WO2023063260A1 - 二次電池用負極構造体及び該構造体を備えた二次電池 - Google Patents
二次電池用負極構造体及び該構造体を備えた二次電池 Download PDFInfo
- Publication number
- WO2023063260A1 WO2023063260A1 PCT/JP2022/037651 JP2022037651W WO2023063260A1 WO 2023063260 A1 WO2023063260 A1 WO 2023063260A1 JP 2022037651 W JP2022037651 W JP 2022037651W WO 2023063260 A1 WO2023063260 A1 WO 2023063260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- negative electrode
- secondary battery
- film
- electrode structure
- Prior art date
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 168
- 239000011701 zinc Substances 0.000 claims abstract description 157
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 141
- 238000003411 electrode reaction Methods 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 25
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 12
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 32
- 229910052797 bismuth Inorganic materials 0.000 claims description 30
- 239000003792 electrolyte Substances 0.000 claims description 20
- 239000011888 foil Substances 0.000 abstract 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 86
- 239000010408 film Substances 0.000 description 86
- 239000011787 zinc oxide Substances 0.000 description 43
- 238000007599 discharging Methods 0.000 description 37
- 239000008151 electrolyte solution Substances 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 22
- 230000014759 maintenance of location Effects 0.000 description 22
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 239000011149 active material Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 210000001787 dendrite Anatomy 0.000 description 16
- 239000007773 negative electrode material Substances 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 230000008859 change Effects 0.000 description 15
- 230000008602 contraction Effects 0.000 description 13
- 238000005868 electrolysis reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000005764 inhibitory process Effects 0.000 description 11
- -1 zincate ion Chemical class 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 238000005336 cracking Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000004745 nonwoven fabric Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000004660 morphological change Effects 0.000 description 4
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001622 bismuth compounds Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012789 electroconductive film Substances 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 230000006266 hibernation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 231100000647 material safety data sheet Toxicity 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/474—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/477—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/48—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode structure and a secondary battery having the structure.
- Zinc is a battery negative electrode material that can be used in an aqueous solution, and the theoretical value of the amount of electricity that can be stored per unit volume (called volume capacity density) exceeds 5000 Ah / L, and lithium is also used as a battery negative electrode material. is more than twice as large as In addition, it has the lowest standard electrode potential as a negative electrode material that can be used in an aqueous solution, and can make the electromotive force of a battery using an aqueous solution higher than that of other negative electrode materials. Taking advantage of these characteristics, zinc-air batteries have been commercialized as primary batteries for hearing aids. On the other hand, a zinc secondary battery, which is a secondary battery using zinc as a negative electrode active material, has not yet been put to practical use.
- the life of the zinc secondary battery is short due to poor cycle characteristics of the negative electrode. Specifically, during several to several hundred charge-discharge cycles, zinc generated at the negative electrode reaches the positive electrode and causes an internal short circuit. It is judged that the zinc secondary battery has reached the end of its life when the capacity retention rate drops to less than half.
- the number of charge-discharge cycles varies depending on conditions such as charge-discharge rate, current density per unit weight of zinc or per unit area of a negative electrode using zinc as an active material, and operating temperature.
- zinc is produced during charging, and zinc oxide is produced during discharging.
- Both zinc and zinc oxide are active materials for negative electrodes of zinc secondary batteries, and both or either of them may be referred to as an active material in this document.
- Such a reaction between zinc and zinc oxide at the negative electrode is related to internal short circuiting and a decrease in capacity retention rate in zinc secondary batteries. The relationship will be explained below.
- zinc secondary batteries the one that has been most studied up to now is a zinc secondary battery in which the electrolyte is an alkaline aqueous solution, and the following two-step reaction occurs during discharge.
- Formulas (1) and (2) show that Zn (solid) provides two electrons to the negative electrode to become Zn(OH) 4 2- (zincate ion), which dissolves in an alkaline aqueous solution as an electrolyte, and further This indicates that ZnO (solid) is deposited on the negative electrode from the alkaline aqueous solution.
- formulas (3) and (4) show that Zn(OH) 4 2- dissolved from ZnO in an alkaline aqueous solution receives two electrons from the negative electrode and deposits as Zn (solid) on the negative electrode. showing.
- OH - and Zn(OH) 4 2- present in the alkaline aqueous solution must be capable of reacting with solid Zn or ZnO. is essential, and the above reaction occurs at the portion where the active material is in contact with the alkaline aqueous solution.
- the densities of zinc and zinc oxide are 7.14 g/cm 3 and 5.61 g/cm 3 (both are values near room temperature), respectively. .16 cm 3 /mol, zinc oxide 14.5 cm 3 /mol.
- 1 mol of zinc changes to 1 mol of zinc oxide of the same amount during discharge, and the volume expands about 1.6 times at that time. do.
- the zinc oxide changes to zinc and the volume shrinks to 63% of the original zinc oxide volume. If such large volume expansion or contraction occurs in the charging/discharging reaction, it causes cracking or peeling of the zinc negative electrode.
- the electronic conductivity of the cracked portion is remarkably reduced, or if the crack progresses, the electronic conductivity is lost only in that portion, and it becomes a portion that cannot be used for charging and discharging. Naturally, this causes a decrease in capacity retention rate.
- an internal short circuit occurs, and the cracked zinc negative electrode peels off and eventually falls off, and the internal short circuit also occurs when the zinc negative electrode comes into contact with the positive electrode.
- dendrites zinc is known as a metal that tends to grow in a specific direction and in the shape of branched protrusions called dendrites.
- dendritic growth also causes an internal short circuit and a decrease in capacity retention rate.
- dendritic growth is a result of increased rate of charge-discharge reaction at specific locations on the negative electrode of the zinc secondary battery.
- the zinc anode cracks or peels off due to volumetric expansion or contraction, and electronic conductivity is partially lost, the places where the zinc anode can react are limited, and as a result, the reaction occurs at a specific place. It can be considered that there are places where the reaction rate is concentrated and high.
- Patent Literature 1 to Patent Literature 15 disclose technologies related to separators and solid electrolytes that separate the negative electrode and the positive electrode to address these problems.
- An electrochemical cell with an electronically insulating separator is disclosed.
- This electrochemical cell describes a separator that manages and controls dendrite formation in metal-based batteries such as lithium-based, alkaline-based, zinc-based, and lead-based batteries.
- Patent Document 2 discloses a separator for a zinc negative electrode secondary battery, which has a central portion and a peripheral edge portion surrounding the outer circumference of the central portion, and at least a part of the peripheral edge portion has a larger contact than the central portion. Separators are disclosed having angles (according to the ⁇ /2 method).
- Patent Document 3 manufacturing a separator for a zinc negative electrode secondary battery comprising an impregnation step of impregnating a nonwoven fabric with a dispersion containing a layered double hydroxide and a drying step of drying the nonwoven fabric impregnated with the dispersion.
- a method is disclosed.
- a secondary battery that can be expected to have an increased capacity, has high stability during charging and discharging, and does not cause the problem of short circuit due to zinc dendrites is composed of Ni, Fe, and Mn as a positive electrode active material.
- a secondary battery comprising a negative electrode containing a layered double hydroxide (LDH) containing as and an alkaline electrolyte (liquid electrolyte) and/or a hydroxide ion conductive solid electrolyte is disclosed.
- Patent Document 5 discloses that zinc dendrites effectively short-circuit between the positive and negative electrodes while ensuring an efficient conduction path for hydroxide ions between the positive and negative electrodes and improving the space efficiency in the battery.
- a negative electrode structure capable of preventing the a negative electrode active material layer containing zinc and/or zinc oxide; Disclosed is a negative electrode structure and a zinc secondary battery using the negative electrode structure, which includes a dense hydroxide ion conductive ceramic separator.
- Patent Document 6 discloses a battery containing a separator containing inorganic particles for short-circuit prevention, from which the inorganic particles are difficult to detach.
- Patent Document 7 in a zinc secondary battery having a separator structure containing a hydroxide ion conductive separator, overcharging is performed while ensuring excellent separator characteristics that are effective in preventing short circuits due to zinc dendrites.
- a zinc secondary battery capable of improving durability is disclosed.
- a secondary battery having a plurality of unit cells with good space efficiency while reliably isolating the positive and negative electrodes with a hydroxide ion conductive ceramic separator is disclosed from the first end face to the second end face. and/or a columnar porous substrate provided with a plurality of cell holes provided parallel to each other from the second end face toward the first end face, and alternately per hole or per hole row in the plurality of cell holes
- a positive electrode and a negative electrode disposed, a positive electrode internal current collector inserted into the positive electrode and extending to the first end surface or the outer peripheral surface, and a positive electrode internal collector inserted into the negative electrode and extending to the second end surface, the outer peripheral surface or the first end surface.
- a hydroxide ion conductive ceramic separator formed on the inner walls of the cell pores and separating the positive electrode and/or the negative electrode from the porous substrate; and a liquid electrolyte.
- Patent Document 9 as a zinc secondary battery separator capable of effectively suppressing short circuits due to zinc dendrites, a zinc secondary battery for selectively allowing hydroxide ions to pass between the positive and negative electrodes in a zinc secondary battery is disclosed.
- a zinc secondary battery separator comprising a porous membrane having pores capable of separating hydroxide ions from zinc complex ions Zn(OH) 4 2- by a molecular sieve effect.
- Patent Document 10 as a separator structure that can reliably separate the positive electrode side and the negative electrode side of a zinc secondary battery, it is made of an inorganic solid electrolyte body and has hydroxide ion conductivity but air permeability. Disclosed is a separator structure that does not have air permeability as a whole, comprising a ceramic separator that is not air permeable, and an outer peripheral member that is provided along the outer periphery of the ceramic separator and is composed of at least one of a resin outer frame and a resin film.
- a multi-layered porous separator comprising: a first layer and a third layer, which are spaced apart from each other and face each other and which are composed of porous ceramics;
- a multi-layer porous separator is disclosed comprising a layer and a porous ceramic more porous than the third layer and/or a second layer composed of voids.
- Patent Document 12 as a separator and a battery that can suppress the shape change of the active material due to long-term use of the battery, a separator used in the battery, the separator having a multilayer structure including an insulating layer and a conductive layer, A battery comprising the separator, electrodes, and electrolyte is disclosed.
- Patent Document 13 as a secondary battery that can more reliably achieve a longer life than conventional secondary batteries, a separator and an aqueous electrolyte are added to a region sandwiched between the surfaces of both the positive electrode and the negative electrode. is disposed, and the separator has a particulate active material (noble potential active material particles Am) having a potential nobler than that of the negative electrode so as to exist along the surface of the separator, and the noble potential active material particles of the separator A secondary battery is disclosed in which Am decomposes dendrites.
