WO2023021867A1 - 走査プローブ顕微鏡とそれに使用される試料 - Google Patents

走査プローブ顕微鏡とそれに使用される試料 Download PDF

Info

Publication number
WO2023021867A1
WO2023021867A1 PCT/JP2022/026580 JP2022026580W WO2023021867A1 WO 2023021867 A1 WO2023021867 A1 WO 2023021867A1 JP 2022026580 W JP2022026580 W JP 2022026580W WO 2023021867 A1 WO2023021867 A1 WO 2023021867A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning probe
probe microscope
objective lens
light
sample
Prior art date
Application number
PCT/JP2022/026580
Other languages
English (en)
French (fr)
Inventor
開鋒 張
正浩 渡辺
丈師 廣瀬
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023021867A1 publication Critical patent/WO2023021867A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Definitions

  • the present invention relates to a scanning probe microscope equipped with a probe arranged close to a sample.
  • the Scanning Near-field Optical Microscope is a device that can measure the optical properties and physical property information of the surface of a sample with high resolution.
  • tip-enhanced Raman spectroscopy (TERS: Tip-enhanced Raman spectroscopy) enhances the Raman scattering light generated from the sample by irradiating excitation light onto a probe placed close to the sample. scattering) microscope.
  • Patent Document 1 in order to reduce the ratio of the Raman scattered light being absorbed or reflected by a part of the probe in a TERS microscope, the arrangement of the objective lens for condensing the excitation light and the Raman scattered light and the probe is disclosed. Revised is disclosed. Specifically, the angle formed by the optical axis of the objective lens and the center axis of the probe in the plane perpendicular to the upper surface of the sample is equal to the angle between the optical axis of the objective lens and the perpendicular to the upper surface of the sample. The objective lens and the probe are arranged so that the angle is larger than the angle they form.
  • Patent Document 1 no consideration is given to arranging the objective lens used for irradiating the excitation light near the sample and the probe. That is, in Patent Document 1, since the excitation light is incident along the optical axis of the objective lens tilted with respect to the vertical line of the upper surface of the sample, the objective lens that is too close to the sample and the probe acts as a sample holder that holds the sample. have a finger in the pie.
  • an object of the present invention is to provide a scanning probe microscope in which the objective lens used for irradiating excitation light can be arranged closer to the sample and the probe.
  • the present invention provides a sample holder for holding a sample, a probe arranged close to the sample, an excitation light source for emitting excitation light, and a probe for condensing the excitation light. and a light-receiving unit for detecting scattered light generated from the sample by irradiation with the excitation light, wherein the excitation light is located at a position shifted from the optical axis of the objective lens It is characterized by further comprising an incident position adjusting section for causing the incident.
  • the present invention it is possible to provide a scanning probe microscope in which the objective lens used for excitation light irradiation can be arranged closer to the sample and the probe.
  • FIG. 1 is a schematic configuration diagram of a first example of a scanning probe microscope; FIG. It is a perspective view explaining an example of a cantilever.
  • FIG. 2B is a cross-sectional view taken along the line AA of FIG. 2A; It is a figure explaining an example of the position which makes an excitation light inject into an objective lens.
  • FIG. 4 is a schematic configuration diagram of a second example of a scanning probe microscope;
  • FIG. 11 is a schematic configuration diagram of a third example of a scanning probe microscope; It is a figure explaining the structure of an integrated optical system. It is a figure explaining the inclination mechanism which inclines an integrated optical system. It is a figure explaining the state where the integrated optical system was tilted.
  • FIG. 4 is a schematic configuration diagram of a second example of a scanning probe microscope
  • FIG. 11 is a schematic configuration diagram of a third example of a scanning probe microscope; It is a figure explaining the structure of an integrated optical system. It is a figure explaining the inclin
  • FIG. 10 is a diagram showing simulation results of the relationship between the electric field intensity and the irradiation angle of the excitation light in the vicinity of the vertex of the probe; It is a figure explaining adjustment of the relative angle of a cantilever and excitation light. It is a figure explaining adjustment of the relative angle of a cantilever and excitation light. It is a figure explaining adjustment of the relative angle of a cantilever and excitation light. It is a figure explaining optimization of the irradiation angle of excitation light. It is a figure explaining optimization of the irradiation angle of excitation light. It is a figure explaining optimization of the irradiation angle of excitation light. It is a figure explaining optimization of the irradiation angle of excitation light.
  • the constituent elements are not necessarily essential, unless otherwise specified or clearly considered essential in principle. Needless to say.
  • a scanning probe microscope is a general term for microscopes represented by scanning tunneling microscopes and atomic force microscopes.
  • a scanning probe microscope is a microscope that scans a sample with a minute probe to observe the shape and properties of the sample.
  • the apex of the probe is brought close to the surface of the sample, and by scanning while detecting the mechanical and electromagnetic interactions between the sample and the probe, a magnified image and physical properties of the sample surface can be obtained. information can be obtained.
  • a scanning probe microscope has atomic-level or molecular-level resolution for a sample. In recent years, scanning probe microscopes have been used to investigate physical property information such as optical properties of samples.
  • near-field light is formed at the tip of the probe where the local electric field concentrates, and scattered light generated from the sample is detected by the near-field light.
  • physical property information of the sample can be obtained. For example, when Rayleigh scattered light is detected as the scattered light, physical property information such as reflectance, absorptance, and surface roughness of the surface of the sample can be obtained. Also, when Raman scattered light is detected, the type of chemical bond and the substances that constitute the sample can be identified.
  • the scanning probe microscope according to the present embodiment is widely applicable to techniques for detecting Rayleigh scattered light and Raman scattered light, and is particularly useful for detecting and spectroscopically measuring Raman scattered light. That is, the scanning probe microscope according to the present embodiment is a microscope that performs probe-enhanced Raman spectrometry using near-field light formed at the tip of the probe, and is used to irradiate the probe with excitation light. A contrivance is made to place the objective lens to be used closer to the sample and the probe.
  • the configuration of a scanning probe microscope having a probe will be described.
  • FIG. 1 is a perspective view, and the vertical direction is the Z direction, and the horizontal directions are the X and Y directions.
  • the scanning probe microscope 100 illustrated in FIG. 1 is also called, for example, a scanning near-field optical microscope (SNOM) or a tip-enhanced Raman spectroscopy (TERS) microscope.
  • a scanning probe microscope 100 includes a sample holder 20 , a cantilever 40 , an excitation light source 71 , an objective lens 75 , a collimator 78 and a controller 90 . Each part will be described below.
  • the sample holder 20 mounts the sample 10 to be measured, and is placed on the movable stage 30 .
  • the movable stage 30 is a stage that can move in two XY directions or three XYZ directions, and is configured using a piezoelectric element, for example.
  • a piezoelectric element is sometimes called a piezo actuator.
  • the cantilever 40 is a cantilever beam having at one end a probe arranged close to the sample 10 .
  • the configuration of the cantilever 40 will be described with reference to FIG. 2A.
  • the cantilever 40 has a probe 40a, a beam portion 40b, and a held portion 40c.
  • the beam portion 40b is a deformable member extending in the X direction, and has a probe 40a at one end and a held portion 40c at the other end.
  • the held portion 40c is connected to a vibrating portion 52, which will be described later. It can be said that the cantilever in FIG. 2 has a curved shape at the boundary between the beam 40b and the probe 40a.
  • the beam portion 40b and the probe 40a do not need to have the same thickness, and the thickness of each portion need not be uniform.
  • the probe 40a will be described with reference to FIG. 2B, which is a cross-sectional view taken along line AA of FIG. 2A.
  • the probe 40a is formed of silicon, silicon oxide, silicon nitride, carbon, or the like, and is a member having a shape projecting in the Z direction. ) and a slope portion 40h (referred to as an upper slope portion if distinguished).
  • the vertex 40d is the tip of the probe 40a and is arranged close to the sample 10. As shown in FIG.
  • the upper corner portion 40e is a corner located above the vertex portion 40d (specifically, the tip of the corner shown in FIG. 2A).
  • the ridgeline portion 40f is a portion (specifically, a ridgeline) that connects the vertex portion 40d and the upper corner portion 40e.
  • the slope portion 40g is a portion (surface) that connects the vertex portion 40d and the lower surface of the beam portion 40b.
  • the slope portion 40h is a portion (surface) that connects the upper corner portion 40e and the upper surface of the beam portion 40b.
  • the probe 40a is covered with a noble metal film at least at the vertex 40d and the ridge line 40f surrounding it. Note that the probe 40a is not limited to the shape illustrated in FIG.
  • each part is a point, a line, or a surface itself.
  • the tip, corners, lines, and rims of the faces are rounded to the extent that the accuracy required for the cantilever 40 is satisfied.
  • Each part may include a peripheral region, including the beginning and end of its radius.
  • the vibrating section 52 to which the held portion 40 c of the cantilever 40 is connected is configured using, for example, a piezoelectric element, vibrates the cantilever 40 , and is connected to the Z scanning section 51 .
  • the Z scanning unit 51 is a stage that can move in the Z direction, is configured using, for example, a piezoelectric element, and is connected to the XY scanning unit 50 .
  • the XY scanning unit 50 is a stage that can move in two XY directions, is configured using, for example, a piezoelectric element, and is connected to the housing of the scanning probe microscope 100 .
  • the vibrating section 52 may be configured using another actuator as long as it can vibrate the cantilever 40 .
  • the cantilever 40 is held in the housing of the scanning probe microscope 100 via the vibrating section 52, the Z scanning section 51, and the XY scanning section 50, and the sample 10 can be scanned by the XY scanning section 50. 52 can vibrate. Since the sample 10 can also be scanned with respect to the cantilever 40 by the movable stage 30, either one of the movable stage 30 and the XY scanning unit 50 may be provided. Further, when the cantilever 40 has self-detection performance, the vibrating section 52 may not be provided.
  • the excitation light source 71 emits excitation light 73 that irradiates the probe 40a.
  • the excitation light 73 may be single-wavelength laser light or wavelength-convertible laser light.
  • the excitation light 73 emitted from the excitation light source 71 is condensed by the lens 72 , reflected by the filter 74 , and incident on the objective lens 75 to be condensed.
  • the near-field light formed at the vertex 40d of the probe 40a by irradiation with the excitation light 73 causes the sample 10 to generate scattered light.
  • the light collected by the objective lens 75 passes through the filter 74 , is collected by the lens 77 , and enters the collimator 78 as detection light 76 .
  • the detected light 76 incident on the collimator 78 is sent to the spectroscope 80 through the optical fiber 79 and is dispersed. is sometimes measured.
  • the detection light 76 may enter the spectroscope 80 or the photodetector without passing through the collimator 78 or the optical fiber 79 .
  • An entity other than the above-described spectroscope 80 may be used as an entity for detecting scattered light generated from the sample, and such entities are collectively referred to as a light receiving unit.
  • the excitation light 73 is caused to enter a position off the optical axis CL of the objective lens 75 .
  • the excitation light 73 incident on the objective lens 75 at a position deviated from the optical axis CL is condensed by the objective lens 75, and then irradiated to the probe 40a of the cantilever 40 from a direction inclined with respect to the optical axis CL.
  • the sample 10 and the sample holder 20 do not interfere with each other.
  • the objective lens 75 can be placed closer to the probe 40a. Also, when the probe 40a is irradiated with the excitation light 73 from a direction closer to the vertical direction, the objective lens 75 can be arranged closer to the probe 40a without interfering with the hardware arrangement of the optical lever and the optical path. . By arranging the objective lens 75 closer to the sample 10 and the probe 40a, more of the scattered light generated in all directions from the sample 10 can be recovered by the objective lens 75, thereby improving the scattered light detection efficiency. can be made
  • the scanning probe microscope 100 includes an optical lever light source 61 and an optical lever detector 63 to detect deformation of the beam portion 40 b of the cantilever 40 .
  • the optical lever light source 61 emits an optical lever beam 62 that irradiates the beam portion 40b.
  • An optical lever beam 62 emitted from an optical lever light source 61 is reflected by a dichroic mirror 64 and enters an objective lens 75. After passing through the objective lens 75, the beam portion 40b is irradiated with the beam.
  • the optical lever beam 62 applied to the beam portion 40 b is reflected by the beam portion 40 b , passes through the objective lens 75 , is reflected by the dichroic mirror 64 , and is detected by the optical lever detector 63 .
  • the optical lever detector 63 has a plurality of detection elements, for example, four detection elements, and detects deformation and vibration of the beam portion 40b based on the output signal of each detection element.
  • the control unit 90 is a computer that controls each unit, graphs and outputs the intensity of the scattered light measured by the photodetector, and records data. For example, the control unit 90 adjusts the relative distance between the cantilever 40 and the sample 10 by controlling the operations of the movable stage 30, the XY scanning unit 50, and the Z scanning unit 51, and moves the probe 40a of the cantilever 40 to the sample 10. Alternatively, the entire surface of the sample 10 is scanned with the probe 40a. Further, based on the deformation of the beam portion 40b of the cantilever 40 detected by the optical lever detector 63, the control unit 90 calculates the force acting between the probe 40a and the sample 10 and the distance therebetween.
  • the movable stage 30 and the Z scanning section 51 are controlled so that the deformation amount of the section 40b is constant.
  • the computer has one or more processors and one or more storage resources, and the processors execute programs stored in the storage resources to implement the processes described above or below. Examples of processors are CPUs and GPUs. Examples of storage resources include RAM for volatile memory, and flash memory, HDD, and USB memory for nonvolatile memory.
  • the scanning probe microscope 100 The operation of the scanning probe microscope 100 will be explained.
  • the probe 40 a of the cantilever 40 is arranged near the sample 10 by the operation of the movable stage 30 and the XY scanning unit 50 .
  • an optical lever beam 62 is emitted from the optical lever light source 61 toward the beam portion 40 b of the cantilever 40 , and the optical lever beam 62 reflected by the beam portion 40 b is detected by the optical lever detector 63 .
  • excitation light 73 is emitted from the excitation light source 71 toward the probe 40a, and near-field light is formed at the vertex 40d of the probe 40a.
  • the near-field light generates scattered light including Raman scattered light from the sample 10, and the light collected by the objective lens 75 out of the generated scattered light passes through the dichroic mirror 64, the filter 74, and the lens 77 and passes through the collimator as detection light 76. 78 and detected by spectroscope 80 .
  • the control unit 90 generates a Raman spectrum image by near-field light irradiation and a surface unevenness image by a scanning probe microscope based on the signals detected by the spectroscope 80, and displays them on a display device such as a liquid crystal display.
  • a configuration of a second example of the scanning probe microscope will be described with reference to FIG.
  • a scanning probe microscope 200 exemplified in FIG. 4 detects the light transmitted through the sample 10 out of the scattered light generated from the sample 10 . That is, the configuration other than the configuration related to the detection of scattered light is the same as the scanning probe microscope 100 illustrated in FIG.
  • the scanning probe microscope 200 includes a sample holder 20 , a cantilever 40 , an excitation light source 71 , an objective lens 75 , a collimator 78 , a controller 90 , as well as a movable stage 31 and lenses 21 and 22 .
  • the movable stage 31 is a stage that can move in two XY directions or three XYZ directions.
  • the lenses 21 and 22 are arranged below the movable stage 31 together with the collimator 78 .
  • the scanning probe microscope 200 As in the scanning probe microscope 100, when the probe 40a placed near the sample 10 is irradiated with the excitation light 73, near-field light is formed at the vertex 40d of the probe 40a.
  • the near-field light generates scattered light from the sample 10, and light transmitted through the sample 10 out of the generated scattered light enters the collimator as detection light 23 through the sample holder 20, the aperture 32, the lenses 21 and 22. , and detected by the spectroscope 80 .
  • the scattered light generated from the sample 10 is detected without being blocked by the cantilever 40 and the movable stage 31, so the scattered light detection efficiency can be improved. As a result, high-contrast near-field light images and Raman spectrum images can be obtained.
  • a configuration of a third example of the scanning probe microscope will be described with reference to FIG.
  • a scanning probe microscope 300 exemplified in FIG. 5 detects the light emitted in the lateral direction of the cantilever 40 among the scattered light generated from the sample 10 . That is, the configuration other than the configuration related to the detection of scattered light is the same as the scanning probe microscope 100 illustrated in FIG.
  • the scanning probe microscope 300 includes a sample holder 20, a cantilever 40, an excitation light source 71, an objective lens 75, a collimator 78, a control section 90, as well as lenses 21 and 22. Lenses 21 and 22 are arranged laterally of cantilever 40 along with collimator 78 .
  • the scanning probe microscope 300 As in the scanning probe microscope 100, when the probe 40a placed near the sample 10 is irradiated with the excitation light 73, near-field light is formed at the vertex 40d of the probe 40a.
  • the near-field light generates scattered light from the sample 10, and out of the generated scattered light, the light emitted in the side direction of the cantilever 40 passes through the lenses 21 and 22 and enters the collimator as detection light 23, where it enters the spectroscope. detected by 80.
  • the scanning probe microscope 300 scattered light can be collected from multiple directions, so measurement that is less affected by the shape of the sample 10 can be performed.
  • the position where the probe 40a is irradiated with the excitation light 73 and the position where the near-field light is generated are relatively distant, and the objective lens 75 cannot sufficiently collect the scattered light generated from the sample 10 by the near-field light.
  • the scanning probe microscope 300 is useful.
  • the positions of the excitation light source 71 and the objective lens 75 and the positions of the collimator 78 and the lenses 21 and 22 are not limited to the positions illustrated in FIG. 5, and the positions of both may be exchanged.
  • the configuration of the integrated optical system 400 for the excitation light 73 and the detection light 76 of the scanning probe microscope 100 will be described with reference to FIG.
  • the shape of the probe 40a which is a minute member, has large individual differences at the time of manufacture.
  • the intensity of the near-field light formed at the vertex 40d of the probe 40a by irradiation with the excitation light 73 depends on the shape of the probe 40a, the irradiation angle of the excitation light 73, and the irradiation position. Therefore, it is desirable that the irradiation angle and irradiation position of the excitation light 73 can be adjusted according to the shape of the probe 40a.
  • the integrated optical system 400 of this embodiment has a function of adjusting the irradiation angle and irradiation position of the excitation light 73 .
  • the integrated optical system 400 includes an excitation light source 71, an objective lens 75, a collimator 78, an optical lever light source 61, an optical lever detector 63, as well as various optical filters, optical mirrors, and lenses. Each part will be described below together with the progress of the excitation light 73 and the optical lever beam 62 .
  • the excitation light 73 emitted from the excitation light source 71 has noise wavelengths cut by the optical filter 402 , is polarized by the polarizer 403 , and then enters the position/angle adjustment unit 404 .
  • the position/angle adjustment unit 404 has a mirror that reflects the excitation light 73 toward the filter 74, a mechanism that translates the mirror in the incident direction of the excitation light 73 (the X direction in FIG. 6), and a mechanism that tilts the mirror. These mechanisms may employ, for example, stepping motors or piezoelectric elements, or may use other actuators.
  • the excitation light 73 reflected by the mirrors of the position/angle adjustment unit 404 passes through the lenses 405 and 406, is reflected by the filter 74, passes through the dichroic mirror 64, enters the objective lens 75, and is condensed.
  • the excitation light 73 condensed by the objective lens 75 is applied to the probe 40a of the cantilever 40 to form near-field light at the vertex 40d of the probe 40a.
  • a part of the scattered light generated from the sample 10 by the near-field light formed at the vertex 40 d is collected by the objective lens 75 , transmitted through the dichroic mirror 64 , the filter 74 and the beam splitter 410 and condensed by the lens 77 . After that, it enters a collimator 78 as detection light 76 .
  • the position/angle adjustment unit 404 is controlled by the control unit 90 to translate and tilt the mirror.
  • the position at which the excitation light 73 is incident on the objective lens 75 is adjusted by parallel movement of the mirror, and when the incident position on the objective lens 75 is changed, the irradiation angle of the excitation light 73 to the probe 40a is changed.
  • the angle of incidence of the excitation light 73 on the objective lens 75 is adjusted, and when the angle of incidence on the objective lens 75 changes, the irradiation angle and irradiation position of the excitation light 73 on the probe 40a change. That is, the position/angle adjustment unit 404 adjusts the angle and position at which the probe 40a is irradiated with the excitation light 73 .
  • the position/angle adjustment unit is a component that adjusts the incident position of the excitation light in this way, and is therefore sometimes referred to as an incident position adjustment unit.
  • an optical element for changing the direction of excitation light an element such as a prism other than the above-described mirror may be used.
  • the objective lens 75 is connected to the focus adjustment section 409 .
  • the focus adjustment unit 409 is a mechanism for parallelly moving the objective lens 75 in the incident direction of the excitation light 73 (the X direction in FIG. 6), and adjusts the focus of the light condensed by the objective lens 75 .
  • the optical lever beam 62 emitted from the optical lever light source 61 passes through the beam splitter 415 , is reflected by the dichroic mirror 64 , and then enters the objective lens 75 .
  • the optical lever beam 62 incident on the objective lens 75 is reflected by the beam portion 40b of the cantilever 40, and after entering the objective lens 75 again, is reflected by the dichroic mirror 64 and the beam splitter 415, respectively, and is reflected by the optical lever detector 63. detected at
  • the integrated optical system 400 may include an observation light source 411 and an observation camera 414 used for observing the cantilever 40 and the sample 10 .
  • Observation light source 411 emits observation light 412 .
  • the observation light 412 emitted from the observation light source 411 passes through the beam splitter 413 , is reflected by the beam splitter 410 , passes through the filter 74 and the dichroic mirror 64 , and enters the objective lens 75 .
  • the observation light 412 incident on the objective lens 75 is reflected by the sample 10 and the cantilever 40, enters the objective lens 75 again, passes through the dichroic mirror 64 and the beam splitter 415, and is reflected by the beam splitter 410 and the beam splitter 413.
  • Incident on observation camera 414 Observation camera 414 outputs an observation image based on incident observation light 412 .
  • the observation image is used for alignment between the cantilever 40 and the sample 10 .
  • the beam splitter 410 can be pulled out, and may be pulled out after the observation is finished in order to improve the detection efficiency of the scattered light generated from the sample 10. Furthermore, it is desirable to turn off the power of the observation light source 411 after the observation is finished.
  • a tilting mechanism 500 which is a mechanism for tilting the integrated optical system 400, will be described with reference to FIG. 7A.
  • the tilting mechanism 500 has an XYZ stage 501 and a fixing plate 502 .
  • the XYZ stage 501 is a stage movable in three XYZ directions, and is connected to the housing of the scanning probe microscope 100 .
  • a fixing plate 502 is a member having a rotating shaft 503 and holes 504 , 505 and 506 , and is connected to the XYZ stage 501 .
  • a position/angle adjusting unit 404 of the integrated optical system 400 is rotatably connected to the rotating shaft 503 .
  • the holes 504 , 505 , and 506 are provided at predetermined intervals on the circumference of a circle whose center is the rotation shaft 503 and whose radius is the distance between the position/angle adjusting section 404 and the filter 74 .
  • a filter 74 is fixed in one of the holes 504 , 505 and 506 .
  • FIG. 7B illustrates the state in which filter 74 is fixed in hole 506 .
  • the filter 74 fixed in one of the holes 504, 505, and 506 the irradiation angle of the excitation light 73 with respect to the probe 40a of the cantilever 40 is changed by moving the mirror of the position/angle adjustment unit 404 in parallel. is continuously and precisely adjusted.
  • the tilting mechanism 500 does not necessarily mean that the integrated optical system 400 is tilted at discrete angles, and may be tilted at continuous angles. Also, the angle may be changed by an actuator such as a stepping motor or a piezoelectric element.
  • the effect of the irradiation angle of the excitation light 73 on the probe 40a will be described with reference to FIG.
  • the graph illustrated in FIG. 8 is a simulation result of the relationship between the electric field strength (V/m) at the intermediate point P between the vertex 40d of the probe 40a and the sample 10 and the irradiation angle ⁇ (°) of the excitation light 73.
  • the excitation light 73 has a wavelength of 660 nm and is applied to the upper corner 40e of the probe 40a.
  • the irradiation angle ⁇ is the angle with respect to the horizontal line.
  • simulations were performed for two lengths of 1028 nm and 1980 nm for the ridgeline portion 40f.
  • the electric field strength depends on the irradiation angle ⁇ , and is maximized at a specific irradiation angle. Also, the irradiation angle at which the electric field intensity is maximized differs depending on the length L of the ridgeline portion 40f. That is, the electric field strength of the near-field light can be improved by adjusting the irradiation angle ⁇ of the excitation light 73 according to the probe 40a having different shapes.
  • the wavelength of the excitation light 73 is not limited to 660 nm, and may be a wavelength in the visible light region, the near-ultraviolet region, or the infrared region. However, it is preferable to select the material of the metal film covering the probe 40a according to the wavelength of the excitation light 73.
  • FIG. The probe 40a is covered with, for example, a gold film, a silver film, or an aluminum film. Also, the length L of the ridge line portion 40 f is preferably shorter than five times the wavelength of the excitation light 73 .
  • FIG. 9A shows that the irradiation angle of the excitation light 73 to the cantilever 40 is adjusted by tilting the integrated optical system 400 in the range of 15° to 135° (0° when parallel to the X axis).
  • a tilting mechanism 500 is used to tilt the integrated optical system 400 .
  • the irradiation angle of the excitation light 73 is not limited to the range of 15° to 135°. For example, it may be tilted in a range of 0° to 135° parallel to the X-axis.
  • FIG. 9B shows that the irradiation angle of the excitation light 73 to the cantilever 40 is adjusted by changing the position of the excitation light 73 incident on the objective lens 75 .
  • the position/angle adjustment unit 404 of the integrated optical system 400 is used.
  • FIG. 9C shows adjusting the irradiation angle of the excitation light 73 by tilting the cantilever 40 with respect to the integrated optical system 400 .
  • an XY scanning unit 50 and a Z scanning unit 51 are used for tilting the cantilever 40.
  • the irradiation angle of the excitation light 73 to the cantilever 40 can be adjusted by the method illustrated in FIGS. 9A, 9B, and 9C.
  • the intensity of the field light can be further improved.
  • FIG. 10A shows a method of directly detecting the intensity of the near-field light formed near the vertex 40d of the probe 40a. That is, while the cantilever 40 placed close to the noble metal substrate sample 1001 whose substrate is noble metal is resonated by the vibrating section 52, the near-field light scattered light 1011 generated by the near-field light formed by the irradiation of the excitation light 73 is applied. Detects lock-in at vibration frequency. The lock-in detected signal is used to adjust the irradiation angle of the excitation light 73 .
  • FIG. 10B shows a method of measuring the Raman scattered light 1012 of substances adhering to the probe 40a. Since carbon in the air adheres to the probe 40a, the measured Raman scattered light 1012 includes Raman signals in the D band and G band of the adhered carbon. From the measured Raman scattering light 1012 , carbon D-band and G-band Raman signals are extracted, and the extracted Raman signals are used to adjust the irradiation angle of the excitation light 73 .
  • the D band is a Raman signal due to a defect structure
  • the G band is a Raman signal due to a graphite structure.
  • FIG. 10C shows a method of measuring the standard sample 1002. That is, the probe 40a of the cantilever 40 placed close to the standard sample 1002 is irradiated with the excitation light 73, and the specific Raman scattered light 1013 generated by the near-field light formed at the vertex 40d of the probe 40a is detected. The detected scattered light signal is used to adjust the irradiation angle of the excitation light 73 .
  • a single crystal silicon substrate, diamond, or the like is used for the standard sample 1002 .
  • a sample in which an organic substance is deposited on a noble metal substrate for example, a sample in which a monomolecular film is deposited on a gold substrate may be used.
  • a sample having a 2D material thin film such as graphene or MoS2 on a noble metal substrate may be used as a standard sample.
  • the Raman spectrum was not detected by the general Raman spectroscopy system, but the Raman spectrum was detected by the probe-enhanced Raman spectroscopy. be done. Therefore, by using the 4-PBT film on the gold substrate as a standard sample, the intensity of the near-field light formed near the vertex 40d of the probe 40a can be evaluated more accurately.
  • a standard sample may be used not only for optimizing the irradiation angle of the excitation light 73, but also for checking the performance of the probe-enhanced Raman spectroscopic device and adjusting other optical systems.
  • a scattered light signal extracted from the Rayleigh scattered light or fluorescence may be used to adjust the irradiation angle of the excitation light 73 .
  • FIG. 12 The arrangement of the cantilever 40 and the objective lens 75 when measuring the sample 10 in liquid will be described with reference to FIG.
  • the configuration illustrated in FIG. 12 includes container 601 along with objective lens 75 and cantilever 40 .
  • the cantilever 40 and the sample 10 are placed in a liquid contained in the container 601 .
  • the tip of the objective lens 75 is also immersed in the liquid.
  • the cantilever 40 is irradiated with the excitation light 73 and the optical lever beam 62 from the objective lens 75 .
  • the detection light 76 out of the scattered light generated from the sample and the optical lever beam 62 reflected by the cantilever 40 are collected by the objective lens 75 . Since other configurations and operations are the same as those of the scanning probe microscope 100, description thereof will be omitted.
  • a waterproof case 602 may be introduced.
  • the XY scanning unit 50, the Z scanning unit 51, or the vibrating unit 52 is installed at a location closer to the probe 40a. may
  • This waterproof case 602 is particularly effective when the liquid level is high.
  • FIGS. 13A, 13B, and 13C A modified example of the objective lens 75 will be described with reference to FIGS. 13A, 13B, and 13C.
  • the objective lens 75 included in the scanning probe microscope 100 illustrated in FIG. 1 is a transmissive objective lens.
  • 13A shows a reflective objective lens 901
  • FIG. 13B shows a parabolic mirror 902
  • FIG. 13C shows an integrating mirror 903, respectively. That is, instead of the objective lens 75, which is a transmissive objective lens, any one of a reflective objective lens 901, a parabolic mirror 902, and an integrating mirror 903 may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

励起光の照射やラマン散乱光の回収に用いられる対物レンズを試料及び探針のより近傍に配置可能な走査プローブ顕微鏡を提供する。試料を保持する試料ホルダと、前記試料に近接配置される探針と、励起光を出射する励起光源と、前記励起光を集光して前記探針に照射する対物レンズと、前記励起光の照射により前記試料から発生する散乱光を検出する受光部と、を備える走査プローブ顕微鏡であって、前記対物レンズの光軸からずれた位置に前記励起光を入射させる入射位置調整部をさらに備えることを特徴とする。

Description

走査プローブ顕微鏡とそれに使用される試料
 本発明は、試料に近接配置される探針を備える走査プローブ顕微鏡に関する。
 近接場走査顕微鏡(SNOM:Scanning Near-field Optical Microscope)は、試料の表面の光学的性質や物性情報を高分解能で測定できる装置である。またSNOMを応用した走査プローブ顕微鏡の一つとして、試料に近接配置される探針に励起光を照射し、試料から発生するラマン散乱光を増強する探針増強ラマン分光(TERS:Tip-enhanced Raman scattering)顕微鏡がある。
 特許文献1には、TERS顕微鏡においてラマン散乱光が探針の一部によって吸収または反射される割合を低減するために、励起光やラマン散乱光を集光する対物レンズと探針との配置を改めることが開示されている。具体的には、試料の上面側であって上面に直交する面内において、対物レンズの光軸と探針の中心軸とのなす角度が、対物レンズの光軸と試料の上面の垂線とのなす角度よりも大きくなるように、対物レンズと探針が配置される。
特許第6669759号公報
 しかしながら特許文献1では、励起光の照射に用いられる対物レンズを試料及び探針の近傍に配置することに対する配慮がなされていない。すなわち特許文献1では、試料の上面の垂線に対して傾けられた対物レンズの光軸に沿って励起光が入射するため、試料及び探針に近接し過ぎる対物レンズは試料を保持する試料ホルダと干渉する。
 そこで本発明は、励起光の照射に用いられる対物レンズを試料及び探針のより近傍に配置可能な走査プローブ顕微鏡を提供することを目的とする。
 上記目的を達成するために本発明は、試料を保持する試料ホルダと、前記試料に近接配置される探針と、励起光を出射する励起光源と、前記励起光を集光して前記探針に照射する対物レンズと、前記励起光の照射により前記試料から発生する散乱光を検出する受光部と、を備える走査プローブ顕微鏡であって、前記対物レンズの光軸からずれた位置に前記励起光を入射させる入射位置調整部をさらに備えることを特徴とする。
 本発明によれば、励起光の照射に用いられる対物レンズを試料及び探針のより近傍に配置可能な走査プローブ顕微鏡を提供することができる。
走査プローブ顕微鏡の第一の例の概略構成図である。 カンチレバーの一例について説明する斜視図である。 図2AのA-A断面図である。 対物レンズに励起光を入射させる位置の一例について説明する図である。 走査プローブ顕微鏡の第二の例の概略構成図である。 走査プローブ顕微鏡の第三の例の概略構成図である。 統合光学系の構成について説明する図である。 統合光学系を傾ける傾斜機構について説明する図である。 統合光学系が傾けられた状態について説明する図である。 探針の頂点部近傍における電場強度と励起光の照射角度との関係のシミュレーション結果を示す図である。 カンチレバーと励起光との相対角度の調整について説明する図である。 カンチレバーと励起光との相対角度の調整について説明する図である。 カンチレバーと励起光との相対角度の調整について説明する図である。 励起光の照射角度の最適化について説明する図である。 励起光の照射角度の最適化について説明する図である。 励起光の照射角度の最適化について説明する図である。 金基板の上に成膜された試料のラマン分光と探針増強ラマン分光とを比較する図である。 液中におけるカンチレバーと対物レンズの配置を示す図である。 対物レンズの変形例について説明する図である。 対物レンズの変形例について説明する図である。 対物レンズの変形例について説明する図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 <走査プローブ顕微鏡の概要>
 走査プローブ顕微鏡(SPM:Scanning Probe Microscope)は、走査トンネル顕微鏡や原子間力顕微鏡に代表される顕微鏡の総称である。走査プローブ顕微鏡は、微小な探針(プローブ)で試料を走査して、試料の形状や性質を観察する顕微鏡である。特に、走査プローブ顕微鏡では、探針の頂点部を試料の表面に近づけ、試料と探針との間の力学的・電磁気的相互作用を検出しながら走査することにより、試料表面の拡大像や物性情報を得ることができる。例えば、走査プローブ顕微鏡は、試料に対して原子レベルや分子レベルの分解能を有する。近年では、走査プローブ顕微鏡を使用して試料の光学的性質などの物性情報が調べられている。具体的には、光源から探針に励起光が照射されることにより、局所電界が集中する探針の頂点部に近接場光が形成され、近接場光によって試料から発生する散乱光が検出される。そして検出された散乱光が解析されることにより、試料の物性情報が得られる。例えば、散乱光としてレイリー散乱光が検出される場合、試料の表面の反射率や吸収率、表面粗さなどの物性情報を取得できる。またラマン散乱光が検出される場合、化学結合の種類や試料を構成する物質を同定できる。
 本実施の形態における走査プローブ顕微鏡は、レイリー散乱光やラマン散乱光を検出する技術に幅広く適用可能であり、特にラマン散乱光を検出し分光測定することに有用である。すなわち、本実施の形態における走査プローブ顕微鏡は、探針の頂点部に形成される近接場光を用いて探針増強ラマン分光測定をする顕微鏡であって、探針への励起光の照射に用いられる対物レンズを試料及び探針のより近傍に配置するための工夫が施される。以降では、探針を備える走査プローブ顕微鏡の構成について説明する。
 <走査プローブ顕微鏡の構成例1>
 図1を用いて、走査プローブ顕微鏡の第一の例の構成について説明する。なお図1は斜視図であり、鉛直方向をZ方向、水平方向をX方向及びY方向とする。図1に例示される走査プローブ顕微鏡100は、例えば、近接場光走査顕微鏡(SNOM)、または探針増強ラマン分光(TERS)顕微鏡とも呼ばれる。走査プローブ顕微鏡100は、試料ホルダ20、カンチレバー40、励起用光源71、対物レンズ75、コリメータ78、制御部90を備える。以下、各部について説明する。
 試料ホルダ20は、測定対象である試料10を搭載し、可動ステージ30の上に配置される。可動ステージ30は、XYの二方向またはXYZの三方向に移動可能なステージであり、例えば圧電素子を用いて構成される。なお、圧電素子はピエゾアクチュエータと呼ばれることがある。
 カンチレバー40は、試料10に近接配置される探針を一端に有する片持ち梁である。図2Aを用いてカンチレバー40の構成について説明する。カンチレバー40は、探針40a、梁部40b、被保持部40cを有する。梁部40bはX方向に延在する変形可能な部材であり、一端に探針40aが、他端に被保持部40cが設けられる。被保持部40cは、後述する加振部52に接続される。図2におけるカンチレバーの特徴は、梁部40bと、探針40aと、の境界が屈曲したような形状をしているとも言える。なお、図示では省略したが、梁部40bと、探針40aと、は同じ厚さである必要はなく、また、各部中の厚さが均一である必要もない。
 図2AのA-A断面図である図2Bに用いて探針40aについて説明する。探針40aはシリコンや酸化シリコン、窒化シリコン、カーボン等で形成され、Z方向に突出する形状の部材であり、頂点部40d、上角部40e、稜線部40f、斜面部40g(区別して呼びたい場合は下斜面部と呼ぶ)、斜面部40h(区別して呼びたい場合は上斜面部と呼ぶ)を有する。頂点部40dは探針40aの先端であり、試料10に近接配置される。上角部40eは頂点部40dの上方に位置する角(具体的には図2Aに示す角の先端)である。稜線部40fは頂点部40dと上角部40eとをつなぐ箇所(具体的には稜線)である。斜面部40gは頂点部40dと梁部40bの下面とをつなぐ箇所(面)である。斜面部40hは上角部40eと梁部40bの上面とをつなぐ箇所(面)である。探針40aは、少なくとも頂点部40dとその周辺である稜線部40fが、貴金属膜で覆われる。なお探針40aは図2に例示される形状に限定されない。
 なお、探針40aの製造技術が理想的で、図2Aおよび図2Bの通り厳密に角を形成できるとした場合、各部は点や線や面そのものである。しかし、カンチレバー40に求められる精度を満たす範囲で、実際には先端、角、線、面のリムは丸みを有す。各部はその丸みの始まり・終わりを含む、周辺領域を含むとしてもよい。
 図1の説明に戻る。カンチレバー40の被保持部40cが接続される加振部52は、例えば圧電素子を用いて構成され、カンチレバー40を加振し、Z走査部51に接続される。Z走査部51はZ方向に移動可能なステージであり、例えば圧電素子を用いて構成され、XY走査部50に接続される。XY走査部50はXYの二方向に移動可能なステージであり、例えば圧電素子を用いて構成され、走査プローブ顕微鏡100の筐体に接続される。加振部52はカンチレバー40を加振できるのであれば、ほかのアクチュエータを用いて構成してもよい。
 すなわちカンチレバー40は、加振部52、Z走査部51、XY走査部50を介して、走査プローブ顕微鏡100の筐体に保持され、XY走査部50によって試料10を走査可能であり、加振部52によって振動可能である。なお、可動ステージ30によってもカンチレバー40に対して試料10を走査可能であるので、可動ステージ30とXY走査部50のいずれか一方が備えられる構成であっても良い。またカンチレバー40が自己検知性能を有する場合、加振部52は備えられなくても良い。
 励起用光源71は探針40aに照射される励起光73を出射する。励起光73は単一波長のレーザ光であっても良いし、波長変換可能なレーザ光であっても良い。励起用光源71から出射される励起光73はレンズ72で集光され、フィルタ74で反射し、対物レンズ75に入射して集光されたのち、カンチレバー40の探針40aに照射される。励起光73の照射により探針40aの頂点部40dに形成される近接場光は、試料10から散乱光を発生させる。試料10から発生した散乱光のうち、対物レンズ75に回収された光は、フィルタ74を透過し、レンズ77で集光されたのち、コリメータ78に検出光76として入射する。コリメータ78に入射した検出光76は光ファイバー79を通じて分光器80へ送られて分光されたのち、光電子増倍管(PMT)やフォトダイオード(PD)、HgCdTe(MCT)センサ等の光検出器によって強度が測定されることもある。なお、コリメータ78や光ファイバー79を介すことなく、分光器80や光検出器に検出光76が入射しても良い。なお、試料から発生する散乱光を検出するエンティティとしては、前述の分光器80以外でもよく、そうしたエンティティをまとめて受光部と呼ぶ。
 図3を用いて、励起光73を対物レンズ75に入射させる位置について説明する。本実施の形態では、対物レンズ75の光軸CLからずれた位置に励起光73を入射させる。対物レンズ75の光軸CLからずれた位置に入射した励起光73は、対物レンズ75によって集光されたのち、光軸CLに対して傾いた方向からカンチレバー40の探針40aに照射される。すなわち、光軸CLからずれた位置に励起光73を入射させることによって、水平方向により近い方向から探針40aに励起光73を照射する場合にも、試料ホルダ20と干渉させることなく試料10及び探針40aのより近傍に対物レンズ75を配置することができる。また垂直方向により近い方向から探針40aに励起光73を照射する場合にも、光てこのハード配置と光路と干渉させることなく、探針40aのより近傍に対物レンズ75を配置することができる。試料10及び探針40aのより近傍に対物レンズ75を配置することによって、試料10から全方位に向けて発生した散乱光のより多くを対物レンズ75によって回収できるので、散乱光の検出効率を向上させることができる。
 図1の説明に戻る。走査プローブ顕微鏡100は、カンチレバー40の梁部40bの変形を検出するため、光てこ用光源61と光てこ用検出器63を備える。光てこ用光源61は梁部40bに照射される光てこ光線62を出射する。光てこ用光源61から出射した光てこ光線62はダイクロミラー64で反射して対物レンズ75に入射し、対物レンズ75を透過したのち梁部40bに照射される。梁部40bに照射された光てこ光線62は梁部40bで反射し、対物レンズ75を透過したのちダイクロミラー64で反射して光てこ用検出器63に検出される。光てこ用検出器63は複数の検出素子、例えば四つの検出素子を有し、各検出素子の出力信号に基づいて梁部40bの変形や振動を検出する。なお励起光73の照射に用いられる対物レンズ75を光てこ光線62が共用することにより、光てこ光線62に係る構成を簡素化でき、その他の構成の配置の自由度を向上できる。
 制御部90は、各部を制御するとともに、光検出器によって測定された散乱光の強度をグラフ化して出力したり、データを記録したりするコンピュータである。例えば、制御部90は可動ステージ30やXY走査部50、Z走査部51の動作を制御することにより、カンチレバー40と試料10との相対距離を調整し、カンチレバー40の探針40aを試料10に近づけたり、試料10の表面全体を探針40aで走査させたりする。また制御部90は光てこ用検出器63によって検出されたカンチレバー40の梁部40bの変形に基づいて、探針40aと試料10との間に働く力や両者間の距離を算出したり、梁部40bの変形量が一定になるように可動ステージ30やZ走査部51を制御したりする。なお、コンピュータは1以上のプロセッサと、1以上の記憶資源を有し、記憶資源に格納されたプログラムをプロセッサが実行することで、以上又は以下に示す処理を実現する。なお、プロセッサの例はCPUやGPUである。また、記憶資源は、揮発メモリであればRAMであり、不揮発メモリであれば、フラッシュメモリ、HDD、USBメモリが例である。
 走査プローブ顕微鏡100の動作について説明する。まず可動ステージ30やXY走査部50の動作によりカンチレバー40の探針40aが試料10の近傍に配置される。次に、光てこ用光源61からカンチレバー40の梁部40bに向けて光てこ光線62が照射され、梁部40bで反射した光てこ光線62が光てこ用検出器63によって検出される。また励起用光源71から探針40aに向けて励起光73が照射され、探針40aの頂点部40dに近接場光が形成される。近接場光は試料10からラマン散乱光を含む散乱光を発生させ、発生した散乱光のうち対物レンズ75に回収された光はダイクロミラー64、フィルタ74、レンズ77を通って検出光76としてコリメータ78に入射し、分光器80によって検出される。さらに制御部90は、分光器80で分光されて検出された信号に基づいて、近接場光照射によるラマンスペクトル画像や走査プローブ顕微鏡による表面凹凸画像を生成し、液晶ディスプレイ等の表示装置に表示させても良い。
 <走査プローブ顕微鏡の構成例2>
 図4を用いて、走査プローブ顕微鏡の第二の例の構成について説明する。図4に例示される走査プローブ顕微鏡200は、試料10から発生した散乱光のうち試料10を透過した光を検出する。すなわち散乱光の検出に係る構成以外は、図1に例示される走査プローブ顕微鏡100と同じであるので、走査プローブ顕微鏡100と同じ構成には同じ符号を付与して説明を省略する。
 走査プローブ顕微鏡200は、試料ホルダ20や、カンチレバー40、励起用光源71、対物レンズ75、コリメータ78、制御部90とともに、可動ステージ31とレンズ21、レンズ22を備える。可動ステージ31は、XYの二方向またはXYZの三方向に移動可能なステージであり、例えば圧電素子を用いて構成され、開口部32を有する。レンズ21とレンズ22は、コリメータ78とともに、可動ステージ31の下方に配置される。
 走査プローブ顕微鏡200の動作について説明する。走査プローブ顕微鏡100と同様に、試料10の近傍に配置された探針40aに向けて励起光73が照射されると、探針40aの頂点部40dに近接場光が形成される。近接場光は試料10から散乱光を発生させ、発生した散乱光のうち試料10を透過した光が、試料ホルダ20や開口部32、レンズ21、レンズ22を通って検出光23としてコリメータに入射し、分光器80によって検出される。
 走査プローブ顕微鏡200によれば、試料10から発生する散乱光がカンチレバー40や可動ステージ31によって遮られずに検出されるので、散乱光の検出効率を向上させることができる。その結果、高コントラストの近接場光画像やラマンスペクトル画像を得ることができる。
 <走査プローブ顕微鏡の構成例3>
 図5を用いて、走査プローブ顕微鏡の第三の例の構成について説明する。図5に例示される走査プローブ顕微鏡300は、試料10から発生した散乱光のうちカンチレバー40の側面方向に放射された光を検出する。すなわち散乱光の検出に係る構成以外は、図1に例示される走査プローブ顕微鏡100と同じであるので、走査プローブ顕微鏡100と同じ構成には同じ符号を付与して説明を省略する。
 走査プローブ顕微鏡300は、試料ホルダ20や、カンチレバー40、励起用光源71、対物レンズ75、コリメータ78、制御部90とともに、レンズ21とレンズ22を備える。レンズ21とレンズ22は、コリメータ78とともに、カンチレバー40の側面方向に配置される。
 走査プローブ顕微鏡300の動作について説明する。走査プローブ顕微鏡100と同様に、試料10の近傍に配置された探針40aに向けて励起光73が照射されると、探針40aの頂点部40dに近接場光が形成される。近接場光は試料10から散乱光を発生させ、発生した散乱光のうちカンチレバー40の側面方向に放射された光が、レンズ21とレンズ22を通って検出光23としてコリメータに入射し、分光器80によって検出される。
 走査プローブ顕微鏡300によれば、多方向から散乱光を収集できるので、試料10の形状の影響を受けにくい測定ができる。特に、探針40aに励起光73が照射される位置と近接場光が発生する位置とが比較的離れていて、近接場光によって試料10から発生する散乱光を対物レンズ75で十分に回収できない場合、走査プローブ顕微鏡300は有用である。なお、励起用光源71や対物レンズ75の位置と、コリメータ78やレンズ21、レンズ22の位置とは図5に例示される位置に限定されず、両者の位置が交換されても良い。
 <統合光学系の構成>
 図6を用いて、走査プローブ顕微鏡100の励起光73と検出光76に係る統合光学系400の構成について説明する。微小な部材である探針40aの形状は製造時の個体差が大きい。また励起光73の照射によって探針40aの頂点部40dに形成される近接場光の強度は、探針40aの形状や励起光73の照射角度、照射位置に依存する。そこで、探針40aの形状に応じて、励起光73の照射角度や照射位置を調整できることが望ましい。本実施の形態の統合光学系400は、励起光73の照射角度や照射位置を調整する機能を有する。
 統合光学系400は、励起用光源71、対物レンズ75、コリメータ78、光てこ用光源61、光てこ用検出器63とともに、様々な光学フィルタや光学ミラー、レンズを備える。以下、各部について、励起光73や光てこ光線62の進行とともに説明する。
 励起用光源71から出射した励起光73は、光学フィルタ402によってノイズとなる波長がカットされ、ポラライザ403によって偏光されたのち、位置・角度調整部404に入射する。位置・角度調整部404は励起光73をフィルタ74に向けて反射するミラーと、励起光73の入射方向(図6ではX方向)にミラーを平行移動させる機構と、ミラーを傾ける機構を有する。これら機構は、例えばステッピングモータや圧電素子を採用してもよく、他のアクチュエータを用いてもよい。位置・角度調整部404のミラーで反射した励起光73は、レンズ405、レンズ406を通過したのちフィルタ74で反射し、ダイクロミラー64を通過して対物レンズ75に入射し集光される。対物レンズ75によって集光された励起光73は、カンチレバー40の探針40aに照射され、探針40aの頂点部40dに近接場光を形成させる。頂点部40dに形成された近接場光によって試料10から発生する散乱光の一部は、対物レンズ75に回収され、ダイクロミラー64、フィルタ74、ビームスプリッタ410を透過し、レンズ77に集光されたのちコリメータ78に検出光76として入射する。
 なお位置・角度調整部404は制御部90によって制御され、ミラーを平行移動させたり、傾けたりする。ミラーの平行移動により励起光73が対物レンズ75へ入射する位置が調整され、対物レンズ75への入射位置が変わると探針40aへの励起光73の照射角度が変わる。またミラーが傾けられることにより励起光73が対物レンズ75へ入射する角度が調整され、対物レンズ75への入射角度が変わると探針40aへの励起光73の照射角度と照射位置が変わる。すなわち位置・角度調整部404によって、励起光73が探針40aに照射される角度や位置が調整される。なお、位置・角度調整部は、このように励起光を入射させる入射位置を調整する構成物であるため、入射位置調整部と呼ぶことがある。なお、励起光の方向を変化させるための光学素子は、前述のミラー以外のプリズム等の素子を用いてもよい。
 また対物レンズ75は焦点調整部409に接続される。焦点調整部409は対物レンズ75を励起光73の入射方向(図6ではX方向)に平行移動させる機構であり、対物レンズ75で集光される光の焦点を調整する。
 光てこ用光源61から出射した光てこ光線62は、ビームスプリッタ415を通過し、ダイクロミラー64で反射したのち、対物レンズ75に入射する。対物レンズ75に入射した光てこ光線62は、カンチレバー40の梁部40bで反射し、再び対物レンズ75に入射したのち、ダイクロミラー64とビームスプリッタ415のそれぞれで反射して光てこ用検出器63に検出される。
 統合光学系400は、カンチレバー40と試料10の観察に用いられる観察用光源411と観察用カメラ414を備えても良い。観察用光源411は観察光412を出射する。観察用光源411から出射された観察光412は、ビームスプリッタ413を通過したのちビームスプリッタ410で反射し、フィルタ74とダイクロミラー64を通過して対物レンズ75に入射する。対物レンズ75に入射した観察光412は、試料10とカンチレバー40で反射して再び対物レンズ75に入射し、ダイクロミラー64とビームスプリッタ415を通過してビームスプリッタ410とビームスプリッタ413で反射したのち観察用カメラ414に入射する。観察用カメラ414は入射した観察光412に基づいて観察用画像を出力する。観察用画像は、カンチレバー40と試料10との位置合わせに用いられる。
 なおビームスプリッタ410は抜き取り可能であり、試料10から発生した散乱光の検出効率を向上させるために観察終了後に抜き取られても良い。さらに観察終了後に、観察用光源411の電源もオフにされることが望ましい。
 図7Aを用いて、統合光学系400を傾ける機構である傾斜機構500について説明する。傾斜機構500は、XYZステージ501と固定用プレート502を有する。XYZステージ501はXYZの三方向に移動可能なステージであり、走査プローブ顕微鏡100の筐体に接続される。固定用プレート502は、回転軸503と穴504、穴505、穴506を有する部材であり、XYZステージ501に接続される。回転軸503には、統合光学系400の位置・角度調整部404が回転可能に接続される。穴504、穴505、穴506は、回転軸503を中心とし、位置・角度調整部404とフィルタ74の間の距離を半径とする円の円周上に所定の間隔をあけて設けられる。穴504、穴505、穴506のいずれかにはフィルタ74が固定される。
 図7Bを用いて、傾斜機構500により傾けられた統合光学系400について説明する。図7Bにはフィルタ74が穴506に固定された状態が例示される。対物レンズ75の光軸と水平線とのなす角度φは、フィルタ74がどの穴に固定されるかによって調整され、例えば穴504ではφ=60°、穴505ではφ=45°、穴506ではφ=30°に調整される。そして穴504、穴505、穴506のいずれかにフィルタ74が固定された状態で、位置・角度調整部404のミラーを平行移動させることにより、カンチレバー40の探針40aに対する励起光73の照射角度が連続かつ精密に調整される。
 なお、傾斜機構500は必ずしも離散角度に統合光学系400を傾けるものだけを意味するものではなく、連続した角度に傾けてもよい。また、角度はステッピングモータや圧電素子等のアクチュエータで変更できてもよい。
 <励起光の照射角度の影響>
 図8を用いて、探針40aへの励起光73の照射角度の影響について説明する。図8に例示されるグラフは、探針40aの頂点部40dと試料10との中間点Pにおける電場強度(V/m)と励起光73の照射角度θ(°)との関係のシミュレーション結果である。励起光73は波長が660nmであり、探針40aの上角部40eに照射される。照射角度θは水平線に対する角度である。また探針40aの形状の影響を示すために、稜線部40fの長さLが1028nmと1980nmの2種類についてシミュレーションがなされた。
 図8のグラフに示されるように、電場強度は照射角度θに依存し、特定の照射角度で最大となる。また電界強度が最大となる照射角度は、稜線部40fの長さLによって異なる。すなわち、異なる形状の探針40aに応じて、励起光73の照射角度θを調整することにより、近接場光の電界強度を向上させることができる。
 なお、励起光73の波長は660nmに限定されず、可視光領域や近紫外領域、赤外領域の波長であっても良い。ただし、励起光73の波長に応じて、探針40aを被覆する金属膜の材質が選択されることが好ましい。探針40aは例えば金膜や銀膜、アルミニウム膜によって被覆される。また稜線部40fの長さLは、励起光73の波長の5倍より短いことが好ましい。
 <励起光の照射角度の調整方法>
 図9A、図9B、図9Cを用いて励起光73の照射角度の調整方法について説明する。図9Aには統合光学系400を15°~135°(ただし、X軸と平行な場合が0°)の範囲で傾けることで、カンチレバー40への励起光73の照射角度を調整することが示される。統合光学系400を傾けるには、例えば傾斜機構500が用いられる。なお対物レンズ75と試料ホルダ20等との干渉がなければ、励起光73の照射角度は15°~135°の範囲に限定されない。例えば、X軸と平行な0°から135°の範囲で傾けてもよい。
 図9Bには対物レンズ75に入射する励起光73の位置を変えることで、カンチレバー40への励起光73の照射角度を調整することが示される。励起光73の対物レンズ75への入射位置を変えるには、例えば統合光学系400の位置・角度調整部404が用いられる。
 図9Cには統合光学系400に対してカンチレバー40を傾けることで、励起光73の照射角度を調整することが示される。カンチレバー40を傾けるには、例えばXY走査部50やZ走査部51が用いられる。
 図9A、図9B、図9Cに例示される方法により、カンチレバー40への励起光73の照射角度の調整が可能であり、励起光73の照射角度の調整により、頂点部40dに形成される近接場光の強度をより向上させることができる。
 <励起光の照射角度の最適化>
 図10A、図10B、図10Cを用いて励起光73の照射角度の最適化について説明する。すなわち、以降で説明するいずれかの方法によって出力信号を検出しながら励起光73の照射角度を調整することにより、出力信号が最大となる照射角度が探索される。
 図10Aには、探針40aの頂点部40d近傍に形成される近接場光の強度を直接検出する方法が示される。すなわち基板が貴金属である貴金属基板試料1001に近接配置されたカンチレバー40を加振部52で共振させながら、励起光73の照射で形成される近接場光が発生させる近接場光散乱光1011を加振周波数でロックイン検出する。ロックイン検出された信号は励起光73の照射角度の調整に用いられる。
 図10Bには、探針40aに付着する物質のラマン散乱光1012を測定する方法が示される。探針40aには大気中のカーボンが付着するので、測定されるラマン散乱光1012には付着したカーボンのDバンドやGバンドのラマン信号が含まれる。そこで測定されるラマン散乱光1012からカーボンのDバンドやGバンドのラマン信号が抽出され、抽出されたラマン信号が励起光73の照射角度の調整に用いられる。なおDバンドは欠陥構造によるラマン信号であり、Gバンドはグラファイト構造によるラマン信号である。
 図10Cには、標準試料1002を測定する方法が示される。すなわち標準試料1002に近接配置されたカンチレバー40の探針40aに励起光73を照射し、探針40aの頂点部40dに形成される近接場光が発生させる特定ラマン散乱光1013を検出する。検出された散乱光信号は励起光73の照射角度の調整に用いられる。
 なお標準試料1002には、単結晶シリコン基板やダイヤモンド等が用いられる。また探針増強ラマン分光用の標準試料として、貴金属基板の上に有機物が成膜された試料、例えば金基板の上に単分子膜が成膜された試料が用いられても良い。また貴金属基板の上にグラフェンやMoS等の2D材料薄膜が付いた試料が標準試料として用いられても良い。
 図11に示されるように、金基板の上に4-PBTが成膜された試料は、一般的なラマン分光システムではラマンスペクトルが検出されないのに対し、探針増強ラマン分光ではラマンスペクトルが検出される。したがって、金基板上の4-PBT膜を標準試料として用いることにより、探針40aの頂点部40d近傍に形成される近接場光の強度をより正確に評価することができる。このような標準試料は、励起光73の照射角度の最適化だけでなく、探針増強ラマン分光装置の性能確認や他の光学系の調整に用いられても良い。また標準試料からラマン散乱光とは別にレイリー散乱光や蛍光が発生する場合は、レイリー散乱光や蛍光から抽出される散乱光信号が励起光73の照射角度の調整に用いられても良い。
 <液中測定の構成>
 図12を用いて、液中の試料10を測定するときのカンチレバー40と対物レンズ75の配置について説明する。図12に例示される構成には、対物レンズ75やカンチレバー40とともに、容器601が含まれる。本構成の場合、カンチレバー40と試料10は、容器601に収容される液体の中に配置される。また対物レンズ75の先端も液体の中に入れられる。対物レンズ75からはカンチレバー40へ励起光73や光てこ光線62が照射される。また試料から発生する散乱光のうちの検出光76やカンチレバー40で反射した光てこ光線62は対物レンズ75に回収される。なお、その他の構成、動作は、走査プローブ顕微鏡100と同様であるので、説明を省略する。
 本構成において、防水ケース602を導入してもよい。例えば、探針40aにより近い箇所にXY走査部50、Z走査部51、又は加振部52を設置したが、液体に接触すると機能が果たせないこれら構成物を守るために、防水ケース602で囲ってもよい。この防水ケース602は特に液体の水位が高い場合に有効である。
 <対物レンズの変形例>
 図13A、図13B、図13Cを用いて対物レンズ75の変形例について説明する。図1に例示される走査プローブ顕微鏡100が備える対物レンズ75は透過型対物レンズである。これに対して図13Aには反射型対物レンズ901が、図13Bには放物面鏡902が、図13Cには積分鏡903がそれぞれ示される。すなわち透過型対物レンズである対物レンズ75の代わりに、反射型対物レンズ901、放物面鏡902、積分鏡903のいずれかが用いられても良い。
 以上、本発明の実施の形態について説明した。本発明はこれらの形態に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形したり、適宜組み合わせたりしても良い。
10…試料、20…試料ホルダ、21…レンズ、22…レンズ、23…検出光、30…可動ステージ、31…可動ステージ、32…開口部、40…カンチレバー、40a…探針、40b…梁部、40c…被保持部、40d…頂点部、40e…上角部、40f…稜線部、40g…斜面部、40h…斜面部、50…XY走査部、51…Z走査部、52…加振部、61…光てこ用光源、62…光てこ光線、63…光てこ用検出器、64…ダイクロミラー、71…励起用光源、72…レンズ、73…励起光、74…フィルタ、75…対物レンズ、76…検出光、77…レンズ、78…コリメータ、79…光ファイバー、80…分光器、90…制御部、100…走査プローブ顕微鏡、200…走査プローブ顕微鏡、300…走査プローブ顕微鏡、400…統合光学系、402…光学フィルタ、403…ポラライザ、404…位置・角度調整部、405…レンズ、406…レンズ、409…焦点調整部、410…ビームスプリッタ、411…観察用光源、412…観察光、413…ビームスプリッタ、414…観察用カメラ、415…ビームスプリッタ、500…傾斜機構、501…XYZステージ、502…固定用プレート、503…回転軸、504…穴、505…穴、506…穴、601…容器、602…防水ケース、901…反射型対物レンズ、902…放物面鏡、903…積分鏡、1001…貴金属基板試料、1002…標準試料、1011…近接場光散乱光、1012…ラマン散乱光、1013…特定ラマン散乱光、CL…対物レンズの光軸

Claims (18)

  1.  試料を保持する試料ホルダと、
     前記試料に近接配置される探針と、
     励起光を出射する励起光源と、
     前記励起光を集光して前記探針に照射する対物レンズと、
     前記励起光の照射により前記試料から発生する散乱光を検出する受光部と、
    を備える走査プローブ顕微鏡であって、
     前記対物レンズの光軸からずれた位置に前記励起光を入射させる入射位置調整部をさらに備えることを特徴とする走査プローブ顕微鏡。
  2.  請求項1に記載の走査プローブ顕微鏡であって、
     前記入射位置調整部は、前記励起光を反射するミラーと、前記励起光の入射方向に前記ミラーを平行移動させる機構と、前記ミラーを傾ける機構を有し、前記ミラーを傾けることで前記励起光の照射位置を調整し、前記ミラーを平行移動させることで前記励起光の照射角度を調整することを特徴とする走査プローブ顕微鏡。
  3.  請求項2に記載の走査プローブ顕微鏡であって、
     前記入射位置調整部を制御する制御部をさらに備え、
     前記制御部は、前記受光部によって検出される散乱光に基づいて、前記ミラーの位置や角度を制御することを特徴とする走査プローブ顕微鏡。
  4.  請求項3に記載の走査プローブ顕微鏡であって、
     前記制御部は、前記受光部によって検出される散乱光から抽出される散乱光信号に基づいて、前記ミラーの位置や角度を制御することを特徴とする走査プローブ顕微鏡。
  5.  請求項4に記載の走査プローブ顕微鏡であって、
     前記散乱光信号は:
      前記探針の先端に付着したカーボンから発生したラマン散乱光、
      又は標準試料から発生した、レイリー散乱光、ラマン散乱光、または蛍光、
    の少なくとも1つの散乱光から抽出される信号であることを特徴とする走査プローブ顕微鏡。
  6.  請求項5に記載の走査プローブ顕微鏡であって、
     前記散乱光信号は、前記標準試料から発生したラマン散乱光から抽出される信号であり、
     前記標準試料は、前記励起光が照射された時のみラマン散乱光を発生させることを特徴とする走査プローブ顕微鏡。
  7.  請求項2に記載の走査プローブ顕微鏡であって、
     前記励起光源と前記入射位置調整部と前記対物レンズを傾ける傾斜機構をさらに備えることを特徴とする走査プローブ顕微鏡。
  8.  請求項1に記載の走査プローブ顕微鏡であって、
     前記受光部は前記対物レンズによって回収される散乱光を検出することを特徴とする走査プローブ顕微鏡。
  9.  請求項1に記載の走査プローブ顕微鏡であって、
     前記探針を有するカンチレバーと、
     光てこ光線を出射する光てこ用光源と、
     光てこ用検出器をさらに備え、
     前記光てこ用検出器が検出する光は、光てこ光線が前記対物レンズを通過し、次いで前記カンチレバーで反射し、次いで前記対物レンズを再び通過した光てこ光線であることを特徴とする走査プローブ顕微鏡。
  10.  請求項9に記載の走査プローブ顕微鏡であって、
     前記対物レンズは前記受光部に検出される散乱光を回収することを特徴とする走査プローブ顕微鏡。
  11.  請求項1に記載の走査プローブ顕微鏡であって、
     液体を収容する容器と、
     前記探針を有するカンチレバーと、
     前記カンチレバーを振動させる加振部と、
     前記加振部を液体から守る防水ケースをさらに備え、
     前記試料と前記カンチレバーと前記対物レンズの先端は、前記液体の中に配置されることを特徴とする走査プローブ顕微鏡。
  12.  請求項1に記載の走査プローブ顕微鏡であって、
     前記探針は、頂点部と、上角部と、前記頂点部と前記上角部をつなぐ稜線部と、を有することを特徴とする走査プローブ顕微鏡。
  13.  請求項12に記載の走査プローブ顕微鏡であって、
     前記稜線部の長さは前記励起光の波長の5倍より短いことを特徴とする走査プローブ顕微鏡。
  14.  請求項1に記載の走査プローブ顕微鏡であって、
     前記対物レンズは、透過型対物レンズと、反射型対物レンズと、放物面鏡と、積分鏡と、の少なくとも1つより構成されることを特徴とする走査プローブ顕微鏡。
  15.  請求項1に記載の走査プローブ顕微鏡であって、
     前記入射位置調整部は、前記受光部によって検出される散乱光から抽出された散乱光信号に基づいて、前記励起光の照射角度を調整することを特徴とする走査プローブ顕微鏡。
  16.  請求項15に記載の走査プローブ顕微鏡であって、
     前記照射角度は15°~135°の範囲で調整されることを特徴とする走査プローブ顕微鏡。
  17.  走査プローブ顕微鏡に使用される試料であって、
     基板が貴金属であることを特徴とする試料。
  18.  請求項17に記載の試料であって、
     前記基板の上に有機膜が成膜されることを特徴とする試料。
PCT/JP2022/026580 2021-08-20 2022-07-04 走査プローブ顕微鏡とそれに使用される試料 WO2023021867A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134656A JP2023028765A (ja) 2021-08-20 2021-08-20 走査プローブ顕微鏡とそれに使用される試料
JP2021-134656 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023021867A1 true WO2023021867A1 (ja) 2023-02-23

Family

ID=85240525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026580 WO2023021867A1 (ja) 2021-08-20 2022-07-04 走査プローブ顕微鏡とそれに使用される試料

Country Status (2)

Country Link
JP (1) JP2023028765A (ja)
WO (1) WO2023021867A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259533A (ja) * 1992-03-13 1993-10-08 Ion Kogaku Kenkyusho:Kk 共鳴トンネル効果特性を有する電子素子
JP2001108599A (ja) * 1999-10-07 2001-04-20 Shimadzu Corp 電気力顕微鏡用標準試料
JP2001305038A (ja) * 2000-04-21 2001-10-31 Olympus Optical Co Ltd 近接場光学顕微鏡および近接場光学顕微鏡用探針
JP2006329973A (ja) * 2005-04-28 2006-12-07 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
JP2007163361A (ja) * 2005-12-15 2007-06-28 Toyota Motor Corp 近接場分光解析のための標準試料およびこの標準試料を用いた空間分解能評価方法
JP2009058231A (ja) * 2007-08-29 2009-03-19 Shimadzu Corp 液中試料の分析方法
JP2009174862A (ja) * 2008-01-21 2009-08-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡用カンチレバーホルダ、及びそれを備えた走査型プローブ顕微鏡
JP2009257913A (ja) * 2008-04-16 2009-11-05 Sii Nanotechnology Inc 液中観察用センサ及び液中観察装置
WO2015133014A1 (ja) * 2014-03-05 2015-09-11 株式会社日立製作所 走査プローブ顕微鏡及び、これを用いた試料測定方法
JP2016183869A (ja) * 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡
JP2019210511A (ja) * 2018-06-05 2019-12-12 国立大学法人千葉大学 薄膜形成方法及び記憶素子
JP2021025995A (ja) * 2019-07-31 2021-02-22 株式会社日立ハイテク カンチレバーおよび走査プローブ顕微鏡ならびに走査プローブ顕微鏡による測定方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259533A (ja) * 1992-03-13 1993-10-08 Ion Kogaku Kenkyusho:Kk 共鳴トンネル効果特性を有する電子素子
JP2001108599A (ja) * 1999-10-07 2001-04-20 Shimadzu Corp 電気力顕微鏡用標準試料
JP2001305038A (ja) * 2000-04-21 2001-10-31 Olympus Optical Co Ltd 近接場光学顕微鏡および近接場光学顕微鏡用探針
JP2006329973A (ja) * 2005-04-28 2006-12-07 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
JP2007163361A (ja) * 2005-12-15 2007-06-28 Toyota Motor Corp 近接場分光解析のための標準試料およびこの標準試料を用いた空間分解能評価方法
JP2009058231A (ja) * 2007-08-29 2009-03-19 Shimadzu Corp 液中試料の分析方法
JP2009174862A (ja) * 2008-01-21 2009-08-06 Sii Nanotechnology Inc 走査型プローブ顕微鏡用カンチレバーホルダ、及びそれを備えた走査型プローブ顕微鏡
JP2009257913A (ja) * 2008-04-16 2009-11-05 Sii Nanotechnology Inc 液中観察用センサ及び液中観察装置
WO2015133014A1 (ja) * 2014-03-05 2015-09-11 株式会社日立製作所 走査プローブ顕微鏡及び、これを用いた試料測定方法
JP2016183869A (ja) * 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡
JP2019210511A (ja) * 2018-06-05 2019-12-12 国立大学法人千葉大学 薄膜形成方法及び記憶素子
JP2021025995A (ja) * 2019-07-31 2021-02-22 株式会社日立ハイテク カンチレバーおよび走査プローブ顕微鏡ならびに走査プローブ顕微鏡による測定方法

Also Published As

Publication number Publication date
JP2023028765A (ja) 2023-03-03

Similar Documents

Publication Publication Date Title
US5894122A (en) Scanning near field optical microscope
JP2005535878A (ja) 走査型無開口蛍光顕微鏡のための改良された方法およびシステム
JP2004533604A (ja) 反射散乱型ジオメトリを用いた無開口近接場走査型ラマン顕微鏡法
JP7333434B2 (ja) 走査型プローブ顕微鏡のための装置および方法
JP4498081B2 (ja) 散乱型近接場顕微鏡およびその測定方法
US6470738B2 (en) Rotating probe microscope
JP7344832B2 (ja) カンチレバーおよび走査プローブ顕微鏡ならびに走査プローブ顕微鏡による測定方法
KR20200006364A (ko) 라만-원자간력 현미경
WO2023021867A1 (ja) 走査プローブ顕微鏡とそれに使用される試料
EP0846932A2 (en) Scanning near-field optic/atomic force microscope
JP4202076B2 (ja) 散乱型近接場顕微鏡
JP4989764B2 (ja) 超高分解能走査光学測定装置
JP4694736B2 (ja) プローブ開口作製装置、及びそれを用いた近接場光学顕微鏡
WO2021019861A1 (ja) カンチレバーおよび走査プローブ顕微鏡ならびに走査プローブ顕微鏡による測定方法
JP2006226901A (ja) 近接場光プローブ、この近接場光プローブの作製方法および作製装置
JP2021131288A (ja) 掃引雑音顕微鏡及びその使用方法
JP4500033B2 (ja) 近接場光学顕微鏡
TW202436878A (zh) 使用閘控峰值力ir的奈米機械紅外線分光系統和方法
JP3399810B2 (ja) 試料分析装置
JPH10221352A (ja) 照明装置
JP2004101424A (ja) 散乱型近接場顕微鏡および散乱型近接場分光システム
JPH11174064A (ja) 測定装置
JPH10326740A (ja) 位置検出装置及びそれを用いた加工機
JP2008102151A (ja) 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡
FR2960975A1 (fr) Dispositif de caracterisation topographique et de cartographie chimique de surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858190

Country of ref document: EP

Kind code of ref document: A1