WO2023045648A1 - 一种基于光学透明基材进行双面图案化的方法 - Google Patents

一种基于光学透明基材进行双面图案化的方法 Download PDF

Info

Publication number
WO2023045648A1
WO2023045648A1 PCT/CN2022/113509 CN2022113509W WO2023045648A1 WO 2023045648 A1 WO2023045648 A1 WO 2023045648A1 CN 2022113509 W CN2022113509 W CN 2022113509W WO 2023045648 A1 WO2023045648 A1 WO 2023045648A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically transparent
transparent substrate
substrate
photoresist material
double
Prior art date
Application number
PCT/CN2022/113509
Other languages
English (en)
French (fr)
Inventor
郭景华
王钧
江建国
Original Assignee
浙江鑫柔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江鑫柔科技有限公司 filed Critical 浙江鑫柔科技有限公司
Publication of WO2023045648A1 publication Critical patent/WO2023045648A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2032Simultaneous exposure of the front side and the backside
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light

Definitions

  • the invention belongs to the field of photolithographic patterning, and in particular relates to a double-sided patterning method based on an optically transparent substrate.
  • the patterning of photosensitive materials by photolithography technology has been widely used in the field of electronics and microelectronics, especially in the field of printed circuit boards and chips in the electronics industry. This process has decades of application and production experience.
  • the photosensitive material is selectively exposed to light radiation (usually ultraviolet light, visible light, infrared light or a combination thereof), and the exposure changes the solubility of the photosensitive adhesive, (light insoluble-negative glue; light soluble -Positive photoresist), and then remove the exposed or unexposed area of the photosensitive material with a solvent or developing medium, and this photosensitive material is generally called a photoresist material.
  • the pattern in the area not removed by the developer can serve as a protective barrier, which can be used to protect the area under the pattern from chemical or physical attack in the subsequent wet or dry process.
  • Photolithography can also be used to pattern devices on transparent substrates, which is especially common in the fields of information display and human-machine interfaces. Electrodes are obtained by patterning the glass surface with optically transparent material ITO by photolithography, which can be prepared Capacitive touch units are used in display devices, on which users can directly interact with patterns displayed on the screen.
  • multilayer structures are usually produced.
  • the usual method is to coat photoresist materials on both sides of the epoxy glass with copper clad on the upper and lower sides, and then perform patterning on both sides at the same time.
  • the simultaneous exposure process on both sides can reduce the number and complexity of process steps, which is economically and technically beneficial.
  • the key to double-sided patterning here is that the copper layer is opaque, and the light exposed on the top does not affect the photoresist coating on the bottom, and vice versa.
  • the purpose of the present invention is to overcome the defect that the double-sided patterning method in the prior art is usually used for the copper layer of opaque material, but it is difficult to perform double-sided photolithography on the optically transparent substrate at the same time, and to provide a method based on the optically transparent substrate.
  • the present invention provides a method for double-sided patterning based on an optically transparent substrate, wherein the method comprises the following steps:
  • the optically transparent substrate is composed of one or more layers including at least a base layer, and optionally other layers that modify the surface properties of the base layer.
  • said base layer of said optically transparent substrate is made of polyethylene terephthalate (PET), transparent polyimide (CPI), cycloolefin polymer (COP, which may especially be cyclo Olefin copolymer (COC)), super retardation film (SRF), polycarbonate (PC) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • CPI transparent polyimide
  • COC cycloolefin polymer
  • SRF super retardation film
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • the surface properties are selected from at least one of adhesion, surface tension and chemical resistance.
  • the UV blocking function of the optically transparent substrate is achieved by adding a UV blocking material during the production process of the optically transparent substrate; or setting it on one or more layers in the optically transparent substrate UV blocking coating to achieve.
  • the optically transparent substrate is planar, preferably in the form of a plate, sheet or film.
  • the optically transparent substrate may be a polarizer, preferably linear or elliptical.
  • said photoresists coated on said two surfaces are independently selected from the same or different positive photoresists or negative photoresists.
  • different exposure energies are matched to the photoresist material according to the blocking condition of the optically transparent substrate at the target exposure wavelength.
  • the UV light has a wavelength below 400 nm.
  • said optically transparent substrate has a transmittance of ⁇ 10%, preferably ⁇ 2% at the wavelength of said UV light.
  • the present invention also provides a visual display manufactured by the method as described above.
  • the present invention also provides a touch screen, especially a capacitive touch screen, which is manufactured based on the above method.
  • the technical solution of the present invention at least includes the following advantages:
  • the substrates used are all roll-to-roll production materials, and from the coating of photoresist materials, exposure of materials, and subsequent processes (according to different products, processes may include etching, evaporation, electroplating, and chemical plating) It can be rolled to roll, and the process can be completed in one process, which not only significantly improves the production efficiency, but also reduces the production cost and improves the production efficiency;
  • Double-layer patterns can be obtained on a single-layer transparent substrate. Based on this, a double-sided metal touch grid can be obtained by combining the single-layer wet and dry metal grid preparation processes. Compared with previous single-layer pattern products, This product can realize the function of capacitive touch screen with one layer of film material, which greatly reduces the overall thickness of the touch screen and has high market acceptance; and
  • a wide range of substrates can be selected, and products with specific functions can be obtained by selecting different substrates, such as realizing flexibility, high transparency, eliminating color pattern characteristics, bending, and touch screens that can replace polarizers.
  • FIG. 1 shows a schematic diagram of simultaneous patterning on both sides of an optically transparent substrate according to an embodiment of the present invention.
