WO2023035697A1 - 一种金属铜催化剂及其制备方法和应用 - Google Patents

一种金属铜催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023035697A1
WO2023035697A1 PCT/CN2022/096999 CN2022096999W WO2023035697A1 WO 2023035697 A1 WO2023035697 A1 WO 2023035697A1 CN 2022096999 W CN2022096999 W CN 2022096999W WO 2023035697 A1 WO2023035697 A1 WO 2023035697A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
catalyst
temperature
ssz
copper
Prior art date
Application number
PCT/CN2022/096999
Other languages
English (en)
French (fr)
Inventor
何忠
王琪
刘蓉
李旭
程阿超
刘练波
郜时旺
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能国际电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能国际电力股份有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023035697A1 publication Critical patent/WO2023035697A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the application belongs to the technical field of preparing low-carbon olefins from syngas, and relates to a metal copper catalyst and its preparation method and application.
  • Olefin is an important standard to measure the level of a country's chemical industry, and it is also an important basic organic chemical raw material, which occupies an important position in the entire chemical industry; at present, the industrial production method is mainly obtained through petroleum cracking production. And international crude oil prices are affected by foreign epidemics, and crude oil prices fluctuate; in recent years, China's economy has developed rapidly, and the consumption of crude oil has also increased year by year. China is a country with relatively poor oil resources, and more than 60% of crude oil needs to be imported every year.
  • Coal-to-olefins can be divided into two types: indirect method and direct method.
  • the indirect method refers to the synthesis gas obtained from coal gasification, which is first converted into methanol through catalytic reaction, and the methanol then uses the special pore structure of molecular sieve to undergo MTO reaction on the acidic site; direct method
  • the synthesis gas obtained through coal gasification is catalyzed to synthesize low-carbon olefins in one step through Fischer-Tropsch synthesis; compared with the indirect method, the process route of synthesis gas one-step synthesis of low-carbon olefins is simple and saves equipment investment, but this technology has not yet been industrialized
  • the application is still under development.
  • catalysts for one-step synthesis of olefins are mainly divided into two research directions: (1) metal oxide catalysts, and (2) multifunctional catalysts coupled with metal oxides and molecular sieves.
  • metal oxide catalysts mainly use Fe, Co, Cr, Cu, Zn and other metal elements to prepare ultrafine ion catalysts through laser, plasma and other technologies.
  • Carbon hydrocarbons occupy the majority, and the selectivity of low-carbon olefins is poor; while the multifunctional catalyst is to couple metal oxides with molecular sieve catalysts to directly synthesize low-carbon olefins from synthesis gas in one step.
  • the synthesis process of such catalysts does not require complicated technical means , easy to operate and easy to scale up, it is the technical route with the most potential for industrial development.
  • the prior art discloses a catalyst for producing low-carbon olefins from syngas and a preparation method thereof.
  • the main active components of the catalyst are iron oxide and zinc oxide, and the auxiliary active components are potassium hydroxide and magnesium carbonate.
  • the separation process of the process is simple, The production of methane and CO2 is low, and low-carbon olefins can be directly synthesized in one step without methanol intermediate products.
  • the active components in this patent are iron oxide and zinc oxide, and the reaction will generate a large amount of high-carbon hydrocarbons, and the selectivity of low-carbon olefins is relatively low.
  • prior art also discloses a kind of Cu-SAPO-34 molecular sieve synthetic method simultaneously, and this method can control the copper load in SAPO-34 molecular sieve within a certain range, effectively regulates silicon content and distribution in molecular sieve, and product yield Higher, but the catalyst is mainly used in nitrogen oxide removal reaction.
  • the purpose of the present application is to overcome the shortcomings of the catalyst for the one-step synthesis of low-carbon olefins in the prior art, the CO conversion rate and the selectivity of low-carbon olefins are limited, and to provide a metal copper catalyst and its preparation method and application.
  • a metal copper catalyst comprises the following components: copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1:( 1-5):(0.1-1.5):(3.0-10):(0.1-0.5).
  • the present application also provides a method for preparing the metal copper catalyst described above, comprising the steps of:
  • step 2) Mix the aluminum salt and the solvent to obtain an aluminum salt solution, then add the mixed solution and lye containing the modified Cu-SSZ-13 molecular sieve obtained in step 1) to the aluminum salt solution for coprecipitation reaction, during the reaction Maintain the pH of the reaction solution at 7.5-8.5;
  • step 3 dissolving aluminum salt and silica sol in water, adding the catalyst precursor obtained in step 3), controlling the pH of the mixed solution to be 2.0-3.5, then grinding and drying the mixed solution to obtain catalyst precursor powder;
  • the heating and stirring temperature in step 1) is 60-90°C, and the heating and stirring time is 2-10h;
  • the mass ratio of copper salt, zinc salt, Cu-SSZ-13 molecular sieve and inorganic acid solution is (5-115) : (2-8): (3-100): (50-200),
  • the inorganic acid solution is a nitric acid solution, and the concentration of the nitric acid solution is 0.05-0.3mol/L;
  • the mass ratio of the aluminum salt and the solvent described in step 2) is (0.5-5): (50-300), and the mass ratio of the mixed solution, lye and aluminum salt solution containing the modified Cu-SSZ-13 molecular sieve is (50-400): (1-200): (0.5-300), the coprecipitation reaction temperature is 60-90°C, and the coprecipitation reaction time is 2-6h.
  • the solid-to-liquid ratio in the mixed liquid in step 1) is 1:(10-20).
  • the aging step in step 3) uses microwave heating for aging, the microwave power is 380-420W, the heating temperature is 60-90°C, and the heating time is 0.5-4h;
  • the washing step uses deionized water for washing , washing until the pH of the filter cake is 7-7.5;
  • step 4 the mass ratio of aluminum salt, silica sol, catalyst precursor and water is (3-6): (8-12): (1-6): (10-200), using 0.05-0.3mol/L
  • the nitric acid controls the pH of the mixed solution to be 2.0-3.5; the drying step is spray drying, and the spray drying temperature is 100-300°C.
  • the reducing atmosphere in step 5 is a hydrogen atmosphere, the calcination temperature is 400-600°C, and the calcination time is 4-8h;
  • step 6 the oxygen-containing atmosphere is air, the heating temperature is 60-100°C, and the heating time is 4-12h.
  • step 6 the semi-finished catalyst powder is cooled to room temperature in a hydrogen atmosphere, and nitrogen is introduced into one air inlet of the tube furnace, and the temperature in the tube furnace is slowly increased to 60-100° C. to maintain a constant temperature for 1 -2h, feed the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the tube furnace The atmosphere is all air, and the temperature of the tube furnace is lowered to room temperature to obtain the finished multifunctional catalyst Cu@Cu-SSZ-13.
  • the preparation method of the Cu-SSZ-13 molecular sieve comprises the following steps:
  • step S2 Heating and crystallizing the mixed solution A obtained in step S1. After the crystallization reaction is completed, the reaction solution is cooled, filtered, washed, and the filtrate is collected. The washed filter cake is dried and roasted to obtain the Cu-SSZ- 13 Molecular sieves.
  • the mass ratio of aluminum salt, copper salt, tetraethylenepentamine, sodium hydroxide, silicon source and water in step S1 is (2-15):(8-30):(10-25):(2 -8): (20-100): (200-300), the heating temperature is 60-90°C; optional, the stirring speed is 100-600r/min, this application does not specifically limit the heating time, as long as it can be dissolved evenly That's it.
  • step S2 the crystallization temperature is 120-220°C, the crystallization time is 72-150h, the calcination temperature is 400-600°C, and the calcination time is 4-8h.
  • the drying step is to use microwave heating for drying, and the microwave power is 380 -420W, the heating temperature is 60-120°C, and the heating time is 10-30min; optionally, the stirring speed during the crystallization process is 200-600r/min.
  • step S2 deionized water is used for washing, and the pH of the washed filter cake is 7-7.5.
  • the solvent described in step 2) is the filtrate collected in step S2.
