリコールウリル構造が挙げられる。
 エポキシ樹脂の分子量は、特に限定されず、例えば100~1500が挙げられ、150~1000であってもよく、200~500であってもよい。
 樹脂組成物がエポキシ樹脂を含む場合、樹脂の全量に対するエポキシ樹脂の含有率は、80質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。また、樹脂の全量に対するエポキシ樹脂の含有率は、10質量%~90質量%であってもよく、20質量%~80質量%であってもよく、30質量%~80質量%であってもよく、40質量%~80質量%であってもよい。
 熱硬化性アクリル樹脂は、分子中に2以上の(メタ)アクリロイル基を有するものであれば特に限定されるものではない。
 熱硬化性アクリル樹脂の具体例としては、1,9-ノナンジオールジアクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート等の多官能(メタ)アクリル酸エステルなどが挙げられる。
 樹脂組成物が上記熱硬化性アクリル樹脂を含む場合、上記熱硬化性アクリル樹脂以外のアクリル系化合物を樹脂組成物がさらに含んでもよい。熱硬化性アクリル樹脂以外のアクリル系化合物としては、例えば、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体;エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、t-ブチルアクリレート、3-エトキシプロピルアクリレート、オキシカルボニルテトラメタクリレート、メチルアクリレート、イソプロピルメタクリレート、ドデシルメタクリレート、テトラデシルメタクリレート、n-プロピルメタクリレート、3,3,5-トリメチルシクロヘキシルメタクリレート、エチルメタクリレート、2-ニトロ-2-メチルプロピルメタクリレート、1,1-ジエチルプロピルメタクリレート、メチルメタクリレート、イソデシルアクリレート、トリシクロデシルアクリレート、グリシジルメタクリレート等の単官能(メタ)アクリル酸エステル;などが挙げられる。
 樹脂組成物が熱硬化性アクリル樹脂を含む場合、樹脂の全量に対する熱硬化性アクリル樹脂及び熱硬化性アクリル樹脂以外のアクリル系化合物の合計含有率は、5質量%~100質量%であってもよく、10質量%~50質量%であってもよい。
 樹脂が熱硬化性樹脂を含む場合、樹脂組成物は硬化剤をさらに含有してもよい。例えば、熱硬化性樹脂としてエポキシ樹脂を用いる場合、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の潜在性硬化剤などの硬化剤を併用してもよい。また、熱硬化性樹脂として熱硬化性アクリル樹脂を用いる場合、過酸化物、アゾ化合物等の硬化剤を併用してもよい。
 樹脂が硬化剤を併用して重合されたものである場合、極性基を有する樹脂に含まれる極性基は、重合反応の結果として生じた極性基であってもよい。
 樹脂は、可撓性の観点から、熱可塑性樹脂を含むことが好ましく、極性基を有する熱可塑性樹脂を含むことが好ましい。
 熱可塑性樹脂としては、フェノキシ樹脂、ポリアミドイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、SBR樹脂等が挙げられる。なかでも、熱可塑性樹脂としては、可撓性の観点から、フェノキシ樹脂、ポリアミドイミド樹脂、ポリエチレン樹脂、SBR樹脂が好ましく、ポリアミドイミド樹脂、フェノキシ樹脂、SBR樹脂がより好ましい。
 フェノキシ樹脂は、分子構造中にフェノキシ構造を有するものであれば特に限定されない。ここで、「フェノキシ構造」は、ベンゼン環に酸素原子が結合した構造をいい、フェノキシ基(C-O-)だけでなく、フェノキシ基の一部が置換されたもの、フェノキシ基の一部が水素化等により反応したものも含まれる。
 フェノキシ樹脂としては、ビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。これらの中でも、フェノキシ樹脂は、汎用性の観点から、ビスフェノール骨格を有するフェノキシ樹脂であることが好ましい。
 ビスフェノール骨格を有するフェノキシ樹脂としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA及びビスフェノールFの共重合フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、臭素化ビスフェノールA型フェノキシ樹脂、水添ビスフェノールA型フェノキシ樹脂等が挙げられる。
 これらのフェノキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ポリアミドイミド樹脂は、主鎖中にアミド結合とイミド結合とを有する樹脂である。ポリアミドイミド樹脂の好ましい具体例としては、ポリアルキレンオキサイド構造及びポリシロキサン構造からなる群より選択される少なくとも1つを有するポリアミドイミド樹脂が挙げられる。これらのポリアミドイミド樹脂は、ポリアミドイミド樹脂の変形による応力の緩和の観点から好ましい。これらのポリアミドイミド樹脂はそれぞれ例えばポリアルキレンオキサイド変性ジアミン及びポリシロキサン変性ジアミンを用いて合成されるポリアミドイミド樹脂であってもよい。
 ポリアミドイミド樹脂に含まれてもよいポリアルキレンオキサイド構造の単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。
 ポリアミドイミド樹脂に含まれてもよいポリシロキサン構造としては、ポリシロキサン構造のケイ素原子の一部又は全部が炭素数1~20のアルキル基又は炭素数6~18のアリール基で置換されているポリシロキサン構造が挙げられる。
 また、ポリアミドイミド樹脂の好ましい一態様として、ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するポリアミドイミド樹脂が挙げられる。
 SBR樹脂は、スチレンとブタジエンとの共重合体であれば特に限定されない。また、SBR樹脂を構成するスチレンに由来する単位とブタジエンに由来する単位との比率も限定されず、SBR樹脂の分子量についても特に限定されるものではない。SBR樹脂は、熱硬化樹脂と反応させるためにブタジエンに由来する単位の不飽和二重結合を残しておいたものであってもよく、耐久性を上げるために上記不飽和二重結合に水素添加したものであってもよい。
 樹脂が熱可塑性樹脂を含む場合、製膜後の膜の強度を向上させ、かつ硬化時の硬化収縮を抑制する観点から、熱可塑性樹脂と熱硬化性樹脂を組み合わせてもよい。
 樹脂組成物中の樹脂の合計含有率は、機能性膜の可撓性を得る観点から、樹脂組成物の固形分に対して9質量%以上であることが好ましく、10質量%以上であることがより好ましく、13質量%以上であることがさらに好ましい。また、樹脂組成物中の樹脂の合計含有率は、樹脂組成物の固形分に対して100質量%以下であってもよく、99質量%以下であってもよく、95質量%以下であってもよい。
 また、樹脂組成物中の樹脂の合計含有率は、機能性膜の可撓性を得る観点から、樹脂組成物の固形分に対して50体積%以上であることが好ましく、55体積%以上であることがより好ましく、60体積%以上であることがさらに好ましい。また、樹脂組成物中の樹脂の合計含有率は、樹脂組成物の固形分に対して100体積%以下であってもよく、99体積%以下であってもよく、95体積%以下であってもよい。
<絶縁性フィラー>
 本開示の樹脂組成物は、絶縁性フィラーの含有率が樹脂組成物の全固形分に対して50体積%未満である。つまり、上記樹脂組成物は、絶縁性フィラーを含まないか、又は、絶縁性フィラーを50体積%未満の範囲で含む。