  • FIG. 2 shows an enlarged view under a microscope of the pattern formed according to Example 1 of the present invention.
  • FIG. 3 shows an enlarged view under a microscope of the pattern formed according to Comparative Example 1 of the present invention.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
  • the present invention provides a method for double-sided patterning based on an optically transparent substrate, wherein the method comprises the following steps:
  • the term "optical transparent substrate” as used herein refers to a substrate with high transparency, which means that the substrate can transmit all or part of the visible spectrum light radiation ( Usually in the range of 380nm-720nm); or can pass through the full-spectrum light mixed with different proportions of red, yellow and blue.
  • the lowest wavelength in this system can be extended to about 420nm.
  • the substrate does not need to transmit light of wavelengths shorter than the lowest wavelength to appear transparent. That is to say, the optically transparent substrate of the present invention can achieve the effect of optical transparency as long as it can transmit all or part of the visible light radiation.
  • the optically transparent substrate according to the present invention does not have to be monolithic in composition, but may consist of one or more layers which may include at least a base layer and, optionally, modify the base Layers have the surface properties of other layers.
  • the present invention has no special limitation on the material of the base layer, and can be made of various common materials in the field, as long as these materials can have optical transparency in the visible spectrum or one or more narrow-band spectra.
  • the base layer of the optically transparent substrate may be made of polyethylene terephthalate (PET), transparent polyimide (CPI), cycloolefin polymer (CPI), cycloolefin polymer ( The COP, may be made, in particular, of at least one of cycloolefin copolymer (COC), super retardation film (SRF), polycarbonate (PC), and polyethylene naphthalate (PEN).
  • these other layers can be configured as layers that modify or improve surface properties such as adhesion, surface tension and chemical resistance.
  • the optically transparent substrate provided by the present invention is an optically transparent substrate with UV blocking function, and its purpose is to make the optically transparent substrate at the target exposure wavelength (usually it can be UV wavelength range,
  • the UV wavelength band less than 400nm has a relatively low transmittance, specifically, the transmittance can be ⁇ 10% (such as 1%, 2%, 3%, 4%, 5%, 6%, 7% %, 8%, 9% or 10%, etc.), preferably ⁇ 2% (such as 0.1%, 0.5%, 1% or 2%, etc.), wherein the substrate transmittance uses Lambda850+ UV-visible spectrophotometer according to ASTM D1003 standard test.
  • the UV blocking function of the optically transparent substrate can be achieved by adding a UV blocking material during the production process of the optically transparent substrate; or one or more of the optically transparent substrates This is achieved by placing a UV blocking coating on a layer (such as a base layer).
  • a planar optically transparent substrate may be used, for example, the optically transparent substrate may exist in the form of a plate, sheet or film.
  • the optically transparent substrate of the present invention can also be a polarizer (linear or elliptical), so that the use of appropriate polarized light can prevent light from passing through the substrate, thereby avoiding UV light irradiated from one side of the substrate to cause the other side of the substrate to
  • the photoresist material of the substrate undergoes a photochemical reaction, and the UV light irradiated from one side of the substrate causes the photoresist material on the other side of the substrate to cure and undergo a photochemical reaction.
  • This product can be directly used in liquid crystal displays that require polarizers, and at the same time meet the needs of polarizers and touch units, thereby reducing the thickness and weight of the device.
  • the optically transparent substrate of the present invention may suitably contain one or more types of additives.
  • the additives may be UV absorbers, antioxidants, lubricants, plasticizers, release agents, anti-coloring agents, flame retardants, surfactants, antistatic agents, pigments and colorants, and the like.
  • the thickness of the optically transparent substrate of the present invention can be appropriately determined, however, generally, the thickness can be determined between 1 ⁇ m and 500 ⁇ m in consideration of its strength, workability, and thin-layer properties. In particular, a value between 1 ⁇ m and 300 ⁇ m is preferred, and a value between 5 ⁇ m and 200 ⁇ m is more preferred.
  • the term "photoresist” as used herein refers to a material that undergoes a chemical or physical change that undergoes a photochemical reaction upon exposure to one or more specific wavelengths of light radiation, usually resulting in said
  • the molecular weight of the photoresist changes, that is, the solubility in a specific developer changes, and this reaction occurs at a certain rate.
  • the current process usually uses two or more repeated exposure and development followed by an etching process to pattern both sides of the substrate, but this solution is only applicable to negative photoresist materials and cannot be applied to positive photoresist materials , because the positive photoresist will still be affected by the light transmitted through the other side during the second exposure stage.
  • the double-sided patterning method of the present invention is not affected by the properties of the photoresist material, and a positive photoresist material or a negative photoresist material can be used arbitrarily as required.
  • the photoresists coated on the two surfaces may be independently selected from the same or different positive photoresists or negative photoresists.
  • the photoresist material of the present invention may contain photoinitiators (also referred to as sensitizers or photosensitizers, etc.), and depending on the photoinitiator, the photoresist material can be polymerized at different wavelengths.
  • the type of the photoinitiator of the present invention is not particularly limited, and may be a common photoinitiator in the art.
  • the photoinitiator can be at least one selected from the group consisting of acetophenone compounds, benzophenone compounds, triazine compounds, thioxanthone compounds and oxime ester compounds .
  • acetophenone compounds may include 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 2-(4-methylbenzyl)-2- (Dimethylamino)-1-(4-morpholinophenyl)butan-1-one, etc.
  • benzophenone compounds may include benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethyl Base benzophenone etc.
  • triazine compounds may include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl) Methyl)-6-(4-methoxynaphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(3,4-dimethoxy phenyl)vinyl]-1,3,5-triazine and 2,4-bis(trichloromethyl)-6-2-(4-diethylamino-2-methylphenyl)ethenyl ]-1,3,5-triazine, etc.
  • thioxanthone compounds may include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, and 1-chloro-4-propoxythioxanthone xanthone etc.
  • oxime ester compounds may include o-ethoxycarbonyl- ⁇ -oxyimino-1-phenylpropan-1-one, 1,2-octanedione, 1-(4-phenylthio)benzene base and 2-(o-benzoyl oxime), etc.
  • step (3) after exposing the optically transparent substrate coated with the photoresist material under the irradiation of UV light, since the optically transparent substrate of the present invention has a UV blocking function, it is possible to avoid
  • the UV light irradiated on one side causes the photoresist material on the other side of the substrate to undergo a photochemical reaction.
  • the UV light irradiated from one side of the substrate causes the photoresist material on the other side of the substrate to cure and undergo a photochemical reaction, so simultaneous photolithography on both sides can be realized.
  • appropriate process parameters such as exposure energy, exposure intensity, and exposure time, can be comprehensively evaluated. In particular, different exposure energies (for example, 3-300 mJ/cm 2 ) can be matched for the photoresist material according to the blocking condition of the optically transparent substrate at the target exposure wavelength.
  • a developer can usually be used for development to selectively remove the soluble photoresist coating from the upper and lower surfaces of the substrate, leaving a pattern of insoluble photoresist material, and the patterns on the upper and lower sides are usually inconsistent.
  • the resulting photoresist pattern can play different roles in different process schemes, for example, it can be used as an etching mask to protect the underlying material from dry or wet etching; it can also form a mask to prevent subsequent etching.
  • the material is deposited on the underlying material (for example by metal evaporation or electroplating); or a template can also be formed on which subsequent layers are formed (for example electroless plating can be initiated by a catalyst of electroless palladium or platinum).
  • FIG. 1 shows a schematic diagram of simultaneous patterning on both sides of an optically transparent substrate according to an embodiment of the present invention.
  • the present invention also provides a visual display manufactured by the method as described above.
  • the present invention also provides a touch screen, especially a capacitive touch screen, which is manufactured by the above-mentioned method.
  • the method for double-sided patterning based on an optically transparent substrate can avoid UV light irradiated from one side of the substrate from causing the substrate to
  • the photoresist material on the other side of the material is cured to undergo a photochemical reaction, and then one-time exposure is realized to realize double-sided patterning; and the substrate used is a roll-to-roll production material, from the coating of the photoresist material, the exposure of the material, and the follow-up
  • the process can be rolled to roll, and the process is completed in one process, which not only significantly improves the production efficiency, but also reduces the production cost and improves the production efficiency.
  • the product obtained by the double-sided patterning method of the present invention obtains a double-layer pattern on a single-layer transparent substrate, compared with the previous single-layer pattern products, the overall thickness of the touch screen is greatly reduced, and the market acceptance is high. .
  • the transparent substrate 1 is taken, and the transmittance at a wavelength of 365 nm measured by an ultraviolet-visible spectrophotometer is less than 2.4%.
  • 800nm photoresist material is coated on the upper and lower sides of the substrate at the same time, and baked in an oven at 80°C for 30s to form a base film 1A, in which the photoresist material is a negative photoresist. It has a specific reaction rate at a wavelength of 365nm.
  • the base film 1A Take the base film 1A and apply it by roll-to-roll wet coating.
  • the upper and lower layers of the base film 1A are coated with a catalyst containing palladium metal at the same time.
  • For the coating apply a 500nm protective coating on the surface of the upper and lower catalyst layers by wet coating, and bake in an oven at 80°C for 20s to form a protective coating with the function of isolating water and oxygen, and prepare the base film 1B.
  • the obtained base film 1B was subjected to contact-type double-sided exposure on a UV exposure machine with a wavelength of 365 nm using a photomask with different patterns on both sides.
  • the exposure energy was 50 mJ/cm 2 to obtain a base film 1C with partial curing.
  • the obtained base film 1C was developed to remove the uncured region to obtain a double-sided patterned substrate.
  • the pattern of the obtained substrate is shown in FIG. 2 under a microscope, wherein the pattern of each side is the same as the pattern of the contacted mask and does not affect each other.
  • electroless copper plating can be performed in a copper plating solution to form a copper layer on the patterned area, that is, to obtain a capacitive touch grid with a conductive layer on both sides.
  • the base film 2A Take the base film 2A and apply it by roll-to-roll wet coating.
  • the upper and lower layers of the base film 2A are coated with a catalyst containing palladium metal at the same time.
  • a 500nm protective coating was applied to the surface of the upper and lower catalyst layers by wet coating, and baked in an oven at 80°C for 20s to form a protective coating with the function of isolating water and oxygen, and the base film 2B was prepared.
  • the obtained base film 2B was subjected to contact double-side exposure on a UV exposure machine with a wavelength of 314 nm using a photomask with different patterns on both sides.
  • the exposure energy was 7 mJ/cm 2 to obtain a partially cured base film 2C.
  • the obtained base film 2C was developed to remove the uncured region to obtain a double-sided patterned substrate.
  • the pattern of the obtained substrate is shown in Figure 3 under the microscope.
  • the patterns on both sides interact with each other, that is, during the simultaneous exposure of both sides, the ultraviolet light on one side passes through the substrate and irradiates to the other side, and the photoresist material in the corresponding area is cured , so both the upper and lower sides of the substrate have two photomask patterns.
  • electroless copper plating can be performed in the copper plating solution to form a copper layer on the above-mentioned patterned area, and a sample with two patterns on both sides is obtained, but the function of the capacitive touch screen cannot be realized .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)

