WO2023063096A1 - ゴム加硫物の製造方法 - Google Patents

ゴム加硫物の製造方法 Download PDF

Info

Publication number
WO2023063096A1
WO2023063096A1 PCT/JP2022/036406 JP2022036406W WO2023063096A1 WO 2023063096 A1 WO2023063096 A1 WO 2023063096A1 JP 2022036406 W JP2022036406 W JP 2022036406W WO 2023063096 A1 WO2023063096 A1 WO 2023063096A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
group
formula
mass
acid
Prior art date
Application number
PCT/JP2022/036406
Other languages
English (en)
French (fr)
Inventor
幸弘 城
聡 井上
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Publication of WO2023063096A1 publication Critical patent/WO2023063096A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a method for producing a rubber vulcanizate.
  • silica-containing rubber products such as anti-vibration rubber and various rubber rolls, including silica-containing tires with excellent fuel efficiency and braking performance
  • silica-containing rubber compositions significantly increase compound viscosity
  • a general approach is to add a silane coupling agent to alleviate the increase in viscosity.
  • Silane coupling agents are also known to reduce the interaction between silica particles by reacting with silanol on the surface of silica, thereby lowering the loss tangent and dynamic elastic modulus of rubber.
  • An object of the present invention is to provide a rubber vulcanizate production method that enables the production of tires with better fuel efficiency and grip.
  • the present inventors kneaded a rubber (A), an inorganic filler (B), a specific silane coupling agent (C), and a basic compound (D). a kneading step of obtaining a rubber composition; and a vulcanization step of adding a vulcanizing agent to the rubber composition and vulcanizing the rubber composition to obtain a rubber vulcanizate. found that the above problems can be solved.
  • Section 1. a kneading step of kneading the rubber (A), the inorganic filler (B), the silane coupling agent (C), and the basic compound (D) to obtain a rubber composition;
  • the silane coupling agent (C) is selected from the group consisting of a (protected) mercapto-based organosilicon compound, an organosilicon compound having a skeleton of an amino acid or a derivative thereof, a compound represented by the formula (X), and a condensate thereof At least one selected method for producing a rubber vulcanizate.
  • Rubber (A) includes natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile-butadiene copolymer rubber (NBR), and chloroprene rubber (CR). , ethylene propylene copolymer rubber (EPDM), and butyl rubber (IIR). Method.
  • the present inventors added both a specific silane coupling agent (C) and a basic compound (D) in the kneading step and kneaded to obtain a rubber composition, and then in the vulcanization step, vulcanized It was found that when the rubber vulcanizate obtained by a method for producing a rubber vulcanizate obtained by adding a vulcanizing agent and vulcanized to obtain a rubber vulcanizate is used as a tire, it has excellent fuel efficiency and grip. rice field.
  • the present invention comprises a step of kneading a rubber (A), an inorganic filler (B), a silane coupling agent (C), and a basic compound (D) to obtain a rubber composition (kneading step);
  • a method for producing a rubber vulcanizate comprising a step (vulcanization step) of obtaining a rubber vulcanizate by adding a vulcanizing agent to the rubber composition obtained in the kneading step and vulcanizing it,
  • the silane coupling agent (C) is selected from the group consisting of a (protected) mercapto-based organosilicon compound, an organosilicon compound having a skeleton of an amino acid or a derivative thereof, a compound represented by the formula (X), and a condensate thereof This is at least one selected method for producing a rubber vulcanizate.
  • R 1 independently represents H or a (C 1 -C 8 ) alkyl group
  • R 2 is a linear or branched divalent (C 1 -C 8 ) carbonized means a hydrogen group
  • n means an integer from 13 to 19
  • C n H 2n+1 is a linear or branched alkyl group
  • the rubber (A), the inorganic filler (B), the silane coupling agent (C), and the basic compound (D) are kneaded to form a rubber. This is the step of obtaining the composition.
  • Rubber Composition The rubber composition in the kneading step of the present invention contains rubber (A), inorganic filler (B), silane coupling agent (C), and basic compound (D).
  • the rubber (A) used in the rubber composition in the kneading step is not particularly limited, and may be natural rubber or synthetic rubber.
  • the synthetic rubber is not particularly limited, but examples include styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR), nitrile rubber (NBR), acrylonitrile-butadiene copolymer rubber, Diene rubber such as polymer rubber (NBR) and chloroprene rubber (CR); butyl rubber (IIR), ethylene propylene copolymer rubber (EPDM), acrylic rubber (ACM), chlorosulfonated polyethylene rubber (CSM), fluororubber (FKM) and other olefinic rubbers; silicone rubber (Q); urethane rubber (AU) and the like.
  • SBR styrene-butadiene copolymer rubber
  • BR polybutadiene rubber
  • IR polyisoprene rubber
  • the rubber (A) may be produced by any polymerization method, and may be rubber produced by emulsion polymerization or rubber produced by solution polymerization. Also, the rubber may be a so-called end-modified rubber in which the molecular end is modified.
  • the above rubber (A) can be used alone or in combination of two or more.
  • the rubber (A) is more preferably a diene rubber.
  • the rubber (A) is styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), polyisoprene rubber (IR), acrylonitrile-butadiene copolymer rubber ( At least one selected from the group consisting of NBR), chloroprene rubber (CR), and ethylene-propylene copolymer rubber (EPDM) is particularly preferred.
  • the content of rubber (A) used in the rubber composition is not particularly limited, but may be, for example, 20 to 80% by mass with respect to the entire rubber composition.
  • the inorganic filler (B) used in the rubber composition in the kneading step of the present invention is not particularly limited as long as it is usually added during kneading of the rubber composition. At least one selected from the group consisting of silica and aluminum hydroxide can be preferably used. Note that the inorganic filler (B) does not correspond to a component corresponding to a cross-linking accelerator (assistant), which will be described later. By using these inorganic fillers (B), it is possible to obtain the effect of further improving the reinforcing properties of the rubber.
  • wet silica as the inorganic filler (B) from the viewpoint of reactivity with the silane coupling agent (C).
  • the BET specific surface area of the wet silica, dry silica, and aluminum hydroxide is preferably 20 to 300 m 2 /g, more preferably 50 to 250 m 2 /g, and more preferably 100 to 250 m 2 /g. more preferably 190 to 230 m 2 /g.
  • the BET specific surface area of the inorganic filler (B) is 20 m 2 /g or more, the rubber is excellent in reinforcing properties when the inorganic filler (B) and the rubber (A) are mixed, and the rubber is resistant to Improves abrasion resistance. If the BET specific surface area is 300 m 2 /g or less, it is possible to suppress an increase in the viscosity of the rubber when the inorganic filler (B) and the rubber (A) are mixed together. (A) can be kneaded more uniformly.
  • the content of the inorganic filler (B) used in the rubber composition is not limited to this, but is preferably 10 to 150 parts by mass with respect to 100 parts by mass of the rubber (A). It is preferably from 20 to 120 parts by mass, and even more preferably from 60 to 120 parts by mass.
  • Silane coupling agent (C) used in the rubber composition in the kneading step of the present invention is not particularly limited, but may be a (protected) mercapto-based organosilicon compound, an organosilicon compound having a skeleton of an amino acid or a derivative thereof. , compounds represented by formula (X), and condensates thereof.
  • R 1 independently represents H or a (C 1 -C 8 ) alkyl group
  • R 2 is a linear or branched divalent (C 1 -C 8 ) carbonized means a hydrogen group
  • n means an integer from 13 to 19
  • C n H 2n+1 is a linear or branched alkyl group
  • R 1 are independently of each other H or (C 1 -C 8 )alkyl groups.
  • the alkyl group for R 1 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 1 is preferably methyl or ethyl.
  • R 2 is a straight or branched chain divalent (C 1 -C 8 ) hydrocarbon group.
  • R 2 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 2 is, inter alia, a methylene group (CH 2 ), a dimethylene group (CH 2 CH 2 ), a trimethylene group (CH 2 CH 2 CH 2 ), a tetramethylene group (CH 2 CH 2 CH 2 CH 2 ), a methylmethylene group (CH(CH 3 )), 1,2-propylene group (CH 2 CH(CH 3 )), dimethylmethylene group (C(CH 3 ) 2 ), 1,1-propylene group (CH(C 2 H 5 ) ), 1,3-butylene group (CH 2 CH 2 CH(CH 3 )), and 2-methyltrimethylene group (CH 2 CH(CH 3 )CH 2 ) are preferred.
  • C n H 2n+1 is a linear or branched alkyl group, preferably a linear alkyl group. Specific examples of C n H 2n+1 include a myristyl group, a palmityl group, a stearyl group, an arachidyl group and the like.
  • R 1 may be ethyl
  • R 2 may be CH 2 CH 2 CH 2
  • an alkyl group C n H 2n+1 can be a linear alkyl group (ie, linear C 13 H 27 , linear C 15 H 31 , linear C 17 H 35 , or linear C 19 H 39 ).
  • Compounds represented by formula (X) include compounds represented by the following formulas (Xa) to (Xd).
  • (R 1 O) 3 Si—R 2 —S—C( O)—C 13 H 27
  • (Xa) (R 1 O) 3 Si—R 2 —S—C( O)—C 15 H 31
  • (R 1 O) 3 Si—R 2 —S—C( O)—C 13 H 27
  • (Xa) (R 1 O) 3 Si—R 2 —S—C( O)—C 15 H 31
  • (Xc) (R 1 O) 3 Si—R 2 —S—C( O)—
  • Examples of compounds represented by formula (Xa) include silane coupling agents exemplified below.
  • Examples of the compound represented by formula (Xb) include silane coupling agents exemplified below.
  • Examples of compounds represented by formula (Xc) include silane coupling agents exemplified below.
  • Examples of compounds represented by formula (Xd) include silane coupling agents exemplified below.
  • the two or more compounds represented by the formula (X) include the compound represented by the formula (Xa), the compound represented by the formula (Xb), the compound represented by the formula (Xc), and Two or more (more preferably three or more, still more preferably four) selected from the group consisting of compounds represented by (Xd) are preferred.
  • R 1 and R 2 in each formula may be the same or different, They are preferably the same (three R 1 in the same formula may be the same or different).
  • the compound represented by formula (X) uses two or more of the compounds represented by formulas (Xa) to (Xd), the compound represented by formula (Xa) in the compound represented by formula (X)
  • the ratio of the compound represented by formula (X) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably is 1% by mass or more. Moreover, the above ratio is preferably 8% by mass or less, more preferably 5% by mass or less.
  • formula (Xb) in the compound represented by formula (X) is preferably 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass, relative to the total amount (100% by mass) of the compound represented by formula (X). That's it.
  • the above ratio is preferably 45% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less.
  • formula (Xc) in the compound represented by formula (X)
  • the proportion of the compound represented by formula (X) is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass, relative to the total amount (100% by mass) of the compound represented by formula (X). That's it.
  • the above ratio is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less.
  • formula (Xd) in the compound represented by formula (X) is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably is 0.7% by mass or more. Moreover, the above ratio is preferably 5% by mass or less, more preferably 3% by mass or less.
  • formula (Xb) in the compound represented by formula (X) is preferably 60% by mass or more, more preferably It is 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more. Further, the total ratio may be 99% by mass or less.
  • the ratio of the compound represented by formula (Xb) and the compound represented by formula (Xc) is preferably 10:90 to 48:52, more preferably 20:80 to 40:60, more preferably 25:75. ⁇ 35:65.
  • a compound of formula (X) is prepared by reacting a mercaptosilane corresponding to formula (X-1) (R 1 O) 3 Si--R 2 --SH in the presence of an auxiliary base with a suitable fatty acid in a suitable solvent. It can be prepared by reacting with a chloride, filtering off the solid residue formed and distilling off the solvent.
  • R 1 independently represents H or a (C 1 -C 8 ) alkyl group
  • R 2 is a linear or branched divalent (C 1 -C 8 ) means a hydrocarbon group.
  • each R 1 is independently H or a (C 1 -C 8 )alkyl group, and is the same as R 1 in formula (X) above.
  • the alkyl group for R 1 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 1 is preferably methyl or ethyl.
  • R 2 is a linear or branched divalent (C 1 -C 8 ) hydrocarbon group, and is the same as R 2 in formula (X) above.
  • R 2 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 2 is, inter alia, a methylene group (CH 2 ), a dimethylene group (CH 2 CH 2 ), a trimethylene group (CH 2 CH 2 CH 2 ), a tetramethylene group (CH 2 CH 2 CH 2 CH 2 ), a methylmethylene group (CH(CH 3 )), 1,2-propylene group (CH 2 CH(CH 3 )), dimethylmethylene group (C(CH 3 ) 2 ), 1,1-propylene group (CH(C 2 H 5 ) ), 1,3-butylene group (CH 2 CH 2 CH(CH 3 )), and 2-methyltrimethylene group (CH 2 CH(CH 3 )CH 2 ) are preferred.
  • Triethylamine or another amine may be used as an auxiliary base for the preparation of the compound represented by formula (X).
  • solvents include aliphatic hydrocarbons such as pentane, hexane, heptane and octane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; -chlorinated hydrocarbons such as dichloroethane, chloroform, monochlorobenzene, and dichlorobenzene, ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, and N,N-dimethylformamide (DMF) , N,N-dimethylacetamide and N-methylpyrrolidone, ester solvents such as methyl formate, ethyl formate, methyl acetate,
  • ketone solvents such as cyclohexanone, nitrile solvents such as acetonitrile and benzonitrile, and sulfone solvents such as dimethylsulfoxide and sulfolane. Also, one or more of these solvents may be used.
  • the content of the silane coupling agent (C) contained in the rubber composition according to the present invention is not limited to this, but is 2 to 50 parts by mass with respect to 100 parts by mass of the rubber (A). preferably 5 to 30 parts by mass, and even more preferably 10 to 20 parts by mass.
  • Organosilicon compound having an amino acid or its derivative skeleton As an organosilicon compound having an amino acid or its derivative skeleton, there is a compound represented by the formula (Y). (R 3 O) 3 Si—R 4 —S—C( ⁇ O)—R 5 —NH—R 6 (Y) [In formula (Y), R 3 independently represents H or (C 1 -C 8 )alkyl, R 4 represents a linear or branched divalent hydrocarbon group, and R 5 represents a (C 1 -C 20 ) divalent organic group and R 6 is H or a protecting group for an amino group]
  • R 3 are independently of each other H or (C 1 -C 8 )alkyl groups.
  • the alkyl group for R 3 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 3 is preferably a methyl group or an ethyl group.
  • R 4 is a straight or branched chain divalent (C 1 -C 8 ) hydrocarbon group.
  • R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group, preferably a saturated hydrocarbon group.
  • R 6 is H or a protecting group for an amino group.
  • the amino-protecting group is not particularly limited as long as it acts as an amino-protecting group, and includes a tert-butyloxycarbonyl group, a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an acetyl group, octanoyl group, benzoyl group, benzyl group, 4-dimethylaminoazobenzene-4'-sulfonyl group, 5-dimethylaminonaphthalene-1-sulfonyl group, 2,4-dinitrophenyl group, 2-nitrophenylsulfenyl group, chloroacetyl group, formyl group, and the like.
  • R 6 is preferably hydrogen, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl or octanoyl.
  • Examples of the compound represented by formula (Y) include an organosilicon compound represented by formula (Y-1) and/or an organosilicon compound represented by formula [Y-2]. .
  • R 3 independently represents H or (C 1 -C 8 )alkyl
  • R 4 is a linear or branched divalent (C 1 -C 8 ) carbonized means a hydrogen group
  • R 7 is H or an organic group
  • R 6 is H or a protective group for an amino group.
  • R 3 independently represents H or (C 1 -C 8 )alkyl;
  • R 4 is a linear or branched divalent (C 1 -C 8 ) carbonized represents a hydrogen group,
  • R 8 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a substituted or unsubstituted aromatic ring, and
  • R 6 is H or a protecting group for an amino group.
  • an organosilicon compound represented by formula (Y-1) can be exemplified.
  • R 3 independently represents H or (C 1 -C 8 )alkyl
  • R 4 is a linear or branched divalent (C 1 -C 8 ) carbonized means a hydrogen group
  • R 7 is H or an organic group
  • R 6 is H or a protective group for an amino group.
  • R 7 is H or an organic group, and examples of the organic group include amino acid side chain groups and groups derived from amino acid side chain groups.
  • R 7 is preferably H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkyl group having a thioether (-S-), a substituted or unsubstituted aromatic group, and H, a substituted or unsubstituted An alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms having a substituted or unsubstituted thioether (-S-), a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms more preferred.
  • substituents that can be substituted include alkyl groups such as methyl, ethyl and isopropyl; aryl groups such as phenyl; aralkyl groups such as benzyl; A saturated hydrocarbon group, a fluoro group, a chloro group, a bromo group, a halogeno group such as an iodine group, an amino group, a nitro group, and the like can be mentioned.
  • an organosilicon compound represented by formula (Y-2) can be exemplified.
  • R 3 independently represents H or (C 1 -C 8 )alkyl
  • R 4 is a linear or branched divalent (C 1 -C 8 ) carbonized represents a hydrogen group
  • R 7 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a substituted or unsubstituted aromatic ring
  • R 6 is H or a protecting group for an amino group.
  • R 7 is a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain a substituted or unsubstituted aromatic ring; A divalent hydrocarbon group having 1 to 12 carbon atoms which may contain an aromatic ring is preferred, and a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms is particularly preferred.
  • substituents that can be substituted include alkyl groups such as methyl, ethyl and isopropyl; aryl groups such as phenyl; aralkyl groups such as benzyl; A saturated hydrocarbon group, a fluoro group, a chloro group, a bromo group, a halogeno group such as an iodine group, an amino group, a nitro group, and the like can be mentioned.
  • the method for producing the compound represented by formula (Y) is not particularly limited. Specifically, mercaptosilane is converted to an N-protected amino acid or an N-protected aminocarboxylic acid in the presence of a carbodiimide condensing agent and a base. A method for producing by reacting with can be exemplified.
  • the N-protected amino acid is one in which the amino group of an amino acid is protected with a known protecting group, such as the protecting group described above.
  • a known protecting group such as the protecting group described above.
  • Specific examples include Boc-alanine, Boc-phenylalanine, Boc-methionine, Z-alanine, Z-phenylalanine, Z-methionine, Ac-alanine, Ac-phenylalanine, Ac-methionine, N-(octanoyl)alanine, N-(octanoyl)phenylalanine, N-(octanoyl)methionine, etc., but particularly limited to these not to be
  • the N-protected aminocarboxylic acid is obtained by protecting the amino group of aminocarboxylic acid with a known protecting group such as the protecting group described above.
  • a known protecting group such as the protecting group described above.
  • Specific examples include 3-Boc-aminopropanoic acid, 3-Z- aminopropanoic acid, 3-Ac-aminopropanoic acid, 3-(octanoyl)aminopropanoic acid, 4-Boc-aminobutyric acid, 4-Z-aminobutyric acid, 4-Ac-aminobutyric acid, 4-(octanoyl)aminobutyric acid, 5-Boc-aminovaleric acid, 5-Z-aminovaleric acid, 5-Ac-aminovaleric acid, 5-(octanoyl)aminovaleric acid, 6-Boc-aminocaproic acid, 6-Z-aminocaproic acid, 6-Ac -aminocaproic acid, 6-(oc
  • a compound represented by the formula (Y) such as an organosilicon compound represented by the formulas [Y-1] and [Y-2] is hydrolyzed and then subjected to a condensation reaction. It may be a condensate (oligomer) obtained by a condensation reaction with another component (oligomer).
  • Other components include an alkyl polyol which may contain a nitrogen atom in a divalent or higher carbon number molecule of 1 to 60 and/or a divalent or higher carbon number molecule containing a nitrogen atom in a molecule of 2 to 60.
  • (Poly)alkyl ether polyols are exemplified, preferably alkyl polyols having 2 to 60 carbon atoms and/or (poly)alkyl ether polyols having 2 to 60 carbon atoms, alkyl polyols having 2 to 30 carbon atoms and/or carbon (Poly)alkyl ether polyols of numbers 2 to 30 are more preferred.
  • alkylpolyols which may contain a nitrogen atom in the molecule having 1 to 60 carbon atoms and having a valence of 2 or more include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl- Examples include 1,3-propanediol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, diethanolamine, methyldiethanolamine, butyldiethanolamine, and triethanolamine.
  • Diethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol and the like are exemplified as (poly)alkyl ether polyols having 2 to 60 carbon atoms which are divalent or higher and which may contain a nitrogen atom in the molecule.
  • the (protected) mercapto-based organosilicon compound (protected) mercapto-based organosilicon compound includes mercapto-based compounds having a mercapto group, such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane.
  • Organosilicon compounds and compounds such as 3-octanoylthio-1-propyltriethoxysilane and 3-propionylthiopropyltrimethoxysilane are organosilicon compounds that do not have a mercapto group (the mercapto group is protected).
  • Protected mercapto-based organosilicon compounds which subsequently have mercapto groups when subjected to heat, chemicals, or the like can be exemplified.
  • the (protected) mercapto-based organosilicon compound is preferably a compound represented by the following formula (Z).
  • R 11 independently represents a monovalent hydrocarbon group
  • R 12 independently represents an alkoxy group
  • R 13 represents a divalent hydrocarbon group
  • R 14 is a monovalent hydrocarbon group having 1 to 18 carbon atoms.
  • m is an integer of 0-2.
  • Each R 11 is independently a monovalent hydrocarbon group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • Each R 12 is independently an alkoxy group, preferably an alkoxy group having 1 to 8 carbon atoms, more preferably an alkoxy group having 1 to 3 carbon atoms.
  • R 13 is a divalent hydrocarbon group, preferably a divalent hydrocarbon group having 1 to 18 carbon atoms, preferably an alkylene group having 1 to 4 carbon atoms.
  • R 14 is preferably a monovalent hydrocarbon group having 1 to 18 carbon atoms, more preferably a monovalent hydrocarbon group having 8 to 18 carbon atoms.
  • m is an integer from 0 to 2, ie 0, 1, or 2;
  • NXT 3-octanoylthiopropyltriethoxysilane
  • NXT-LowV represented by formula (1), but are not limited to these. not something. Moreover, these can also be used individually or in mixture. A commercially available product may be used, or one synthesized by a generally known synthesis method may be used.
  • silane coupling agent (C) 3-octanoylthiopropyltriethoxysilane and 3-octadecanoylthiopropyltriethoxysilane are preferred as the silane coupling agent (C).
  • the content of the silane coupling agent (C) used in the rubber composition is preferably 1 to 30 parts by mass, preferably 2 to 25 parts by mass, with respect to 100 parts by mass of the rubber (A). It is more preferable to contain, particularly preferably 3 to 15 parts by mass.
  • silane coupling agent C
  • the above rubber composition may be blended with a silane coupling agent that is usually blended with rubber.
  • silane coupling agents include, for example, vinyl-based organosilicon compounds, alkyl-based organosilicon compounds, epoxy-based organosilicon compounds, methacrylic-based organosilicon compounds, (poly)sulfide-based organosilicon compounds, and condensates thereof. 1 type may be contained (hereinafter, these organosilicon compounds may be collectively referred to as "other organosilicon compounds").
  • organosilicon compounds namely, vinyl-based organosilicon compounds, alkyl-based organosilicon compounds, epoxy-based organosilicon compounds, methacrylic-based organosilicon compounds, (poly)sulfide-based organosilicon compounds, and their
  • vinyl organic silicon compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, allyltrichlorosilane, allyltriethoxysilane, diethoxymethylvinylsilane, trichlorovinylsilane, and trichlorovinylsilane. be done.
  • alkyl-based organosilicon compounds examples include methyltrimethoxysilane, dimethyldiethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, octyltriethoxysilane, and hexamethyldisilazane.
  • epoxy-based organosilicon compounds examples include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like.
  • methacrylic organosilicon compound examples include 3-methacryloxypropyltriethoxysilane and 3-methacryloxypropyltrimethoxysilane.
  • Examples of the (poly)sulfide-based organosilicon compound include polysulfide-based silane coupling agents represented by formula (2), bis(3-triethoxysilylpropyl)disulfide, bis(3-triethoxysilylpropyl) Tetrasulfide is particularly preferred.
  • R 15 is independently an alkyl group having 1 to 18 carbon atoms, C a H 2a+1 O-((CH 2 ) b O) c , a is 1 to 18, b is 1 to 6, c is selected from the group consisting of polyalkylene glycol monoalkyl ether groups of 1 to 18, R 16 is an alkylene group having 1 to 9 carbon atoms or a divalent phenyl group, l is 1 to 9, k is an integer from 0 to 2; )
  • organosilicon compounds used in combination include Cabras 2 and Cabras 4 manufactured by Osaka Soda Co., Ltd., Si-75, which corresponds to the Cabras-2 type, and Cabras-4 type, manufactured by Degussa. corresponding Si-69, Si-363 represented by the following formula (3), Momentive's A-1289 corresponding to the above Cabras-4 type, A-189 which is 3-mercaptopropyltrimethoxysilane, the above Examples include KBE-846 manufactured by Shin-Etsu Chemical Co., Ltd., which corresponds to Cabras-4 type, but are not limited to these. Moreover, these can also be used individually or in mixture.
  • the organosilicon compound, the vinyl organosilicon compound, the alkyl organosilicon compound, the epoxy organosilicon compound, the methacrylic organosilicon compound, the (poly)sulfide organosilicon compound, and condensates thereof It is preferable that the total mass of at least one selected from the group consisting of does not exceed 30 parts by mass with respect to 100 parts by mass of the inorganic filler (B) (especially silica-based filler).
  • the basic compound (D) used in the rubber composition in the kneading step is not particularly limited, but a primary amine compound (d-1), a secondary amine compound (d-2), and a tertiary amine compound. (d-3) and the like can be exemplified.
  • the basic compound (D) of the present invention does not include the silane coupling agent described above.
  • Examples of the primary amine compound (d-1) include ethylamine, n-propylamine, isopropylamine, 1,2-dimethylpropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, isoamylamine, tert - amylamine, 3-pentylamine, n-amylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-octylamine, tert-octylamine, 2-ethylhexylamine, n-nonylamine, n-aminodecane, n-aminoundecane, n-dodecylamine, n-tridecylamine, 2-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexade
  • cyclopropylamine, cyclobutylamine, cyclopropylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine which are alicyclic amines, and aniline, which is an aromatic amine
  • aniline which is an aromatic amine
  • ether amines such as 3-isopropoxypropylamine, isobutoxypropylamine and morpholine can also be exemplified.
  • Examples of the secondary amine compound (d-2) include N,N-dipropylamine, N,N-dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N-dipeptylamine, N, N-dioctylamine, N,N-dinonylamine, N,N-didecylamine, N,N-diundecylamine, N,N-didodecylamine, N,N-distearylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine, N-propyl-N-butylamine, bis(2-ethylhexyl)amine, N-methylaminopropyltrimethoxysilane, (3-(butylamino)propyl)trimethoxysilane, 3-( Examples include dialkylmonoamines such as N-phenyl)aminopropyltrimeth
  • Tertiary amine compounds (d-3) include triethylamine, tributylamine, trihexylamine, dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dilaurylmonomethyl Examples include amine, quinuclidine, dimethylaminoethanol, pyridine, (3-(dimethylamino)propyl)trimethoxysilane, (3-(diethylamino)propyl)trimethoxysilane and the like.
  • a diamine compound (d-4) having two amino groups in one compound can also be used.
  • the diamine compound (d-4) include ethylenediamine, N,N-dimethylethylenediamine, N,N'-dimethylethylenediamine, N-ethylethylenediamine, N,N-diethylethylenediamine, N,N'-diethylethylenediamine, 1,3 -propanediamine, 2,2-dimethyl-1,3-propanediamine, N,N-dimethyl-1,3-propanediamine, N,N'-dimethyl-1,3-propanediamine, N,N-diethyl- 1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, 1,4-butanediamine, N,N-dimethyl-1,4-butanediamine, N,N'-dimethyl-1, 4-butanediamine, N,N-diethyl-1,4-butanediamine, N,N-die
  • diethylenetriamine 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1,2,3-triphenylguanidine, triethylenetetramine, Hexamethylenetetramine and the like can be exemplified.
  • the above-mentioned compounds may be used singly or in combination.
  • 3-aminopropyltrimethoxysilane 3-aminopropyltriethoxysilane
  • quinuclidine diazabicycloundecene (DBU)
  • 1,3-diphenylguanidine 1,3-di- o-tolylguanidine, 1,2,3-triphenylguanidine and hexamethylenetetramine
  • 1,3-diphenylguanidine is more preferred.
  • the amount of the basic compound (D) compounded in the rubber composition of the present invention is not particularly limited to 100 parts by mass of the rubber (A). It is more preferably 5 parts by mass, particularly preferably 0.5 to 5 parts by mass, even more preferably 0.5 to 3 parts by mass, and 0.5 to 1.5 parts by mass. is most preferred.
  • the kneading process is preferably carried out before the vulcanization process by adding a vulcanizing agent. That is, in the kneading step, the inorganic filler (B), the silane coupling agent (C), and the basic compound (D) are kneaded with the rubber (A) before adding the vulcanizing agent to obtain a rubber composition. It is the process by which a product is obtained.
  • the rubber (A), the inorganic filler (B), the silane coupling agent (C) and the basic compound (D) are preferably kneaded at 80 to 250°C, and kneaded at 80 to 200°C. is more preferable.
  • the inorganic filler (B) and the like can be uniformly dispersed without gelling or scorching the kneaded product, and each component can be kneaded appropriately.
  • no vulcanizing agent is added in the kneading step, kneading can be performed at a relatively high temperature without worrying about the formation of crosslinks.
  • the kneading time in the kneading step is not particularly limited, but is, for example, 1 minute to 1 hour.
  • the order of adding the rubber (A), the inorganic filler (B), the silane coupling agent (C), and the basic compound (D) in the kneading step is not particularly limited, but only the rubber (A) is added first. It is preferable to add the other ingredients in order after preliminarily kneading.
  • the rubber (A), the inorganic filler (B), and the silane coupling agent (C) are kneaded to obtain a rubber composition, and then in the vulcanization step It is common to add a basic compound (D), a vulcanizing agent, etc., perform vulcanization, and obtain a rubber vulcanizate.
  • A), the inorganic filler (B), the silane coupling agent (C), and the basic compound (D) are also added and kneaded to obtain a rubber composition.
  • the basic compound (D) is also added and kneaded to form a thioester bond. This is because it accelerates the decomposition of mercaptosilane to generate more mercaptosilane.
  • the vulcanization step in the rubber vulcanizate manufacturing method of the present invention comprises adding compounding agents commonly used in the rubber industry to the rubber composition obtained in the kneading step and vulcanizing the rubber vulcanized product. It is the process of obtaining things.
  • compounding agents commonly used in the rubber industry can be used in the rubber composition obtained in the kneading process as long as they do not deviate from the gist of the present invention.
  • vulcanizing agents processing aids such as stearic acid, coupling agents such as titanates, phenyl- ⁇ -naphthylamine, N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine, etc.
  • Anti-aging agents carbon black, sulfenamide-based cross-linking accelerators, cross-linking accelerators (auxiliaries) such as zinc white (zinc oxide), reinforcing agents, softeners, plasticizers, tackifiers, anti-scorch agents, etc. can be used. .
  • Such vulcanizing agents are not particularly limited as long as they are usually added during kneading of rubber compositions, but sulfur, selenium, organic peroxides, morpholine disulfides, thiuram compounds and oxime compounds are not particularly limited. At least one selected from the group consisting of is more preferable.
  • the content of the vulcanizing agent contained in the rubber composition according to the present invention is not particularly limited, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber (A). It is preferably from 0.2 to 15 parts by mass, and even more preferably from 0.5 to 10 parts by mass.
  • the content of the vulcanizing agent is 0.1 parts by mass or more with respect to 100 parts by mass of rubber (A)
  • the rubber (A) can be suitably crosslinked, which is preferable.
  • the content of the vulcanizing agent is 20 parts by mass or less with respect to 100 parts by mass of the rubber (A), because rubber-like elasticity can be maintained.
  • Sulfenamide cross-linking accelerators include N-cyclohexyl-2-benzothiazyl sulfenamide, N,N-dicyclohexyl-2-benzothiazyl sulfenamide, N-oxydiethylene-2-benzothiazyl sulfenamide, N -tert-butyl-2-benzothiazylsulfenamide, N-tert-butyl-di(2-benzothiazole)sulfenimide and the like.
  • the amount of the crosslinking accelerator (assistant) compounded in the rubber composition is preferably 0.1 to 15 parts by mass, more preferably 1 to 10 parts by mass, relative to 100 parts by mass of the rubber (A). , 3 to 9 parts by mass.
  • the amount of cross-linking accelerator (assistant) is the total amount of those corresponding to the cross-linking accelerator and cross-linking accelerator aid, and when both the cross-linking accelerator and cross-linking accelerator aid are used, represent quantity.
  • Processing aids include higher fatty acids such as myristic acid, stearic acid, oleic acid, palmitic acid, lauric acid and arachidic acid; higher fatty acid amides such as stearic acid amide and oleic acid amide; higher fatty acid esters such as ethyl oleate; higher aliphatic amines such as stearylamine and oleylamine;
  • the amount of the processing aid compounded in the rubber composition is, for example, 300 parts by mass or less, preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 10 parts by mass with respect to 100 parts by mass of the rubber (A). It is below the department.
  • softening agents include petroleum waxes such as carnauba wax and ceresin wax; polyglycols such as ethylene glycol, glycerin and diethylene glycol; aliphatic hydrocarbons such as vaseline, paraffin and naphthene; and silicone oils.
  • the amount of the softener compounded in the rubber composition is, for example, 300 parts by mass or less, preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 30 parts by mass with respect to 100 parts by mass of the rubber (A). It is below.
  • the blending amount of the anti-aging agent in the rubber composition is, for example, 30 parts by mass or less, preferably 10 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass of the rubber (A).
  • the rubber composition may further contain carbon black.
  • carbon black include, but are not limited to, each class of carbon black such as SRF, FEF, HAF, ISAF, and SAF.
  • the amount of carbon black is preferably 0.5 to 100 parts by mass, more preferably 1 to 90 parts by mass, and 2 to 80 parts by mass based on 100 parts by mass of the rubber (A). is particularly preferred.
  • the ratio of tan ⁇ at 60°C to tan ⁇ at 0°C [tan ⁇ at 60°C/tan ⁇ at 0°C] is preferably 1.6 or more, more preferably 2.2 or more. More preferably, it is 2.5 or more.
  • the rubber vulcanizate is obtained by adding the above-described compounding materials as appropriate to the rubber composition obtained in the kneading step and vulcanizing it. That is, a rubber composition for cross-linking is obtained.
  • the aforementioned compounding materials for example, a vulcanizing agent, etc.
  • the rubber composition obtained in the kneading step and knead the mixture at 100° C. or higher. It is preferably heated at 120 to 230° C. for 1 minute to 3 hours to obtain a rubber vulcanizate.
  • a mold may also be used for vulcanization.
  • the rubber vulcanizate obtained in the vulcanization process can be used for various purposes as a rubber product.
  • the shape of such rubber vulcanizates is not particularly limited, and they can be used as tires, tubes, belts, hoses, industrial products, and the like.
  • the rubber vulcanizate has a small hysteresis loss, so when used as a tire, for example, it is possible to reduce the energy loss during running of the tire and reduce the rolling resistance. Therefore, it can be used particularly preferably in dynamically used rubber parts such as tires (especially tread portions).
  • the agent shown in formulation (II) in Table 1 was added and kneaded for 3 minutes to obtain a rubber composition (kneading step).
  • the amounts of the organosilicon compounds in the examples and comparative examples were adjusted so that the amounts of silicon in the organosilicon compounds in the examples and comparative examples were the same.
  • the amount of sulfur added in the examples and comparative examples was adjusted so that the amount of sulfur in the system was the same.
  • a cross-linking agent component shown in formulation (III) in Table 1 was added and kneaded for 6 minutes to give a rubber vulcanizate (uncross-linked) having a thickness of about 2 mm. sheet) was obtained (vulcanization step).
  • Example 1 the basic compound was added in the kneading process, and in Comparative Examples 1 and 2, the basic compound was added in the vulcanization process.
  • ⁇ Dynamic viscoelasticity test> A test piece of width 4 mm x length 25 mm x thickness 2 mm was punched out from the test sample (crosslinked sheet), and the distance between chucks was 20 mm, the initial strain was 0.05%, and the condition was 10 Hz using Rheogel-4000 manufactured by UBM. and tan ⁇ was measured. The measurement temperature range was -40 to 80°C.
  • Table 2 shows the results of the dynamic viscoelasticity test described above for the test samples (crosslinked sheets) obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
  • Examples 1 and 2 using the production method of the present invention in the kneading step, adding a basic compound (D) and kneading), Comparative Example 1 using a general production method -2 (in the vulcanization process, the basic compound (D) is added and kneaded), it is suggested that the tan ⁇ at 0 ° C. is large and the grip is excellent, and the tan ⁇ at 60 ° C. is small and excellent in fuel efficiency. It has been suggested. Usually, when the value of tan ⁇ at 60° C. decreases, the value of tan ⁇ at 0° C. tends to decrease, but Example 1 using the production method of the present invention is excellent in both grip and fuel efficiency. preferable.
  • a rubber vulcanizate was produced according to the formulation shown in Table 3 in the same manner as in Example 1 to obtain a test sample (crosslinked sheet).
  • Table 4 shows the results of the dynamic viscoelasticity test described above on the test samples.
  • Examples 3 and 4 using the production method of the present invention (in the kneading step, the basic compound (D) was added and kneaded) had a large tan ⁇ at 0°C and excellent grip. was suggested, and it was suggested that tan ⁇ at 60°C was small and fuel efficiency was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明の課題は、より低燃費性、グリップ性に優れたタイヤを製造可能とするゴム加硫物の製造方法を提供することである。 ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る混練工程と、 前記混練工程で得られたゴム組成物に、加硫剤を添加し、加硫することにより、ゴム加硫物を得る加硫工程を含む、ゴム加硫物の製造方法であり、 シランカップリング剤(C)が、(保護化)メルカプト系有機珪素化合物、アミノ酸またはその誘導体の骨格を有する有機珪素化合物、式(X)で表される化合物、およびそれらの縮合物からなる群より選択される少なくとも1種である、ゴム加硫物の製造方法。 (R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)

Description

ゴム加硫物の製造方法
 本発明は、ゴム加硫物の製造方法に関するものである。
 近年、低燃費性、制動性に優れたシリカ配合タイヤを始めとし、防振ゴムや各種ゴムロールなど様々なシリカ配合ゴム製品が普及しつつある。しかしながら、シリカ配合ゴム組成物はコンパウンド粘度が著しく上昇するため、シランカップリング剤を配合することにより粘度の上昇を緩和する手法が一般的に取られている。また、シランカップリング剤は、シリカ表面のシラノールと反応することによりシリカ同士の相互作用を低減し、ゴムの損失正接や動的弾性率を下げることが知られている。
 現在、シランカップリング剤の中でも、低燃費タイヤ用途ではポリスルフィド系カップリング剤が多用されている(特許文献1参照)。
特開2000-103794号公報
 本発明の課題は、より低燃費性、グリップ性に優れたタイヤを製造可能とするゴム加硫物の製造方法を提供することである。
 本発明者らは、上記問題点を解決すべく鋭意検討の結果、ゴム(A)、無機充填材(B)、特定のシランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る混練工程と、上記ゴム組成物に、加硫剤を添加し、加硫することにより、ゴム加硫物を得る加硫工程とを含む、ゴム加硫物の製造方法によれば、上記課題を解決できることを見出した。
 また、本発明は以下のように記載することができる。
項1. ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る混練工程と、
 上記混練工程で得られたゴム組成物に、加硫剤を添加し、加硫することにより、ゴム加硫物を得る加硫工程とを含む、ゴム加硫物の製造方法であり、
 シランカップリング剤(C)が、(保護化)メルカプト系有機珪素化合物、アミノ酸またはその誘導体の骨格を有する有機珪素化合物、式(X)で表される化合物、およびそれらの縮合物からなる群より選択される少なくとも1種である、ゴム加硫物の製造方法。
 (R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)
[式(X)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味し、nは13~19の整数を意味し、Cn2n+1は直鎖または分枝鎖のアルキル基である]
項2. 式(X)中、R1がエチルであり、R2がCH2CH2CH2であり、かつCn2n+1が直鎖のアルキル基である、項1に記載のゴム加硫物の製造方法。
項3. アミノ酸またはその誘導体の骨格を有する有機珪素化合物が、式(Y)で表される有機珪素化合物である、項1に記載のゴム加硫物の製造方法。
 (R3O)3Si-R4-S-C(=O)-R5-NH-R6 ・・・(Y)
[式(Y)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R5は二価の有機基であり、R6はHまたはアミノ基の保護基である]
項4. (保護化)メルカプト系有機珪素化合物が、式(Z)で表される化合物である項1に記載のゴム加硫物の製造方法。
 R11 m(R123-m-Si-R13-S-CO-R14 ・・・(Z)
[式(Z)中、R11は互いに独立して一価の炭化水素基を意味し、R12は互いに独立してアルコキシ基を意味し、R13は二価の炭化水素基を意味し、R14は炭素数1~18の一価の炭化水素基である。mは0~2の整数である。)
項5. ゴム(A)が、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリルブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレン共重合体ゴム(EPDM)、およびブチルゴム(IIR)からなる群より選択される1種または2種以上である、項1~4のいずれか1つに記載のゴム加硫物の製造方法。
 本発明者らは、混練工程において、特定のシランカップリング剤(C)と塩基性化合物(D)の両方を添加して、混練してゴム組成物を得た後、加硫工程において、加硫剤を添加し、加硫してゴム加硫物を得るゴム加硫物の製造方法により得られた当該ゴム加硫物をタイヤとして用いた際に低燃費性、グリップ性に優れることを見出した。
 本発明は、ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る工程(混練工程)と、
 上記混練工程で得られたゴム組成物に、加硫剤を添加し、加硫することにより、ゴム加硫物を得る工程(加硫工程)を含む、ゴム加硫物の製造方法であり、
 シランカップリング剤(C)が、(保護化)メルカプト系有機珪素化合物、アミノ酸またはその誘導体の骨格を有する有機珪素化合物、式(X)で表される化合物、およびそれらの縮合物からなる群より選択される少なくとも1種である、ゴム加硫物の製造方法である。
(R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)
[式(1)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味し、nは13~19の整数を意味し、Cn2n+1は直鎖または分枝鎖のアルキル基である]
混練工程
 本発明のゴム加硫物の製造方法における混練工程は、ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る工程である。
ゴム組成物
 本発明の混練工程におけるゴム組成物は、ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を含むものである。
ゴム(A)
 混練工程におけるゴム組成物に用いるゴム(A)は、特に限定されるものではなく、天然ゴムであっても、合成ゴムであってもよい。また、合成ゴムとしても、特に限定されるものではないが、例えば、スチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、ニトリルゴム(NBR)、アクリロニトリルブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)等のジエン系ゴム;ブチルゴム(IIR)、エチレンプロピレン共重合体ゴム(EPDM)、アクリルゴム(ACM)、クロロスルホン化ポリエチレンゴム(CSM)、フッ素ゴム(FKM)等のオレフィン系ゴム;シリコーンゴム(Q);ウレタンゴム(AU)等を挙げることができる。   
 上記ゴム(A)は、どのような重合方法によって製造されたものでもよく、乳化重合により製造されたゴムであっても、溶液重合によって製造されたゴムであってもよい。また、上記ゴムは、分子末端が変性された、いわゆる末端変性ゴムであってもよい。   
 上記ゴム(A)は、それぞれ単独で、または2種類以上を組み合わせて用いることができる。   
 中でも、シランカップリング剤(C)との反応性の観点から、上記ゴム(A)は、ジエン系ゴムであることがより好ましい。とりわけ、上記ゴム(A)は、スチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、天然ゴム(NR)、ブチルゴム(IIR)、ポリイソプレンゴム(IR)、アクリロニトリルブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)、およびエチレンプロピレン共重合体ゴム(EPDM)からなる群より選択される少なくとも1種であることが特に好ましい。
 混練工程において、ゴム組成物に用いるゴム(A)の含有量は、特に限定されないが、例えば、ゴム組成物全体に対して、20~80質量%であればよい。
無機充填材(B)
 本発明の混練工程におけるゴム組成物に用いる無機充填材(B)としては、ゴム組成物の混練作業時に通常添加されるものであれば特に限定されるものではないが、例えば、湿式シリカ、乾式シリカ、および水酸化アルミニウムからなる群より選択される少なくとも1つを好適に用いることができる。なお、無機充填材(B)は、後述の架橋促進(助)剤に該当する成分は該当しないものとする。これらの無機充填材(B)を用いることにより、ゴムの補強性をさらに向上させることができるという効果を得ることができる。中でも、シランカップリング剤(C)との反応性の観点から、湿式シリカが無機充填材(B)として用いられることが特に好ましい。また、上記湿式シリカ、乾式シリカ、および水酸化アルミニウムのBET比表面積は20~300m2/gであることが好ましく、50~250m2/gであることがより好ましく、100~250m2/gであることがさらに好ましく、190~230 m2/gであることが特に好ましい。上記無機充填材(B)のBET比表面積が20m2/g以上であれば、無機充填材(B)とゴム(A)とを混ぜ合わせたときの、ゴムの補強性に優れ、ゴムの耐摩耗性が向上する。BET比表面積が300m2/g以下であれば、無機充填材(B)とゴム(A)とを混ぜ合わせたときの、ゴムの粘度上昇を抑えることができ、無機充填材(B)とゴム(A)とを、より均一に混練できる。   
 混練工程において、ゴム組成物に用いる無機充填材(B)の含有量は、これに限定されるものではないが、ゴム(A)100質量部に対して、10~150質量部であることが好ましく、20~120質量部であることがより好ましく、60~120質量部であることがさらに好ましい。
シランカップリング剤(C)
 本発明の混練工程におけるゴム組成物に用いるシランカップリング剤(C)は、特に限定されるものではないが、(保護化)メルカプト系有機珪素化合物、アミノ酸またはその誘導体の骨格を有する有機珪素化合物、式(X)で表される化合物、およびそれらの縮合物を例示することができる。
 (R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)
[式(X)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味し、nは13~19の整数を意味し、Cn2n+1は直鎖または分枝鎖のアルキル基である]
式(X)で表される化合物
 式(X)で表される化合物として、下記のものを例示することができる。
 (R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)
[式(1)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味し、nは13~19の整数を意味し、Cn2n+1は直鎖または分枝鎖のアルキル基である]
 R1は、互いに独立して、Hまたは(C1~C8)アルキル基である。R1におけるアルキル基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。R1は、好ましくはメチル基またはエチル基である。
 R2は、直鎖または分岐鎖の二価の(C1~C8)炭化水素基である。R2は飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。R2は、中でも、メチレン基(CH2)、ジメチレン基(CH2CH2)、トリメチレン基(CH2CH2CH2)、テトラメチレン基(CH2CH2CH2CH2)、メチルメチレン基(CH(CH3))、1,2-プロピレン基(CH2CH(CH3))、ジメチルメチレン基(C(CH32)、1,1-プロピレン基(CH(C25))、1,3-ブチレン基(CH2CH2CH(CH3))、2-メチルトリメチレン基(CH2CH(CH3)CH2)が好ましい。
 nは13~19の整数を意味する。Cn2n+1は直鎖または分枝鎖のアルキル基であり、好ましくは直鎖のアルキル基である。Cn2n+1としては、具体的には、ミリスチル基、パルミチル基、ステアリル基、アラキジル基などが挙げられる。
 本発明に用いる式(X)で表される化合物においては、式(X)中、R1がエチルであってよく、R2がCH2CH2CH2であってよく、かつアルキル基Cn2n+1が直鎖アルキル基(すなわち、直鎖C1327、直鎖C1531、直鎖C1735、または直鎖C1939)であってよい。
 式(X)で表される化合物としては、下記式(Xa)~(Xd)で表される化合物が挙げられる。
 (R1O)3Si-R2-S-C(=O)-C1327 ・・・(Xa)
 (R1O)3Si-R2-S-C(=O)-C1531 ・・・(Xb)
 (R1O)3Si-R2-S-C(=O)-C1735 ・・・(Xc)
 (R1O)3Si-R2-S-C(=O)-C1939 ・・・(Xd)
 式(Xa)で表される化合物としては、例えば、下記に例示するシランカップリング剤を挙げることができる。
(CH3O)3Si-CH2-S-C(=O)-C1327
(CH3O)3Si-CH2CH2-S-C(=O)-C1327
(CH3O)3Si-CH2CH2CH2-S-C(=O)-C1327
(CH3O)3Si-CH2CH2CH2CH2-S-C(=O)-C1327
(CH3O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1327
(CH3CH2O)3Si-CH2-S-C(=O)-C1327
(CH3CH2O)3Si-CH2CH2-S-C(=O)-C1327
(CH3CH2O)3Si-CH2CH2CH2-S-C(=O)-C1327
(CH3CH2O)3Si-CH2CH2CH2CH2-S-C(=O)-C1327、または、
(CH3CH2O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1327
 式(Xb)で表される化合物としては、例えば、下記に例示するシランカップリング剤を挙げることができる。
(CH3O)3Si-CH2-S-C(=O)-C1531
(CH3O)3Si-CH2CH2-S-C(=O)-C1531
(CH3O)3Si-CH2CH2CH2-S-C(=O)-C1531
(CH3O)3Si-CH2CH2CH2CH2-S-C(=O)-C1531
(CH3O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1531
(CH3CH2O)3Si-CH2-S-C(=O)-C1531
(CH3CH2O)3Si-CH2CH2-S-C(=O)-C1531
(CH3CH2O)3Si-CH2CH2CH2-S-C(=O)-C1531
(CH3CH2O)3Si-CH2CH2CH2CH2-S-C(=O)-C1531、または、
(CH3CH2O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1531
 式(Xc)で表される化合物としては、例えば、下記に例示するシランカップリング剤を挙げることができる。
(CH3O)3Si-CH2-S-C(=O)-C1735
(CH3O)3Si-CH2CH2-S-C(=O)-C1735
(CH3O)3Si-CH2CH2CH2-S-C(=O)-C1735
(CH3O)3Si-CH2CH2CH2CH2-S-C(=O)-C1735
(CH3O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1735
(CH3CH2O)3Si-CH2-S-C(=O)-C1735
(CH3CH2O)3Si-CH2CH2-S-C(=O)-C1735
(CH3CH2O)3Si-CH2CH2CH2-S-C(=O)-C1735
(CH3CH2O)3Si-CH2CH2CH2CH2-S-C(=O)-C1735、または、
(CH3CH2O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1735
 式(Xd)で表される化合物としては、例えば、下記に例示するシランカップリング剤を挙げることができる。
(CH3O)3Si-CH2-S-C(=O)-C1939
(CH3O)3Si-CH2CH2-S-C(=O)-C1939
(CH3O)3Si-CH2CH2CH2-S-C(=O)-C1939
(CH3O)3Si-CH2CH2CH2CH2-S-C(=O)-C1939
(CH3O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1939
(CH3CH2O)3Si-CH2-S-C(=O)-C1939
(CH3CH2O)3Si-CH2CH2-S-C(=O)-C1939
(CH3CH2O)3Si-CH2CH2CH2-S-C(=O)-C1939
(CH3CH2O)3Si-CH2CH2CH2CH2-S-C(=O)-C1939、または、
(CH3CH2O)3Si-CH2CH2CH2CH2CH2-S-C(=O)-C1939
 式(X)で表される化合物は、一種のみを使用してもよく、二種以上を使用してもよい。中でも、0℃のtanδがより大きく、且つ60℃のtanδがより小さくなりやすい観点から、二種以上を使用することが好ましく、三種以上または四種以上であってもよい。二種以上の式(X)で表される化合物としては、上記式(Xa)で表される化合物、上記式(Xb)で表される化合物、上記式(Xc)で表される化合物、および(Xd)で表される化合物からなる群より選択される二種以上(より好ましくは三種以上、さらに好ましくは四種)が好ましい。特に、上記式(Xb)で表される化合物および上記式(Xc)で表される化合物を少なくとも含むことが好ましい。上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、各式間におけるR1およびR2はそれぞれ、同一であってもよく異なっていてもよいが、同一であることが好ましい(同一式内の3つのR1は、同一であってもよく異なっていてもよい)。
 式(X)で表される化合物が上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、式(X)で表される化合物中の式(Xa)で表される化合物の割合は、式(X)で表される化合物の総量(100質量%)に対して、0.1質量%以上が好ましく、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。また、上記割合は、8質量%以下が好ましく、より好ましくは5質量%以下である。
 式(X)で表される化合物が上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、式(X)で表される化合物中の式(Xb)で表される化合物の割合は、式(X)で表される化合物の総量(100質量%)に対して、15質量%以上が好ましく、より好ましくは20質量%以上、さらに好ましくは25質量%以上である。また、上記割合は、45質量%以下が好ましく、より好ましくは40質量%以下、さらに好ましくは35質量%以下である。
 式(X)で表される化合物が上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、式(X)で表される化合物中の式(Xc)で表される化合物の割合は、式(X)で表される化合物の総量(100質量%)に対して、40質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。また、上記割合は、80質量%以下が好ましく、より好ましくは75質量%以下、さらに好ましくは70質量%以下である。
 式(X)で表される化合物が上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、式(X)で表される化合物中の式(Xd)で表される化合物の割合は、式(X)で表される化合物の総量(100質量%)に対して、0.1質量%以上が好ましく、より好ましくは0.3質量%以上、さらに好ましくは0.7質量%以上である。また、上記割合は、5質量%以下が好ましく、より好ましくは3質量%以下である。
 式(X)で表される化合物が上記式(Xa)~(Xd)で表される化合物のうちの二種以上を使用する場合、式(X)で表される化合物中の式(Xb)で表される化合物および式(Xc)で表される化合物の合計割合は、式(X)で表される化合物の総量(100質量%)に対して、60質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上である。また、上記合計割合は、99質量%以下であってもよい。式(Xb)で表される化合物および式(Xc)で表される化合物の比は、10:90~48:52が好ましく、より好ましくは20:80~40:60、より好ましくは25:75~35:65である。
 式(X)で表される化合物は、補助塩基の存在で、適当な溶媒中で、式(X-1)(R1O)3Si-R2-SHに相応するメルカプトシランを適当な脂肪酸塩化物と反応させ、生成した固体残渣から濾別し、溶媒を留去することにより製造することができる。
[式(X-1)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味する。]
 式(X-1)中、R1は、互いに独立して、Hまたは(C1~C8)アルキル基であり、上記式(X)におけるR1と同じである。R1におけるアルキル基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。R1は、好ましくはメチル基またはエチル基である。
 式(X-1)中、R2は、直鎖または分岐鎖の二価の(C1~C8)炭化水素基であり、上記式(X)におけるR2と同じである。R2は飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。R2は、中でも、メチレン基(CH2)、ジメチレン基(CH2CH2)、トリメチレン基(CH2CH2CH2)、テトラメチレン基(CH2CH2CH2CH2)、メチルメチレン基(CH(CH3))、1,2-プロピレン基(CH2CH(CH3))、ジメチルメチレン基(C(CH32)、1,1-プロピレン基(CH(C25))、1,3-ブチレン基(CH2CH2CH(CH3))、2-メチルトリメチレン基(CH2CH(CH3)CH2)が好ましい。
 式(X)で表される化合物の製造に用いる、式(X-1)(R1O)3Si-R2-SHのメルカプトシランとしては、以下の化合物を例示することができる。
(CH3O)3Si-CH2-SH、
(CH3O)3Si-CH2CH2-SH、
(CH3O)3Si-CH2CH2CH2-SH、
(CH3O)3Si-CH2CH2CH2CH2-SH、
(CH3O)3Si-CH2CH2CH2CH2CH2-SH、
(CH3CH2O)3Si-CH2-SH、
(CH3CH2O)3Si-CH2CH2-SH、
(CH3CH2O)3Si-CH2CH2CH2-SH、
(CH3CH2O)3Si-CH2CH2CH2CH2-SH、または、
(CH3CH2O)3Si-CH2CH2CH2CH2CH2-SH。
 式(X)で表される化合物の製造に用いる、補助塩基としてトリエチルアミンまたは別のアミンを使用してもよい。溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素や、シクロペンタン、シクロヘキサン等の脂環式炭化水素や、ベンゼン、トルエン、キシレン等の芳香族炭化水素や、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素や、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン等のエーテル系溶媒や、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミドおよびN-メチルピロリドン等のアミド系溶媒や、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒や、アセトニトリル、ベンゾニトリル等のニトリル系溶媒や、ジメチルスルホキシド、スルホラン等のスルホン系溶媒等が例示される。また、溶媒はこれらの1種類または2種類以上を用いてもよい。
 本発明に係るゴム組成物に含有されるシランカップリング剤(C)の含有量はこれに限定されるものではないが、ゴム(A)100質量部に対して、2~50質量部であることが好ましく、5~30質量部であることがより好ましく、10~20質量部であることがさらに好ましい。
アミノ酸またはその誘導体の骨格を有する有機珪素化合物
 アミノ酸またはその誘導体の骨格を有する有機珪素化合物として、式(Y)で表される化合物が挙げられる。
 (R3O)3Si-R4-S-C(=O)-R5-NH-R6 ・・・(Y)
[式(Y)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の炭化水素基を意味し、R5は(C1~C20)の二価の有機基であり、R6はHまたはアミノ基の保護基である]
 R3は、互いに独立して、Hまたは(C1~C8)アルキル基である。R3におけるアルキル基は、飽和炭化水素基であってもよく、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。R3は、好ましくはメチル基またはエチル基である。
 R4は、直鎖または分岐鎖の二価の(C1~C8)炭化水素基である。R4は飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよいが、飽和炭化水素基であることが好ましい。
 R6はHまたはアミノ基の保護基である。アミノ基の保護基としては、アミノ基の保護基として作用する基であれば特に限定されないが、tert-ブチルオキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アセチル基、オクタノイル基、ベンゾイル基、ベンジル基、4-ジメチルアミノアゾベンゼン-4’-スルホニル基、5-ジメチルアミノナフタレン-1-スルホニル基、2,4-ジニトロフェニル基、2-ニトロフェニルスルフェニル基、クロロアセチル基、ホルミル基等が挙げられる。R6は、水素、tert-ブチルオキシカルボニル基、ベンジルオキシカルボニル基、アセチル基、オクタノイル基であることが好ましい。
 式(Y)で表される化合物としては、例えば、式(Y-1)で表される有機珪素化合物、および/または式[Y-2]で表される有機珪素化合物を例示することができる。
 (R3O)3Si-R4-S-C(=O)-C(-R7)-NH-R6 ・・・(Y-1)
[式(Y-1)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R7はHまたは有機基であり、R6はHまたはアミノ基の保護基である。]
 (R3O)3Si-R4-S-C(=O)-R8-NH-R6 ・・・(Y-2)
[式(Y-2)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R8は置換もしくは無置換の芳香環を含んでいても良い炭素数1~20の二価の炭化水素基であり、R6はHまたはアミノ基の保護基である。]
 アミノ酸またはその誘導体の骨格を有する有機珪素化合物として、式(Y-1)で表される有機珪素化合物を例示することができる。
 (R3O)3Si-R4-S-C(=O)-C(-R7)-NH-R6 ・・・(Y-1)
[式(Y-1)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R7はHまたは有機基であり、R6はHまたはアミノ基の保護基である。]
 式(Y-1)で表される有機珪素化合物において、R7はHまたは有機基であり、有機基としてはアミノ酸側鎖基、アミノ酸側鎖基より誘導される基を例示することができる。アミノ酸側鎖基とは、アミノ酸由来の側鎖に位置する官能基を意味しており、具体的には-(CH23-NH-C(NH2)(=NH)(アルギニン側鎖基)、-(CH24NH2(リシン側鎖基)、-CH2OH(セリン側鎖基)、-CHOHCH3(スレオニン側鎖基)、-CH2-C64-OH(チロシン側鎖基)、-CH2CONH2(アスパラギン側鎖基)、-CH2COOH(アスパラギン酸側鎖基)、-(CH22CONH2(グルタミン側鎖基)、-(CH22COOH(グルタミン酸側鎖基)、-CH2SH(システイン側鎖基)、-H(グリシン側鎖基)、-CH3(アラニン側鎖基)、-CH2C(C=CH-N=CH-NH-)(ヒスチジン側鎖基)、-CH(CH3)CH2CH3(イソロイシン側鎖基)、-CH2CH(CH32(ロイシン側鎖基)、-(CH22SCH3(メチオニン側鎖基)、-CH265(フェニルアラニン側鎖基)、-CH2-C(C=CH-NH-Ph-)(トリプトファン側鎖基)、-CH(CH32(バリン側鎖基)等が挙げられる。R7は、H、置換もしくは無置換のアルキル基、置換もしくは無置換のチオエーテル(-S-)を有するアルキル基、置換もしくは無置換の芳香族基であることが好ましく、H、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換のチオエーテル(-S-)を有する炭素数1~5のアルキル基、置換もしくは無置換の炭素数6~10の芳香族基であることがより好ましい。
 式(Y-1)で表される有機珪素化合物において、置換しうる置換基としては、メチル、エチル、イソプロピル等のアルキル基、フェニル等のアリール基、ベンジル等のアラルキル基、ビニル基等の不飽和炭化水素基、フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲノ基、アミノ基、ニトロ基等が挙げられる。
 アミノ酸またはその誘導体の骨格を有する有機珪素化合物として、式(Y-2)で表される有機珪素化合物を例示することができる。
 (R3O)3Si-R4-S-C(=O)-R7-NH-R6 ・・・(Y-2)
[式(Y-2)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R7は置換もしくは無置換の芳香環を含んでいても良い炭素数1~20の二価の炭化水素基であり、R6はHまたはアミノ基の保護基である。]
 式(Y-2)で表される有機珪素化合物において、R 7 は置換もしくは無置換の芳香環を含んでいても良い炭素数1~20の二価の炭化水素基であり、置換もしくは無置換の芳香環を含んでいても良い炭素数1~12の二価の炭化水素基が好ましく、置換もしくは無置換の炭素数1~8のアルキレン基が特に好ましい。
 式(Y-2)で表される有機珪素化合物において、置換しうる置換基としては、メチル、エチル、イソプロピル等のアルキル基、フェニル等のアリール基、ベンジル等のアラルキル基、ビニル基等の不飽和炭化水素基、フルオロ基、クロロ基、ブロモ基、ヨード基等のハロゲノ基、アミノ基、ニトロ基等が挙げられる。
 式(Y)で表される化合物の製造方法は特に限定されることがないが、具体的には、カルボジイミド縮合剤と塩基の存在下、メルカプトシランをN-保護アミノ酸またはN-保護アミノカルボン酸と反応させることにより製造する方法を例示することができる。
 N-保護アミノ酸はアミノ酸のアミノ基を公知の保護基、例えば上述の保護基で保護されたものであり、具体的に例示すると、Boc-アラニン、Boc-フェニルアラニン、Boc-メチオニン、Z-アラニン、Z-フェニルアラニン、Z-メチオニン、Ac-アラニン、Ac-フェニルアラニン、Ac-メチオニン、N-(オクタノイル)アラニン、N-(オクタノイル)フェニルアラニン、N-(オクタノイル)メチオニン等が挙げられるが、特にこれらに限定されるものではない。
 N-保護アミノカルボン酸はアミノカルボン酸のアミノ基を公知の保護基、例えば上述の保護基で保護されたものであり、具体的に例示すると、3-Boc-アミノプロパン酸、3-Z-アミノプロパン酸、3-Ac-アミノプロパン酸、3-(オクタノイル)アミノプロパン酸、4-Boc-アミノ酪酸、4-Z-アミノ酪酸、4-Ac-アミノ酪酸、4-(オクタノイル)アミノ酪酸、5-Boc-アミノ吉草酸、5-Z-アミノ吉草酸、5-Ac-アミノ吉草酸、5-(オクタノイル)アミノ吉草酸、6-Boc-アミノカプロン酸、6-Z-アミノカプロン酸、6-Ac-アミノカプロン酸、6-(オクタノイル)アミノカプロン酸、7-Boc-アミノヘプタン酸、7-Z-アミノヘプタン酸、7-Ac-アミノヘプタン酸、7-(オクタノイル)アミノヘプタン酸、8-Boc-アミノオクタン酸、8-Z-アミノオクタン酸、8-Ac-アミノオクタン酸、8-(オクタノイル)アミノオクタン酸、9-Boc-アミノナノン酸、9-Z-アミノナノン酸、9-Ac-アミノナノン酸、9-(オクタノイル)アミノナノン酸、11-Boc-アミノウンデカン酸、11-Z-アミノウンデカン酸、11-Ac-アミノウンデカン酸、11-(オクタノイル)アミノウンデカン酸、12-Boc-アミノドデカン酸、12-Z-アミノドデカン酸、12-Ac-アミノドデカン酸、12-(オクタノイル)アミノドデカン酸、13-Boc-アミノトリデカン酸、13-Z-アミノトリデカン酸、13-Ac-アミノトリデカン酸、13-(オクタノイル)アミノトリデカン酸等が挙げられるが、特にこれらに限定されるものではない。なお、Bocはtert-ブチルオキシカルボニル基の略称、Zはベンジルオキシカルボニル基の略称、Acはアセチル基の略称である。
 シランカップリング剤(C)の縮合物としては、式[Y-1]、[Y-2]で表される有機珪素化合物等の式(Y)で表される化合物を加水分解後に縮合反応させて得られた縮合物(オリゴマー)であっても良く、他の成分と縮合反応させて得られた縮合物(オリゴマー)であっても良い。他の成分としては二価以上の炭素数1~60の分子内に窒素原子を含んでいてもよいアルキルポリオールおよび/または二価以上の炭素数2~60の分子内に窒素原子を含んでいてもよい(ポリ)アルキルエーテルポリオールが例示され、炭素数2~60のアルキルポリオールおよび/または炭素数2~60の(ポリ)アルキルエーテルポリオールが好ましく、炭素数2~30のアルキルポリオールおよび/または炭素数2~30の(ポリ)アルキルエーテルポリオールがより好ましい。
 二価以上の炭素数1~60の分子内に窒素原子を含んでいてもよいアルキルポリオールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ジエタノールアミン、メチルジエタノールアミン、ブチルジエタノールアミン、トリエタノールアミン等が例示される。二価以上の炭素数2~60の分子内に窒素原子を含んでいてもよい(ポリ)アルキルエーテルポリオールとしては、ジエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール等が例示される。
(保護化)メルカプト系有機珪素化合物
 (保護化)メルカプト系有機珪素化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等の、化合物としてメルカプト基を有しているメルカプト系有機珪素化合物、および、3-オクタノイルチオ-1-プロピルトリエトキシシラン、3-プロピオニルチオプロピルトリメトキシシラン等の化合物としてはメルカプト基を有していない(メルカプト基が保護されている)有機珪素化合物であって、熱、薬剤等を加えられることにより、後発的にメルカプト基を有することになる保護化メルカプト系有機珪素化合物を例示することができる。
 (保護化)メルカプト系有機珪素化合物としては、以下式(Z)で表される化合物であることが好ましい。
 R11 m(R123-m-Si-R13-S-CO-R14 ・・・(Z)
[式(Z)中、R11は互いに独立して一価の炭化水素基を意味し、R12は互いに独立してアルコキシ基を意味し、R13は二価の炭化水素基を意味し、R14は炭素数1~18の一価の炭化水素基である。mは0~2の整数である。)
 R11は、互いに独立して、一価の炭化水素基であり、好ましくは炭素数1~6のアルキル基であり、より好ましくは炭素数1~3のアルキル基である。
 R12は、互いに独立して、アルコキシ基であり、好ましくは炭素数1~8のアルコキシ基であり、より好ましくは炭素数1~3のアルコキシ基である。
 R13は、二価の炭化水素基であり、好ましくは炭素数1~18の二価の炭化水素基であり、好ましくは炭素数1~4のアルキレン基である。
 R14は炭素数1~18の一価の炭化水素基であることが好ましく、炭素数8~18の一価の炭化水素基であることがより好ましい。
 mは、0~2の整数であり、すなわち0、1、または2である。
 (保護化)メルカプト系有機珪素化合物を具体的に例示すると、3-オクタノイルチオプロピルトリエトキシシランであるNXT、式(1)で表されるNXT-LowV等が挙げられるが、これらに限定されるものではない。また、これらは単独または混合して使用することもできる。市販品を用いてもよく、通常知られている公知の合成方法で合成してもののいずれを用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 中でも、シランカップリング剤(C)として、3-オクタノイルチオプロピルトリエトキシシラン、3-オクタデカノイルチオプロピルトリエトキシシランが好ましい。
 混練工程において、ゴム組成物に用いるシランカップリング剤(C)の含有量としては、ゴム(A)100質量部に対して、1~30質量部を含有することが好ましく、2~25質量部を含有することがより好ましく、3~15質量部を含有することが特に好ましい。
その他のシランカップリング剤
 上記ゴム組成物には、上述したシランカップリング剤(C)以外に、通常ゴムに配合されるシランカップリング剤を組み合わせて配合してもよい。その他のシランカップリング剤として、例えば、ビニル系有機珪素化合物、アルキル系有機珪素化合物、エポキシ系有機珪素化合物、メタクリル系有機珪素化合物、(ポリ)スルフィド系有機珪素化合物、およびそれらの縮合物から少なくとも一種を含有してもよい(以下、これらの有機珪素化合物を「他の有機珪素化合物」と総称する場合がある)。
 上記ゴム組成物では、他の有機珪素化合物、即ち、ビニル系有機珪素化合物、アルキル系有機珪素化合物、エポキシ系有機珪素化合物、メタクリル系有機珪素化合物、(ポリ)スルフィド系有機珪素化合物、およびそれらの縮合物からなる群より選択される少なくとも一種を含有する場合には、無機充填材(B)100質量部に対して、0.1~20質量部を配合することが好ましく、0.5~15質量部を配合することがより好ましく、0.5~10質量部とすることが更に好ましく、0.5~5.0質量部とすることがより更に好ましい。
 上記ビニル系有機珪素化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、アリルトリクロロシラン、アリルトリエトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、トリクロロビニルシラン等が例示される。
 上記アルキル系有機珪素化合物としては、メチルトリメトキシシラン、ジメチルジエトシキシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、オクチルトリエトキシシラン、ヘキサメチルジシラザン等が例示される。
 上記エポキシ系有機珪素化合物としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が例示される。
 上記メタクリル系有機珪素化合物としては、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等が例示される。
 上記(ポリ)スルフィド系有機珪素化合物としては、式(2)で表されるポリスルフィド系シランカップリング剤が例示され、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィドが特に好ましい。
 (R15-O)3-k(R15k-Si-R16-Sl-R16-Si-(R15k(O-R153-k ・・・(2)
[式(2)中、R15は互いに独立して炭素数1~18のアルキル基、Ca2a+1O-((CH2bO)cで表されaは1~18、bは1~6、cは1~18であるポリアルキレングリコールモノアルキルエーテル基からなる群より選択され、R16は炭素数1~9のアルキレン基または二価のフェニル基、lは1~9、kは0~2の整数である。)
 併用される他の有機珪素化合物を具体的に例示すると、株式会社大阪ソーダ製のカブラス2とカブラス4、デグサ社製の、上記カブラス-2タイプに相当するSi-75、上記カブラス-4タイプに相当するSi-69、下記式(3)で表されるSi-363、モメンティブ社製の、上記カブラス-4タイプに相当するA-1289、3-メルカプトプロピルトリメトキシシランであるA-189、前記カブラス-4タイプに相当する信越化学社製のKBE-846等が挙げられるが、これらに限定されるものではない。また、これらは単独または混合して使用することもできる。
Figure JPOXMLDOC01-appb-C000002
 また、上記有機珪素化合物、上記ビニル系有機珪素化合物、上記アルキル系有機珪素化合物、上記エポキシ系有機珪素化合物、上記メタクリル系有機珪素化合物、上記(ポリ)スルフィド系有機珪素化合物、およびそれらの縮合物からなる群より選択される少なくとも一種は、それらの合計質量が無機充填材(B)(特にシリカ系充填材)100質量部に対し30質量部を超えないことが好ましい。
塩基性化合物(D)
 混練工程におけるゴム組成物に用いる塩基性化合物(D)としては、特に制限されないが、第1級アミン化合物(d-1)、第2級アミン化合物(d-2)、および第3級アミン化合物(d-3)等を例示することができる。なお、本発明の塩基性化合物(D)としては、上述のシランカップリング剤は含まないものとする。
 第1級アミン化合物(d-1)としては、エチルアミン、n-プロピルアミン、イソプロピルアミン、1,2-ジメチルプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、イソアミルアミン、tert-アミルアミン、3-ペンチルアミン、n-アミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、2-オクチルアミン、tert-オクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、n-アミノデカン、n-アミノウンデカン、n-ドデシルアミン、n-トリデシルアミン、2-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、n-オレイルアミン、ベンジルアミン、2-フェニルエチルアミン、3-フェニルプロピルアミン、エタノールアミン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等の直鎖または分岐炭化水素基を有するアルキルアミン等を例示することができる。
 また、脂環式アミンであるシクロプロピルアミン、シクロブチルアミン、シクロプロピルアミン、シクロヘキシルアミン、シクロヘプチルアミン、シクロオクチルアミンや、芳香族アミンであるアニリン等も例示することができる。さらに、3-イソプロポキシプロピルアミン、イソブトキシプロピルアミン、モルフォリン等のエーテルアミンも例示することができる。
 第2級アミン化合物(d-2)としては、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N,N-ジステアリルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N-プロピル-N-ブチルアミン、ビス(2-エチルヘキシル)アミン、N-メチルアミノプロピルトリメトキシシラン、(3-(ブチルアミノ)プロピル)トリメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、ビス(3-(トリメトキシシリル)プロピル)アミン、等のジアルキルモノアミン、およびピペリジン等の環状アミンを例示することができる。
 第3級アミン化合物(d-3)としては、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジラウリルモノメチルアミン、キヌクリジン、ジメチルアミノエタノール、ピリジン、(3-(ジメチルアミノ)プロピル)トリメトキシシラン、(3-(ジエチルアミノ)プロピル)トリメトキシシラン等を例示することができる。
 さらに、本発明では、ひとつの化合物中に2つのアミノ基を有するジアミン化合物(d-4)も用いることができる。ジアミン化合物(d-4)としては、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N-エチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、1,4-ブタンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、1,5-ペンタンジアミン、1,5-ジアミノ-2-メチルペンタン、1,6-ヘキサンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、2-(2-アミノエチルアミノ)エタノール、イミダゾール、N,N-ジメチルアミノピリジン(DMAP)、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ビス(ジメチルアミノ)ナフタレン(プロトンスポンジ)、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(6-アミノヘキシル)-3-アミノプロピルトリメトキシシラン等を例示することができる。
 また、塩基性化合物(D)として、上述したもの以外に、ジエチレントリアミン、1,3-ジフェニルグアニジン、1,3-ジ-о-トリルグアニジン、1,2,3-トリフェニルグアニジン、トリエチレンテトラミン、ヘキサメチレンテトラミン等を例示することができる。
 本発明のゴム組成物においては、塩基性化合物(D)として、上述したものを単独で、または複数を組み合わせ用いてもよい。
 中でも、塩基性化合物(D)として、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、キヌクリジン、ジアザビシクロウンデセン(DBU)、1,3-ジフェニルグアニジン、1,3-ジ-о-トリルグアニジン、1,2,3-トリフェニルグアニジン、ヘキサメチレンテトラミンが好ましく、1,3-ジフェニルグアニジンがより好ましい。
 本発明のゴム組成物における塩基性化合物(D)の配合量は、ゴム(A)100質量部に対して、特に限定されないが、例えば0.1~10質量部であればよく、0.1~5質量部であることがより好ましく、0.5~5質量部であることが特に好ましく、0.5~3質量部であることがさらに好ましく、0.5~1.5質量部であることが最も好ましい。
混練工程における混練条件
 混練工程では、ゴム(A)と、無機充填材(B)と、シランカップリング剤(C)と、塩基性化合物(D)とを混練して、ゴム組成物を得る工程である。
 混練工程は、加硫剤を添加し、加硫工程の前に行うことが好ましい。すなわち、混練工程では、無機充填材(B)とシランカップリング剤(C)と塩基性化合物(D)とを、加硫剤を添加する前にゴム(A)と混練することにより、ゴム組成物が得られる工程である。
 混練工程では、ゴム(A)と無機充填材(B)とシランカップリング剤(C)と塩基性化合物(D)とを、80~250℃で混練することが好ましく、80~200℃で混練することがより好ましい。かかる温度範囲で上記成分を混練することにより、混練物をゲル化やスコーチさせること無く無機充填材(B)等を均一に分散せしめ好適に各成分を混練することができる。また、混練工程では、加硫剤が添加されていないため、架橋の形成を気にすることなく、比較的高温で混練を行うことが可能となる。混練工程の混練時間は特に制限はないが、例えば1分~1時間である。   
 混練工程における混練には、通常ゴム工業にて使用されるロール、加圧ニーダー、インターミキサー、バンバリーミキサー等の各種混合機械を用いることができる。   
 混練工程における、ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)の添加順は特に制限がないが、先にゴム(A)のみを添加し、予備混練した後、他の成分の順に添加することが好ましい。
 通常、ゴム加硫物を得る場合、混練工程では、ゴム(A)、無機充填材(B)、およびシランカップリング剤(C)を混練し、ゴム組成物を得た後、加硫工程において、塩基性化合物(D)や加硫剤等を添加し、加硫を行い、ゴム加硫物を得るのが一般的であるが、本発明の製造方法におけるポイントは、混練工程において、ゴム(A)、無機充填材(B)、シランカップリング剤(C)に加えて、塩基性化合物(D)も添加した上で、混練し、ゴム組成物を得た後、加硫工程において、加硫剤等を添加し、加硫を行い、ゴム加硫物を得ることで、低燃費性、グリップ性に優れたタイヤを製造可能とするゴム加硫物を得ることができる。
 これは、加硫工程において、ゴム(A)、無機充填材(B)、シランカップリング剤(C)に加えて、塩基性化合物(D)も添加した上で、混練することで、チオエステル結合の分解を促進してメルカプトシランをより多く発生させるためである。
加硫工程
 本発明のゴム加硫物の製造方法における加硫工程は、混練工程で得られたゴム組成物に通常ゴム工業で用いられる配合剤を添加し、加硫することにより、ゴム加硫物を得る工程である。
 加硫工程において、混練工程で得られたゴム組成物には、本発明の趣旨を逸脱しない限り、通常ゴム工業で用いられる配合剤を使用できる。例えば、加硫剤、ステアリン酸等の加工助剤、チタネート系等のカップリング剤、フェニル-α-ナフチルアミンやN-フェニル-N’-(1、3-ジメチルブチル)-p-フェニレンジアミン等の老化防止剤、カーボンブラック、スルフェンアミド系架橋促進剤、亜鉛華(酸化亜鉛)等の架橋促進(助)剤、補強剤、軟化剤、可塑剤、粘着付与剤、スコーチ防止剤等を使用できる。
 かかる加硫剤としては、ゴム組成物の混練作業時に通常添加されるものであれば特に限定されるものではないが、硫黄、セレン、有機過酸化物、モルホリンジスルフィド、チウラム系化合物およびオキシム系化合物からなる群より選択される少なくとも一つであることがより好ましい。   
 本発明に係るゴム組成物に含有される上記加硫剤の含有量も特に限定されるものではないが、ゴム(A)100質量部に対して、0.1~20質量部であることが好ましく、0.2~15質量部であることがより好ましく、0.5~10質量部であることがさらに好ましい。   
 上記加硫剤の含有量が、ゴム(A)100質量部に対して、0.1質量部以上であることにより、ゴム(A)を好適に架橋することができるため好ましい。また上記加硫剤の含有量が、ゴム(A)100質量部に対して、20質量部以下であることにより、ゴム状弾性を保つことが可能であるため好ましい。
 スルフェンアミド系架橋促進剤としては、N-シクロヘキシル-2-ベンゾチアジル・スルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアジル・スルフェンアミド、N-オキシジエチレン-2-ベンゾチアジル・スルフェンアミド、N-第三ブチル-2-ベンゾチアジル・スルフェンアミド、N-第三ブチル-ジ(2-ベンゾチアゾール)スルフェンイミド等が挙げられる。
 ゴム組成物における架橋促進(助)剤の配合量は、ゴム(A)100質量部に対して、0.1~15質量部であることが好ましく、1~10質量部であることがより好ましく、3~9質量部であることが特に好ましい。架橋促進(助)剤の配合量とは、架橋促進剤および架橋促進助剤に該当するものの合計配合量であり、架橋促進剤および架橋促進助剤を両方使用する場合には、それらの合計配合量を表す。
 加工助剤としては、ミリスチン酸、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸、アラキジン酸等の高級脂肪酸;ステアリン酸アミド、オレイン酸アミド等の高級脂肪酸アミド;オレイン酸エチル等の高級脂肪酸エステル、ステアリルアミン、オレイルアミン等の高級脂肪族アミン等が挙げられる。
 ゴム組成物における加工助剤の配合量は、ゴム(A)100質量部に対して、例えば、300質量部以下、好ましくは100質量部以下、より好ましくは50質量部以下、特に好ましくは10質量部以下である。
 軟化剤としては、カルナバワックス、セレシンワックス等の石油系ワックス;エチレングリコール、グリセリン、ジエチレングリコール等のポリグリコール;ワセリン、パラフィン、ナフテン等の脂肪族炭化水素;シリコーン系オイル等が挙げられる。
 ゴム組成物における軟化剤の配合量は、ゴム(A)100質量部に対して、例えば、300質量部以下、好ましくは100質量部以下、より好ましくは50質量部以下、特に好ましくは30質量部以下である。
 ゴム組成物における老化防止剤の配合量は、ゴム(A)100質量部に対して、例えば、30質量部以下、好ましくは10質量部以下、より好ましくは5質量部以下である。
 ゴム組成物は、更にカーボンブラックを含有してもよい。カーボンブラックとしては、以下のものに限定されないが、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが挙げられる。
 カーボンブラックの配合量は、ゴム(A)100質量部に対して、0.5~100質量部含有することが好ましく、1~90質量部含有することがより好ましく、2~80質量部含有することが特に好ましい。
 本発明のゴム組成物は、0℃のtanδに対する60℃のtanδの比[60℃のtanδ/0℃のtanδ]は、1.6以上であることが好ましく、より好ましくは2.2以上、さらに好ましくは2.5以上である。
加硫工程における加硫条件
 加硫工程では、上記混練工程で得られたゴム組成物に適宜、上述した配合材を添加し、加硫することにより、ゴム加硫物が得られる。すなわち、架橋用ゴム組成物が得られる。加硫工程では、上記混練工程で得られたゴム組成物に上述した配合材(例えば、加硫剤等)添加し、100℃以上で混練することが好ましい。好ましくは120~230℃で、1分~3時間加熱してゴム加硫物を得る。また、加硫の際には金型を用いても良い。
ゴム組成物の利用
 加硫工程において得られたゴム加硫物は、ゴム製品として様々な用途に利用することができる。かかるゴム加硫物の形状は特に限定されるものではなく、タイヤ、チューブ、ベルト、ホース、工業用品等として利用することができる。   
 ゴム加硫物は、上述したように、ヒステリシスロスが小さいため、例えば、タイヤとして用いたときに、タイヤ走行時のエネルギーロスを小さくすることができ、転がり抵抗を低減させることができる。それゆえ、とりわけ、タイヤ(特にトレッド部分)等の動的に使用されるゴム部品で好適に使用することができる。
 以下の実施例において本発明をより具体的に説明するが、本発明はこれらに限定されない。
(合成例1)式(X)で表されるシランカップリング剤の製造((EtO) 3 Si-(CH 2 3 -S-C(=O)-C 13~19 27~39 の製造)
 飽和脂肪酸混合物(商品名「ステアリン酸さくら」、日油株式会社製、C14~18の飽和脂肪酸混合物、C14:C16:C18:C20=2:31:66:1(質量比))200.0gをトルエン(富士フイルム和光純薬株式会社製)522.0gに投入し、さらに塩化チオニル(富士フイルム和光純薬株式会社製)を125.5g添加し、60℃で3時間撹拌した。その後、エバポレーターで余剰の塩化チオニルと溶媒を反応混合物から揮発させ、液状の飽和脂肪酸塩化物を得た。そして、石油エーテル(沸点範囲50~70℃)1300ml中の3-メルカプトプロピルトリエトキシシラン98.66gの溶液に、5℃でトリエチルアミン48.15gを添加した後、加熱可能な滴下漏斗を用いて上記飽和脂肪酸塩化物125.35gを滴加した。90分還流で加熱した後、冷却した懸濁液を濾過し、フィルターケーキを石油エーテルで二回再洗浄し、得られた濾液をまとめ、溶剤を除去した。1H-NMR分析により同定される式(X)で表されるシランカップリング剤186.71g(有機珪素化合物1)を得た。物性値を以下に示す。
1H NMR(400MHz、CDCl3)δ3.8(q、J=6.8Hz、6H)、2.9(t、J=7.2Hz、2H)、2.5(t、J=8.0Hz、2H)、1.7-1.6(m、4H)、1.4-1.2(m、26H)、1.2(t、J=6.8Hz、9H)、0.9(t、J=6.8Hz、3H)、0.8-0.6(m、2H)
〔ゴム加硫物の製造〕実施例1~2、比較例1~2
 250ccバンバリーミキサータイプのアタッチメントBR-250を備えたラボプラストミル10C100(東洋精機株式会社製)にて混練試験を行った。装置温度は100℃のオイル循環加熱とし、ミキサーのロータ回転速度は80rpm一定とした。配合はゴム100gベースにて試験を行った。手順はゴム成分を30秒間素練りした後、表1の配合(I)に示される薬剤を添加し、30秒間混練した。次いで表1の配合(II)に示される薬剤を添加して3分間混練後、ゴム組成物を得た(混練工程)。尚、実施例・比較例の有機珪素化合物の量は、実施例・比較例における有機珪素化合物中の珪素量が同じになるように調整した。また、実施例・比較例で添加する硫黄の量は系内の硫黄量が同じになるように調整した。排出したゴム組成物は室温の6インチロールにて冷却後、表1の配合(III)に示される架橋剤成分を添加し6分間混練して、約2mmの厚みのゴム加硫物(未架橋シート)を得た(加硫工程)。翌日、残りのコンパウンドを160℃で20分間熱プレス架橋し、試験用サンプル(架橋シート)を得た。なお、実施例1~2では、塩基性化合物を混練工程で添加し、比較例1~2では塩基性化合物を加硫工程で添加した。
<動的粘弾性試験>
 試験用サンプル(架橋シート)から幅4mm×長さ25mm×厚み2mmの試験片を打ち抜き、株式会社ユービーエム製Rheogel-4000にて、チャック間距離20mm、初期歪0.05%、10Hzの条件下で、tanδを測定した。なお測定温度範囲は-40~80℃とした。
 以下に実施例および比較例で用いた配合剤を示す。なお、表1に示す数値の単位は「質量部」である。
*1  JSR株式会社製 SL552
*2  東ソーシリカ株式会社製 Nipsil AQ(BET比表面積215m2/g)
*3  日本石油株式会社製 Sunthene415
*4  日油株式会社製 ステアリン酸さくら
*5  大内新興化学工業株式会社製 ノクラック6C
*6  モメンティブ・パフォーマンス・マテリアルズ社製、商品名「NXT」
*7  堺化学工業株式会社製 酸化亜鉛2種
*8  大内新興化学工業株式会社製 1,3-ジフェニルグアニジン
*9  大内新興化学工業株式会社製 ノクセラーCZ
*10 細井化学工業株式会社製 コロイド硫黄
*11 株式会社東京化成工業株式会社製 3-アミノプロピルトリエトキシシラン
Figure JPOXMLDOC01-appb-T000003
 実施例1~2、比較例1~2で得られた試験用サンプル(架橋シート)について、上述した動的粘弾性試験を行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に示される通り、本発明の製造方法を用いた実施例1~2(混練工程において、塩基性化合物(D)を添加して混練)は、一般的な製造方法を用いた比較例1~2(加硫工程において、塩基性化合物(D)を添加して混練)と比較して、0℃のtanδは大きくグリップ性も優れることが示唆され、60℃のtanδが小さく燃費性に優れることが示唆された。通常、60℃のtanδの値が小さくなると、0℃のtanδの値も小さくなる傾向があるが、本発明の製造方法を用いた実施例1は、グリップ性と燃費性の両方で優れる点でも好ましい。
(合成例2)式(Y-2)で表されるシランカップリング剤の製造
 温度計、磁気撹拌装置を備えた1000mLの三口フラスコに10.8g(82.3mmol)の6-アミノヘキサン酸(富士フイルム和光純薬株式会社製)、50gの超純水、150gのTHF(富士フイルム和光純薬株式会社製)、12.5g(123.4mmol)のトリエチルアミン(富士フイルム和光純薬株式会社製)を加えた。フラスコ内を磁気撹拌装置で撹拌しながら5℃まで冷却した後、13.4g(82.3mmol)のn-オクタノイルクロリド(東京化成工業株式会社製)を加えた。その後、室温まで昇温し終夜撹拌した。反応終了後、減圧濃縮してTHFを除去し、塩酸でpHを1に調整した。生成した白色固体を濾過し、濾残を超純水で洗浄した。得られた濾残をエタノールに溶解させ、そこに超純水を加えて再結晶させた。得られた固体を濾過し、濾残を超純水で洗浄し、乾燥させてN-オクタノイル-6-アミノヘキサン酸を20.0g(収率97%)得た。
 温度計、磁気撹拌装置を備えた500mLの三口フラスコに上で得られた20.0g(77.7mmol)のN-オクタノイル-6-アミノヘキサン酸、500gのジクロロメタン(富士フイルム和光純薬株式会社製)、18.5g(77.7mmol)の3-メルカプトプロピルトリエトキシシラン(東京化成工業株式会社製)、0.95g(7.8mmol)のN,N-ジメチル-4-アミノピリジン(富士フイルム和光純薬株式会社製)を加えた。フラスコ内を磁気撹拌装置で撹拌しながら5℃まで冷却した後、17.6g(85.5mmol)のN,N‘-ジシクロヘキシルカルボジイミド(富士フイルム和光純薬株式会社製)を加えた。その後、室温まで昇温し3時間撹拌した。反応終了後、反応溶液を濾過して濾液を減圧濃縮した後、シリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル=8/2)で精製し、無色透明の液体である有機珪素化合物2(式[4])を26.6g(収率72%)得た。物性値を以下に示す。
 1H NMR(400MHz、CDCl3)δ 5.4(br、1H)、3.8(q、J=6.8Hz、6H)、3.2(q、J=6.8Hz、2H)、2.9(t、J=7.6Hz、2H)、2.5(t、J=7.6Hz、2H)、2.1(t、J=7.6Hz、2H)、1.7-1.6(m、6H)、1.6-1.4(m、2H)、1.4-1.3(m、10H)、1.2(t、J=6.8Hz、9H)、0.9-0.8(m、3H)、0.7-0.6(m、2H)
Figure JPOXMLDOC01-appb-C000005
(合成例3)式(Y-1)で表されるシランカップリング剤の製造
 温度計、磁気撹拌装置を備えた200mLの三口フラスコに12.0g(53.8mmol)のN-カルボベンゾキシ-L-アラニン(東京化成工業株式会社製)、120gのジクロロメタン(富士フイルム和光純薬株式会社製)、12.8g(53.8mmol)の3-メルカプトプロピルトリエトキシシラン(東京化成工業株式会社製)、0.66g(5.4mmol)のN,N-ジメチル-4-アミノピリジン(富士フイルム和光純薬株式会社製)を加えた。フラスコ内を磁気撹拌装置で撹拌しながら5℃まで冷却した後、12.2g(59.1mmol)のN,N‘-ジシクロヘキシルカルボジイミド(富士フイルム和光純薬株式会社製)を加えた。その後、室温まで昇温し3時間撹拌した。反応終了後、反応溶液をろ過してろ液を減圧濃縮した後、シリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル=9/1)で精製し、無色透明の液体である有機珪素化合物3(式[5])を19.5g(収率82%)得た。物性値を以下に示す。
 1H NMR(500MHz、CDCl3)δ 7.4-7.3(m、5H)、5.3-5.2(m、1H)、5.2-5.1(m、2H)、4.5-4.4(m、1H)、3.8(q、J=7.0Hz、6H)、2.9(t、J=7.5Hz、2H)、1.8-1.6(m、2H)、1.4(d、J=7.5Hz、3H)、1.2(t、J=7.0Hz、9H)、0.8-0.7(m、2H)
Figure JPOXMLDOC01-appb-C000006
 実施例1と同じ方法で、表3に示す配合でゴム加硫物を製造し、試験用サンプル(架橋シート)を得た。試験用サンプルについて、上述した動的粘弾性試験を行った結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4に示される通り、本発明の製造方法を用いた実施例3、4(混練工程において、塩基性化合物(D)を添加して混練)は、0℃のtanδは大きくグリップ性も優れることが示唆され、60℃のtanδが小さく燃費性に優れることが示唆された。

Claims (5)

  1.  ゴム(A)、無機充填材(B)、シランカップリング剤(C)、および塩基性化合物(D)を混練して、ゴム組成物を得る混練工程と、
     前記混練工程で得られたゴム組成物に、加硫剤を添加し、加硫することにより、ゴム加硫物を得る加硫工程とを含む、ゴム加硫物の製造方法であり、
     シランカップリング剤(C)が、(保護化)メルカプト系有機珪素化合物、アミノ酸またはその誘導体の骨格を有する有機珪素化合物、式(X)で表される化合物、およびそれらの縮合物からなる群より選択される少なくとも1種である、ゴム加硫物の製造方法。
     (R1O)3Si-R2-S-C(=O)-Cn2n+1 ・・・(X)
    [式(X)中、R1は互いに独立してHまたは(C1~C8)アルキル基を意味し、R2は直鎖または分枝鎖の二価の(C1~C8)炭化水素基を意味し、nは13~19の整数を意味し、Cn2n+1は直鎖または分枝鎖のアルキル基である]
  2.  式(X)中、R1がエチルであり、R2がCH2CH2CH2であり、かつCn2n+1が直鎖のアルキル基である、請求項1に記載のゴム加硫物の製造方法。
  3.  アミノ酸またはその誘導体の骨格を有する有機珪素化合物が、式(Y)で表される有機珪素化合物である、請求項1に記載のゴム加硫物の製造方法。
     (R3O)3Si-R4-S-C(=O)-R5-NH-R6 ・・・(Y)
    [式(Y)中、R3は互いに独立してHまたは(C1~C8)アルキルを意味し、R4は直鎖または分岐鎖の二価の(C1~C8)炭化水素基を意味し、R5は二価の有機基であり、R6はHまたはアミノ基の保護基である]
  4.  (保護化)メルカプト系有機珪素化合物が、式(Z)で表される化合物である請求項1に記載のゴム加硫物の製造方法。
     R11 m(R123-m-Si-R13-S-CO-R14 ・・・(Z)
    [式(Z)中、R11は互いに独立して一価の炭化水素基を意味し、R12は互いに独立してアルコキシ基を意味し、R13は二価の炭化水素基を意味し、R14は炭素数1~18の一価の炭化水素基である。mは0~2の整数である。)
  5.  前記ゴム(A)が、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレンブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリルブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレン共重合体ゴム(EPDM)、およびブチルゴム(IIR)からなる群より選択される1種または2種以上である、請求項1~4のいずれか1項に記載のゴム加硫物の製造方法。
PCT/JP2022/036406 2021-10-14 2022-09-29 ゴム加硫物の製造方法 WO2023063096A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-168528 2021-10-14
JP2021168528 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023063096A1 true WO2023063096A1 (ja) 2023-04-20

Family

ID=85988289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036406 WO2023063096A1 (ja) 2021-10-14 2022-09-29 ゴム加硫物の製造方法

Country Status (1)

Country Link
WO (1) WO2023063096A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077217A (ja) * 2010-10-01 2012-04-19 Bridgestone Corp ゴム組成物の製造方法
JP2012180407A (ja) * 2011-02-28 2012-09-20 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2013087272A (ja) * 2011-10-21 2013-05-13 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108004A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108001A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108003A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013116968A (ja) * 2011-12-02 2013-06-13 Bridgestone Corp ゴム組成物の製造方法
JP2013129762A (ja) * 2011-12-21 2013-07-04 Bridgestone Corp ゴム組成物及びその製造方法
JP2013159669A (ja) * 2012-02-02 2013-08-19 Bridgestone Corp ゴム組成物の製造方法
JP2013173847A (ja) * 2012-02-24 2013-09-05 Bridgestone Corp ゴム組成物の製造方法
JP2014189598A (ja) * 2013-03-26 2014-10-06 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2019104782A (ja) * 2017-12-08 2019-06-27 株式会社ブリヂストン ゴム組成物の製造方法、ゴム組成物、及びタイヤ
WO2019142890A1 (ja) * 2018-01-19 2019-07-25 株式会社大阪ソーダ 有機珪素化合物、及びそれを用いたゴム組成物
JP2020164440A (ja) * 2019-03-29 2020-10-08 株式会社大阪ソーダ 有機珪素化合物、及びそれを用いたゴム組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077217A (ja) * 2010-10-01 2012-04-19 Bridgestone Corp ゴム組成物の製造方法
JP2012180407A (ja) * 2011-02-28 2012-09-20 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2013087272A (ja) * 2011-10-21 2013-05-13 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108004A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108001A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013108003A (ja) * 2011-11-22 2013-06-06 Bridgestone Corp ゴム組成物及びその製造方法
JP2013116968A (ja) * 2011-12-02 2013-06-13 Bridgestone Corp ゴム組成物の製造方法
JP2013129762A (ja) * 2011-12-21 2013-07-04 Bridgestone Corp ゴム組成物及びその製造方法
JP2013159669A (ja) * 2012-02-02 2013-08-19 Bridgestone Corp ゴム組成物の製造方法
JP2013173847A (ja) * 2012-02-24 2013-09-05 Bridgestone Corp ゴム組成物の製造方法
JP2014189598A (ja) * 2013-03-26 2014-10-06 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2019104782A (ja) * 2017-12-08 2019-06-27 株式会社ブリヂストン ゴム組成物の製造方法、ゴム組成物、及びタイヤ
WO2019142890A1 (ja) * 2018-01-19 2019-07-25 株式会社大阪ソーダ 有機珪素化合物、及びそれを用いたゴム組成物
JP2020164440A (ja) * 2019-03-29 2020-10-08 株式会社大阪ソーダ 有機珪素化合物、及びそれを用いたゴム組成物

Similar Documents

Publication Publication Date Title
US9068055B2 (en) Rubber composition
JP5666380B2 (ja) ゴム組成物及び空気入りタイヤ
JP2004339507A (ja) オルガノシランマスターバッチ
JPS6248743A (ja) ゴム組成物
JP5442489B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
WO2019142890A1 (ja) 有機珪素化合物、及びそれを用いたゴム組成物
WO2023063096A1 (ja) ゴム加硫物の製造方法
US20120296024A1 (en) Organosilicon compound and its production method, compounding agent for rubber, rubber composition, and tire
JPS6323942A (ja) ゴム組成物
WO2023008336A1 (ja) ゴム組成物、およびゴム組成物の利用
JP2024153078A (ja) ゴム組成物、及びゴム組成物の利用
JP2020164440A (ja) 有機珪素化合物、及びそれを用いたゴム組成物
JP2001226383A (ja) 含硫黄有機珪素化合物、およびその製造方法
WO2017169975A1 (ja) タイヤ用ゴム組成物
JP2014108922A (ja) 有機珪素化合物の混合物およびゴム組成物
CN1246494A (zh) 含n-(4-羟苯基)硬脂酰胺的橡胶组合物
JP6015945B2 (ja) 有機珪素化合物、その製造方法、及びゴム組成物
US8741994B1 (en) Alkoxysilyl group-containing azo compound and rubber composition using the same
JP6113583B2 (ja) ゴム組成物の製造方法及び空気入りタイヤ
JP2018083773A (ja) 有機珪素化合物、およびそれを用いたゴム組成物
JP5962121B2 (ja) 変性ジエン系ゴム及びその製造方法並びにそれを用いたゴム組成物
JP2015172018A (ja) 含硫黄有機珪素生成物、その製造方法、およびゴム組成物
JPH02117939A (ja) ゴム組成物
JP2019089868A (ja) 低燃費タイヤ用ゴム組成物
JPH03223353A (ja) 優れた動的特性を有するゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880792

Country of ref document: EP

Kind code of ref document: A1