 上記樹脂組成物は、絶縁性フィラーを50体積%未満の範囲で含むことが好ましい。樹脂組成物が絶縁性フィラーを含むことで、得られる機能性膜の音響インピーダンスを制御しやすくなる。また、樹脂組成物に含まれるフィラーが絶縁性フィラーであることにより、電子部品に組み込まれて使用する際に短絡を防止できるという利点がある。
 絶縁性フィラーとしては、例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ビスマス、二酸化ケイ素、酸化セリウム、酸化タンタル、酸化タングステン、焼結酸化ウラン等の酸化物;チタン酸バリウム、タングステンカーバイド、タングステン、ジルコニウム、などが挙げられる。絶縁性フィラーは1種を単独で用いても2種以上を併用してもよい。
 絶縁性フィラーは、これらのなかでも、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ビスマス、二酸化ケイ素、酸化タンタル、及び酸化タングステンからなる群より選択される少なくとも1種を含むことが好ましい。また、絶縁性フィラーは、硬度が高いこと及び均一な粒子形状であること等の観点から、酸化アルミニウム、酸化ジルコニウム、酸化チタン、チタン酸バリウム、及び酸化ビスマスからなる群より選択される少なくとも1種を含むことが好ましく、酸化アルミニウム、酸化ジルコニウム、及び酸化ビスマスからなる群より選択される少なくとも1種を含むことがより好ましい。
 絶縁性フィラーの25℃における体積抵抗率は、1×10Ω・cm以上であることが好ましく、1×10Ω・cm以上であることがより好ましく、1×1010Ω・cm以上であることがさらに好ましい。
 絶縁性フィラーの体積平均粒径D50は、樹脂組成物層の薄膜化の観点から、5.0μm以下であることが好ましく、3.0μm以下であることがより好ましく、2.0μm以下であることがさらに好ましい。絶縁性フィラーの体積平均粒径D50の下限値は、特に限定されるものではなく、0.001μm以上であってもよい。以上の観点から、絶縁性フィラーの体積平均粒径D50は、0.001μm~5.0μmであることが好ましく、0.001μm~3.0μmであることがより好ましく、0.001μm~2.0μmであることがさらに好ましい。
 ここで、樹脂組成物に含まれる絶縁性フィラーの体積平均粒径D50、及び樹脂組成物を用いて形成された機能性膜に含まれる絶縁性フィラーの体積平均粒径D50は、以下のようにして求める。
 具体的には、体積基準の粒度分布曲線において、小径側からの累積が50%となるときの粒径を体積平均粒径D50とする。
 樹脂組成物に含まれる絶縁性フィラーの上記粒度分布曲線は、樹脂組成物の硬化物の断面を走査型電子顕微鏡(SEM)にて観察し、絶縁性フィラー20個について円相当径を求めることで得られる。
 なお、絶縁性フィラー単体(例えば、樹脂組成物の原料である絶縁性フィラー)の体積平均粒径D50を求める場合は、例えば、レーザー光散乱法を利用した粒子径分布測定装置(例えば、株式会社島津製作所製、「SALD-3000」)を用いて、レーザー回折散乱式粒度分布測定法により求めてもよい。
 絶縁性フィラーの形状は特に制限されず、球状、粉状、針状、繊維状、板状、角状、多面体、鱗片状等であってもよい。樹脂組成物層の薄膜化の観点から、絶縁性フィラーの形状は、多面体又は球状が好ましく、球状がより好ましい。
 絶縁性フィラーのアスペクト比は、樹脂組成物層の薄膜化の観点から、5以下であることが好ましく、4以下であることが好ましく、3以下であることがより好ましい。樹脂組成物に含まれる絶縁性フィラーのアスペクト比は、樹脂組成物の硬化物の断面を走査型電子顕微鏡(SEM)にて観察し、絶縁性フィラー20個における各アスペクト比の平均値として求められる。
 絶縁性フィラーの比重は、特に限定されるものではなく、樹脂組成物の用途に応じて適宜調節してよい。絶縁性フィラーの比重は、2.0以上であってもよく、3.0以上であってもよく、5.0以上であってもよく、6.0以上であってもよく、7.0以上であってもよい。絶縁性フィラーの比重の上限は特に制限されない。絶縁性フィラーの比重は、例えば、10.0以下であってもよい。
 本開示において、フィラーの比重は、JIS K 0061:2001、JIS Z 8807:2012に準じて、測定試料の質量とそれと同体積の大気圧下における純水の質量との比で測定される測定試料の真比重と水の真比重の比を表す。
 なお、樹脂組成物が絶縁性フィラーを2種以上含む場合、絶縁性フィラーの比重は、樹脂組成物に含まれる絶縁性フィラーの混合物についての値をいう。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は50体積%未満である。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は、機能性膜の音響インピーダンスを低くする観点から、45体積%以下であってもよく、35体積%以下であってもよく、25体積%以下であってもよく、15体積%以下であってもよい。
 また、樹脂組成物の全固形分中の絶縁性フィラーの含有率は、機能性膜の音響インピーダンスを高くする観点から、1体積%以上であってもよく、5体積%以上であってもよく、15体積%以上であってもよく、25体積%以上であってもよく、35体積%以上であってもよい。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は、可撓性と幅広い音響インピーダンス制御とを両立する観点から、87質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%未満であることがさらに好ましい。
 樹脂組成物の全固形分中の絶縁性フィラーの含有率は、機能性膜の音響インピーダンスを低くする観点から、60質量%以下であってもよく、50質量%以下であってもよく、40質量%以下であってもよい。
 また、樹脂組成物の全固形分中の絶縁性フィラーの含有率は、機能性膜の音響インピーダンスを高くする観点から、1質量%以上であってもよく、5質量%以上であってもよく、20質量%以上であってもよい。
<分散剤>
 樹脂組成物は絶縁性フィラーの分散性の観点から分散剤を含有していてもよい。
 分散剤としては、樹脂に対する相溶性を有する分散剤が挙げられる。樹脂に対する相溶性を有する分散剤を用いることで、フィラーを好適に分散させ、基材への接着性を高めることができる傾向にある。具体的には、分散剤としては、リン酸塩、カルボン酸塩、カルボン酸アミン塩等が挙げられる。
 分散剤の含有率は、樹脂組成物の全固形分に対して0.01質量%~5質量%であってもよく、0.05質量%~3質量%であってもよく、0.1質量%~1質量%であってもよく、0.1質量%~0.5質量%であってもよい。
<溶剤>
 樹脂組成物は粘度を調整する観点から溶剤を含有していてもよい。溶剤は、組成物を付与する工程での組成物の乾燥を防ぐ観点から、70℃以上の沸点を有している溶剤であることが好ましく、100℃以上の沸点を有している溶剤であることがより好ましい。また、溶剤は、ボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
 溶剤の種類は特に制限されず、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、芳香族炭化水素系溶剤、エステル系溶剤、ニトリル系溶剤を挙げることができる。より具体的には、メチルイソブチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン、スルホラン、シクロヘキサノン、メチルエチルケトン、ジメチルプロパンアミド、2-(2-ヘキシルオキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール、ジエチレングリコールモノエチルエーテル、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、プロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、p-フェニルフェノール、プロピレングリコールフェニルエーテル、クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、パラフィン、トルエン等が挙げられる。溶剤は1種を単独で用いても2種以上を併用してもよい。
 溶剤の含有率は、粘度、加熱時の工程の短縮化等の観点から、樹脂組成物の全量に対して60質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。溶剤の含有率の下限値は、特に限定されるものではなく、樹脂組成物は、溶剤を含まなくてもよい。溶剤の含有率は、0.1質量%以上であってもよく、0.5質量%以上であってもよく、1質量%以下であってもよい。
<その他の成分>
 樹脂組成物は必要に応じてその他の成分を含有していてもよい。その他の成分としては、カップリング剤、チキソ剤等の添加剤が挙げられる。
 カップリング剤の種類は特に限定されず、カップリング剤としては、シラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物等が挙げられる。なかでも、ガラス等の基材との接着性の観点からは、シランカップリング剤が好ましい。カップリング剤は1種を単独で用いても2種以上を併用してもよい。
 樹脂組成物がカップリング剤を含有すると、得られる機能性膜の基材への接着性が向上する傾向にある。
 シランカップリング剤としては、ビニル基、エポキシ基、メタクリル基、アクリル基、アミノ基、イソシアヌレート基、ウレイド基、メルカプト基、イソシアネート基、酸無水物基等を有するシランカップリング剤が挙げられる。なかでも、エポキシ基又はアミノ基を有するシランカップリング剤が好ましく、エポキシ基又はアニリノ基を有するシランカップリング剤がより好ましい。特に、樹脂としてポリアミドイミド樹脂及びエポキシ樹脂からなる群より選択される少なくとも1つを用いる場合、ポリアミドイミド樹脂及びエポキシ樹脂への相溶性が良好である観点から、エポキシ基又はアミノ基を有するシランカップリング剤を用いることが好ましく、エポキシ基又はアニリノ基を有するシランカップリング剤を用いることがより好ましい。
 シランカップリング剤として、具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。
 樹脂組成物がカップリング剤を含有する場合、樹脂組成物中のカップリング剤の含有率は特に制限されず、樹脂組成物の固形分に対して0.05質量%~5質量%であることが好ましく、0.1質量%~2.5質量%であることがより好ましい。
 チキソ剤としては、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド、ヒュームドシリカ等が挙げられる。チキソ剤は1種を単独で用いても2種以上を併用してもよい。チキソ剤の含有率は特に限定されず、樹脂組成物の全固形分に対して0.01質量%~5質量%であってもよく、0.05質量%~3質量%であってもよく、0.1質量%~1質量%であってもよい。
 なお、樹脂組成物は、その他の成分として導電性フィラーを含んでもよく、含まなくてもよい。樹脂組成物の固形分全体に対する導電性フィラーの含有率は、絶縁性を有する機能性膜を得る観点から、1体積%未満であることが好ましく、0.1体積%未満であることがより好ましく、0.01体積%未満であることがさらに好ましい。
 なお、導電性フィラーとは、25℃における体積抵抗率が1×10Ω・cm未満であるフィラーをいう。
 導電性フィラーとしては、金属、導電性金属酸化物、カーボンブラック等が挙げられる。
<樹脂組成物の調製及び特性>
 樹脂組成物の調製方法は、特に制限されず、例えば、樹脂組成物に含まれる前述の成分を所定の配合量でミキサー等によって混合する方法が挙げられる。
 樹脂組成物の粘度は、ハンドリング性の観点から、25℃において10Pa・s~300Pa・sであることが好ましく、20Pa・s~250Pa・sであることがより好ましく、30Pa・s~200Pa・sであることがさらに好ましい。樹脂組成物の粘度は、JIS Z 3284-3:2014に準じて、SPPロータを備え付けたE型回転粘度計を用いて、25℃、2.5回転/分(rpm)の回転数で144秒間回転させた時の測定値で、2回測定した平均値として測定される。
〔樹脂組成物の用途〕
 本開示の樹脂組成物は、圧電デバイス用機能性膜の製造に用いる。具体的には、樹脂組成物を乾燥させてなる乾燥膜を硬化してなる硬化膜、樹脂組成物を硬化してなる硬化膜等を、上記機能性膜として用いる。乾燥膜及び硬化膜の詳細は後述する。
 機能性膜としては、音響整合層、音響レンズ、音波透過層、音波減衰層、音波反射層等が挙げられる。
 具体的には、例えば、音響インピーダンス差が大きい複数の部材の界面における音波の反射を抑制する目的で、本開示の樹脂組成物を用いて得られる機能性膜を前記複数の部材の間に設け、前記機能性膜を音響整合層として用いてもよい。
 また、複数の部材の界面に限らず、部材と気体との界面、部材と液体との界面等においても同様に、音波透過量及び音波反射量を制御する目的で、本開示の樹脂組成物を用いて得られる機能成膜を用いてもよい。具体的には、前記部材の表面に、本開示の樹脂組成物を用いて得られる機能成膜を設け、前記機能性膜を、音波透過層、音波減衰層、音波反射層等として用いてもよい。
 さらに、これらの機能性膜は、圧電デバイス内を伝播する音波を収束又は発散させる音響レンズであってもよい。
 なお、上記音波は、超音波であってもよい。ここで、超音波とは、周波数が20kHz以上の音波である。
 圧電デバイスは、圧電素子を有する装置であれば特に限定されるものではない。圧電デバイスとしては、例えば、超音波センサーが挙げられ、具体的には、例えば、TOF(Time of Flight)センサー、指紋認証センサー、タッチセンサー、超音波画像診断装置、ハプティクスデバイス、超音波流量計等が挙げられる。
≪乾燥膜≫
 本開示の乾燥膜は、上述した樹脂組成物を乾燥させてなる膜である。
 具体的には、例えば、基材の表面又は機能性膜設置対象部材の機能性膜設置対象面の少なくとも一部に、上述の樹脂組成物を付与して樹脂組成物層を形成し、樹脂組成物層を乾燥させることで、乾燥膜を得る。
 ここで、機能性膜設置対象部材としては、圧電デバイスに用いられる圧電素子であってもよく、その他の部材であってもよく、上述した樹脂組成物を用いて得られる乾燥膜又は硬化膜であってもよい。
 樹脂組成物を付与する方法は特に制限されず、スプレー法、スクリーン印刷法、回転塗布法、スピンコート法、バーコート法等が挙げられる。
 樹脂組成物を付与する基材は特に制限されず、ガラス、金属、樹脂材料、金属蒸着膜、金属酸化物、セラミック、不織布、ガラス繊維、アラミド繊維、炭素繊維、ガラス繊維プリプレグ、アラミド繊維プリプレグ、炭素繊維プリプレグ等が挙げられる。
 樹脂組成物層を乾燥する方法は特に制限されず、ホットプレート、オーブン等の装置を用いて熱処理する方法、自然乾燥する方法などが挙げられる。熱処理することで乾燥を行う場合の条件は、樹脂組成物中の溶剤が十分に揮散する条件であれば特に制限はなく、80℃~150℃で、5分間~120分間程度であってもよい。
 乾燥膜の平均厚みとしては、例えば4μm~500μmが挙げられ、10μm~300μmであってもよく、20μm~200μmであってもよく、4μm~50μmであってもよい。
 乾燥膜の平均厚みは、例えばマイクロメータを用いて測定され、任意の5箇所の厚みの算術平均値として求められる。
 防汚性及び防油性の観点から、乾燥膜の最大高さRzは10.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、6.0μm以下であることがさらに好ましく、5.0μm以下が特に好ましく、3.5μm以下が極めて好ましい。
 また、乾燥膜の算術平均粗さRaは、機能性膜設置対象面との接着性の観点から、1.0μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.6μm以下であることがさらに好ましく、0.5μm以下であることが特に好ましい。
 なお、乾燥膜の算術平均粗さRa及び最大高さRzは、後述する硬化膜の算術平均粗さRa及び最大高さRzと同様の方法で求められる値である。
≪硬化膜≫
 本開示の硬化膜は、上述した乾燥膜を硬化してなる膜であってもよく、上述した樹脂組成物を硬化してなる膜であってもよい。
 ここで、上記硬化してなる膜は、化学反応により硬化前とは異なる化学構造を有することで硬度が上昇した膜であってもよく、化学構造が硬化前と変わらず溶融した樹脂組成物が固化することで硬度が上昇した膜であってもよい。
 硬化膜が基材の表面に形成された乾燥膜を硬化してなる膜である場合、例えば、基材の表面から剥離した乾燥膜を、機能性膜設置対象部材における機能性膜設置対象面の少なくとも一部に設けて硬化させることで硬化膜を得てもよく、基材上の乾燥膜を硬化させて硬化膜を得た後に、基材の表面から硬化膜を剥離してもよい。
 機能性膜設置対象面への密着性を向上する観点では、基材の表面から剥離した乾燥膜を、機能性膜設置対象部材における機能性膜設置対象面の少なくとも一部に設けて硬化させることが好ましい。前述の樹脂組成物を用いて得られる乾燥膜は、可撓性を有するため、基材から剥離して部材の表面に設ける工程を経ても、乾燥膜が割れにくく、かつ、部材の表面に密着しやすいため、取り扱い性に優れる。
 硬化膜は、複数の乾燥膜が積層した積層体を硬化してなる膜であってもよい。具体的には、異なる複数の基材上にそれぞれ形成された乾燥膜を、それぞれ基材から剥離した後に貼り合わせ、硬化により一体化した硬化膜を得てもよい。また、乾燥膜上に樹脂組成物をさらに塗布して乾燥させることで複数の乾燥膜が積層した積層体を得て、積層体を硬化することで硬化膜を得てもよい。
 硬化膜は、乾燥膜を経ずに、樹脂組成物を硬化して得たものであってもよい。具体的には、例えば溶剤等の揮発成分を含まない樹脂組成物を用いて硬化膜を得る場合、乾燥膜を経ずに、樹脂組成物を硬化して硬化膜を得てもよい。また、例えば溶剤等の揮発成分を含む樹脂組成物を用いて硬化膜を得る場合、樹脂組成物を硬化する過程で揮発成分の除去が行われ、乾燥膜を経ずに硬化膜を得てもよい。硬化膜が樹脂組成物を硬化してなるものである場合、例えば、機能性膜設置対象部材の機能性膜設置対象面の少なくとも一部に樹脂組成物を付与して樹脂組成物層を形成し、樹脂組成物層を硬化させることで硬化膜を得てもよい。また、乾燥膜と同様に、基材の表面の少なくとも一部に樹脂組成物を付与して樹脂組成物層を形成し、樹脂組成物層を硬化させることで硬化膜を得てもよい。また、硬化膜が樹脂組成物を硬化してなるものである場合、例えば、射出成形、押出成形等により、樹脂組成物の成形体である硬化膜を得てもよい。
 硬化膜を得るために硬化させる方法は特に制限されず、熱処理等により硬化することができる。熱処理による硬化は、箱型乾燥機、熱風式コンベアー型乾燥機、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉、ラミネーター、熱板プレス等を用いて行なうことができる。また、射出成形機、押出成形機等の成形機により、成形時の熱処理によって樹脂組成物を硬化させて硬化膜を得てもよい。
 硬化膜の平均厚みとしては、例えば4μm~500μmが挙げられ、10μm~300μmであってもよく、20μm~200μmであってもよく、4μm~50μmであってもよい。
 なお、硬化膜の平均厚みは、500μm超えであってもよく、500μm~5mmであってもよく、800μm~4mmであってもよく、1mm~3mmであってもよい。例えば硬化膜が音響レンズとして用いられる場合、硬化膜の平均厚みが3mm~6mmであってもよい。
 硬化膜の平均厚みは、例えばマイクロメータを用いて測定され、任意の5箇所の厚みの算術平均値として求められる。
 防汚性及び防油性の観点から、硬化膜の最大高さRzは10.0μm以下であることが好ましく、8.0μm以下であることがより好ましく、6.0μm以下であることがさらに好ましく、5.0μm以下が特に好ましく、3.5μm以下が極めて好ましい。
 また、硬化膜の算術平均粗さRaは、機能性膜設置対象面との接着性の観点から、1.0μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.6μm以下であることがさらに好ましく、0.5μm以下であることが特に好ましい。
 硬化膜の算術平均粗さRa及び最大高さRzは、JIS B 0601:2013に基づいて求めた値とする。具体的には、3D顕微鏡(例えば、キーエンス製VR-3200、倍率12倍)を用いて測定される値とする。算術平均粗さRa及び最大高さRzの測定条件については、測定長さ20mmとし、3箇所を測定して得られた値の平均値を上記算術平均粗さRa及び最大高さRzとする。
 硬化膜の密度は、音響インピーダンスを低くする観点から、1.1g/cm以下であることが好ましく、0.8g/cm~1.0g/cmであることがより好ましく、0.8g/cm~0.9g/cmであることがさらに好ましい。また、硬化膜の密度は、音響インピーダンスを高くする観点から、2.0g/cm以上であることが好ましく、3.0g/cm~8.0g/cmであることがより好ましく、4.0g/cm~7.0g/cmであることがさらに好ましい。硬化膜の密度は、0.8g/cm~8.0g/cmであってもよく、0.8g/cm~7.0g/cmであってもよい。
 硬化膜の密度は、例えば、10mm四方の試料を作製し、試料の平均厚み及び質量から求めることができる。
 硬化膜における音速としては、例えば1000m/s~6000m/sの範囲が挙げられ、1100m/s~5000m/sの範囲であってもよく、1200m/s~4000m/sの範囲であってもよい。
 硬化膜における音速は、超音波音速計(ダコタ・ ジャパン製、ZX-5)を用い、マイクロメータを用いて実測した硬化膜の厚さを入力することで、求められる。
 硬化膜の体積抵抗率としては、例えば、1.0×10Ω・cm以上の範囲が挙げられ、1.0×10Ω・cm以上の範囲であってもよく、1.0×10Ω・cm以上の範囲であってもよい。
 体積抵抗率はJIS C 2139-3-1:2018に準じて、絶縁抵抗計(例えば、アドバンテスト製、8340A)にて絶縁抵抗値を計測し、電極接触面の面積と厚さから体積抵抗率を算出することができる。
 硬化膜の50℃における弾性率は、膜成型時の傷防止の観点から高い方が好ましく、0.1GPa~2.0GPaであることが好ましく、0.1GPa~1.5GPaであることがより好ましく、0.1GPa~1.0GPaであることがさらに好ましい。
 硬化膜の50℃における弾性率は、粘弾性測定装置RSA-3(TAインスツルメンツ社)を用い、引張モードで昇温速度10℃/min、周波数1Hzの条件で測定することで求められる。
 硬化膜全体に対する絶縁性フィラーの含有率は、可撓性と幅広い音響インピーダンス制御とを両立する観点から、50体積%未満であることが好ましい。
 硬化膜全体に対する絶縁性フィラーの含有率は、音響インピーダンスを低くする観点から、45体積%以下であってもよく、35体積%以下であってもよく、25体積%以下であってもよく、15体積%以下であってもよい。また、硬化膜全体に対する絶縁性フィラーの含有率は、音響インピーダンスを高くする観点から、1体積%以上であってもよく、5体積%以上であってもよく、15体積%以上であってもよく、25体積%以上であってもよく、35体積%以上であってもよい。
 硬化膜全体に対する絶縁性フィラーの含有率は、可撓性と幅広い音響インピーダンス制御とを両立する観点から、87質量%以下であることが好ましく、70質量%以下であることがより好ましく、65質量%未満であることがさらに好ましい。
 硬化膜全体に対する絶縁性フィラーの含有率は、音響インピーダンスを低くする観点から、60質量%以下であってもよく、50質量%以下であってもよく、40質量%以下であってもよい。また、硬化膜全体に対する絶縁性フィラーの含有率は、音響インピーダンスを高くする観点から、1質量%以上であってもよく、5質量%以上であってもよく、20質量%以上であってもよい。
 硬化膜の音響インピーダンスとしては、例えば1.0×10kg/ms~15.0×10kg/msの範囲が挙げられ、1.3×10kg/ms~12.0×10kg/msの範囲であってもよく、1.5×10kg/ms~10.0×10kg/msの範囲であってもよい。
 上記音響インピーダンスは、前述の音速と密度から、下記式(2)より求められる。
 式(2):音響インピーダンス=(音速×密度)
 本開示の硬化膜は、圧電デバイス用機能性膜として用いられる。具体的には、前述の音響整合層、音響レンズ、音波透過層、音波減衰層、音波反射層等として好適に用いることができる。
≪圧電デバイス≫
 本開示の圧電デバイスは、圧電素子と、前述の硬化膜からなる機能性膜と、を含む。
 上記機能性膜は、圧電素子に接して設けられてもよく、圧電素子に他の層を介して設けられてもよく、圧電デバイスを構成する他の部材に設けられてもよい。
 本開示の圧電デバイスは、圧電素子と、前述の硬化膜からなる第1の機能性膜と、第1の機能性膜に接して設けられ、前述の硬化膜からなり絶縁性フィラーの含有率が第1の機能性膜とは異なる第2の機能成膜と、を含むものであってもよい。
 以下、上記実施形態の圧電デバイスの具体例を、図面を参照しながら説明するが、上記実施形態はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
<第1実施形態>
 第1実施形態に係る圧電デバイスは、前述の硬化膜からなる機能性膜を、音響インピーダンス差が大きい複数の部材の界面における音波の反射を抑制する音響整合層として用いた音波送受信部を有する超音波画像診断装置の一例である。
 図1に、第1実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図を示す。
 図1に示すように、音波送受信部10は、ベース基板の一方の面に複数の圧電素子が設置された素子基板12と、素子基板12における圧電素子側の面12Aに接して設けられ、前述の硬化膜からなる機能性膜である音響整合層14と、音響整合層14における素子基板12と反対側の面に接して設けられた音響レンズ16と、を有する。
 素子基板12及び音響レンズ16としては、公知のものが用いられる。
 本実施形態の圧電デバイスでは、例えば、素子基板12の圧電素子から発信される超音波が、音響整合層14を透過し、音響レンズ16を透過することによって収束されて対象物に届く。そして、対象物により反射した超音波が、音響レンズ16及び音響整合層14を透過し、素子基板12の圧電素子により受信される。
 本実施形態では、音響整合層14を有し、かつ、音響整合層14として前述の硬化膜からなる機能性膜を用いるため、圧電素子と音響レンズ16との音響インピーダンス差が大きくても、圧電素子と音響レンズ16との界面における超音波の反射が抑制される。具体的には、音響整合層14の音響インピーダンスを、圧電素子の音響インピーダンスと音響レンズ16の音響インピーダンスとの平均値に近い値に設定することで、界面における音響インピーダンス差が低減され、超音波の反射が抑制される。特に、前述の硬化膜は可撓性を有するため、素子基板12及び音響レンズ16の両方に接して音響整合層14を設けることができる。つまり、素子基板12と音響整合層14との間、及び音響整合層14と音響レンズ16との間に、接着層等の他の層を設ける必要がなく、界面における音響インピーダンス差を制御しやすいため、界面における超音波の反射も抑制しやすい。
 そして、界面における超音波の反射が抑制されることで、圧電素子から発信された超音波を効率的に対象物に照射することができ、かつ、対象物により反射した超音波を効率的に圧電素子が受信することができるため、超音波画像診断装置の感度が上がる。
 本実施形態では、音響整合層14及び音響レンズ16の両方を、前述の硬化膜からなる機能性膜としてもよく、音響レンズ16のみを前述の硬化膜からなる機能性膜としてもよい。
 音響整合層14及び音響レンズ16の両方を前述の硬化膜からなる機能性膜とすることにより、音響整合層14の音響インピーダンスと音響レンズ16の音響インピーダンスとの両方をそれぞれ所望の値にし、界面における反射を抑制することができる。音響整合層14と音響レンズ16との音響インピーダンス差は、例えば、音響整合層14として用いる硬化膜における絶縁性フィラーの含有率と、音響レンズ16として用いる硬化膜における絶縁性フィラーの含有率と、をそれぞれ調整することで制御してもよい。音響整合層14として用いる硬化膜における絶縁性フィラーの含有率と、音響レンズ16として用いる硬化膜における絶縁性フィラーの含有率と、異なる値となるように調整してもよく、同じ値となるように調整してもよい。なお、音響整合層14として用いる硬化膜における樹脂の組成と音響レンズ16として用いる硬化膜における樹脂の組成とは、同じでもよく、異なっていてもよい。
 本実施形態では、図2に示すように、音響整合層が多層構造を有するものであってもよい。具体的には、図2に示す音波送受信部20は、素子基板22と、素子基板22に接して設けられ、前述の硬化膜からなる機能性膜である音響整合層24と、音響整合層24における素子基板12と反対側の面に接して設けられ、前述の硬化膜からなる機能性膜であり、絶縁性フィラーの含有率が音響整合層24とは異なる音響整合層26と、音響整合層26における音響整合層24と反対側の面に接して設けられた音響レンズ28と、を有する。
 図2に示す音波送受信部20では、音響整合層24及び音響整合層26の両方が前述の硬化膜からなる機能性膜であり、かつ、互いに絶縁性フィラーの含有率が異なることで、圧電素子と音響レンズ28との音響インピーダンス差が大きくても、圧電素子と音響レンズ28との界面における超音波の反射が抑制される。具体的には、音響整合層24の音響インピーダンスを、圧電素子の音響インピーダンスと音響レンズ28の音響インピーダンスとの間で圧電素子の音響インピーダンスに近い値に設定し、かつ、音響整合層26の音響インピーダンスを、圧電素子の音響インピーダンスと音響レンズ28の音響インピーダンスとの間で音響レンズ28の音響インピーダンスに近い値に設定することで、界面における音響インピーダンス差が低減され、超音波の反射が抑制される。
 なお、音響整合層は、図2に示すような二層構造に限定されず、三層以上の構造であってもよい。
<第2実施形態>
 第2実施形態に係る圧電デバイスは、前述の硬化膜からなる機能性膜を、部材の表面における音波の透過を促進し反射を抑制する音波透過層として用いた音波送受信部を有する音波流量計の一例である。
 図3に、第2実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図を示す。
 図3に示すように、音波送受信部30は、ベース基板の一方の面に複数の圧電素子が設置された素子基板32と、素子基板32における圧電素子側の面32Aに接して設けられ、素子基板32の圧電素子を流体から保護する保護層34と、保護層34における素子基板32と反対側の面に接して設けられた音波透過層36と、を有する。音波透過層36は、例えば、音波流量計の流路の内側に設けられており、音波透過層36における保護層34と反対側の面が測定対象の流体に直接接触する。
 本実施形態に係る音波流量計では、例えば、2つの音波送受信部30が流路内に設けられ、一方の音波送受信部30から送信された音波を他方の音波送受信部30で受信することで、流体の速度を測定する。一対の音波送受信部30は、例えば、音波透過層36側が流路を介して互いに対向するように配置されている。
 音波を送信する音波送受信部30では、素子基板32の圧電素子から発信される音波が、保護層34及び音波透過層36を透過し、音波透過層36に直接接する流体に伝播する。そして、音波を受信する音波送受信部30では、流体を伝播してきた音波が音波透過層36から入射し、音波透過層36及び保護層34を透過することで、素子基板32に到達する。
 本実施形態では、音波透過層36を有し、かつ、音波透過層36を前述の硬化膜からなる機能性膜とすることで、保護層34と流体との音響インピーダンス差が大きくても、保護層34の表面における音波の反射が抑制される。具体的には、音波透過層36の音響インピーダンスを、保護層34の音響インピーダンスと流体の音響インピーダンスとの平均値に近い値に設定することで、界面における音響インピーダンス差が低減され、音波の反射が抑制される。また、前述の硬化膜は可撓性を有し、接着層等の他の層を介せず保護層34に直接設けることができるため、界面における音響インピーダンス差を制御しやすく、界面における音波の反射も抑制しやすい。
 そして、界面における音波の反射が抑制されることで、一方の圧電素子から発信された音波が、効率的に他方の圧電素子に到達し、音波流量計の感度が上がる。
 本実施形態では、音波透過層36及び保護層34の両方を、前述の硬化膜からなる機能性膜としてもよい。また、音波透過層36が多層構造を有するものであってもよい。
<第3実施形態>
 第3実施形態に係る圧電デバイスは、前述の硬化膜からなる機能性膜を、部材の表面における音波の透過を抑制する音波減衰層として用いた音波送受信部を有する指紋認証センサーの一例である。
 図4に、第3実施形態に係る圧電デバイスの一例における音波送受信部を示す概略端面図を示す。
 図4に示すように、音波送受信部40は、ベース基板の一方の面に複数の圧電素子が設置された素子基板42と、素子基板42における圧電素子側の面42Aに接して設けられ、素子基板42の圧電素子を保護する保護層44と、素子基板42における保護層44と反対側の面に接して設けられた音波減衰層46と、音波減衰層46における素子基板42と反対側の面に接して設けられた集積回路層48と、を有する。保護層44における素子基板42と反対側の面は、例えば、測定対象である指紋に直接接触する。
 本実施形態に係る指紋認証センサーでは、例えば、素子基板42の圧電素子から発信される超音波が、保護層44を透過し、測定対象である指紋の凹凸部に届く。そして、測定対象により反射した超音波が、再度保護層44を透過し、素子基板42の圧電素子により受信される。
 このとき、測定対象により反射し再度保護層44を透過した超音波の一部が、素子基板42を透過し音波減衰層46に伝播する。
 ここで、集積回路層48は、圧電デバイス制御の機能を有する層であり、超音波等の振動の影響を受けやすい。そのため、集積回路層48には超音波等の振動が伝播しないことが好ましい。
 本実施形態では、音波減衰層46を有し、かつ、音波減衰層46として前述の硬化膜からなる機能性膜を用いることで、素子基板42を透過した超音波が音波減衰層46により減衰され、集積回路層48が超音波の振動から保護される。
 なお、本実施形態では、超音波の振動から集積回路層48を保護するために音波減衰層46を用いているが、これに限られず、音波減衰層46の代わりに又は音波減衰層46と共に、部材の表面における音波の反射を促進する音波反射層として、前述の硬化膜からなる機能性膜を設けてもよい。
≪音波制御方法≫
 本開示の音波制御方法は、圧電デバイスを構成する部材の表面に前述の硬化膜を設けることで、音波の透過量及び反射量を制御する、音波制御方法である。
 例えば、硬化膜を設ける対象となる部材の音響インピーダンスに応じて、硬化膜の製造に用いる樹脂組成物の全固形分に対する絶縁性フィラーの含有率を調整することで、硬化膜における絶縁性フィラーの含有率が調整され、その結果、音響インピーダンスの値が目的の値に調整された硬化膜が得られる。そして、音響インピーダンスの値が調整された硬化膜を、部材の表面に設けることで、部材の表面における音波の透過量及び反射量が制御される。
 例えば、音響インピーダンス差が大きい複数の部材の界面における音波の反射を抑制する場合、音響インピーダンスが複数の部材の音響インピーダンスの平均値に近い値に調整された前述の硬化膜を、複数の部材間に音響整合層として設けることで、界面における音波の透過量を高く、反射量を低く、制御される。
 部材と気体との界面、部材と液体との界面等においても同様に、音波の透過量を高める場合、音波を減衰させる場合、音波を反射させる場合においては、音響インピーダンスが調整された前述の硬化膜を部材の表面に設けることで、表面における音波の透過量及び反射量が制御される。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。
〔樹脂組成物の調製〕
 以下の成分を表1に示される配合(固形分全体に対する含有率、質量%)で混合し、表1に示す溶剤を用いて表1に示す固形分濃度(質量%)となるように調製し、樹脂組成物を得た。
 なお、表1中の「-」空欄は、その成分が未配合であることを意味する。また、樹脂組成物の固形分(溶媒等の揮発成分を除く全成分)全体に対する絶縁性フィラーの含有率(体積基準)を表1に示す。
・樹脂1:エポキシ樹脂(YL-983U(商品名)、三菱ケミカル株式会社)
・樹脂2:フェノキシ樹脂(YP-50(商品名)、日鉄ケミカル&マテリアル株式会社)
・樹脂3:アクリル樹脂(ビスコート#260(商品名)、大阪有機化学工業株式会社)
・樹脂4:SBR樹脂(ダイナロン2324P(商品名)、JSR株式会社)
・樹脂5:ポリウレタン樹脂(KU-7008(商品名)、昭和電工マテリアルズ株式会社)
・硬化剤1:トリエチレンテトラミン(富士フィルム和光純薬株式会社)
・硬化剤2:過酸化物(パーブチル-P(商品名)、日油株式会社)
・分散剤1:リン酸塩(BYK-9010(商品名)、ビックケミージャパン株式会社)
・フィラー:酸化ビスマス(Bi)(D50:2.0μm、比重:8.9)
・溶剤1:メチルエチルケトン
・溶剤2:トルエン
〔硬化膜の作製〕
(実施例1~3、比較例1)
 得られた樹脂組成物を離型PETフィルムに乾燥後の厚さが100μmとなるように塗工し、100℃で5分乾燥させ、乾燥膜を得た。また、得られた乾燥膜を離形PETフィルムから剥離し、剥離した乾燥膜を10枚積層した積層体を、ラミネーター((株)ラミーコーポレーション製、型番:Leon13DX、温度80℃)で9回ラミネートして貼り合せたのち、25℃の環境下に一晩(12時間)静置して硬化させ、厚み1mmの硬化膜を得た。
(実施例4)
 得られた樹脂組成物を離型PETフィルムに乾燥後の厚み100μmになるように塗工し100℃で20分乾燥させ、乾燥膜を得た。得られた乾燥膜を剥がして所定サイズに切り取って重ね合わせ、熱板プレス(温度170℃、圧力2MPa、時間30分)で加工して厚み3mmの硬化膜を得た。
(実施例5)
 得られた樹脂組成物を、厚み3mmの型に流し込み、90℃で3時間硬化させたのちに型から取り出し、硬化膜を得た。
〔密度の測定〕
 得られた硬化膜について、電子比重計(アルファ・ミラージュ製、SD-200L)を用いて体積及び質量を測定し、硬化膜の密度を求めた。結果を表1に示す。
〔音速の測定〕
 得られた硬化膜について、マイクロメータを用いて厚さを実測した。超音波音速計(ダコタ・ジャパン製、ZX-5)を用い、実測した厚みを入力して硬化膜の音速を測定した。結果を表1に示す。
〔音響インピーダンス〕
 測定により求められた硬化膜の密度及び音速の値から、下記式より音響インピーダンスを算出した。結果を表1に示す。
 式:音響インピーダンス=音速×密度
〔硬化膜の可撓性評価〕
 樹脂組成物を離形PETフィルムに乾燥後の厚さが25μmとなるように塗工し、100℃5分で乾燥させたのち、25℃の環境下に一晩(12時間)静置し硬化させて得られた硬化膜を、直径9mmの棒に巻き付け、硬化膜の割れの有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の樹脂組成物は、可撓性を維持しつつ音響インピーダンスを幅広く制御できる機能性膜が得られることがわかる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
10、20、30、40 音波送受信部
12、22、32、42 素子基板
12A、32A、42A 面
14、24、26 音響整合層
16、28 音響レンズ
34、44 保護層
36 音波透過層
46 音波減衰層
48 集積回路層

Claims (21)

  1.  圧電デバイス用機能性膜の製造に用いる樹脂組成物であって、
     樹脂を含み、絶縁性フィラーの含有率が前記樹脂組成物の全固形分に対して50体積%未満である、樹脂組成物。
  2.  前記絶縁性フィラーの含有率が、前記樹脂組成物の全固形分に対して1体積%以上である、請求項1に記載の樹脂組成物。
  3.  前記樹脂が、熱硬化性樹脂を含有する、請求項1又は請求項2に記載の樹脂組成物。
  4.  前記樹脂が、熱可塑性樹脂を含有する、請求項1~請求項3のいずれか1項に記載の樹脂組成物。
  5.  前記樹脂が、極性基を有する樹脂である、請求項1~請求項4のいずれか1項に記載の樹脂組成物。
  6.  前記極性基が、窒素原子、酸素原子、及び硫黄原子からなる群より選択される少なくとも1つのヘテロ原子を含む、請求項5に記載の樹脂組成物。
  7.  前記樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリアミドイミド樹脂、アクリル樹脂、ポリエステル樹脂、及びポリエーテル樹脂からなる群より選択される少なくとも1つを含む、請求項1~請求項6のいずれか1項に記載の樹脂組成物。
  8.  前記絶縁性フィラーが、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ビスマス、二酸化ケイ素、酸化タンタル、及び酸化タングステンからなる群より選択される少なくとも1種を含む、請求項1~請求項7のいずれか1項に記載の樹脂組成物。
  9.  前記絶縁性フィラーの比重が、6.0以上である、請求項1~請求項8のいずれか1項に記載の樹脂組成物。
  10.  前記絶縁性フィラーの体積平均粒径が、0.001μm~5.0μmである、請求項1~請求項9のいずれか1項に記載の樹脂組成物。
  11.  さらに分散剤を含む、請求項1~請求項10のいずれか1項に記載の樹脂組成物。
  12.  前記圧電デバイス用機能性膜が、音響整合層、音響レンズ、音波透過層、音波減衰層、又は音波反射層として用いる機能性膜である、請求項1~請求項11のいずれか1項に記載の樹脂組成物。
  13.  請求項1~請求項12のいずれか1項に記載の樹脂組成物を乾燥させてなる乾燥膜。
  14.  請求項1~請求項12のいずれか1項に記載の樹脂組成物を硬化してなる硬化膜。
  15.  請求項13に記載の乾燥膜を硬化してなる硬化膜。
  16.  前記絶縁性フィラーの含有率が硬化膜全体に対して50体積%未満である請求項14又は請求項15に記載の硬化膜。
  17.  音響整合層、音響レンズ、音波透過層、音波減衰層、又は音波反射層に用いる機能性膜である、請求項14~請求項16のいずれか1項に記載の硬化膜。
  18.  圧電素子と、
     請求項14~請求項17のいずれか1項に記載の硬化膜からなる機能性膜と、
     を含む圧電デバイス。
  19.  圧電素子と、
     請求項14~請求項17のいずれか1項に記載の硬化膜からなる第1の機能性膜と、
     前記第1の機能性膜に接して設けられ、請求項14~請求項17のいずれか1項に記載の硬化膜からなり、前記絶縁性フィラーの含有率が前記第1の機能性膜とは異なる第2の機能成膜と、
     を含む圧電デバイス。
  20.  圧電デバイスを構成する部材の表面に、請求項14~請求項17のいずれか1項に記載の硬化膜を設けることで、音波の透過量及び反射量を制御する、音波制御方法。
  21.  前記硬化膜は、前記部材の音響インピーダンスに応じて絶縁性フィラーの含有率が調整されたものである、請求項20に記載の音波制御方法。
PCT/JP2021/042281 2021-11-17 2021-11-17 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法 WO2023089700A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/042281 WO2023089700A1 (ja) 2021-11-17 2021-11-17 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
PCT/JP2022/042621 WO2023090376A1 (ja) 2021-11-17 2022-11-16 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
TW111143936A TW202328347A (zh) 2021-11-17 2022-11-17 樹脂組成物、乾燥膜、硬化膜、壓電元件及音波控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042281 WO2023089700A1 (ja) 2021-11-17 2021-11-17 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法

Publications (1)

Publication Number Publication Date
WO2023089700A1 true WO2023089700A1 (ja) 2023-05-25

Family

ID=86396413

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/042281 WO2023089700A1 (ja) 2021-11-17 2021-11-17 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
PCT/JP2022/042621 WO2023090376A1 (ja) 2021-11-17 2022-11-16 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042621 WO2023090376A1 (ja) 2021-11-17 2022-11-16 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法

Country Status (2)

Country Link
TW (1) TW202328347A (ja)
WO (2) WO2023089700A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865793A (ja) * 1994-08-25 1996-03-08 Olympus Optical Co Ltd 超音波探触子
JP2006033801A (ja) * 2004-06-15 2006-02-02 Toshiba Corp 音響バッキング組成物、超音波プローブ、及び超音波診断装置
JP2006340007A (ja) * 2005-06-01 2006-12-14 Kyocera Corp 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP2008118212A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波プローブおよび超音波診断装置
JP2014072285A (ja) * 2012-09-28 2014-04-21 Tokai Rubber Ind Ltd トランスデューサ
JP2017214546A (ja) * 2016-05-27 2017-12-07 オリンパス株式会社 接着剤組成物、超音波振動子、内視鏡装置、および超音波内視鏡装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373982B2 (ja) * 2006-01-11 2009-11-25 株式会社東芝 アレイ式超音波プローブおよび超音波診断装置
JP2008263419A (ja) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd 音響整合体、超音波送受波器、および超音波流速流量計
JP5672823B2 (ja) * 2010-07-30 2015-02-18 コニカミノルタ株式会社 超音波探触子用バッキング材、それを用いた超音波探触子、及び超音波医用画像診断装置
JP7395946B2 (ja) * 2019-10-17 2023-12-12 コニカミノルタ株式会社 超音波プローブ、超音波診断装置およびバッキング材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865793A (ja) * 1994-08-25 1996-03-08 Olympus Optical Co Ltd 超音波探触子
JP2006033801A (ja) * 2004-06-15 2006-02-02 Toshiba Corp 音響バッキング組成物、超音波プローブ、及び超音波診断装置
JP2006340007A (ja) * 2005-06-01 2006-12-14 Kyocera Corp 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP2008118212A (ja) * 2006-10-31 2008-05-22 Toshiba Corp 超音波プローブおよび超音波診断装置
JP2014072285A (ja) * 2012-09-28 2014-04-21 Tokai Rubber Ind Ltd トランスデューサ
JP2017214546A (ja) * 2016-05-27 2017-12-07 オリンパス株式会社 接着剤組成物、超音波振動子、内視鏡装置、および超音波内視鏡装置

Also Published As

Publication number Publication date
WO2023090376A1 (ja) 2023-05-25
TW202328347A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
KR102420302B1 (ko) 금속-섬유 강화 수지 재료 복합체
KR102399222B1 (ko) 불소계 수지의 비수계 분산체, 그것을 이용한 불소계 수지 함유 열경화 수지 조성물과 그 경화물, 폴리이미드 전구체 용액 조성물
JP5344880B2 (ja) 接着樹脂組成物、およびそれを含む積層体
KR20200103630A (ko) 분산액, 금속 적층판 및 프린트 기판의 제조 방법
JPWO2019131805A1 (ja) 分散液、金属積層板及びプリント基板の製造方法
WO2013080708A1 (ja) 樹脂組成物、樹脂組成物シート、半導体装置およびその製造方法
JPWO2014199843A1 (ja) 樹脂組成物、樹脂シートおよび半導体装置の製造方法
WO2019168064A1 (ja) 金属-繊維強化樹脂材料複合体及び金属-繊維強化樹脂材料複合体の製造方法
JP2022509603A (ja) 多層ポリマー膜
KR20170133277A (ko) 불소계 수지의 비수계 분산체, 그것을 이용한 불소계 수지 함유 열경화 수지 조성물과 그 경화물, 폴리이미드 전구체 용액 조성물
US20230250256A1 (en) Resin composition, film, and cured product
JP2016037538A (ja) 樹脂組成物、それを用いた放熱塗料および電子部品
WO2023089700A1 (ja) 樹脂組成物、乾燥膜、硬化膜、圧電デバイス、及び音波制御方法
JP6780272B2 (ja) 高分子複合フィルム
JP7459869B2 (ja) 樹脂組成物、膜、及び硬化物
TW202317706A (zh) 樹脂組成物及其硬化物以及使用其的積層體、靜電吸盤及電漿處理裝置
TW202132457A (zh) 分散液
JP2022065282A (ja) トウプレグ、および繊維強化複合材料
TWI836048B (zh) 樹脂組成物、膜及硬化物
US11254094B2 (en) Multilayer polymer film
WO2022019223A1 (ja) 分散液、複合粒子及び複合粒子の製造方法
Patel The Characterization of Polymers and Its Hybrids for Enhanced Properties
JP2020111066A (ja) 高分子複合フィルム
JPWO2019017287A1 (ja) フィルムロールおよびフィルム束
JP2014201019A (ja) 芳香族ポリエーテルケトン樹脂を含む樹脂部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964716

Country of ref document: EP

Kind code of ref document: A1