Abstract

一种基于光学透明基材进行双面图案化的方法、视觉显示器及触控屏,方法包括:(1)提供具有UV阻隔功能的光学透明基材;(2)在光学透明基材的两个表面上涂覆光阻材料;(3)将涂覆有光阻材料的光学透明基材在UV光的照射下曝光并进行显影,以得到双面图案化的光学透明基材。该方法避免从基材一边照射的UV光引起基材另一边的光阻材料发生光化学反应,一次性曝光实现双面图案化,基材为可卷对卷生产材料,从光阻材料的涂覆、曝光及后续工艺皆可卷对卷,提高生产效率且降低生产成本。

Description

一种基于光学透明基材进行双面图案化的方法
相关申请的交叉引用
本申请要求于2021年9月23日提交的申请号为202111114879.9的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本发明属于光刻图案化领域,具体地,涉及一种基于光学透明基材进行双面图案化的方法。
背景技术
通过光刻技术实现感光材料图案化,这一技术在电子和微电子领域已经得到广泛应用,尤其在电子工业印刷电路板和芯片领域,该工艺已经有几十年的应用生产经验。在光刻过程中,光敏材料选择性的暴露在光照辐射(通常是紫外线、可见光、红外线或者其组合)中,曝光使得光敏胶的可溶性发生改变,(光照不可溶-负性胶;光照可溶-正性胶),然后用溶剂或者显影介质除去光敏材料的已曝光或者未曝光区域,这种光敏材料一般称为光阻材料。在上述工艺中,未被显影液去除区域图案可以作为一个保护屏障,在后续的湿法或者干法工艺中可以用来保护图案下的区域免受化学或者物理攻击。
例如,将光阻材料涂在覆铜的环氧玻璃板上,通过光刻显影后,暴露的铜层会被刻蚀掉,曝光后形成的图案保护区域下的铜将不会受到刻蚀液的影响,随后去除铜表面的光阻后得到所需的铜图案。光刻工艺也可用在透明基材上对器件进行图案化,这在信息显示和人机界面领域尤其常见,在带有光学透明材料ITO的玻璃表面通过光刻技术形成图案化得到电极,可制备电容式触摸单元应用在显示设备中,该设备上用户可直接与屏幕上显示的图案进行交互式操作。
在印刷电路板领域,通常要生产多层结构,通常做法是在上下两面覆铜的环氧玻璃上两面涂布光阻材料,然后同时在两面进行图案化处理。两面同时进 行曝光工艺,可以减少工艺步骤的数量和复杂性,在经济上和技术上都是有利的。此处双面图案化的关键是铜层是不透明的,顶部曝光的光线不会影响到底部的光阻涂层,反之亦然。
在显示器、触摸屏、太阳能电池和照明应用中,在光学透明基材上同时进行双面光刻是不可行的,因为基材的透明性意味着材料一面进行曝光时,光也可透过基材影响另一面光阻材料,表现为基材两面图案总是发生干涉,而无法得到目标图案。因此,这些器件通常是有几个基片叠加组成,每个基片上只有一个图案化层;要么通过两个或者多个重复的曝光显影后再进行刻蚀工艺,这种方案也只适用于负性光阻,不能应用于正性光阻,因为第二次曝光阶段正性光阻仍然会受到另一面透过的光照影响。
发明内容
本发明的目的在于克服现有技术中的双面图案化方法通常是用于不透明材料铜层,而在光学透明基材上难以同时进行双面光刻的缺陷,提供一种能够基于光学透明基材的在其表面上同时进行双面图案化的方法。
在一方面,本发明提供了一种基于光学透明基材进行双面图案化的方法,其特征在于,所述方法包括以下步骤:
(1)提供具有UV阻隔功能的光学透明基材;
(2)在所述光学透明基材的两个表面上涂覆光阻材料;以及
(3)将涂覆有所述光阻材料的所述光学透明基材在UV光的照射下曝光并进行显影,以得到双面图案化的光学透明基材。
在一个实施方式中,所述光学透明基材由一个或多个层组成,所述一个或多个层包括至少基础层,以及任选地,修饰所述基础层的表面性能的其他层。
在一个实施方式中,所述光学透明基材的所述基础层由聚对苯二甲酸乙二酯(PET)、透明聚酰亚胺(CPI)、环烯烃聚合物(COP,可以特别是环烯烃共聚物(COC))、超级延迟膜(SRF)、聚碳酸酯(PC)和聚萘二甲酸乙二醇酯(PEN)中的至少一种制成。
在一个实施方式中,所述表面性能选自附着力、表面张力和耐化学性能中 的至少一种。
在一个实施方式中,所述光学透明基材的UV阻隔功能通过在所述光学透明基材的生产过程中添加UV阻隔材料;或者在所述光学透明基材中的一个或多个层上设置UV阻隔涂层来实现。
在一个实施方式中,所述光学透明基材是平面的,优选地,以板、片或膜的形式存在。
在一个实施方式中,所述光学透明基材可以是偏光片,优选地以线性或椭圆性存在。
在一个实施方式中,在所述两个表面上涂覆的所述光阻材料独立地选自相同或不同的正性光阻材料或负性光阻材料。
在一个实施方式中,根据所述光学透明基材在目标曝光波长处的阻隔情况为所述光阻材料匹配不同的曝光能量。
在一个实施方式中,所述UV光的波长低于400nm。
在一个实施方式中,所述光学透明基材在所述UV光的波长下的透过率为≤10%,优选为≤2%。
在另一方面,本发明还提供了一种视觉显示器,其通过如上所述的方法制造。
在另一方面,本发明还提供了一种触控屏,特别是电容式触控屏,其基于如上所述的方法制造。
与现有的技术方案相比,本发明的技术方案至少包括以下优点:
(1)通过选择合适的基材与光阻材料和曝光参数进行配合,可以避免透从基材一边照射的UV光引起基材另一边的光阻材料发生光化学反应,继而实现一次性曝光实现双面图案化,对比以往技术中多次显影、多次曝光流程大大简化了工艺流程;
(2)所用到基材均为可卷对卷生产材料,并且从光阻材料的涂覆、材料的曝光、后续工艺(根据产品不同,流程可包括蚀刻、蒸镀、电镀、化学镀)皆可卷对卷,一次流程完成,这不仅显著提高了生产效率,制程的减少明显降低 了生产成本,提高了生产效率;
(3)可以在单层透明基材上得到双层图案,基于此,结合单层湿法及干法制备金属网格工艺即可得到双面金属触控网格,对比以往单层图案产品,该产品一层膜材即可实现电容式触控屏功能,大大降低了触控屏的整体厚度,市场可接受度高;以及