  • the aluminum salt is selected from one or more of sodium metaaluminate, pseudoboehmite and aluminum isopropoxide;
  • the copper salt is selected from copper nitrate and/or copper acetate
  • the zinc salt is selected from zinc nitrate and/or zinc acetate
  • the lye is obtained by mixing at least two of sodium hydroxide, sodium carbonate and sodium bicarbonate with water;
  • the silicon source is selected from one or more of silica sol with a particle diameter of 50-100 nm, silica sol with a particle diameter of 2-10 nm, and ethyl orthosilicate.
  • the metal copper catalyst described in the application is used for the one-step synthesis of low-carbon olefins from synthesis gas.
  • the present application also provides an application of the above-mentioned metal copper catalyst or the metal copper catalyst prepared by the above-mentioned preparation method in the synthesis of light olefins from synthesis gas.
  • This application provides a kind of preparation method of metallic copper catalyst, utilizes copper salt, zinc salt to carry out modification to Cu-SSZ-13 molecular sieve, then the modified Cu-SSZ-13 mixed solution is mixed with lye, aluminum The salt solution undergoes co-precipitation reaction to form a CuZnAl precursor with a hydrotalcite-like structure, and the CuZnAl with a hydrotalcite-like structure is formed by calcination in a reducing atmosphere, thereby forming a multifunctional Cu@Cu-SSZ-13 catalyst.
  • the metal copper catalyst provided by the application improves the utilization rate of free copper and non-skeletal copper by dissolving copper salt and zinc salt in inorganic acid solution (optional nitric acid), and then through hydrothermal treatment, and gradually Achieve uniform mutual solubility of copper and zinc metal ions; finally, a highly dispersed copper-zinc-aluminum catalyst with a hydrotalcite-like structure is formed by co-precipitation with aluminum salts.
  • This catalyst is coupled with CuZnAl catalyst and Cu-SSZ-13 molecular sieve catalyst.
  • the active phase is CuZnAl alloy and SSZ-13 molecular sieve that catalyzes the synthesis of olefins from methanol.
  • Two catalysts with different functions are coupled together through metal copper to realize the catalytic reaction of syngas to synthesize low-carbon olefins in one step.
  • Metal copper is not only a catalyst for methanol synthesis
  • the SSZ-13 molecular sieve is modified to improve the hydrothermal stability and carbon deposition resistance of the molecular sieve SSZ-13, and at the same time improve the conversion rate of carbon monoxide and the selectivity of low-carbon olefins; in addition, use the molecular sieve SSZ- 13, as the matrix for grain growth, avoids the growth of grains during the precipitation process of the catalyst, making the generated active grains finer and more regular in structure.
  • the metal copper catalyst provided by the application can realize the one-step synthesis of two catalytic reactions of methanol synthesis to olefins and synthesis gas synthesis methanol, which simplifies the process flow, prolongs the life of the catalyst, fully realizes the recycling of copper-containing wastewater, and develops a new Catalyst synthesis green process route; at the same time, methanol is used as product and raw material in two catalytic reactions, which can effectively improve the selectivity of the entire reaction and increase the yield and selectivity of low-carbon olefins.
  • copper ions can be directly introduced to modify the SSZ-13 molecular sieve, improve the hydrothermal stability and carbon deposition resistance of the SSZ-13 molecular sieve, and prolong the life of the SSZ-13 molecular sieve; however, a large amount of copper does not enter during the preparation process.
  • the filtrate after CuZnAl co-precipitation is aged under microwave radiation conditions, which can effectively avoid the formation of malachite and zinc malachite, which is conducive to the formation of malachite and hydrotalcite-like structure, so that the reduced copper grains are finer, the specific surface area is larger, and the activity is higher, which is conducive to improving the conversion rate of carbon monoxide and the selectivity of low-carbon olefins.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 180°C.
  • the stirring speed is 300r/min, and the crystallization time is 72h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 10min, and then roasted in a muffle furnace at 400°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 take 10.0g of copper sulfate and 4g of zinc sulfate and dissolve in 100g, 0.1mol/L nitric acid solution, then add 80g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, the heating and stirring temperature is 60°C, The heating and stirring time is 4h, and the mixed solution containing the modified Cu-SSZ-13 molecular sieve (ie emulsion B) is obtained;
  • step S4 take 2g pseudo-boehmite and fully dissolve in the filtrate collected in 200g step S2 to obtain aluminum salt solution (i.e. emulsion C); weigh 2.66g sodium hydroxide and 5.0g sodium carbonate and dissolve in 100g deionized water Form a mixed lye; then add the emulsion B and the mixed lye dropwise to the emulsion C for co-precipitation reaction, maintain the pH of the reaction solution at 7.5 during the reaction, the co-precipitation reaction temperature is 80°C, and the co-precipitation reaction time 2h;
  • aluminum salt solution i.e. emulsion C
  • add the emulsion B and the mixed lye dropwise to the emulsion C for co-precipitation reaction maintain the pH of the reaction solution at 7.5 during the reaction, the co-precipitation reaction temperature is
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 60°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 Dissolve 50g of pseudo-boehmite and 100g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 45g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 200°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 400° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 3.3:1.3:8.1:0.2.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 150°C.
  • the stirring speed is 400r/min, and the crystallization time is 90h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 80°C, and the heating time was 15min, and then roasted in a muffle furnace at 500°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 6.0g of copper sulfate and 2.5g of zinc sulfate and dissolve in 105g, 0.1mol/L nitric acid solution, then add 50g of Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the temperature of heating and stirring is 60°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take by weighing 1.2g pseudo-boehmite and fully dissolve in the filtrate collected in 215g of step S2 to obtain aluminum salt solution (i.e. emulsion C); take by weighing 1.44g of sodium hydroxide and 4.0g of sodium carbonate and dissolve in 100g of deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are respectively added dropwise to the emulsion C to carry out coprecipitation reaction. During the reaction, the pH of the reaction solution is maintained at 7.5, and the coprecipitation reaction temperature is 80°C. The precipitation reaction time is 4h;
  • the reaction solution is aged by microwave heating, the microwave power is 400W, the heating temperature is 90°C, the heating time is 0.5h, cooled to room temperature, filtered, and the filter cake is washed with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 Dissolve 50g of pseudo-boehmite and 100g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 24g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 250°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 500° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 80° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 4.7:0.9:9.7:0.2.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 195°C.
  • the stirring speed is 350r/min, and the crystallization time is 100h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 15min, and then roasted in a muffle furnace at 450°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 12.2g of copper nitrate and 7.5g of zinc nitrate and dissolve them in 105g of 0.1mol/L nitric acid solution, then add 80g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the temperature of heating and stirring is 60°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take 2.0g pseudo-boehmite and fully dissolve in the filtrate collected in 215g step S2 to obtain aluminum salt solution (ie emulsion C); weigh 3.45g sodium hydroxide and 6.0g sodium carbonate and dissolve in 100g deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are added dropwise to the emulsion C to carry out the co-precipitation reaction.
  • the pH of the reaction solution is maintained at 7.5, and the co-precipitation reaction temperature is 70°C.
  • the precipitation reaction time is 2.5h;
  • the reaction solution is aged by microwave heating, the microwave power is 400W, the heating temperature is 60°C, the heating time is 2h, cooled to room temperature, filtered, and the filter cake is washed with deionized water until the pH is 7.5 , to obtain catalyst precursor filter cake;
  • step S6 Dissolve 45g of pseudo-boehmite and 96g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 43g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and drop 0.1mol /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 210°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 Place the catalyst precursor powder obtained in step S6 in a tube furnace, and roast at 450° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 2.9:0.9:6.6:0.2.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat transfer oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 190 ° C.
  • the stirring speed is 350r/min, and the crystallization time is 150h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 30min, and then roasted in a muffle furnace at 600°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 5.0g of copper sulfate and 2.1g of zinc sulfate and dissolve them in 110g of 0.1mol/L nitric acid solution, then add 90g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the temperature of heating and stirring is 60°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take 1.0g pseudo-boehmite and fully dissolve in the filtrate collected in 210g step S2 to obtain aluminum salt solution (ie emulsion C); weigh 1.87g sodium hydroxide and 3.0g sodium carbonate and dissolve in 100g deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are added dropwise to the emulsion C to carry out coprecipitation reaction. During the reaction, the pH of the reaction solution is maintained at 7.5, and the coprecipitation reaction temperature is 75°C. The precipitation reaction time is 4h;
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 60°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 dissolving 52g of pseudo-boehmite and 98g of silica sol with a particle size of 50-100nm in 2kg of deionized water, adding 46g of the catalyst precursor filter cake obtained in step S5, fully stirring to form emulsion D, and adding 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 100°C on a spray granulation equipment, and collect the spray-dried and cyclone-separated Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 450° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 3:1.1:7.4:0.1.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat transfer oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 200 ° C.
  • the stirring speed is 350r/min, and the crystallization time is 80h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 15min, and then roasted in a muffle furnace at 450°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 13.0g of copper sulfate and 4.1g of zinc sulfate and dissolve them in 120g of 0.1mol/L nitric acid solution, then add 70g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the heating and stirring temperature is 90°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take 2.0g pseudo-boehmite and fully dissolve in the filtrate collected in 220g step S2 to obtain aluminum salt solution (i.e. emulsion C); weigh 2.58g sodium hydroxide and 6.0g sodium carbonate and dissolve in 100g deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are respectively added dropwise to the emulsion C to carry out coprecipitation reaction.
  • the pH of the reaction solution is maintained at 7.5, and the coprecipitation reaction temperature is 80°C.
  • the precipitation reaction time is 4h;
  • the reaction solution is aged by microwave heating, the microwave power is 400W, the heating temperature is 90°C, the heating time is 0.5h, cooled to room temperature, filtered, and the filter cake is washed with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 Dissolve 56g of pseudo-boehmite and 105g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 39g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 210°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 400° C. for 8 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13.
  • Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 2.8:1.0:6.9:0.2.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 120°C.
  • the stirring speed is 350r/min, and the crystallization time is 150h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 15min, and then roasted in a muffle furnace at 450°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 10.2g of copper nitrate and 6.8g of zinc nitrate and dissolve them in 110g of 0.1mol/L nitric acid solution, then add 90g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the temperature of heating and stirring is 60°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take by weighing 1.8g pseudo-boehmite and fully dissolve in the filtrate collected in 210g of step S2 to obtain aluminum salt solution (i.e. emulsion C); weigh 2.58g of sodium hydroxide and 5.0g of sodium carbonate and dissolve in 100g of deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are respectively added dropwise to the emulsion C for co-precipitation reaction.
  • the pH of the reaction solution is maintained at 7.5, and the co-precipitation reaction temperature is 80°C.
  • Co-precipitation The reaction time is 3.5h;
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 60°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 550° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 1.9:0.8:5.4:0.1.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat transfer oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 190 ° C.
  • the stirring speed is 350r/min, and the crystallization time is 80h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 15min, and then roasted in a muffle furnace at 450°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 take 8g copper acetate and 3.6g zinc acetate and dissolve in 110g, 0.1mol/L nitric acid solution, then add 50g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, the heating and stirring temperature is 60°C, The heating and stirring time is 4h, and the mixed solution containing the modified Cu-SSZ-13 molecular sieve (ie emulsion B) is obtained;
  • step S4 take by weighing 1.5g pseudo-boehmite and fully dissolve in the filtrate collected in 230g of step S2 to obtain aluminum salt solution (i.e. emulsion C); take by weighing 2.05g of sodium hydroxide and 3.0g of sodium carbonate and dissolve in 100g of deionized A mixed lye is formed in the water; then the emulsion B and the mixed lye are respectively added dropwise to the emulsion C for co-precipitation reaction. During the reaction, the pH of the reaction solution is maintained at 7.5, and the co-precipitation reaction temperature is 80°C. Co-precipitation The reaction time is 4h;
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 80°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 Dissolve 45g of pseudo-boehmite and 96g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 28g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 220°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 600° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst component is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 4.4:0.6:5.9:0.2.
  • the present embodiment provides a kind of preparation method of metallic copper catalyst, comprises the following steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat transfer oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 170 ° C.
  • the stirring speed is 350r/min, and the crystallization time is 80h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 15min, and then roasted in a muffle furnace at 450°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 Weigh 8.5g of copper acetate and 4.0g of zinc acetate and dissolve them in 105g of 0.1mol/L nitric acid solution, then add 70g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, and the heating and stirring temperature is 80°C , heating and stirring time is 4h, obtains the mixed solution (being emulsion B) that contains modified Cu-SSZ-13 molecular sieve;
  • step S4 take by weighing 1.8g pseudo-boehmite and fully dissolve in the filtrate collected by 110g of step S2 to obtain aluminum salt solution (ie emulsion C); take by weighing 2.53g of sodium hydroxide and 5.0g of sodium carbonate and dissolve in 100g of deionized water Form a mixed lye; then add the emulsion B and the mixed lye dropwise to the emulsion C for co-precipitation reaction, maintain the pH of the reaction solution at 7.5 during the reaction, and the co-precipitation reaction temperature is 80°C for the co-precipitation reaction The time is 3.5h;
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 80°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S6 Dissolve 42g of pseudo-boehmite and 92g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 39g of the catalyst precursor filter cake obtained in step S5, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 210°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S7 placing the catalyst precursor powder obtained in step S6 in a tube furnace, and roasting at 500° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S8 Continue cooling the semi-finished catalyst powder obtained in step S7 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 3.1:0.7:4.7:0.2.
  • This comparative example provides a kind of preparation method of metallic copper catalyst, comprises the steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 180°C.
  • the stirring speed is 300r/min, and the crystallization time is 72h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 10min, and then roasted in a muffle furnace at 400°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • emulsion C weigh 2.66g of sodium hydroxide and 5.0g of sodium carbonate and dissolve in 100g of deionized water to form a mixed lye; then add solution B and the mixed lye to the emulsion C dropwise Co-precipitation reaction was carried out in the middle of the reaction, the pH of the reaction solution was maintained at 7.5 during the reaction, the coprecipitation reaction temperature was 80°C, and the coprecipitation reaction time was 2h;
  • the reaction solution is aged by microwave heating.
  • the microwave power is 400W
  • the heating temperature is 60°C
  • the heating time is 0.5h. Cool to room temperature, filter, and wash the filter cake with deionized water until the pH is 7.5, obtain catalyst precursor filter cake;
  • step S5 Dissolve 50g of pseudoboehmite and 100g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 45g of the Cu-SSZ-13 molecular sieve obtained in step S2, fully stir to form emulsion D, and drop 0.1 mol/L nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on the colloid mill, and then spray-dry it on the spray granulation equipment at 200°C, collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S6 placing the catalyst precursor powder obtained in step S5 in a tube furnace, and roasting at 400° C. for 4 hours in a hydrogen atmosphere to obtain a semi-finished catalyst powder;
  • step S7 Continue cooling the semi-finished catalyst powder obtained in step S6 to room temperature in the hydrogen atmosphere of the tube furnace, feed nitrogen gas into one air inlet of the tube furnace, and slowly increase the temperature in the tube furnace to 60° C. for 1 hour at a constant temperature. Introduce the air atmosphere into the other air inlet of the tube furnace, adjust the gas flow of the two channels of the tube furnace, slowly increase the air content of the mixed atmosphere in the tube furnace, and slowly reduce the nitrogen content until the atmosphere in the tube furnace is completely It is air, and the temperature of the tube furnace is lowered to room temperature to obtain the metal copper catalyst Cu@Cu-SSZ-13. Described metallic copper catalyst component is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 3.3:1.3:8.1:0.2.
  • This comparative example provides a kind of preparation method of metallic copper catalyst, comprises the steps:
  • step S2 Transfer all the emulsion A obtained in step S1 to a high-temperature and high-pressure stirred tank lined with polytetrafluoroethylene, and use high-temperature heat-conducting oil in the jacket of the stirred tank to heat and crystallize.
  • the crystallization temperature is 180°C.
  • the stirring speed is 300r/min, and the crystallization time is 72h.
  • the reaction liquid is cooled, and the filter press is used for online suction filtration, and the filter cake is washed with deionized water until the pH is 7.5, and the filtrate is collected.
  • the cake was dried by microwave heating, the microwave power was 400W, the heating temperature was 60°C, and the heating time was 10min, and then roasted in a muffle furnace at 400°C for 4h to obtain Cu-SSZ-13 molecular sieve;
  • step S3 take 10.0g of copper sulfate and 4g of zinc sulfate and dissolve in 100g, 0.1mol/L nitric acid solution, then add 80g of the Cu-SSZ-13 molecular sieve obtained in step S2, heat and stir in a water bath, the heating and stirring temperature is 60°C, The heating and stirring time is 4h, and the mixed solution containing the modified Cu-SSZ-13 molecular sieve (ie emulsion B) is obtained;
  • the modified Cu-SSZ-13 molecular sieve mixture is heated by microwave, the microwave power is 400W, the heating temperature is 60°C, the heating time is 0.5h, cooled to room temperature, filtered, and the filter cake is washed with deionized water Be 7.5 to pH, obtain catalyst precursor filter cake;
  • step S5 Dissolve 50g of pseudo-boehmite and 100g of silica sol with a particle size of 2-10nm in 2kg of deionized water, add 45g of the catalyst precursor filter cake obtained in step S4, fully stir to form emulsion D, and add 0.1mol dropwise /L of nitric acid, adjust the pH of the emulsion D to 2.0, then fully mix and grind the emulsion D on a colloid mill, and then spray-dry it at 200°C on a spray granulation equipment, and collect the spray-dried cyclone separation Catalyst precursor powder;
  • step S6 Put the catalyst precursor powder obtained in step S5 in a muffle furnace and calcinate at 400° C. for 4 hours to obtain the molecular sieve Cu-SSZ-13.
  • Described metallic copper catalyst composition is detected, and it comprises copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide, and wherein the mol ratio of copper oxide, aluminum oxide, sodium oxide, silicon dioxide and zinc oxide is 1: 3.3:1.3:8.1:0.2.
  • the activity of the metal copper catalysts prepared in the above-mentioned examples and comparative examples was tested, and the test process was as follows: the above-mentioned prepared metal copper catalysts were tabletted and granulated to make particles between 20-40 meshes, and then 1g of the metal copper catalysts Filled in the constant temperature reaction area of the miniature fixed fluidized bed reaction evaluation device, use the mixed gas of H 2 and N 2 (the volume of H 2 in the mixed gas accounts for 10%) to reduce the catalyst, first the temperature is programmed to 300°C for constant temperature reduction 6h, the heating rate is 1°C/min, after the reduction, cool down to 200°C and switch to the evaluation gas CO and H 2 (the volume ratio of CO and H 2 is 3:1), the evaluation temperature is 250°C, the evaluation pressure is 5 MPa, and the evaluation space velocity 5000h -1 , the activity evaluation results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本申请属于合成气制备低碳烯烃技术领域,涉及金属铜催化剂及其制备方法和应用。本申请提供的金属铜催化剂的制备方法,包括如下步骤:将铜盐、锌盐溶于无机酸溶液中,然后加入Cu-SSZ-13分子筛,加热搅拌,得到含有改性后Cu-SSZ-13分子筛的混合液;将铝盐和溶剂混合,得到铝盐溶液,然后将含有改性后Cu-SSZ-13分子筛的混合液和碱液加入到铝盐溶液中进行共沉淀反应,对反应液进行老化,过滤,洗涤,得到催化剂前驱体;将铝盐和硅溶胶溶于水中,加入催化剂前驱体,控制混合液pH,然后将该混合液进行研磨,干燥,焙烧,在含氧气氛下加热钝化处理,得到金属铜催化剂。本申请提供的催化剂,可有效提高一氧化碳转化率和低碳烯烃选择性。

Description

一种金属铜催化剂及其制备方法和应用
相关申请的交叉引用
本申请要求在2021年9月7日提交中国专利局、申请号为202111044329.4、申请名称为“一种金属铜催化剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于合成气制备低碳烯烃技术领域,涉及一种金属铜催化剂及其制备方法和应用。
背景技术
烯烃是衡量一个国家化工工业水平的重要标准,也是重要的基本有机化工原料,在整个化工行业中占据重要地位;目前,工业上的生产方式主要通过石油裂解生产获得,随着全球石油资源日渐紧张和国际原油价格受到国外疫情的影响,原油价格起伏不定;近些年,中国的经济飞速发展,原油的消费也逐年递增,我国是一个石油资源相对贫乏的国家,每年超过60%的原油需要进口供应,大量的进口原油增加了我国的能源安全,急需寻求一条新的技术路线,解决目前我国对原油的高度依赖;同时结合我国富煤少油的资源现状,利用煤、生物质等相对丰富的资源发展新的烯烃生产技术,具有重要的社会意义和实际需求。
煤制烯烃分为间接法和直接法两种,间接法是指煤气化得到的合成气,先通过催化反应转化为甲醇,甲醇再利用分子筛特殊的孔道结构在酸性位点上发生MTO反应;直接法是煤经过气化得到的合成气通过费托合成一步催化合成低碳烯烃;与间接法相比,合成气一步法合成低碳烯烃的工艺路线简单,节省设备投资,但该技术目前还没有工业化应用,尚处于研发间断。
目前一步法合成烯烃技术的催化剂主要分为两个研究方向:(1)金属氧化物催化剂,(2)金属氧化物与分子筛耦合成的多功能催化剂。其中金属氧化物催化剂主要利用Fe、Co、Cr、Cu、Zn等金属元素通过激光、等离子体等技术制备出超细离子催化剂,该工艺技术复杂,不容易实现催化剂的工业化放大,且生成的多碳烃类占据大多数,低碳烯烃选择性较差;而多功能催化剂是将金属氧化物与分子筛催化剂耦合,将合成气一步直接合成低碳烯烃,此类催化剂合成工艺不需要复杂的技术手段,操作简单易于放大,是 最具有工业化开发潜力的技术路线。
现有技术公开了一种合成气制低碳烯烃的催化剂及其制备方法,催化剂主要活性组分为氧化铁和氧化锌,助活性组分为氢氧化钾和碳酸镁,该工艺分离流程简单,甲烷和CO2生产量低,不需要甲醇中间产品可以一步直接合成低碳烯烃,但该专利中的活性组分为氧化铁和氧化锌,反应会生成大量高碳烃类,低碳烯烃选择性较差;同时现有技术还公开了一种Cu-SAPO-34分子筛合成方法,该方法可以在一定范围内控制SAPO-34分子筛中的铜负载量,有效调控分子筛中硅含量及分布,产品收率较高,但该催化剂主要应用于氮氧化物脱除反应。
综上所述,开发一种合成气一步法制低碳烯烃的催化剂,该催化剂具有高CO转化率和低碳烯烃选择性具有重要的研究意义。
发明内容
本申请的目的在于克服上述现有技术中合成气一步法制低碳烯烃的催化剂,其CO转化率和低碳烯烃选择性有限的缺陷,进而提供一种金属铜催化剂及其制备方法和应用。
为了达到上述目的,本申请采用以下技术方案予以实现:
一种金属铜催化剂,包括如下组分:氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:(1-5):(0.1-1.5):(3.0-10):(0.1-0.5)。
本申请还提供一种上述所述金属铜催化剂的制备方法,包括如下步骤:
1)将铜盐、锌盐溶于无机酸溶液中,然后加入Cu-SSZ-13分子筛,加热搅拌,得到含有改性后Cu-SSZ-13分子筛的混合液;
2)将铝盐和溶剂混合,得到铝盐溶液,然后将步骤1)得到的含有改性后Cu-SSZ-13分子筛的混合液和碱液加入到铝盐溶液中进行共沉淀反应,反应期间维持反应液的pH为7.5-8.5;
3)共沉淀反应结束后,对反应液进行老化,过滤,洗涤,得到催化剂前驱体;
4)将铝盐和硅溶胶溶于水中,加入步骤3)得到的催化剂前驱体,控制混合液pH为2.0-3.5,然后将该混合液进行研磨,干燥,得到催化剂前驱体粉末;
5)将步骤4)得到的催化剂前驱体粉末在还原性气氛下进行焙烧,得到催化剂半成品粉末;
6)将催化剂半成品粉末在含氧气氛下加热,得到所述金属铜催化剂。
可选地,步骤1)中加热搅拌温度为60-90℃,加热搅拌时间为2-10h;铜盐、锌盐、Cu-SSZ-13分子筛和无机酸溶液的质量比为(5-115):(2-8):(3-100):(50-200),所述无机酸溶液为硝酸溶液,所述硝酸溶液的浓度为0.05-0.3mol/L;
步骤2)中所述铝盐和溶剂的质量比为(0.5-5):(50-300),含有改性后Cu-SSZ-13分子筛的混合液、碱液和铝盐溶液的质量比为(50-400):(1-200):(0.5-300),所述共沉淀反应温度为60-90℃,共沉淀反应时间为2-6h。
可选地,步骤1)混合液中固液比为1:(10-20)。
可选地,步骤3)中所述老化步骤采用微波加热进行老化,微波功率为380-420W,加热温度为60-90℃,加热时间为0.5-4h;所述洗涤步骤采用去离子水进行洗涤,洗涤至滤饼pH为7-7.5;
步骤4)中铝盐、硅溶胶、催化剂前驱体和水的质量比为(3-6):(8-12):(1-6):(10-200),采用0.05-0.3mol/L的硝酸控制混合液pH为2.0-3.5;所述干燥步骤为喷雾干燥,喷雾干燥温度为100-300℃。
可选地,步骤5)中所述还原性气氛为氢气气氛,焙烧温度为400-600℃,焙烧时间为4-8h;
步骤6)中,所述含氧气氛为空气,所述加热温度为60-100℃,加热时间为4-12h。
可选的,步骤6)中,将催化剂半成品粉末在氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60-100℃恒温维持1-2h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到成品的多功能催化剂Cu@Cu-SSZ-13。
可选地,所述Cu-SSZ-13分子筛的制备方法包括如下步骤:
S1、将铝盐和水混合,加热搅拌,然后加入铜盐、四乙烯五胺、氢氧化钠和硅源,搅拌均匀,得到混合液A;
S2、对步骤S1得到的混合液A进行加热晶化,待晶化反应结束后将反应液冷却,过滤,洗涤,收集滤液,洗涤后的滤饼进行干燥、焙烧,得到所述Cu-SSZ-13分子筛。
可选地,步骤S1中铝盐、铜盐、四乙烯五胺、氢氧化钠、硅源和水的质量比为(2-15):(8-30):(10-25):(2-8):(20-100):(200-300),加热温度为60-90℃;可选的,搅拌转速为100-600r/min,本申请不对加热时间做具体限定,只要能够溶解均匀即可。
步骤S2中晶化温度为120-220℃,晶化时间为72-150h,焙烧温度为400-600℃, 焙烧时间为4-8h,所述干燥步骤是采用微波加热进行干燥,微波功率为380-420W,加热温度为60-120℃,加热时间为10-30min;可选的,晶化过程中搅拌转速为200-600r/min。
步骤S2中采用去离子水进行洗涤,洗涤后的滤饼pH为7-7.5。
可选地,步骤2)中所述溶剂为步骤S2收集的滤液。
可选地,所述铝盐选自偏铝酸钠、拟薄水铝石和异丙醇铝中的一种或者多种;
所述铜盐选自硝酸铜和/或醋酸铜;
所述锌盐选自硝酸锌和/或醋酸锌;
所述碱液由氢氧化钠、碳酸钠和碳酸氢钠中的至少两种与水混合后得到;
所述硅源选自粒径为50-100nm的硅溶胶、粒径为2-10nm的硅溶胶、正硅酸乙酯中的一种或者多种。
本申请所述金属铜催化剂用于合成气一步法制低碳烯烃。
本申请还提供一种上述所述的金属铜催化剂或上述所述的制备方法制备得到的金属铜催化剂在由合成气合成低碳烯烃中的应用。
与现有技术相比,本申请具有以下有益效果:
1)本申请提供了一种金属铜催化剂的制备方法,利用铜盐、锌盐对Cu-SSZ-13分子筛进行改性,然后将改性后的Cu-SSZ-13混合液与碱液、铝盐溶液进行共沉淀反应,形成类水滑石结构的CuZnAl前驱体,并通过在还原气氛中焙烧形成类水滑石结构的CuZnAl,进而形成多功能的Cu@Cu-SSZ-13催化剂。
本申请提供的金属铜催化剂通过将铜盐、锌盐溶于无机酸溶液(可选硝酸)中,再通过水热处理,提高了游离铜和非骨架铜的利用率,并在水热处理过程中逐步实现铜锌金属离子的均匀互溶;最后通过与铝盐共沉淀形成类水滑石结构且高度分散的铜锌铝催化剂,该催化剂耦合了CuZnAl催化剂和Cu-SSZ-13分子筛催化剂,不仅含有合成甲醇的活性相CuZnAl合金,同时具有催化甲醇合成烯烃的SSZ-13分子筛,通过金属铜将两种不同功能的催化剂耦合在一起,实现合成气一步法合成低碳烯烃的催化反应,金属铜不仅是甲醇合成的活性中心,同时对SSZ-13分子筛进行改性,提高了分子筛SSZ-13的水热稳定性和抗积碳性能,同时提高了一氧化碳转化率和低碳烯烃选择性;此外,用分子筛SSZ-13作为晶粒成长的基体,避免了催化剂在沉淀过程中晶粒的长大,使生成的活性晶粒更细,结构更加规整。
同时本申请提供金属铜催化剂可以实现甲醇合成烯烃、合成气合成甲醇两种催化反应的一步法合成,简化了工艺流程,延长了催化剂寿命,充分实现了含铜废水的回收利 用,开发出新的催化剂合成绿色工艺路线;同时,甲醇在两个催化反应中分别作为产物和原料,可以有效提高整个反应的选择性,提高低碳烯烃的产率和选择性。
2)本申请提供的金属铜催化剂,所述Cu-SSZ-13分子筛的制备方法中四乙基五胺与铜形成的络合物作为合成SSZ-13分子筛的模板剂,价格低廉,且在制备过程中可以直接引入铜离子对SSZ-13分子筛进行改性,提高SSZ-13分子筛的水热稳定性和抗积碳能力,延长SSZ-13分子筛寿命;但是在制备过程中有大量的铜未进入到分子筛的孔道结构中,一部分铜会以离子形式存在于过滤后的滤液中,一部分铜与Cu-SSZ-13分子筛在焙烧后形成游离的氧化铜固体颗粒,造成原料的大量浪费,大量氧化铜的富集会覆盖分子筛的活性位点,降低分子筛的水热稳定性;本申请在Cu-SSZ-13分子筛改性的过程中同时对游离的氧化铜进行溶解激活,并在合成甲醇合成催化剂的过程中,利用含铜滤液对改性后的滤液进行酸碱调节,不仅提高了铜金属利用率,减少铜流失,同时减少或者避免了废液的产生,经济环保。
3)本申请提供的金属铜催化剂,所述Cu-SSZ-13分子筛的制备方法中将过滤洗涤后的滤饼在微波条件下干燥,催化剂均匀加热,水分由内向外均匀扩散,避免了传统加热导致的水份挥发速率不一致导致的催化剂层状塌陷,另外在CuZnAl共沉淀后的滤液在微波辐射条件下进行老化,可以有效避免孔雀石和锌孔雀石的形成,有利于形成类孔雀石和类水滑石结构,使还原后的铜晶粒更细,比表面积更大,活性更高,有利于提高一氧化碳转化率和低碳烯烃选择性。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取5.0g偏铝酸钠溶于200g去离子水中,加热至90℃,200r/min的转速搅拌均匀后,再依次加入17.0g硫酸铜,13.0g四乙烯五胺,5.8g氢氧化钠,75g粒径为2-10nm 的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为180℃,搅拌转速300r/min,晶化时间72h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W加热温度为60℃,加热时间为10min,然后在马弗炉中400℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取10.0g硫酸铜和4g硫酸锌溶于100g、0.1mol/L的硝酸溶液中,然后加入80g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取2g拟薄水铝石充分溶于200g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.66g氢氧化钠和5.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度80℃,共沉淀反应时间2h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为60℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将50g拟薄水铝石和100g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入45g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上200℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,400℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:3.3:1.3:8.1:0.2。
实施例2
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取6.0g异丙醇铝溶于260g去离子水中,加热至80℃,400r/min的转速搅拌均匀后,再依次加入12.0g硫酸铜,11.0g四乙烯五胺,2.5g氢氧化钠,40g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为150℃,搅拌转速400r/min,晶化时间90h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为80℃,加热时间为15min,然后在马弗炉中500℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取6.0g硫酸铜和2.5g硫酸锌溶于105g、0.1mol/L的硝酸溶液中,然后加入50g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取1.2g拟薄水铝石充分溶于215g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取1.44g氢氧化钠和4.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为80℃,共沉淀反应时间为4h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为90℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将50g拟薄水铝石和100g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入24g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上250℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,500℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至80℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛 的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:4.7:0.9:9.7:0.2。
