CN111485278A - 一种电极活性材料单晶的固相反应合成方法 - Google Patents

一种电极活性材料单晶的固相反应合成方法 Download PDF

Info

Publication number
CN111485278A
CN111485278A CN202010233435.6A CN202010233435A CN111485278A CN 111485278 A CN111485278 A CN 111485278A CN 202010233435 A CN202010233435 A CN 202010233435A CN 111485278 A CN111485278 A CN 111485278A
Authority
CN
China
Prior art keywords
lithium
electrode active
single crystal
placing
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010233435.6A
Other languages
English (en)
Inventor
杨建文
王陆阳
刘鑫鑫
熊伟雄
仝蒙恩
黄斌
肖顺华
陈权启
李延伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202010233435.6A priority Critical patent/CN111485278A/zh
Publication of CN111485278A publication Critical patent/CN111485278A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种电极活性材料单晶的固相反应合成方法。将市售过渡金属氧化物或过渡金属盐,与氧化锂或锂盐或氢氧化锂,以及掺杂元素化合物,按化学计量比称取物料并置于球磨机或高速分散机中,按(9.0‑2.0)∶(1.0‑8.0)固液重量比加入高效混合剂,开机混料0.5‑24小时,筛除研磨球,将浆状混合物干燥并回收混合剂液体组分,将干燥后的混合物研磨成粉末并盛装于烧舟中,或将浆料直接盛于烧舟中,置于焙烧炉内,通入反应气氛,采用每分钟1‑20℃的升温速率加热至200‑1200℃,保温0.5‑48小时,自然冷却至50‑100℃,出料,粉碎,过筛,包装,得到单晶形貌电极活性材料。本发明为锂离子电池电极活性材料单晶的低成本制备提供了新途径。

Description

一种电极活性材料单晶的固相反应合成方法
技术领域
本发明涉及锂离子电池材料领域,特别是采用固相法合成单晶形貌电极活性材料。
背景技术
锂离子电池综合性能优异,在日用电子产品中已经得到广泛应用,随着电动汽车、新能源储存及智能电网等市场需求的快速增长,具有高容量、高稳定、低成本、安全、环保等性能的电极活性材料及其相关技术进步成为锂离子电池发展的关键。在锂离子电池充放电过程中,活性材料与电解质溶液之间一般均会生成固体电解质膜(SEI),SEI膜的组成、结构和稳定性对电极活性材料的利用率、充放电速率、循环寿命、可靠性等均具有至关重要的影响。SEI膜的性能在很大程度上与电极活性材料的表面性质有关,单晶材料具有晶体结构发育良好,表面不饱和键少,SEI膜性能稳定等优点,因此,单晶形貌电极活性材料倍受锂离子电池厂商青睐。
目前,锂离子电池电极活性材料,如:钴酸锂、镍酸锂、锰酸锂、镍锰酸锂、三元正极材料、高镍正极材料、聚阴离子正极材料等,一般均采用共沉淀、溶胶-凝胶或水热法先制得特殊性能前驱体,然后经过高温反应才能制得单晶产物,或者采用熔融盐法制备,这些单晶制备方法均存在较复杂的前、后期处理工序,导致单晶材料的生产成本偏高。本发明通过对传统固相法小幅改进,实现了电极活性材料单晶的固相法制备,有望对锂离子电池高性能电极活性材料的低成本制造产生积极作用。
发明内容
本发明的目的是通过对传统固相法工艺环节的改进,实现锂离子电池电极活性材料单晶的短工序低成本制备。
具体步骤为:
将市售过渡金属氧化物或过渡金属盐,与氧化锂或锂盐或氢氧化锂,以及掺杂元素化合物,按化学计量比称取物料并置于球磨机或高速分散机中,按(9.0-2.0)∶(1.0-8.0)固液重量比加入高效混合剂,开机混料0.5-24小时,筛除研磨球,将浆状混合物干燥并回收混合剂液体组分,将干燥后的混合物研磨成粉末并盛装于烧舟中,或将浆料直接盛于烧舟中,置于焙烧炉内,通入反应气氛,采用每分钟1-20℃的升温速率加热至200-1100℃,保温0.5-48小时,自然冷却至50-100℃,出料,粉碎,过筛,包装,得到单晶形貌电极活性材料。
附图说明
图1本发明实施例1 LiNi0.5Mn1.5O4单晶正极材料的SEM照片。
图2本发明实施例1 LiNi0.5Mn1.5O4单晶正极材料的XRD图谱。
图3本发明实施例2 Li1.2Ni0.13Co0.13Mn0.54O2单晶正极材料的SEM照片。
图4本发明实施例2 Li1.2Ni0.13Co0.13Mn0.54O2单晶正极材料的XRD图谱。
图5本发明实施例3 LiNi0.6Mn0.2Co0.2O2单晶正极材料的SEM照片。
图6本发明实施例3 LiNi0.6Mn0.2Co0.2O2单晶正极材料的XRD图谱。
图7本发明实施例4 Li4Ti5O12单晶负极材料的SEM照片。
图8本发明实施例4 Li4Ti5O12单晶负极材料的XRD图谱。
实施例1:
分别称取分析纯级化学试剂碳酸锂1.9592克、二氧化锰7.6710克、一氧化镍1.9055克置于玛瑙罐中,加入10毫升去离子水,在SFM-3型高速振动球磨机上混料0.5小时,用镊子挑出玛瑙球,将反应物浆料置于80℃干燥箱中烘干,手工研磨10分钟,盛于刚玉方舟中并置于马弗炉内,以10℃/分钟升温速率加热至800℃,保温24小时,自然冷却至50℃,出料,用玛瑙研钵手工研磨10分钟,得到LiNi0.5Mn1.5O4单晶正极材料样品。图1、图2分别为LiNi0.5Mn1.5O4单晶样品的SEM照片和XRD图谱,其八面体单晶特征明显,分散性好,为纯相、尖晶石型晶体结构。
实施例2:分别称取分析纯级化学试剂碳酸锂2.2850克、一氧化镍0.4904克、四氧化三钴0.5321克、二氧化锰2.3953克置于玛瑙罐中,加入5毫升去离子水,在SFM-3型高速振动球磨机上混料1.5小时,用镊子挑出玛瑙球,将反应物浆料置于80℃干燥箱中烘干,手工研磨10分钟,盛于刚玉方舟中并置于马弗炉内,以10℃/分钟升温速率加热至850℃,保温32小时,自然冷却至50℃,出料,用玛瑙研钵手工研磨10分钟,得到Li1.2Ni0.13Co0.13Mn0.54O2单晶正极材料样品。图3、图4分别为Li1.2Ni0.13Co0.13Mn0.54O2单晶样品的SEM照片和XRD图谱,其八面体单晶特征明显,分散性好,为α-NaFeO2型层状晶体结构,在2θ衍射角20°-23°范围存在弱的超晶格特征峰。
实施例3:
分别称取分析纯级化学试剂碳酸锂3.2572克、一氧化镍1.8107克、四氧化三钴1.9458克、四水乙酸锰1.9805克置于玛瑙罐中,加入10毫升(1+1)去离子水-乙醇溶液,在SFM-3型高速振动球磨机上混料1.0小时,用镊子挑出玛瑙球,将反应物浆料置于80℃干燥箱中烘干,手工研磨10分钟,盛于刚玉方舟中并置于马弗炉内,以10℃/分钟升温速率加热至850℃,保温24小时,自然冷却至50℃,出料,用玛瑙研钵手工研磨10分钟,得到LiNi0.6Mn0.2Co0.2O2单晶正极材料样品。图5、图6分别为LiNi0.6Mn0.2Co0.2O2单晶样品的SEM照片和XRD图谱,其八面体单晶特征明显,分散性好,为纯相、六方晶系α-NaFeO2型晶体结构。
实施例4:
分别称取分析级纯化学试剂碳酸锂3.8700克、二氧化钛10.0874克置于玛瑙罐中,加入5毫升去离子水和0.5000克乙炔黑,在SFM-3型高速振动球磨机上混料1.0小时,用镊子挑出玛瑙球,将反应物浆料置于80℃干燥箱中烘干,手工研磨10分钟,盛于刚玉方舟中并管式炉内,通入氩气气氛,以10℃/分钟升温速率加热至850℃,保温16小时,自然冷却至50℃,出料,再用原混料球磨机球磨30分钟,得到Li4Ti5O12单晶负极材料样品。图7、图8分别为Li4Ti5O12单晶样品的SEM照片和XRD图谱,其单晶颗粒分散性好,为纯相、尖晶石结构。

Claims (7)

1.一种电极活性材料单晶的固相反应合成方法,其特征在于具体步骤为:将市售过渡金属氧化物或过渡金属盐,与氧化锂或锂盐或氢氧化锂,以及掺杂元素化合物,按化学计量比称取物料并置于球磨或高速分散机中,按(9.0-2.0)∶(1.0-8.0)固液重量比加入高效混合剂,开机混料0.5-24小时,筛除研磨球,将浆状混合物干燥并回收混合剂液体组分,将干燥后的混合物研磨成粉末并盛装于烧舟中,或将浆料直接盛于烧舟中,置于焙烧炉内,通入反应气氛,采用每分钟1-20℃的升温速率加热至200-1100℃,保温0.5-48小时,自然冷却至50-100℃,出料,粉碎,过筛,包装,得到单晶形貌电极活性材料。
2.根据权利要求1所述过渡金属氧化物或过渡金属盐,包括锰、铁、钴、镍、铜、锌、钛、钒、铌、钨、钼、铬的氧化物或盐的一种或几种。
3.根据权利要求1所述锂盐,包括碳酸锂、乙酸锂、硝酸锂、硫酸锂、氯化锂、氟化锂、硼酸锂、磷酸锂中一种或几种。
4.根据权利要求1所述掺杂元素化合物包括钙、镁、铝、钾、钠、稀土元素等的氢氧化物、氧化物、有机酸盐、碳酸盐、氟化物,或权力2中的过渡金属化合物。
5.根据权利要求1所述反应气氛主要包括空气、氧气、氩气、氮气、二氧化碳等加热炉反应气氛。
6.根据权利要求1所述电极活性材料主要是指锂离子电池正、负极活性材料、也适用于这些材料用作钠离子电池、钾离子电池、镁离子电池或锌离子电池等的电极活性材料。
7.根据权利要求1所述高效混合剂主要包括水,或各种碳材料、淀粉、葡萄糖、蔗糖、纤维素、乙醇、乙二醇、丙三醇、表面活性剂等的水分散液。
CN202010233435.6A 2020-03-29 2020-03-29 一种电极活性材料单晶的固相反应合成方法 Pending CN111485278A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010233435.6A CN111485278A (zh) 2020-03-29 2020-03-29 一种电极活性材料单晶的固相反应合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010233435.6A CN111485278A (zh) 2020-03-29 2020-03-29 一种电极活性材料单晶的固相反应合成方法

Publications (1)

Publication Number Publication Date
CN111485278A true CN111485278A (zh) 2020-08-04

Family

ID=71812549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010233435.6A Pending CN111485278A (zh) 2020-03-29 2020-03-29 一种电极活性材料单晶的固相反应合成方法

Country Status (1)

Country Link
CN (1) CN111485278A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582601A (zh) * 2020-12-14 2021-03-30 中钢集团南京新材料研究院有限公司 一种利用废旧锰酸锂制备镍锰酸锂的方法及镍锰酸锂
CN113307311A (zh) * 2021-04-08 2021-08-27 桂林理工大学 一种Mg2+双重掺杂提高镍酸锂正极材料电化学性能的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587950A (zh) * 2008-05-20 2009-11-25 青岛新正锂业有限公司 锂离子电池微米级单晶颗粒正极材料
CN101841018A (zh) * 2010-06-22 2010-09-22 湖南杉杉新材料有限公司 锂离子电池用单晶锂锰氧化物及其制备方法
CN101847722A (zh) * 2009-03-26 2010-09-29 青岛新正锂业有限公司 高能锂离子电池正极材料及其制备方法
CN107302083A (zh) * 2017-06-01 2017-10-27 桂林理工大学 镍锰酸锂正极材料的一种固相反应法制备方法
EP3509140A1 (en) * 2017-10-31 2019-07-10 UNIST (Ulsan National Institute of Science and Technology) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587950A (zh) * 2008-05-20 2009-11-25 青岛新正锂业有限公司 锂离子电池微米级单晶颗粒正极材料
CN101847722A (zh) * 2009-03-26 2010-09-29 青岛新正锂业有限公司 高能锂离子电池正极材料及其制备方法
CN101841018A (zh) * 2010-06-22 2010-09-22 湖南杉杉新材料有限公司 锂离子电池用单晶锂锰氧化物及其制备方法
CN107302083A (zh) * 2017-06-01 2017-10-27 桂林理工大学 镍锰酸锂正极材料的一种固相反应法制备方法
EP3509140A1 (en) * 2017-10-31 2019-07-10 UNIST (Ulsan National Institute of Science and Technology) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武英等: "《中国战略新兴产业.新材料.稀土储氢材料》", 30 April 2017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582601A (zh) * 2020-12-14 2021-03-30 中钢集团南京新材料研究院有限公司 一种利用废旧锰酸锂制备镍锰酸锂的方法及镍锰酸锂
CN113307311A (zh) * 2021-04-08 2021-08-27 桂林理工大学 一种Mg2+双重掺杂提高镍酸锂正极材料电化学性能的制备方法

Similar Documents

Publication Publication Date Title
CN104810517B (zh) 非水电解质二次电池、Li-Ni复合氧化物粒子粉末及制造方法
EP0918041B1 (en) Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
CN102208611B (zh) 一种锂离子二次电池正极粉末材料的诱导结晶合成方法
KR102669854B1 (ko) 단결정형 다원계 양극재 및 이의 제조 방법과 응용
JP3922040B2 (ja) リチウムマンガン複合酸化物とその製造方法並びにその用途
JP2008255000A (ja) 新規チタン酸化物及びその製造方法、並びにそれを活物質として用いたリチウム二次電池
JPWO2014061654A1 (ja) Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池
CN111916724A (zh) 免洗高镍单晶镍钴锰酸锂正极材料的制备方法及应用
CN109888225A (zh) 正极材料及其制备方法和锂离子电池
CN112599765A (zh) 一种钠/钾掺杂的高性能富锂锰镍基正极材料及其制备方法
CN115663173A (zh) 一种富钠层状氧化物材料及其制备方法和应用
CN112002879A (zh) 一种四氟化锆包覆的氟铝双掺杂锰酸锂正极材料及其制备方法
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN116022862A (zh) 一种硒掺杂正极材料的制备方法及应用
CN110380037B (zh) 一种反应熔渗改性的锂离子电池正极材料及制备方法
CN111485278A (zh) 一种电极活性材料单晶的固相反应合成方法
CN114899391A (zh) 超高镍单晶正极材料及其制备方法
CN111663182B (zh) 一种锂离子电池用大颗粒单晶钴酸锂及其阳离子掺杂的制备方法
CN112694104A (zh) 一种普鲁士蓝类似物及其制备方法、负极材料和应用
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
GB2617013A (en) High-nickel sodium ion positive electrode material and preparation method therefor and battery
CN112062168B (zh) 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2及高压固相制备方法与应用
CN111354942B (zh) 一种微米级棒状锰酸锂及其制备方法和应用
JP4479874B2 (ja) 非水電解質二次電池用正極活物質の製造法、並びに非水電解質二次電池
JP2022097885A (ja) 正極活物質の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200804

RJ01 Rejection of invention patent application after publication