WO2023065802A1 - 一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用 - Google Patents

一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用 Download PDF

Info

Publication number
WO2023065802A1
WO2023065802A1 PCT/CN2022/113624 CN2022113624W WO2023065802A1 WO 2023065802 A1 WO2023065802 A1 WO 2023065802A1 CN 2022113624 W CN2022113624 W CN 2022113624W WO 2023065802 A1 WO2023065802 A1 WO 2023065802A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
resin composition
polythiol compound
polythiol
general formula
Prior art date
Application number
PCT/CN2022/113624
Other languages
English (en)
French (fr)
Inventor
陈长敬
刘涛
林鸿腾
李帅
Original Assignee
韦尔通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韦尔通科技股份有限公司 filed Critical 韦尔通科技股份有限公司
Priority to DE112022000088.0T priority Critical patent/DE112022000088T5/de
Priority to KR1020227044121A priority patent/KR102569422B1/ko
Priority to JP2022577121A priority patent/JP2023546308A/ja
Priority to US18/015,721 priority patent/US11919842B2/en
Publication of WO2023065802A1 publication Critical patent/WO2023065802A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/02Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/16Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/18Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by addition of thiols to unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/28Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the invention belongs to the field of polythiol compounds and applications thereof, in particular to a polythiol compound and a preparation method thereof, a curing agent using the polythiol compound, a resin composition using the curing agent, and the resin composition as Application of a component of an adhesive or sealant.
  • Epoxy resin has excellent properties in terms of mechanical properties, electrical properties, heat resistance, chemical resistance, and bonding strength, so it is widely used in coatings, electrical, electronic insulation materials, adhesives, etc.
  • a single-component epoxy resin composition that is pre-mixed with the epoxy resin and the curing agent and cured by heating during use has also been developed.
  • Divided epoxy resin composition In particular, in the field of electronic circuits in recent years, the demand for flexibility and thinning has been increasing, and the demand for low-temperature curable one-component epoxy resin compositions has been increasing in order to protect semiconductor elements, increase the concentration of circuits, and improve connection reliability. .
  • Thiol compounds having multiple mercapto groups in the molecule have a wide range of uses, such as curing agents for epoxy resins and the application of mercapto-ene click reactions has been widely known.
  • the epoxy resin composition using polythiol compound as curing agent and containing tertiary amine curing accelerator has the advantage of being able to cure rapidly at a lower temperature, which can meet the requirements of low temperature curing one-component epoxy resin combination requirements of things.
  • most of the currently known polythiol curing agents are linked to mercapto groups through ester bonds, which usually have the problems of poor moisture resistance and reduced adhesive strength in high-humidity environments.
  • trimercaptopropyl isocyanurate synthesized in the patent US4266055A and JPS56120671A does not have an ester bond in the molecule, so it is used as a curing agent for an epoxy resin composition with excellent water resistance, but the curing agent is stable at room temperature It emits an unpleasant smell (strong sulfur odor), the heat resistance of the cured product is not satisfactory, and there is a problem of poor toughness.
  • the current mainstream practice in the industry is to use mercaptoalkyl glycoluril as the curing agent for epoxy resin.
  • patents CN201480064943.9 and JP2015059099A disclose the so-called polythiol curing agent of mercaptoalkyl glycoluril.
  • the polythiol curing agent has good moisture resistance and heat resistance, it is proposed in the patent CN201680014880.5
  • the thiol curing agent is solid at room temperature, and it is easy to precipitate crystals when forming a complex with epoxy resin, and there is a problem that the composition becomes uneven. At this time, it needs to be used in conjunction with another mercaptoethyl glycoluril compound, thus The solid polythiol curing agent is liquefied to finally form a liquid oligomer mixture with disulfide bonds as a curing agent.
  • the mercaptoalkyl glycoluril curing agent mentioned in CN201480064943.9 also has the risk of reducing the storage stability of the one-component low-temperature curing epoxy adhesive.
  • the existing mercaptoalkyl glycoluril curing agent is solid at room temperature, if it wants to become liquid, it needs to be used in conjunction with a mercaptoethyl glycoluril compound with a disulfide bond to improve the crystallization time. During preparation, additional coupling is required to form an oligomer mixture before it can become liquid, and the process is complicated and the cost is high. In addition, the existing mercaptoalkyl glycoluril curing agent will also increase the risk of storage stability of the one-component low-temperature curing epoxy adhesive, and the pot life is short.
  • the first purpose of the present invention is to provide a new polythiol curing agent to overcome the defects that the existing polythiol curing agent cannot be liquid itself and has good moisture resistance, heat resistance, long pot life and low odor.
  • the thiol compound, the polythiol compound is liquid at room temperature, and can simultaneously have good moisture resistance, heat resistance, long pot life and low odor.
  • the second object of the present invention is to provide a preparation method of the above-mentioned polythiol compound.
  • a third object of the present invention is to provide a curing agent containing at least the above polythiol compound.
  • a fourth object of the present invention is to provide a resin composition using the above curing agent.
  • the fifth object of the present invention is to provide the application of the above-mentioned resin composition as a component of an adhesive or a sealant.
  • polythiol compound provided by the invention is represented by general formula (I):
  • R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are each independently selected from a hydrogen atom, an alkyl group with 1-5 carbon atoms and an alkyl group with 1-5 carbon atoms.
  • One of the alkoxy groups, R 4 and R 6 are independently selected from alkylene groups with 1-5 carbon atoms, and m and n are 0, 1, 2 or 3 independently.
  • R 1 , R 2 , R 5 and R 7 are all hydrogen atoms; R 3 and R 8 are independently selected from hydrogen atoms or methoxy groups; R 4 and R6 are independently selected from alkylene groups with 3-5 carbon atoms; m and n are 1.
  • the polythiol compound is selected from 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptobutoxy)biphenyl, 5,5 '-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptobutoxy)-3,3'-dimethoxybiphenyl, 5,5'-bis(3-mercaptopropyl) )-2,2'-bis(3-mercaptopentyloxy)biphenyl, 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopentyloxy)-3, 3′-dimethoxybiphenyl, 5,5′-bis(3-mercaptopropyl)-2,2′-bis(3-mercaptopropoxy)biphenyl and 5,5′-bis(3- At least one of mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)
  • the preparation method of polythiol compound provided by the invention comprises the following steps:
  • Step 1 Substituting the phenolic compound represented by the general formula (II) and the first compound represented by the general formula (III) in the presence of a phase transfer catalyst under basic conditions, and obtaining a liquid free Color or light yellow first intermediate product;
  • Step 2 performing a free radical addition reaction on the first intermediate product and thioacetic acid in the presence of a free radical initiator, and obtaining a liquid colorless or light yellow second intermediate product after purification;
  • Step 3 The second intermediate product is subjected to hydrolysis reaction, and after purification, a colorless or light yellow viscous liquid product is obtained, which is a polythiol compound;
  • R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are independently selected from hydrogen atoms, lower alkyl groups with 1-5 carbon atoms and 1-5 carbon atoms.
  • One of 5 alkoxy groups, R 9 and R 10 are independently selected from 1-alkenylalkyl groups with 1-5 carbon atoms;
  • X represents chlorine or bromine
  • m is 0, 1, 2 or 3.
  • the method of the substitution reaction is to dissolve the phenolic compound represented by the general formula (II) in an organic solvent, add a base to provide basic conditions, add a phase transfer catalyst, and then Under the protection of an inert gas, heat up to 40-100°C and stir for 10-60 minutes, then add the first compound represented by general formula (III) and react for 4-12 hours, then filter the reaction solution, and distill the filtrate to remove the solvent under reduced pressure. Washed three times with water and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain a colorless or pale yellow first intermediate product in liquid state.
  • the way of the free radical addition reaction is to dissolve the first intermediate product in an organic solvent, add a free radical initiator, and raise the temperature to 40-100°C under the protection of an inert gas , slowly add thioacetic acid, carry out free radical addition reaction for 4-12 hours, and then distill off the solvent under reduced pressure to obtain a colorless or light yellow second intermediate product in liquid state.
  • the method of the hydrolysis reaction is to dissolve the second intermediate product in an organic solvent, add hydrochloric acid or sodium hydroxide, heat up to 50-100 ° C for 3-12 hours, and reduce Remove the solvent by distillation under pressure, wash twice with 2-8% sodium bicarbonate solution, and extract with chloroform, collect the organic phase and evaporate to dryness to obtain a colorless or light yellow viscous liquid product, which is polythiol compound.
  • the present invention also provides a curing agent, wherein the curing agent contains at least the above-mentioned polythiol compound.
  • the present invention also provides a resin composition, wherein the resin composition contains at least the above-mentioned curing agent and a resin, and the resin is an ethylenic compound and/or an epoxy resin having a carbon-carbon double bond in the molecule.
  • the resin composition when the resin is an epoxy resin, the resin composition contains amines as curing accelerators.
  • the resin composition when the resin is epoxy resin, the resin composition contains a reaction product of epoxy resin and amines as a curing accelerator.
  • the resin composition when the resin is an epoxy resin, the resin composition contains a compound with more than one isocyanate group in the molecule and at least one of a primary amino group and a secondary amino group in the molecule.
  • the reaction product of the compound acts as a curing accelerator.
  • the present invention also provides the application of the above-mentioned resin composition as a component of an adhesive or a sealant.
  • polythiol compounds provided by the invention have good moisture resistance and heat resistance
  • the polythiol compound provided by the present invention is liquid at normal temperature, and can be directly used as a curing agent for the curing of the resin composition, without additional coupling to form an oligomer mixture, and without coupling with other polythiol compounds.
  • the resin composition can be used as a component of sealants and adhesives.
  • the polythiol compound can improve the storage stability of the one-component low-temperature curing epoxy resin, has a long pot life, and has wide application prospects.
  • Fig. 1 is the 1 H-NMR figure of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl obtained in Example 1;
  • Fig. 2 is the IR spectrogram of 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl obtained in Example 1;
  • Fig. 3 is the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl obtained in Example 2 1 H-NMR chart;
  • Fig. 4 is the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl obtained in Example 2 IR Spectrum.
  • polythiol compound provided by the invention is represented by general formula (I):
  • R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are each independently selected from a hydrogen atom, an alkyl group with 1-5 carbon atoms and an alkyl group with 1-5 carbon atoms.
  • One of the alkoxy groups, R 4 and R 6 are independently selected from alkylene groups with 1-5 carbon atoms, and m and n are 0, 1, 2 or 3 independently.
  • alkyl group having 1-5 carbon atoms include, but are not limited to: methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl radical, n-pentyl, isopentyl, tert-pentyl or neopentyl.
  • alkoxy group having 1-5 carbon atoms include, but are not limited to: methoxy, ethoxy, propoxy, isopropoxy, butoxy or isobutoxy.
  • alkylene group having 1-5 carbon atoms include, but are not limited to: methylene, ethylene, n-propylene, isopropylene, n-butylene, sec-butylene, isobutylene , tert-butylene, n-pentylene, isopentylene, tert-pentylene or neopentylene.
  • R 1 , R 2 , R 5 and R 7 are all hydrogen atoms;
  • R 3 and R 8 are independently selected from hydrogen atoms or methoxy
  • R 4 and R 6 are independently selected from alkylene groups with 3-5 carbon atoms, such as n-propylene, isopropylene, n-butylene, sec-butylene, iso-butylene, tert-butylene, n-pentylene, isopentylene, tert-pentylene or neopentylene;
  • m and n are 1.
  • polythiol compound examples include, but are not limited to: 5,5′-bis(3-mercaptopropyl)-2,2′-bis(3-mercaptobutoxy)biphenyl (R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are all hydrogen atoms, R 4 and R 6 are all alkylene groups with 3 carbon atoms, m and n are both 2), 5,5'-bis(3 -Mercaptopropyl)-2,2′-bis(3-mercaptobutoxy)-3,3′-dimethoxybiphenyl (R 1 , R 2 , R 5 and R 7 are all hydrogen atoms, R 3 and R 8 are independently selected from methoxy, R 4 and R 6 are all alkylene groups with 3 carbon atoms, m and n are both 2), 5,5'-bis(3-mercaptopropyl )-2,2′-bis(3-mercaptopentyloxy)biphenyl (R 1
  • R 5 , R 7 and R 8 are all hydrogen atoms
  • R 4 and R 6 are all alkylene groups with 3 carbon atoms
  • m and n are both 1) and 5,5'-bis(3-mercapto Propyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl
  • R 1 , R 2 , R 5 and R 7 are all hydrogen atoms
  • R 3 and R 8 are independently selected from methoxy
  • R 4 and R 6 are both alkylene groups with 3 carbon atoms
  • m and n are at least one of 1).
  • the preparation method of polythiol compound provided by the invention comprises the following steps:
  • Step 1 Substituting the phenolic compound represented by the general formula (II) and the first compound represented by the general formula (III) in the presence of a phase transfer catalyst under basic conditions, and obtaining a liquid free Color or light yellow first intermediate product;
  • Step 2 performing a free radical addition reaction on the first intermediate product and thioacetic acid in the presence of a free radical initiator, and obtaining a liquid colorless or light yellow second intermediate product after purification;
  • Step 3 The second intermediate product is subjected to hydrolysis reaction, and after purification, a colorless or light yellow viscous liquid product is obtained, which is a polythiol compound;
  • R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are independently selected from hydrogen atoms, lower alkyl groups with 1-5 carbon atoms and 1-5 carbon atoms. 5 alkoxy groups; preferably, R 1 , R 2 , R 5 and R 7 are all hydrogen atoms, and R 3 and R 8 are independently selected from hydrogen atoms or methoxy groups.
  • R 9 and R 10 are independently selected from 1-alkenylalkyl groups with 1-5 carbon atoms, preferably independently selected from 1-alkenylalkyl groups with 3-5 carbon atoms.
  • X represents chlorine or bromine
  • m is 0, 1, 2 or 3.
  • the method of the substitution reaction is preferably to dissolve the phenolic compound represented by the general formula (II) in an organic solvent, add a base to provide basic conditions, add a phase transfer catalyst, and then raise the temperature to 40 °C under the protection of an inert gas. Stir at -100°C for 10-60 minutes, then add the first compound represented by general formula (III) and react for 4-12 hours, then filter the reaction solution, remove the solvent by distilling the filtrate under reduced pressure, wash with water three times, and wash with chloroform After extraction, the organic phase was collected and evaporated to dryness to obtain a colorless or pale yellow first intermediate product in liquid state.
  • the type of the base is not particularly limited, it can be a conventional choice in the field, and its specific examples include but are not limited to: potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, triethylamine and p-dimethylaminopyridine at least one.
  • the phase transfer catalyst can be various existing ones that can catalyze the substitution reaction between the phenolic hydroxyl group in the phenolic compound represented by the general formula (II) and the chlorine or bromine in the first compound represented by the general formula (III)
  • the substance is preferably at least one of cyclic crown ethers, polyethers and ammoniums.
  • specific examples of the cyclic crown ethers include but are not limited to: at least one of 18-crown-6, 15-crown-5 and cyclodextrin.
  • Specific examples of the polyethers include, but are not limited to: chain polyethylene glycol and/or chain polyethylene glycol dialkyl ether.
  • ammonium species include, but are not limited to: benzyltriethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bisulfate, trioctylmethylammonium chloride , at least one of dodecyltrimethylammonium chloride and tetradecyltrimethylammonium chloride.
  • step 2 the way of the free radical addition reaction is preferably to dissolve the first intermediate product in an organic solvent, add a free radical initiator, raise the temperature to 40-100°C under the protection of an inert gas, and slowly add thioacetic acid, The free radical addition reaction was carried out for 4-12 hours, and then the solvent was distilled off under reduced pressure to obtain a colorless or pale yellow second intermediate product in liquid state.
  • the free radical initiator can be various existing materials that can initiate the double bond in the first intermediate product and the sulfhydryl group in the thioacetic acid to realize the free radical addition reaction, and can be an azo initiator and/or an azo initiator.
  • Oxygen initiators include but are not limited to: azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), dimethyl 2,2'- Azobis(2-methylpropionate), dimethyl azobisisobutyrate, azobisisobutylamidine hydrochloride, azodicarbonamide, azodiisopropylimidazoline hydrochloride, At least A sort of.
  • peroxy initiator examples include, but are not limited to: tert-hexyl peroxyisopropyl monocarbonate, tert-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl 2-ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxyneodecanoate, tert-hexylperoxyneodecanoate, 1 , 1,3,3-Tetramethylbutylperoxyneodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-trimethylperoxy At least one of caproyl oxide, lauroyl peroxide and benzoyl t-butyl peroxide.
  • the free radical initiator is preferably azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), dimethyl 2,2'- Nitrobis(2-methylpropionate), tert-hexyl peroxyisopropyl monocarbonate, tert-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutyl peroxide 2-Ethylhexanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, tert-butylperoxyneodecanoate, tert-hexylperoxyneodecanoate, 1,1, 3,3-tetramethylbutylperoxyneodecanoate, 1,1-bis(tert-hexylperoxy)cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide and at least
  • step 3 the method of the hydrolysis reaction is preferably to dissolve the second intermediate product in alcohol, add hydrochloric acid or sodium hydroxide, heat up to 50-100 ° C for 3-12 hours, and distill off the solvent under reduced pressure, use 2- Wash twice with 8% sodium bicarbonate solution, extract with chloroform, collect the organic phase and evaporate to dryness to obtain a colorless or light yellow viscous liquid product, which is polythiol compound.
  • step 1 is carried out in the presence of organic solvent I
  • step 2 is carried out in the presence of organic solvent II
  • step 3 is carried out in the presence of organic solvent in the presence of III.
  • the organic solvent I and the organic solvent II are preferably independently selected from methanol, ethanol, propanol, butanol, isopropanol, ethyl acetate, propyl acetate, butyl acetate, tetrahydrofuran, dioxane, At least one of acetonitrile, toluene, xylene, methylene chloride, chloroform, carbon tetrachloride, dimethylformamide, dimethylacetamide and dimethyl sulfoxide.
  • the organic solvent III is preferably alcohol, more preferably a unit alcohol with 1-5 carbon atoms, such as at least one of methanol, ethanol, propanol and n-butanol.
  • the present invention also provides a curing agent, wherein the curing agent contains at least the above-mentioned polythiol compound.
  • the present invention also provides a resin composition, wherein the resin composition contains at least the above-mentioned curing agent and a resin, and the resin is an ethylenic compound and/or an epoxy resin having a carbon-carbon double bond in the molecule.
  • the resin composition when the resin is an epoxy resin, the resin composition contains amines as curing accelerators.
  • the resin composition when the resin is epoxy resin, the resin composition contains a reaction product of epoxy resin and amines as a curing accelerator.
  • the resin composition when the resin is an epoxy resin, the resin composition contains a compound with more than one isocyanate group in the molecule and at least one of a primary amino group and a secondary amino group in the molecule.
  • the reaction product of the compound acts as a curing accelerator.
  • the present invention also provides the application of the above-mentioned resin composition as a component of an adhesive or a sealant.
  • 5,5'-diallyl-2,2'-biphenyldiol is from Sarn Chemical Technology (Shanghai) Co., Ltd., the brand is E100338; the phase transfer catalyst 18-crown- 6 is from Shanghai Titan Technology Co., Ltd., the brand is 30243D; tetrabutylammonium bromide is from Shanghai Titan Technology Co., Ltd., the brand is 28296F; allyl bromide is from Shanghai Titan Technology Co., Ltd., the brand is 13125C; Azobisisobutyronitrile ("AIBN" for short) is from Shanghai Macklin Biochemical Technology Co., Ltd., with the brand name A800353; benzoyl peroxide is from Shanghai Macklin Biochemical Technology Co., Ltd., with the brand name B802244; Sinopharm Chemical Reagent Co., Ltd., the brand is 80128126; 5,5'-diallyl-3,3'-dimethoxy-2,2'-
  • Step 1 Dissolve 80g of 5,5'-diallyl-2,2'-diphenol in 200mL of acetone, add 103.6g of potassium carbonate and 67.9g of phase transfer catalyst 18-crown-67.9g, under inert gas protection Lower the temperature to 70°C and stir for 10 minutes, then slowly add 79.8 g of allyl bromide, react for 8 hours, filter the reaction solution, distill the filtrate to remove the solvent under reduced pressure, wash with water three times, and extract with chloroform, after the organic phase is collected Evaporate to dryness, obtain the light yellow first intermediate product that is liquid;
  • Step 2 Dissolve the first intermediate product obtained in Step 2 in 200 mL of tetrahydrofuran, add 5.4 g of free radical initiator azobisisobutyronitrile, raise the temperature to 70°C under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 60 ° C for 12 hours of hydrolysis reaction, distill off the solvent under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 124.8 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy)biphenyl, the total yield was 86.2%.
  • This 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl basically had no sulfur odor.
  • the absorption peak on the biphenyl ring is at 1492 cm -1
  • the Ar-H bending vibration on the biphenyl ring is at 815 cm -1
  • the CH stretching vibration absorption on the alkyl chain is at 2928 cm -1 Peak
  • the absorption peak at 1246cm -1 is the CO stretching vibration of the alkoxy group
  • the absorption peak at 2560cm -1 is corresponding to the mercapto group.
  • the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl has a structure shown in general formula (I), wherein, R 1 , R 2 , R 3 , R 5 , R 7 and R 8 are all hydrogen atoms, R 4 and R 6 are all alkylene groups with 3 carbon atoms, and both m and n are 1.
  • Step 1 Dissolve 98 g of 5,5'-diallyl-3,3'-dimethoxy-2,2'-biphenyldiol in 250 mL of acetone, add 103.6 g of potassium carbonate and a phase transfer catalyst of 18 -Crown-67.9g, heated up to 70°C and stirred for 10 minutes under the protection of an inert gas, then slowly added 79.8g of allyl bromide, reacted for 8 hours, filtered the reaction solution, distilled the filtrate to remove the solvent under reduced pressure, washed with water three times, And extract with chloroform, evaporate to dryness after the organic phase is collected, obtain the light yellow first intermediate product that is liquid;
  • Step 2 Dissolve the first intermediate product obtained in Step 1 in 200 mL of tetrahydrofuran, add 5.4 g of a free radical initiator azobisisobutyronitrile, raise the temperature to 70°C under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 70 ° C for 12 hours of hydrolysis reaction, remove the solvent by distillation under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 137.7 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy)-3,3'-dimethoxybiphenyl, the total yield was 84.5%.
  • This 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl basically had no sulfur odor.
  • the absorption peak on the biphenyl ring at 1489 cm -1 corresponds to the Ar-H bending vibration on the biphenyl ring at 818 cm -1 and the CH stretching vibration absorption on the alkyl chain at 2925 cm -1 Peak
  • the absorption peak at 1242cm -1 is the CO stretching vibration of alkoxy group
  • the absorption peak at 2560cm -1 is corresponding to the mercapto group.
  • the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl has the general formula The structure shown in (I), wherein, R 1 , R 2 , R 5 and R 7 are hydrogen atoms, R 3 and R 8 are independently selected from methoxy groups, R 4 and R 6 are carbon atoms is an alkylene group of 3, m and n are both 1.
  • Step 1 Dissolve 80g of 5,5'-diallyl-2,2'-diphenol in 200mL of acetone, add 103.6g of potassium carbonate and 67.9g of phase transfer catalyst 18-crown-67.9g, under inert gas protection The temperature was raised to 70°C and stirred for 20 minutes, and then 98.3 g of 5-bromo-1-pentene was slowly added. After reacting for 8 hours, the reaction solution was filtered, and the filtrate was distilled off under reduced pressure to remove the solvent, washed with water three times, and extracted with chloroform. After the organic phase is collected, it is evaporated to dryness to obtain the light yellow first intermediate product in liquid state;
  • Step 2 Dissolve the first intermediate product obtained in Step 1 in 200 mL of tetrahydrofuran, add 5.4 g of a free radical initiator azobisisobutyronitrile, raise the temperature to 70°C under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 60 ° C for 12 hours of hydrolysis reaction, distill off the solvent under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 133.2 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopentyloxy)biphenyl, the total yield is 82.4%.
  • the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopentyloxy)biphenyl basically has no sulfur odor, and it has the general formula as detected by 1 H-NMR and IR
  • Step 1 Dissolve 80g of 5,5'-diallyl-2,2'-diphenol in 200mL of acetone, add 103.6g of potassium carbonate and 67.9g of phase transfer catalyst 18-crown-67.9g, under inert gas protection Lower the temperature to 50°C and stir for 60 minutes, then slowly add 79.8 g of allyl bromide. After 12 hours of reaction, filter the reaction solution, distill the filtrate to remove the solvent under reduced pressure, wash with water three times, and extract with chloroform. After the organic phase is collected, Evaporate to dryness, obtain the light yellow first intermediate product that is liquid;
  • Step 2 Dissolve the first intermediate product obtained in Step 2 in 200 mL of tetrahydrofuran, add 8.0 g of benzoyl peroxide as a free radical initiator, raise the temperature to 80° C. under the protection of an inert gas, and slowly add 96.2 g of thioacetic acid, After reacting for 5 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 60 ° C for 12 hours of hydrolysis, remove the solvent by distillation under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 120.9 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy)biphenyl, the total yield was 83.5%.
  • the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl basically has no sulfur odor, and it has the general formula as detected by 1 H-NMR and IR
  • Step 1 Dissolve 80 g of 5,5'-diallyl-2,2'-biphenyldiol in 200 mL of dimethylformamide, add 42.1 g of potassium hydroxide and a phase transfer catalyst tetrabutylammonium bromide 9.67g, heated up to 100°C under the protection of inert gas and stirred for 10 minutes, then slowly added 50.5g of allyl chloride, reacted for 4 hours, filtered the reaction solution, distilled the filtrate to remove the solvent under reduced pressure, washed with water three times, and washed with trichloro Methane extraction, the organic phase is collected and evaporated to dryness to obtain a liquid light yellow first intermediate product;
  • Step 2 Dissolve the first intermediate product obtained in Step 2 in 200 mL of tetrahydrofuran, add 5.4 g of a free radical initiator azobisisobutyronitrile, raise the temperature to 50 ° C under the protection of an inert gas, and slowly add 89.3 g of thioacetic acid , after reacting for 12 hours, the solvent and excess thioacetic acid were distilled off under reduced pressure to obtain a liquid light yellow second intermediate product;
  • Step 3 Dissolve the second intermediate product obtained in step 2 in 300 mL of methanol, add 60 mL of hydrochloric acid for hydrolysis, heat up to 70 ° C for 5 hours of hydrolysis reaction, remove the solvent by distillation under reduced pressure, and wash the two parts with 5% sodium bicarbonate solution. and extracted with chloroform, the organic phase was collected and evaporated to dryness to obtain 111.6 g of the final product in the form of light yellow viscous liquid, namely 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy)biphenyl, the total yield was 77.1%.
  • the 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl basically has no sulfur odor, and it has the general formula as detected by 1 H-NMR and IR
  • thermosetting resin composition provided by the present invention
  • the resin composition comprises the following components and parts by weight: 50 parts of bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin 10 parts, 38 parts of polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl prepared in Example 1, latent 3 parts of curing accelerator, 0.5 parts of triethyl borate as stabilizer.
  • thermosetting resin composition comprises the following components and parts by weight: 50 parts of bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin 10 parts, polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-bis 42 parts of methoxybiphenyl, 3 parts of latent curing accelerator, and 0.5 parts of triethyl borate as a stabilizer.
  • the resin composition includes the following components and parts by weight: 50 parts of bisphenol A epoxy diacrylate, tricyclodecane diacrylate 10 parts of methanol diacrylate, polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl 32 prepared in Example 1 3 parts, photoinitiator 2,2-dimethoxy-2-phenylacetophenone 3 parts, polymerization inhibitor p-hydroxyanisole 0.2 part.
  • the resin composition includes the following components and parts by weight: 50 parts of bisphenol A epoxy diacrylate, tricyclodecane diacrylate 10 parts of methanol diacrylate, the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3 prepared in Example 2, 36 parts of 3'-dimethoxybiphenyl, 3 parts of photoinitiator 2,2-dimethoxy-2-phenylacetophenone, and 0.2 part of polymerization inhibitor p-hydroxyanisole.
  • the resin composition includes the following components and parts by weight: 25 parts of bisphenol A type epoxy resin, 25 parts of hydrogenated bisphenol A type 5 parts of epoxy resins, 25 parts of bisphenol A type epoxy diacrylates, 5 parts of tricyclodecane dimethanol diacrylates, the polythiol curing agent 5 that makes in the embodiment 1, 5 '-two (3 -Mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)biphenyl 35 parts, photoinitiator 2-hydroxyl-2-methyl-1-phenylacetone 1 part and diphenyl-( 1 part of 2,4,6-trimethylbenzoyl)phosphine, 2 parts of latent curing accelerator, 0.3 part of triethyl borate as a stabilizer, and 0.1 part of p-hydroxyanisole as a polymerization inhibitor.
  • the resin composition includes the following components and parts by weight: 25 parts of bisphenol A type epoxy resin, 25 parts of hydrogenated bisphenol A type 5 parts of epoxy resins, 25 parts of bisphenol A type epoxy diacrylates, 5 parts of tricyclodecane dimethanol diacrylates, the polythiol curing agent 5 that makes in the embodiment 2, 5 '-two (3 -Mercaptopropyl)-2,2'-bis(3-mercaptopropoxy)-3,3'-dimethoxybiphenyl 39 parts, photoinitiator 2-hydroxyl-2-methyl-1-benzene 1 part of diphenyl acetone and 1 part of diphenyl-(2,4,6-trimethylbenzoyl)phosphine, 2 parts of latent curing accelerator, 0.3 part of stabilizer triethyl borate, polymerization inhibitor p-hydroxyl Anisole 0.1 part.
  • thermosetting resin composition according to the method of Example 6, the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-mercaptopropoxy) biphenyl is replaced by the polythiol curing agent pentaerythritol tetrakis (3-mercaptopropionate) ester containing the ester bond of the same thiol functional group equivalent, and the remaining conditions are the same as in Example 6 to obtain a thermosetting resin combination.
  • thermosetting resin composition according to the method of Example 6, the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy) biphenyl is replaced by 1,3,4,6-tetrakis(2-mercaptoethyl) glycoluril with the same thiol functional group equivalent, and the remaining conditions are the same as in Example 6 to obtain a thermosetting resin combination things.
  • thermosetting resin composition Prepare the thermosetting resin composition according to the method of Example 6, the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'-bis (3-Mercaptopropoxy) biphenyl adopts the glycoluril complex of the same thiol functional group equivalent (the glycoluril complex is 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril and 1,1 -(Dithiobisethanediyl)-bis[3,4,6-tris(2-mercaptoethyl) glycoluril] mixture and wherein 1,1-(dithiobisethanediyl)- Bis[3,4,6-tris(2-mercaptoethyl)glycoluril] (8% by mass) was replaced, and the remaining conditions were the same as in Example 6 to obtain a thermosetting resin composition.
  • the glycoluril complex is 1,3,4,6-tetrakis (2-mercaptoe
  • the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2'- Bis(3-mercaptopropoxy)biphenyl adopts the glycoluril complex of the same thiol functional group equivalent (the glycoluril complex is 1,3,4,6-tetrakis(2-mercaptoethyl) glycoluril and 1, A mixture of 1-(dithiobisethanediyl)-bis[3,4,6-tris(2-mercaptoethyl)glycoluril] and in which 1,1-(dithiobisethanediyl) -Bis[3,4,6-tris(2-mercaptoethyl) glycoluril] (mass ratio is 8%) instead, and other conditions are the same as in Example 8 to obtain a UV photocurable resin composition.
  • Example 10 According to the method of Example 10 to prepare the photo/thermal dual curing resin composition, the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2 '-bis(3-mercaptopropoxy)biphenyl is replaced by the polythiol curing agent pentaerythritol tetrakis(3-mercaptopropionate) ester containing the same thiol functional group equivalent, and the remaining conditions are the same as in Example 10, to obtain Light/heat dual curing resin composition.
  • the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2 '-bis(3-mercaptopropoxy)biphenyl is replaced by the polythiol curing agent pentaerythritol tetrakis(3-mercaptopropionate) ester containing the same thiol functional group equivalent, and the remaining conditions are the same as in Example 10, to obtain Light/
  • Example 10 According to the method of Example 10 to prepare the photo/thermal dual curing resin composition, the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2 '-bis(3-mercaptopropoxy)biphenyl is replaced by 1,3,4,6-tetrakis(2-mercaptoethyl) glycoluril with the same thiol functional group equivalent, and all the other conditions are the same as in Example 8 to obtain light / Thermal dual-cure resin composition.
  • the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2 '-bis(3-mercaptopropoxy)biphenyl is replaced by 1,3,4,6-tetrakis(2-mercaptoethyl) glycoluril with the same thiol functional group equivalent, and all the other conditions are the same as in Example 8 to obtain light / Thermal dual-cure resin composition.
  • the difference is that the polythiol curing agent 5,5'-bis(3-mercaptopropyl)-2,2 '-bis (3-mercaptopropoxy) biphenyl adopts the glycoluril complex (this glycoluril complex is 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril and 1,1-(Dithiobisethanediyl)-bis[3,4,6-tris(2-mercaptoethyl)glycoluril] mixture and wherein 1,1-(dithiobisethanedi base)-bis[3,4,6-tris(2-mercaptoethyl) glycoluril] with a mass proportion of 8%) instead, and the rest of the conditions were the same as in Example 10 to obtain a photo/thermal dual-curable resin composition.
  • this glycoluril complex is 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril and 1,1-(Dithiobi
  • Crystal precipitation time (hours): The resin compositions prepared in the examples and comparative examples were placed at room temperature, and the time from the completion of the preparation of the resin composition to the confirmation of crystal precipitation. It should be noted that the confirmation of crystal precipitation was carried out visually, and the maximum test time was 240 hours.
  • Table 1 below shows the measurement results of the above crystallization time, glass transition temperature, and thermal bonding strength before and after heating and humidification.
  • the polythiol compound of the present invention has no ester bond on the basis of low odor, has good moisture and heat resistance, is liquid at room temperature, and can be directly used as a curing agent for the synthesis of resin compositions.
  • the resin composition can be used as a component of sealants and adhesives.
  • the polythiol compound reaction process of the present invention Simple, no additional coupling to form oligomer mixture, no need to combine with other polythiol compounds, low cost.
  • the polythiol compound provided by the invention can reduce the risk of storage stability of the one-component low-temperature curing epoxy resin, has a long pot life, and has wide application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Sealing Material Composition (AREA)

Abstract

本发明属于多硫醇化合物及其应用领域,特别涉及一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂。所述多硫醇化合物由通式(I)表示,其中,R1、R2、R3、R5、R7和R8分别独立地选自氢原子、碳原子数为1-5的烷基和碳原子数为1-5的烷氧基中的一种,R4和R6分别独立地选自碳原子数为1-5的亚烷基,m和n分别独立地为0、1、2或3。本发明提供的多硫醇化合物具有良好的耐湿性和耐热性,气味低,在常温下为液体,可直接作为固化剂用于树脂组合物的固化,无需额外进行偶联形成低聚物混合物,也无须与其他多硫醇化合物联用并且能够提高单组份低温固化环氧树脂的储存稳定性,适用期长,应用前景广泛。

Description

一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用
相关申请的交叉引用
本申请要求于2021年10月22日提交至中国专利局、申请号为2021112322326、申请名称为“一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂”的中国专利申请的优先权,其全部内容通过引用结合至本申请中。
技术领域
本发明属于多硫醇化合物及其应用领域,特别涉及一种多硫醇化合物及其制备方法、使用该多硫醇化合物的固化剂、使用了该固化剂的树脂组合物、该树脂组合物作为胶黏剂或密封剂的成分的应用。
背景技术
环氧树脂在机械性能、电气性能、耐热性能、耐化学品性以及粘接强度等方面具有优异的性能,因此被广泛应用于涂料、电气、电子绝缘材料、胶黏剂等方面。近年来,除了使用时将环氧树脂与固化剂混合而固化的所谓双组分环氧树脂组合物以外,还开发了将环氧树脂与固化剂预先混合、使用时通过加热进而固化的单组分环氧树脂组合物。特别是近年来电子电路领域中柔性化、薄型化的需求日益增多,为了保护半导体元件使电路高集中化或者提高连接可靠性,对低温固化性的单组份环氧树脂组合物的要求不断提高。
分子内具有多个巯基的硫醇化合物具有广泛的用途,例如作为环氧树脂的固化剂和巯基-烯点击反应的应用已广为人知。使用多硫醇化合物作为固化剂,同时包含叔胺类固化促进剂的环氧树脂组合物,具有能在较低温度下迅速固化的优势,可以满足对低温固化性的单组份环氧树脂组合物的要求。然而,目前已知的多硫醇固化剂,大多通过酯键连接巯基,通常会产生耐湿性差、在高湿环境下粘接强度下降的问题。另外,专利US4266055A和JPS56120671A中合成的三巯丙基异氰尿酸酯,在分子中不具有酯键,因此被用作耐水性优异的环氧树脂组合物的固化剂,但该固化剂在室温下会散发出难闻的气味(强烈的硫臭味),固化物的耐热性也不令人满意,而且存在韧性较差的问题。此外,为了同时赋予环氧树脂 固化物良好的耐湿性及耐热性,目前行业内的主流做法是采用巯基烷基甘脲作为环氧树脂的固化剂。例如,专利CN201480064943.9和JP2015059099A公开了所谓巯基烷基甘脲的多硫醇固化剂,虽然该多硫醇固化剂具有良好的耐湿性及耐热性,但是专利CN201680014880.5中却提出该多硫醇固化剂在室温下为固体,在与环氧树脂形成配合物时容易析出晶体,存在组成变得不均匀的问题,此时需要与另一种巯基乙基甘脲化合物配合使用,由此使固体多硫醇固化剂液体化,最终形成液体状的具有二硫键的低聚物混合物作为固化剂,虽然该方式能够使固化剂最终转化为液体,但是却增加了反应的工序和成本。再则,CN201480064943.9中提及的巯基烷基甘脲类固化剂还有降低单组份低温固化环氧胶的储存稳定性的风险。
综上,目前现有的各类硫醇化合物和含有硫醇化合物的固化剂主要存在以下问题:
(1)现有的多硫醇固化剂大多含有酯键,高温高湿环境下容易水解,降低环氧胶的粘接强度,使粘接失效,并且耐热性能一般较差;
(2)现有的多硫醇固化剂大多气味很大,严重影响施胶时的工作环境;
(3)现有的巯基烷基甘脲类固化剂在室温下为固体,若想变为液态,提升晶体析出时间,需要与一种具有二硫键的巯基乙基甘脲化合物配合使用,因此在制备时需要额外进行偶联形成低聚物混合物,才能变为液态,工艺复杂,成本高。此外,现有的巯基烷基甘脲类固化剂还会提高单组份低温固化环氧胶的储存稳定性的风险,适用期短。
从上述分析可知,亟需开发一种本身为液态且同时兼具有良好耐湿性、耐热性、适用期长且气味低的环氧树脂固化剂。
发明内容
本发明的第一目的是为了克服现有的多硫醇固化剂无法实现本身为液态且同时兼具良好耐湿性、耐热性、适用期长且气味低的缺陷,而提供一种新的多硫醇化合物,该多硫醇化合物在室温下为液态,且能够同时兼具良好的耐湿性、耐热性、适用期长且气味低。
本发明的第二目的在于提供一种上述多硫醇化合物的制备方法。
本发明的第三目的在于提供一种固化剂,该固化剂至少含有上述多硫醇化合物。
本发明的第四目的在于提供一种树脂组合物,该树脂组合物使用了上述固化剂。
本发明的第五目的在于提供上述树脂组合物作为胶黏剂或密封剂的成分的应用。
具体地,本发明提供的多硫醇化合物由通式(I)表示:
Figure PCTCN2022113624-appb-000001
通式(I)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的烷基和碳原子数为1-5的烷氧基中的一种,R 4和R 6分别独立地选自碳原子数为1-5的亚烷基,m和n分别独立地为0、1、2或3。
在一种优选实施方式中,通式(I)中,R 1、R 2、R 5和R 7均为氢原子;R 3和R 8分别独立地选自氢原子或甲氧基;R 4和R 6分别独立地选自碳原子数为3-5的亚烷基;m和n为1。
在一种优选实施方式中,所述多硫醇化合物选自5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)-3,3′-二甲氧基联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)-3,3′-二甲氧基联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯以及5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯中的至少一种。
本发明提供的多硫醇化合物的制备方法包括以下步骤:
步骤一:将由通式(II)表示的苯酚类化合物和由通式(III)表示的第一化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色的第一中间产物;
步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物;
Figure PCTCN2022113624-appb-000002
通式(II)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的低级烷基和碳原子数为1-5的烷氧基中的一种,R 9和R 10分别独立地选自碳原子数为1-5的1-烯基烷基;
通式(III)中,X表示氯或溴,m为0、1、2或3。
在一种优选实施方式中,步骤一中,所述取代反应的方式为将由通式(II)表示的苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的第一化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
在一种优选实施方式中,步骤二中,所述自由基加成反应的方式为将第一中间产物溶解在有机溶剂中,加入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
在一种优选实施方式中,步骤三中,所述水解反应的方式为将第二中间产物溶解在有机溶剂中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
本发明还提供了一种固化剂,其中,所述固化剂至少含有上述多硫醇化合物。
本发明还提供了一种树脂组合物,其中,所述树脂组合物至少含有上述固化剂以及树脂,所述树脂为分子内具有碳-碳双键的烯类化合物和/或环氧树脂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有胺类作为固化促进剂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有环氧树脂与胺类的反应产物作为固化促进剂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有分子内具有一个以上异氰酸酯基的化合物与分子内具有伯氨基和仲氨基中的至少一个的化合物的反应产物作为固化促进剂。
本发明还提供了上述树脂组合物作为胶黏剂或密封剂的成分的应用。
本发明的有益效果如下:
(1)本发明提供的多硫醇化合物具有良好的耐湿性和耐热性;
(2)本发明提供的多硫醇化合物的气味低;
(3)本发明提供的多硫醇化合物在常温下为液体,可直接作为固化剂用于树脂组合物的固化,无需额外进行偶联形成低聚物混合物,也无须与其他多硫醇化合物联用,成本低,所述树脂组合物可作为密封剂和粘结剂的成分。另外,该多硫醇化合物能够提高单组份低温固化环氧树脂的储存稳定性,适用期长,应用前景广泛。
附图说明
图1为实施例1中得到的5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的 1H-NMR图;
图2为实施例1中得到的5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的IR光谱图;
图3为实施例2中得到的5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的 1H-NMR图;
图4为实施例2中得到的5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的IR光谱图。
具体实施方式
具体地,本发明提供的多硫醇化合物由通式(I)表示:
Figure PCTCN2022113624-appb-000003
通式(I)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的烷基和碳原子数为1-5的烷氧基中的一种,R 4和R 6分别独立地选自碳原子数为1-5的亚烷基,m和n分别独立地为0、1、2或3。其中,所述碳原子数为1-5的烷基的具体实例包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基或新戊基。所述碳原子数为1-5的烷氧基的具体实例包括但不限于:甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基或异丁氧基。所述碳原子数为1-5的亚烷基的具体实例包括但不限于:亚甲基、亚乙基、正亚丙基、异亚丙基、正亚丁基、仲亚丁基、异亚丁基、叔亚丁基、正亚戊基、异亚戊基、叔亚戊基或新亚戊基。
在本发明的一种优选实施方式中,通式(I)中,R 1、R 2、R 5和R 7均为氢原子;R 3和R 8分别独立地选自氢原子或甲氧基;R 4和R 6分别独立地选自碳原子数为3-5的亚烷基,如正亚丙基、异亚丙基、正亚丁基、仲亚丁基、异亚丁基、叔亚丁基、正亚戊基、异亚戊基、叔亚戊基或新亚戊基;m和n为1。
所述多硫醇化合物的具体实例包括但不限于:5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)联苯(R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为2)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自甲氧基,R 4和R 6均为碳原子数为3的亚烷基,m和n均为2)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯(R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为3)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自甲氧基,R 4和R 6均为碳原子数为3的亚烷基,m和n均为3)、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯(R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1)以及5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯(R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自甲氧基,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1)中的至少一种。
本发明提供的多硫醇化合物的制备方法包括以下步骤:
步骤一:将由通式(II)表示的苯酚类化合物和由通式(III)表示的第一化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色的第一中间产物;
步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物;
Figure PCTCN2022113624-appb-000004
通式(II)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的低级烷基和碳原子数为1-5的烷氧基中的一种;优选地,R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自氢原子或甲氧基。R 9和R 10分别独立地选自碳原子数为1-5的1-烯基烷基,优选分别独立地选自碳原子数为3-5的1-烯基烷基。
通式(III)中,X表示氯或溴,m为0、1、2或3。
步骤一中,所述取代反应的方式优选为将由通式(II)表示的苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的第一化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
所述碱的种类没有特别的限定,可以为领域的常规选择,其具体实例包括但不限于:碳酸钾、碳酸钠、氢氧化钠、氢氧化钾、三乙胺和对二甲氨基吡啶中的至少一种。
所述相转移催化剂可以为现有的各种能够催化由通式(II)表示的苯酚类化合物中的酚羟基与由通式(III)表示的第一化合物中的氯或溴发生取代反应的物质,优选为环状冠醚类、聚醚类和铵类中的至少一种。其中,所述环状冠醚类的具体实例包括但不限于:18-冠-6、15-冠-5和环糊精中的至少一种。所述聚醚类的具体实例包括但不限于:链状聚乙二醇和/或链状聚乙二醇二烷基醚。所述铵类的具体实例包括但不限于:苄基三乙基氯化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵和十四烷基三甲基氯化铵中的至少一种。
步骤二中,所述自由基加成反应的方式优选为将第一中间产物溶解在有机溶剂中,加 入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
所述自由基引发剂可以为现有的各种能够引发第一中间产物中的双键与硫代乙酸中的巯基实现自由基加成反应的物质,可以为偶氮类引发剂和/或过氧类引发剂。其中,所述偶氮类引发剂的具体实例包括但不限于:偶氮二异丁腈、2,2′-偶氮双(2-甲基丁腈)、二甲基2,2′-偶氮双(2-甲基丙酸酯)、偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二甲酰胺、偶氮二异丙基咪唑啉盐酸盐、偶氮异丁氰基甲酰胺、偶氮二环己基甲腈、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、偶氮二异戊腈和偶氮二异庚腈中的至少一种。所述过氧类引发剂的具体实例包括但不限于:叔己基过氧化异丙基单碳酸酯、叔己基过氧化2-乙基己酸酯、1,1,3,3-四甲基丁基过氧化2-乙基己酸酯、叔丁基过氧化特戊酸酯、叔己基过氧化特戊酸酯、叔丁基过氧化新癸酸酯、叔己基过氧化新癸酸酯、1,1,3,3-四甲基丁基过氧化新癸酸酯、1,1-双(叔己基过氧化)环己烷、过氧化苯甲酰、3,5,5-三甲基过氧化己酰、过氧化月桂酰和过氧化苯甲酰叔丁酯中的至少一种。从原料易得性的角度考虑,所述自由基引发剂优选为偶氮二异丁腈、2,2′-偶氮双(2-甲基丁腈)、二甲基2,2′-偶氮双(2-甲基丙酸酯)、叔己基过氧化异丙基单碳酸酯、叔己基过氧化2-乙基己酸酯、1,1,3,3-四甲基丁基过氧化2-乙基己酸酯、叔丁基过氧化特戊酸酯、叔己基过氧化特戊酸酯、叔丁基过氧化新癸酸酯、叔己基过氧化新癸酸酯、1,1,3,3-四甲基丁基过氧化新癸酸酯、1,1-双(叔己基过氧化)环己烷、过氧化苯甲酰、3,5,5-三甲基过氧化己酰和过氧化月桂酰中的至少一种。
步骤三中,所述水解反应的方式优选为将第二中间产物溶解在醇中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
在本发明的一种优选实施方式中,步骤一的取代反应在有机溶剂I的存在下进行,步骤二的自由基加成反应在有机溶剂II的存在下进行,步骤三的水解反应在有机溶剂III的存在下进行。所述有机溶剂I和有机溶剂II优选分别独立地选自甲醇、乙醇、丙醇、丁醇、异丙醇、乙酸乙酯、乙酸丙酯、乙酸丁酯、四氢呋喃、二氧杂环己烷、乙腈、甲苯、二甲苯、二氯甲烷、氯仿、四氯化碳、二甲基甲酰胺、二甲基乙酰胺和二甲基亚砜中的至少一种。所述有机溶剂III优选为醇,更优选为碳原子数为1-5的单元醇,如甲醇、乙醇、丙醇 和正丁醇中的至少一种。
本发明还提供了一种固化剂,其中,所述固化剂至少含有上述多硫醇化合物。
本发明还提供了一种树脂组合物,其中,所述树脂组合物至少含有上述固化剂以及树脂,所述树脂为分子内具有碳-碳双键的烯类化合物和/或环氧树脂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有胺类作为固化促进剂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有环氧树脂与胺类的反应产物作为固化促进剂。
在本发明的一种优选实施方式中,当所述树脂为环氧树脂时,所述树脂组合物中含有分子内具有一个以上异氰酸酯基的化合物与分子内具有伯氨基和仲氨基中的至少一个的化合物的反应产物作为固化促进剂。
本发明还提供了上述树脂组合物作为胶黏剂或密封剂的成分的应用。
下面将结合实施例,对本发明作进一步说明。
以下实施例和对比例中:5,5′-二烯丙基-2,2′-联苯二酚源自萨恩化学技术(上海)有限公司,牌号为E100338;相转移催化剂18-冠-6源自上海泰坦科技股份有限公司,牌号为30243D;四丁基溴化铵源自上海泰坦科技股份有限公司,牌号为28296F;烯丙基溴源自上海泰坦科技股份有限公司,牌号为13125C;偶氮二异丁腈(简称“AIBN”)源自上海麦克林生化科技有限公司,牌号为A800353;过氧化苯甲酰源自上海麦克林生化科技有限公司,牌号为B802244;硫代乙酸源自国药集团化学试剂有限公司,牌号为80128126;5,5′-二烯丙基-3,3′-二甲氧基-2,2′-联苯二酚源自萨恩化学技术(上海)有限公司,牌号为D050881;烯丙基氯源自萨恩化学技术(上海)有限公司,牌号为W310002;5-溴-1-戊烯源自萨恩化学技术(上海)有限公司,牌号为W330079;潜伏性固化促进剂源自味之素精细化学株式会社,牌号为AJICURE PN-23;光引发剂源自艾坚蒙,2,2-二甲氧基-2-苯基苯乙酮的牌号为Omnirad 651,2-羟基-2-甲基-1-苯基丙酮的牌号为Omnirad 1173,二苯基-(2,4,6-三甲基苯甲酰)氧磷的牌号为Omnirad TPO;1,3,4,6-四(2-巯基乙基)甘脲源自四国化成工业公司,商品名为TS-G,其具有式(IV)所示的结构;1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]源自四国化成工业公司,其具有式(V)所示的结构;双酚A型环氧树脂源自三菱化学株式会社的jER-828EL;氢化双酚A型环氧树脂源自美国CVC热固性特种材料公 司的Epalloy 5000;分子内具有碳-碳双键的烯类化合物源自沙多玛化学有限公司的三环癸烷二甲醇二丙烯酸酯SR833S和湛新树脂(中国)有限公司的双酚A型环氧二丙烯酸酯EBECRYL600;阻聚剂对羟基苯甲醚源自Solvay公司的MEHQ;稳定剂硼酸三乙酯源自日本TCI公司的B0520;含酯键的多硫醇固化剂:季戊四醇四(3-巯基丙酸)酯源自SC有機化学株式会社的PEMP。
Figure PCTCN2022113624-appb-000005
实施例1
该实施例用于说明本发明提供的多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯)的制备,具体步骤及反应流程图如下:
Figure PCTCN2022113624-appb-000006
步骤一:将5,5′-二烯丙基-2,2′-联苯二酚80g溶解在200mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至70℃搅拌10分钟,然后缓慢加入烯丙基溴79.8g,反应8小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并 用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤二中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂偶氮二异丁腈5.4g,在惰性气体保护下升温至70℃,缓慢加入硫代乙酸96.2g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至60℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物124.8g,即为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯,总产率为86.2%。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯基本没有硫臭味。
该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯的 1H-NMR图以及IR光谱图分别如图1和图2所示。从图1可以看出,化学位移7.0ppm附近为联苯环上的质子峰,化学位移4.0ppm、2.6ppm和1.95ppm处的峰对应联苯环上的烷氧基,化学位移2.7ppm、2.5ppm和1.89ppm处的峰则对应联苯环上的烷基,化学位移1.42ppm和1.3ppm处的峰分别对应联苯环上烷基巯基和烷氧基巯基。从图2可以看出,1492cm -1处是联苯环上的吸收峰,815cm -1处对应联苯环上的Ar-H弯曲振动,2928cm -1处为烷基链上的C-H伸缩振动吸收峰,1246cm -1出现的吸收峰为烷氧基C-O伸缩振动,2560cm -1处的吸收峰则对应巯基。由此可以看出,该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯具有通式(I)所示的结构,其中,R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1。
实施例2
该实施例用于说明本发明提供的多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯)的制备,具体步骤如下:
步骤一:将5,5′-二烯丙基-3,3′-二甲氧基-2,2′-联苯二酚98g溶解在250mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至70℃搅拌10分钟,然后缓慢加入烯丙基溴79.8g,反应8小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤一中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发 剂偶氮二异丁腈5.4g,在惰性气体保护下升温至70℃,缓慢加入硫代乙酸96.2g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至70℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物137.7g,即为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯,总产率为84.5%。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯基本没有硫臭味。
该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯的1H-NMR图以及IR光谱图分别如图3和图4所示。从图3可以看出,化学位移6.85ppm和7.05ppm附近为联苯环上的质子峰,化学位移4.03ppm、2.59ppm和1.98ppm处的峰对应联苯环上的烷氧基,化学位移2.73ppm、2.49ppm和1.92ppm处的峰则对应联苯环上的烷基,化学位移1.43ppm和1.31ppm处的峰分别对应联苯环上烷基巯基和烷氧基巯基。从图4可以看出,1489cm -1处是联苯环上的吸收峰,818cm -1处对应联苯环上的Ar-H弯曲振动,2925cm -1处为烷基链上的C-H伸缩振动吸收峰,1242cm -1出现的吸收峰为烷氧基C-O伸缩振动,2560cm -1处的吸收峰则对应巯基。由此可以看出,该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯具有通式(I)所示的结构,其中,R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自甲氧基,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1。
实施例3
该实施例用于说明本发明提供的多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯)的制备,具体步骤如下:
步骤一:将5,5′-二烯丙基-2,2′-联苯二酚80g溶解在200mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至70℃搅拌20分钟,然后缓慢加入5-溴-1-戊烯98.3g,反应8小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤一中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂偶氮二异丁腈5.4g,在惰性气体保护下升温至70℃,缓慢加入硫代乙酸96.2g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至60℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物133.2g,即为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯,总产率82.4%。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯基本没有硫臭味,经 1H-NMR以及IR检测,其具有通式(I)所示的结构,其中,R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为3。
实施例4
该实施例用于说明本发明提供的多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯)的制备,具体步骤如下:
步骤一:将5,5′-二烯丙基-2,2′-联苯二酚80g溶解在200mL丙酮中,加入碳酸钾103.6g和相转移催化剂18-冠-67.9g,在惰性气体保护下升温至50℃搅拌60分钟,然后缓慢加入烯丙基溴79.8g,反应12小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤二中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂过氧化苯甲酰8.0g,在惰性气体保护下升温至80℃,缓慢加入硫代乙酸96.2g,反应5小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至60℃水解反应12小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物120.9g,即为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯,总产率为83.5%。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯基本没有硫臭味,经 1H-NMR以及IR检测,其具有通式(I)所示的结构,其中,R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1。
实施例5
该实施例用于说明本发明提供的多硫醇化合物(5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧 基)联苯)的制备,具体步骤如下:
步骤一:将5,5′-二烯丙基-2,2′-联苯二酚80g溶解在200mL二甲基甲酰胺中,加入氢氧化钾42.1g和相转移催化剂四丁基溴化铵9.67g,在惰性气体保护下升温至100℃搅拌10分钟,然后缓慢加入烯丙基氯50.5g,反应4小时后,将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的淡黄色第一中间产物;
步骤二:将步骤二中得到的第一中间产物溶解在200mL四氢呋喃中,加入自由基引发剂偶氮二异丁腈5.4g,在惰性气体保护下升温至50℃,缓慢加入硫代乙酸89.3g,反应12小时后,减压蒸馏除去溶剂和过量的硫代乙酸,得到呈液态的淡黄色第二中间产物;
步骤三:将步骤二中得到的第二中间产物溶解在300mL甲醇中,加入60mL盐酸进行水解,升温至70℃水解反应5小时,减压蒸馏除去溶剂,用5%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈淡黄色粘稠液体的最终产物111.6g,即为5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯,总产率为77.1%。该5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯基本没有硫臭味,经 1H-NMR以及IR检测,其具有通式(I)所示的结构,其中,R 1、R 2、R 3、R 5、R 7和R 8均为氢原子,R 4和R 6均为碳原子数为3的亚烷基,m和n均为1。
实施例6
该实施例用于说明本发明提供的热固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧树脂50份、氢化双酚A型环氧树脂10份、实施例1中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯38份、潜伏性固化促进剂3份、稳定剂硼酸三乙酯0.5份。
在容器中量取上述原料后,使用分散设备在室温或低温下充分混合均匀,并进行脱泡处理,出料封装后即得树脂组合物。
实施例7
该实施例用于说明本发明提供的热固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧树脂50份、氢化双酚A型环氧树脂10份、实施例2中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯42份、潜伏 性固化促进剂3份、稳定剂硼酸三乙酯0.5份。
在容器中量取上述原料后,使用分散设备在室温或低温下充分混合均匀,并进行脱泡处理,出料封装后即得树脂组合物。
实施例8
该实施例用于说明本发明提供的UV光固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧二丙烯酸酯50份、三环癸烷二甲醇二丙烯酸酯10份、实施例1中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯32份、光引发剂2,2-二甲氧基-2-苯基苯乙酮3份、阻聚剂对羟基苯甲醚0.2份。
在容器中量取上述原料后,使用分散设备在避光下室温或低温充分混合均匀,并进行脱泡处理,出料封装后即得树脂组合物。
实施例9
该实施例用于说明本发明提供的UV光固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧二丙烯酸酯50份、三环癸烷二甲醇二丙烯酸酯10份、实施例2中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯36份、光引发剂2,2-二甲氧基-2-苯基苯乙酮3份、阻聚剂对羟基苯甲醚0.2份。
在容器中量取上述原料后,使用分散设备在避光下室温或低温充分混合均匀,并进行脱泡处理,出料封装后即得树脂组合物。
实施例10
该实施例用于说明本发明提供的光/热双固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧树脂25份、氢化双酚A型环氧树脂5份、双酚A型环氧二丙烯酸酯25份、三环癸烷二甲醇二丙烯酸酯5份、实施例1中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯35份、光引发剂2-羟基-2-甲基-1-苯基丙酮1份和二苯基-(2,4,6-三甲基苯甲酰)氧磷1份、潜伏性固化促进剂2份、稳定剂硼酸三乙酯0.3份、阻聚剂对羟基苯甲醚0.1份。
在容器中量取上述原料后,使用分散设备在避光下室温或低温充分混合均匀,并进行 脱泡处理,出料封装后即得树脂组合物。
实施例11
该实施例用于说明本发明提供的光/热双固化树脂组合物的制备,所述树脂组合物包括以下组分及重量份数:双酚A型环氧树脂25份、氢化双酚A型环氧树脂5份、双酚A型环氧二丙烯酸酯25份、三环癸烷二甲醇二丙烯酸酯5份、实施例2中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯39份、光引发剂2-羟基-2-甲基-1-苯基丙酮1份和二苯基-(2,4,6-三甲基苯甲酰)氧磷1份、潜伏性固化促进剂2份、稳定剂硼酸三乙酯0.3份、阻聚剂对羟基苯甲醚0.1份。
在容器中量取上述原料后,使用分散设备在避光下室温或低温充分混合均匀,并进行脱泡处理,出料封装后即得树脂组合物。
对比例1
按照实施例6的方法制备热固化树脂组合物,不同的是,将实施例6中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的含酯键的多硫醇固化剂季戊四醇四(3-巯基丙酸)酯替代,其余条件与实施例6相同,得到热固化树脂组合物。
对比例2
按照实施例6的方法制备热固化树脂组合物,不同的是,将实施例6中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的1,3,4,6-四(2-巯基乙基)甘脲替代,其余条件与实施例6相同,得到热固化树脂组合物。
对比例3
按照实施例6的方法制备热固化树脂组合物,不同的是,将实施例6中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的甘脲复合物(该甘脲复合物为1,3,4,6-四(2-巯基乙基)甘脲和1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的混合物且其中1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的质 量占比为8%)替代,其余条件与实施例6相同,得到热固化树脂组合物。
对比例4
按照实施例8的方法制备UV光固化树脂组合物,不同的是,将实施例8中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的含酯键的多硫醇固化剂季戊四醇四(3-巯基丙酸)酯替代,其余条件与实施例8相同,得到UV光固化树脂组合物。
对比例5
按照实施例8的方法制备UV光固化树脂组合物,不同的是,将实施例8中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的1,3,4,6-四(2-巯基乙基)甘脲替代,其余条件与实施例8相同,得到UV光固化树脂组合物。
对比例6
按照实施例8的方法制备UV光固化树脂组合物,不同的是,将实施例8中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的甘脲复合物(该甘脲复合物为1,3,4,6-四(2-巯基乙基)甘脲和1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的混合物且其中1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的质量占比为8%)替代,其余条件与实施例8相同,得到UV光固化树脂组合物。
对比例7
按照实施例10的方法制备光/热双固化树脂组合物,不同的是,将实施例10中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的含酯键的多硫醇固化剂季戊四醇四(3-巯基丙酸)酯替代,其余条件与实施例10相同,得到光/热双固化树脂组合物。
对比例8
按照实施例10的方法制备光/热双固化树脂组合物,不同的是,将实施例10中制得的 多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的1,3,4,6-四(2-巯基乙基)甘脲替代,其余条件与实施例8相同,得到光/热双固化树脂组合物。
对比例9
按照实施例10的方法制备光/热双固化树脂组合物,不同的是,将实施例10中制得的多硫醇固化剂5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯采用相同硫醇官能团当量的甘脲复合物(该甘脲复合物为1,3,4,6-四(2-巯基乙基)甘脲和1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的混合物且其中1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]的质量占比为8%)替代,其余条件与实施例10相同,得到光/热双固化树脂组合物。
测试例
(1)晶体析出时间(小时):分别将实施例与对比例中制备的树脂组合物在室温下放置,从树脂组合物制备完成起直至确认晶体析出为止的时间。需要说明的是,晶体析出的确认通过目视进行,测试最长时间为240小时。
(2)固化条件:将实施例6-7及对比例1-3中制备的树脂组合物,置于80℃烘箱中热固化60分钟,即得固化后的样品;将实施例8-9及对比例4-6中制备的树脂组合物,用紫外光源(365nm,光强1000mW/cm 2)辐照固化10秒,即得固化后的样品;将实施例10-11及对比例7-9中制备的树脂组合物,先用紫外光源(365nm,光强1000mW/cm 2)辐照固化4秒,再将样品置于80℃烘箱中热固化60分钟,即得固化后的样品。
(3)玻璃化转变温度(℃):使用美国TA仪器的Q-800型动态热机械分析测试仪(DMA)进行测试,将以上实施例及对比例中制备的树脂组合物固化完全后制成42mm×8mm×0.3mm的薄片,在-40~250℃的温度范围内,在液氮氛围和薄膜拉伸模式下测定损耗因子(tanδ)随温度的变化规律,其中,升温速率10℃/min,测试频率为10Hz,从而确定树脂组合物固化后的玻璃化转变温度T g(℃)。
(4)热粘接强度(MPa):将以上实施例及对比例中制备的树脂组合物分别涂覆在不锈钢片材上,用钢化玻璃片材搭接压合,制作试验样品,粘接面积为25.4mm×5mm,并保证胶层的厚度为0.1mm,对试验样品分别进行固化,然后将固化完全的样品,使用万能试验机将两个片材沿相反方向拉开,在环境温度为85℃的条件下进行测试,所测得的力值以 强度(MPa)记录;将固化后的样品经过加热加湿条件85℃/85%RH/120h处理后,再次在环境温度为85℃的条件下测试样品的剪切粘接强度(MPa)并记录。
上述晶体析出时间、玻璃化转变温度以及加热加湿前后的热粘接强度的测定结果如下表1所示。
表1
Figure PCTCN2022113624-appb-000007
结合表1分析比较实施例1-11和/或对比例1-9,首先通过对实施例1-5进行分析,可以看出本发明的多硫醇化合物呈液态,无酯键,产率高,且基本无副产物产生,制备工艺简单,能够有效降低成本;通过对实施例6和对比例1-3、实施例8和对比例4-6、实施例10和对比例7-9进行对比分析,可以看出本发明的多硫醇化合物作为固化剂制备的树脂组合物在晶体析出时间、玻璃化转变温度和加热加湿前后的热粘接强度方面均明显更优,说明本发明制备的树脂组合物具有更好的稳定性(晶体析出时间长)、更高的耐热性(玻璃化转变温度高和热粘接强度高)、更优良的粘接性能和耐湿热水解性能。
从实施例6、实施例8、实施例10分别与对比例1、对比例4、对比例7的对比可以看出,将本发明制备的多硫醇化合物更换为含酯键的多硫醇固化剂季戊四醇四(3-巯基丙酸)酯后,树脂组合物固化后的玻璃化转变温度均急剧降低,同时热粘接强度也明显降低,特别是加热加湿后的热粘接强度几乎消失殆尽,说明本发明的多硫醇化合物对树脂组合物的耐热性、粘接性能和耐湿热水解性能均有明显地影响。
从实施例6、实施例8、实施例10分别与对比例2-3、对比例5-6、对比例8-9的对比可以看出,对比例2、对比例5以及对比例8中将本发明制备的多硫醇化合物更换为1,3,4,6-四(2-巯基乙基)甘脲后,树脂组合物的晶体析出时间大幅缩短至6.5小时、26小时和13小时,同时固化物的玻璃化转变温度和热粘接强度也出现了一定程度的下降,说明固体的多硫醇固化剂1,3,4,6-四(2-巯基乙基)甘脲由于容易析出晶体造成了树脂组合物综合性能的降低;对比例3、对比例6以及对比例9中,通过加入部分1,1-(二硫代双乙烷二基)-双[3,4,6-三(2-巯基乙基)甘脲]改善了多硫醇固化剂1,3,4,6-四(2-巯基乙基)甘脲晶体析出时间短的问题,但这种方案在明显增加成本的同时,树脂组合物的玻璃化转变温度和热粘接强度依然略低于本发明的树脂组合物,说明本发明的多硫醇化合物可以在低成本且无晶体析出的情况下对树脂组合物的耐热性、粘接性能和耐湿热水解性能产生明显地影响。
综合上述分析,本发明的多硫醇化合物在气味低的基础上,无酯键,具有良好的耐湿耐热性能,在室温下为液体,且可直接作为固化剂,用于树脂组合物的合成,该树脂组合物可作为密封剂和粘接剂的成分,相较于专利CN201680014880.5中提出的两种巯基乙基甘脲化合物联用作为固化剂成分,本发明的多硫醇化合物反应工序简单,不用额外进行偶联形成低聚物混合物,也无须与其他多硫醇化合物联用,成本低。此外,本发明提供的多硫醇化合物能够降低单组份低温固化环氧树脂储存稳定性风险,适用期长,应用前景广泛。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种多硫醇化合物,其特征在于,所述多硫醇化合物由通式(I)表示:
    Figure PCTCN2022113624-appb-100001
    所述通式(I)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的烷基和碳原子数为1-5的烷氧基中的一种,R 4和R 6分别独立地选自碳原子数为1-5的亚烷基,m和n分别独立地为0、1、2或3。
  2. 如权利要求1所述的多硫醇化合物,其特征在于,所述通式(I)中,R 1、R 2、R 5和R 7均为氢原子,R 3和R 8分别独立地选自氢原子或甲氧基,R 4和R 6分别独立地选自碳原子数为3-5的亚烷基,m和n为1。
  3. 如权利要求1所述的多硫醇化合物,其特征在于,所述多硫醇化合物选自5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丁氧基)-3,3′-二甲氧基联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基戊氧基)-3,3′-二甲氧基联苯、5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)联苯以及5,5′-双(3-巯基丙基)-2,2′-双(3-巯基丙氧基)-3,3′-二甲氧基联苯中的至少一种。
  4. 权利要求1所述的多硫醇化合物的制备方法,其特征在于,该方法包括以下步骤:
    步骤一:将由通式(II)表示的苯酚类化合物和由通式(III)表示的第一化合物在相转移催化剂的存在下且在碱性条件下进行取代反应,提纯后得到呈液态的无色或淡黄色的第一中间产物;
    步骤二:将第一中间产物和硫代乙酸在自由基引发剂的存在下进行自由基加成反应,提纯后得到呈液态的无色或淡黄色的第二中间产物;
    步骤三:将第二中间产物进行水解反应,提纯后得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物;
    Figure PCTCN2022113624-appb-100002
    通式(II)中,R 1、R 2、R 3、R 5、R 7和R 8分别独立地选自氢原子、碳原子数为1-5的低级烷基和碳原子数为1-5的烷氧基中的一种,R 9和R 10分别独立地选自碳原子数为1-5的1-烯基烷基;
    通式(III)中,X表示氯或溴,m为0、1、2或3。
  5. 如权利要求4所述的多硫醇化合物的制备方法,其特征在于,步骤一中,所述取代反应的方式为将由通式(II)表示的苯酚类化合物溶解在有机溶剂中,加碱提供碱性条件,加入相转移催化剂,之后在惰性气体保护下升温至40-100℃搅拌10-60分钟,随后再加入通式(III)表示的第一化合物,反应4-12小时,接着将反应液过滤,滤液减压蒸馏除去溶剂,用水洗三次,并用三氯甲烷萃取,有机相收集后蒸干,得到呈液态的无色或淡黄色的第一中间产物。
  6. 如权利要求4所述的多硫醇化合物的制备方法,其特征在于,步骤二中,所述自由基加成反应的方式为将第一中间产物溶解在有机溶剂中,加入自由基引发剂,在惰性气体保护下升温至40-100℃,缓慢加入硫代乙酸,进行自由基加成反应4-12小时,之后减压蒸馏除去溶剂,得到呈液态的无色或淡黄色的第二中间产物。
  7. 如权利要求4所述的多硫醇化合物的制备方法,其特征在于,步骤三中,所述水解反应的方式为将第二中间产物溶解在有机溶剂中,加入盐酸或氢氧化钠,升温至50-100℃反应3-12小时,减压蒸馏除去溶剂,用2-8%的碳酸氢钠溶液洗两遍,并用三氯甲烷萃取,有机相收集后蒸干,得到呈无色或淡黄色的粘稠液状产物,即为多硫醇化合物。
  8. 一种固化剂,其特征在于,所述固化剂至少含有权利要求1所述的多硫醇化合物。
  9. 一种树脂组合物,其特征在于,所述树脂组合物至少含有权利要求8所述的固化剂以及树脂,所述树脂为分子内具有碳-碳双键的烯类化合物和/或环氧树脂。
  10. 如权利要求9所述的树脂组合物,其特征在于,当所述树脂为环氧树脂时,所述树脂组合物中含有胺类作为固化促进剂。
  11. 如权利要求9所述的树脂组合物,其特征在于,当所述树脂为环氧树脂时,所述 树脂组合物中含有环氧树脂与胺类的反应产物作为固化促进剂。
  12. 如权利要求9所述的树脂组合物,其特征在于,当所述树脂为环氧树脂时,所述树脂组合物中含有分子内具有一个以上异氰酸酯基的化合物与分子内具有伯氨基和仲氨基中的至少一个的化合物的反应产物作为固化促进剂。
  13. 权利要求9所述的树脂组合物作为胶黏剂或密封剂的成分的应用。
PCT/CN2022/113624 2021-10-22 2022-08-19 一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用 WO2023065802A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022000088.0T DE112022000088T5 (de) 2021-10-22 2022-08-19 Polymercaptanverbindung und Verfahren zu ihrer Herstellung, Härtungsmittel, Harzzusammensetzung und ihre Anwendung
KR1020227044121A KR102569422B1 (ko) 2021-10-22 2022-08-19 폴리메르캅탄 화합물 및 그 제조 방법, 경화제, 수지 조성물 및 그 용도
JP2022577121A JP2023546308A (ja) 2021-10-22 2022-08-19 ポリチオール化合物及びその調製方法、硬化剤、樹脂組成物並びにその使用
US18/015,721 US11919842B2 (en) 2021-10-22 2022-08-19 Polymercaptan compound and preparation method thereof, curing agent, resin composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111232232.6A CN113912523B (zh) 2021-10-22 2021-10-22 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂
CN202111232232.6 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065802A1 true WO2023065802A1 (zh) 2023-04-27

Family

ID=79242526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113624 WO2023065802A1 (zh) 2021-10-22 2022-08-19 一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用

Country Status (6)

Country Link
US (1) US11919842B2 (zh)
JP (1) JP2023546308A (zh)
KR (1) KR102569422B1 (zh)
CN (1) CN113912523B (zh)
DE (1) DE112022000088T5 (zh)
WO (1) WO2023065802A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788936B (zh) * 2021-10-22 2022-05-10 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113912523B (zh) * 2021-10-22 2022-09-06 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂
CN115232585B (zh) * 2022-06-24 2023-11-24 同济大学 一种耐湿热水解的单组分环氧树脂组合物及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721814A (en) * 1986-01-23 1988-01-26 Ciba-Geigy Corporation Mercaptan-containing polyphenols
JP2012122012A (ja) * 2010-12-09 2012-06-28 Showa Denko Kk エポキシ樹脂硬化剤およびエポキシ樹脂組成物
CN105764907A (zh) * 2013-11-29 2016-07-13 四国化成工业株式会社 巯基烷基甘脲类及其用途
CN107428781A (zh) * 2015-03-12 2017-12-01 四国化成工业株式会社 巯基乙基甘脲化合物及其应用
JP2019214711A (ja) * 2018-06-06 2019-12-19 Sc有機化学株式会社 エーテル結合含有硫黄化合物及び樹脂組成物
CN113788936A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113788935A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种环氧树脂组合物及其制备方法和应用
CN113912523A (zh) * 2021-10-22 2022-01-11 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂
CN113943420A (zh) * 2021-10-22 2022-01-18 韦尔通(厦门)科技股份有限公司 一种uv光固化树脂组合物及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817674B2 (ja) 1979-07-05 1983-04-08 星崎電機株式会社 製氷及び製水を行なう冷蔵装置
US4266055A (en) 1980-05-07 1981-05-05 Nippon Kasei Chemical Co., Ltd. Tris(3-acetylthiopropyl)isocyanurate and preparation thereof
JP4375643B2 (ja) * 2000-10-30 2009-12-02 三井化学株式会社 含硫(メタ)アクリル酸チオエステル化合物およびその用途
JP5923472B2 (ja) 2013-09-18 2016-05-24 四国化成工業株式会社 メルカプトアルキルグリコールウリル類とその利用
EP2910236B1 (de) * 2014-02-24 2020-02-12 Ivoclar Vivadent AG Dentalmaterialien auf der Basis von geruchsarmen Thiolen
WO2017083702A1 (en) * 2015-11-13 2017-05-18 William Marsh Rice University Biaryl compounds as antimicrobial and chemotherapeutic agents
WO2018051713A1 (ja) * 2016-09-15 2018-03-22 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び化合物
EP3702348A4 (en) * 2017-10-26 2021-07-21 Shikoku Chemicals Corporation THIOLS COMPOUNDS, PROCESS FOR SYNTHESIS THEREOF, AND USE OF SAID THIOLS COMPOUNDS
JP7199917B2 (ja) * 2017-11-02 2023-01-06 四国化成工業株式会社 チオール化合物、その合成方法および該チオール化合物の利用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721814A (en) * 1986-01-23 1988-01-26 Ciba-Geigy Corporation Mercaptan-containing polyphenols
JP2012122012A (ja) * 2010-12-09 2012-06-28 Showa Denko Kk エポキシ樹脂硬化剤およびエポキシ樹脂組成物
CN105764907A (zh) * 2013-11-29 2016-07-13 四国化成工业株式会社 巯基烷基甘脲类及其用途
CN107428781A (zh) * 2015-03-12 2017-12-01 四国化成工业株式会社 巯基乙基甘脲化合物及其应用
JP2019214711A (ja) * 2018-06-06 2019-12-19 Sc有機化学株式会社 エーテル結合含有硫黄化合物及び樹脂組成物
CN113788936A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种可光/热双重固化树脂组合物及其制备方法和应用
CN113788935A (zh) * 2021-10-22 2021-12-14 韦尔通(厦门)科技股份有限公司 一种环氧树脂组合物及其制备方法和应用
CN113912523A (zh) * 2021-10-22 2022-01-11 韦尔通(厦门)科技股份有限公司 一种多硫醇化合物及其制备方法、固化剂、树脂组合物、胶黏剂和密封剂
CN113943420A (zh) * 2021-10-22 2022-01-18 韦尔通(厦门)科技股份有限公司 一种uv光固化树脂组合物及其制备方法和应用

Also Published As

Publication number Publication date
US20230373912A1 (en) 2023-11-23
KR20230058318A (ko) 2023-05-03
US11919842B2 (en) 2024-03-05
CN113912523B (zh) 2022-09-06
JP2023546308A (ja) 2023-11-02
KR102569422B1 (ko) 2023-08-21
CN113912523A (zh) 2022-01-11
DE112022000088T5 (de) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2023065802A1 (zh) 一种多硫醇化合物及其制备方法、固化剂、树脂组合物及其应用
KR101624084B1 (ko) 유기 규소 화합물을 포함하는 점착제 조성물, 점착 편광판 및 액정 표시 장치
CN113788936B (zh) 一种可光/热双重固化树脂组合物及其制备方法和应用
US7491789B2 (en) Disulfide-containing phenolic resin as curing agent for epoxy resin
CN113652186B (zh) 一种光热双重固化树脂组合物及其制备方法和应用
CN101914349B (zh) 液晶密封剂、液晶显示面板的制造方法以及液晶显示面板
WO2018010604A1 (zh) 多官能度氧杂环丁烷类化合物及其制备方法
TWI453212B (zh) Alkoxysilane derivatives containing thioethers and their use
CN107531612B (zh) 用于uv可固化的压敏粘合剂中的聚合物光引发剂或可聚合的光引发剂
TWI603999B (zh) Organic polyxanthane compound containing isocyanate group, method for producing the same, adhesive agent, adhesive and coating agent
CN113943420B (zh) 一种uv光固化树脂组合物及其制备方法和应用
JP5671885B2 (ja) 密着性向上剤
CN113788935B (zh) 一种环氧树脂组合物及其制备方法和应用
JP2012197233A (ja) チオエーテル含有アルコキシシラン誘導体、およびその用途
KR20220008259A (ko) 액정 적하 공법용 시일제
JP5895715B2 (ja) チオエーテル含有ウレア誘導体、およびその用途
CN115232585B (zh) 一种耐湿热水解的单组分环氧树脂组合物及其制备方法和应用
CN115232259B (zh) 一种耐湿热水解的双固化树脂组合物及其制备方法和应用
CN117142992A (zh) 多官萘化合物及制备方法、固化剂、树脂组合物和胶黏剂
JP2015017060A (ja) 過酸化物及び熱硬化性樹脂組成物
KR102542899B1 (ko) 신규한 n-설포닐 아지리딘 화합물 및 이의 제조방법
KR101346643B1 (ko) 화합물, 이를 포함하는 접착 조성물 및 이를 이용하여 제조한 접착제
JP2531889B2 (ja) ライニングに適した組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022577121

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022000088

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882421

Country of ref document: EP

Kind code of ref document: A1