- US Pat. No. 5,300,000 discloses a separator system for electrochemical systems that provides electronic, mechanical, and chemical properties useful for a variety of applications including electrochemical storage and conversion, e.g., lithium-based batteries.
- Structural, physical, and static materials useful in the management and control of dendrite formation in and zinc-based batteries, and in improving the cycle life and rate capability of electrochemical cells such as silicon anode-based batteries, air cathode-based batteries, and redox flow batteries. It is said to provide electrical properties.
- Patent Document 15 discloses a metal-air secondary battery in which a conductive oxide ceramic is used for a diaphragm to suppress metal dendrite short circuit.
- Patent Documents 16 to 21 and Non-Patent Documents 1 to 3 disclose the contents of attempts to improve from the point of what to use for other components.
- Patent Document 16 describes a negative electrode used in a zinc secondary battery, which comprises at least one zinc material selected from the group consisting of zinc, zinc oxide, zinc alloys and zinc compounds, and titanium oxide.
- a negative electrode is disclosed, including:
- Patent Document 17 as a negative electrode material for a metal secondary battery in which dendrite formation is suppressed, a nanosheet of a metal oxide is supported on a carbon-based conductive support, and the metal of the metal oxide is titanium, ruthenium, or A negative electrode material for a metal secondary battery is disclosed, which is characterized by being niobium.
- a zinc negative electrode mixture containing a zinc-containing compound and a conductive aid is used as a zinc negative electrode mixture for forming a negative electrode of a battery that is economical and safe and has excellent battery performance.
- the zinc-containing compound and/or the conductive aid contains particles having an average particle size of 1000 ⁇ m or less and/or particles having an aspect ratio (length/width) of 1.1 or more.
- Disclosed is a zinc anode mixture characterized by:
- Patent Document 19 a zinc electrode for a secondary battery, which is composed of a network of zinc sponge having voids and has zinc oxide formed as a shell on the zinc surface, has improved cycle characteristics. is disclosed.
- Patent Document 20 discloses a method of coating the surface of zinc particles with a metal oxide (Ti oxide, Zr oxide, etc.).
- Patent Document 21 discloses a secondary battery in which an ion conductive film and a zinc negative electrode are integrated with this film.
- Non-Patent Document 2 discloses zinc dissolution by surface treatment with an anion exchange membrane or the like for the purpose of suppressing zinc dendrites.
- Non-Patent Document 3 discloses suppression of dendrite precipitation by controlling zinc diffusion with nanoporous electrodes.
- the negative electrode of the zinc secondary battery is 1 C or more (1 C is also called 1 hour rate, and corresponds to the current that charges or discharges the battery capacity or the negative electrode capacity in 1 hour.
- 1 C means charging or discharging at a current of 1 A.
- a large charge/discharge rate or current density such as 10 mA/ cm
- the negative electrode of a zinc secondary battery is required to have excellent resistance to repeated charging and discharging, and to achieve such excellent resistance to repeated charging even at a high charge-discharge rate. There is a problem that there is no zinc secondary battery negative electrode that can be achieved.
- the negative electrode of a conventional zinc secondary battery contained a current collector different from the active material as a constituent material.
- a current collector for a zinc negative electrode a material having good oxidation resistance in an aqueous solution, such as copper, is formed into various shapes such as plate-like, mesh-like, thin film-like, and wire-like, and zinc or zinc oxide as an active material is applied thereto.
- the negative electrode is formed by integrating a material containing both of them, but the material used for the current collector is more expensive than the active materials such as zinc and zinc oxide. Therefore, there has been a demand for a negative electrode for a zinc secondary battery that does not require such an expensive current collector, but there has been a problem that there is no such negative electrode.
- the present inventors have made intensive studies and found that the negative electrode used in the zinc secondary battery has a negative electrode due to volume expansion and volume contraction during charging and discharging due to the difference in molar volume between zinc and zinc oxide as described above.
- the inventors came up with the idea of suppressing morphological changes such as cracking and peeling of the negative electrode, and completed the negative electrode structure for a secondary battery of the present invention.
- the present invention provides a foil-shaped or thin-plate-shaped main body made of zinc as a base material, a non-electronic conductive film disposed on at least one surface of the main body;
- a negative electrode structure for a secondary battery having The film has elasticity, The film is an opening formed to expose a part of the one surface of the main body; an electrode reaction inhibiting portion that defines the periphery of the aperture and inhibits an electrode reaction of the main body;
- the present invention provides a negative electrode structure for a secondary battery, in which the film is liquid-tightly adhered to the main body.
- the present invention also provides a secondary battery comprising the negative electrode structure for a secondary battery.
- FIG. 1 is a perspective view schematically showing a zinc secondary battery negative electrode material according to an embodiment of the present invention.
- FIG. 1 is a perspective view schematically showing a zinc secondary battery negative electrode material according to an embodiment of the present invention.
- FIG. It is a schematic diagram showing the area between electrodes used in order to calculate the circulation speed of electrolyte solution.
- 4 is a graph showing the relationship between the average discharge voltage and average charge voltage of the zinc-nickel secondary battery obtained in Example 1 and the number of cycles. 4 is a graph showing the relationship between the capacity retention rate and the number of cycles of the zinc-nickel secondary battery obtained in Example 1.
- FIG. 5 is a graph showing the relationship between the average discharge voltage and average charge voltage of the zinc-nickel secondary battery obtained in Example 2 and the number of cycles.
- FIG. 4 is a graph showing the relationship between the capacity retention rate and the number of cycles of the zinc-nickel secondary battery obtained in Example 2.
- FIG. 5 is a graph showing the relationship between the average discharge voltage and average charge voltage of the zinc-nickel secondary battery obtained in Comparative Example 1 and the number of cycles.
- 4 is a graph showing the relationship between the capacity retention rate and the number of cycles of the zinc-nickel secondary battery obtained in Comparative Example 1.
- FIG. 4 is a scanning electron microscope image showing the surface state of the zinc foil in the negative electrode structure used in Example 3 before the charge/discharge test.
- 4 is a scanning electron microscope image showing the surface state of the zinc foil in the negative electrode structure used in Example 3 after 514 cycles of charging and discharging.
- FIG. 4 is a scanning electron microscope image of the surface state of the zinc foil in the negative electrode structure used in Example 3 after 901 cycles of charging and discharging.
- 5 is a graph showing the relationship between the average discharge voltage and average charge voltage of the zinc-nickel secondary battery obtained in Comparative Example 2 and the number of cycles.
- 4 is a graph showing the relationship between the capacity retention rate and the number of cycles of the zinc-nickel secondary battery obtained in Comparative Example 2.
- FIG. 4 is a digital tile microscope image obtained by observing the surface state of the separator after 24 cycles of charging and discharging in the zinc-nickel secondary battery produced in Comparative Example 2.
- FIG. 1 shows one embodiment of the negative electrode structure for a secondary battery of the present invention.
- the negative electrode structure 10 for a secondary battery shown in FIG. I have.
- the contour of the main body 12 and the contour of the film 11 have the same shape and dimensions.
- zinc as a base material means that zinc element preferably accounts for a content of 80% by mass or more.
- the zinc element content can be measured by ICP emission spectrometry.
- the “main body portion” being “foil-shaped or thin plate-shaped” means that the main body portion has two main surfaces facing each other, and the thickness between the main surfaces is preferably 500 ⁇ m or less.
- the area of the main body in plan view is not particularly limited, and an appropriate size is selected according to the size of the secondary battery to which the negative electrode structure of the present invention is applied.
- Body portion 12 may further include bismuth.
- bismuth in the main body 12 , the secondary battery including the negative electrode structure 10 further improves the charge/discharge cycle characteristics and reduces the polarization associated with the charge/discharge reaction of the negative electrode structure 10 .
- the discharge voltage of the secondary battery becomes higher and the charge voltage becomes lower, which is an advantageous effect.
- the inventor believes that the reason is as follows.
- the standard electrode potential of bismuth is 0.317 V for the redox reaction shown in equation (5).
- the standard electrode potential of zinc and zincate ion is ⁇ 1.29 V for the oxidation-reduction reaction represented by the formula (6), which is about 1.5 V lower than the standard electrode potential of bismuth.
- Zn(OH) 4 2 ⁇ +2e ⁇ ⁇ Zn+4OH ⁇ (6) Therefore, it is unlikely that the bismuth contained in the main body 12 is oxidized in the vicinity of the potential at which the negative electrode structure 10 is charged and discharged, regardless of whether it is charged or discharged.
- bismuth may form Bi(OH) 3 by a chemical reaction in water and an alkaline aqueous solution, dissolution of bismuth does not need to be considered.
- the negative electrode structure 10 zinc is changed to zinc oxide by discharge, and zinc oxide is changed to zinc by charge. It is thought that it exerts a buffering action against a large volume change that occurs between it and zinc oxide. That is, in either state of zinc or zinc oxide, lumps (granules) of a certain size are formed, and there is a region generally called a grain boundary at the interface between them. It is thought that this may show the effect of mitigating the volume change as described above.
- the secondary battery including the negative electrode structure containing bismuth also has the advantage that the reactant is less likely to peel off or come off from the negative electrode structure 10 even after repeated charging and discharging.
- a secondary battery having a negative electrode structure containing bismuth has an increased discharge voltage and a decreased charge voltage under the same charging/discharging conditions as compared to a secondary battery having a negative electrode structure not containing bismuth. , there is also the advantage that the voltage efficiency (discharge voltage/charge voltage) is improved.
- the content of bismuth in the main body 12 is preferably 100 ppm or more and 10000 ppm or less, more preferably 200 ppm or more and 8000 ppm or less, and 300 ppm or more. It is more preferably 6000 ppm or less.
- the content ratio of bismuth in the main body can be measured by ICP emission spectrometry, which will be described later.
- bismuth is not in a solid solution state with zinc at least.
- the state of solid solution is a state in which the crystal structure of zinc changes due to the addition of metal elements.
- the film 11 in the negative electrode structure 10 of the present invention will be explained.
- the film 11 is in direct contact with the main surface of the main body portion 12 . Therefore, no layer is interposed between the film 11 and the body portion 12 .
- the film 11 has an opening 13 formed so that a portion of at least one of the two main surfaces of the main body 12 is exposed, and an electrode reaction layer defining the periphery of the opening 13 . and a blocking portion 14 .