实施例3
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取4.5g偏铝酸钠溶于240g去离子水中,加热至80℃,300r/min的转速搅拌均匀后,再依次加入15.0g硝酸铜,10.2g四乙烯五胺,4.4g氢氧化钠,60g粒径为50-100nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为195℃,搅拌转速350r/min,晶化时间100h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为60℃,加热时间为15min,然后在马弗炉中450℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取12.2g硝酸铜和7.5g硝酸锌溶于105g、0.1mol/L的硝酸溶液中,然后加入80g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取2.0g拟薄水铝石充分溶于215g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取3.45g氢氧化钠和6.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为70℃,共沉淀反应时间为2.5h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为60℃,加热时间为2h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将45g拟薄水铝石和96g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入43g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上210℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,450℃下 焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:2.9:0.9:6.6:0.2。
实施例4
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取12.0g异丙醇铝溶于280g去离子水中,加热至60℃,600r/min的转速搅拌均匀后,再依次加入25.0g硫酸铜,18.5g四乙烯五胺,5.5g氢氧化钠,80g粒径为50-100nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为190℃,搅拌转速350r/min,晶化时间150h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为60℃,加热时间为30min,然后在马弗炉中600℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取5.0g硫酸铜和2.1g硫酸锌溶于110g、0.1mol/L的硝酸溶液中,然后加入90g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取1.0g拟薄水铝石充分溶于210g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取1.87g氢氧化钠和3.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为75℃,共沉淀反应时间为4h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为60℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将52g拟薄水铝石和98g粒径为50-100nm的硅溶胶溶解在2kg去离子水中, 加入46g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上100℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,450℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:3:1.1:7.4:0.1。
实施例5
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取4.0g异丙醇铝溶于260g去离子水中,加热至90℃,400r/min的转速搅拌均匀后,再依次加入20.0g硫酸铜,18.0g四乙烯五胺,4.5g氢氧化钠,70g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为200℃,搅拌转速350r/min,晶化时间80h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为60℃,加热时间为15min,然后在马弗炉中450℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取13.0g硫酸铜和4.1g硫酸锌溶于120g、0.1mol/L的硝酸溶液中,然后加入70g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为90℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取2.0g拟薄水铝石充分溶于220g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.58g氢氧化钠和6.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反 应液的pH为7.5,共沉淀反应温度为80℃,共沉淀反应时间为4h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为90℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将56g拟薄水铝石和105g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入39g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上210℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,400℃下焙烧8h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:2.8:1.0:6.9:0.2。
实施例6
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取5.2g偏铝酸钠溶于240g去离子水中,加热至60℃,400r/min的转速搅拌均匀后,再依次加入28.0g硝酸铜,20.0g四乙烯五胺,5.2g氢氧化钠,80g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为120℃,搅拌转速350r/min,晶化时间150h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为60℃,加热时间为15min,然后在马弗炉中450℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取10.2g硝酸铜和6.8g硝酸锌溶于110g、0.1mol/L的硝酸溶液中,然后加入90g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热 搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取1.8g拟薄水铝石充分溶于210g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.58g氢氧化钠和5.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为80℃共沉淀反应时间为3.5h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为60℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将42g拟薄水铝石和92g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入50g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上260℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,550℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:1.9:0.8:5.4:0.1。
实施例7
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取2.5g偏铝酸钠溶于240g去离子水中,加热至80℃,200r/min的转速搅拌均匀后,再依次加入10.0g醋酸铜,10.2g四乙烯五胺,2.6g氢氧化钠,45g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为190℃,搅拌转速350r/min,晶化时间80h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为 400W,加热温度为60℃,加热时间为15min,然后在马弗炉中450℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取8g醋酸铜和3.6g醋酸锌溶于110g、0.1mol/L的硝酸溶液中,然后加入50g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取1.5g拟薄水铝石充分溶于230g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.05g氢氧化钠和3.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为80℃共沉淀反应时间为4h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为80℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将45g拟薄水铝石和96g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入28g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上220℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,600℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:4.4:0.6:5.9:0.2。
实施例8
本实施例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取4g偏铝酸钠溶于220g去离子水中,加热至80℃,200r/min的转速搅拌均匀后,再依次加入16.0g醋酸铜,20g四乙烯五胺,4.3g氢氧化钠,60g粒径为50-100nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为170℃,搅拌转速350r/min,晶化时间80h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W,加热温度为60℃,加热时间为15min,然后在马弗炉中450℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取8.5g醋酸铜和4.0g醋酸锌溶于105g、0.1mol/L的硝酸溶液中,然后加入70g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为80℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、称取1.8g拟薄水铝石充分溶110g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.53g氢氧化钠和5.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将乳浊液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度为80℃共沉淀反应时间为3.5h;
S5、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为80℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S6、将42g拟薄水铝石和92g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入39g步骤S5得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上210℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S7、将步骤S6中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,500℃下焙烧4h,得到催化剂半成品粉末;
S8、将步骤S7得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:3.1:0.7:4.7:0.2。
对比例1
本对比例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取5.0g偏铝酸钠溶于200g去离子水中,加热至90℃,200r/min的转速搅拌均匀后,再依次加入17.0g硫酸铜,13.0g四乙烯五胺,5.8g氢氧化钠,75g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为180℃,搅拌转速300r/min,晶化时间72h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W加热温度为60℃,加热时间为10min,然后在马弗炉中400℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取10.0g硫酸铜和4g硫酸锌溶于100g、0.1mol/L的硝酸溶液中(即溶液B),称取2g拟薄水铝石充分溶于200g步骤S2收集的滤液中,得到铝盐溶液(即乳浊液C);称取2.66g氢氧化钠和5.0碳酸钠溶于100g去离子水中形成混合碱液;然后分别将溶液B与混合碱液共同滴加到乳浊液C中进行共沉淀反应,反应期间维持反应液的pH为7.5,共沉淀反应温度80℃,共沉淀反应时间2h;
S4、共沉淀反应结束后,对反应液采用微波加热进行老化,微波功率为400W,加热温度为60℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S5、将50g拟薄水铝石和100g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入45g步骤S2得到的Cu-SSZ-13分子筛,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上200℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S6、将步骤S5中得到的催化剂前驱体粉末置于管式炉中,在氢气气氛中,400℃下焙烧4h,得到催化剂半成品粉末;
S7、将步骤S6得到的催化剂半成品粉末继续在管式炉氢气气氛中降温至室温,向管式炉的一路进气口通入氮气,缓慢提高管式炉中的温度至60℃恒温维持1h,向管式炉的另一路进气通入空气气氛,调节管式炉两路气的流量,缓慢提高管式炉中混合气氛的空气含量,并缓慢降低氮气含量,直至管式炉中的气氛全部为空气,降低管式炉温度至室温,得到所述金属铜催化剂Cu@Cu-SSZ-13。对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、 二氧化硅和氧化锌的摩尔比为1:3.3:1.3:8.1:0.2。
对比例2
本对比例提供一种金属铜催化剂的制备方法,包括如下步骤:
S1、称取5.0g偏铝酸钠溶于200g去离子水中,加热至90℃,200r/min的转速搅拌均匀后,再依次加入17.0g硫酸铜,13.0g四乙烯五胺,5.8g氢氧化钠,75g粒径为2-10nm的硅溶胶混合搅拌均匀后得到乳浊液A(即混合液A);
S2、将步骤S1中得到的乳浊液A全部转移到含聚四氟乙烯内衬的高温高压搅拌釜中,利用搅拌釜夹套的高温导热油进行加热晶化,晶化温度为180℃,搅拌转速300r/min,晶化时间72h,待晶化反应结束后将反应液冷却,用压滤机进行在线抽滤,并用去离子水洗涤滤饼至PH为7.5,收集滤液,洗涤后的滤饼采用微波加热进行干燥,微波功率为400W加热温度为60℃,加热时间为10min,然后在马弗炉中400℃下焙烧4h,得到Cu-SSZ-13分子筛;
S3、称取10.0g硫酸铜和4g硫酸锌溶于100g、0.1mol/L的硝酸溶液中,然后加入80g步骤S2得到的Cu-SSZ-13分子筛,水浴加热搅拌,加热搅拌温度为60℃,加热搅拌时间为4h,得到含有改性后Cu-SSZ-13分子筛的混合液(即乳浊液B);
S4、对改性后的Cu-SSZ-13分子筛的混合液采用微波加热,微波功率为400W,加热温度为60℃,加热时间为0.5h,冷却至室温,过滤,滤饼用去离子水洗涤至PH为7.5,得到催化剂前驱体滤饼;
S5、将50g拟薄水铝石和100g粒径为2-10nm的硅溶胶溶解在2kg去离子水中,加入45g步骤S4得到的催化剂前驱体滤饼,充分搅拌形成乳浊液D,滴加0.1mol/L的硝酸,调节乳浊液D的PH为2.0,然后将乳浊液D在胶体磨上充分混合研磨均匀,然后在喷雾造粒设备上200℃进行喷雾干燥,收集喷雾干燥旋风分离后的催化剂前驱体粉末;
S6、将步骤S5中得到的催化剂前驱体粉末置于马弗炉中,400℃下焙烧4h,得到所述分子筛Cu-SSZ-13。
对所述金属铜催化剂成分进行检测,其包括氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:3.3:1.3:8.1:0.2。
活性评价
对上述实施例和对比例制备的金属铜催化剂活性进行试验,试验过程如下所示:将上述制备的金属铜催化剂压片造粒制成20-40目之间的颗粒,然后将1g金属铜催化剂装填于微型固定流化床反应评价装置中的恒温反应区,采用H 2和N 2的混合气(混合气中 H 2体积占比10%)对催化剂进行还原,首先程序升温到300℃恒温还原6h,升温速率1℃/min,还原结束后降温到200℃切换成评价气体CO和H 2(CO和H 2的体积比为3:1),评价温度250℃,评价压力5MPa,评价空速5000h -1,活性评价结果如表1所示。
表1催化剂活性评价结果
Figure PCTCN2022096999-appb-000001
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 金属铜催化剂,其特征在于,包括如下组分:氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌,其中氧化铜、氧化铝、氧化钠、二氧化硅和氧化锌的摩尔比为1:(1-5):(0.1-1.5):(3.0-10):(0.1-0.5)。
  2. 如权利要求1所述的金属铜催化剂的制备方法,其特征在于,包括如下步骤:
    1)将铜盐、锌盐溶于无机酸溶液中,然后加入Cu-SSZ-13分子筛,加热搅拌,得到含有改性后Cu-SSZ-13分子筛的混合液;
    2)将铝盐和溶剂混合,得到铝盐溶液,然后将步骤1)得到的含有改性后Cu-SSZ-13分子筛的混合液和碱液加入到铝盐溶液中进行共沉淀反应,反应期间维持反应液的pH为7.5-8.5;
    3)共沉淀反应结束后,对反应液进行老化,过滤,洗涤,得到催化剂前驱体;
    4)将铝盐和硅溶胶溶于水中,加入步骤3)得到的催化剂前驱体,控制混合液pH为2.0-3.5,然后将该混合液进行研磨,干燥,得到催化剂前驱体粉末;
    5)将步骤4)得到的催化剂前驱体粉末在还原性气氛下进行焙烧,得到催化剂半成品粉末;
    6)将催化剂半成品粉末在含氧气氛下加热,得到所述金属铜催化剂。
  3. 根据权利要求2所述的金属铜催化剂的制备方法,其特征在于,步骤1)中加热搅拌温度为60-90℃,加热搅拌时间为2-10h;铜盐、锌盐、Cu-SSZ-13分子筛和无机酸溶液的质量比为(5-115):(2-8):(3-100):(50-200),所述无机酸溶液为硝酸溶液,所述硝酸溶液的浓度为0.05-0.3mol/L;
    步骤2)中所述铝盐和溶剂的质量比为(0.5-5):(50-300),含有改性后Cu-SSZ-13分子筛的混合液、碱液和铝盐溶液的质量比为(50-400):(1-200):(0.5-300),所述共沉淀反 应温度为60-90℃,共沉淀反应时间为2-6h。
  4. 根据权利要求2或3所述的金属铜催化剂的制备方法,其特征在于,步骤3)中所述老化步骤采用微波加热进行老化,微波功率为380-420W,加热温度为60-90℃,加热时间为0.5-4h;所述洗涤步骤采用去离子水进行洗涤,洗涤至滤饼pH为7-7.5;
    步骤4)中铝盐、硅溶胶、催化剂前驱体和水的质量比为(3-6):(8-12):(1-6):(10-200),采用0.05-0.3mol/L的硝酸控制混合液pH为2.0-3.5;所述干燥步骤为喷雾干燥,喷雾干燥温度为100-300℃。
  5. 根据权利要求2-4中任一项所述的金属铜催化剂的制备方法,其特征在于,步骤5)中所述还原性气氛为氢气气氛,焙烧温度为400-600℃,焙烧时间为4-8h;
    步骤6)中,所述含氧气氛为空气,所述加热温度为60-100℃。
  6. 根据权利要求2-5中任一项所述的金属铜催化剂的制备方法,其特征在于,所述Cu-SSZ-13分子筛的制备方法包括如下步骤:
    S1、将铝盐和水混合,加热搅拌,然后加入铜盐、四乙烯五胺、氢氧化钠和硅源,搅拌均匀,得到混合液A;
    S2、对步骤S1得到的混合液A进行加热晶化,待晶化反应结束后将反应液冷却,过滤,洗涤,收集滤液,洗涤后的滤饼进行干燥、焙烧,得到所述Cu-SSZ-13分子筛。
  7. 根据权利要求6所述的金属铜催化剂的制备方法,其特征在于,步骤S1中铝盐、铜盐、四乙烯五胺、氢氧化钠、硅源和水的质量比为(2-15):(8-30):(10-25):(2-8):(20-100):(200-300),加热温度为60-90℃;
    步骤S2中晶化温度为120-220℃,晶化时间为72-150h,焙烧温度为400-600℃,焙烧时间为4-8h,所述干燥步骤是采用微波加热进行干燥,微波功率为380-420W,加热温度为60-120℃,加热时间为10-30min;
    步骤S2中采用去离子水进行洗涤,洗涤后的滤饼pH为7-7.5。
  8. 根据权利要求2-7中任一项所述的金属铜催化剂的制备方法,其特征在于,步骤2)中所述溶剂为步骤S2收集的滤液。
  9. 根据权利要求2-8中任一项所述的金属铜催化剂的制备方法,其特征在于,所述铝盐选自偏铝酸钠、拟薄水铝石和异丙醇铝中的一种或者多种;
    所述铜盐选自硝酸铜和/或醋酸铜;
    所述锌盐选自硝酸锌和/或醋酸锌;
    所述碱液由氢氧化钠、碳酸钠和碳酸氢钠中的至少两种与水混合后得到;
    所述硅源选自粒径为50-100nm的硅溶胶、粒径为2-10nm的硅溶胶、正硅酸乙酯中的一种或者多种。
  10. 权利要求1所述的金属铜催化剂或如权利要求2-9中任一项所述的金属铜催化剂的制备方法制备得到的金属铜催化剂在由合成气合成低碳烯烃中的应用。
PCT/CN2022/096999 2021-09-07 2022-06-02 一种金属铜催化剂及其制备方法和应用 WO2023035697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111044329.4 2021-09-07
CN202111044329.4A CN113600199B (zh) 2021-09-07 2021-09-07 一种金属铜催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023035697A1 true WO2023035697A1 (zh) 2023-03-16

Family

ID=78342780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096999 WO2023035697A1 (zh) 2021-09-07 2022-06-02 一种金属铜催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113600199B (zh)
WO (1) WO2023035697A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073333A (zh) * 2022-07-20 2022-09-20 江苏八巨药业有限公司 一种基于活性铜分子筛的消旋方法
CN117548111A (zh) * 2023-10-25 2024-02-13 广东绿峰能源科技有限公司 一种天然气制氢用催化剂及其制备方法与应用
CN117960254A (zh) * 2024-04-02 2024-05-03 河南氢力能源有限公司 一种糠醛加氢反应铜硅系废催化剂的回收再生工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600199B (zh) * 2021-09-07 2023-07-14 中国华能集团清洁能源技术研究院有限公司 一种金属铜催化剂及其制备方法和应用
CN116328796B (zh) * 2021-12-22 2024-06-04 中国石油天然气股份有限公司 一种Mo-V-Te-Nb体系催化剂及其制备方法
CN115920955A (zh) * 2022-12-22 2023-04-07 山东泓泰恒瑞新材料有限公司 一种Cu-Zn-SSZ-13分子筛复合材料催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106565406A (zh) * 2016-10-28 2017-04-19 华东理工大学 一步法制备均四甲苯的方法
CN106660894A (zh) * 2014-07-11 2017-05-10 陶氏环球技术有限责任公司 一氧化碳、二氧化碳或其组合在复合催化剂上的转化
WO2020060591A1 (en) * 2018-09-18 2020-03-26 Dow Global Technologies Llc Process for preparing c2-c5 hydrocarbons using a hybrid catalyst
CN113600199A (zh) * 2021-09-07 2021-11-05 中国华能集团清洁能源技术研究院有限公司 一种金属铜催化剂及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345514B (zh) * 2016-07-29 2018-11-13 厦门大学 一种合成气一步转化制低碳烯烃的催化剂及其制备方法
CN106475134B (zh) * 2016-09-22 2019-05-17 华东师范大学 一种水滑石为壳/分子筛为核的核壳催化剂及其制备和应用
CN109647499B (zh) * 2017-10-11 2021-10-08 中国科学院大连化学物理研究所 一种以HT-SiC为载体生长Cu-SSZ-13分子筛的催化剂及其制备方法
CN111346672B (zh) * 2018-12-21 2023-07-04 中国科学院大连化学物理研究所 一种掺杂杂原子分子筛催化合成气高选择性制低碳烯烃的方法
CN110201711B (zh) * 2019-07-11 2021-09-28 中国华能集团有限公司 一种二氧化碳加氢合成低碳混合醇的催化剂及其制备方法
CN110743611B (zh) * 2019-10-31 2021-01-01 厦门大学 一种纳米复合催化剂及其制备方法和应用
CN111889132B (zh) * 2020-08-12 2022-01-11 中国科学院山西煤炭化学研究所 一种金属氧化物-分子筛催化剂及其制备方法和应用
CN112191278B (zh) * 2020-10-27 2023-04-07 正大能源材料(大连)有限公司 一种用于合成气直接制低碳烯烃的双功能催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660894A (zh) * 2014-07-11 2017-05-10 陶氏环球技术有限责任公司 一氧化碳、二氧化碳或其组合在复合催化剂上的转化
CN106565406A (zh) * 2016-10-28 2017-04-19 华东理工大学 一步法制备均四甲苯的方法
WO2020060591A1 (en) * 2018-09-18 2020-03-26 Dow Global Technologies Llc Process for preparing c2-c5 hydrocarbons using a hybrid catalyst
CN113600199A (zh) * 2021-09-07 2021-11-05 中国华能集团清洁能源技术研究院有限公司 一种金属铜催化剂及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073333A (zh) * 2022-07-20 2022-09-20 江苏八巨药业有限公司 一种基于活性铜分子筛的消旋方法
CN115073333B (zh) * 2022-07-20 2024-01-19 江苏八巨药业有限公司 一种基于活性铜分子筛的消旋方法
CN117548111A (zh) * 2023-10-25 2024-02-13 广东绿峰能源科技有限公司 一种天然气制氢用催化剂及其制备方法与应用
CN117548111B (zh) * 2023-10-25 2024-06-11 广东绿峰能源科技有限公司 一种天然气制氢用催化剂及其制备方法与应用
CN117960254A (zh) * 2024-04-02 2024-05-03 河南氢力能源有限公司 一种糠醛加氢反应铜硅系废催化剂的回收再生工艺

Also Published As

Publication number Publication date
CN113600199B (zh) 2023-07-14
CN113600199A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023035697A1 (zh) 一种金属铜催化剂及其制备方法和应用
WO2012040977A1 (zh) 一种二氧化碳催化加氢制甲醇的催化剂及制备方法
WO2012151776A1 (zh) 一种改性的二氧化碳催化加氢制甲醇的催化剂及其制备方法
CN107890870B (zh) 一种二氧化碳和水制甲烷催化剂及其制备方法和应用
CN103301843B (zh) 一种高分散负载型铜基催化剂及其制备方法和应用
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN109621939A (zh) 三元复合金属氧化物固体碱催化剂及其制备方法和应用
CN110479364A (zh) 一种双功能催化剂及co加氢直接转化制低碳烯烃的方法
CN109317192B (zh) 一种co2加氢耦合制取低碳烯烃的核壳催化剂及其制备
WO2012079505A1 (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN108380216A (zh) 用于催化二氧化碳制乙醇的钴基催化剂的制备方法及应用
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
CN106607037A (zh) 用于流化床的gto催化剂及其制备方法
CN101269331A (zh) 高稳定性中孔材料Cu-Zn-Al2O3的制备方法及其在制备醇脱氢催化剂中的应用
CN103537288A (zh) 尿素燃烧法制备甲烷化催化剂的方法
CN106607058B (zh) 合成气直接制低碳烯烃的铁系催化剂及其制备方法
CN106607050B (zh) 合成气一步法制低碳烯烃的流化床催化剂及其制备方法
CN106607051A (zh) 合成气一步制低碳烯烃的催化剂及其制备方法
CN104815662A (zh) 用于合成气甲烷化的低温高活性纳米复合催化剂及其制备方法
CN106861751B (zh) 含Hβ分子筛的核壳催化剂的制备方法及产品和应用
CN114602477B (zh) 用于co2低温制甲醇的双壳空心铜锌基催化剂及其制备方法
CN114210360B (zh) 一种催化剂的制备方法及在二甲醚直接合成乙醇的应用
CN109718843A (zh) 一种新型二氧化碳甲烷化催化剂的制备和应用
CN108043412A (zh) 一种用于二氧化碳加氢合成甲醇催化剂的制备方法
CN114570397A (zh) 一种可回收再造的尖晶石型Ni基复合氧化物催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE