WO2023050806A1 - Matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application - Google Patents

Matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application Download PDF

Info

Publication number
WO2023050806A1
WO2023050806A1 PCT/CN2022/090072 CN2022090072W WO2023050806A1 WO 2023050806 A1 WO2023050806 A1 WO 2023050806A1 CN 2022090072 W CN2022090072 W CN 2022090072W WO 2023050806 A1 WO2023050806 A1 WO 2023050806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
phosphate
nickel
cobalt
preparation
Prior art date
Application number
PCT/CN2022/090072
Other languages
English (en)
Chinese (zh)
Inventor
余海军
钟应声
李爱霞
谢英豪
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2310302.1A priority Critical patent/GB2618695A/en
Priority to DE112022003502.1T priority patent/DE112022003502T5/de
Publication of WO2023050806A1 publication Critical patent/WO2023050806A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery materials, and in particular relates to a doped sodium iron phosphate cathode material and a preparation method and application thereof.
  • LIBs lithium-ion batteries
  • NIBs sodium-ion batteries
  • the cathode material is the key to the technology of sodium-ion batteries. It is difficult for the existing cathode active materials to achieve stable deintercalation of sodium ions, which limits the engineering application of sodium-ion batteries.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art.
  • the present invention provides a doped sodium iron phosphate positive electrode material and its preparation method and application.
  • the doped sodium iron phosphate positive electrode material introduces nickel and cobalt to dope sodium iron phosphate.
  • the ratio improves the phase transition in the process of sodium ion deintercalation, and plays a role in improving the cycle stability of the sodium iron phosphate crystal structure.
  • the present invention adopts the following technical solutions:
  • a doped sodium iron phosphate cathode material the chemical formula is xAlF 3 -MPO 4 , M is NaNi a Co b Fe, 0 ⁇ x ⁇ 0.2, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.5.
  • a preparation method of a doped sodium iron phosphate positive electrode material comprising the following steps:
  • the ferrous nickel mixed hydroxide is mixed with phosphate-containing substances, sodium source, cobalt source, dispersant, aluminum fluoride, ball milled, and roasted to obtain a doped sodium iron phosphate positive electrode material.
  • the preparation step of the aluminum fluoride is: using ammonium hexafluoroaluminate to decompose by heating.
  • ammonium hexafluoroaluminate can be prepared by reacting aluminum chloride and ammonium fluoride in the presence of water.
  • ammonium hexafluoroaluminate is prepared from aluminum powder recovered from waste lithium batteries as an aluminum source.
  • the preparation process of the ammonium hexafluoroaluminate can specifically be: add hydrochloric acid to the aluminum powder, react to obtain an aluminum chloride solution, add ammonium fluoride to obtain ammonium hexafluoroaluminate, heat and decompose it to obtain fluorine Aluminum.
  • the aluminum powder is obtained by crushing and sieving waste lithium batteries.
  • the aluminum powder and hydrochloric acid are reacted at a molar ratio of Al to HCl of 10:(30-100).
  • the molar ratio of aluminum chloride and ammonium fluoride is 10:(40-150).
  • the method further includes evaporating the ammonium hexafluoroaluminate before heating and decomposing, and the evaporation temperature is 90-120°C.
  • the thermal decomposition temperature is 200-380°C, and the thermal decomposition time is 0.5h-6h.
  • the decomposition reaction formula of ammonium hexafluoroaluminate is: (NH 4 ) 3 AlF 6 ⁇ AlF 3 +3HF+3NH 3 .
  • the nickel-containing alloy is ground into powder by adding a grinding aid before acid leaching;
  • the grinding aid is one of sodium sulfate, sodium chloride or sodium phosphate.
  • the nickel-containing alloy is one of nickel-iron and nickel-containing pig iron.
  • the nickel content in ferronickel is ⁇ 15.0%.
  • the nickel content in the nickel-containing pig iron is ⁇ 4.0%.
  • the acid is at least one of phosphoric acid, sulfuric acid, hydrochloric acid or nitric acid.
  • the solid-to-liquid ratio of the nickel-containing alloy to the acid is 1: (3-30) g/ml.
  • the H + content in the acid is 2-15 mol/L.
  • step (1) further comprising evaporating the leaching solution obtained after acid leaching to remove acid, and the evaporation temperature is 100-400°C.
  • adding water for dissolution is also included after the evaporation to obtain a ferronickel salt solution.
  • the solid-to-liquid ratio of the nickel-iron salt and water is (1-10): (30-100) kg/L.
  • the reducing agent is one of iron powder, iron sulfite and sodium sulfite.
  • the alkali is an aqueous solution of alkali metal and alkaline earth metal.