- the electrode reaction inhibition portion 14 is a portion that inhibits the electrode reaction of zinc forming the body portion 12 .
- the electrode reaction inhibition portion 14 is preferably made of a material that is impermeable or hardly permeable to the electrolyte of the battery.
- impermeable means a property of completely preventing electrolyte from permeating to the main body 12 side when the battery in which the negative electrode structure of the present invention is incorporated is in operation.
- impermeability means that when the battery incorporating the negative electrode structure of the present invention is operated, the portion of the main body 12 that faces the electrode reaction inhibition portion 14 substantially causes an electrode reaction. It is a property that does not allow the electrolyte to permeate to the main body 12 side to a certain extent.
- the material of the film 11 has the property of not permeating the electrolytic solution, and the portion of the main body 12 facing the electrode reaction inhibition portion 14 is OH ⁇ or Zn(OH) to such an extent that the electrode reaction does not substantially occur.
- the film 11 is made of a non-electroconductive material for the purpose of forming the electrode reaction inhibition portion 14 on the film 11 .
- non-electroconductive means that even if the film 11 is in contact with the positive electrode disposed opposite the negative electrode structure in the zinc secondary battery, electronic conduction occurs and the zinc secondary battery
- the volume resistivity is 10 4 ⁇ cm or more, it is possible to avoid such a short circuit.
- the periphery of the opening 13 is defined by the electrode reaction inhibition portion 14 , and the opening 13 is surrounded by the electrode reaction inhibition portion 14 .
- the peripheral edge of the opening 13 has a closed shape.
- a part of the periphery of the aperture 13 may be opened so that the part of the aperture 13 may reach the periphery of the main body 12 .
- the perimeter of the aperture 13 may be open.
- the shape of the aperture 13 shown in FIG. 1 is rectangular, the shape of the aperture 13 is not limited, and a circular or elliptical shape can be adopted in addition to the rectangular shape. Or you may combine these shapes.
- the negative electrode structure of the present invention exposes the main body 12 through the openings 13 , that is, the sites where the electrode reaction occurs. It is clearly divided into a portion and a portion where no electrode reaction occurs, that is, an electrode reaction inhibiting portion 14 . In other words, the electrode reaction occurs only at the portion where the body portion 12 is exposed through the opening portion 13 . As a result, cracking and peeling due to volumetric expansion and contraction between zinc and zinc oxide during charging and discharging are less likely to occur, compared to a conventional zinc negative electrode that does not have the film 11 .
- the area of the openings 13 is preferably 0.03 mm 2 or more and 400000 mm 2 or less, and more preferably 0.1 mm 2 or more and 100000 mm 2 or less. It is more preferably 2 or more and 40000 mm 2 or less, and even more preferably 1 mm 2 or more and 2500 mm 2 or less.
- the area of the opening 13 is represented by the equivalent circle diameter, it is preferably 0.1 mm or more and 300 mm or less, more preferably 0.3 mm or more and 100 mm or less, and even more preferably 1 mm or more and 30 mm or less. , 1 mm or more and 10 mm or less.
- the ratio of the area of the apertures 13 to the apparent area of the film 11 is preferably 0.01% or more and 99.9% or less, and 1% or more and 99%. % or less, more preferably 10% or more and 90% or less, and even more preferably 50% or more and 90% or less.
- the width of the electrode reaction inhibition portion 14 in the film 11 is preferably 0.1 mm or more and 10 mm or less, and 0.5 mm or more at the narrowest portion, that is, the position of the shortest distance between the opening portion 13 and the peripheral edge of the film 11. It is more preferably 5 mm or less, and still more preferably 0.5 mm or more and 1 mm or less.
- the film 11 is adhered to the main body 12 in a liquid-tight manner. As a result, it is possible to effectively prevent the electrolyte from permeating into the portion of the main body portion 12 that faces the electrode reaction inhibiting portion 14 of the film 11 .
- the negative electrode structure there is a portion that does not undergo volume expansion or contraction due to the charge-discharge reaction between zinc and zinc oxide, and even if the charge-discharge cycle is repeated, the volume expansion or contraction does not occur. is the pathway that provides stable electronic conductivity. This makes it possible to prevent cracks and peeling due to volumetric expansion and contraction from spreading in the surface direction of the main body 12, effectively suppressing a decrease in capacity and the occurrence of an internal short circuit due to cracking and peeling. .
- the expression "adhered in a liquid-tight manner” means that an electrolytic solution is present between the film 11 and the main body 12 while the battery incorporating the negative electrode structure of the present invention is in operation. It means that the film 11 and the main body part 12 are in close contact with each other to the extent that the inflow does not occur.
- the fact that the film 11 and the main body 12 are adhered in a liquid-tight manner can also be confirmed by removing the film 11 after the battery is disassembled and confirming that the electrolyte has not permeated the film 11 visually or with a color difference meter. I can judge.
- the object of determination is the area of the body portion 12 facing the electrode reaction inhibition portion 14 and the area of the body portion 12 not facing the electrode reaction inhibition portion 14 and not immersed in the electrolytic solution.
- the color difference ⁇ E*ab between the regions is preferably 0 or more and 10 or less, more preferably 0 or more and 9 or less, and still more preferably 0 or more and 8 or less, it can be confirmed that each region has the same color, and the film 11 and the main body 12 are adhered in a liquid-tight manner.
- the color difference ⁇ E*ab is based on the L * a * b * color system (CIE1976 (L * a * b * ) color system) standardized by the International Commission on Illumination (CIE) in 1976.
- the L * value indicates brightness
- the a * value and b * value indicate the direction of color
- a * is approximately in the red direction
- ⁇ a * is approximately in the green direction
- b * indicates substantially yellow direction
- -b * indicates substantially blue direction.
- the color difference ( ⁇ E * ab) in the L * a * b * color system is calculated by Equation (7).
- Color difference ⁇ E * ab ⁇ ( ⁇ L * ) 2 +( ⁇ a * ) 2 +( ⁇ b * ) 2 ⁇ 1/2 (7)
- Each of the L * value, a * value, and b * value in the L * a*b * color system is measured according to JIS Z 8781-4 using a color difference meter CR-400 manufactured by Konica Minolta, Inc. can do. Specifically, the measuring head of the color difference meter is brought into direct contact with an arbitrary portion of the main body 12 for measurement. The measurement is performed 3 times, and the average value is used as the measured value.
- the film 11 and the main body part 12 In order to adhere the film 11 and the main body part 12 in a liquid-tight manner, it is preferable, for example, to press them together in a state where they are overlapped. If the film 11 and the main body 12 are attached with an adhesive, the adhesive used for attachment may adversely affect the stretchability of the film 11, which will be described later, which is not preferable. Therefore, it is desirable not to use an adhesive for crimping.
- the film 11 has elasticity.
- elasticity refers to the property of shrinking the film 11 to its original length or a length close to it when the tensile force is released. More preferably, the film 11 should also have the property of expanding to its original length or a length close to it when the compressive force is released from the compressed state.
- the stretchability of the film 11, together with the formation of the perforations 13 in the film 11, produces the following advantageous effects.
- the degree of stretchability of the film 11 is preferably 0.5 or more, more preferably 0.6 or more, as represented by the stretchability parameter Z, and 0 0.8 or more is more preferable.
- E1 is a tensile elastic modulus (MPa) obtained from a strain range of 0% or more and 1% or less
- E2 is a tensile elastic modulus (MPa) obtained from a strain range of 0% or more to 40% or less.
- the tensile modulus corresponds to the rate of change of the stress-strain curve.
- E1 is the maximum value of the rate of change of the stress-strain curve in the strain range of 0% or more and 1% or less.
- E2 is the maximum value of the rate of change of the stress-strain curve in the strain range of 0% or more and 40% or less.
- the reason why the upper limit of the strain is set to 40% in the calculation of the tensile modulus E2 is that the rate of change of the stress-strain curve begins to saturate when a strain of 40% is applied.
- the stretchability parameter Z is measured using a tensile tester (Tensilon RTC-1310A from A&D Co., Ltd., equipped with a non-contact gauge length extensometer U-4410). JIS K7127 test piece type 5 is used as the test piece.
- the measurement conditions are a tensile speed of 50 mm/min, a distance between gauge lines of 25 mm, a distance between chucks of 80 mm, and a test temperature of 23° C., and an arithmetic mean value of five test pieces is obtained.
- the elasticity parameter Z having a large numerical value obtained by measuring both the machine direction and the transverse direction of the film is defined as the elasticity parameter Z of the film.
- the negative electrode structure of the present invention having the above-described excellent effects, it is also possible to reduce the volume required for the negative electrode of a secondary battery equipped with this. As a result, the energy density and output density per volume of the secondary battery can be improved. Furthermore, according to the negative electrode structure of the present invention, since the charge/discharge capacity density per unit volume can be increased, there is an additional effect that the cost of the negative electrode in the secondary battery can be reduced. In addition, according to the negative electrode structure of the present invention, in order to satisfy the product specifications required for zinc secondary batteries, it is necessary to set the amount of active material excessively with respect to the battery capacity when manufacturing the negative electrode. Alternatively, the excess amount of the negative electrode active material can be reduced as much as possible.
- the negative electrode structure of the present invention has the effect of being able to cope with such operating conditions and battery usage.
- a secondary battery equipped with the negative electrode structure of the present invention which exhibits various advantageous effects as described above, has excellent charge-discharge cycle characteristics, a long life, high volumetric energy density, high voltage efficiency, and high capacity over a long period of time. It maintains a maintenance rate and is low cost.
- a secondary battery that uses an aqueous solution the risk of ignition or explosion is extremely low even when the scale of storage is large, and it has high storage capacity, high safety, and high durability over a long period of time. are satisfied at the same time.
- the film 11 may have micropores of a size that does not allow the electrolyte to permeate, from the viewpoint of further increasing the stretchability of the film 11 .
- the formation of such micropores contributes to improvement in the curability, flexibility and moldability of the film 11 as well as good adhesion and adhesion to the main body 12 .
- the film 11 more satisfactorily follows changes in volume due to volume expansion and contraction due to charging and discharging of zinc and zinc oxide. As a result, the stress caused by volume change is further relaxed.
- the function of separating the portion where the electrode reaction occurs and the portion where the electrode reaction does not occur is maintained for a long period of time.
- the thickness of the film 11 is preferably 0.02 mm or more and 0.45 mm or less, more preferably 0.03 mm or more, because it easily follows volume changes due to volume expansion and contraction caused by charging and discharging of zinc and zinc oxide. It is more preferably 0.4 mm or less, and even more preferably 0.04 mm or more and 0.3 mm or less.
- the thickness of the film 11 can be measured according to JIS K 7130:1999.
- the film 11 is preferably made of a material that easily follows volume changes due to volume expansion and contraction due to charging and discharging of zinc and zinc oxide.
- a material that easily follows volume changes due to volume expansion and contraction due to charging and discharging of zinc and zinc oxide.
- organic materials such as resins, ceramic materials, and the like can be used.
- materials with excellent workability and moldability are preferred.
- it is desirable that the material does not cause residual stress in the main body 12 when it is attached to the main body 12, or the residual stress is very small.
- polyethylene resins such as polyethylene resins, polypropylene resins, ethylene- ⁇ olefin copolymers, and ultra-high molecular weight polyethylene resins (UHPE); acrylic resins; polyether ether ketone resins (PEEK), polyether ketone resins (PEK), etc.
- UHPE ultra-high molecular weight polyethylene resins
- PEEK polyether ether ketone resins
- PEK polyether ketone resins
- polyketone resin polyphenylene resin such as polyphenylene sulfide resin (PPS) and modified polyphenylene ether (modified PPE); styrene such as acrylonitrile-butadiene-styrene resin (ABS) or acrylonitrile-styrene resin (AS) system resin; epoxy resins such as bisphenol A type epoxy resins and novolac type epoxy resins. Fluorinated resin such as polytetrafluoroethylene may also be used.
- PPS polyphenylene sulfide resin
- modified PPE modified polyphenylene ether
- ABS acrylonitrile-butadiene-styrene resin
- AS acrylonitrile-styrene resin
- epoxy resins such as bisphenol A type epoxy resins and novolac type epoxy resins.
- Fluorinated resin such as polytetrafluoroethylene may also be used.
- the film 11 When using a fluororesin such as polytetrafluoroethylene, the film 11 preferably has the above-described micropores from the viewpoint of enhancing the stretchability of the film 11 . It is preferable that the size of the micropores is small enough to prevent circulation of the electrolytic solution. That is, as described above, the film 11 is preferably impermeable or slightly permeable to the electrolytic solution.
- the film 11 has a single aperture 13 in the embodiments described so far, the film 11 may have a plurality of apertures 13 instead.
- a film 11 having four apertures 13 is shown in FIG. In the embodiment shown in the figure, the four apertures 13 are all square with the same shape and size.
- the shortest distance D between the adjacent openings 13 is 0.1 mm or more and 10 mm or less. It is preferable from the viewpoint of avoiding a significant decrease in density. From the viewpoint of making this advantage more remarkable, the shortest distance D between adjacent openings 13 is more preferably 0.5 mm or more and 2 mm or less.
- each of the four apertures 13 is surrounded by the electrode reaction inhibiting portion 14 and is independent of each other. Adjacent openings 13 may be partially connected to each other as long as the effect is not impaired.
- the film 11 is attached to either one or both of the two main surfaces of the main body 12.
- a film 11 may be adhered to the side surface of the .
- the outer shape of the main body 12 may be rectangular as shown in FIGS. 1 and 2, or may be other shapes such as polygonal or circular shapes other than rectangles.
- a part of the body portion 12 may be extended in one direction, and the extended portion may be used as a lead portion serving as a connection terminal with the outside.
- the negative electrode structure of the present invention also serves as a current collector.
- the main body 12 can be manufactured by a rolling method, but is preferably manufactured by an electrolytic method. From the viewpoint of sticking the film 11 to the main body 12 in a liquid-tight manner, it is preferable to manufacture it by an electrolysis method.
- Electrolytic solutions containing a zinc source include an aqueous zinc sulfate solution, an aqueous zinc nitrate solution, an aqueous zinc chloride solution, and the like.
- the concentration of zinc contained in the electrolytic solution is preferably 2 g/L or more and 200 g/L or less from the viewpoint of ensuring uniformity of the zinc foil.
- DSE known dimensionally stabilized electrode
- a titanium electrode coated with iridium oxide, a titanium electrode coated with ruthenium oxide, or the like is preferably used.
- the type of the cathode is not particularly limited, and a material that does not affect the reduction of zinc is appropriately selected. For example aluminum can be used.
- the electrolyte preferably contains the above-described bismuth source in addition to the zinc source.
- concentration of the bismuth source contained in the electrolyte the ratio of the mass of bismuth to the total mass of zinc and metal elements in the electrolyte is preferably 10 ppm or more and 10000 ppm or less, preferably 15 ppm or more and 8000 ppm or less. It is more preferable that the .
- the electrolyte may further contain other compounds.
- sulfuric acid can be added for the purpose of adjusting the pH of the electrolytic solution.
- an electrolytic device comprising a closed flow path, an electrolytic cell arranged in the flow path, and a pump arranged in the flow path is used. is driven to circulate the electrolytic solution in one direction in the electrolytic cell.
- the anode and cathode used for electrolysis may be immersed in an electrolytic bath while facing each other.
- the anode and cathode are preferably arranged in the electrolytic cell such that their facing surfaces (electrodeposition surfaces in the case of the cathode) are parallel to the flow direction of the electrolytic solution.
- the circulation speed of the electrolytic solution is preferably set to 0.001 L/(min ⁇ mm 2 ) or more and 1 L/(min ⁇ mm 2 ) or less, and 0.002 L/(min ⁇ mm 2 ) or more to 0.002 L/(min ⁇ mm 2 ) or more.
- the circulation speed is calculated by dividing the flow rate (L/min) of the electrolytic solution by the inter-electrode area (mm 2 ).
- the inter-electrode area is represented by the product of the inter-electrode distance (mm) and the electrodeposition electrode width (mm), as shown in FIG.
- plate-like electrodes extend in a direction perpendicular to the plane of the paper.
- the current density when performing electrolysis is higher than the conditions for normal zinc electrolysis from the viewpoint of making the surface state of the main body 12 with high adhesion to the film 11.
- the current density is It is preferably set to 1000 A/m 2 or more and 10000 A/m 2 or less, more preferably set to 1000 A/m 2 or more to 6000 A/m 2 or less, and preferably set to 1000 A/m 2 or more to 4000 A/m 2 or less. More preferred.
- the current density for producing electrolytic zinc foil is as low as about 500 A/m 2 .
- the electrolytic solution can be subjected to electrolysis in a non-heated state or a heated state.
- the temperature of the electrolytic solution is preferably set to 10° C. or higher and 90° C. or lower.
- the temperature of the electrolytic solution is more preferably 20° C. or higher and 90° C. or lower, still more preferably 30° C. or higher and 80° C. or lower, and even more preferably 30° C. or higher and 70° C. or lower.
- Electrolysis is carried out until the thickness of the zinc foil reaches the desired value.
- Adhering means include pressure bonding, fusion bonding, fixation, heat curing, three-dimensional modeling, and bonding with an adhesive.
- sticking means include pressure bonding, fusion bonding, fixation, heat curing, three-dimensional modeling, and bonding with an adhesive.
- the use of pressure bonding is preferable because the stretchability of the film 11 after sticking is less likely to be reduced, and the film 11 and the main body 12 can be easily adhered to each other in a liquid-tight manner. preferable.
- the negative electrode structure 10 manufactured in this manner is incorporated into a secondary battery, the negative electrode structure 10 is arranged facing the positive electrode in the secondary battery. Specifically, of the main surfaces of the body portion 12, the main surface on the side having the opening portion 13 is made to face the positive electrode. The space between the negative electrode structure 10 and the positive electrode is occupied by an amount of electrolyte required for the electrode reaction.
- a charging/discharging reaction occurs between zinc and zinc oxide in the portion of the hole 13 where the main body 12 is exposed.
- the charge/discharge reaction between zinc and zinc oxide is suppressed in the electrode reaction inhibition portion 14 .
- the volume of the negative electrode structure 10 changes due to the difference in molar volume between zinc and zinc oxide, that is, the negative electrode structure causes volume expansion during discharge and volume contraction during charge.
- Form changes such as cracking and peeling of the body 10 can be suppressed.
- the conductivity is lowered, and eventually the capacity is lowered, but this is suppressed in the negative electrode structure of the present invention.
- non-uniform distribution of zinc and zinc oxide due to charging and discharging is less likely to occur, thereby suppressing the growth of dendrites, thereby effectively suppressing the occurrence of short circuits.
- a separator can be placed between the positive electrode and the negative electrode structure 10 for the purpose of preventing a short circuit between the two electrodes.
- the separator for example, a material that allows the electrolyte to pass through and that does not adversely affect the electrode reaction is used. Such materials include nonwoven fabrics made from various thermoplastic fibers.
- a spacer having a predetermined thickness can be arranged between the positive electrode and the negative electrode structure 10 .
- Such a spacer includes, for example, a reaction space restricting portion described in WO2021/049609.
- the positive electrode is arranged to face each surface of the negative electrode structure 10. can be done.
- nickel hydroxide can be used as the positive electrode in the secondary battery.
- electrolytic solution for example, a potassium hydroxide aqueous solution can be used.
- Examples of secondary batteries obtained as described above include nickel/zinc batteries, air/zinc batteries, silver/zinc secondary batteries and manganese/zinc batteries. These secondary batteries are used in a variety of power storage applications such as mobile applications, automobile applications, power storage applications, power load adjustment applications, and power and auxiliary power applications for trains, aircraft, ships, drones, etc. can be used for
- the negative electrode structure 10 itself which is the negative electrode active material, has conductivity, the negative electrode structure 10 also functions as a current collector. Thereby, the negative electrode structure 10 itself can be used as a negative electrode without using a current collector.
- a secondary battery comprising the negative electrode structure for a secondary battery according to any one of [1] to [5].
- a positive electrode is arranged so as to face the film in the negative electrode structure, A separator is disposed between the positive electrode and the negative electrode structure, The secondary battery according to [6], wherein an electrolytic solution is present between the positive electrode and the negative electrode structure.
- Example 1 A main body used in the negative electrode structure for a secondary battery of the present invention was produced as follows. (1) Preparation of electrolytic solution Zinc oxide was used as a zinc compound. Bismuth nitrate was used as the bismuth compound. These were dissolved in water together with sulfuric acid to prepare an electrolytic solution. The concentration of zinc in the electrolytic solution was 50 g/L. The concentration of sulfuric acid was 150 g/L as a value converted from the total amount of sulfate ions as H 2 SO 4 . The concentration of bismuth was adjusted so as to achieve the desired bismuth content in the zinc foil. (2) Reductive Deposition of Zinc A DSE consisting of a titanium electrode coated with iridium oxide was used as an anode.
- An aluminum plate was used as the cathode.
- a current was passed between the anode and the cathode while the electrolyte was heated to 35°C.
- the current density was 1000 A/m 2 .
- the electrolytic solution was circulated at a circulation rate of 0.029 L/(min ⁇ mm 2 ). Electrolysis was performed under these conditions to obtain a zinc foil. This was used as the main body.
- the content of bismuth in the obtained main body was measured by ICP emission spectrometry in accordance with JIS H1111.
- the content of bismuth was 710 ppm on a mass basis, the surface roughness was 0.8 ⁇ m, and the thickness was 31 ⁇ m.
- the main body was cut out from one corner of a rectangle of 3 cm wide by 9 cm long to remove a rectangle of 2.5 cm wide by 5 cm long.
- a rectangle of 3 cm wide by 4 cm long that was not removed as a rectangle of 2.5 cm wide by 5 cm long was designated as the A portion, and the A portion was used for the electrode reaction.
- a rectangle of 5 mm wide by 5 cm long including the vertical sides removed from the main body section as a rectangle of 2.5 cm wide by 5 cm long is defined as B section, and B section is lead for conducting with the outside. used as part.
- a masking material was applied to the lead portions and dried to prevent the lead portions from coming into contact with the electrolytic solution.
- a non-electronic conductive film that is slightly larger than part A and has elasticity (manufactured by Chuko Kasei Kogyo Co., Ltd., SEF-010, material: polytetrafluoroethylene (PTFE), thickness 100 ⁇ m, elasticity parameter Z 0.87, elongation rate 10% (measured according to JIS K 7137-2), having micropores and liquid impermeability) was cut into two sheets, and a hole of 5 mm in diameter was made in the center of one of them. The remaining one sheet was left unperforated.
- the A part is sandwiched between these two films, and these are sandwiched between two stainless steel plates that are larger in size than the films. Films were adhered to both sides of the A part by applying pressure for 5 minutes.
- a zinc-nickel secondary battery was produced.
- a zinc wire (1 mm in diameter, about 9 cm in length) was immersed in an aqueous potassium hydroxide solution at a position that does not interfere between the positive and negative electrodes. It was used as a reference electrode when measuring the potential of the body. Except for the tip portion of the zinc wire that was immersed in the potassium hydroxide aqueous solution, the other immersed portions were coated with a masking material and dried to prevent contact with the electrolytic solution.
- the secondary battery was disassembled, and the color difference ⁇ E*ab of the region between the film and the A portion and the lead portion was measured by the method described above and was 5.3. From this, it was confirmed that the film and part A were adhered in a liquid-tight manner.
- the zinc-nickel secondary battery produced as described above was charged and discharged at a constant current.
- the applied current was adjusted to a current density of 10 mA/cm 2 based on the area of a circle with a diameter of 5 mm where the zinc foil was exposed in the negative electrode structure.
- the battery was first discharged at the above current density at 5 mAh/cm 2 . After the energization was stopped for 10 minutes, the battery was charged at the same current density as the discharge at 3 mAh/cm 2 . After the energization was stopped for 10 minutes, the battery was discharged at the same current density at 3 mAh/cm 2 .
- One cycle consisted of resting for 10 minutes, charging at 3 mAh/cm 2 , resting for 10 minutes, discharging at 3 mAh/cm 2 , and this cycle was repeated thereafter.
- the potential during charging of the zinc wire-based negative electrode structure becomes less than ⁇ 2 V, or if the potential during discharging of the negative electrode structure becomes greater than 0.2 V. If it becomes, it was set to switch to hibernation at that point.
- the charge/discharge capacity was 3 mAh/cm 2 and the charge/discharge rate was 10 mA/cm 2 . This is a very fast charge/discharge rate for the speed of time.
- FIG. 4 shows the measurement results of the average discharge voltage (V) and average charge voltage (V) in each cycle.
- ⁇ represents the average charging voltage (V)
- ⁇ represents the average discharging voltage (V).
- FIG. 5 shows the measurement results of the capacity retention rate (%) in each cycle.
- the capacity retention rate (%) is the ratio of the discharged capacity in the cycle to the reference charge/discharge capacity of 3 mAh/cm 2 , and it is 100% if the battery can be discharged to 3 mAh/cm 2 .
- the change from the initial stage of the average charge voltage was small in more than 900 charge-discharge cycles, and the average discharge voltage was only about 0.1 V lower than the initial stage. Also, the capacity retention rate was maintained at 100%. Furthermore, no shedding was observed during the battery operation. It should be noted that this battery did not become incapable of charging and discharging after 900 cycles.
- Example 2 A negative electrode structure and a secondary battery were produced in the same manner as in Example 1 except that a pure zinc foil was used instead of the zinc foil containing bismuth used in Example 1, and evaluated under the same conditions as in Example 1. .
- FIG. 6 shows the measurement results of the average discharge voltage (V) and average charge voltage (V) in each cycle.
- ⁇ represents the average charging voltage (V)
- ⁇ represents the average discharging voltage (V).
- FIG. 7 shows the measurement results of the capacity retention rate (%) in each cycle.
- a pure zinc foil was manufactured by the following method.
- An electrolytic solution was prepared in the same manner as in Example 1, except that the concentration of zinc in the electrolytic solution was 75 g/L, and the concentration of sulfuric acid was 200 g/L as the total amount of sulfate ions converted to H 2 SO 4 . Also, the current density was set to 2000 A/m 2 . Except for these, electrolysis was performed under the same conditions as in Example 1 to obtain a zinc foil. The obtained main body had a surface roughness of 1.3 ⁇ m and a thickness of 63 ⁇ m.
- Freon masks are composed of 20-26% polyvinyl chloride resin, 18-24% toluene, 44-50% methyl ethyl ketone, and 5.5-8.5% methyl isobutyl ketone.
- the coating film is a solidified polyvinyl chloride resin.
- the coating film has no electronic conductivity and no stretchability. Measurement of the stretchability parameter Z was therefore not possible.
- a negative electrode structure and a secondary battery were produced in the same manner as in Example 1 except for these, and evaluated under the same conditions as in Example 1.
- FIG. 8 shows the measurement results of the average discharge voltage (V) and average charge voltage (V) in each cycle.
- ⁇ represents the average charging voltage (V)
- ⁇ represents the average discharging voltage (V).
- FIG. 9 shows the measurement results of the capacity retention rate (%) in each cycle.
- the average charge voltage and average discharge voltage were almost constant up to about 60 cycles up to 112 cycles for which data could be obtained.
- the average voltage fluctuated up and down during discharge, and compared to up to 60 cycles, the discharge voltage decreased, the charge voltage increased, and the characteristics tended to deteriorate.
- the capacity retention rate was 100% up to about 60 cycles, but after that, there were several cycles where it decreased to about 70%, and finally discharge became impossible at 112 cycles, and the test was stopped. Based on the change in average voltage and the change in capacity retention rate, it is considered that an internal short circuit occurred in this comparative example, and discharge became impossible.
- Example 3 In this example, in Example 1, a resin spacer (10 mm ⁇ 10 mm ⁇ thickness 3 mm) was arranged between the negative electrode structure and the nickel positive electrode. A through hole having a diameter of 5 mm was formed in the center of the resin spacer, and this through hole was aligned with the opening of the film in the negative electrode structure. Furthermore, the resin spacer had a through hole extending from the upper side of the spacer to the through hole and a through hole extending from the lower side of the spacer to the through hole. These through holes were provided for the purpose of supplying the electrolytic solution and for the purpose of observing the presence or absence of fallen matter. A negative electrode structure and a secondary battery were produced in the same manner as in Example 1 except for these, and evaluated under the same conditions as in Example 1.
- both the average charge voltage and the average discharge voltage changed little from the initial stage in more than 1950 charge-discharge cycles, and the rapid discharge voltage indicating internal short circuit occurred. No decrease or increase in charging voltage was observed. Also, the capacity retention rate was maintained at 100%. Furthermore, no shedding was observed during the battery operation. It should be noted that this battery did not become incapable of charging and discharging after 1950 cycles.
- FIG. 10 shows the result of observation of the zinc foil before charging and discharging.
- 11 and 12 show the observation results of the zinc foil after 514 cycles of charging and discharging and after 901 cycles.
- Example 2 The bismuth-containing zinc foil used in Example 1 was cut into a rectangle measuring 1 cm wide by 9 cm long. A freon mask was applied to the part. In this comparative example, one side of the zinc foil measuring 1 cm in width and 1 cm in length is a portion where the electrode reaction occurs, and the non-electroconductive film used in Examples 1 and 2 was adhered to this side. , and the flon mask used in Comparative Example 1 was not applied at all. A negative electrode structure and a secondary battery were produced in the same manner as in Example 1 except for these. Evaluation was performed under the same conditions as in Example 1, except that the current density was 10 mA/cm 2 based on the exposed area (1 cm 2 ) of the zinc foil facing the nickel positive electrode.
- FIG. 13 shows the measurement results of the average discharge voltage (V) and average charge voltage (V) in each cycle.
- ⁇ represents the average charging voltage (V)
- ⁇ represents the average discharging voltage (V).
- FIG. 14 shows the measurement results of the capacity retention rate (%) in each cycle.
- the secondary battery of Comparative Example 2 showed the same average charge voltage and average discharge voltage as in the example up to 8 cycles, but the average charge voltage increased to 2 V or more at 9 cycles, and the average charge voltage at 10 cycles was On the contrary, the voltage dropped to 1.6 V, which was smaller than the electromotive force of the zinc-nickel secondary battery, indicating the possibility of an internal short circuit.
- the average charging voltage after the 11th cycle oscillated up and down, and became lower than the electromotive force again at the 23rd cycle.
- the average discharge voltage remained around 1.6 V after the 11th cycle, but dropped to 1.3 V after the 24th cycle, suggesting an internal short circuit.
- the capacity retention rate was 100% up to 8 cycles, but changed significantly after that, reaching a low value of 20% or less at 10, 11, 17, and 23 cycles, and reaching 0% at 24 cycles, making it impossible to operate. Therefore, the test was stopped.
- FIG. 15 shows the result of observation.
- growth of dendritic zinc black part of the image
- Example 3 (Comparative Example 3)
- PET polyethylene terephthalate
- the elasticity parameter Z of the PET film was 0.15.
- a secondary battery equipped with the negative electrode structure of the present invention has improved charge-discharge cycle characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Zn+4OH-→Zn(OH)4 2-+2e- ・・・(1)
Zn(OH)4 2-→ZnO+H2O+2OH- ・・・(2)
一方、充電時には前記の反対であるが、次のような2段階で反応が起こる。
ZnO+H2O+2OH-→Zn(OH)4 2- ・・・(3)
Zn(OH)4 2-+2e-→Zn+4OH- ・・・(4)
前記本体部の少なくとも一面に配置された非電子伝導性のフィルムと、
を有する二次電池用負極構造体であって、
前記フィルムは伸縮性を有し、
前記フィルムは、
前記本体部の前記一面の一部が露出するように形成された開孔部と、
前記開孔部の周縁を画成し且つ前記本体部の電極反応を阻害する電極反応阻害部とを備え、
前記フィルムが前記本体部に液密に貼着されている、二次電池用負極構造体を提供するものである。
ビスマスの標準電極電位は式(5)で示される酸化還元反応に対して0.317Vである。
Bi3+ + 3e ←→ Bi ・・・(5)
一方、亜鉛と亜鉛酸イオンの標準電極電位は式(6)で示される酸化還元反応に対して-1.29Vであり、ビスマスの標準電極電位よりも1.5V程度も低い。
Zn(OH)4 2-+2e- ←→ Zn+4OH- ・・・(6)
よって、本体部12に含まれるビスマスは、負極構造体10が充放電する電位付近においては、充放電のいずれであるかに関わらず酸化される環境であるとは考えにくい。なお、ビスマスは水及びアルカリ性水溶液では化学反応によってBi(OH)3を形成する可能性はあるが、その場合もビスマスの溶解はほとんど考える必要がない。負極構造体10においては、放電によって亜鉛が酸化亜鉛に変化し、充電によって酸化亜鉛が亜鉛に変化するところ、この際、BiやBi(OH)3が存在することで、前述したような亜鉛と酸化亜鉛との間で生じる大きな体積変化の緩衝作用を発揮するのではないかと考えられる。すなわち、亜鉛又は酸化亜鉛のいずれの状態でも、ある程度の大きさの塊(粒塊)を形成し、それらの界面には一般に粒界と呼ばれる領域があるところ、この粒界領域や粒塊内で前記のような体積変化を緩和する作用を示しているのではないかと考えられる。
後述する実施例で示すとおり、ビスマスを含む負極構造体を備えた二次電池は、充放電を繰り返し行っても、負極構造体10からの反応物の剥離や脱落が生じにくいという利点もある。また、充放電に起因する亜鉛と酸化亜鉛の不均一な分布が生じにくく、更に充放電前に比べて粒界での割れの発生や、デンドライト成長につながるような粒塊の成長も起こりにくいという利点も有する。
更に、ビスマスを含む負極構造体を備えた二次電池は、ビスマスを含まない負極構造体を備えた二次電池に比べて、同じ充放電条件における放電電圧が増加し、充電電圧が低下して、電圧効率(放電電圧/充電電圧)が向上するという利点もある。
フィルム11に電極反応阻害部14を形成する目的で、フィルム11は非電子伝導性の材料からなる。本明細書において「非電子伝導性」とは、フィルム11が、亜鉛二次電池のなかで負極構造体に対向して配置された正極と接触しても、電子伝導が生じて亜鉛二次電池が短絡したような状態とはならない性質のことであり、例えば、体積抵抗率が104Ω・cm以上であれば上記のような短絡を避けることが可能となる。
この利点を一層顕著にする観点から、開孔部13はその面積が、0.03mm2以上400000mm2以下であることが好ましく0.1mm2以上100000mm2以下であることが更に好ましく、0.3mm2以上40000mm2以下であることが一層好ましく、1mm2以上2500mm2以下であることが更に一層好ましい。
開孔部13の面積を円相当直径で表した場合、0.1mm以上300mm以下であることが好ましく、0.3mm以上100mm以下であることが更に好ましく、1mm以上30mm以下であることが一層好ましく、1mm以上10mm以下であることが更に一層好ましい。
フィルム11と本体部12とが液密に貼着されていることは、電池解体後にフィルム11を外し、該フィルム11に電解液が浸透していないことを目視又は色差計で確認することによっても判断できる。判断の対象は、電極反応阻害部14に対向する本体部12の領域と、本体部12において電極反応阻害部14と対向しない領域であり且つ電解液に浸漬していない領域である。各領域間の色差ΔE*abが好ましくは0以上10以下、更に好ましくは0以上9以下、一層好ましくは0以上8以下である場合、各領域が同色であると確認でき、フィルム11と本体部12とが液密に貼着されていると判断できる。色差ΔE*abは、1976年に国際照明委員会(CIE)で規格化されたL*a*b*表色系(CIE1976(L*a*b*)表色系)に基づくものである。L*a*b*表色系において、L*値は明るさを、a*値及びb*値は色の方向を示しており、a*は略赤方向、-a*は略緑方向、b*は略黄色方向、-b*は略青方向を示している。
L*a*b*表色系における色差(ΔE*ab)は式(7)により算出される。
色差ΔE*ab={(ΔL*)2+(Δa*)2+(Δb*)2}1/2 ・・・(7)
L*a*b*表色系におけるL*値、a*値、及びb*値それぞれは、コニカミノルタ株式会社製の色彩色差計CR-400を用いて、JIS Z 8781-4に準じて測定することができる。具体的には、本体部12の任意の箇所に前記色彩色差計の測定ヘッドを直接当接させて測定する。測定は3回行い、その平均値を測定値とする。
フィルム11と本体部12とを液密に貼着するためには、例えば両者を重ね合わせた状態で圧着することが好ましい。フィルム11と本体部12とを接着剤によって貼着すると貼着に使用した接着剤が、後述するフィルム11の伸縮性に悪影響を及ぼす可能性があるので好ましくない。したがって、圧着に際して接着剤を用いないことが望ましい。
伸縮性パラメータZはZ=E2/E1で定義される値である。E1は、歪み0%以上1%以下の範囲から求められる引張弾性率(MPa)であり、E2は、歪み0%以上40%以下の範囲から求められる引張弾性率(MPa)である。引張弾性率は、応力-歪み曲線の変化率に相当する。E1は、歪み0%以上1%以下の範囲での応力-歪み曲線の変化率のうちの最大値である。E2は、歪み0%以上40%以下の範囲での応力-歪み曲線の変化率のうちの最大値である。なお、引張弾性率E2の算出において歪みの上限値を40%とした理由は、40%の歪みを与えることで、応力-歪み曲線の変化率が飽和し始めることによるものである。
更に、本体部12の外形は、図1及び図2に示すとおり矩形とすることができる他、他の外形、例えば矩形以外の多角形や円形としてもよい。更に、本体部12の一部を一方向に延出させ、その延出部を、外部との接続端子となるリード部として用いてもよい。その場合には、本発明の負極構造体が集電体を兼用することになる。
電解に使用するアノードとしては、公知の寸法安定化電極(DSE(登録商標))を用いることが好ましい。DSEとしては、例えば酸化イリジウムをコートしたチタン電極、酸化ルテニウムをコートしたチタン電極などが好適に用いられる。
一方、カソードとしては、その種類に特に制限はなく、亜鉛の還元に影響を及ぼさない材料が適宜選択される。例えばアルミニウムを用いることができる。
本発明においては、負極活物質である負極構造体10自体が導電性を有することから、該負極構造体10は集電体としても機能する。これによって、集電体を用いることなく、負極構造体10そのものを負極として用いることが可能である。
〔1〕 亜鉛を母材とする箔状又は薄板状の本体部と、
前記本体部の少なくとも一面に配置された非電子伝導性のフィルムと、
を有する二次電池用負極構造体であって、
前記フィルムは伸縮性を有し、
前記フィルムは、
前記本体部の前記一面の一部が露出するように形成された開孔部と、
前記開孔部の周縁を画成し且つ前記本体部の電極反応を阻害する電極反応阻害部とを備え、
前記フィルムが前記本体部に液密に貼着されている、二次電池用負極構造体。
〔2〕 前記本体部がビスマスを更に含む、〔1〕に記載の二次電池用負極構造体。
〔3〕 前記本体部はビスマスを質量基準で100ppm以上10000ppm以下含む、〔2〕に記載の二次電池用負極構造体。
〔4〕 前記フィルムはその厚みが0.02mm以上0.45mm以下である、〔1〕ないし〔3〕のいずれか一に記載の二次電池用負極構造体。
〔5〕 集電体を兼用している、〔1〕ないし〔4〕のいずれか一に記載の二次電池用負極構造体。
〔6〕 〔1〕ないし〔5〕のいずれか一に記載の二次電池用負極構造体を備えた二次電池。
〔7〕 前記負極構造体における前記フィルムに対向するように正極が配置されており、
前記正極と前記負極構造体との間にセパレータが配置されており、
前記正極と前記負極構造体との間に電解液が存在している、〔6〕に記載の二次電池。
本発明の二次電池用負極構造体に用いられる本体部を以下のように作製した。
(1)電解液の調製
亜鉛化合物として酸化亜鉛を用いた。ビスマス化合物として硝酸ビスマスを用いた。これらを硫酸とともに水に溶解して電解液を調製した。電解液における亜鉛の濃度は50g/Lとした。硫酸の濃度は硫酸イオンの総量をH2SO4として換算した値として150g/Lとした。ビスマスの濃度は、目的とする亜鉛箔に含まれるビスマスの含有割合となるように調整した。
(2)亜鉛の還元析出
アノードとして、酸化イリジウムをコートしたチタン電極からなるDSEを用いた。カソードとしてアルミニウム板を用いた。電解液を35℃に加熱した状態下にアノードとカソードとの間に電流を流した。電流密度は1000A/m2とした。電解液は、循環速度を0.029L/(min・mm2)に設定して循環させた。この条件で電解を行い、亜鉛箔を得た。これを本体部とした。得られた本体部について、ビスマスの含有割合を、JIS H1111に準拠したICP発光分光分析法にて測定した。ビスマスの含有割合は質量基準で710ppm、表面粗さは0.8μm、厚み31μmであった。
前記本体部を、横3cm×縦9cmの長方形の一つの角部から、横2.5cm×縦5cmの長方形が除かれた形状に切り出した。前記本体部のうち、横2.5cm×縦5cmの長方形として除かれなかった横3cm×縦4cmの長方形をA部とし、A部を電極反応に用いた。また、前記本体部のうち、横2.5cm×縦5cmの長方形として除かれた縦辺を含む横5mm×縦5cmの長方形をB部とし、B部を、外部との導通をとるためのリード部として用いた。また、リード部にマスキング材を塗布して乾燥させ、該リード部が電解液に接触しないようにした。
A部よりもやや大きなサイズで伸縮性をもつ非電子伝導性のフィルム(中興化成工業製、SEF-010、材質:ポリテトラフルオロエチレン(PTFE)、厚み100μm、伸縮性パラメータZ0.87、伸び率10%(JIS K 7137-2に準拠して測定)、微細孔を有し且つ液不透過性である。)を2枚切り出し、その1枚の中央に直径5mmの孔をあけた。残りの1枚には孔をあけなかった。これら2枚のフィルムの間にA部を挟んで、これらをフィルムよりも更にサイズが大きい2枚のステンレス板で挟んでから、これを一軸プレス機に設置して、室温下、41.3MPaで5分間加圧することにより、A部の両面にフィルムを貼着した。貼着に際して接着剤を使用しなかった。このようにして、A部の片面の中央において直径5mmで亜鉛箔が露出し、それ以外はフィルムで被覆された負極構造体を作製した。フィルムの見掛け面積に示す孔の面積の比率は1.5%であった。フィルムとA部との間は、後述する電解液が浸透するような隙間がないような液密に貼着された状態となっていた。
前記のとおり作製した負極構造体と、あらかじめ充電されたニッケル正極(約50mm角で厚み5mm)をアクリル製の容器内に対向して配置し、負極構造体とニッケル正極との間に、ニッケル水素二次電池で用いられているポリオレフィン系材料を用いた不織布(46mm×50mm)を配置した。
使用したニッケル正極はニッケル水素二次電池で通常用いられているものであり、完全に放電した状態では主に水酸化ニッケルが主成分となり、完全に充電した状態では水酸化ニッケルが酸化されてオキシ水酸化ニッケルが主成分となる。
電解液として酸化亜鉛を飽和させた6mol/Lの水酸化カリウム水溶液を用いた。
このようにして亜鉛ニッケル二次電池を作製した。この二次電池においては、負極構造体の電位を測定する目的で、亜鉛線(直径1mm、長さ約9cm)を正負極間を妨害しない位置で水酸化カリウム水溶液に浸漬し、これを負極構造体の電位を測定する際の基準電極に用いた。亜鉛線は水酸化カリウム水溶液に浸漬している先端部を除いて、他の浸漬箇所にはマスキング材を塗布して乾燥させ、電解液に接触しないようにした。なお、下記の試験後二次電池を解体し、フィルムとA部との間の領域、及びリード部の色差ΔE*abを上述の方法で測定したところ、5.3であった。これによって、フィルムとA部とが液密に貼着されていたことが確認された。
前記のとおり作製した亜鉛ニッケル二次電池を定電流で充放電した。通電電流は負極構造体で亜鉛箔が露出している直径5mmの円の面積を基準として、電流密度が10mA/cm2となるようにした。電池の作動は、先ず前記の電流密度で5mAh/cm2放電した。10分間通電を止めたのち、放電と同じ電流密度で3mAh/cm2充電した。10分間通電を止めたのち、同じ電流密度で3mAh/cm2放電した。10分間休止、3mAh/cm2充電、10分間休止、3mAh/cm2放電を1サイクルとし、これ以降、このサイクルを繰り返した。ただし、3mAh/cm2まで充電する前に亜鉛線基準の負極構造体の充電時の電位が-2Vよりも小さくなった場合、又は、負極構造体の放電時の電位が0.2Vよりも大きくなった場合は、その時点で休止に切り替わるように設定した。なお、この試験では3mAh/cm2の充放電容量に対して10mA/cm2で充放電していることから、電池の充放電速度を表す際に用いられるCレートでは3C以上であり、電池利用時の速度としては非常に速い充放電レートである。
実施例1において用いたビスマスを含む亜鉛箔に代えて、純亜鉛箔を用いた以外は実施例1と同様にして負極構造体及び二次電池を作製し、実施例1と同じ条件で評価した。図6に、各サイクルにおける平均放電電圧(V)及び平均充電電圧(V)の測定結果を示す。図6において、●は平均充電電圧(V)を表し、〇は平均放電電圧(V)を表す。図7には、各サイクルにおける容量維持率(%)の測定結果を示す。純亜鉛箔は以下の方法で製造した。
電解液における亜鉛の濃度を75g/Lとし、硫酸の濃度を硫酸イオンの総量をH2SO4として換算した値として200g/Lとした以外は、実施例1と同様の電解液に調製した。また、電流密度を2000A/m2とした。これら以外は、実施例1と同様の条件で電解を行い、亜鉛箔を得た。得られた本体部の表面粗さは1.3μm、厚み63μmであった。
実施例1で用いたビスマス含有亜鉛箔からなる本体部のA部の中央に直径5mmの円を残して、これ以外の部分に液体のフロンマスク(古藤工業製、フロンマスクMA-1)を塗布し、室温で3日間乾燥させることによって塗膜を形成した。塗膜を形成した後、亜鉛箔が露出した部分をアセトンで洗浄した。
フロンマスクは、安全データシートの記載によれば、ポリ塩化ビニル樹脂20~26%、トルエン18~24%、メチルエチルケトン44~50%、メチルイソブチルケトン5.5~8.5%が成分であり、塗膜はポリ塩化ビニル樹脂が固化したものである。また、塗膜には電子伝導性はなく、伸縮性もない。したがって伸縮性パラメータZの測定は不可能であった。
これら以外は実施例1と同様にして負極構造体及び二次電池を作製し、実施例1と同じ条件で評価した。
図8に、各サイクルにおける平均放電電圧(V)及び平均充電電圧(V)の測定結果を示す。図8において、●は平均充電電圧(V)を表し、〇は平均放電電圧(V)を表す。図9には、各サイクルにおける容量維持率(%)の測定結果を示す。
本実施例では実施例1において、負極構造体とニッケル正極の間に樹脂製スペーサ(10mm×10mm×厚み3mm)を配置した。樹脂製スペーサにはその中央に直径5mmの貫通孔を形成しておき、この貫通孔と、負極構造体におけるフィルムの開孔部とが一致するようにした。更に、樹脂製スペーサは、該スペーサの上辺から貫通孔にわたる透孔、及び該スペーサの下辺から貫通孔にわたる透孔を有していた。これらの透孔は、電解液を供給する目的、及び脱落物の有無を観察する目的で設けた。これら以外は実施例1と同様にして、負極構造体及び二次電池を作製し、実施例1と同じ条件で評価した。
実施例1で用いたビスマス含有亜鉛箔を、横1cm×縦9cmの長方形に切り出し、一方の主面の一端から横1cm×縦1cmの正方形のみを電解液に接する部分として用い、且つ、残りの部分にフロンマスクを塗布した。本比較例においては、亜鉛箔は横1cm×縦1cmの片面すべてが電極反応を生じる部分であり、この面に対して実施例1及び実施例2で用いた非電子伝導性のフィルムの貼着、及び比較例1で用いたフロンマスクの塗布は一切行わなかった。
これら以外は実施例1と同様にして負極構造体及び二次電池を作製した。ニッケル正極に対向する亜鉛箔の露出面積(1cm2)を基準として電流密度を10mA/cm2とした以外は実施例1と同じ条件で評価した。
また、容量維持率は8サイクルまでは100%であったが、その後は大きく変化し、10、11、17及び23サイクルで20%以下の低い値となり、24サイクルで0%となり作動ができなくなったため試験を停止した。
実施例1において、PTFEのフィルムに代えてポリエチレンテレフタレート(PET)のフィルムを用いた。PETフィルムの伸縮性パラメータZは0.15であった。これ以外は実施例1と同様にして二次電池を作製しようとしたが、PETフィルムと本体部との貼着を液密に行うことができず、電池を作製できなかった。
Claims (7)
- 亜鉛を母材とする箔状又は薄板状の本体部と、
前記本体部の少なくとも一面に配置された非電子伝導性のフィルムと、
を有する二次電池用負極構造体であって、
前記フィルムは伸縮性を有し、
前記フィルムは、
前記本体部の前記一面の一部が露出するように形成された開孔部と、
前記開孔部の周縁を画成し且つ前記本体部の電極反応を阻害する電極反応阻害部とを備え、
前記フィルムが前記本体部に液密に貼着されている、二次電池用負極構造体。 - 前記本体部がビスマスを更に含む、請求項1に記載の二次電池用負極構造体。
- 前記本体部はビスマスを質量基準で100ppm以上10000ppm以下含む、請求項2に記載の二次電池用負極構造体。
- 前記フィルムはその厚みが0.02mm以上0.45mm以下である、請求項1ないし3のいずれか一項に記載の二次電池用負極構造体。
- 集電体を兼用している、請求項1に記載の二次電池用負極構造体。
- 請求項1に記載の二次電池用負極構造体を備えた二次電池。
- 前記負極構造体における前記フィルムに対向するように正極が配置されており、
前記正極と前記負極構造体との間にセパレータが配置されており、
前記正極と前記負極構造体との間に電解液が存在している、請求項6に記載の二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280066928.2A CN118056288A (zh) | 2021-10-12 | 2022-10-07 | 二次电池用负极结构体及具备该结构体的二次电池 |
EP22880955.4A EP4418355A1 (en) | 2021-10-12 | 2022-10-07 | Anode structure for secondary battery and secondary battery provided with same |
JP2023554500A JPWO2023063260A1 (ja) | 2021-10-12 | 2022-10-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-167170 | 2021-10-12 | ||
JP2021167170 | 2021-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063260A1 true WO2023063260A1 (ja) | 2023-04-20 |
Family
ID=85987699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037651 WO2023063260A1 (ja) | 2021-10-12 | 2022-10-07 | 二次電池用負極構造体及び該構造体を備えた二次電池 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4418355A1 (ja) |
JP (1) | JPWO2023063260A1 (ja) |
CN (1) | CN118056288A (ja) |
WO (1) | WO2023063260A1 (ja) |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010518585A (ja) * | 2007-02-12 | 2010-05-27 | パワージェニックス システムズ, インコーポレーテッド | 金属亜鉛型電流コレクタ |
JP2012104273A (ja) | 2010-11-08 | 2012-05-31 | Hitachi Zosen Corp | 金属空気電池 |
WO2013154623A1 (en) | 2012-04-10 | 2013-10-17 | California Institute Of Technology | Novel separators for electrochemical systems |
JP2014026951A (ja) | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | 亜鉛負極合剤及び該亜鉛負極合剤を使用した電池 |
WO2014069541A1 (ja) | 2012-10-30 | 2014-05-08 | 旭硝子株式会社 | 金属二次電池用負極材料および金属二次電池用負極のデンドライトの抑制方法 |
JP2014192137A (ja) * | 2013-03-28 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | 二次電池 |
JP2014222570A (ja) | 2013-05-13 | 2014-11-27 | 新神戸電機株式会社 | 二次電池 |
US20150364790A1 (en) | 2013-02-01 | 2015-12-17 | Nippon Shokubai Co., Ltd. | Anion conducting material and cell |
JP2016146263A (ja) | 2015-02-06 | 2016-08-12 | 株式会社日本触媒 | セパレータ及びそれを含んで構成される電池 |
JP2016170944A (ja) | 2015-03-12 | 2016-09-23 | 日本碍子株式会社 | 多層多孔質セパレータ及びそれを用いた二次電池 |
JP2016189356A (ja) | 2014-11-13 | 2016-11-04 | 日本碍子株式会社 | 亜鉛二次電池に用いられるセパレータ構造体 |
JP2016194990A (ja) | 2015-03-31 | 2016-11-17 | 日本碍子株式会社 | 亜鉛二次電池用セパレータ及び亜鉛二次電池 |
JP2016201199A (ja) | 2015-04-08 | 2016-12-01 | 日本碍子株式会社 | 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池 |
JP2017091949A (ja) | 2015-11-16 | 2017-05-25 | 日本碍子株式会社 | 亜鉛二次電池 |
JP2018026205A (ja) | 2016-08-08 | 2018-02-15 | 日本碍子株式会社 | 負極構造体及びそれを備えた亜鉛二次電池 |
US20180130998A1 (en) | 2012-11-28 | 2018-05-10 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Zinc Electrodes for Batteries |
JP2018133324A (ja) | 2017-02-17 | 2018-08-23 | 国立大学法人 名古屋工業大学 | 二次電池 |
JP2018147739A (ja) | 2017-03-06 | 2018-09-20 | 日立化成株式会社 | 亜鉛負極二次電池用セパレータ |
JP2018147738A (ja) | 2017-03-06 | 2018-09-20 | 日立化成株式会社 | 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ |
JP2019021518A (ja) | 2017-07-18 | 2019-02-07 | 日本碍子株式会社 | 亜鉛二次電池用負極及び亜鉛二次電池 |
US20190123319A1 (en) | 2016-04-20 | 2019-04-25 | Nec Corporation | Secondary battery |
US20190214636A1 (en) | 2015-11-06 | 2019-07-11 | Nissan Motor Co., Ltd. | Zinc Negative Electrode Material for Secondary Cell |
WO2021049609A1 (ja) | 2019-09-12 | 2021-03-18 | 学校法人同志社 | 金属負極及び該金属負極の作製方法並びに該金属負極を備える二次電池 |
WO2021161900A1 (ja) * | 2020-02-12 | 2021-08-19 | 学校法人同志社 | 亜鉛負極及びその作製方法、並びに該亜鉛負極を備えた二次電池及びその作製方法 |
WO2021192563A1 (ja) * | 2020-03-27 | 2021-09-30 | 三井金属鉱業株式会社 | 亜鉛箔及びこれを用いた電池用負極活物質材料、並びに亜鉛箔の製造方法 |
-
2022
- 2022-10-07 EP EP22880955.4A patent/EP4418355A1/en active Pending
- 2022-10-07 CN CN202280066928.2A patent/CN118056288A/zh active Pending
- 2022-10-07 WO PCT/JP2022/037651 patent/WO2023063260A1/ja active Application Filing
- 2022-10-07 JP JP2023554500A patent/JPWO2023063260A1/ja active Pending
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010518585A (ja) * | 2007-02-12 | 2010-05-27 | パワージェニックス システムズ, インコーポレーテッド | 金属亜鉛型電流コレクタ |
JP2012104273A (ja) | 2010-11-08 | 2012-05-31 | Hitachi Zosen Corp | 金属空気電池 |
JP2014026951A (ja) | 2011-08-23 | 2014-02-06 | Nippon Shokubai Co Ltd | 亜鉛負極合剤及び該亜鉛負極合剤を使用した電池 |
WO2013154623A1 (en) | 2012-04-10 | 2013-10-17 | California Institute Of Technology | Novel separators for electrochemical systems |
WO2014069541A1 (ja) | 2012-10-30 | 2014-05-08 | 旭硝子株式会社 | 金属二次電池用負極材料および金属二次電池用負極のデンドライトの抑制方法 |
US20180130998A1 (en) | 2012-11-28 | 2018-05-10 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Zinc Electrodes for Batteries |
US20150364790A1 (en) | 2013-02-01 | 2015-12-17 | Nippon Shokubai Co., Ltd. | Anion conducting material and cell |
JP2014192137A (ja) * | 2013-03-28 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | 二次電池 |
JP2014222570A (ja) | 2013-05-13 | 2014-11-27 | 新神戸電機株式会社 | 二次電池 |
JP2016189356A (ja) | 2014-11-13 | 2016-11-04 | 日本碍子株式会社 | 亜鉛二次電池に用いられるセパレータ構造体 |
JP2016146263A (ja) | 2015-02-06 | 2016-08-12 | 株式会社日本触媒 | セパレータ及びそれを含んで構成される電池 |
JP2016170944A (ja) | 2015-03-12 | 2016-09-23 | 日本碍子株式会社 | 多層多孔質セパレータ及びそれを用いた二次電池 |
JP2016194990A (ja) | 2015-03-31 | 2016-11-17 | 日本碍子株式会社 | 亜鉛二次電池用セパレータ及び亜鉛二次電池 |
JP2016201199A (ja) | 2015-04-08 | 2016-12-01 | 日本碍子株式会社 | 水酸化物イオン伝導性セラミックスセパレータを用いた二次電池 |
US20190214636A1 (en) | 2015-11-06 | 2019-07-11 | Nissan Motor Co., Ltd. | Zinc Negative Electrode Material for Secondary Cell |
JP2017091949A (ja) | 2015-11-16 | 2017-05-25 | 日本碍子株式会社 | 亜鉛二次電池 |
US20190123319A1 (en) | 2016-04-20 | 2019-04-25 | Nec Corporation | Secondary battery |
JP2018026205A (ja) | 2016-08-08 | 2018-02-15 | 日本碍子株式会社 | 負極構造体及びそれを備えた亜鉛二次電池 |
JP2018133324A (ja) | 2017-02-17 | 2018-08-23 | 国立大学法人 名古屋工業大学 | 二次電池 |
JP2018147739A (ja) | 2017-03-06 | 2018-09-20 | 日立化成株式会社 | 亜鉛負極二次電池用セパレータ |
JP2018147738A (ja) | 2017-03-06 | 2018-09-20 | 日立化成株式会社 | 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ |
JP2019021518A (ja) | 2017-07-18 | 2019-02-07 | 日本碍子株式会社 | 亜鉛二次電池用負極及び亜鉛二次電池 |
WO2021049609A1 (ja) | 2019-09-12 | 2021-03-18 | 学校法人同志社 | 金属負極及び該金属負極の作製方法並びに該金属負極を備える二次電池 |
WO2021161900A1 (ja) * | 2020-02-12 | 2021-08-19 | 学校法人同志社 | 亜鉛負極及びその作製方法、並びに該亜鉛負極を備えた二次電池及びその作製方法 |
WO2021192563A1 (ja) * | 2020-03-27 | 2021-09-30 | 三井金属鉱業株式会社 | 亜鉛箔及びこれを用いた電池用負極活物質材料、並びに亜鉛箔の製造方法 |
Non-Patent Citations (3)
Title |
---|
J. F. PARKERC. N. CHERVINI. R. PALAM. MACHLERM. F. BURZJ. W. LONGD. R. ROLISON, SCIENCE, vol. 356, 2017, pages 415 - 418 |
K. MIYAZAKIY. S. LEET. FUKUTSUKAT. ABE, ELECTROCHEMISTRY, vol. 80, no. 10, 2012, pages 725 - 727 |
R. KODAK. FUKAMIT. SAKKAY. H. OGATA, ECS ELECTROCHEMISTRY LETTER, vol. 2, 2013, pages D9 - D11 |
Also Published As
Publication number | Publication date |
---|---|
EP4418355A1 (en) | 2024-08-21 |
CN118056288A (zh) | 2024-05-17 |
JPWO2023063260A1 (ja) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2130247B1 (en) | Metallic zinc-based current collector | |
Jindra | Progress in sealed Ni-Zn cells, 1991–1995 | |
KR102519360B1 (ko) | 금속 음극 및 상기 금속 음극의 제작 방법 그리고 상기 금속 음극을 구비하는 이차 전지 | |
WO2021161900A1 (ja) | 亜鉛負極及びその作製方法、並びに該亜鉛負極を備えた二次電池及びその作製方法 | |
CN110226260B (zh) | 金属空气电池 | |
KR100687273B1 (ko) | 재충전가능한 전기화학 전지용 전극 유닛 | |
JP6353695B2 (ja) | 金属空気電池本体及び金属空気電池 | |
WO2023063260A1 (ja) | 二次電池用負極構造体及び該構造体を備えた二次電池 | |
EP3483960B1 (en) | Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the negative electrode | |
EP3413381B1 (en) | Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery including non-sintered positive electrode | |
JP2020087516A (ja) | 亜鉛電池用負極の製造方法及び亜鉛電池の製造方法 | |
RU2058627C1 (ru) | Щелочной аккумулятор | |
US7976982B2 (en) | Alkaline storage battery | |
JP2021158028A (ja) | 亜鉛二次電池 | |
JP7379417B2 (ja) | アルカリ二次電池及びアルカリ二次電池の製造方法 | |
JPH09274916A (ja) | アルカリ蓄電池 | |
US11404745B2 (en) | Separator for batteries | |
JP7197250B2 (ja) | 二次電池 | |
WO2024029364A1 (ja) | 負極板及びそれを備えた亜鉛二次電池 | |
US20210384501A1 (en) | Reversible manganese dioxide electrode, method for the production thereof, the use thereof, and rechargeable alkaline-manganese battery containing said electrode | |
US20150162570A1 (en) | Beveled cell design for an alkaline battery to remove gas | |
JP2022140160A (ja) | 亜鉛二次電池 | |
RU2100877C1 (ru) | Сепаратор для химического источника тока | |
KR200331899Y1 (ko) | 대용량의 버튼형 공기아연전지 | |
EP4451372A1 (en) | Zinc battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22880955 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023554500 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280066928.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022880955 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022880955 Country of ref document: EP Effective date: 20240513 |