WO2023073765A1 - 半導体メモリ装置の製造方法 - Google Patents

半導体メモリ装置の製造方法 Download PDF

Info

Publication number
WO2023073765A1
WO2023073765A1 PCT/JP2021/039319 JP2021039319W WO2023073765A1 WO 2023073765 A1 WO2023073765 A1 WO 2023073765A1 JP 2021039319 W JP2021039319 W JP 2021039319W WO 2023073765 A1 WO2023073765 A1 WO 2023073765A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
gate
impurity
memory device
Prior art date
Application number
PCT/JP2021/039319
Other languages
English (en)
French (fr)
Inventor
理一郎 白田
望 原田
康司 作井
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
理一郎 白田
望 原田
康司 作井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 理一郎 白田, 望 原田, 康司 作井 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2021/039319 priority Critical patent/WO2023073765A1/ja
Priority to TW111140269A priority patent/TWI838924B/zh
Priority to US17/971,789 priority patent/US20230127781A1/en
Publication of WO2023073765A1 publication Critical patent/WO2023073765A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells

Definitions

  • the present invention relates to a method of manufacturing a semiconductor memory device.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • a DRAM Dynamic Random Access Memory
  • a PCM Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin by current ) can be highly integrated.
  • DRAM memory cell see Non-Patent Document 6
  • the present application relates to a dynamic flash memory that does not have resistance change elements or capacitors and can be configured only with MOS transistors.
  • FIG. 8 shows the write operation of a DRAM memory cell composed of a single MOS transistor without the capacitor described above, FIG. 8 shows the operational problem, and FIG. 8 shows the read operation.
  • FIG. 8 shows the write operation of the DRAM memory cell.
  • FIG. 8(a) shows a "1" write state.
  • the memory cell is formed on the SOI substrate 100 and includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an “N + layer”) to which a source line SL is connected.
  • the drain N + layer 104 connected to the line BL, the gate conductive layer 105 connected to the word line WL, and the floating body 102 of the MOS transistor 110a.
  • a memory cell of the DRAM is composed of these pieces.
  • the SiO 2 layer 101 of the SOI substrate is in contact directly below the floating body 102 .
  • the MOS transistor 110a When "1" is written to the memory cell constituted by one MOS transistor 110a, the MOS transistor 110a is operated in the saturation region. That is, the electron channel 107 extending from the source N + layer 103 has a pinch-off point P and does not reach the drain N + layer 104 connected to the bit line. In this way, both the bit line BL connected to the drain N + layer 104 and the word line WL connected to the gate conductive layer 105 are set at a high voltage, and the gate voltage is set to about 1/2 of the drain voltage. is operated, the electric field intensity becomes maximum at the pinch-off point P near the drain N + layer 104 .
  • the holes 106 generated at the same time charge the floating body 102 . In this case, the generated holes contribute as increments of majority carriers because the floating body 102 is P-type Si.
  • the floating body 102 is filled with the generated holes 106, and when the voltage of the floating body 102 becomes higher than that of the source N + layer 103 by Vb or more, the generated holes are discharged to the source N + layer 103.
  • Vb is the built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, which is about 0.7V.
  • FIG. 8B shows how the floating body 102 is saturated charged with the generated holes 106 .
  • FIG. 8(c) shows how the "1" write state is rewritten to the "0" write state.
  • the voltage of the bit line BL is negatively biased, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is forward biased.
  • the holes 106 previously generated in the floating body 102 in the previous cycle flow to the drain N + layer 104 connected to the bit line BL.
  • the capacitance CFB of the floating body 102 is composed of the capacitance CWL between the gate connected to the word line and the floating body 102, and the source N + layer 103 connected to the source line.
  • FIG. 10(a) shows a "1" write state
  • FIG. 10(b) shows a "0" write state.
  • Vb is written to the floating body 102 by writing "1”
  • the floating body 102 is pulled down to a negative bias when the word line returns to 0 V at the end of writing.
  • the negative bias becomes even deeper. Therefore, as shown in FIG. do not have.
  • This small operating margin is a major problem of the present DRAM memory cell.
  • a method for manufacturing a memory device using a semiconductor element includes: By controlling the voltage applied to the first gate conductor layer, the second gate conductor layer, the first impurity layer, and the second impurity layer, an impact ionization phenomenon or a gate a data holding operation of holding hole groups or electron groups that are majority carriers of the semiconductor pillars formed by an induced drain leak current; the first gate conductor layer; the second gate conductor layer; and a data erasing operation of removing the group of holes or the group of electrons, which are the majority carriers of the semiconductor pillar, from the inside of the semiconductor pillar by controlling the voltage applied to the second impurity layer.
  • a semiconductor memory device manufacturing method comprising: a first impurity layer, a first insulating layer, a first material layer, a second insulating layer, a second material layer, and a third material layer from below in a vertical direction on the substrate; a step of laminating the The bottom part is on the surface of or inside the first impurity layer, and the first insulating layer, the first material layer, the second insulating layer, the second material layer, and the third material layer.
  • the first impurity layer is connected to a source line
  • the first gate conductor layer is connected to a plate line
  • the second gate conductor layer is connected to a word line
  • the second impurity layer is connected to a word line.
  • the layer is connected to the bit line, and the wiring conductor layer of the bit line is formed to extend in a direction perpendicular to the first direction in plan view (second invention).
  • the step of removing a portion of the third material layer to expose the top of the semiconductor pillar; forming a third impurity layer covering the exposed top of the semiconductor pillar; has The third impurity layer serves as the second impurity layer (third invention).
  • the step of forming a fourth impurity layer on the top of the semiconductor pillar is formed by the third impurity layer and the fourth impurity layer (fourth invention).
  • the inner walls of the second hole and the third hole are covered with the second hole.
  • a third gate insulating layer is formed to cover the first gate insulating layer and the second gate insulating layer (a fifth invention).
  • the third material layer has at least one insulating layer (sixth invention).
  • the first insulating layer, the first material layer, the second insulating layer, the second material layer, and the third insulating layer protruded outside the block region. and etching away the third material layer; (7th invention).
  • FIG. 1 is a structural diagram of a semiconductor memory device according to a first embodiment
  • FIG. FIG. 4 is a diagram for explaining an erase operation mechanism of the semiconductor memory device according to the first embodiment
  • FIG. 2 is a diagram for explaining a write operation mechanism of the semiconductor memory device according to the first embodiment
  • FIG. FIG. 2 is a diagram for explaining a read operation mechanism of the semiconductor memory device according to the first embodiment
  • FIG. FIG. 2 is a diagram for explaining a read operation mechanism of the semiconductor memory device according to the first embodiment
  • FIG. FIG. 4 is a structural diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 4 is a diagram for explaining the method of manufacturing the semiconductor memory device according to the first embodiment;
  • FIG. 10 is a diagram for explaining a method of manufacturing a semiconductor memory device according to a second embodiment;
  • FIG. 10 is a diagram for explaining a method of manufacturing a semiconductor memory device according to a third embodiment;
  • FIG. 10 is a diagram for explaining a method of manufacturing a semiconductor memory device according to a third embodiment;
  • FIG. 10 is a diagram for explaining a write operation of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 2 illustrates a read operation of a DRAM memory cell without a conventional capacitor;
  • dynamic flash memory a semiconductor memory device
  • FIG. 1 The structure, operation mechanism, and manufacturing method of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 The structure of a dynamic flash memory cell will be described with reference to FIG. Then, a data erasing mechanism will be described with reference to FIG. 2, a data writing mechanism will be described with reference to FIG. 3, and a data writing mechanism will be described with reference to FIG. Then, a method of manufacturing a dynamic flash memory will be described with reference to FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the invention.
  • a silicon semiconductor pillar 2 (an example of a ⁇ semiconductor pillar'' in the claims) (hereinafter referred to as a ⁇ Si pillar'') is placed on a substrate 1 (an example of a ⁇ substrate'' in the scope of claims). ).
  • the Si pillar 2 includes, from the bottom, an N + layer 3a (which is an example of a "first impurity layer” in the claims), a semiconductor region 7 containing acceptor impurities (hereinafter, a semiconductor region containing acceptor impurities is referred to as “ (referred to as a "P layer”), and an N + layer 3b (which is an example of a "second impurity layer” in the scope of claims).
  • the P layer 7 between the N + layers 3a and 3b becomes a channel region 7a.
  • a first gate insulating layer 4a (which is an example of the "first gate insulating layer” in the scope of claims) surrounds the lower portion of the Si pillar 2, and a second gate insulating layer surrounds the upper portion of the Si pillar 2.
  • first gate conductor layer 5a Surrounding the first gate insulating layer 4a is a first gate conductor layer 5a (which is an example of the "first gate conductor layer” in the claims), and surrounding the second gate insulating layer 4b. Then, there is a second gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims). The first gate conductor layer 5 a and the second gate conductor layer 5 b are separated by an insulating layer 6 .
  • a dynamic flash memory cell comprising N + layers 3a and 3b, P layer 7, first gate insulating layer 4a, second gate insulating layer 4b, first gate conductor layer 5a and second gate conductor layer 5b is formed. is formed.
  • the N + layer 3a serves as a source line SL (an example of a "source line” in the claims), and the N + layer 3b serves as a bit line BL (a "bit line” in the claims).
  • the first gate conductor layer 5a corresponds to the plate line PL (which is an example of the "plate line” in the claims)
  • the second gate conductor layer 5b corresponds to the word line WL (which is an example of the "plate line” in the claims). (which is an example of the "word line” in the claims).
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL. It is desirable to have
  • first gate conductor layer 5a may be divided into two or more, and each of them may be operated synchronously or asynchronously as a conductor electrode of the first plate line.
  • second gate conductor layer 5b may be divided into two or more, each of which may be operated synchronously or asynchronously as a conductor electrode of the word line WL. This also provides dynamic flash memory operation.
  • FIG. 2(a) shows a state in which the hole groups 10 generated by impact ionization in the previous cycle are stored in the channel region 7a before the erasing operation. and.
  • V ERA is, for example, -3V.
  • V FB V ERA +Vb.
  • the threshold voltage of the second gate conductor layer 5b connected to this word line WL is increased.
  • the erased state of this channel region 7a is logical storage data "0". Note that the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are only examples for performing the erase operation, and other operating conditions under which the erase operation can be performed. may be
  • FIG. 3 shows the write operation of a dynamic flash memory cell.
  • 0 V for example, is input to the N + layer 3a connected to the source line SL
  • 3 V for example, is input to the N + layer 3b connected to the bit line BL
  • the plate line PL 2 V for example, is input to the connected first gate conductor layer 5a
  • 5 V for example, is input to the second gate conductor layer 5b connected to the word line WL.
  • an annular inversion layer Ra is formed in the channel region 7a inside the first gate conductor layer 5a to which the plate line PL is connected.
  • the first N-channel MOS transistor region having conductor layer 5a is operated in the saturation region.
  • a pinch-off point P exists in the inversion layer Ra inside the first gate conductor layer 5a to which the plate line PL is connected.
  • the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL is operated in the linear region.
  • an inversion layer Rb is formed all over the channel region 7a inside the second gate conductor layer 5b connected to the word line WL without any pinch-off point.
  • the inversion layer Rb formed entirely inside the second gate conductor layer 5b connected to the word line WL is a substantial drain of the first N-channel MOS transistor region having the first gate conductor layer 5a.
  • the electric field is maximum at the first boundary region of , and the impact ionization phenomenon occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor region having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source-side impact ionization phenomenon.
  • the generated hole group 10 is majority carriers in the channel region 7a, and charges the channel region 7a to a positive bias. Since the N + layer 3a connected to the source line SL is at 0 V, the channel region 7a is at the built-in voltage Vb (approximately 0 V) of the PN junction between the N + layer 3a connected to the source line SL and the channel region 7a. .7V).
  • Vb approximately 0 V
  • the threshold voltages of the first N-channel MOS transistor region and the second N-channel MOS transistor region are lowered due to the substrate bias effect. Thereby, as shown in FIG. 3(c), the threshold voltage of the second N-channel MOS transistor region connected to word line WL is lowered.
  • the write state of this channel region 7a is assigned to logical storage data "1".
  • a second boundary region between the N + layer 3a and the channel region 7a, or a second boundary region between the N + layer 3b and the channel region 7a may be generated by the impact ionization phenomenon or the GIDL current in the boundary region 3, and the channel region 7a may be charged with the generated hole group 10.
  • FIG. The voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are only examples for performing the write operation, and other voltage conditions that allow the write operation may be used.
  • FIGS. 4A and 4B A read operation of the dynamic flash memory cell will be described with reference to FIGS. 4A and 4B.
  • the read operation of the dynamic flash memory cell will be described with reference to FIGS. 4A(a) to 4A(c).
  • FIG. 4A(a) when the channel region 7a is charged to the built-in voltage Vb (approximately 0.7 V), the threshold voltage drops due to the substrate bias effect. This state is assigned to logical storage data "1".
  • FIG. 4A(b) when the memory block selected before writing is in the erased state "0" in advance, the channel region 7a has the floating voltage V FB of V ERA +Vb.
  • a write operation randomly stores a write state of "1".
  • logical storage data of logical "0" and "1" are created for the word line WL.
  • reading is performed by the sense amplifier using the level difference between the two threshold voltages for the word line WL.
  • FIG. 4B(a) to FIG. 4B(d) are used to compare the magnitude relationship between the gate capacitances of the two first gate conductor layers 5a and the second gate conductor layers 5b during the read operation of the dynamic flash memory cell. , the related operations are explained.
  • the gate capacitance of the second gate conductor layer 5b connected to the word line WL is preferably designed to be smaller than the gate capacitance of the first gate conductor layer 5a connected to the plate line PL.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is greater than the vertical length of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 4B(b) shows an equivalent circuit of one cell of the dynamic flash memory of FIG. 4B(a).
  • FIG. 4B(c) shows the coupling capacity relationship of the dynamic flash memory.
  • CWL is the capacitance of the second gate conductor layer 5b
  • CPL is the capacitance of the first gate conductor layer 5a
  • CBL is the capacitance between the N + layer 3b serving as the drain and the channel region 7a
  • C SL is the capacitance of the PN junction between the N + layer 3a serving as the source and the channel region 7a.
  • the operation affects the channel region 7a as noise.
  • V ReadWL is the amplitude potential at the time of reading the word line WL.
  • ⁇ V FB can be reduced by reducing the contribution of C WL compared to the total capacitance C PL +C WL +C BL +C SL of the channel region 7a.
  • the memory cell in plan view .DELTA.V.sub.FB may be made even smaller without reducing the integration density.
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL, and the potential of the floating body described above are examples for performing the read operation, and other operating conditions under which the read operation can be performed. may be
  • FIGS. 5A to 5M A method for manufacturing the semiconductor memory device according to the first embodiment will be described with reference to FIGS. 5A to 5M.
  • (a) is a plan view of one memory cell of the semiconductor memory device
  • (b) is a cross-sectional view along line XX' in (a)
  • (c) is a ) along the line YY'.
  • a memory device a large number of memory cells are arranged two-dimensionally.
  • an N + layer 12 (an example of a "first impurity layer” in the claims) is placed on a P-layer substrate 11 (an example of a "substrate” in the claims) from below. ), a first insulating layer 13 (which is an example of the "first insulating layer” in the claims), a silicon nitride (SiN) layer 14a (an example of the "first material layer” in the claims) ), the second insulating layer 15 (which is an example of the “second insulating layer” in the claims), and the SiN layer 14b (which is an example of the “second material layer” in the claims) , a third insulating layer 17 (an example of a "third insulating layer” in the scope of claims), and a third material layer 18 (an example of a "third material layer” in the scope of claims) to form
  • an epitaxial crystal growth method is used to form Si pillars 22 (which are an example of "semiconductor pillars" in the scope of claims) in the holes 20 .
  • the top surface is grown to be above the top surface of the third material layer 18, and then the top surface is moved to the top by CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • a Si pillar 22 is formed by polishing so as to be positioned on the upper surface of the material layer 18 of No. 3 .
  • heat treatment is performed to diffuse the donor impurities of the N + layer 12 into the Si pillars 22 to form the N + layer 12a.
  • holes 23a which are examples of "second holes” in the claims
  • 23b second holes in the claims
  • second holes which is an example of "third vacancies”
  • a large number of Si pillars are arranged two-dimensionally. It becomes a support connected to the layer 18 . This support prevents the second insulating layer 15, the third insulating layer 17 and the third material layer 18 from bending or breaking during the formation of the holes 23a, 23b.
  • a dummy Si pillar is formed outside the block region in which the Si pillars are two-dimensionally arranged, and in a plan view, the second insulating layer 15 and the third insulating layer, one side of which floats, are formed outside the dummy Si pillar. 17.
  • the second insulating layer 15, the third insulating layer 17 and the third material layer 18 are cleaned and the SiN layers 14a and 14b are etched. Damage can be prevented.
  • the exposed Si pillars 22 are oxidized to form SiO 2 layers 25a (which are examples of the “first gate insulating layer” in the claims), 25b (the ), 25c is formed.
  • doped poly-Si layers 26a and 26b containing a large amount of donor or acceptor impurities are formed in the holes 23a and 23b.
  • a doped poly-Si layer is formed on the third material layer 18 and the SiO2 layer 25c. This doped poly-Si layer is polished and removed by the CMP method. At the same time, the SiO2 layer 25c is also removed. Then, a fifth insulating layer 28 is formed over the entire surface.
  • photolithography and RIE are used to form a third material layer 18a surrounding the Si pillar 22 and extending in the XX′ line direction in plan view, and a fifth insulating layer. 28a.
  • the third insulating layer 17, the doped poly-Si layer 26b, the second insulating layer 15, and the doped poly-Si are etched.
  • Layer 26a is etched to form third insulating layer 17a, doped poly-Si layer 26aa (which is an example of the "first gate conductor layer” in the claims), second insulating layer 15a, and doped poly-Si layer 26ba ( (which is an example of the "second gate conductor layer” in the claims) is formed.
  • a SiO 2 layer (not shown) is deposited on the entire surface by CVD (Chemical Vapor Deposition). Then, a SiO 2 layer 30 whose upper surface is located at the upper surface of the fifth insulating layer 28a is formed by polishing by the CMP method.
  • the third material layer 18a above the third insulating layer 17a and the fifth insulating layer 28a are removed.
  • the upper layer of the SiO 2 layer 30 is removed to form a SiO 2 layer 30a.
  • the tops of the Si pillars 22 are exposed.
  • an N + layer 32 (an example of the "second impurity layer” and “third impurity layer” in the claims) is formed by selective epitaxial crystal growth.
  • a SiO 2 layer 34 is formed on the N + layer 32 and the third insulating layer 17a.
  • a contact hole 35 is formed in the SiO 2 layer 34 on the N + layer 32 .
  • a metal wiring layer 36 connected to the N + layer 32 through the contact hole 35 and extending in the YY' line direction is formed.
  • N + layer 12a is connected to source line SL
  • doped poly-Si layer 26aa is connected to plate line PL
  • doped poly-Si layer 26ba is connected to word line WL
  • metal wiring layer 36 is connected to bit line BL.
  • a dynamic flash memory is thus formed on the P-layer substrate 11 .
  • the Si pillar 22 may be formed of another semiconductor layer.
  • the doped poly-Si layers 26a and 26b may be conductor layers made of other metals or alloys.
  • the first insulating layer 13, the second insulating layer 15, and the third insulating layer 17 are insulating layers made of a single layer such as a SiO2 layer, a SiN layer, an alumina ( Al2O3 ) layer, or a plurality of layers. Layers may be used.
  • the fourth insulating layer 28 has a role of protecting the top of the Si pillar 22 from RIE etching, so it may be a layer of other material regardless of the insulating layer.
  • the third insulating layer 17 and the third material layer 18 may be formed of one insulating layer. In this case, in FIG. 5K, it is necessary to leave an insulating layer having a thickness corresponding to that of the third insulating layer 17 in the step of exposing the top of the Si pillar 22 .
  • the formation of the N + layer 12a was performed by heat treatment in the process of FIG. 5D.
  • the N + layer 12a may be formed in any step after the Si pillar 22 is formed.
  • the N + layer is not formed on the top of the Si pillar 22, but the N + layer ( (which is an example of the "fourth impurity layer" in the claims) may be formed. It is also possible to form the N + layer on the top of the Si pillar 22 and not form the N + layer 32 by the selective epitaxial crystal growth method.
  • the Si pillars 22 are formed by epitaxial crystal growth, but may be formed by other methods such as molecular beam crystal growth and ALD (Atomic Layer Deposition).
  • the doped poly-Si layers 26a and 26b are formed so as to surround the Si pillar 22 as a whole in plan view.
  • the doped poly-Si layers 26a and 26b may be divided into two in plan view.
  • the holes 20 are formed close to adjacent holes (not shown) in the XX' direction.
  • the SiO 2 layers 25a and 25b in FIG. 5F the SiO 2 layers 25a and 25b are formed so as to be in contact with the SiO 2 layer (not shown) surrounding the adjacent Si pillars (not shown). .
  • the doped poly-Si layers 26a and 26b can be separated in the YY' line direction and extended in the XX' line direction.
  • the dynamic flash memory operation can be performed by synchronously or asynchronously driving the conductor layers connected to the divided plate lines PL or word lines WL.
  • a buried conductor layer such as a W layer may be provided around the N + layer 12a.
  • a metal wiring layer connected to the N + layer 12a may be provided around the block region of the memory cells arranged two-dimensionally and connected to the source line SL.
  • the dynamic flash memory operation can also be performed in a structure in which the polarities of the conductivity types of N + layers 3a, 3b and P layer 7 are reversed in FIG. In this case, majority carriers in the Si pillar 2 become electrons. Therefore, a group of electrons generated by impact ionization is stored in the channel region 7a, and the "1" state is set. This also applies to FIG.
  • This embodiment provides the following features.
  • Feature 1 When a dynamic flash memory cell performs write and read operations, the voltage on word line WL swings up and down. At this time, the plate line PL serves to reduce the capacitive coupling ratio between the word line WL and the channel region 7 . As a result, the influence of the voltage change in the channel region 7 when the voltage of the word line WL swings up and down can be significantly suppressed. As a result, the threshold voltage difference between the MOS transistor regions of the word line WL indicating logic "0" and “1” can be increased. This leads to increased operating margins for dynamic flash memory cells.
  • the doped poly-Si layer 26a connected to the plate line PL and the doped poly-Si layer 26b connected to the word line WL are determined by the thicknesses of the SiN layers 14a and 14b as shown in FIG. 5A.
  • the thickness of the SiN layers 14a and 14b can be controlled with high precision by the deposition time when formed by, for example, a CVD (Chemical Vapor Deposition) method. As a result, variations in voltage change in the channel region 7 can be reduced, and as a result, the operating margin can be expanded.
  • SiO 2 layers 25a and 25b which are gate insulating layers, can be easily formed by oxidizing the exposed surfaces of the Si pillars 22 in the holes 23a and 23b. . This simplifies the manufacturing of the dynamic flash memory.
  • FIG. 6 (a) is a plan view of one memory cell of a semiconductor memory device, (b) is a cross-sectional view taken along line XX' in FIG. (a), and FIG. FIG. 3 is a cross-sectional view taken along line YY'; In a memory device, many memory cells are arranged two-dimensionally.
  • FIGS. 5A to 5F are performed to form SiO 2 layers 25a and 25b, and then, as shown in FIG . 40a and 40b (which is an example of the "third gate insulating layer" in the claims) are formed. Then, doped poly-Si layers 26a and 26b are formed. Then, steps similar to those shown in FIGS. 5H to 5M are performed. A dynamic flash memory is thus formed on the P-layer substrate 11 .
  • the HfO 2 layers 40a and 40b may be formed of a single layer or multiple layers of other insulating material as long as they serve as gate insulating layers.
  • the doped poly-Si layers 26a and 26b may be conductor layers made of other metals or alloys.
  • This embodiment provides the following features. As shown in FIG. 5, when the gate insulating layer is formed of only the SiO 2 layers 25a and 25b, the SiO 2 layers 25a and 25b become thicker and the effective diameter of the Si pillar 22 serving as the channel becomes smaller. As a result, the volume of the channel for storing holes, which are signals, is reduced, leading to a reduction in operating margin. In contrast, in the present embodiment, the HfO 2 layers 40a and 40b are formed outside the SiO 2 layers 25a and 25b to suppress the reduction in the diameter of the Si pillar 22 and increase the capacitance of the predetermined gate insulating layer. can be formed.
  • FIGS. 7A and 7B A method for manufacturing the semiconductor memory device according to the third embodiment will be described with reference to FIGS. 7A and 7B.
  • 7A and 7B (a) is a plan view of one memory cell of the semiconductor memory device, (b) is a cross-sectional view along line XX' in (a), and (c) is a FIG. 3 is a cross-sectional view taken along line YY';
  • a memory device many memory cells are arranged two-dimensionally in a memory cell region.
  • the third material layer 18a and the fifth insulating layer 28a are used as an etching mask to form the third insulating layer 17 and the doped poly-Si layer, as shown in FIG. 7A.
  • 26b are etched to form a third insulating layer 17a and a doped poly-Si layer 26ba (which is an example of the "second gate conductor layer" in the claims).
  • the doped poly-Si layer 26a remains without being etched, and is formed connecting adjacent Si pillars (not shown).
  • the doped poly-Si layer 26aa connected to the plate line PL has the same shape as the doped poly-Si layer 26ba connected to the word line WL in a plan view.
  • the doped poly-Si layer 26a connected to the plate line PL remains unetched and is formed connecting between adjacent Si pillars (not shown). A dynamic flash memory is thus formed on the P-layer substrate 11 .
  • This embodiment provides the following features.
  • processing by etching of the doped poly-Si layer 26a connected to the plate line PL is not required within the memory cell region. This facilitates the manufacture of dynamic flash memory.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is made larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate length of the first gate conductor layer 5a is made longer than the gate length of the second gate conductor layer 5b.
  • the gate length of the first gate conductor layer 5a is not made longer than the gate length of the second gate conductor layer 5b, and the thickness of the gate insulation film of the first gate insulation layer 4a is increased. , may be thinner than the thickness of the gate insulating film of the second gate insulating layer 4b.
  • the dielectric constant of the first gate insulating layer 4a may be higher than that of the second gate insulating layer 4b. Further, the length of the first gate conductor layer 5a and the second gate conductor layer 5b, the film thickness of the first gate insulating layer 4a and the second gate insulating layer 4b, and the dielectric constant are combined to obtain the The gate capacitance of one gate conductor layer 5a may be larger than the gate capacitance of the second gate conductor layer 5b. This also applies to other embodiments.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is made longer than the vertical length of the first gate conductor layer 5b connected to the word line WL.
  • the addition of the plate line PL alone reduces the capacitive coupling ratio (C WL /(C PL +C WL +C BL +C SL )) for the channel region 7a of the word line WL1.
  • the potential variation ⁇ V FB of the channel region 7a of the floating body is reduced. This also applies to other embodiments.
  • the voltage of the plate line PL in the description of this embodiment may be, for example, a fixed voltage regardless of each operation mode. Also, the voltage of the plate line PL may be applied, for example, 0 V only when erasing. Also, the voltage of the plate line PL may be a fixed voltage or a voltage that varies with time as long as it satisfies the conditions for dynamic flash memory operation.
  • the shape of the Si pillar 2 in plan view in FIG. 1 is circular, it may be other than circular, such as an ellipse or a shape elongated in one direction. This also applies to other embodiments.
  • the source line SL is negatively biased during the erasing operation to pull out the group of holes in the channel region 7a, which is the floating body FB, but the erasing operation is performed under other voltage conditions.
  • N + layer 3a and the P layer 7 there may be an N-type impurity layer or a P-type impurity layer having a different acceptor impurity concentration.
  • An N - type or P-type impurity layer may be provided between N + layer 3 b and P layer 7 . This also applies to other embodiments.
  • the N + layers 3a, 3b of FIG. 1 may be formed of Si or other semiconductor material layers containing donor impurities. Also, the N + layer 3a and the N + layer 3b may be formed of different semiconductor material layers. This also applies to other embodiments.
  • the Si pillars 22 in FIG. 5 may be arranged two-dimensionally in a square lattice or an orthorhombic lattice.
  • the Si pillars connected to one word line may be arranged in a zigzag or sawtooth shape with a plurality of Si pillars as one side. This also applies to other embodiments.
  • SOI and multi-layer wells may be used instead of the P-layer substrate 11 in FIG. This also applies to other embodiments.
  • the first gate conductor layer 5a and the second gate conductor layer 5b are each formed of one conductor material layer. good.
  • an insulating layer may be provided between each conductor material layer. For example, having the same thickness for these conductor material layers provides the advantage of uniform embedding of the doped poly-Si layer in FIG. 5G.
  • the plate line conductor layers in each stage extend in the same direction as the first gate conductor layer in plan view.
  • the word line conductor layer in each stage extends in the same direction as the second gate conductor layer, and the word line conductor layer in each stage and the plate line conductor layer extend in the same direction.
  • a high-density and high-performance dynamic flash memory can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

P層基板11上の第1の不純物層上に、第1の絶縁層と、第1の材料層と、第2の絶縁層と、第2の材料層と、第3の絶縁層と、第3の材料層と、を積層する工程と、P層基板11上のこれらの層を貫通した第1の空孔を形成する工程と、第1の空孔を埋めて半導体柱22を形成する工程と、第1の材料層、第2の材料層を除去して第2の空孔と第3の空孔を形成する工程と、第2の空孔と、第3の空孔の内部において露出している半導体柱22の表層を酸化して第1のゲート絶縁層25a、25bを形成する工程と、第2の空孔と第3の空孔を埋めて第1のゲート導体層26aa、第2のゲート導体層26baを形成する工程を有してダイナミックフラッシュメモリを形成する。

Description

半導体メモリ装置の製造方法
 本発明は、半導体メモリ装置の製造方法に関する。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献6を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリに関する。
 図8に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図8に、動作上の問題点を、図8に、読出し動作を示す。
 図8にDRAMメモリセルの書込み動作を示す。図8(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板100に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110aのフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、MOSトランジスタ110aが1個でDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。この1個のMOSトランジスタ110aで構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110aを飽和領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点Pがあり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層104に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110aを動作させると、ドレインN+層104近傍のピンチオフ点Pにおいて、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される(インパクトイオン化現象)。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図8(b)は、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図8(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110aと“0”書込みのメモリセル110bが存在する。図8(c)は、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110a(図8(b))と、生成された正孔が吐き出されたメモリセル110b(図8(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110aのフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、メモリセル110aのしきい値電圧は、メモリセル110bのしきい値電圧よりも低くなる。その様子を図8(d)に示す。
 次に、この1個のMOSトランジスタで構成されたメモリセルの動作上の問題点を図9を用いて、説明する。図9(a)に示したように、フローティングボディ102の容量CFBは、ワード線の接続されたゲートとフローティングボディ102間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層103とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (1)
で表される。したがって、書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図9(b)に示している。書込み時にワード線電圧VWLが0VからVProgWLに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へのワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = CWL / (CWL + CBL + CSL) × VProgWL (2)
で表される。
ここで、
β= CWL / (CWL + CBL + CSL)          (3)
で表され、βをカップリング率と呼ぶ。このようなメモリセルにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、β=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線とフローティングボディ102との容量結合によって、フローティングボディ102が、5V×β=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ“1”電位と“0”電位との電位差マージンを十分に取れない問題点があった。
 図10に読出し動作を示す。図10(a)は、“1”書込み状態を、図10(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、図10(c)に示すように、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ない。この動作マージンが小さいことが、本DRAMメモリセルの大きい問題であった。加えて、このDRAMメモリセルを高密度化する課題がある。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-697,Apr. 2006.
 SGTを用いたメモリ装置でキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティング状態のSGTのボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接SGTボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。そして、上記問題を解決すると共に、DRAMメモリセルを高性能化と、高密度化する必要がある。
 上記の課題を解決するために、本発明に係る半導体素子を用いたメモリ装置の製造方法は、
 第1のゲート導体層と、第2のゲート導体層と、第1の不純物層と、第2の不純物層に印加する電圧を制御して、半導体柱の内部に、インパクトイオン化現象により、またはゲート誘起ドレインリーク電流により形成した前記半導体柱の多数キャリアである正孔群又は電子群を保持するデータ保持動作と、前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物層と、前記第2の不純物層に印加する電圧を制御して、前記半導体柱の内部から前記半導体柱の多数キャリアである前記正孔群又は前記電子群を除去するデータ消去動作とを行う半導体メモリ装置の製造方法であって、
 基板上に垂直方向に下から第1の不純物層と、第1の絶縁層と、第1の材料層と、第2の絶縁層と、第2の材料層と、第3の材料層と、を積層する工程と、
 底部が前記第1の不純物層表面または内部にあり、且つ前記第1の絶縁層と、前記第1の材料層と、前記第2の絶縁層と、前記第2の材料層と、前記第3の材料層と、を貫通した第1の空孔を形成する工程と、
 前記第1の空孔を埋めて半導体柱を形成する工程と、
 前記第1の材料層を除去して第2の空孔と、前記第2の材料層を除去して第3の空孔を形成する工程と、
 前記第2の空孔内の露出している前記半導体柱の表層を酸化して第1のゲート絶縁層を形成するとともに、前記第3の空孔内の露出している前記半導体柱の表層を酸化して第2のゲート絶縁層を形成する工程と、
 前記第2の空孔を埋め、且つ前記第1のゲート絶縁層を覆い、且つ平面視において第1の方向に伸延した前記第1のゲート導体層を形成するとともに、前記第3の空孔を埋め、且つ前記第2のゲート絶縁層を覆い、且つ平面視において、前記第1の方向に伸延した前記第2のゲート導体層を形成する工程と、
 前記半導体柱の頂部に繋がった前記第2の不純物層を形成する工程と、
 有することを特徴とする(第1発明)。
 上記の第1発明において、前記第1の不純物層がソース線に繋がり、前記第1のゲート導体層がプレート線に繋がり、前記第2のゲート導体層がワード線に繋がり、前記第2の不純物層がビット線に繋がり、且つ前記ビット線の配線導体層が、平面視において、前記第1の方向と直交した方向に伸延して形成されることを特徴とする(第2発明)。
 上記の第1発明において、前記第3の材料層の一部を除去して、前記半導体柱の頂部を露出する工程と、
 露出した前記半導体柱の頂部を覆って第3の不純物層を形成する工程と、
 を有し、
 前記第3の不純物層が前記第2の不純物層となることを特徴とする(第3発明)。
 上記の第3発明において、前記半導体柱の頂部に第4の不純物層を形成する工程を有し、
 前記第3の不純物層と前記第4の不純物層とにより、前記第2の不純物層を形成することを特徴とする(第4発明)。
 上記の第1発明において、前記第1のゲート絶縁層と、前記第2のゲート絶縁層と、を形成した後、前記前記第2の空孔と、前記第3の空孔の内壁に前記第1のゲート絶縁層と、前記第2のゲート絶縁層を覆って、第3のゲート絶縁層を形成することを特徴とする(第5発明)。
 上記の第1発明において、前記第3の材料層が、少なくとの1層の絶縁層を有することを特徴とする(第6発明)。
 上記の第1発明において、
 平面視において、前記半導体柱が2次元状にあるブロック領域の最外場所にダミー半導体柱を形成する工程と、
 前記第1の材料層を除去して前記第2の空孔と、前記第2の材料層を除去して前記第3の空孔を形成する工程前に、
 平面視において、前記ブロック領域の外側にはみ出した前記第1の絶縁層と、前記第1の材料層と、前記第2の絶縁層と、前記第2の材料層と、前記第3の絶縁層と、前記第3の材料層と、をエッチングして除去する工程と、
 を有することを特徴とする(第7発明)。
第1実施形態に係る半導体メモリ装置の構造図である。 第1実施形態に係る半導体メモリ装置の消去動作メカニズムを説明するための図である。 第1実施形態に係る半導体メモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係る半導体メモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係る半導体メモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための構造図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第1実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第2実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第3実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 第3実施形態に係る半導体メモリ装置の製造方法を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの書き込み動作を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明に係る、半導体メモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)の構造、駆動方式、製造方法について、図面を参照しながら説明する。
(第1実施形態)
 図1~図5を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムと製造方法とを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いてデータ消去メカニズムを、図3を用いてデータ書き込みメカニズムを、図4を用いてデータ書き込みメカニズムを説明する。そして、図5を用いてダイナミック フラッシュ メモリの製造方法を説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板1(特許請求の範囲の「基板」の一例である)上にシリコン半導体柱2(特許請求の範囲の「半導体柱」の一例である)(以下、シリコン半導体柱を「Si柱」と称する。)がある。そして、Si柱2は、下よりN+層3a(特許請求の範囲の「第1の不純物層」の一例である)、アクセプタ不純物を含む半導体領域7(以下、アクセプタ不純物を含む半導体領域を「P層」と称する)、N+層3b(特許請求の範囲の「第2の不純物層」の一例である)がある。N+層3a、3b間のP層7がチャネル領域7aとなる。Si柱2の下部を囲んで第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)と、Si柱2の上部を囲んで第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)と、がある。そして、第1のゲート絶縁層4aを囲んで第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)があり、第2のゲート絶縁層4bを囲んで、第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がある。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6により分離されている。これによりN+層3a、3b、P層7、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセルが形成される。
 そして、図1に示すように、N+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、N+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「プレート線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。
 なお、プレート線PLに接続している、第1のゲート導体層5aのゲート容量は、ワード線WLに接続している、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を有することが望ましい。
 また、第1のゲート導体層5aを2つ以上に分割して、それぞれを第1のプレート線の導体電極として、同期または非同期で動作させてもよい。同様に、第2のゲート導体層5bを2つ以上に分割して、それぞれをワード線WLの導体電極として、同期または非同期で動作させてもよい。これによっても、ダイナミック フラッシュ メモリ動作がなされる。
 図2を用いて、消去動作メカニズムを説明する。N+層3a、3b間のチャネル領域7aは、電気的に基板1から分離され、フローティングボディとなっている。図2(a)に消去動作前に、前のサイクルでインパクトイオン化により生成された正孔群10がチャネル領域7aに蓄えられている状態を示す。そして。図2(b)に示すように、消去動作時には、ソース線SLの電圧を、負電圧VERAにする。ここで、VERAは、例えば、-3Vである。その結果、チャネル領域7aの初期電位の値に関係なく、ソース線SLが接続されているソースとなるN+層3aとチャネル領域7aのPN接合が順バイアスとなる。その結果、前のサイクルでインパクトイオン化により生成された、チャネル領域7aに蓄えられていた、正孔群10が、ソース部のN+層3aに吸い込まれ、チャネル領域7aの電位VFBは、VFB=VERA+Vbとなる。ここで、VbはPN接合のビルトイン電圧であり、約0.7Vである。したがって、VERA=-3Vの場合、チャネル領域7aの電位は、-2.3Vになる。この値が、消去状態のチャネル領域7aの電位状態となる。このため、フローティングボディのチャネル領域7aの電位が負の電圧になると、第1のダイナミック フラッシュ メモリセルのNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、高くなる。これにより、図2(c)に示すように、このワード線WLに接続された第2のゲート導体層5bのしきい値電圧は高くなる。このチャネル領域7aの消去状態は論理記憶データ“0”となる。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい。
 図3に、ダイナミック フラッシュ メモリセルの書込み動作を示す。図3(a)に示すように、ソース線SLの接続されたN+層3aに例えば0Vを入力し、ビット線BLの接続されたN+層3bに例えば3Vを入力し、プレート線PLの接続された第1のゲート導体層5aに、例えば、2Vを入力し、ワード線WLの接続された第2のゲート導体層5bに、例えば、5Vを入力する。その結果、図3(a)に示したように、プレート線PLの接続された第1のゲート導体層5aの内側のチャネル領域7aには、環状の反転層Raが形成され、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタ領域は飽和領域で動作させる。この結果、プレート線PLの接続された第1のゲート導体層5aの内側の反転層Raには、ピンチオフ点Pが存在する。一方、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域は線形領域で動作させる。この結果、ワード線WLの接続された第2のゲート導体層5bの内側のチャネル領域7aには、ピンチオフ点は存在せずに全面に反転層Rbが形成される。
 このワード線WLの接続された第2のゲート導体層5bの内側に全面に形成された反転層Rbは、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタ領域の実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタ領域と、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域との間のチャネル領域7aの第1の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタ領域から見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線BLの接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる。また、“1”書込みにおいて、ゲート誘起ドレインリーク(GIDL:Gate Induced Drain Leakage)電流を用いて電子・正孔対を発生させ、生成された正孔群でフローティングボディFB内を満たしてもよい(例えば非特許文献7を参照)。
 そして、図3(b)に示すように、生成された正孔群10は、チャネル領域7aの多数キャリアであり、チャネル領域7aを正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域7aはソース線SLの接続されたN+層3aとチャネル領域7aとの間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域7aが正バイアスに充電されると、第1のNチャネルMOSトランジスタ領域と第2のNチャネルMOSトランジスタ領域のしきい値電圧は、基板バイアス効果によって、低くなる。これにより、図3(c)に示すように、ワード線WLの接続された第2のNチャネルMOSトランジスタ領域のしきい値電圧は、低くなる。このチャネル領域7aの書込み状態を論理記憶データ“1”に割り当てる。
 なお、書込み動作時に、上記の第1の境界領域に替えて、N+層3aとチャネル領域7aとの間の第2の境界領域、または、N+層3bとチャネル領域7aとの間の第3の境界領域で、インパクトイオン化現象、またはGIDL電流で、電子・正孔対を発生させ、発生した正孔群10でチャネル領域7aを充電しても良い。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の電圧条件であってもよい。
 図4A、図4Bを用いて、ダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)~図4A(c)を用いて、ダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)に示すように、チャネル領域7aがビルトイン電圧Vb(約0.7V)まで充電されると、しきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図4A(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”にある場合は、チャネル領域7aがフローティング電圧VFBはVERA+Vbとなっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と“1”の論理記憶データが作成される。図4A(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 図4B(a)~図4B(d)を用いて、ダイナミック フラッシュ メモリセルの読出し動作時の、2つの第1のゲート導体層5aと第2のゲート導体層5bとのゲート容量の大小関係と、これに関係する動作を説明する。ワード線WLの接続する第2のゲート導体層5bのゲート容量は、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さく設計することが望ましい。図4B(a)に示すように、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより長くして、ワード線WLの接続する第2のゲート導体層5bのゲート容量を、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さくする。図4B(b)に図4B(a)のダイナミック フラッシュ メモリの1セルの等価回路を示す。
 そして、図4B(c)にダイナミック フラッシュ メモリの結合容量関係を示す。ここで、CWLは第2のゲート導体層5bの容量であり、CPLは第1のゲート導体層5aの容量であり、CBLはドレインとなるN+層3bとチャネル領域7aとの間のPN接合の容量であり、CSLはソースとなるN+層3aとチャネル領域7aとの間のPN接合の容量である。図4B(d)に示すように、ワード線WLの電圧が振幅すると、その動作がチャネル領域7aにノイズとして影響を与える。この時のチャネル領域7aの電位変動ΔVFBは、
ΔVFB = CWL/(CPL+CWL+CBL+CSL) × VReadWL  (4)
となる。ここで、VReadWLはワード線WLの読出し時の振幅電位である。式(4)から明らかなようにチャネル領域7aの全体の容量CPL+CWL+CBL+CSLに比べて、CWLの寄与率を小さくすれば、ΔVFBは小さくなることが分かる。プレートPLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くすることによって、平面視におけるメモリセルの集積度を落すことなく、ΔVFBを更に小さくしてもよい。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、読み出し動作を行うための一例であり、読み出し動作ができる他の動作条件であってもよい。
 図5A~図5Mを用いて、第1実施形態に係る半導体メモリ装置の製造方法を説明する。これらの図において、(a)は半導体メモリ装置の1つのメモリセルの平面図であり、(b)は(a)におけるX-X’線に沿った断面図であり、(c)は(a)におけるY-Y’線に沿った断面図である。メモリ装置においては、このメモリセルが2次元状に多数配置されている。
 図5Aに示すように、P層基板11(特許請求の範囲の「基板」の一例である)上に、下からN+層12(特許請求の範囲の「第1の不純物層」の一例である)、第1の絶縁層13(特許請求の範囲の「第1の絶縁層」の一例である)、シリコン窒化(SiN)層14a(特許請求の範囲の「第1の材料層」の一例である)、第2の絶縁層15(特許請求の範囲の「第2の絶縁層」の一例である)、SiN層14b(特許請求の範囲の「第2の材料層」の一例である)、第3の絶縁層17(特許請求の範囲の「第3の絶縁層」の一例である)、第3の材料層18(特許請求の範囲の「第3の材料層」の一例である)を形成する。
 次に、図5Bに示すように、リソグラフィ法と、RIE(Reactive Ion Etching)法により、第1の絶縁層13、シリコン窒化(SiN)層14a、第2の絶縁層15、SiN層14b、第3の絶縁層17、第3の材料層18をエッチングして、底部がN+層12表面又は内部にある空孔20(特許請求の範囲の「第1の空孔」の一例である)を形成する。
 次に、図5Cに示すように、エピタキシャル結晶成長法を用いて空孔20内にSi柱22(特許請求の範囲の「半導体柱」の一例である)を形成する。この場合、エピタキシャル結晶成長法でのSi成長では、その上面位置が第3の材料層18の上面位置より上になるように成長させ、その後にCMP(Chemical Mechanical Polishing)により、その上面位置が第3の材料層18の上面位置になるように研磨してSi柱22を形成する。
 次に、図5Dに示すように、熱処理により、N+層12のドナー不純物をSi柱22内に拡散させて、N+層12aを形成する。
 次に、図5Eに示すように、SiN層14a、14bを除去して、空孔23a(特許請求の範囲の「第2の空孔」の一例である)、23b(特許請求の範囲の「第3の空孔」の一例である)を形成する。なお、実際のメモリ装置では、Si柱が2次元状に多数配置されるので、これらSi柱が第1の絶縁層13、第2の絶縁層15、第3の絶縁層17、第3の材料層18に繋がった支持体となる。この支持体により、空孔23a、23bの形成時において、第2の絶縁層15、第3の絶縁層17、第3の材料層18が、曲がったり、壊れたりしないようになっている。また、Si柱が2次元状に配置したブロック領域の外側にダミーSi柱を形成し、平面視において、ダミーSi柱の外側に、片側が浮いた第2の絶縁層15、第3の絶縁層17、第3の材料層18が形成されないようにすることにより、第2の絶縁層15、第3の絶縁層17、第3の材料層18の洗浄、SiN層14a、14bのエッチング時での破損を防止することができる。
 次に、図5Fに示すように、露出しているSi柱22を酸化して、SiO2層25a(特許請求の範囲の「第1のゲート絶縁層」の一例である)、25b(特許請求の範囲の「第2のゲート絶縁層」の一例である)、25cを形成する。
 次に、図5Gに示すように、空孔23a、23b内にドナーまたはアクセプタ不純物を多く含んだドープポリSi層26a、26bを形成する。ドープポリSi層26a、26b形成では、第3の材料層18、SiO2層25c上にドープポリSi層が形成される。このドープポリSi層はCMP法により研磨して除去する。同時に、SiO2層25cも除去する。そして、全体に第5の絶縁層28を形成する。
 次に、図5Hに示すように、フォトリソグラフィ法と、RIEにより、平面視において、Si柱22を囲み、且つX-X’線方向に伸延した第3の材料層18a、第5の絶縁層28aを形成する。
 次に、図5Iに示すように、第3の材料層18a、第5の絶縁層28aをエッチングマスクにして、第3の絶縁層17、ドープポリSi層26b、第2の絶縁層15、ドープポリSi層26aをエッチングして、第3の絶縁層17a、ドープポリSi層26aa(特許請求の範囲の「第1のゲート導体層」の一例である)、第2の絶縁層15a、ドープポリSi層26ba(特許請求の範囲の「第2のゲート導体層」の一例である)を形成する。
 次に、図5Jに示すように、CVD(Chemical Vapor Deposition)法により全体にSiO2層(図示せず)を堆積させる。そして、CMP法により研磨して上面位置が、第5の絶縁層28aの上面位置にあるSiO2層30を形成する。
 次に、図5Kに示すように、第3の絶縁層17aより上の第3の材料層18a、第5の絶縁層28aを除去する。そして、SiO2層30の上層を除去して、SiO2層30aを形成する。これによりSi柱22の頂部が露出する。
 次に、図5Lに示すように、選択エピタキシャル結晶成長法によりN+層32(特許請求の範囲の「第2の不純物層」、「第3の不純物層」の一例である)を形成する。
 次に、図5Mに示すように、N+層32、第3の絶縁層17a上にSiO2層34を形成する。そして、N+層32上のSiO2層34にコンタクトホール35を形成する。そして、コンタクトホール35を介して、N+層32に接続し、且つY-Y’線方向に伸延する金属配線層36を形成する。N+層12aはソース線SLに接続し、ドープポリSi層26aaはプレート線PLに接続し、ドープポリSi層26baはワード線WLに接続し、金属配線層36はビット線BLに接続される。これにより、P層基板11上にダイナミックフラッシュメモリが形成される。
 なお、Si柱22は、他の半導体層で形成してもよい。また、ドープポリSi層26a、26bは他の金属、または合金よりなる導体層を用いてもよい。
 また、第1の絶縁層13、第2の絶縁層15、第3の絶縁層17は、SiO2層、SiN層、アルミナ(Al23)層などの単層、または複数層よりなる絶縁層を用いてよい。また、第4の絶縁層28は、図5Gに示すように、Si柱22の頂部をRIEエッチングから保護する役割を持つものであるので、絶縁層に関わらず他の材料層であってもよい。また、第3の絶縁層17と第3の材料層18は、1つの絶縁層で形成してもよい。この場合は、図5Kにおいて、Si柱22の頂部を露出させる工程において、第3の絶縁層17に対応する厚さの絶縁層を残存させる必要がある。
 また、N+層12aの形成は、図5Dの工程において、熱処理により行った。これに対し、N+層12aの形成は、Si柱22の形成後のいずれかの工程で行ってもよい。また、図5Lの工程では、Si柱22の頂部にはN+層が形成されていないが、例えば熱処理の追加、イオン注入法、または低温プラズマドーピングなどによりSi柱22の頂部にN+層(特許請求の範囲の「第4の不純物層」の一例である)を形成してもよい。また、Si柱22の頂部にN+層を形成し、選択エピタキシャル結晶成長法によるN+層32を形成しないことも可能である。
 また、図5Eにおいて、Si柱22はエピタキシャル結晶成長法により形成したが、分子線結晶成長法、ALD(Atomic Layer Deposition)法などの他の方法で形成してもよい。
 また、図5Gにおいて、ドープポリSi層26a、26bは、平面視において、Si柱22全体を囲んで形成した。これに対して、ドープポリSi層26a、26bを平面視において、2つに分割して形成してもよい。例えば、空孔20をX-X’線方向において、隣接する空孔(図示せず)に近づけて形成する。そして、図5FにおけるSiO2層25a、25bの形成において、SiO2層25a、25bと隣接のSi柱(図示せず)を囲んだSiO2層(図示せず)とを接触するように形成する。これにより、ドープポリSi層26a、26bをY-Y’線方向に分離させて、且つX-X’線方向に伸延させることができる。この場合、分割したプレート線PL、又はワード線WLに接続された導体層を同期、または非同期で駆動してもダイナミック フラッシュ メモリ動作を行うことができる。
 また、図5における、N+層12aの周辺部に、例えばW層などの埋め込み導体層を設けてもよい。また、2次元状に配置したメモリセルのブロック領域の周辺に、N+層12aと接続する金属配線層を設けて、これをソース線SLに接続してもよい。
 また、図1において、N+層3a、3b、P層7の導電型の極性を逆にした構造においても、ダイナミック フラッシュ メモリ動作がなされる。この場合、Si柱2での多数キャリアは電子になる。従って、インパクトイオン化により生成された電子群がチャネル領域7aに蓄えられて、“1”状態が設定される。このことは、図5においても同様である。
 本実施形態は、下記の特徴を供する。
(特徴1)
 ダイナミック フラッシュ メモリセルが書込み、読出し動作をする際に、ワード線WLの電圧が上下に振幅する。この際に、プレート線PLは、ワード線WLとチャネル領域7との間の容量結合比を低減させる役目を担う。この結果、ワード線WLの電圧が上下に振幅する際の、チャネル領域7の電圧変化の影響を著しく抑えることができる。これにより、論理“0”と“1”を示すワード線WLのMOSトランジスタ領域のしきい値電圧差を大きくすることが出来る。これは、ダイナミック フラッシュ メモリセルの動作マージンの拡大に繋がる。このダイナミック フラッシュ メモリの製造方法において、プレート線PLに繋がるドープポリSi層26a、ワード線WLに繋がるドープポリSi層26bは、図5Aに示すようにSiN層14a、14bの厚さにより定められる。このSiN層14a、14bの厚さは、例えばCVD(Chemical Vapor Deposition)法での形成では堆積時間により高精度に制御できる。これにより、チャネル領域7の電圧変化のバラツキを小さくでき、結果として、動作マージンの拡大が図られる。
(特徴2)
 図5E、図5Fに示すように、空孔23a、23b内において、露出したSi柱22の表面を酸化することにより、簡単にゲート絶縁層であるSiO2層25a、25bを形成することができる。これにより、ダイナミック フラッシュ メモリの製造の簡易化が図られる。
(第2実施形態)
 図6を用いて、第2実施形態に係る半導体メモリ装置の製造方法を説明する。図6において、(a)は半導体メモリ装置の1つのメモリセルの平面図、(b)は図(a)におけるX-X’線に沿った断面図、図(c)は図(a)におけるY-Y’線に沿った断面図である。メモリ装置においては、このメモリセルが2次元状に多く配置されている。
 図5A~図5Fと同様の工程を行い、SiO2層25a、25bを形成した後に、図6に示すように、空孔23a、23bの内側に、例えばALD法によりハフニウム酸化(HfO2)層40a、40b(特許請求の範囲の「第3のゲート絶縁層」の一例である)を形成する。そして、ドープポリSi層26a、26bを形成する。そして、図5H~図5Mと同様の工程を行う。これにより、P層基板11上にダイナミックフラッシュメモリが形成される。なお、HfO2層40a、40bはゲート絶縁層としての役割を持つものであれば、単層、または複数層の他の絶縁材料層を用いてもよい。また、ドープポリSi層26a、26bは他の金属、または合金よりなる導体層を用いてもよい。
 本実施形態は、下記の特徴を供する。
 図5に示したように、ゲート絶縁層をSiO2層25a、25bだけで形成する場合、SiO2層25a、25bが厚くなり、チャネルとなるSi柱22の実効的な直径が小さくなる。このため、信号である正孔群を溜めるチャネル体積が減少し、動作マージンの減少に繋がる。これに対して、本実施形態では、SiO2層25a、25bの外側にHfO2層40a、40bを形成することにより、Si柱22の直径の減少を抑えて、所定のゲート絶縁層の容量を形成することができる。
(第3実施形態)
 図7A、図7Bを用いて、第3実施形態に係る半導体メモリ装置の製造方法を説明する。図7A、図7Bにおいて、(a)は半導体メモリ装置の1つのメモリセルの平面図、(b)は(a)におけるX-X’線に沿った断面図、(c)は(a)におけるY-Y’線に沿った断面図である。メモリ装置においては、このメモリセルが2次元状に多く配置されてメモリセル領域内に形成されている。
 図5A~図5Hと同様の工程を行ったあと、図7Aに示すように、第3の材料層18a、第5の絶縁層28aをエッチングマスクにして、第3の絶縁層17、ドープポリSi層26bをエッチングして、第3の絶縁層17a、ドープポリSi層26ba(特許請求の範囲の「第2のゲート導体層」の一例である)を形成する。この場合、ドープポリSi層26aは、エッチングされずに残り、隣接したSi柱(図示せず)間で繋がって形成される。
 次に、図5J~図5Mと同様の工程を行う。これにより、第1実施形態における図5Mではプレート線PLに接続したドープポリSi層26aaが、平面視において、ワード線WLに繋がったドープポリSi層26baと同じ形状をしているのに対して、本実施形態では、図7Bに示すように、プレート線PLに接続したドープポリSi層26aは、エッチングされずに残り、隣接したSi柱(図示せず)間で繋がって形成される。これにより、P層基板11上にダイナミックフラッシュメモリが形成される。
 本実施形態は、下記の特徴を供する。
 本実施形態では、プレート線PLに繋がるドープポリSi層26aのエッチングによる加工がメモリセル領域内で不要となる。これにより、ダイナミックフラッシュメモリの製造が容易になる。
(その他の実施形態)
 なお、図1では、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるように第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くしている。しかし、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くせずに、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚より薄くしてもよい。また、第1のゲート絶縁層4aの誘電率を、第2のゲート絶縁層4bの誘電率より高くしてもよい。また、第1のゲート導体層5a、第2のゲート導体層5bの長さ、第1のゲート絶縁層4a、第2のゲート絶縁層4bの膜厚、誘電率のいずれかを組み合わせて、第1のゲート導体層5aのゲート容量が、第2のゲート導体層5bのゲート容量より、大きくしてもよい。このことは、他の実施形態においても同様である。
 また、図1において、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くして、CPL>CWLとした。しかし、プレート線PLを付加することだけでも、ワード線WL1のチャネル領域7aに対する、容量結合のカップリング比(CWL/(CPL+CWL+CBL+CSL))が小さくなる。その結果、フローティングボディのチャネル領域7aの電位変動ΔVFBは、小さくなる。このことは、他の実施形態においても同様である。
 また、本実施形態の説明におけるプレート線PLの電圧は、各動作モードに関わらず、例えば、固定電圧を印加しても良い。また、プレート線PLの電圧は、消去時のみ、例えば、0Vを印加しても良い。また、プレート線PLの電圧は、ダイナミック フラッシュ メモリ動作ができる条件を満たす電圧であれば、固定電圧、または時間的に変化する電圧を与えてもよい。
 また、図1における、Si柱2の平面視における形状は、円形状であったが、円形以外の、例えば楕円、一方方向に長く伸びた形状などであってもよい。このことは、他の実施形態においても同様である。
 また、本実施形態の説明では、消去動作時にソース線SLを負バイアスにして、フローティングボディFBであるチャネル領域7a内の正孔群を引き抜いていたが、他の電圧条件により、消去動作を行ってもよい。
 また、図1において、N+層3aと、P層7間に、N型、またはアクセプタ不純物濃度の異なるP型の不純物層があってもよい。また、N+層3bと、P層7との間に、N型、またはP型の不純物層があってもよい。このことは、他の実施形態においても同様である。
 また、図1のN+層3a、3bは、ドナー不純物を含んだ、Siまたは他の半導体材料層より形成されてもよい。また、N+層3aと、N+層3bと、は異なる半導体材料層で形成されてもよい。このことは、他の実施形態においても同様である。
 また、図5におけるSi柱22を2次元状に、正方格子状、または斜方格子状に配列させてもよい良い。Si柱を斜方格子状に配置した場合、1つのワード線に繋がるSi柱は複数個を1辺としてジグザグ状、またはのこぎり状に配置されてもよい。このことは、他の実施形態においても同様である。
 また、図5のP層基板11に替えて、SOI、多層ウエルを用いてもよい。このことは、他の実施形態においても同様である。
 また、図1において、第1のゲート導体層5a、第2のゲート導体層5bはそれぞれ1つの導体材料層で形成した例を示したが、垂直方向において、複数の導体層で形成されてもよい。また、複数層の導体材料層で形成する場合、それぞれの導体材料層間に絶縁層を設けてもよい。例えば、これら導体材料層の厚さを同じにすることにより、図5GにおけるドープポリSi層の埋め込みを均一にできる利点が得られる。
 また、図1で示した第1のダイナミック フラッシュ メモリセルを垂直方向に複数段積み上げる場合は、平面視において、各段のプレート線導体層は第1のゲート導体層と、同じ方向に伸延しており、各段のワード線導体層は、第2のゲート導体層と同じ方向に伸延し、且つ各段のワード線導体層と、プレート線導体層と、は同じ方向に伸延している。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体メモリ装置の製造方法によれば、高密度で、かつ高性能のダイナミック フラッシュ メモリが得られる。
1 基板
11 P層基板
2、22 Si柱
3a、3b、12、12a、32 N+
4a 第1のゲート絶縁層
4b 第2のゲート絶縁層
5a 第1のゲート導体層
5b 第2のゲート導体層
6 絶縁層
7 P層
7a チャネル領域
10 正孔群
13 第1の絶縁層
15 第2の絶縁層
17 第3の絶縁層
18、18a 第4の絶縁層
28、28a 第5の絶縁層
14a、14b SiN層
20、23a、23b 空孔
22 Si柱
25a、25b、25c、30、30a、34 SiO2
26a、26b、26aa、26ba ドープポリSi層
35  コンタクトホール
40a、40b HfO2
Ra、Rb 反転層
P ピンチオフ点
SL ソース線
PL プレート線
WL ワード線
BL ビット線

Claims (7)

  1.  第1のゲート導体層と、第2のゲート導体層と、第1の不純物層と、第2の不純物層に印加する電圧を制御して、半導体柱の内部に、インパクトイオン化現象により、またはゲート誘起ドレインリーク電流により形成した前記半導体柱の多数キャリアである正孔群又は電子群を保持するデータ保持動作と、前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物層と、前記第2の不純物層に印加する電圧を制御して、前記半導体柱の内部から前記半導体柱の多数キャリアである前記正孔群又は前記電子群を除去するデータ消去動作とを行う半導体メモリ装置の製造方法であって、
     基板上に垂直方向に下から第1の不純物層と、第1の絶縁層と、第1の材料層と、第2の絶縁層と、第2の材料層と、第3の材料層と、を積層する工程と、
     底部が前記第1の不純物層表面または内部にあり、且つ前記第1の絶縁層と、前記第1の材料層と、前記第2の絶縁層と、前記第2の材料層と、前記第3の材料層と、を貫通した第1の空孔を形成する工程と、
     前記第1の空孔を埋めて半導体柱を形成する工程と、
     前記第1の材料層を除去して第2の空孔と、前記第2の材料層を除去して第3の空孔を形成する工程と、
     前記第2の空孔内の露出している前記半導体柱の表層を酸化して第1のゲート絶縁層を形成するとともに、前記第3の空孔内の露出している前記半導体柱の表層を酸化して第2のゲート絶縁層を形成する工程と、
     前記第2の空孔を埋め、且つ前記第1のゲート絶縁層を覆い、且つ平面視において第1の方向に伸延した前記第1のゲート導体層を形成するとともに、前記第3の空孔を埋め、且つ前記第2のゲート絶縁層を覆い、且つ平面視において、前記第1の方向に伸延した前記第2のゲート導体層を形成する工程と、
     前記半導体柱の頂部に繋がった前記第2の不純物層を形成する工程と、
     有することを特徴とする半導体メモリ装置の製造方法。
  2.  前記第1の不純物層がソース線に繋がり、前記第1のゲート導体層がプレート線に繋がり、前記第2のゲート導体層がワード線に繋がり、前記第2の不純物層がビット線に繋がり、且つ前記ビット線の配線導体層が、平面視において、前記第1の方向と直交した方向に伸延して形成される、
     ことを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
  3.  前記第3の材料層の一部を除去して、前記半導体柱の頂部を露出する工程と、
     露出した前記半導体柱の頂部を覆って第3の不純物層を形成する工程と、
     を有し、前記第3の不純物層が前記第2の不純物層となることを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
  4.  前記半導体柱の頂部に第4の不純物層を形成する工程を有し、
     前記第3の不純物層と前記第4の不純物層とにより、前記第2の不純物層を形成する、
     ことを特徴とする請求項3に記載の半導体メモリ装置の製造方法。
  5.  前記第1のゲート絶縁層と、前記第2のゲート絶縁層と、を形成した後、前記前記第2の空孔と、前記第3の空孔の内壁に前記第1のゲート絶縁層と、前記第2のゲート絶縁層を覆って、第3のゲート絶縁層を形成する、
     ことを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
  6.  前記第3の材料層が、少なくとの1層の絶縁層を有する、
     ことを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
  7.  平面視において、前記半導体柱が2次元状にあるブロック領域の最外場所にダミー半導体柱を形成する工程と、
     前記第1の材料層を除去して前記第2の空孔と、前記第2の材料層を除去して前記第3の空孔を形成する工程前に、
     平面視において、前記ブロック領域の外側にはみ出した前記第1の絶縁層と、前記第1の材料層と、前記第2の絶縁層と、前記第2の材料層と、前記第3の絶縁層と、前記第3の材料層と、をエッチングして除去する工程と、
     を有することを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
PCT/JP2021/039319 2021-10-25 2021-10-25 半導体メモリ装置の製造方法 WO2023073765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/039319 WO2023073765A1 (ja) 2021-10-25 2021-10-25 半導体メモリ装置の製造方法
TW111140269A TWI838924B (zh) 2021-10-25 2022-10-24 半導體記憶裝置的製造方法
US17/971,789 US20230127781A1 (en) 2021-10-25 2022-10-24 Production method for semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039319 WO2023073765A1 (ja) 2021-10-25 2021-10-25 半導体メモリ装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023073765A1 true WO2023073765A1 (ja) 2023-05-04

Family

ID=86056761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039319 WO2023073765A1 (ja) 2021-10-25 2021-10-25 半導体メモリ装置の製造方法

Country Status (2)

Country Link
US (1) US20230127781A1 (ja)
WO (1) WO2023073765A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340679A (ja) * 1999-05-10 2000-12-08 Internatl Business Mach Corp <Ibm> ボディ・コンタクト式ダイナミック・メモリ
JP2003086712A (ja) * 2001-02-19 2003-03-20 Toshiba Corp 半導体メモリ装置及びその製造方法
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2009026448A (ja) * 2007-07-20 2009-02-05 Samsung Electronics Co Ltd メモリセル構造、メモリセルアレイ、メモリ装置、メモリ制御器、メモリシステム及びこれらを動作する方法
JP2012015517A (ja) * 2010-07-02 2012-01-19 Samsung Electronics Co Ltd 垂直的に集積された不揮発性記憶セルサブストリングを含む不揮発性記憶装置の形成方法、及び形成された不揮発性記憶装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340679A (ja) * 1999-05-10 2000-12-08 Internatl Business Mach Corp <Ibm> ボディ・コンタクト式ダイナミック・メモリ
JP2003086712A (ja) * 2001-02-19 2003-03-20 Toshiba Corp 半導体メモリ装置及びその製造方法
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2009026448A (ja) * 2007-07-20 2009-02-05 Samsung Electronics Co Ltd メモリセル構造、メモリセルアレイ、メモリ装置、メモリ制御器、メモリシステム及びこれらを動作する方法
JP2012015517A (ja) * 2010-07-02 2012-01-19 Samsung Electronics Co Ltd 垂直的に集積された不揮発性記憶セルサブストリングを含む不揮発性記憶装置の形成方法、及び形成された不揮発性記憶装置

Also Published As

Publication number Publication date
TW202333351A (zh) 2023-08-16
US20230127781A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
JP7335661B2 (ja) 半導体素子を用いたメモリ装置の製造方法
US20230397394A1 (en) Method for producing memory device using pillar-shaped semiconductor elements
US11968822B2 (en) Memory device using semiconductor element
US11925013B2 (en) Memory device using pillar-shaped semiconductor element
WO2023148799A1 (ja) 半導体素子を用いたメモリ装置
WO2023281730A1 (ja) 半導体素子を用いたメモリ装置
WO2023032193A1 (ja) 半導体素子を用いたメモリ装置
WO2022239237A1 (ja) 半導体素子を用いたメモリ装置
JP7057033B1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022219767A1 (ja) メモリ素子を有する半導体装置
WO2022168219A1 (ja) 柱状半導体素子を用いたメモリ装置
WO2023073765A1 (ja) 半導体メモリ装置の製造方法
WO2023084565A1 (ja) 半導体メモリ装置及び半導体メモリ装置の製造方法
WO2022269890A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2023095324A1 (ja) 半導体メモリ装置と、その製造方法
TWI838924B (zh) 半導體記憶裝置的製造方法
WO2022180733A1 (ja) 柱状半導体素子を用いたメモリ装置の製造方法
WO2022239198A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022180738A1 (ja) 半導体素子を用いたメモリ装置
WO2022208587A1 (ja) 半導体素子を用いたメモリ装置と、その製造方法
WO2022239102A1 (ja) 半導体素子を用いたメモリ装置
WO2022208658A1 (ja) メモリ素子を有する半導体装置
TWI823513B (zh) 具有記憶元件之半導體裝置的製造方法
WO2023166608A1 (ja) 半導体素子を用いたメモリ装置
WO2023162036A1 (ja) 半導体メモリ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023555893

Country of ref document: JP

Kind code of ref document: A