  • the alkali metal is one of lithium, sodium and potassium; the alkaline earth metal is one of calcium and magnesium.
  • the aqueous solution of alkali metal is sodium hydroxide, and the concentration of sodium hydroxide is 0.1-10 mol/L.
  • step (1) the pH is adjusted to 7.0-9.0 to recover ferrous nickel hydroxide.
  • the pH is adjusted to 7.5-8.0.
  • the phosphate-containing substance is phosphoric acid, pyrophosphoric acid, metaphosphoric acid, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, iron phosphate, nickel phosphate, lithium phosphate, ammonium phosphate, At least one of ammonium dihydrogen phosphate or ammonium hydrogen phosphate.
  • the phosphate-containing substance is at least one of ammonium phosphate, ammonium dihydrogen phosphate or ammonium hydrogen phosphate.
  • the sodium source is sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, sodium acetate, sodium oxalate, sodium formate, sodium citrate, coke At least one of sodium phosphate or sodium metaphosphate.
  • the sodium source is sodium phosphate.
  • the cobalt source is at least one of cobalt hydroxide, cobalt oxalate, cobalt phosphate or cobalt carbonate.
  • the dispersant is at least one of polyalkylene oxide, phenolic resin, polyvinylpyrrolidone, N-methylpyrrolidone, methanol, ethanol, polyol or polyolamine.
  • the general chemical formula of the polyol is C n H 2n+2-x (OH) x (X>2).
  • the polyol is polypropylene glycol.
  • the polymeric alcohol amine is triethanolamine.
  • the dispersant is at least one of polyalkylene oxide, methanol, ethanol or polypropylene glycol.
  • step (2) mixture A is obtained after mixing the ferrous nickel mixed hydroxide with phosphate-containing substances, sodium source, and cobalt source, and in the mixture A, sodium, ferrous, nickel, cobalt
  • the molar ratio is (0.01 ⁇ 150):(0.01 ⁇ 150):(0 ⁇ 100):(0 ⁇ 50).
  • the mass ratio of the mixture A, dispersant, and aluminum fluoride is 100:(10-200):(0-20).
  • the particle size of the ball mill output is ⁇ 20 ⁇ m, and the ball mill is performed at 100-1200 r/min for 1-12 hours.
  • the firing atmosphere is one of nitrogen atmosphere, neon atmosphere, argon atmosphere, and helium atmosphere.
  • the temperature of the calcination is 500-1000° C., and the calcination time is 1-24 hours.
  • the present invention also provides a sodium ion battery, comprising the doped sodium iron phosphate cathode material.
  • the doped sodium iron phosphate positive electrode material prepared by the present invention introduces nickel and cobalt to dope sodium iron phosphate, which can improve the phase transition in the process of sodium ion deintercalation by increasing the ratio of nickel and cobalt, and improve the crystallinity of sodium iron phosphate.
  • the role of structural cycle stability by coating aluminum fluoride on the surface of doped sodium iron phosphate, it can reduce the surface loss of sodium ion deintercalation during charge and discharge, inhibit the growth of Na dendrites, improve the cycle stability of the surface of sodium iron phosphate, and improve the performance of sodium iron phosphate.
  • the electrical conductivity of the surface enhances the electrochemical performance of sodium iron phosphate.
  • the present invention utilizes nickel-containing alloys, solves the problem of selecting iron and doping metals in sodium iron phosphate, and achieves the purpose of synthesizing nickel-cobalt-doped sodium iron phosphate.
  • nickel-containing alloys iron accounts for the largest proportion, followed by nickel. Therefore, iron is separated to synthesize ferrous phosphate, nickel and cobalt are separated to synthesize nickel-cobalt phosphate, and nickel-cobalt is introduced for doping.
  • the present invention can be improved by adjusting the ratio of nickel-cobalt phosphate
  • the phase transition during the deintercalation of sodium ions plays a role in improving the cycle stability of the sodium iron phosphate crystal structure.
  • aluminum recovered from waste lithium batteries is used for secondary utilization to prepare aluminum fluoride, and aluminum fluoride enhances the electrical properties of sodium iron phosphate.
  • the by-product aluminum recovered from waste lithium batteries is prepared as aluminum powder, and the aluminum powder is dissolved in acid and ammonium fluoride is added to prepare ammonium hexafluoroaluminate.
  • the aluminum fluoride obtained by thermal decomposition of ammonium hexafluoroaluminate has high stability and Good conductivity, coating aluminum fluoride on the surface of sodium iron phosphate can reduce the surface loss of sodium ion deintercalation during charge and discharge, improve the cycle stability of the surface of sodium iron phosphate, and lead to the reduction of iron-based phosphate on the surface The resistance is improved and the electrochemical performance of sodium iron phosphate is enhanced.
  • Fig. 1 is the SEM figure of the doped type sodium iron phosphate cathode material prepared in embodiment 1;
  • the doped sodium iron phosphate cathode material in this embodiment has a chemical formula of 0.015AlF 3 -NaNi 0.089 Co 0.064 FePO 4 .
  • Nickel-containing pig iron (Ni content 11.7%, iron content 82.6%) dissolution: crush 0.382kg of nickel-containing pig iron, add 7.2g of sodium sulfate to grind into nickel-containing pig iron powder, and send the nickel-containing pig iron powder to the airtight
  • Fig. 1 is the SEM figure of the nickel-cobalt-doped type sodium iron phosphate coated with positive electrode material aluminum fluoride prepared in Example 1
  • Fig. 2 is the SEM figure of the nickel-cobalt-doped type sodium iron phosphate prepared in Comparative Example 1
  • the nickel-cobalt-doped type in Example 1 is basically covered by aluminum fluoride, and there is a coating layer>10nm on the outside, so the overall is relatively blurred, while the nickel-cobalt-doped sodium iron phosphate prepared in Comparative Example 1
  • the exterior is clear with no cladding visible.
  • the doped sodium iron phosphate cathode material in this example has a chemical formula of 0.011AlF 3 -NaNi 0.087 Co 0.066 FePO 4 .
  • the doped sodium iron phosphate cathode material in this example has a chemical formula of 0.043AlF 3 -NaNi 0.38 Co 0.087 FePO 4 .
  • the preparation method of the sodium iron phosphate cathode material of this comparative example comprises the following concrete steps:
  • Sodium citrate and ferrous phosphate are mixed at a molar ratio of 1:1, then mixed with 320mL of ethanol by ultrasound, ball milled for 7h14min, then roasted in an argon atmosphere and a tube furnace at 730°C for 8h7min, and the temperature is lowered to obtain ferric phosphate Sodium NaFePO 4 cathode material.
  • the preparation method of the sodium iron phosphate cathode material of this comparative example comprises the following specific steps:
  • Sodium citrate and ferrous phosphate were mixed at a molar ratio of 1:1, and then mixed with 320mL of ethanol by ultrasound, ball milled for 6h49min, then roasted in an argon atmosphere and a tube furnace at 780°C for 8h7min, and cooled to obtain NaFePO 4 Cathode material.
  • Embodiment 1-3 and comparative example 1-2 analyze:
  • Doped sodium iron phosphate, conductive agent, and polytetrafluoroethylene were formulated into a slurry at a mass ratio of 85:10:5, and then coated on copper foil, and the pole pieces were dried in a drying oven at 80°C for 6 hours.
  • the die is stamped into a disc. Cut the sodium sheet into an electrode pole piece with a diameter of about 6mm, add 1.5mol/L sodium hexafluorophosphate to propylene carbonate to prepare the electrolyte, use Celgard2400 as the separator, and assemble the battery in a vacuum glove box under an argon atmosphere.
  • the cycle performance is tested with an electrochemical workstation, the charge and discharge range is 1.5-3.0V, and the test is performed at a rate of 2C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention se rapporte au domaine technique des matériaux de batterie. L'invention concerne un matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application. La formule chimique du matériau d'électrode positive est xAlF3-MPO4, avec M représentant NaNiaCobFe, 0 ≤ x ≤ 0,2 ; 0 ≤ a ≤ 1 ; et 0 ≤ b ≤ 0,5. Dans le matériau d'électrode positive à base de phosphate ferrique de sodium dopé préparé par la présente invention, le nickel et le cobalt sont introduits pour doper le phosphate ferrique de sodium, la transformation de phase dans un processus de désintercalation des ions sodium peut être améliorée par ajustement de la proportion de phosphate de nickel et de cobalt, et l'effet d'amélioration de la stabilité de cycle d'une structure cristalline de phosphate ferrique de sodium est obtenu. Le fluorure d'aluminium est déposé sur la surface du phosphate ferrique de sodium dopé, réduisant ainsi la perte en surface de la désintercalation des ions sodium pendant la charge et la décharge, améliorant la stabilité de cycle de la surface du phosphate ferrique de sodium, améliorant la résistance du phosphate à base de fer réduit en surface, et améliorant les performances électrochimiques du phosphate ferrique de sodium.
PCT/CN2022/090072 2021-09-30 2022-04-28 Matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application WO2023050806A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2310302.1A GB2618695A (en) 2021-09-30 2022-04-28 Doped sodium ferric phosphate positive electrode material, preparation method therefor and application thereof
DE112022003502.1T DE112022003502T5 (de) 2021-09-30 2022-04-28 Dotiertes natriumeisen(iii)phosphatmaterial für die positive elektrode, verfahren zu dessen herstellung und dessen verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161800.8 2021-09-30
CN202111161800.8A CN113948697B (zh) 2021-09-30 2021-09-30 掺杂型磷酸铁钠正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023050806A1 true WO2023050806A1 (fr) 2023-04-06

Family

ID=79329002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090072 WO2023050806A1 (fr) 2021-09-30 2022-04-28 Matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application

Country Status (4)

Country Link
CN (1) CN113948697B (fr)
DE (1) DE112022003502T5 (fr)
GB (1) GB2618695A (fr)
WO (1) WO2023050806A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948697B (zh) * 2021-09-30 2023-07-07 广东邦普循环科技有限公司 掺杂型磷酸铁钠正极材料及其制备方法和应用
CN114695862A (zh) * 2022-03-25 2022-07-01 广东邦普循环科技有限公司 一种氟铝共掺杂的钴酸锂正极材料及其制备方法
CN114824205B (zh) * 2022-04-15 2022-11-29 宁波市稻禾科技有限公司 一种钛基快离子导体改性磷酸铁钠正极材料及其制备方法和正极材料制备的电池
CN115064678A (zh) * 2022-06-28 2022-09-16 天津巴莫科技有限责任公司 一种高镍低钴正极材料、其制备方法及应用
CN115849335A (zh) * 2022-11-30 2023-03-28 浙江新安化工集团股份有限公司 一种金属掺杂磷酸铁钠及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125749A1 (en) * 2012-01-20 2015-05-07 Ningbo Institute of Materials & Engineering, Chinese Academy of Sciences Novel Phosphate Based Composite Anode Material, Preparation Method and Use Thereof
US20160013478A1 (en) * 2013-02-28 2016-01-14 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode
JP2016184568A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016186932A (ja) * 2015-03-27 2016-10-27 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
WO2018117771A1 (fr) * 2016-12-23 2018-06-28 주식회사 포스코 Procédé de récupération de nickel et de cobalt à partir de matière première contenant du nickel, du fer et du cobalt
US20180316044A1 (en) * 2015-10-21 2018-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a sodium-ion battery
CN113948697A (zh) * 2021-09-30 2022-01-18 广东邦普循环科技有限公司 掺杂型磷酸铁钠正极材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755565A (zh) * 2017-11-08 2019-05-14 中国科学院大连化学物理研究所 过渡金属掺杂的钠离子电池用正极材料及其制备和应用
CN110611080B (zh) * 2018-06-15 2021-03-12 中南大学 一种过渡金属掺杂的磷酸钛锰钠/碳复合正极材料及其制备和在钠离子电池中的应用
CN108832112B (zh) * 2018-06-26 2020-07-03 东北大学秦皇岛分校 一种钴掺杂氟磷酸亚铁钠正极材料的制备方法
CN108899538A (zh) * 2018-07-19 2018-11-27 东北大学秦皇岛分校 一种三元钠离子电池正极材料、其制备方法以及钠离子电池
CN111525130A (zh) * 2020-05-11 2020-08-11 金国辉 一种改性Na3V2(PO4)2F3的钠离子电池正极材料及其制法
CN111933899B (zh) * 2020-06-22 2021-11-26 武汉大学 一种复合氧化物电极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125749A1 (en) * 2012-01-20 2015-05-07 Ningbo Institute of Materials & Engineering, Chinese Academy of Sciences Novel Phosphate Based Composite Anode Material, Preparation Method and Use Thereof
US20160013478A1 (en) * 2013-02-28 2016-01-14 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode
JP2016184568A (ja) * 2015-03-26 2016-10-20 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP2016186932A (ja) * 2015-03-27 2016-10-27 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
US20180316044A1 (en) * 2015-10-21 2018-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a sodium-ion battery
WO2018117771A1 (fr) * 2016-12-23 2018-06-28 주식회사 포스코 Procédé de récupération de nickel et de cobalt à partir de matière première contenant du nickel, du fer et du cobalt
CN113948697A (zh) * 2021-09-30 2022-01-18 广东邦普循环科技有限公司 掺杂型磷酸铁钠正极材料及其制备方法和应用

Also Published As

Publication number Publication date
DE112022003502T5 (de) 2024-05-02
GB202310302D0 (en) 2023-08-16
CN113948697A (zh) 2022-01-18
CN113948697B (zh) 2023-07-07
GB2618695A (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2023050806A1 (fr) Matériau d'électrode positive à base de phosphate ferrique de sodium dopé, son procédé de préparation et son application
CN101081696B (zh) 锂离子动力电池用磷酸铁锂材料及其制备方法
CN101941685B (zh) 一种球形磷酸铁锂材料制备和采用该材料的锂离子电池
WO2018120147A1 (fr) Procédé de préparation d'un composite graphène/matériau ternaire destiné à être utilisé dans des batteries au lithium-ion et son produit
CN102208641A (zh) 一步法合成空心球结构Fe3O4/C锂离子电池负极材料
CN104993121A (zh) 一种镍锰掺混锂离子电池正极材料及其制备方法
CN112186145A (zh) 一种镁还原碳包覆氧化亚硅材料及其制备方法、应用
CN104218235A (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
WO2022002057A1 (fr) Matériau d'électrode négative composite silicium-oxygène, batterie ion-lithium, et leurs procédés de préparation
WO2023071396A1 (fr) Matériau d'électrode positive pour batterie sodium-ion, son procédé de préparation et son application
WO2023226554A1 (fr) Matériau d'électrode positive d'oxyde de lithium-nickel-cobalt-manganèse à haute tension, sa méthode de préparation et son utilisation
CN115385380B (zh) 钠离子电池正极材料的制备方法
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN109802127B (zh) 一种银掺杂四氧化三铁纳米复合材料的制备方法
CN110085854B (zh) 一种磷酸钒锂正极材料及其制备方法
CN108630922B (zh) 一种磷酸锰锂/碳复合正极材料、其制备方法和锂离子电池
CN112331852B (zh) 一种氮自掺杂碳包覆氧化亚硅负极材料及其制备方法和应用
CN110660975A (zh) 一种锇掺杂的LiAlSiO4包覆镍钴锰酸锂正极材料及其制备方法和应用
Zhang et al. Cation doping method for the restoration of spent LiNi1/3Co1/3Mn1/3O2 cathode material properties
CN115744857B (zh) 废旧磷酸铁锂电池定向循环制取磷酸铁锂正极材料的方法
CN111747449A (zh) 片状碳基质内部均匀桥接超细MoO2纳米颗粒的电极材料及其制备方法和应用
TWI392134B (zh) Nickel - cobalt - manganese multicomponent lithium - ion battery cathode material and its preparation method
WO2023060992A1 (fr) Procédé de synthèse d'un matériau d'électrode positive de haute sécurité par recyclage de matériaux d'électrode positive à électrode positive, et application
CN111485278A (zh) 一种电极活性材料单晶的固相反应合成方法
JP2009242121A (ja) リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310302

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220428

WWE Wipo information: entry into national phase

Ref document number: P202390248

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022003502

Country of ref document: DE