(4)所选用的基材范围广泛,选择不同的基材可以得到特定功能的产品,例如实现柔性化,高透性,消除彩纹特性,可弯折,可替代偏振片的触控屏。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1示出了根据本发明实施方式的在光学透明基材的两面同时进行图案化的示意图。
图2示出了根据本发明实施例1形成的图案在显微镜下的放大图。
图3示出了根据本发明对比例1形成的图案在显微镜下的放大图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
应当理解,尽管术语“第一”,“第二”等在本文中可以用于描述各种元件,但是这些元件不应受这些术语限制。这些术语仅用于将一个元件与另一个元件 区分开。例如,在不脱离本发明范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。还应当理解,诸如在通常使用的字典中定义的那些术语应该被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且不会以理想化或过度形式化的含义来解释,除非在此明确地定义。
在一方面,本发明提供了一种基于光学透明基材进行双面图案化的方法,其特征在于,所述方法包括以下步骤:
(1)提供具有UV阻隔功能的光学透明基材;
(2)在所述光学透明基材的两个表面上涂覆光阻材料;以及
(3)将涂覆有所述光阻材料的所述光学透明基材在UV光的照射下曝光并进行显影,以得到双面图案化的光学透明基材。
对于步骤(1),如本文所用的术语“光学透明基材”是指一种具有高透性的基材,所述高透性是指该基材能够透过全部或者部分可见光谱光照辐射(通常在380nm-720nm);或者能够透过不同比例红黄蓝混合而成的全光谱光,这种体系中最低波长是能延伸到420nm左右。在这两种体系下,基材不需要透过比最低波长更短的波长光来显示透明。也就是说,本发明的光学透明基材只要能够透过全部或者部分可见光谱光照辐射即可达到光学透明的效果。
根据本发明的光学透明基材在组成结构上并不一定是单一的,可以由一个或多个层组成,所述一个或多个层可以包括至少基础层,以及任选地,修饰所述基础层的表面性能的其他层。
本发明对基础层的材料没有特别的限制,可以由本领域中的各种常见材料制成,只要这些材料可以在可见光谱或者一个或者多个窄带光谱具有光学透明性即可。例如,在本发明的一个实施方式中,所述光学透明基材的所述基础层可以由聚对苯二甲酸乙二酯(PET)、透明聚酰亚胺(CPI)、环烯烃聚合物(COP,可以特别是环烯烃共聚物(COC))、超级延迟膜(SRF)、聚碳酸酯(PC)和聚萘二甲酸乙二醇酯(PEN)中的至少一种制成。
对于上述的修饰所述基础层的表面性能的其他层,可以根据表面性能的实际需要由本领域技术人员自由判断和选择,所述表面性能可以选自附着力、表面张力和耐化学性能中的至少一种,相应地,这些其他层则可以设置为修饰或改善附着力、表面张力和耐化学性能等表面性能的层。
另外,如上所述,本发明所提供的光学透明基材是具有UV阻隔功能的光学透明基材,其目的是为了使所述光学透明基材在目标曝光波长处(通常可以是UV波长段,例如小于400nm的UV波长段)具有较低的透过率,具体地,所述透过率可以为≤10%(例如1%、2%、3%、4%、5%、6%、7%、8%、9%或10%等),优选为≤2%(例如0.1%、0.5%、1%或2%等),其中基材透过率使用Lambda850+紫外可见分光光度计根据ASTM D1003标准测试。
这种在低波段的“不透明”特性可以使得所述基材对上下表面涂覆的光阻材料所敏感的一个或者多个波长的光传输受到限制。在本发明的一个实施方式中,所述光学透明基材的UV阻隔功能可以通过在所述光学透明基材的生产过程中添加UV阻隔材料;或者在所述光学透明基材中的一个或多个层(例如基础层)上设置UV阻隔涂层来实现。
另外,对本发明的光学透明基材的形状,可以采用平面的光学透明基材,例如,所述光学透明基材可以板、片或膜的形式存在。此外,本发明的光学透明基材也可以是偏光片(线性或者椭圆性),因此使用适当的偏振光可以防止光透过衬底,从而避免从基材一边照射的UV光引起基材另一边的光阻材料发生光化学反应从基材一边照射的UV光引起基材另一边的光阻材料固化发生光化学反应。这种产品可以直接使用在需要偏光片的液晶显示器中,同时满足其需要偏振器和触控单元的需求,从而减少设备的厚度和重量。
进一步地,本发明的光学透明基材以适当地包含一种或多种类型的添加剂。对于添加剂,例如,所述添加剂可以为UV吸收剂、抗氧化剂、润滑剂、增塑剂、脱模剂、防着色剂、阻燃剂、表面活性剂、抗静电剂、颜料和着色剂等。
此外,本发明的光学透明基材的厚度可以适当地确定,然而,一般来说,考虑到其强度、可加工性和薄层性能,厚度可以确定在1μm和500μm之间。特别地,优选为1μm至300μm之间的值,更优选为5μm至200μm之间的值。
对于步骤(2),如本文所用的术语“光阻材料”是指暴露在一种或者多种特定波长的光照辐射后发生光化学反应而引起化学或者物理变化的材料,光化学反应通常会导致所述光阻材料分子量变化,即在特定显影液中的溶解度发生变化,并且该种反应是以一定的速率发生。目前的工艺通常采用两个或者多个重复的曝光显影后再进行刻蚀工艺来进行基材两面的图案化,但这种方案只适用于负性光阻材料,不能应用于正性光阻材料,因为第二次曝光阶段正性光阻仍然会受到另一面透过的光照影响。
然而,本发明的双面图案化方法并不受光阻材料性质的影响,可以根据需要任意地采用正性光阻材料或负性光阻材料。在本发明的一个实施方式中,在所述两个表面上涂覆的所述光阻材料可以独立地选自相同或不同的正性光阻材料或负性光阻材料。
另外,本发明的光阻材料可以包含光引发剂(也称为敏化剂或感光剂等),根据光引发剂的不同,可以使光阻材料在不同的波长下进行聚合反应。进一步地,对本发明的光引发剂的种类没有特别限制,并且可以为本领域中常见的光引发剂。在一个实施方式中,所述光引发剂可以选自由苯乙酮类化合物、二苯甲酮类化合物、三嗪类化合物、噻吨酮类化合物和肟酯类化合物组成的组中的至少一种。苯乙酮类化合物的具体实例可以包括2-羟基-2-甲基-1-苯基丙-1-酮、二乙氧基苯乙酮和2-(4-甲基苄基)-2-(二甲基氨基)-1-(4-吗啉代苯基)丁-1-酮等。二苯甲酮类化合物的具体实例可以包括二苯甲酮、邻苯甲酰基苯甲酸甲酯、4-苯甲酰基-4'-甲基二苯基硫醚和2,4,6-三甲基二苯甲酮等。三嗪类化合物的具体实例可以包括2,4-双(三氯甲基)-6-(4-甲氧基苯基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-(4-甲氧基萘基)-1,3,5-三嗪、2,4-双(三氯甲基)-6-[2-(3,4-二甲氧基苯基)乙烯基]-1,3,5-三嗪和2,4-双(三氯甲基)-6-2-(4-二乙基氨基-2-甲基苯基)乙烯基]-1,3,5-三嗪等。噻吨酮类化合物的具体实例可以包括2-异丙基噻吨酮、2,4-二乙基噻吨酮、2,4-二氯噻吨酮和1-氯-4-丙氧基噻吨酮等。肟酯类化合物的具体实例可以包括邻乙氧基羰基-α-氧基亚氨基-1-苯基丙-1-酮、1,2-辛二酮、1-(4-苯硫基)苯基和2-(邻苯甲酰肟)等。
对于步骤(3),在将涂覆有所述光阻材料的所述光学透明基材在UV光的照射下曝光后,由于本发明的光学透明基材具有UV阻隔功能,可以避免从基材 一边照射的UV光引起基材另一边的光阻材料发生光化学反应从基材一边照射的UV光引起基材另一边的光阻材料固化发生光化学反应,因此可以实现双面同时的光刻。另外,根据实际需要,可以综合评估适当的工艺参数,例如曝光能量、曝光强度及曝光时间等。特别地,可以根据所述光学透明基材在目标曝光波长处的阻隔情况为所述光阻材料匹配不同的曝光能量(例如3-300mJ/cm 2)。
在曝光后,通常可以使用显影液进行显影,选择性地从基材上下表面去除可溶性光阻涂层,留下不可溶性光阻材料图案,上下两面的图案通常是不一致的。所得的光阻图案在不同工艺方案中可发挥不同的作用,例如可以作为刻蚀掩膜,以保护底层材料不受干法或者湿法刻蚀的影响;也可形成掩膜板,防止随后的材料沉积在底层材料上(例如通过金属蒸发或者电镀);或也可以形成模板,在其上形成随后的层(例如化学钯或铂的催化剂可以引发的化学镀)。
图1示出了根据本发明实施方式的在光学透明基材的两面同时进行图案化的示意图。
在另一方面,本发明还提供了一种视觉显示器,其通过如上所述的方法制造。
在另一方面,本发明还提供了一种触控屏,特别是电容式触控屏,其通过如上所述的方法制造。
综上所述,本发明所提供的基于光学透明基材进行双面图案化的方法通过选择合适的基材与光阻材料和曝光参数进行配合,可以避免从基材一边照射的UV光引起基材另一边的光阻材料固化发生光化学反应,继而实现一次性曝光实现双面图案化;并且所用到基材均为可卷对卷生产材料,从光阻材料的涂覆、材料的曝光、后续工艺皆可卷对卷,一次流程完成,这不仅显著提高了生产效率,制程的减少明显降低了生产成本,提高了生产效率。另外,由本发明的双面图案化的方法得到的产品由于是在单层透明基材上得到双层图案,对比以往单层图案产品,大大降低了触控屏的整体厚度,市场可接受度高。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进 行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
下面对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的的所有其他实施例,都属于本发明保护的范围。
实施例
实施例1
取透明基材1,使用紫外可见分光光度计下测试的365nm波长处透过率<2.4%。通过卷对卷,湿法涂布同时在基材的上下两面涂覆800nm光阻材料,并于80℃的烘箱中烘烤30s,形成基膜1A,其中光阻材料为负性光阻,其在365nm波长处具有特定的反应速率。
取基膜1A,通过卷对卷湿法涂布,基膜1A上下两层同时涂布含钯金属的催化剂,用量约1.6g/m 2,并于80℃烘箱烘烤30s,再取水溶性保护涂层,同样通过湿法涂布在上下催化剂层表面涂布500nm保护涂层,于80℃烘箱中烘烤20s后形成均有隔绝水氧功能的保护涂层,制备得到基膜1B。
所得基膜1B,在波长为365nm的紫外曝光机上,使用双面不同图案的光罩,进行接触式双面曝光,曝光能量为50mJ/cm 2,得到具有部分区域固化的基膜1C。
所得基膜1C通过显影后除去未固化的区域,得到具有双面图案化的基材。所得基材的图案在显微镜下如图2所示,其中每一面的图案与所接触的光罩图案相同,且不相互影响。基于显影后的基材,可以在镀铜液中进行化学镀铜,在上述具有图案的区域上形成铜层,即得到双面具有一种导电层的电容式触控网格。
对比例1
取透明基材2,使用紫外可见分光光度计下测试的314nm波长处透过率>12%。通过卷对卷,湿法涂布同时在基材的上下两面涂覆650nm光阻材料,并于80℃的烘箱中烘烤60s,形成基膜2A,其中光阻材料为负性光阻,其在314nm波长处具有特定的反应速率。
取基膜2A,通过卷对卷湿法涂布,基膜2A上下两层同时涂布含钯金属的催化剂,用量约1.4g/m 2,并于80℃烘箱烘烤30s,再取水溶性保护涂层,同样通过湿法涂布在上下催化剂层表面涂布500nm保护涂层,于80℃烘箱中烘烤20s后形成均有隔绝水氧的功能的保护涂层,制备得到基膜2B。
所得基膜2B,在波长为314nm的紫外曝光机上,使用双面不同图案的光罩,进行接触式双面曝光,曝光能量为7mJ/cm 2,得到具有部分区域固化的基膜2C。
所得基膜2C通过显影后除去未固化的区域,得到具有双面图案化的基材。所得基材的图案在显微镜下如图3所示,两面图案相互影响,即在两面同时曝光过程中,一侧的紫外光透过基材照射到另一侧,并固化对应区域的光阻材料,所以基材的上下两面均具有两个光罩的图案。基于显影后的基材,可以在镀铜液中进行化学镀铜,在上述具有图案的区域上形成铜层,得到了双面具有两种图案的样品,但无法实现电容式触控屏的功能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (13)

  1. 一种基于光学透明基材进行双面图案化的方法,其特征在于,所述方法包括以下步骤:
    (1)提供具有UV阻隔功能的光学透明基材;
    (2)在所述光学透明基材的两个表面上涂覆光阻材料;以及
    (3)将涂覆有所述光阻材料的所述光学透明基材在UV光的照射下曝光并进行显影,以得到双面图案化的光学透明基材。
  2. 根据权利要求1所述的方法,其中,所述光学透明基材由一个或多个层组成,所述一个或多个层包括至少基础层,以及任选地,修饰所述基础层的表面性能的其他层。
  3. 根据权利要求2所述的方法,其中,所述光学透明基材的所述基础层由聚对苯二甲酸乙二酯(PET)、透明聚酰亚胺(CPI)、环烯烃聚合物(COP,可以特别是环烯烃共聚物(COC))、超级延迟膜(SRF)、聚碳酸酯(PC)和聚萘二甲酸乙二醇酯(PEN)中的至少一种制成。
  4. 根据权利要求2所述的方法,其中,所述表面性能选自附着力、表面张力和耐化学性能中的至少一种。
  5. 根据权利要求2所述的方法,其中,所述光学透明基材的UV阻隔功能通过在所述光学透明基材的生产过程中添加UV阻隔材料;或者在所述光学透明基材中的一个或多个层上设置UV阻隔涂层来实现。
  6. 根据权利要求1所述的方法,其中,所述光学透明基材是平面的,优选地,以板、片或薄膜的形式存在。
  7. 根据权利要求1所述的方法,其中,所述光学透明基材是偏光片,优选地以线性或椭圆性存在。
  8. 根据权利要求1所述的方法,其中,在所述两个表面上涂覆的所述光阻材料独立地选自相同或不同的正性光阻材料或负性光阻材料。
  9. 根据权利要求1所述的方法,其中,根据所述光学透明基材在目标曝光 波长处的阻隔情况为所述光阻材料匹配不同的曝光能量。
  10. 根据权利要求1所述的方法,其中,所述UV光的波长低于400nm。
  11. 根据权利要求10所述的方法,其中,所述光学透明基材在所述UV光的波长下的透过率为≤10%,优选为≤2%。
  12. 一种视觉显示器,其通过根据权利要求1-11中任一项所述的方法制造。
  13. 一种触控屏,特别是电容式触控屏,其基于根据权利要求1-11中任一项所述的方法制造。
PCT/CN2022/113509 2021-09-23 2022-08-19 一种基于光学透明基材进行双面图案化的方法 WO2023045648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114879.9A CN113867108A (zh) 2021-09-23 2021-09-23 一种基于光学透明基材进行双面图案化的方法
CN202111114879.9 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045648A1 true WO2023045648A1 (zh) 2023-03-30

Family

ID=78993522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113509 WO2023045648A1 (zh) 2021-09-23 2022-08-19 一种基于光学透明基材进行双面图案化的方法

Country Status (2)

Country Link
CN (1) CN113867108A (zh)
WO (1) WO2023045648A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250783A (zh) * 2023-10-26 2023-12-19 湖北欧雷登显示科技有限公司 液晶显示模组的一体成型生产工艺及其应用
CN117250783B (zh) * 2023-10-26 2024-06-11 湖北欧雷登显示科技有限公司 液晶显示模组的一体成型生产工艺及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113867108A (zh) * 2021-09-23 2021-12-31 浙江鑫柔科技有限公司 一种基于光学透明基材进行双面图案化的方法
CN114721229B (zh) * 2022-03-18 2023-07-28 浙江鑫柔科技有限公司 一种新型非对称性紫外曝光方法
CN115524940B (zh) * 2022-09-20 2024-03-12 浙江鑫柔科技有限公司 一种触控屏及其形成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532105A (en) * 1992-08-07 1996-07-02 Hitachi Chemical Company, Ltd. Photolithographically viahole-forming photosensitive element comprising two photosensitive layers for the fabrication process of multilayer wiring board
CN101533325A (zh) * 2007-01-03 2009-09-16 苹果公司 双面的触感面板与挠性电路粘接
TW201007363A (en) * 2008-08-15 2010-02-16 Wen Wang The film structures and fabricating methods of which with two-side coatings and followed two-side photoresist coatings, and the patterned coatings made from above film structures
CN101726888A (zh) * 2008-10-27 2010-06-09 宸鸿光电科技股份有限公司 触控电路双面图形结构的制法
CN102541368A (zh) * 2011-03-14 2012-07-04 烟台正海电子网板股份有限公司 一种电容式触控面板及其制造方法
CN103502890A (zh) * 2011-03-18 2014-01-08 传导喷墨技术有限公司 包含具有双面光致抗蚀剂涂层的基底的可光图案化的结构
CN113867108A (zh) * 2021-09-23 2021-12-31 浙江鑫柔科技有限公司 一种基于光学透明基材进行双面图案化的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532105A (en) * 1992-08-07 1996-07-02 Hitachi Chemical Company, Ltd. Photolithographically viahole-forming photosensitive element comprising two photosensitive layers for the fabrication process of multilayer wiring board
CN101533325A (zh) * 2007-01-03 2009-09-16 苹果公司 双面的触感面板与挠性电路粘接
TW201007363A (en) * 2008-08-15 2010-02-16 Wen Wang The film structures and fabricating methods of which with two-side coatings and followed two-side photoresist coatings, and the patterned coatings made from above film structures
CN101726888A (zh) * 2008-10-27 2010-06-09 宸鸿光电科技股份有限公司 触控电路双面图形结构的制法
CN102541368A (zh) * 2011-03-14 2012-07-04 烟台正海电子网板股份有限公司 一种电容式触控面板及其制造方法
CN103502890A (zh) * 2011-03-18 2014-01-08 传导喷墨技术有限公司 包含具有双面光致抗蚀剂涂层的基底的可光图案化的结构
CN113867108A (zh) * 2021-09-23 2021-12-31 浙江鑫柔科技有限公司 一种基于光学透明基材进行双面图案化的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250783A (zh) * 2023-10-26 2023-12-19 湖北欧雷登显示科技有限公司 液晶显示模组的一体成型生产工艺及其应用
CN117250783B (zh) * 2023-10-26 2024-06-11 湖北欧雷登显示科技有限公司 液晶显示模组的一体成型生产工艺及其应用

Also Published As

Publication number Publication date
CN113867108A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023045648A1 (zh) 一种基于光学透明基材进行双面图案化的方法
US9874814B2 (en) Method for producing touch input sensor and photosensitve conductive film
KR102288090B1 (ko) 착색 경화막의 제조 방법 및 컬러 필터의 화소 패턴의 형성 방법
EP2686735B1 (en) Photopatternable structure containing substrate with two-side photoresist coatings
CN102639318B (zh) 透明导电性叠层体及其制造方法、以及静电容量式触摸面板
WO2011070801A1 (ja) 導電性基板およびその製造方法ならびにタッチパネル
TWI604273B (zh) 感光性元件、感光性元件卷、抗蝕劑圖案的製造方法及電子零件
TWI668514B (zh) 觸控面板電極保護膜形成用組成物、轉印膜、積層體、觸控面板用電極的保護膜及其形成方法、靜電電容型輸入裝置及圖像顯示裝置
TWI690828B (zh) 觸控感應器的製造方法
TWI670569B (zh) 感光性樹脂組成物、感光性元件、抗蝕劑圖案的形成方法及觸控面板的製造方法
JPWO2006011548A1 (ja) 感光性フィルム、感光性フィルム積層体及び感光性フィルムロール
WO2016024479A1 (ja) 転写フィルム、転写フィルムの製造方法、積層体、積層体の製造方法、静電容量型入力装置、及び、画像表示装置
TW201922815A (zh) 電路配線的製造方法、觸控面板的製造方法及附圖案基材的製造方法
TW202024150A (zh) 附圖案的基材的製造方法、電路基板的製造方法及觸控面板的製造方法
TW201837674A (zh) 觸控感測器以及觸控感測器的製造方法
KR20150063033A (ko) 감광성 수지 조성물, 감광성 엘리먼트, 레지스터 패턴의 형성 방법 및 터치 패널의 제조 방법
CN113156767A (zh) 感光性树脂组合物、感光性元件、抗蚀图案的形成方法和印刷配线板的制造方法
JP6295551B2 (ja) 透明導電性積層体、タッチパネル、および、透明導電性積層体の製造方法
KR102522237B1 (ko) 감광성 수지 조성물, 감광성 엘리먼트, 레지스터 패턴의 형성 방법 및 터치 패널의 제조 방법
JP2021152621A (ja) 感光性樹脂組成物
JP2015049797A (ja) 透明導電性積層体、タッチパネル、および、透明導電性積層体の製造方法
TWI841887B (zh) 感光元件、乾膜光阻、阻抗圖案、電路板、使用此些的顯示裝置
WO2022196537A1 (ja) 積層体及びその製造方法
JP2002014464A (ja) 透明基板両面のパターニング方法
JP2005300724A (ja) 配向制御用突起を有する基板及びそれを用いた液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE