WO2023054244A1 - 非水電解液及びその保管方法 - Google Patents

非水電解液及びその保管方法 Download PDF

Info

Publication number
WO2023054244A1
WO2023054244A1 PCT/JP2022/035646 JP2022035646W WO2023054244A1 WO 2023054244 A1 WO2023054244 A1 WO 2023054244A1 JP 2022035646 W JP2022035646 W JP 2022035646W WO 2023054244 A1 WO2023054244 A1 WO 2023054244A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
sulfonylimide
compound
electrolytic solution
group
Prior art date
Application number
PCT/JP2022/035646
Other languages
English (en)
French (fr)
Inventor
知恵 大久保
貴之 小畠
元博 荒川
裕子 南
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN202280062278.4A priority Critical patent/CN117941118A/zh
Priority to EP22876111.0A priority patent/EP4394986A1/en
Priority to JP2023551465A priority patent/JPWO2023054244A1/ja
Priority to KR1020247009858A priority patent/KR20240049597A/ko
Publication of WO2023054244A1 publication Critical patent/WO2023054244A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte and its storage method.
  • non-aqueous electrolytes used in secondary batteries such as lithium-ion secondary batteries deteriorate during storage and change their characteristics, greatly affecting battery performance. Therefore, various non-aqueous electrolytes capable of improving safety, stability, storage characteristics, etc. of batteries have been studied.
  • Patent Document 1 a fluorine-containing lithium salt is mixed with a non-aqueous solvent, hydrogen fluoride (HF) is contained in a predetermined content, and lithium difluorophosphate is contained in a predetermined ratio as a specific compound.
  • Non-aqueous electrolyte solutions for secondary batteries have been proposed.
  • a non-aqueous solvent containing 3 ppm or more and 150 ppm or less (specifically 10 ppm or more and 50 ppm or less) of an alcohol is used as the non-aqueous solvent (for example, alcohol is added to a purified non-aqueous solvent. addition), the output characteristics, high-temperature storage characteristics, and cycle characteristics of the battery are improved.
  • Patent Document 2 proposes an electrolytic solution for a non-aqueous lithium secondary battery, which is composed of a room-temperature molten salt, a lithium salt, and a compound having a hydroxyl group.
  • alcohol is used as the compound having a hydroxyl group, and the content thereof is 30 to 10000 ppm (specifically 800 ppm) with respect to the weight of the electrolytic solution. It was found that the current efficiency is excellent. ing.
  • Patent Document 3 proposes an electrolytic solution containing a lithium salt, methyl acetate, and dimethylsulfone as an electrolytic solution that constitutes a non-aqueous electrolyte secondary battery. With this electrolytic solution, a battery with high capacity and excellent high-temperature storage characteristics can be obtained. Patent Document 3 also proposes an electrolytic solution that further contains alcohol as an additive, and the content of alcohol in the electrolytic solution is 5 ppm or more and 500 ppm or less with respect to the mass of the electrolytic solution.
  • Patent Document 4 proposes an electrolytic solution containing a lithium salt, an additive and the remaining solvent, and a p-benzoquinone derivative as the additive. Further, Patent Document 5 proposes a non-aqueous electrolytic solution containing hydroquinone or a hydroquinone derivative.
  • Patent Document 6 proposes a non-aqueous electrolytic solution containing specific anions and lithium cations, and further containing 4% by mass or less of a radical scavenger and/or a redox stabilizer.
  • JP 2007-165294 A WO2006/057447 WO2020/241438 JP 2019-114346 A JP-A-08-203561 JP 2016-134283 A
  • a non-aqueous electrolyte solution containing a lithium salt such as lithium bis(fluorosulfonyl)imide as an electrolyte improves battery performance such as high-temperature durability and charge-discharge cycles of lithium-ion secondary batteries.
  • a non-aqueous electrolytic solution in which the storage stability of the non-aqueous electrolytic solution itself containing the sulfonylimide compound is improved (the property that the decomposition reaction of the sulfonylimide compound is suppressed even when stored for a long period of time).
  • Various proposals have also been made on how to preserve these materials.
  • Patent Documents 1 to 3 discuss the safety, stability, storage characteristics, etc. of the battery, they do not discuss the storage stability of the electrolytic solution itself or the storage method.
  • Patent Documents 1 and 2 do not discuss an electrolytic solution containing a sulfonylimide compound. Furthermore, in Patent Document 3, no specific study is made on the electrolytic solution further containing alcohol as an additive, and it is unclear whether the above effect can be obtained.
  • Patent Documents 4 and 5 discuss batteries containing hydroquinone and hydroquinone derivatives as additives, but do not specifically discuss electrolyte solutions containing sulfonylimide compounds.
  • Patent Document 6 discloses that a nonaqueous electrolytic solution containing a phenolic antioxidant suppresses decomposition of a compound having a sulfonylimide anion at high temperatures.
  • the non-aqueous electrolytic solution specifically studied contains lithium bis(fluorosulfonyl)imide at a concentration of 1.0 mol/L as the compound, and higher concentrations have not been studied.
  • the present disclosure has been made in view of such points, and the purpose thereof is to improve the storage stability of the non-aqueous electrolytic solution itself containing the sulfonylimide compound at a relatively high concentration.
  • a compound containing a hydroxyl group (hydroxy group) (hereinafter referred to as (Also referred to as "hydroxyl-containing compound”) is intentionally included, and the content of each of the sulfonyl compound and the hydroxyl-containing compound is specified to suppress the decomposition of the sulfonylimide compound.
  • hydroxy group hydroxy group
  • the present disclosure is specifically as follows.
  • the non-aqueous electrolyte of the present disclosure has the general formula (1): LiN(RSO 2 )(FSO 2 ) (R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.)
  • R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.
  • the content of the sulfonylimide compound represented by formula (1) exceeds 1.5 mol/L, and the content of the hydroxyl group-containing compound relative to the sulfonylimide compound represented by general formula (1) is 40 mass
  • the acid concentration in the non-aqueous electrolyte may be 50 ppm by mass or less.
  • the sulfonylimide compound represented by the general formula (1) may contain LiN(FSO 2 ) 2 .
  • the alcohol may contain at least one selected from the group consisting of aliphatic monoalcohols having 1 to 4 carbon atoms and aliphatic dialcohols having 1 to 4 carbon atoms.
  • the compound containing a phenolic hydroxyl group may contain at least one selected from the group consisting of hydroquinone and dibutylhydroxytoluene. At least one selected from the group consisting of carbonate-based solvents, lactone-based solvents, ether-based solvents, and chain ester-based solvents may be further included as an electrolytic solution solvent.
  • the non-aqueous electrolyte is housed in a container and stored.
  • the acid concentration in the non-aqueous electrolyte after storage at room temperature or higher for 3 months or longer may be 50 ppm by mass or less.
  • the secondary battery of the present disclosure uses the non-aqueous electrolyte.
  • the non-aqueous electrolytic solution according to the present embodiment is a non-aqueous electrolytic solution containing a lithium salt such as a specific sulfonylimide compound as an electrolyte and a hydroxyl group-containing compound as an additive (hereinafter also referred to as "sulfonylimide electrolytic solution"). .
  • the electrolyte constituting the sulfonylimide electrolyte has the general formula (1): [Chemical 1] LiN( RSO2 )( FSO2 ) (1) contains a sulfonylimide compound represented by (hereinafter referred to as "sulfonylimide compound (1)", a fluorine-containing sulfonylimide salt).
  • R represents a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a fluoroalkyl group having 1 to 6 carbon atoms.
  • alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group and hexyl group.
  • alkyl groups having 1 to 6 carbon atoms linear or branched alkyl groups having 1 to 6 carbon atoms are preferred, and linear alkyl groups having 1 to 6 carbon atoms are more preferred.
  • fluoroalkyl group having 1 to 6 carbon atoms examples include those in which some or all of the hydrogen atoms of an alkyl group having 1 to 6 carbon atoms are substituted with fluorine atoms.
  • the fluoroalkyl group having 1 to 6 carbon atoms includes fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group and the like.
  • the fluoroalkyl group may be a perfluoroalkyl group.
  • the substituent R is preferably a fluorine atom and a perfluoroalkyl group (e.g., a perfluoroalkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, etc.), a fluorine atom, A trifluoromethyl group and a pentafluoroethyl group are more preferred, a fluorine atom and a trifluoromethyl group are even more preferred, and a fluorine atom is even more preferred.
  • a perfluoroalkyl group e.g., a perfluoroalkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, etc.
  • the sulfonylimide compound (1) include lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 , LiFSI), lithium (fluorosulfonyl)(methylsulfonyl)imide, lithium (fluorosulfonyl)(ethylsulfonyl) imide, lithium(fluorosulfonyl)(trifluoromethylsulfonyl)imide, lithium(fluorosulfonyl)(pentafluoroethylsulfonyl)imide, lithium(fluorosulfonyl)(heptafluoropropylsulfonyl)imide and the like.
  • the sulfonylimide compounds (1) may be used alone or in combination of two or more.
  • As the sulfonylimide compound (1) a commercially available product may be used, or one synthesized by a conventionally known method may be used.
  • sulfonylimide compounds (1) from the viewpoint of improving battery performance, lithium bis(fluorosulfonyl)imide, lithium (fluorosulfonyl)(trifluoromethylsulfonyl)imide, and lithium (fluorosulfonyl)(pentafluoroethylsulfonyl) ) imide, more preferably lithium bis(fluorosulfonyl)imide.
  • sulfonylimide compound (1) preferably contains LiN(FSO 2 ) 2 .
  • the electrolyte may contain the sulfonylimide compound (1), but may contain other electrolytes (electrolytes other than the sulfonylimide compound (1)).
  • Other electrolytes include imide salts, non-imide salts, and the like.
  • imide salt examples include fluorine-containing sulfonylimide salts (hereinafter referred to as "other sulfonylimide compounds") different from the sulfonylimide compound (1).
  • Other sulfonylimide compounds include non-lithium salts of fluorine-containing sulfonylimides listed as sulfonylimide compound (1) (for example, salts in which lithium (ion) is substituted with a cation other than lithium ion in sulfonylimide compound (1) ) and the like.
  • Salts substituted with cations other than lithium ions include alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts; alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts. aluminum salts; ammonium salts; phosphonium salts and the like.
  • alkali metal salts such as sodium salts, potassium salts, rubidium salts and cesium salts
  • alkaline earth metal salts such as beryllium salts, magnesium salts, calcium salts, strontium salts and barium salts.
  • aluminum salts such as ammonium salts; phosphonium salts and the like.
  • Other sulfonylimide compounds may be used alone, respectively, or two or more of them may be used in combination.
  • other sulfonylimide compounds may be commercially available products, or may be synthesized by conventionally known methods.
  • Non-imide salts include salts of non-imide anions and cations (lithium ions and cations exemplified above).
  • general formula (2) [Chemical 2] LiPF a (C m F 2m+1 ) 6-a (a: 0 ⁇ a ⁇ 6, m: 1 ⁇ m ⁇ 4) (2) A compound represented by (hereinafter referred to as "fluorophosphoric acid compound (2)”), general formula (3): [Chemical 3] LiBF b (C n F 2n+1 ) 4-b (b: 0 ⁇ b ⁇ 4, n: 1 ⁇ n ⁇ 4) (3) (hereinafter referred to as "fluoroboric acid compound (3)”), lithium hexafluoroarsenate ( LiAsF6 ) , LiSbF6, LiClO4 , LiSCN, LiAlF4 , CF3SO3Li , LiC[( CF3 SO 2 ) 3 ], LiN(NO 2 ), LiN[(CN) 2
  • non-imide salts are preferred from the viewpoint of ionic conductivity, cost, etc.
  • fluorophosphoric acid compound (2), fluoroboric acid compound (3) and LiAsF6 are preferred, and fluorophosphoric acid compound (2) is more preferred.
  • Fluorophosphate compounds (2) include LiPF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiPF 3 (C 4 F 9 ) 3 etc.
  • LiPF 6 and LiPF 3 (C 2 F 5 ) 3 are preferred, and LiPF 6 is more preferred.
  • fluoroboric acid compound (3) examples include LiBF 4 , LiBF(CF 3 ) 3 , LiBF(C 2 F 5 ) 3 , LiBF(C 3 F 7 ) 3 and the like.
  • fluoroboric acid compounds (3) LiBF 4 and LiBF(CF 3 ) 3 are preferred, and LiBF 4 is more preferred.
  • electrolytes sulfonylimide compound (1), other electrolytes, etc.
  • electrolytes may exist (contain) in the form of ions in the non-aqueous electrolyte.
  • the content (concentration) of the sulfonylimide compound (1) in the non-aqueous electrolyte improves the storage stability of the sulfonylimide electrolyte itself. From the viewpoint, it is more than 1.5 mol/L, preferably more than 2 mol/L, more preferably 2.5 mol/L or more, still more preferably 2.8 mol/L or more. In addition, the concentration is preferably 5 mol/L or less, more preferably 4 mol/L or less, and still more preferably 3.5 mol/L or less from the viewpoint of suppressing deterioration of battery performance due to increase in electrolyte viscosity.
  • the content of the sulfonylimide compound (1) in the non-aqueous electrolyte is preferably 10 mol % in the total 100 mol % of the electrolyte contained in the non-aqueous electrolyte, from the viewpoint of improving the storage stability of the sulfonyl imide electrolyte itself. Above, more preferably 20 mol% or more, still more preferably 30 mol% or more, particularly preferably 50 mol% or more, and the upper limit is 100 mol%. That is, the electrolyte may contain only the sulfonylimide compound (1). .
  • the content of the sulfonylimide compound (1) in the non-aqueous electrolytic solution is determined based on the total non-aqueous electrolytic solution (the content of the components contained in the non-aqueous electrolytic solution) from the viewpoint of improving the storage stability of the sulfonylimide electrolytic solution itself. relative to the total amount of 100% by mass), preferably 25% by mass or more, more preferably 30% by mass or more, and even more preferably 35% by mass or more.
  • the concentration is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • LiFSI as the sulfonylimide compound (1) is dissolved in dimethyl carbonate (DMC) as an electrolyte solvent to be described later so that the concentration is 2 mol/L (non-aqueous electrolyte).
  • DMC dimethyl carbonate
  • the non-aqueous electrolyte is a 30 wt% LiFSI/70 wt% DMC solution.
  • a DMC solution containing 2.9 mol/L LiFSI becomes a 40 wt% LiFSI/60 wt% DMC solution.
  • the solvent density is a value that depends on the type of electrolyte solvent and the concentration of the sulfonylimide compound (1). DOI: 10.1038/ncomms12032) and other documents can be used as references.
  • the salt composition of the electrolyte may be an electrolyte salt having a single salt composition of the sulfonylimide compound (1), or an electrolyte salt having a mixed salt composition containing the sulfonylimide compound (1) and another electrolyte.
  • an electrolyte salt having a mixed salt composition an electrolyte salt having a mixed salt composition containing the sulfonylimide compound (1) and the fluorophosphoric acid compound (2) is preferable, and an electrolyte salt having a mixed salt composition containing LiN(FSO 2 ) 2 and LiPF 6 is preferred. Electrolyte salts are more preferred.
  • the concentration of the other electrolyte in the non-aqueous electrolyte is It is preferably 0.1 mol/L or more, more preferably 0.2 mol/L or more, and still more preferably 0.5 mol/L or more.
  • the concentration is preferably 1.5 mol/L or less, more preferably 1 mol/L or less, and still more preferably 0.8 mol/L or less from the viewpoint of suppressing deterioration in battery performance due to an increase in electrolyte viscosity. .
  • the total concentration of the electrolytes in the non-aqueous electrolyte is preferably more than 1.5 mol/L, more preferably more than 2 mol/L, and still more preferably 2. 5 mol/L or more, and more preferably 2.8 mol/L or more.
  • the concentration is preferably 5 mol/L or less, more preferably 4 mol/L or less, and still more preferably 3.5 mol/L or less from the viewpoint of suppressing deterioration of battery performance due to increase in electrolyte viscosity.
  • Sulfonylimide compound (1) other electrolyte (molar ratio of sulfonylimide compound concentration and other electrolyte concentration) is preferably 1:25 or more, more preferably 1:10 or more, and even more preferably 1:8 or more. , more preferably 1:5 or more, even more preferably 1:2 or more, particularly preferably 1:1 or more, preferably 25:1 or less, more preferably 10:1 or less, even more preferably 5:1 2:1 or less, more preferably 2:1 or less.
  • hydroxyl group-containing compound is contained in the sulfonylimide electrolyte as an additive.
  • the hydroxyl group-containing compound is an essential ingredient intentionally added to the sulfonylimide electrolyte.
  • the hydroxyl group-containing compound constituting the sulfonylimide electrolytic solution contains at least one selected from the group consisting of compounds containing alcohols and phenolic hydroxyl groups.
  • the hydroxyl group-containing compound may contain only an alcohol, may contain only a compound containing a phenolic hydroxyl group, or may contain both an alcohol and a compound containing a phenolic hydroxyl group. .
  • the sulfonylimide electrolyte solution contains alcohol
  • the sulfonylimide is decomposed by solvolysis, so it is considered that the alcohol content in the sulfonylimide electrolyte solution should be as low as possible.
  • the present inventors specified the content of the sulfonylimide compound (1) within the range described above, and specified the content of the alcohol relative to the sulfonylimide compound (1) within the range described later, whereby the sulfonylimide It was found that the decomposition of compound (1) is suppressed.
  • the storage stability of the sulfonylimide electrolyte itself for a long period of time (about 3 months) and at high temperature (about 40° C.) improves.
  • the alcohol is not particularly limited, and examples include fatty alcohols.
  • aliphatic alcohols include monoalcohols (fatty acids having 1 to 4 carbon atoms) such as methyl alcohol (methanol), ethyl alcohol (ethanol), n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, and t-butyl alcohol. monoalcohols); diols (aliphatic dialcohols having 1 to 4 carbon atoms) such as ethylene glycol and propylene glycol; triols such as glycerin; and other polyols.
  • Each alcohol may be used alone, or two or more thereof may be used in combination.
  • alcohols aliphatic monoalcohols having 1 to 4 carbon atoms and aliphatic dialcohols having 1 to 4 carbon atoms are preferable from the viewpoint of improving the storage stability of the sulfonylimide electrolyte itself, and methanol, ethanol and ethylene are preferred. Glycols are more preferred.
  • the alcohol preferably contains at least one selected from the group consisting of the above preferred alcohols.
  • alcohol can use a commercial item.
  • a compound containing a phenolic hydroxyl group refers to phenols in which a hydrogen atom in an aromatic ring is substituted, and is distinguished from the above alcohols.
  • the present inventors also found that the decomposition of sulfonylimide compound (1) is suppressed by specifying the content of the compound containing a phenolic hydroxyl group relative to sulfonylimide compound (1) within the range described below.
  • the sulfonylimide electrolyte itself can be maintained for a long period of time (about 3 months) and at a high temperature (about 40°C). ) improves storage stability.
  • the compound containing a phenolic hydroxyl group is not particularly limited, and examples include hydroquinones, dibutylhydroxytoluene, alkoxyphenols, and bisphenols.
  • Hydroquinones include hydroquinone (hydroquinone), catechol, resorcinol and the like.
  • Alkoxyphenols include 4-methoxyphenol and the like.
  • Bisphenols include bisphenol A, bisphenol B and the like.
  • the compounds containing phenolic hydroxyl groups may be used alone, or two or more of them may be used in combination.
  • hydroquinone and dibutylhydroxytoluene are preferred from the viewpoint of improving the storage stability of the sulfonylimide electrolytic solution itself.
  • the compound containing a phenolic hydroxyl group can use a commercial item.
  • a method for incorporating a hydroxyl group-containing compound into the sulfonylimide electrolyte solution for example, a method of adding a hydroxyl group-containing compound to the sulfonylimide electrolyte solution; (addition), and a method of producing a sulfonylimide electrolytic solution using the resulting hydroxyl-containing compound-containing electrolytic solution solvent as a raw material, and the like.
  • an alcohol contained in a component used as a raw material of the sulfonylimide electrolyte may be used.
  • the alcohol-containing sulfonylimide compound (1) and/or the alcohol-containing electrolyte solvent are used as raw materials to produce a sulfonylimide electrolyte solution. and the like.
  • the alcohol contained in the sulfonylimide compound (1) is the solvent used in the production of the sulfonylimide compound (1) (contained in the sulfonylimide compound (1) obtained by the above-described conventionally known production method residual solvent).
  • the residual solvent includes the solvent used in the production reaction of the sulfonylimide compound (1), the solvent used in the purification step, and the like. Note that the above methods may be combined.
  • the content of the hydroxyl group-containing compound relative to the sulfonylimide compound (1) is 40 mass ppm from the viewpoint of improving the storage stability of the sulfonylimide electrolyte itself. above, preferably 50 mass ppm or more, more preferably 100 mass ppm or more, even more preferably 180 mass ppm or more, still more preferably 200 mass ppm or more, and even more preferably 220 mass ppm or more.
  • the upper limit is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, and still more preferably 500 mass ppm or less, from the viewpoint of suppressing deterioration of battery performance caused by the hydroxyl group-containing compound.
  • the content of the hydroxyl group-containing compound can be measured by the method described in Examples below, such as headspace gas chromatography and NMR.
  • the content of the hydroxyl group-containing compound in the non-aqueous electrolyte is preferably 10 mass ppm or more, more preferably 20 mass ppm, from the viewpoint of improving the storage stability of the sulfonylimide electrolyte itself. ppm or more, more preferably 50 mass ppm or more.
  • the upper limit is preferably 1500 mass ppm or less, more preferably 500 mass ppm or less, still more preferably less than 200 mass ppm, and even more preferably 150 mass ppm, from the viewpoint of suppressing deterioration of battery performance caused by hydroxyl-containing compounds. Mass ppm or less.
  • the electrolyte solvent when a carbonate-based solvent, which will be described later, is used as the electrolyte solvent, a trace amount of alcohol may be generated due to hydrolysis derived from the carbonate compound.
  • the content of the hydroxyl group-containing compound includes the alcohol generated during the production process of the sulfonylimide electrolyte.
  • the non-aqueous electrolyte according to the present embodiment may contain additives for the purpose of improving various characteristics of the lithium ion secondary battery, in addition to the hydroxyl group-containing compound.
  • Additives include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenyl Carboxylic anhydride such as succinic anhydride; ethylene sulfite, 1,3-propanesultone, 1,4-butanesultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethylsulfone, tetramethylthiuram monosulfide, trimethylene sulfur-containing compounds such as glycol sulfate; 1-methyl-2
  • saturated hydrocarbon compounds such as heptane, octane, and cycloheptane
  • carbonate compounds such as vinylene carbonate, fluoroethylene carbonate (FEC), trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; , H 3 NSO 3
  • sulfamate alkali metal salts such as lithium salt, sodium salt, potassium salt; alkaline earth metal salts such as calcium salt, strontium salt, barium salt; manganese salt, copper salt, zinc salt, other metal salts such as iron salts, cobalt salts, nickel salts; ammonium salts; guanidine salts, etc.
  • fluorosulfonic acid compounds such as magnesium fluorosulfonate (Mg ( FSO3 ) 2
  • fluorophosphate compounds such as lithium monofluorophosphate ( Li2PO3F ) and lithium difluorophosphate ( LiPO2F2 ) ; lithium Bis(
  • the additive is preferably used in a range of 0.1% by mass or more and 10% by mass or less with respect to 100% by mass of the total amount of components contained in the non-aqueous electrolyte, and 0.2% by mass or more and 8% by mass or less. It is more preferable to use within the range of 0.3% by mass or more and 5% by mass or less.
  • the amount of the additive used is too small, it may be difficult to obtain the effect derived from the additive. There is a risk that the viscosity of the electrolytic solution will increase and the conductivity will decrease.
  • the non-aqueous electrolyte according to this embodiment may contain an electrolyte solvent.
  • the non-aqueous electrolytic solution may be a sulfonylimide electrolytic solution essentially comprising the three components of the sulfonylimide compound (1), the hydroxyl group-containing compound, and the electrolytic solution solvent.
  • the electrolyte solvent is a component different from the hydroxyl group-containing compound.
  • the electrolyte solvent is not particularly limited as long as it can dissolve and disperse the electrolyte. Examples of the electrolyte solvent include non-aqueous solvents, and media such as polymers and polymer gels used in place of the electrolyte solvent, and any solvent commonly used in batteries can be used.
  • non-aqueous solvent a solvent having a large dielectric constant, a high solubility of the electrolyte, a boiling point of 60°C or higher, and a wide electrochemical stability range is suitable. More preferably, it is an organic solvent with a low water content.
  • organic solvents examples include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, crown ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, Ether solvents such as 1,4-dioxane and 1,3-dioxolane; Chain carbonates such as dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), diphenyl carbonate, and methylphenyl carbonate ) solvent; saturated cyclic carbonate solvent such as ethylene carbonate (EC), propylene carbonate (PC), 2,3-dimethylethylene carbonate, 1,2-butylene carbonate, erythritan carbonate; vinylene carbonate, methyl vinylene carbonate, Cyclic ester carbonate solvents having unsaturated bonds such as
  • the electrolyte solvents chain carbonate solvents, carbonate solvents such as cyclic carbonate solvents, lactone solvents, ether solvents, and chain ester solvents are preferred, and dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate are preferred.
  • ethylene carbonate, propylene carbonate, ⁇ -butyrolactone and ⁇ -valerolactone are more preferable, and carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate are more preferable, and dimethyl carbonate, ethylmethyl carbonate, Chain carbonate-based solvents such as diethyl carbonate are even more preferred.
  • the electrolyte solvent preferably contains at least one selected from the group consisting of the preferred solvents described above.
  • a method in which a solution obtained by dissolving an electrolyte salt in a solvent is added dropwise to a polymer film formed by a conventionally known method to impregnate and support the electrolyte salt and a non-aqueous solvent A method of forming a film after melting and mixing a salt and impregnating the film with a solvent (above, gel electrolyte); A method of forming a film by a casting method or a coating method and volatilizing the organic solvent; A method of melting the polymer and electrolyte salt at a temperature above the melting point of the polymer, mixing and molding (intrinsic polymer electrolyte); .
  • Polymers used instead of electrolyte solvents include polyethylene oxide (PEO), which is a homopolymer or copolymer of epoxy compounds (ethylene oxide, propylene oxide, butylene oxide, allyl glycidyl ether, etc.), and polyethers such as polypropylene oxide.
  • system polymers methacrylic polymers such as polymethyl methacrylate (PMMA), nitrile polymers such as polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), fluorine-based polymers such as polyvinylidene fluoride-hexafluoropropylene, and their co- A polymer etc. are mentioned. These polymers may be used alone or in combination of two or more.
  • the non-aqueous electrolytic solution according to the present embodiment is composed of the sulfonylimide compound (1), the hydroxyl group-containing compound, and other components such as other electrolytes, electrolytic solution solvents, and various additives as necessary.
  • the non-aqueous electrolytic solution can be prepared, for example, by mixing each of these components in a predetermined composition ratio.
  • the non-aqueous electrolytic solution according to the present embodiment is a sulfonylimide electrolytic solution containing more than 1.5 mol/L of the sulfonylimide compound (1), and a specific hydroxyl group-containing compound relative to the sulfonylimide compound (1). Since it is contained in an amount (for example, 40 mass ppm or more), decomposition of the sulfonylimide compound (1) is suppressed. As a result, generation of acids such as HF due to decomposition of the sulfonylimide compound (1) is suppressed, and an increase in acid concentration in the sulfonylimide electrolyte is suppressed.
  • the acid concentration (in terms of HF) in the sulfonylimide electrolytic solution is preferably 50 mass ppm or less, more preferably 30 mass ppm or less, even more preferably 20 mass ppm or less, still more preferably 10 mass ppm. less than, and more preferably less than or equal to 8 mass ppm.
  • the acid content may not be substantially contained (it may be about 0 ppm by mass).
  • the acid concentration can be measured, for example, by the method described in Examples below.
  • the sulfonylimide electrolyte solution in which the acid content concentration is reduced and maintained within the above range has excellent storage stability even at high temperatures. Its component composition is stably maintained. Since the sulfonylimide electrolyte does not easily deteriorate during the storage period, even if the sulfonylimide electrolytes stored for different periods are used, there is an advantageous effect that the battery performance is unlikely to vary.
  • the storage method of the non-aqueous electrolyte according to the present embodiment is a method of accommodating and storing a sulfonylimide electrolyte (hereinafter also referred to as "electrolyte to be stored") in a container.
  • a closed container is preferable as the container.
  • the closed container preferably has a material and structure that makes it difficult for moisture to enter, more preferably a highly airtight container capable of maintaining the internal pressure of the container, and even more preferably a sealable (closed system) container.
  • Means for making the container hermetically sealed include, for example, a form in which a valve is provided in a part of the container.
  • the material of the sealed container (the material of the part that comes into contact with the contents (electrolyte solution to be stored)) is not particularly limited, and metals such as stainless steel (SUS316, etc.), aluminum, aluminum alloy, Hastelloy (registered trademark); tetrafluoro Fluorinated resins such as ethylene/perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA) and polytetrafluoroethylene (PTFE); olefinic resins such as polyethylene (PE) and polypropylene (PP); and glass. be done. Among these, stainless steel and PFA are preferred.
  • the inner surface of the sealed container made of the metal material may be coated with a resin.
  • the resin used for the coating is not particularly limited, and includes fluorine resins (PTFE, PFA, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), etc.), olefin resins (PP, etc.), and the like.
  • Structures of closed containers include canister cans, plastic containers, fluororesin containers, and pouch-type containers. Further, the sealed container may have a structure composed of an inner bag made of resin and an exterior body made of metal.
  • the shape of the sealed container is not particularly limited, and examples thereof include a bottle type, a cylinder type, an aluminum paper pack type, an aluminum pouch type, and the like.
  • the volume of the sealed container is not particularly limited, and is about 100L to 20000L.
  • the ratio of the volume of the gas phase [the space (head space) other than the liquid phase] to the volume of the liquid phase [the part where the contents (electrolyte solution to be stored) exists] is , from the viewpoint of filling efficiency of the electrolyte to be stored, it is preferably 50% or less, more preferably 30% or less, even more preferably 15% or less, and most preferably 10% or less. Further, the lower limit of the spatial volume ratio is preferably 5% or more because the existence of the gas phase allows the addition of the gas described later.
  • the gas phase portion (void) existing inside the sealed container may be filled with gas, if necessary.
  • gases include active gases such as air, oxygen (O 2 ) and carbon dioxide (CO 2 ); inert gases such as nitrogen (N 2 ) gas, helium (He) gas and argon (Ar) gas; dry air. (for example, dew point of ⁇ 60° C. or lower), combinations thereof, and the like.
  • active gases such as air, oxygen (O 2 ) and carbon dioxide (CO 2 ); inert gases such as nitrogen (N 2 ) gas, helium (He) gas and argon (Ar) gas; dry air. (for example, dew point of ⁇ 60° C. or lower), combinations thereof, and the like.
  • N 2 nitrogen
  • He helium
  • Ar argon
  • the temperature of the electrolyte solution to be stored (the internal temperature in the sealed container during storage) is not particularly limited, but may be, for example, 60° C. or less (50° C. or less, 40° C. or less), -40° C. or more (- 30° C. or higher, ⁇ 20° C. or higher, ⁇ 10° C. or higher, 0° C. or higher).
  • the acid content may not be substantially contained (it may be about 0 ppm by mass).
  • the acid concentration can be measured, for example, by the method described in Examples below.
  • the moisture concentration in the non-aqueous electrolyte after being stored at room temperature or higher for three months or more is preferably 50 mass ppm or less, more preferably 30 mass ppm or less. Moisture may not be substantially contained (it may be about 0 ppm by mass).
  • the water concentration can be measured by the method described in Examples below, such as a Karl Fischer moisture analyzer.
  • the fluoride ion (F ⁇ ) concentration in the non-aqueous electrolyte after storage for 3 months or more at room temperature or higher is preferably 20 mass ppm or less, more preferably 15 mass ppm or less, and further 12 mass ppm or less.
  • the sulfate ion (SO 4 2 ⁇ ) concentration in the non-aqueous electrolyte is preferably 25 mass ppm or less, more preferably 10 mass ppm or less, and further preferably 5 mass ppm or less.
  • Fluoride ions and sulfate ions may be substantially absent (may be about 0 ppm by mass).
  • the fluoride ion and sulfate ion concentrations can be measured by the method described in Examples below, for example, ion chromatography.
  • the alcohol concentration for the sulfonylimide compound (1) in the non-aqueous electrolyte after storage at room temperature or higher for 3 months or more is such that the decomposition of the electrolyte to be stored is suppressed during the storage period, and the component composition is Since it is stably maintained, it is in the same numerical range as the alcohol content for the sulfonylimide compound (1).
  • the non-aqueous electrolytic solution configured as described above and the non-aqueous electrolytic solution after storage by the storage method are, for example, batteries (batteries having a charging and discharging mechanism), electrical storage (electrochemical) devices (or ions constituting these conductor material), etc.
  • the electrolytic solution constitutes, for example, primary batteries, secondary batteries (e.g., lithium (ion) secondary batteries), fuel cells, electrolytic capacitors, electric double layer capacitors, solar cells, electrochromic display elements, and the like. It can be used as an electrolyte for A battery (particularly a secondary battery) will be described below as an example.
  • a secondary battery according to this embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte according to the present embodiment that is, the non-aqueous electrolyte containing the sulfonylimide compound (1) and the hydroxyl group-containing compound as essential components in specific contents is used as the non-aqueous electrolyte.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer, the positive electrode mixture layer is formed on the positive electrode current collector, and is usually formed into a sheet shape.
  • Examples of metals used for positive electrode current collectors include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum. Among these, aluminum is preferred.
  • the shape and dimensions of the positive electrode current collector are not particularly limited.
  • the positive electrode mixture layer is formed of a positive electrode mixture (positive electrode composition).
  • the positive electrode mixture contains a positive electrode active material, a conductive aid, a binder, a solvent for dispersing these components, and the like.
  • the positive electrode (positive electrode mixture) is preferably LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O Ternary cathode active materials such as LiNi0.6Co0.2Mn0.2O2 , LiNi0.8Co0.1Mn0.1O2 ; LiFePO4 , LiFe0.995Mn0 .
  • An iron phosphate positive electrode active material having an olivine structure such as PO4 can be suitably used.
  • Each of these positive electrode active materials may be used alone, or two or more of them may be used in combination.
  • the positive electrode preferably contains at least one of the ternary positive electrode active material and the iron phosphate positive electrode active material described above, but may contain other positive electrode active materials.
  • Other positive electrode active materials may be used as long as they can absorb and release lithium ions.
  • positive electrode active materials used in conventionally known secondary batteries lithium ion secondary batteries can be used.
  • a compound having an olivine fluoride structure; sulfur or the like can be used. Each of these may be used alone, or two or more of them may be used in combination.
  • the content of the positive electrode active material (the total content when multiple positive electrode active materials are included) is 100% by mass of the total amount of components contained in the positive electrode mixture from the viewpoint of improving the output characteristics and electrical characteristics of the secondary battery. On the other hand, it is preferably 75% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, preferably 99% by mass or less, more preferably 98% by mass or less, further preferably 95% by mass or less. is.
  • a conductive agent is used to improve the output of a lithium-ion secondary battery.
  • Conductive carbon is mainly used as the conductive aid.
  • Examples of conductive carbon include carbon black, fibrous carbon, and graphite. Conductive aids may be used alone, respectively, or two or more of them may be used in combination.
  • carbon black is preferred. Examples of carbon black include ketjen black and acetylene black.
  • the content of the conductive aid in the non-volatile content of the positive electrode mixture is preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass, from the viewpoint of improving the output characteristics and electrical characteristics of the lithium ion secondary battery. is.
  • Binders include fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene; synthetic rubbers such as styrene-butadiene rubber and nitrile-butadiene rubber; polyamide-based resins such as polyamideimide; polyolefin-based resins such as polyethylene and polypropylene.
  • poly(meth)acrylic resins polyacrylic acid
  • cellulose resins such as carboxymethyl cellulose
  • the binders may be used alone or in combination of two or more. Further, the binder may be dissolved in the solvent or dispersed in the solvent when used.
  • solvents examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, tetrahydrofuran, acetonitrile, acetone, ethanol, ethyl acetate, and water.
  • the solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used is not particularly limited, and may be determined as appropriate according to the manufacturing method and materials to be used.
  • non-fluorine-based polymers such as (meth)acrylic polymers, nitrile-based polymers, and diene-based polymers, polymers such as fluorine-based polymers such as polytetrafluoroethylene, Emulsifiers such as anionic emulsifiers, nonionic emulsifiers, and cationic emulsifiers; dispersants such as polymer dispersants such as styrene-maleic acid copolymers and polyvinylpyrrolidone; ), a thickener such as an alkali-soluble (meth)acrylic acid-(meth)acrylic acid ester copolymer, a preservative, and the like.
  • the content of other components in the nonvolatile matter of the positive electrode mixture is preferably 0 to 15% by mass, more preferably 0 to 10% by mass.
  • the positive electrode mixture can be prepared, for example, by mixing a positive electrode active material, a conductive aid, a binder, a solvent, and optionally other components, and dispersing the mixture using a bead mill, a ball mill, an agitating mixer, or the like. .
  • the method of forming the positive electrode is not particularly limited.
  • the positive electrode mixture is applied (and dried) to the positive electrode current collector by a conventional coating method (for example, a doctor blade method, etc.).
  • a conventional coating method for example, a doctor blade method, etc.
  • Examples include a method of transferring to a current collector (positive electrode current collector) and using it as an electrode (positive electrode) without drying.
  • the positive electrode mixture layer may be dried or pressurized (pressed) after being formed or coated (applied), if necessary.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer, and the negative electrode mixture layer is formed on the negative electrode current collector and is usually formed into a sheet shape.
  • Examples of metals used for negative electrode current collectors include iron, copper, aluminum, nickel, stainless steel (SUS), titanium, tantalum, gold, and platinum. Among these, copper is preferred.
  • the shape and dimensions of the negative electrode current collector are not particularly limited.
  • the negative electrode mixture layer is formed from a negative electrode mixture (negative electrode composition).
  • the negative electrode mixture contains a negative electrode active material, a conductive aid, a binder, a solvent for dispersing these components, and the like.
  • negative electrode active material conventionally known negative electrode active materials used in various batteries (for example, lithium secondary batteries) can be used as long as they can absorb and release lithium ions.
  • Specific negative electrode active materials include graphite materials such as artificial graphite and natural graphite, mesophase fired bodies made from coal and petroleum pitch, carbon materials such as non-graphitizable carbon, Si, Si alloys, Si-based Negative electrode materials, Sn-based negative electrode materials such as Sn alloys, lithium metals, and lithium alloys such as lithium-aluminum alloys can be used.
  • the negative electrode active materials may be used alone, or two or more of them may be used in combination.
  • the negative electrode mixture may further contain a conductive aid (conductive material), a binder, a solvent, and the like.
  • a conductive aid conductive material
  • binder a binder
  • solvent a solvent
  • the same components as those described above can be used.
  • usage ratio and the like are the same as those described above.
  • the same method as the manufacturing method for the positive electrode may be adopted.
  • the secondary battery may have a separator.
  • a separator is arranged so as to separate the positive electrode and the negative electrode.
  • the separator is not particularly limited, and any conventionally known separator can be used in the present disclosure.
  • Specific separators include, for example, a porous sheet made of a polymer capable of absorbing and retaining an electrolytic solution (non-aqueous electrolytic solution) (for example, a polyolefin microporous separator, a cellulose separator, etc.), a non-woven fabric separator, and a porous sheet.
  • an electrolytic solution non-aqueous electrolytic solution
  • non-aqueous electrolytic solution for example, a polyolefin microporous separator, a cellulose separator, etc.
  • non-woven fabric separator for example, a non-woven fabric separator, and a porous sheet.
  • a metal object etc. are mentioned.
  • Materials for the porous sheet include polyethylene, polypropylene, and laminates having a three-layer structure of polypropylene/polyethylene/polypropylene.
  • non-woven fabric separator Materials for the non-woven fabric separator include, for example, cotton, rayon, acetate, nylon, polyester, polypropylene, polyethylene, polyimide, aramid, and glass. It may be used alone or in combination of two or more.
  • a battery element comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte (and a separator) is usually housed in a battery outer packaging material to protect the battery element from external impact, environmental degradation, and the like during battery use.
  • the material of the battery exterior material is not particularly limited, and any conventionally known exterior material can be used.
  • Expanded metals, fuses, overcurrent protection elements such as PTC elements, lead plates, etc. may be included in the battery exterior material as necessary to prevent pressure increases inside the battery and overcharge/discharge.
  • the shape of the battery is not particularly limited. can also be used.
  • a high voltage power source severe tens of volts to several hundreds of volts
  • a battery module configured by connecting individual batteries in series can also be used. .
  • the rated charging voltage of the secondary battery is not particularly limited, but when the secondary battery has a positive electrode containing the above-described ternary positive electrode active material as a main component, it is 3.6 V or more, preferably It may be 4.0 V or higher, more preferably 4.1 V or higher, and even more preferably 4.2 V or higher. Although the higher the rated charging voltage, the higher the energy density, the rated charging voltage may be 4.6 V or less (for example, 4.5 V or less) from the viewpoint of safety.
  • the positive electrode and the negative electrode are laminated (via a separator as necessary), the obtained laminate is placed in the battery outer packaging material, and the non-aqueous electrolyte is placed in the battery outer packaging material. can be easily manufactured by injecting and sealing.
  • LiFSI Lithium bis (fluorosulfonyl) imide
  • 50 ppm by mass methanol (Fuji Film Wacom) as an additive (hydroxyl group-containing compound) Kojunyaku Co., Ltd., super dehydration grade) is added and dissolved in dimethyl carbonate (hereinafter referred to as “DMC”, Kishida Chemical Co., Ltd., LIB grade) as an electrolyte solvent, so that the concentration of LiFSI is 2.91 mol /
  • DMC dimethyl carbonate
  • Kishida Chemical Co., Ltd., LIB grade dimethyl carbonate
  • Examples 2 and 3>> A nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that the amount of methanol added was changed to the content shown in Table 1.
  • the acid concentration in the non-aqueous electrolyte was 2.9 mass ppm in Example 2 and 2.5 mass ppm in Example 3, respectively.
  • Example 1 A non-aqueous electrolyte was prepared in the same manner as in Example 1, except that methanol was not added.
  • the acid concentration in the non-aqueous electrolyte was 0.9 mass ppm.
  • Table 1 shows the LiFSI concentration of each non-aqueous electrolyte obtained in the above Examples and Comparative Examples, the type of hydroxyl group-containing compound added, the amount (content) of the hydroxyl group-containing compound added to LiFSI, and the type of electrolyte solvent. show.
  • the acid content in terms of HF
  • moisture in terms of HF
  • fluoride ions F ⁇
  • SO 4 2- sulfate ions
  • Each non-aqueous electrolyte was diluted 14.3 times with ultrapure water (over 18.2 ⁇ cm) to prepare a measurement solution.
  • ultrapure water over 18.2 ⁇ cm
  • titration was performed with a 0.01 N sodium hydroxide aqueous solution to measure the acid content of each non-aqueous electrolyte.
  • LiFSI sulfonylimide compound
  • methanol hydroxyl group-containing compound
  • Non-aqueous electrolyte solutions of Examples 1 to 3 Although the content of LiFSI exceeds 1.5 mol / L, the decomposition of LiFSI is suppressed compared to the non-aqueous electrolyte of Comparative Example 1 in which the content of the hydroxyl group-containing compound is less than 40 ppm by mass. It was found that the storage stability was good.
  • Comparative Example 1 has the same composition as Comparative Example 1 described above.
  • the acid concentration in the non-aqueous electrolyte was 1.5 ppm by mass in Example 4, 2.9 ppm by mass in Example 5, and 2.5 ppm by mass in Example 6.
  • LiFePO4 LiFePO4
  • acetylene black (HS-100) and PVdF (Kureha #L7208) were weighed at a composition (mass) ratio of 100:9:6.
  • NMP N-methyl-2-pyrrolidone
  • the produced slurry was coated on one side of an aluminum foil (coating weight: 20.20 mg/cm 2 ), dried, and roll-pressed to produce a positive electrode.
  • ⁇ Graphite (O-MAC (manufactured by Osaka Gas Chemicals Co., Ltd.)) as a negative electrode active material
  • carbon nanotubes (VGCF, manufactured by Showa Denko Co., Ltd.) as a conductive agent
  • SBR styrene-butadiene rubber
  • CMC carbboxymethyl cellulose
  • the electrolytic solutions of Examples 11 and 12 were obtained by adding methanol to the electrolytic solution of Comparative Example 2 at a content of 250 ppm by mass and 1000 ppm by mass relative to LiFSI, respectively.
  • the cell after the injection of the electrolyte was charged with a constant current of 5 mA for 3 hours, one piece was cleaved, and the gas was removed by re-vacuum sealing. After the degassed cell was stored at 25° C. for 48 hours, it was charged and discharged under the following conditioning conditions to complete an evaluation battery.
  • 1st cycle Charge: constant current constant voltage charge at 2.5mA, 3.6V, 0.25mA termination ⁇ discharge: discharge at 5mA, 2.0V termination.
  • 2nd cycle Charge constant current constant voltage charge at 2.5mA, 3.6V, 0.5mA termination ⁇ discharge: discharge at 5mA, 2.0V termination.
  • 3rd cycle Charge constant current constant voltage charge at 2.5 mA, 3.6 V, 0.5 mA termination ⁇ discharge: discharge at 25 mA, 2.0 V termination.
  • LiFSI sulfonylimide compound
  • methanol as a hydroxyl group-containing compound is added at a content of 40 ppm by mass or more relative to LiFSI.
  • Examples 11 and 12 both of which were stored at a high temperature of 80 ° C. for 7 days compared to Comparative Example 2 using a non-aqueous electrolyte solution without methanol (the content was less than 40 ppm by mass). It was found that the self-discharge capacity rate was low and the self-discharge of the battery was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)

Abstract

一般式(1)で表されるスルホニルイミド化合物と、アルコール及びフェノール性水酸基を含有する化合物からなる群より選択される少なくとも一種の水酸基含有化合物とを含む非水電解液であって、前記非水電解液における前記一般式(1)で表されるスルホニルイミド化合物の含有量が1.5mol/L超過であり、前記一般式(1)で表されるスルホニルイミド化合物に対する前記水酸基含有化合物の含有量が40質量ppm以上である。 LiN(RSO2)(FSO2) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。) (1)

Description

非水電解液及びその保管方法
 本開示は、非水電解液及びその保管方法に関するものである。
 一般に、リチウムイオン二次電池等の二次電池に用いられる非水電解液は、保管中に劣化して特性が変化すると、電池性能に大きく影響する。そのため、電池の安全性、安定性、保存特性等の改善を図ることが可能な非水電解液が種々検討されている。
 例えば、特許文献1には、非水溶媒に含フッ素リチウム塩を混合し、所定含有量のフッ化水素(HF)を含有し、更に、特定化合物としてジフルオロリン酸リチウムを所定の割合で含有する二次電池用非水系電解液が提案されている。当該電解液では、前記非水溶媒としてアルコール類を3ppm以上、150ppm以下(具体的には10ppm以上、50ppm以下)含有する非水溶媒を用いる(例えば、精製した非水溶媒に対してアルコール類を加える)ことで、電池の出力特性、高温保存特性、サイクル特性の改善効果を発揮させている。
 特許文献2には、常温溶融塩、リチウム塩、水酸基を有する化合物とからなる非水系リチウム二次電池用電解液が提案されている。当該電解液では、前記水酸基を有する化合物としてアルコールが用いられ、その含有量を電解液重量に対して30~10000ppm(具体的には800ppm)にすることで、電流効率に優れることが見出されている。
 特許文献3には、非水電解質二次電池を構成する電解液として、リチウム塩、酢酸メチル、およびジメチルスルホンを含む電解液が提案されている。当該電解液では、高容量で、且つ、高温保存特性に優れた電池が得られる。また、特許文献3には、添加剤としてアルコールをさらに含み、電解液に占めるアルコールの含有量は、電解液の質量に対して5ppm以上500ppm以下である電解液も提案されている。
 特許文献4には、リチウム塩、添加剤および残部の溶媒を含み、添加剤としてp-ベンゾキノン誘導体を含む電解液が提案されている。また、特許文献5には、ヒドロキノン又はヒドロキノン誘導体を含む非水電解液が提案されている。
 特許文献6には、特定のアニオンと、リチウムカチオンとを含み、さらに、ラジカル捕捉剤及び/又は酸化還元型安定化剤を4質量%以下含む非水電解液が提案されている。
特開2007-165294号公報 国際公開第2006/057447号 国際公開第2020/241438号 特開2019-114346号公報 特開平08-203561号公報 特開2016-134283号公報
 ところで、本出願人は、これまでの検討により、電解質としてリチウムビス(フルオロスルホニル)イミド等のリチウム塩を含む非水電解液がリチウムイオン二次電池の高温耐久性や充放電サイクル等の電池性能を向上することを見出してきた。また、本発明者らは、前記スルホニルイミド化合物を含む非水電解液自体の保存安定性(長期保管した場合でもスルホニルイミド化合物の分解反応等が抑制されるという特性)を改善した非水電解液やその保存方法についても種々提案している。
 しかしながら、特許文献1~3では、電池の安全性、安定性、保存特性等について検討されているものの、電解液自体の保存安定性や保存方法については検討されていない。
 また、特許文献1及び2では、スルホニルイミド化合物を含む電解液について検討されていない。さらに、特許文献3では、添加剤としてアルコールをさらに含む電解液について、具体的な検討はなされておらず、前記効果が得られるかどうか不明である。
 特許文献4及び5では、ヒドロキノン、ヒドロキノン誘導体を添加剤として含む電池について検討されているものの、スルホニルイミド化合物を含む電解液については具体的に検討されていない。
 特許文献6では、フェノール系酸化防止剤を含む非水電解液がスルホニルイミドアニオンを有する化合物の高温での分解を抑制することが開示されている。しかしながら、具体的に検討されている非水電解液は、当該化合物としてリチウムビス(フルオロスルホニル)イミドを1.0mol/Lの濃度で含むものであり、より高濃度での検討はなされていない。
 本開示は斯かる点に鑑みてなされたものであり、その目的とするところは、比較的高濃度のスルホニルイミド化合物を含む非水電解液自体の保存安定性の向上を図ることにある。
 上記の目的を達成するために、この開示技術では、比較的高濃度(例えば1.5mol/L超過)のスルホニルイミド化合物を含む非水電解液に、水酸基(ヒドロキシ基)を含有する化合物(以下「水酸基含有化合物」ともいう)を意図的に含め、スルホニル化合物及び水酸基含有化合物の含有量をそれぞれ特定することにより、スルホニルイミド化合物の分解が抑制されることを見出した。本開示は、具体的には以下のとおりである。
 本開示の非水電解液は、一般式(1):
LiN(RSO)(FSO) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
で表されるスルホニルイミド化合物と、アルコール及びフェノール性水酸基を含有する化合物からなる群より選択される少なくとも一種の水酸基含有化合物とを含む非水電解液であって、前記非水電解液における前記一般式(1)で表されるスルホニルイミド化合物の含有量が1.5mol/L超過であり、前記一般式(1)で表されるスルホニルイミド化合物に対する前記水酸基含有化合物の含有量が40質量ppm以上である。非水電解液中の酸分濃度が50質量ppm以下であってもよい。前記一般式(1)で表されるスルホニルイミド化合物がLiN(FSOを含んでいてもよい。前記アルコールが炭素数1~4の脂肪族モノアルコール及び炭素数1~4の脂肪族ジアルコールからなる群より選択される少なくとも一種を含んでいてもよい。前記フェノール性水酸基を含有する化合物がヒドロキノン及びジブチルヒドロキシトルエンからなる群より選択される少なくとも一種を含んでいてもよい。電解液溶媒として、カーボネート系溶媒、ラクトン系溶媒、エーテル系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも一種をさらに含んでいてもよい。
 本開示の非水電解液の保管方法は、前記非水電解液を容器に収容して保管する。前記保管方法は、常温以上の温度で3か月以上保管後の非水電解液中の酸分濃度が50質量ppm以下であってもよい。
 本開示の二次電池は、前記非水電解液が用いられてなる。
 本開示によれば、比較的高濃度のスルホニルイミド化合物を含む非水電解液自体の保存安定性の向上を図ることができる。
 以下、本実施の形態を詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 <非水電解液>
 本実施形態に係る非水電解液は、電解質として特定のスルホニルイミド化合物等のリチウム塩と、添加剤として水酸基含有化合物とを含む非水電解液(以下「スルホニルイミド電解液」ともいう)である。
 (電解質)
 スルホニルイミド電解液を構成する電解質は、一般式(1):
 [化1]
LiN(RSO)(FSO)  (1)
で表されるスルホニルイミド化合物(以下「スルホニルイミド化合物(1)」という、フッ素含有スルホニルイミド塩)を含有する。
 一般式(1)中、Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基が挙げられる。炭素数1~6のアルキル基の中では、炭素数1~6の直鎖状又は分枝鎖状のアルキル基が好ましく、炭素数1~6の直鎖状のアルキル基がより好ましい。
 炭素数1~6のフルオロアルキル基としては、炭素数1~6のアルキル基が有する水素原子の一部又は全部がフッ素原子で置換されたものが挙げられる。炭素数1~6のフルオロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。特に、フルオロアルキル基は、パーフルオロアルキル基であってもよい。
 置換基Rとしては、フッ素原子及びパーフルオロアルキル基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基等の炭素数1~6のパーフルオロアルキル基等)が好ましく、フッ素原子、トリフルオロメチル基及びペンタフルオロエチル基がより好ましく、フッ素原子及びトリフルオロメチル基がより一層好ましく、フッ素原子がさらに好ましい。
 スルホニルイミド化合物(1)の具体例としては、リチウムビス(フルオロスルホニル)イミド(LiN(FSO、LiFSI)、リチウム(フルオロスルホニル)(メチルスルホニル)イミド、リチウム(フルオロスルホニル)(エチルスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、リチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド、リチウム(フルオロスルホニル)(ヘプタフルオロプロピルスルホニル)イミド等が挙げられる。スルホニルイミド化合物(1)は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。なお、スルホニルイミド化合物(1)は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 スルホニルイミド化合物(1)の中では、電池性能を向上させる観点から、リチウムビス(フルオロスルホニル)イミド、リチウム(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、及びリチウム(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミドが好ましく、リチウムビス(フルオロスルホニル)イミドがより好ましい。換言すると、スルホニルイミド化合物(1)はLiN(FSOを含むことが好ましい。
 電解質(リチウム塩)は、スルホニルイミド化合物(1)を含んでいればよいが、他の電解質(スルホニルイミド化合物(1)以外の電解質)を含んでいてもよい。他の電解質としては、イミド塩、非イミド塩等が挙げられる。
 イミド塩としては、スルホニルイミド化合物(1)とは異なる他のフッ素含有スルホニルイミド塩(以下「他のスルホニルイミド化合物」という)等が挙げられる。他のスルホニルイミド化合物としては、スルホニルイミド化合物(1)として列挙したフッ素含有スルホニルイミドの非リチウム塩(例えば、スルホニルイミド化合物(1)において、リチウム(イオン)をリチウムイオン以外のカチオンに置換した塩)等が挙げられる。リチウムイオン以外のカチオンに置換した塩としては、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩等のアルカリ金属塩;ベリリウム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;アルミニウム塩;アンモニウム塩;ホスホニウム塩等が挙げられる。他のスルホニルイミド化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、他のスルホニルイミド化合物は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 非イミド塩としては、非イミド系アニオンとカチオン(リチウムイオン及び前記例示のカチオン)との塩が挙げられる。非イミド塩としては、一般式(2):
 [化2]
LiPF(C2m+16-a (a:0≦a≦6、m:1≦m≦4)  (2)
で表される化合物(以下「フルオロリン酸化合物(2)」という)、一般式(3):
 [化3]
LiBF(C2n+14-b (b:0≦b≦4、n:1≦n≦4)  (3)
で表される化合物(以下「フルオロホウ酸化合物(3)」という)、六フッ化砒酸リチウム(LiAsF)、LiSbF、LiClO、LiSCN、LiAlF、CFSOLi、LiC[(CFSO]、LiN(NO)、LiN[(CN)等のリチウム塩;非リチウム塩(例えば、これらのリチウム塩において、リチウム(イオン)を前記例示のカチオンに置換した塩(例えば、NaBF、NaPF、NaPF(CF等)等が挙げられる。非イミド塩は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、非イミド塩は、市販品を使用してもよく、従来公知の方法により合成して得られたものを用いてもよい。
 他の電解質の中では、イオン伝導度、コストの観点等から、非イミド塩が好ましく、フルオロリン酸化合物(2)、フルオロホウ酸化合物(3)及びLiAsFが好ましく、フルオロリン酸化合物(2)がより好ましい。
 フルオロリン酸化合物(2)としては、LiPF、LiPF(CF、LiPF(C、LiPF(C、LiPF(C等が挙げられる。フルオロリン酸化合物(2)の中では、LiPF及びLiPF(Cが好ましく、LiPFがより好ましい。
 フルオロホウ酸化合物(3)としては、LiBF、LiBF(CF、LiBF(C、LiBF(C等が挙げられる。フルオロホウ酸化合物(3)の中では、LiBF、及びLiBF(CFが好ましく、LiBFがより好ましい。
 なお、これらの電解質(スルホニルイミド化合物(1)、他の電解質等)は、非水電解液中において、イオンの形態で存在(含有)していてもよい。
 非水電解液におけるスルホニルイミド化合物(1)の含有量(濃度)(2種類以上を併用する場合は含有量の合計、以下同様。)は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、1.5mol/L超過であり、好ましくは2mol/L超過、より好ましくは2.5mol/L以上、さらに好ましくは2.8mol/L以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは5mol/L以下、より好ましくは4mol/L以下、さらに好ましくは3.5mol/L以下である。
 非水電解液におけるスルホニルイミド化合物(1)の含有量は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、非水電解液に含まれる電解質の合計100mol%中、好ましくは10mol%以上、より好ましくは20mol%以上、さらに好ましくは30mol%以上、特に好ましくは50mol%以上であり、その上限は100mol%である、つまり、電解質はスルホニルイミド化合物(1)のみを含有するものでもよい。
 非水電解液におけるスルホニルイミド化合物(1)の含有量は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、非水電解液全体に対して(非水電解液に含まれる成分の総量100質量%に対して)、好ましくは25質量%以上、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。例えば、スルホニルイミド化合物(1)としてLiFSIを濃度が2mol/Lとなるように、後述する電解液溶媒として炭酸ジメチル(DMC)に溶解させた溶液(非水電解液)におけるLiFSIの含有量は、
〔2(mol/L)×187.06(LiFSIの分子量)/{1.27(溶液密度)×1000}〕×100≒30質量%となる。換言すると、当該非水電解液は、30質量%LiFSI/70質量%DMC溶液である。同様に、2.9mol/LのLiFSIを含むDMC溶液は、40質量%LiFSI/60質量%DMC溶液となる。なお、溶媒密度は、電解液溶媒の種類とスルホニルイミド化合物(1)の濃度に依存する値であり、例えば、「Superconcentrated electrolytes for a high-voltage lithium-ion battery」(NATURE COMMUNICATIONS | 7:12032 | DOI: 10.1038/ncomms12032)等の文献を参考に求めることできる。
 電解質の塩組成としては、スルホニルイミド化合物(1)の単体塩組成の電解質塩であってもよく、スルホニルイミド化合物(1)及び他の電解質を含む混合塩組成の電解質塩であってもよい。混合塩組成の電解質塩を用いる場合、スルホニルイミド化合物(1)及びフルオロリン酸化合物(2)を含む混合塩組成の電解質塩が好ましく、LiN(FSO及びLiPFを含む混合塩組成の電解質塩がより好ましい。
 スルホニルイミド化合物(1)及び他の電解質を含む混合塩組成の電解質塩を用いる場合、非水電解液における他の電解質の濃度は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、さらに好ましくは0.5mol/L以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは1.5mol/L以下、より好ましくは1mol/L以下、さらに好ましくは0.8mol/L以下である。
 非水電解液における電解質の濃度の合計は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、好ましくは1.5mol/L超過、より好ましくは2mol/L超過、さらに好ましくは2.5mol/L以上、さらに一層好ましくは2.8mol/L以上である。また、当該濃度は、電解液粘度の上昇による電池性能の低下を抑制する観点から、好ましくは5mol/L以下、より好ましくは4mol/L以下、さらに好ましくは3.5mol/L以下である。
 スルホニルイミド電解液自体の保存安定性の向上を図る観点から、スルホニルイミド化合物(1)の濃度を高めることが好ましい。スルホニルイミド化合物(1):他の電解質(スルホニルイミド化合物濃度と他の電解質濃度とのモル比率)は、好ましくは1:25以上、より好ましくは1:10以上、より一層好ましくは1:8以上、さらに好ましくは1:5以上、さらに一層好ましくは1:2以上、特に好ましくは1:1以上であり、好ましくは25:1以下、より好ましくは10:1以下、より一層好ましくは5:1以下、さらに好ましくは2:1以下である。
 (水酸基含有化合物)
 水酸基含有化合物は添加剤としてスルホニルイミド電解液に含まれる。換言すると、水酸基含有化合物はスルホニルイミド電解液に意図的に添加される必須成分である。スルホニルイミド電解液を構成する水酸基含有化合物は、アルコール及びフェノール性水酸基を含有する化合物からなる群より選択される少なくとも一種を含む。換言すると、水酸基含有化合物は、アルコールのみを含んでいてもよく、フェノール性水酸基を含有する化合物のみを含んでいてもよく、またアルコール及びフェノール性水酸基を含有する化合物の両方を含んでいてもよい。
 〔アルコール〕
 一般に、スルホニルイミド電解液にアルコールが含まれる場合、加溶媒分解によりスルホニルイミドが分解するため、スルホニルイミド電解液におけるアルコールの含有量は少ないほうがよいとも考えられる。この点に関し、本発明者らは、スルホニルイミド化合物(1)の含有量を前記範囲に特定すると共に、スルホニルイミド化合物(1)に対するアルコールの含有量を後述する範囲に特定することにより、スルホニルイミド化合物(1)の分解が抑制されることを見出した。本実施形態では、スルホニルイミド化合物(1)とアルコールとを特定の含有量で併用することによって、スルホニルイミド電解液自体の長期(3か月程度)且つ高温(40℃程度)での保存安定性が向上する。
 アルコールは特に限定されず、例えば脂肪族アルコール等が挙げられる。脂肪族アルコールとしては、例えば、メチルアルコール(メタノール)、エチルアルコール(エタノール)、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、t-ブチルアルコール等のモノアルコール類(炭素数1~4の脂肪族モノアルコール);エチレングリコール、プロピレングリコール等のジオール類(炭素数1~4の脂肪族ジアルコール);グリセリン等のトリオール、その他ポリオール等が挙げられる。アルコールは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。アルコールの中では、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、炭素数1~4の脂肪族モノアルコール及び炭素数1~4の脂肪族ジアルコールが好ましく、メタノール、エタノール及びエチレングリコールがより好ましい。換言すると、アルコールは前記の好ましいアルコール類からなる群より選択される少なくとも一種を含むことが好ましい。なお、アルコールは市販品を使用できる。
 〔フェノール性水酸基を含有する化合物〕
 フェノール性水酸基を含有する化合物は、芳香環の水素原子を置換したフェノール類をいい、前記のアルコールとは区別される。本発明者らは、スルホニルイミド化合物(1)に対するフェノール性水酸基を含有する化合物の含有量を後述する範囲に特定することにより、スルホニルイミド化合物(1)の分解が抑制されることも見出した。本実施形態では、スルホニルイミド化合物(1)とフェノール性水酸基を含有する化合物とを特定の含有量で併用することによって、スルホニルイミド電解液自体の長期(3か月程度)且つ高温(40℃程度)での保存安定性が向上する。
 フェノール性水酸基を含有する化合物は特に限定されず、例えば、ヒドロキノン類、ジブチルヒドロキシトルエン、アルコキシフェノール類、ビスフェノール類等が挙げられる。ヒドロキノン類としては、ヒドロキノン(ハイドロキノン)、カテコール、レゾルシノール等が挙げられる。アルコキシフェノール類として、4-メトキシフェノール等が挙げられる。ビスフェノール類としては、ビスフェノールA、ビスフェノールB等が挙げられる。フェノール性水酸基を含有する化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。フェノール性水酸基を含有する化合物の中では、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、ヒドロキノン及びジブチルヒドロキシトルエンが好ましい。なお、フェノール性水酸基を含有する化合物は市販品を使用できる。
 水酸基含有化合物をスルホニルイミド電解液に含有させる方法としては、例えば、水酸基含有化合物をスルホニルイミド電解液に添加する方法;後述する電解液溶媒を用いる場合、電解液溶媒に予め水酸基含有化合物を含有させ(添加し)、得られた水酸基含有化合物含有電解液溶媒を原料として用いてスルホニルイミド電解液を製造する方法等が挙げられる。また、他の方法として、スルホニルイミド電解液の原料として用いられる成分に含まれるアルコールを利用してもよい。例えば、スルホニルイミド化合物(1)及び/又は電解液溶媒に含まれているアルコールを利用して、アルコール含有スルホニルイミド化合物(1)及び/又はアルコール含有電解液溶媒を原料として用いてスルホニルイミド電解液を製造する方法等が挙げられる。スルホニルイミド化合物(1)に含まれているアルコールとは、スルホニルイミド化合物(1)の製造に用いた製造溶媒(上記の従来公知の製法で得られたスルホニルイミド化合物(1)中に含まれている残留溶媒)をいう。残留溶媒とは、スルホニルイミド化合物(1)の製造反応に使用した溶媒や、精製工程に用いた溶媒等である。なお、前記の方法はそれぞれ組み合わせてもよい。
 スルホニルイミド化合物(1)に対する水酸基含有化合物の含有量(複数の水酸基含有化合物を含有する場合は含有量の合計)は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、40質量ppm以上であり、好ましくは50質量ppm以上、より好ましくは100質量ppm以上、より一層好ましくは180質量ppm以上、さらに好ましくは200質量ppm以上、さらに一層好ましくは220質量ppm以上である。また、その上限は、水酸基含有化合物に起因する電池性能の低下を抑制する観点から、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、さらに好ましくは500質量ppm以下である。水酸基含有化合物の含有量は、後述の実施例で記載の方法、例えばヘッドスペースガスクロマトグラフィーやNMR等により測定できる。
 非水電解液における(非水電解液の質量に対する)水酸基含有化合物の含有量は、スルホニルイミド電解液自体の保存安定性の向上を図る観点から、好ましくは10質量ppm以上、より好ましくは20質量ppm以上、さらに好ましくは50質量ppm以上である。また、その上限は、水酸基含有化合物に起因する電池性能の低下を抑制する観点から、好ましくは1500質量ppm以下、より好ましくは500質量ppm以下、さらに好ましくは200質量ppm未満、さらに一層好ましくは150質量ppm以下である。
 なお、電解液溶媒として後述するカーボネート系溶媒を使用した場合、カーボネート化合物由来の加水分解により微量のアルコールが生成する可能性がある。このように、スルホニルイミド電解液の製造過程で生成するアルコールも前記水酸基含有化合物の含有量に含まれる。
 (添加剤)
 本実施形態に係る非水電解液は、水酸基含有化合物以外に、リチウムイオン二次電池の各種特性の向上を目的とする添加剤を含んでいてもよい。添加剤としては、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド、トリメチレングリコール硫酸エステル等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の飽和炭化水素化合物;ビニレンカーボネート、フルオロエチレンカーボネート(FEC)、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;スルファミン酸(アミド硫酸、HNSO);スルファミン酸塩(リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩;アンモニウム塩;グアニジン塩等);フルオロスルホン酸リチウム(LiFSO)、フルオロスルホン酸ナトリウム(NaFSO)、フルオロスルホン酸カリウム(KFSO)、フルオロスルホン酸マグネシウム(Mg(FSO)等のフルオロスルホン酸化合物;モノフルオロリン酸リチウム(LiPOF)、ジフルオロリン酸リチウム(LiPO)等のフルオロリン酸化合物;リチウムビス(オキサラト)ボレート(LiBOB)、リチウムジフルオロオキサラトボレート(LiDFOB)、リチウムジフルオロオキサラトホスファナイト(LIDFOP)、リチウムテトラフルオロオキサラトホスフェート(LITFOP)、リチウムジフルオロビス(オキサラト)ホスフェート(LiDFOP)、リチウムトリス(オキサラト)ホスフェート等のシュウ酸骨格を有するリチウム塩等のフルオロオキサラト化合物等が挙げられる。これら添加剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 添加剤は、非水電解液に含まれる成分の総量100質量%に対して、0.1質量%以上10質量%以下の範囲で用いるのが好ましく、0.2質量%以上8質量%以下の範囲で用いるのがより好ましく、0.3質量%以上5質量%以下の範囲で用いるのがさらに好ましい。添加剤の使用量が少なすぎるときには、添加剤に由来する効果が得られ難い場合があり、一方、多量に添加剤を使用しても、添加量に見合う効果は得られ難く、また、非水電解液の粘度が高くなり伝導率が低下するおそれがある。
 (電解液溶媒)
 本実施形態に係る非水電解液は電解液溶媒を含んでいてもよい。換言すると、非水電解液は、スルホニルイミド化合物(1)、水酸基含有化合物及び電解液溶媒の3成分を必須とするスルホニルイミド電解液でもよい。この場合、電解液溶媒は、水酸基含有化合物とは異なる成分である。電解液溶媒は、前記電解質を溶解、分散できるものであれば特に限定されない。電解液溶媒としては、非水系溶媒、電解液溶媒に代えて用いられるポリマー、ポリマーゲル等の媒体等が挙げられ、電池に一般に使用される溶媒はいずれも使用できる。
 非水系溶媒としては、誘電率が大きく、前記電解質の溶解性が高く、沸点が60℃以上であり、且つ、電気化学的安定範囲が広い溶媒が好適である。より好ましくは、含有水分量が低い有機溶媒である。このような有機溶媒としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、テトラヒドロピラン、クラウンエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ-テル、1,4-ジオキサン、1,3-ジオキソラン等のエーテル系溶媒;炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸ジエチル(DEC)、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル(カーボネート)系溶媒;炭酸エチレン(EC)、炭酸プロピレン(PC)、2,3-ジメチル炭酸エチレン、炭酸1,2-ブチレン、エリスリタンカーボネート等の飽和環状炭酸エステル系溶媒;炭酸ビニレン、メチルビニレンカーボネート、エチルビニレンカーボネート、2-ビニル炭酸エチレン、フェニルエチレンカーボネート等の不飽和結合を有する環状炭酸エステル系溶媒;フルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等のフッ素含有環状炭酸エステル系溶媒;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等のリン酸エステル系溶媒;アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2-メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等のニトリル系溶媒;ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等の硫黄化合物系溶媒;ベンゾニトリル、トルニトリル等の芳香族ニトリル系溶媒;ニトロメタン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、3-メチル-2-オキサゾリジノン等;酢酸エチル、酢酸ブチル、プロピオン酸プロピル等の鎖状エステル系溶媒等が挙げられる。これら溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 電解液溶媒の中では、鎖状炭酸エステル系溶媒、環状炭酸エステル系溶媒等のカーボネート系溶媒、ラクトン系溶媒、エーテル系溶媒及び鎖状エステル系溶媒が好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン及びγ-バレロラクトンがより好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸エチレン、炭酸プロピレン等のカーボネート系溶媒がさらに好ましく、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の鎖状カーボネート系溶媒がさらに一層好ましい。換言すると、電解液溶媒は前記の好ましい溶媒類からなる群より選択される少なくとも一種を含むことが好ましい。
 ポリマーやポリマーゲルを電解液溶媒に代えて用いる場合は次の方法を採用すればよい。即ち、従来公知の方法で成膜したポリマーに、溶媒に電解質塩を溶解させた溶液を滴下して、電解質塩並びに非水系溶媒を含浸、担持させる方法;ポリマーの融点以上の温度でポリマーと電解質塩とを溶融、混合した後、成膜し、ここに溶媒を含浸させる方法(以上、ゲル電解質);予め電解質塩を有機溶媒に溶解させた非水電解液とポリマーとを混合した後、これをキャスト法やコーティング法により成膜し、有機溶媒を揮発させる方法;ポリマーの融点以上の温度でポリマーと電解質塩とを溶融し、混合して成形する方法(真性ポリマー電解質);等が挙げられる。
 電解液溶媒に代えて用いられるポリマーとしては、エポキシ化合物(エチレンオキシド、プロピレンオキシド、ブチレンオキシド、アリルグリシジルエーテル等)の単独重合体又は共重合体であるポリエチレンオキシド(PEO)、ポリプロピレンオキシド等のポリエーテル系ポリマー、ポリメチルメタクリレート(PMMA)等のメタクリル系ポリマー、ポリアクリロニトリル(PAN)等のニトリル系ポリマー、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン等のフッ素系ポリマー、及びこれらの共重合体等が挙げられる。これらポリマーは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 (まとめ)
 以上より、本実施形態に係る非水電解液は、スルホニルイミド化合物(1)及び水酸基含有化合物、必要に応じて他の電解質、電解液溶媒、各種添加剤等の各成分により構成される。当該非水電解液は、例えば、これら各成分を所定の組成比で混合することにより調製できる。
 本実施形態に係る非水電解液は、1.5mol/L超過のスルホニルイミド化合物(1)を含むスルホニルイミド電解液において、特定の水酸基含有化合物をスルホニルイミド化合物(1)に対して特定の含有量(例えば40質量ppm以上)で含むため、スルホニルイミド化合物(1)の分解が抑制される。その結果、スルホニルイミド化合物(1)の分解に起因するHF等の酸分の発生が抑制され、スルホニルイミド電解液中の酸分濃度の上昇が抑制される。具体的には、スルホニルイミド電解液中の酸分濃度(HF換算)は、好ましくは50質量ppm以下、より好ましくは30質量ppm以下、より一層好ましくは20質量ppm以下、さらに好ましくは10質量ppm未満、さらに一層好ましくは8質量ppm以下である。酸分は、実質的に含まれていなくてもよい(0質量ppm程度でもよい)。酸分濃度は、例えば、後述の実施例で記載の方法等により測定できる。酸分濃度が前記範囲内に低減且つ維持されるスルホニルイミド電解液は、それ自体が高温でも優れた保存安定性を有するため、後述するように、常温以上の温度で一定期間保管する前後において、その成分組成が安定に維持される。スルホニルイミド電解液は、保管期間中に劣化し難いため、保管期間の異なるスルホニルイミド電解液を使用しても、電池性能に差異が生じ難いという有利な効果も得られる。
 <非水電解液の保管方法>
 本実施形態に係る非水電解液の保管方法は、スルホニルイミド電解液(以下「被保存電解液」ともいう)を容器に収容して保管する方法である。
 (容器)
 容器としては、密閉容器が好ましい。密閉容器は、水分が混入し難い材質・構造のものが好ましく、容器内圧を維持できる気密性の高いものがより好ましく、密封可能(閉鎖系)なものがさらに好ましい。容器を密封可能とする手段としては、例えば、容器の一部にバルブを設ける形態等が例示される。
 密閉容器の材質(内容物(被保存電解液)と接触する部分の材質)は、特に限定されず、ステンレス鋼(SUS316等)、アルミニウム、アルミニウム合金、ハステロイ(登録商標)等の金属;テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン、PFA)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系樹脂;ガラス等が挙げられる。これらの中では、ステンレス鋼及びPFAが好ましい。
 また、前記の金属材料から構成される密閉容器の内面を樹脂でコーティングしてもよい。コーティングに用いられる樹脂は、特に制限されず、フッ素系樹脂(PTFE、PFA、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)等)、オレフィン系樹脂(PP等)等が挙げられる。
 密閉容器の構造は、キャニスター缶、ポリ容器、フッ素系樹脂製の容器、パウチ型容器等が挙げられる。また、密閉容器は、樹脂製の内袋と金属製の外装体からなる構造でもよい。
 密閉容器の形状は、特に限定されず、ボトル型、筒型、アルミ付紙パック型、アルミパウチ型等が挙げられる。
 密閉容器の容積は、特に限定されず、100L~20000L程度である。
 密閉容器において、液相部〔内容物(被保存電解液)が存在する部分〕の容積に対する気相部〔液相部以外の空隙部(ヘッドスペース)〕の容積の比率(空間容積率)は、被保存電解液の充填効率の観点から、50%以下が好ましく、30%以下がより好ましく、15%以下がさらに好ましく、10%以下が最も好ましい。また、空間容積率の下限値は、気相部が存在することにより、後述するガスを添加できることから、5%以上が好ましい。
 被保存電解液を密閉容器に充填(投入)した後、密閉容器の内部に存在する気相部(空隙部)に、必要に応じて、ガスを充填してもよい。ガスとしては、例えば、空気、酸素(O)、二酸化炭素(CO)等の活性ガス;窒素(N)ガス、ヘリウム(He)ガス、アルゴン(Ar)ガス等の不活性ガス;ドライエア(例えば露点-60℃以下)、これら組み合わせ等が挙げられる。活性ガス、不活性ガス、ドライエア等は一般の市販品を使用できる。
 被保存電解液の温度(保存中の密閉容器内の内温)は、特に限定されないが、例えば、60℃以下(50℃以下、40℃以下)であってもよく、-40℃以上(-30℃以上、-20℃以上、-10℃以上、0℃以上)であってもよい。当該温度を適宜調整することで、被保存電解液の凝固や分解が抑制される。
 常温以上(例えば25℃以上、高温(例えば40℃程度)でもよい。以下同様。)で3か月以上保管後の非水電解液(スルホニルイミド電解液)中の酸分濃度(HF換算)は、好ましくは50質量ppm以下、より好ましくは30質量ppm以下、より一層好ましくは20質量ppm以下、さらに好ましくは10質量ppm未満、さらに一層好ましくは8質量ppm以下である。酸分は、実質的に含まれていなくてもよい(0質量ppm程度でもよい)。酸分濃度は、例えば、後述の実施例で記載の方法等により測定できる。
 常温以上の温度で3か月以上保管後の非水電解液中の水分濃度は、好ましくは50質量ppm以下、より好ましくは30質量ppm以下である。水分は、実質的に含まれていなくてもよい(0質量ppm程度でもよい)。水分濃度は、後述の実施例で記載の方法、例えば、カールフィッシャー水分測定装置等により測定できる。
 常温以上の温度で3か月以上保管後の非水電解液中のフッ化物イオン(F)濃度は、好ましくは20質量ppm以下、より好ましくは15質量ppm以下、さらに12質量ppm以下である。また、当該非水電解液中の硫酸イオン(SO 2-)濃度は、好ましくは25質量ppm以下、より好ましくは10質量ppm以下、さらに5質量ppm以下である。フッ化物イオン及び硫酸イオンは、実質的に含まれていなくてもよい(0質量ppm程度でもよい)。フッ化物イオン及び硫酸イオン濃度は、後述の実施例で記載の方法、例えば、イオンクロマトグラフィー等により測定できる。
 なお、常温以上の温度で3か月以上保管後の非水電解液中の前記スルホニルイミド化合物(1)に対する前記アルコール濃度は、保管期間中、被保存電解液の分解が抑制され、成分組成が安定に維持されるため、前記スルホニルイミド化合物(1)に対するアルコールの含有量と同様の数値範囲である。
 <用途>
 以上のように構成される非水電解液及び前記保管方法による保管後の非水電解液は、例えば、電池(充放電機構を有する電池)、蓄電(電気化学)デバイス(又はこれらを構成するイオン伝導体の材料)等に用いられる。具体的には、電解液は、例えば、一次電池、二次電池(例えば、リチウム(イオン)二次電池)、燃料電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等を構成する電解液として使用し得る。以下、電池(特に二次電池)を例に挙げて説明する。
 <二次電池>
 本実施形態に係る二次電池は、正極、負極及び非水電解液を備える。この二次電池では、非水電解液として本実施形態に係る非水電解液、すなわちスルホニルイミド化合物(1)及び水酸基含有化合物を必須成分として特定の含有量で含む非水電解液が用いられる。本開示の非水電解液を用いることで、電池の自己放電容量を改善し得る。
 (正極)
 正極は、正極集電体及び正極合材層を含み、正極合材層が正極集電体上に形成され、通常、シート状に成形されている。
 正極集電体に用いられる金属としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等が挙げられる。これらの中ではアルミニウムが好ましい。なお、正極集電体の形状や寸法は、特に制限されない。
 正極合材層は、正極合材(正極組成物)で形成されている。正極合材は、正極活物質、導電助剤、結着剤、これら成分を分散するための溶媒等を含有する。
 本実施形態に係る二次電池では、正極(正極合材)は、好適には、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1等の三元系正極活物質;LiFePO、LiFe0.995Mn0.005PO等のオリビン構造を有するリン酸鉄系正極活物質等を好適に使用できる。これら正極活物質は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 正極は、好ましくは前記した三元系正極活物質及びリン酸鉄系正極活物質の少なくとも一種を含んでいればよいが、他の正極活物質を含んでいてもよい。他の正極活物質としては、リチウムイオンを吸蔵・放出可能であれば良く、例えば、従来公知の二次電池(リチウムイオン二次電池)で使用される正極活物質等を用いることができる。
 リチウムイオン二次電池で使用される正極活物質としては、例えば、コバルト酸リチウム;ニッケル酸リチウム;マンガン酸リチウム;LiNi1-v-wCoAl(0≦v≦1、0≦w≦1)で表される前記した三元系正極活物質以外の三元系酸化物などの遷移金属酸化物;LiAPO(A=Mn、Ni、Co)などのオリビン構造を有する化合物;遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のLiMnOと、電気化学的に活性な層状のLiMO(M=Co、Niなどの遷移金属)との固溶体);LiCoMn1-x(0≦x≦1);LiNiMn1-x(0≦x≦1);LiAPOF(A=Fe、Mn、Ni、Co)などのフッ化オリビン構造を有する化合物;硫黄などを用いることができる。これらはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。
 正極活物質の含有量(複数の正極活物質を含む場合は合計含有量)は、二次電池の出力特性及び電気特性を向上する観点から、正極合材に含まれる成分の総量100質量%に対して、好ましくは75質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは95質量%以下である。
 導電助剤は、リチウムイオン二次電池の出力を向上させるために用いられる。導電助剤としては、主として導電性カーボンが用いられる。導電性カーボンとしては、カーボンブラック、ファイバー状カーボン、黒鉛等が挙げられる。導電助剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。導電助剤の中では、カーボンブラックが好ましい。カーボンブラックとしては、ケッチェンブラック、アセチレンブラック等が挙げられる。正極合材の不揮発分における導電助剤の含有率は、リチウムイオン二次電池の出力特性及び電気特性を向上させる観点から、好ましくは1~20質量%、より好ましくは1.5~10質量%である。
 結着剤としては、ポリビニリデンフロライド、ポリテトラフルオロエチレン等のフッ素系樹脂;スチレン-ブタジエンゴム、ニトリルブタジエンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ(メタ)アクリル系樹脂;ポリアクリル酸;カルボキシメチルセルロース等のセルロース系樹脂;等が挙げられる。結着剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。また、結着剤は、使用の際に溶媒に溶けた状態であっても、溶媒に分散した状態であっても構わない。
 溶媒としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトニトリル、アセトン、エタノール、酢酸エチル、水等が挙げられる。溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。溶媒の使用量は特に限定されず、製造方法や、使用する材料に応じて適宜決定すればよい。
 正極合材には、他の成分として、必要により、例えば、(メタ)アクリル系ポリマー、ニトリル系ポリマー、ジエン系ポリマー等の非フッ素系ポリマー、ポリテトラフルオロエチレン等のフッ素系ポリマー等のポリマー、アニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤等の乳化剤;スチレン-マレイン酸共重合体、ポリビニルピロリドン等の高分子分散剤等の分散剤、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、アルカリ可溶型(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体等の増粘剤、防腐剤等を含有させてもよい。正極合材の不揮発分における他の成分の含有率は、好ましくは0~15質量%、より好ましくは0~10質量%である。
 正極合材は、例えば、正極活物質、導電助剤、結着剤、溶媒、必要に応じて他の成分を混合し、ビーズミル、ボールミル、攪拌型混合機等を用いて分散させることによって調製できる。
 正極の形成方法(塗工方法)は、特に限定されず、例えば、(1)正極合材を正極集電体に慣用の塗布法(例えば、ドクターブレード法等)で塗布(さらには乾燥)する方法、(2)正極集電体を正極合材に浸漬(さらには乾燥)する方法、(3)正極合材で形成されたシートを正極集電体に接合(例えば、導電性接着剤を介して接合)し、プレス(さらには乾燥)する方法、(4)液状潤滑剤を添加した正極合材を正極集電体上に塗布又は流延して、所望の形状に成形した後、液状潤滑剤を除去する(さらには、次いで、一軸又は多軸方向に延伸する)方法、(5)正極合材(又は正極合材層を形成する固形分)を電解液でスラリー化し、半固体状態として集電体(正極集電体)に転写し、乾燥させずに電極(正極)として使用する方法等が挙げられる。
 なお、正極合材層は、必要に応じて、形成又は塗工(塗布)後、乾燥してもよく、加圧(プレス)してもよい。
 (負極)
 負極は、負極集電体及び負極合材層を含み、負極合材層が負極集電体上に形成され、通常、シート状に成形されている。
 負極集電体に用いられる金属としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼(SUS)、チタン、タンタル、金、白金等が挙げられる。これらの中では銅が好ましい。なお、負極集電体の形状や寸法は特に制限されない。
 負極合材層は、負極合材(負極組成物)から形成されている。負極合材は、負極活物質、導電助剤、結着剤、これら成分を分散するための溶媒等を含有する。
 負極活物質としては、各種電池(例えば、リチウム二次電池)等で使用される従来公知の負極活物質等を用いることができ、リチウムイオンを吸蔵・放出可能なものであればよい。具体的な負極活物質としては、人造黒鉛、天然黒鉛等の黒鉛材料、石炭、石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のSi系負極材料、Sn合金等のSn系負極材料、リチウム金属、リチウム-アルミニウム合金等のリチウム合金を用いることができる。負極活物質は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 負極合材は、さらに、導電助剤(導電物質)、結着剤、溶媒等を含んでいてもよい。導電助剤、結着剤、溶媒等としては、前記と同様の成分を使用できる。また、その使用割合等も前記と同様である。
 負極の製造方法としては、正極の製造方法と同様の方法を採用してもよい。
 (セパレータ)
 二次電池はセパレータを備えていてもよい。セパレータは正極と負極とを隔てるように配置されるものである。セパレータには、特に制限がなく、本開示では、従来公知のセパレータのいずれも使用できる。具体的なセパレータとしては、例えば、電解液(非水電解液)を吸収・保持し得るポリマーからなる多孔性シート(例えば、ポリオレフィン系微多孔質セパレータやセルロース系セパレータなど)、不織布セパレータ、多孔質金属体等が挙げられる。
 多孔性シートの材質としては、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を有する積層体等が挙げられる。
 不織布セパレータの材質としては、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレン、ポリエチレン、ポリイミド、アラミド、ガラス等が挙げられ、要求される機械的強度等に応じて、前記例示の材質をそれぞれ単独で用いてもよく、2種類以上を併用してもよい。
 (電池外装材)
 正極、負極及び非水電解液(さらにはセパレータ)を備えた電池素子は、通常、電池使用時の外部からの衝撃、環境劣化等から電池素子を保護するため電池外装材に収容される。電池外装材の素材は特に限定されず従来公知の外装材はいずれも使用できる。
 電池外装材には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子等の過電流防止素子、リード板等を入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。
 電池(リチウムイオン二次電池等)の形状は特に限定されず、円筒型、角型、ラミネート型、コイン型、大型等、電池(リチウムイオン二次電池等)の形状として従来公知の形状はいずれも使用できる。また、電気自動車、ハイブリッド電気自動車等に搭載するための高電圧電源(数10V~数100V)として使用する場合には、個々の電池を直列に接続して構成される電池モジュールとすることもできる。
 二次電池(リチウムイオン二次電池等)の定格充電電圧は特に限定されないが、二次電池が前記した三元系正極活物質を主成分として含む正極を備える場合、3.6V以上、好ましくは4.0V以上、より好ましくは4.1V以上、さらに好ましくは4.2V以上であってもよい。定格充電電圧が高いほど、エネルギー密度を高めることはできるが、安全性などの観点から、定格充電電圧は、4.6V以下(例えば、4.5V以下)等であってもよい。
 <二次電池の製造方法>
 本実施形態に係る二次電池は、例えば、正極と負極とを(必要に応じてセパレータを介して)重ね合わせ、得られた積層体を電池外装材に入れ、電池外装材に非水電解液を注液して封口することにより、容易に製造できる。
 以下に、本開示を実施例に基づいて説明する。なお、本開示は、以下の実施例に限定されるものではなく、以下の実施例を本開示の趣旨に基づいて変形、変更することが可能であり、それらを本開示の範囲から除外するものではない。
 <非水電解液の調製>
 《実施例1》
 電解質としてリチウムビス(フルオロスルホニル)イミド〔LiN(FSO、以下「LiFSI」という、株式会社日本触媒製〕に対して、添加物(水酸基含有化合物)として50質量ppmのメタノール(富士フィルム和光純薬株式会社製、超脱水グレード)を添加し、電解液溶媒としてジメチルカーボネート(以下「DMC」という、キシダ化学株式会社製、LIBグレード)に溶解させることにより、LiFSIの濃度が2.91mol/L(約40質量%)である非水電解液を調製した。なお、後述する方法に従って測定した非水電解液中の酸分濃度(保存前の酸分濃度(HF換算)、以下同様)は、1.5質量ppmであった。
 《実施例2及び3》
 メタノールの添加量を表1に示す含有量に変更したこと以外は実施例1と同様にして非水電解液を調製した。なお、非水電解液中の酸分濃度は、それぞれ、実施例2では2.9質量ppmであり、実施例3では2.5質量ppmであった。
 《比較例1》
 メタノールを未添加に変更したこと以外は実施例1と同様にして非水電解液を調製した。なお、非水電解液中の酸分濃度は、0.9質量ppmであった。
 <非水電解液の評価>
 前記実施例及び比較例で得られた各非水電解液のLiFSI濃度、添加した水酸基含有化合物の種類、LiFSIに対する水酸基含有化合物の添加量(含有量)、及び電解液溶媒の種類を表1に示す。また、PFA(フッ素樹脂)製の密閉容器中にて40℃で3カ月保管した後の各電解液に含まれる酸分(HF換算)、水分、フッ化物イオン(F)、硫酸イオン(SO 2-)及び水酸基含有化合物の濃度を以下の測定方法により測定し、その結果を表1に示す。
 [酸分測定]
 各非水電解液を超純水(18.2Ω・cm超)で14.3倍に希釈して測定溶液とした。COM-1700A(平沼産業株式会社製)を用いて、0.01規定の水酸化ナトリウム水溶液で滴定し、各非水電解液の酸分を測定した。
 [水分測定]
 カールフィッシャー水分測定装置 AQ-2000(平沼産業株式会社製)を用いた。発生液としてアクアライトRS-A(平沼産業株式会社製)、対極液としてアクアライトCN(平沼産業株式会社製)を用いて、各非水電解液の水分量を測定した。
 [イオンクロマトグラフィー測定]
 各非水電解液を超純水(18.2Ω・cm超)で100倍に希釈して測定溶液とした。イオンクロマトグラフィーシステム ICS-3000(日本ダイオネクス株式会社製)を用いて、各非水電解液中に含まれるフッ化物イオン及び硫酸イオンの濃度を測定した。測定条件は以下のとおりである。
(イオンクロマトグラフィー測定の測定条件)
・分離モード:イオン交換
・溶離液:4.5mM NaCO/0.5mM NaHCO水溶液
・検出器:電気伝導度検出器
・カラム:アニオン分析用カラム Ion PAC AS-23(日本ダイオネクス株式会社製)。
 [水酸基含有化合物含有量の測定]
 ヘッドスペースガスクロマトグラフィーSHIMADZU HS-GC20/GC-2010Plus(株式会社島津製所製)を用いて各非水電解液中に含まれる水酸基含有化合物の量を測定した。
(ヘッドスペースガスクロマトグラフィーの測定条件)
・検出器:水素炎イオン化型検出器
・分離カラム:Rtx-200(Restek社製)
 なお、水酸基含有化合物含有量は、H-NMRでも測定できる。H-NMRの測定は、Varian社製の「Unity Plus-400」を使用して行った(内部標準物質:トリフルオロトルエン、積算回数:64回)。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、2.91mol/LのLiFSIを含む非水電解液において、水酸基含有化合物としてメタノールを所定量添加した実施例1~3では、いずれも、メタノール未添加の比較例1と対比して、40℃で3か月保管後の酸分、フッ化物イオン、硫酸イオン等のLiFSIの分解物量が少なかった。したがって、LiFSI(スルホニルイミド化合物)の含有量が1.5mol/Lを超過し、且つLiFSIに対するメタノール(水酸基含有化合物)の含有量が40質量ppm以上である実施例1~3の非水電解液は、LiFSIの含有量が1.5mol/Lを超過するものの、水酸基含有化合物の含有量が40質量ppm未満である比較例1の非水電解液と比較して、LiFSIの分解が抑制されており、保存安定性が良好であることが分かった。
 《実施例4~10及び比較例1》
 LiFSI濃度、水酸基含有化合物の種類及びその添加量(含有量)、並びに電解液溶媒の種類を表2に示すもの・量に変更したこと以外は実施例1と同様にして非水電解液を調製した。なお、比較例1は前記した比較例1と同じ組成である。なお、非水電解液中の酸分濃度は、それぞれ、実施例4では1.5質量ppmであり、実施例5では2.9質量ppmであり、実施例6では2.5質量ppmであり、実施例7では4.2質量ppmであり、実施例8では4.2質量ppmであり、実施例9では6.7質量ppmであり、実施例10では4.2質量ppmであり、比較例1では0.9質量ppmであった。
 また、実施例1と同様にして、PFA製の密閉容器中にて40℃で1カ月保管した後の各電解液に含まれる酸分(HF換算)、水分、フッ化物イオン(F)、硫酸イオン(SO 2-)及び水酸基含有化合物の濃度を測定し、その結果を表2に示す。なお、表2中の「n.a.」とは、測定装置での検出下限未満であることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、水酸基含有化合物としてメタノールの代わりに、エタノール若しくはエチレングリコール(アルコール)、又はヒドロキノン若しくはジブチルヒドロキシトルエン(フェノール性水酸基を含有する化合物)を所定量添加した実施例4~10では、いずれも、水酸基含有化合物未添加の比較例1と対比して、40℃で1か月保管後の酸分、硫酸イオン等のLiFSIの分解物量が少なかった。この結果から、表1の結果と同様に、実施例4~10の非水電解液でも、40℃で3か月保管後の前記分解物量が比較例1の非水電解液よりも少なくなることが予想される。
 《実施例11、12及び比較例2》
 本願発明者らは、これまでの検討により、電解質としてLiFSI等のスルホニルイミド化合物を含む非水電解液を用いた電池は、電解質としてスルホニルイミド化合物以外のリチウム化合物(例えば、LiPF、LiBF等)を単独で含む非水電解液を用いた電池と比べて、満充電状態からの自己放電が大きく、電池の保存特性について改善の余地があることを見出し、これを改善する技術を種々検討してきた。以下の実施例では、スルホニルイミド化合物を含む非水電解液に水酸基含有化合物を添加することで、保存中の電池の自己放電が抑制されるかどうかを確認した。
 (1)評価用電池の作製
・正極活物質に市販のLiFePOを使用し、アセチレンブラック(HS-100)、PVdF(クレハ#L7208)を100:9:6の組成(質量)比で秤量し、N-メチル-2-ピロリドン(NMP)に分散させスラリーを作製した。作製したスラリーをアルミ箔に片面塗工(塗工重量20.20mg/cm)し、乾燥後、ロールプレスを行い、正極を作製した。
・負極活物質としてグラファイト(O-MAC(大阪ガスケミカル社製))、導電助剤としてカーボンナノチューブ(VGCF、昭和電工(株)製)、バインダーとしてSBR(スチレン-ブタジエンゴム)及びCMC(カルボキシメチルセルロース)を用い、グラファイト:VGCF:SBR:CMC=100:2:1.5:1.5の組成(質量比)の水系スラリーを作製した。作製したスラリーを銅箔に塗工重量8.8mg/cmで塗工し、乾燥後、ロールプレスを行い、負極を作製した。
・得られた正負極を3cm×4cmにカットし、極性導出リードを超音波で溶接し、20μmのポリエチレン(PE)セパレータで対向させ、ラミネート外装で3方を封止することで、セルを作製した。得られたセルの未封止の一方より以下の表3に示す電解液700μLをそれぞれ添加した。
・比較例2の電解液は、EC/DMC=3/7(wt/wt)混合溶媒にLiFSIを1.51mol/Lで溶解させたものを使用した。実施例11、12の電解液は、比較例2の電解液に、メタノールを、LiFSIに対する含有量がそれぞれ250質量ppm、1000質量ppmで添加したものを使用した。
・電解液注液後のセルは、5mA、3時間の定電流充電を行い、1片を開裂して、再真空封止することでガス抜きを行った。ガス抜き後のセルを25℃で48時間保管後、以下のコンディショニング条件で充放電させ、評価用電池を完成させた。
[コンディショニング条件]
1サイクル目 充電:2.5mA、3.6Vで定電流定電圧充電、0.25mA終止
     ⇒ 放電:5mAで放電、2.0V終止。
2サイクル目 充電:2.5mA、3.6Vで定電流定電圧充電、0.5mA終止
     ⇒ 放電:5mAで放電、2.0V終止。
3サイクル目 充電:2.5mA、3.6Vで定電流定電圧充電、0.5mA終止
     ⇒ 放電:25mAで放電、2.0V終止。
 (2)評価用電池の特性評価
 上記(1)で得られた評価用電池を用いて、以下の方法により、高温保存後の自己放電容量率測定を行った。その結果を表3に示す。
<高温保存後の自己放電容量率測定>
 電池の自己放電量は、80℃で7日間保存(高温保存)後の自己放電容量率として以下の数式(1)により算出した。なお、自己放電容量率の数値が小さいほど、電池の自己放電が抑制されていることを意味する。
 [数1]
自己放電容量率=100×{(保存前の放電容量)-(保存後の放電容量)}/(保存前の放電容量)  (1)
(保存前の放電容量)
 評価用電池を以下の条件(25℃)で充放電し、保存前の放電容量を確認した。
・充電:3.6V、25mAの定電流定電圧充電、0.5mA終止 ⇒ 定電流放電:2.5mA、2.0V終止。
(保存後の放電容量)
 保存前の放電容量を確認した後の評価用電池に対して、常温にて1C(25mA)、3.6Vで0.02C(0.5mA)終止の定電流定電圧充電を行い、満充電状態とした後、80℃で7日間保存した。高温保存後の放電容量は、保存後の電池を、25℃にて2.5mA、2.0V終止の条件で定電流放電を行うことで求めた。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、LiFSI(スルホニルイミド化合物)の含有量が1.5mol/Lを超過し、且つ水酸基含有化合物としてメタノールをLiFSIに対する含有量が40質量ppm以上で添加した非水電解液を用いた実施例11及び12では、いずれも、メタノール未添加(当該含有量が40質量ppm未満)の非水電解液を用いた比較例2と比較して、80℃の高温で7日間保存後の自己放電容量率が低く、電池の自己放電が抑制されていることが分かった。
 

Claims (9)

  1.  一般式(1)で表されるスルホニルイミド化合物と、アルコール及びフェノール性水酸基を含有する化合物からなる群より選択される少なくとも一種の水酸基含有化合物とを含む非水電解液であって、
     前記非水電解液における前記一般式(1)で表されるスルホニルイミド化合物の含有量が1.5mol/L超過であり、
     前記一般式(1)で表されるスルホニルイミド化合物に対する前記水酸基含有化合物の含有量が40質量ppm以上である、非水電解液。
    LiN(RSO)(FSO) (Rはフッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を示す。)  (1)
  2.  非水電解液中の酸分濃度が50質量ppm以下である、請求項1に記載の非水電解液。
  3.  前記一般式(1)で表されるスルホニルイミド化合物がLiN(FSOを含む、請求項1又は2に記載の非水電解液。
  4.  前記アルコールが炭素数1~4の脂肪族モノアルコール及び炭素数1~4の脂肪族ジアルコールからなる群より選択される少なくとも一種を含む、請求項1~3のいずれか一項に記載の非水電解液。
  5.  前記フェノール性水酸基を含有する化合物がヒドロキノン及びジブチルヒドロキシトルエンからなる群より選択される少なくとも一種を含む、請求項1~4のいずれか一項に記載の非水電解液。
  6.  電解液溶媒として、カーボネート系溶媒、ラクトン系溶媒、エーテル系溶媒及び鎖状エステル系溶媒からなる群より選択される少なくとも一種をさらに含む、請求項1~5のいずれか一項に記載の非水電解液。
  7.  請求項1~6のいずれか一項に記載の非水電解液を容器に収容して保管する、非水電解液の保管方法。
  8.  常温以上の温度で3か月以上保管後の非水電解液中の酸分濃度が50質量ppm以下である、請求項7に記載の非水電解液の保管方法。
  9.  請求項1~6のいずれか一項に記載の非水電解液が用いられてなる、二次電池。
     
PCT/JP2022/035646 2021-09-29 2022-09-26 非水電解液及びその保管方法 WO2023054244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280062278.4A CN117941118A (zh) 2021-09-29 2022-09-26 非水电解液及其保管方法
EP22876111.0A EP4394986A1 (en) 2021-09-29 2022-09-26 Nonaqueous electrolyte solution and method for storing same
JP2023551465A JPWO2023054244A1 (ja) 2021-09-29 2022-09-26
KR1020247009858A KR20240049597A (ko) 2021-09-29 2022-09-26 비수전해액 및 그 보관방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159576 2021-09-29
JP2021159576 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054244A1 true WO2023054244A1 (ja) 2023-04-06

Family

ID=85782629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035646 WO2023054244A1 (ja) 2021-09-29 2022-09-26 非水電解液及びその保管方法

Country Status (5)

Country Link
EP (1) EP4394986A1 (ja)
JP (1) JPWO2023054244A1 (ja)
KR (1) KR20240049597A (ja)
CN (1) CN117941118A (ja)
WO (1) WO2023054244A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203561A (ja) 1995-01-25 1996-08-09 Murata Mfg Co Ltd リチウム2次電池
WO2006057447A1 (ja) 2004-11-26 2006-06-01 Otsuka Chemical Co., Ltd. 非水系リチウム二次電池用電解液および非水系リチウム二次電池
JP2007165294A (ja) 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2011060444A (ja) * 2009-09-07 2011-03-24 Seiko Instruments Inc 非水電解質二次電池用の電解液及びこれを用いた非水電解質二次電池
JP2016134283A (ja) 2015-01-19 2016-07-25 株式会社日本触媒 非水電解液及びこれを備えた蓄電デバイス
US20180269549A1 (en) * 2015-09-21 2018-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Metal-oxygen battery
US20180269530A1 (en) * 2015-09-21 2018-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Hydrocarbon liquid electrolyte
JP2018170110A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
CN109119598A (zh) * 2017-06-22 2019-01-01 微宏动力系统(湖州)有限公司 一种非水电解液及二次电池
JP2019114346A (ja) 2017-12-21 2019-07-11 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019160723A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 非水電解液二次電池用電解液および非水電解液二次電池
WO2020090922A1 (ja) * 2018-10-31 2020-05-07 パナソニックIpマネジメント株式会社 非水電解質二次電池および非水電解液
WO2020100115A1 (en) * 2018-11-16 2020-05-22 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (lifsi) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
WO2020241438A1 (ja) 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 非水電解質二次電池

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203561A (ja) 1995-01-25 1996-08-09 Murata Mfg Co Ltd リチウム2次電池
WO2006057447A1 (ja) 2004-11-26 2006-06-01 Otsuka Chemical Co., Ltd. 非水系リチウム二次電池用電解液および非水系リチウム二次電池
JP2007165294A (ja) 2005-11-16 2007-06-28 Mitsubishi Chemicals Corp リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2011060444A (ja) * 2009-09-07 2011-03-24 Seiko Instruments Inc 非水電解質二次電池用の電解液及びこれを用いた非水電解質二次電池
JP2016134283A (ja) 2015-01-19 2016-07-25 株式会社日本触媒 非水電解液及びこれを備えた蓄電デバイス
US20180269549A1 (en) * 2015-09-21 2018-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Metal-oxygen battery
US20180269530A1 (en) * 2015-09-21 2018-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Hydrocarbon liquid electrolyte
JP2018170110A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 リチウムイオン二次電池用電解液およびリチウムイオン二次電池
CN109119598A (zh) * 2017-06-22 2019-01-01 微宏动力系统(湖州)有限公司 一种非水电解液及二次电池
JP2019114346A (ja) 2017-12-21 2019-07-11 トヨタ自動車株式会社 リチウムイオン二次電池
JP2019160723A (ja) * 2018-03-16 2019-09-19 Tdk株式会社 非水電解液二次電池用電解液および非水電解液二次電池
WO2020090922A1 (ja) * 2018-10-31 2020-05-07 パナソニックIpマネジメント株式会社 非水電解質二次電池および非水電解液
WO2020100115A1 (en) * 2018-11-16 2020-05-22 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (lifsi) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
WO2020241438A1 (ja) 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
CN117941118A (zh) 2024-04-26
EP4394986A1 (en) 2024-07-03
JPWO2023054244A1 (ja) 2023-04-06
KR20240049597A (ko) 2024-04-16

Similar Documents

Publication Publication Date Title
KR102141903B1 (ko) 전해액 및 이것을 구비한 리튬이온 이차전지
US9960450B2 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
US9236636B2 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
US9570778B2 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
KR20110102818A (ko) 비수 전해액 및 이것을 시용한 리튬 2차 전지
JP4910303B2 (ja) 非水系電解液および非水系電解液電池
WO2020241161A1 (ja) 電解質組成物、溶媒組成物、非水電解液及びその用途
JP6018820B2 (ja) リチウム二次電池用非水電解液及びこれを備えたリチウム二次電池
WO2021166771A1 (ja) 環状リン酸エステルを含む二次電池用電解液
JP4655536B2 (ja) 非水系電解液及び非水系電解液電池
JP6785148B2 (ja) 非水電解液およびそれを用いた非水電解液二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
JP2004363086A (ja) 非水系電解液及び非水系電解液二次電池
JP4655537B2 (ja) 非水系電解液及び非水系電解液電池
WO2022065198A1 (ja) 非水電解液、二次電池及びその製造方法
JP2015062154A (ja) リチウムイオン二次電池
WO2023054244A1 (ja) 非水電解液及びその保管方法
JP5107118B2 (ja) 非水電解質及び該非水電解質を含む非水電解質二次電池
JP7245355B2 (ja) 非水電解液及びリチウムイオン二次電池
JP7346252B2 (ja) 非水電解液の製造方法及びリチウムイオン二次電池
JP7399738B2 (ja) 非水電解液及びリチウムイオン二次電池
JP2019102183A (ja) 電池用非水電解液及びリチウム二次電池
WO2024106166A1 (ja) 非水電解液二次電池
JP7257109B2 (ja) 非水電解液、及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280062278.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247009858

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022876111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876111

Country of ref document: EP

Effective date: 20240327

NENP Non-entry into the national phase

Ref country code: DE